html_url
stringlengths
48
51
title
stringlengths
5
268
comments
stringlengths
70
51.8k
body
stringlengths
0
29.8k
comment_length
int64
16
1.52k
text
stringlengths
164
54.1k
embeddings
sequence
https://github.com/huggingface/datasets/issues/2046
add_faisis_index gets very slow when doing it interatively
Ok, I will report the details too soon. I am the first one on the list and currently add_index being computed for the 3rd time in the loop. Actually seems like the time is taken to complete each interaction is the same, but around 1 hour more compared to running it without the training loop. A the moment this takes 5hrs and 30 mins. If there is any way to faster the process, an end-to-end rag will be perfect. So I will also try out with different thread numbers too. ![image](https://user-images.githubusercontent.com/16892570/111453464-798c5f80-8778-11eb-86d0-19d212f58e38.png)
As the below code suggests, I want to run add_faisis_index in every nth interaction from the training loop. I have 7.2 million documents. Usually, it takes 2.5 hours (if I run an as a separate process similar to the script given in rag/use_own_knowleldge_dataset.py). Now, this takes usually 5hrs. Is this normal? Any way to make this process faster? @lhoestq ``` def training_step(self, batch, batch_idx) -> Dict: if (not batch_idx==0) and (batch_idx%5==0): print("******************************************************") ctx_encoder=self.trainer.model.module.module.model.rag.ctx_encoder model_copy =type(ctx_encoder)(self.config_dpr) # get a new instance #this will be load in the CPU model_copy.load_state_dict(ctx_encoder.state_dict()) # copy weights and stuff list_of_gpus = ['cuda:2','cuda:3'] c_dir='/custom/cache/dir' kb_dataset = load_dataset("csv", data_files=[self.custom_config.csv_path], split="train", delimiter="\t", column_names=["title", "text"],cache_dir=c_dir) print(kb_dataset) n=len(list_of_gpus) #nunber of dedicated GPUs kb_list=[kb_dataset.shard(n, i, contiguous=True) for i in range(n)] #kb_dataset.save_to_disk('/hpc/gsir059/MY-Test/RAY/transformers/examples/research_projects/rag/haha-dir') print(self.trainer.global_rank) dataset_shards = self.re_encode_kb(model_copy.to(device=list_of_gpus[self.trainer.global_rank]),kb_list[self.trainer.global_rank]) output = [None for _ in list_of_gpus] #self.trainer.accelerator_connector.accelerator.barrier("embedding_process") dist.all_gather_object(output, dataset_shards) #This creation and re-initlaization of the new index if (self.trainer.global_rank==0): #saving will be done in the main process combined_dataset = concatenate_datasets(output) passages_path =self.config.passages_path logger.info("saving the dataset with ") #combined_dataset.save_to_disk('/hpc/gsir059/MY-Test/RAY/transformers/examples/research_projects/rag/MY-Passage') combined_dataset.save_to_disk(passages_path) logger.info("Add faiss index to the dataset that consist of embeddings") embedding_dataset=combined_dataset index = faiss.IndexHNSWFlat(768, 128, faiss.METRIC_INNER_PRODUCT) embedding_dataset.add_faiss_index("embeddings", custom_index=index) embedding_dataset.get_index("embeddings").save(self.config.index_path)
91
add_faisis_index gets very slow when doing it interatively As the below code suggests, I want to run add_faisis_index in every nth interaction from the training loop. I have 7.2 million documents. Usually, it takes 2.5 hours (if I run an as a separate process similar to the script given in rag/use_own_knowleldge_dataset.py). Now, this takes usually 5hrs. Is this normal? Any way to make this process faster? @lhoestq ``` def training_step(self, batch, batch_idx) -> Dict: if (not batch_idx==0) and (batch_idx%5==0): print("******************************************************") ctx_encoder=self.trainer.model.module.module.model.rag.ctx_encoder model_copy =type(ctx_encoder)(self.config_dpr) # get a new instance #this will be load in the CPU model_copy.load_state_dict(ctx_encoder.state_dict()) # copy weights and stuff list_of_gpus = ['cuda:2','cuda:3'] c_dir='/custom/cache/dir' kb_dataset = load_dataset("csv", data_files=[self.custom_config.csv_path], split="train", delimiter="\t", column_names=["title", "text"],cache_dir=c_dir) print(kb_dataset) n=len(list_of_gpus) #nunber of dedicated GPUs kb_list=[kb_dataset.shard(n, i, contiguous=True) for i in range(n)] #kb_dataset.save_to_disk('/hpc/gsir059/MY-Test/RAY/transformers/examples/research_projects/rag/haha-dir') print(self.trainer.global_rank) dataset_shards = self.re_encode_kb(model_copy.to(device=list_of_gpus[self.trainer.global_rank]),kb_list[self.trainer.global_rank]) output = [None for _ in list_of_gpus] #self.trainer.accelerator_connector.accelerator.barrier("embedding_process") dist.all_gather_object(output, dataset_shards) #This creation and re-initlaization of the new index if (self.trainer.global_rank==0): #saving will be done in the main process combined_dataset = concatenate_datasets(output) passages_path =self.config.passages_path logger.info("saving the dataset with ") #combined_dataset.save_to_disk('/hpc/gsir059/MY-Test/RAY/transformers/examples/research_projects/rag/MY-Passage') combined_dataset.save_to_disk(passages_path) logger.info("Add faiss index to the dataset that consist of embeddings") embedding_dataset=combined_dataset index = faiss.IndexHNSWFlat(768, 128, faiss.METRIC_INNER_PRODUCT) embedding_dataset.add_faiss_index("embeddings", custom_index=index) embedding_dataset.get_index("embeddings").save(self.config.index_path) Ok, I will report the details too soon. I am the first one on the list and currently add_index being computed for the 3rd time in the loop. Actually seems like the time is taken to complete each interaction is the same, but around 1 hour more compared to running it without the training loop. A the moment this takes 5hrs and 30 mins. If there is any way to faster the process, an end-to-end rag will be perfect. So I will also try out with different thread numbers too. ![image](https://user-images.githubusercontent.com/16892570/111453464-798c5f80-8778-11eb-86d0-19d212f58e38.png)
[ -0.49882406, -0.2682778239, -0.0245006736, 0.128228277, 0.0594398603, 0.2077842206, 0.1214628518, 0.4241297245, 0.291742146, 0.2924967408, -0.1188250929, 0.1883152723, 0.1372129172, 0.0858210027, -0.1362565756, 0.1750426739, 0.2370327115, 0.0853343457, 0.2607979178, -0.1344141364, -0.3274792731, -0.3090644181, -0.1589121073, -0.2578624189, -0.4006921649, -0.0958188921, -0.2436217368, -0.0820505768, 0.1982477158, -0.4729164839, -0.1375326514, 0.1398428977, 0.3402582407, 0.2582925856, -0.0001220497, 0.0556765273, 0.2280079424, 0.0654630885, -0.2229974568, 0.6411960125, 0.3400722742, -0.0694884509, -0.1751100719, -0.3107711375, -0.1455551237, -0.111042127, 0.0810792744, -0.0469298586, -0.1663650125, 0.1943014562, 0.0266240463, -0.0582866669, 0.0522548854, -0.0153998528, 0.4025117457, -0.0755913556, -0.0691774189, 0.317471087, 0.1635125726, -0.072238043, 0.0997431278, 0.4481078684, 0.1206413805, -0.226777032, 0.1089041457, 0.2051614374, 0.7838162184, 0.0224399716, 0.0652681589, 0.1526694596, 0.0153403673, -0.0905529708, -0.443008393, -0.1029035673, 0.4257143438, -0.6180592179, -0.0674015656, -0.0837423205, -0.1014747322, 0.0538602658, 0.1745852381, -0.0302297864, 0.0363180265, 0.0474507548, 0.174899742, 0.1653568596, 0.3874710798, -0.059902437, 0.5584336519, 0.0424473844, -0.116854243, 0.0448822752, -0.0920772031, 0.0121964924, -0.6050299406, 0.0880847722, -0.0309159234, -0.0993313715, -0.0926872939, 0.0178017914, -0.3694863915, 0.0061656032, 0.2365597636, 0.0033365716, -0.1830647737, -0.0902575329, -0.5061046481, 0.0558814742, 0.0839016736, 0.1062869281, -0.3780879378, 0.0992342234, -0.0033382811, -0.0043096952, -0.3259800673, -0.2981351912, -0.2288902253, 0.2228070349, -0.1811425388, 0.0771881342, -0.4039684236, -0.2522764802, 0.2050727606, 0.4162216485, -0.1177444085, -0.0761366487, 0.010839574, -0.0346155465, -0.2344280928, 0.1761686206, -0.222017318, 0.2306603789, -0.0319640413, 0.5045983195, -0.0291064456, -0.2213939279, -0.0890686885, -0.0217308737, 0.0839633644, -0.0078425631, -0.044163242, -0.2998933792, 0.2466678619, 0.0749232024, -0.2632142305, -0.0676851645, -0.0939519331, 0.1211104244, -0.227823168, 0.2215077132, -0.2173947543, -0.3651024401, 0.0271582548, 0.0193312131, 0.3086773753, -0.0630926192, 0.4208227694, 0.1143969446, 0.1730183959, 0.1613353044, 0.1591763794, -0.1314438283, -0.2680213749, 0.0831864774, 0.2267844081, 0.3627383709, 0.0937217921, 0.0347716659, 0.2980124354, 0.3901304901, 0.2124052346, 0.3999935985, -0.1159488261, 0.6762602329, -0.3200044036, 0.0842917711, 0.2451202422, -0.2553783655, -0.2924264371, 0.1869048178, -0.1663641632, -0.0773257613, 0.3296631873, 0.5182707906, 0.3120290041, 0.0870155022, 0.3410930037, 0.3062553406, 0.0090269931, -0.0312470607, -0.405068934, -0.0582716987, 0.2639192045, 0.3804078102, -0.3354528248, 0.101740703, -0.0401815772, -0.3298805356, 0.6009739637, -0.476105541, -0.1217621565, 0.0680583566, 0.361573875, 0.3393868208, 0.2328696698, 0.2761103511, 0.1495421231, 0.1626260579, 0.0960144401, 0.0987889394, 0.1701553166, -0.4183503091, 0.2156295925, -0.0257501453, -0.2181930244, 0.1078815162, -0.0609780252, 0.1500250548, -0.0456763245, -0.1998731494, -0.1568868756, 0.5427840352, -0.6157976389, 0.0279458687, -0.248897016, -0.1560834944, 0.0070150904, -0.2134258449, -0.0342435353, 0.1429588348, 0.0524965525, -0.3868666887, -0.0538335219, 0.102861084, 0.1266251504, -0.1876762211, 0.5111069679, -0.1136960983, -0.0370366834, 0.2962220609, 0.0449534059, -0.15126504, 0.1090167761, -0.1937615573, -0.0018786415, 0.4852040112, 0.3487839699, 0.2458341271, -0.0214935839, -0.2332082689, 0.0470291078, -0.0406503305, -0.079387024, 0.2275252491, 0.079944022, 0.130253002, 0.4091726542, -0.0333355777, -0.3332441747, 0.2324642241, 0.1857772619, -0.2031296641, -0.4314083755, 0.2710415721, 0.3516988158, -0.0368977077, -0.3497086763, -0.522008419, 0.2360267788, 0.3185988069, 0.1883932352, -0.0716536641, -0.0276509151, -0.2472812533, 0.1691095531, 0.0565534979, -0.0483720265, 0.1000481844, 0.1766417921, -0.214544788, -0.2067900896, -0.2552963495, -0.1363972127, 0.428645879, -0.0443387665, 0.309440732, 0.1777623594, 0.2771869302, -0.1247248203, -0.1249762028, 0.2887520194, 0.0088402331, 0.0416108891, -0.1089352667, -0.03623835, 0.1931091249, -0.0469497964, 0.3649182916, 0.1957944334, -0.325090766, 0.0198443085, -0.0984711498, -0.1214953735, -0.078978613, 0.1210054755, -0.150549829, 0.117400378, 0.0439469814, -0.052580554, -0.1851365566, -0.0862714499, -0.1575877219, -0.0794771016, -0.2974507809, -0.1662346572, -0.2460685521, -0.1250372827, -0.1196447536, 0.0043306984, 0.0005500466, -0.0106873699, -0.0404875614, -0.2826740444, -0.1588368416, 0.0607949346, -0.2936335206, -0.2167017609, -0.1739189327, 0.2281412482, -0.0243998468, 0.0930587798, -0.1156691834, 0.0667520165, 0.1222409755, -0.0957002044, -0.1543300748, -0.0534615964, -0.2331427634, 0.2917098403, 0.1491723955, 0.0468313806, -0.0794369131, -0.4122961164, -0.0143968826, 0.4969035089, -0.5218710899, -0.0407989882, -0.3583914638, 0.2859595418, -0.3150940537, 0.4582990706, 0.0567066781, -0.2462485135, -0.1380135864, 0.364482671, 0.174510017, 0.3875305951, -0.0617132038, 0.0549773537, -0.0879176408, 0.267544955, -0.1149757057, 0.5162413716, 0.3272316158, -0.2136982232, -0.0478193611, -0.262396425, 0.1159516424, 0.0527697653, -0.1398819387, 0.2965241671, 0.08347781, -0.3149954677, 0.1665280759, -0.2887442112, -0.4117944837, 0.0320427418, -0.052759815, 0.1982455254, -0.2443106472, 0.3169921339, 0.0489503853, 0.4910989106, -0.1780501604, 0.2910963595, -0.2383606136, -0.1767041385, 0.1975147724, 0.2727530003, 0.244900763, -0.1675577164, 0.0264964402, -0.5409095287, -0.421677649, 0.2834407687, 0.1674793661, 0.2352837026, 0.2791199088, -0.1008349881, 0.5258054137, -0.1562114209, 0.7999857664, 0.0206832271, -0.3363375962, 0.3844911158, -0.1618196666, 0.0528763086, -0.2177933156, -0.1827092618, -0.0659896284, 0.233773917, 0.4407469928, -0.0931774676, -0.2479647696, 0.6446050406, 0.0670878738, -0.1472482681, -0.3441519141, -0.1861819327, -0.3543057442, -0.0412188545, 0.767854929, -0.1216908172, 0.1556898803, 0.1822192967, -0.0512347631, -0.3818883598, 0.1598659158, 0.2386750579, -0.005119741, 0.0505827777, 0.4557840526, 0.4348104894, 0.0714177042, 0.000731538, 0.11927405, -0.0369113646, -0.3043969274, 0.0731522888, -0.1888462156, -0.2556852102, 0.3799423575, 0.700673759, 0.1868768781, 0.2484071106, -0.2102308869, 0.3775886297, -0.1914454848, 0.0245311707, 0.4383128285, -0.0020623617, -0.1787723899, -0.5383265615, 0.3112787008, 0.2034227699, 0.0733026266, 0.0608615763, -0.0757306963, -0.0163801294, 0.3021711707, 0.1249999553, 0.983823359, -0.0269194804, 0.1929831952, 0.5063084364, 0.0048407093, -0.2439047992, -0.6487342119, 0.3692771494, -0.332921207, -0.224152863, 0.1931167245, -0.1011414081, -0.0847682953, 0.0735342056, -0.0393424518, 0.0991453677, -0.0472757295, -0.0862561613, -0.2586017251, 0.3895539641, 0.3151937425, -0.4278397262, 0.0248835608, 0.0013510659, 0.2714570165, -0.0987159535, 0.1278158873, -0.1633998603, -0.1108864546, 0.0184412077, 0.1251736879, -0.0791134462, -0.1283783466, 0.0130585097, -0.0487736166, -0.0873112977, -0.2329256237, -0.3244179785, 0.4604190886, -0.0299461968, 0.0995342061, 0.0815838799, -0.0991101265, 0.0721637011, -0.0867691487, -0.4970834553, 0.2265412658, 0.0808125585, -0.1736777276, 0.1493705809, 0.0787264109, -0.3227707148, -0.1460987329, 0.1744303405, 0.0205770656, 0.0075484142, -0.0367378667, 0.3179991543, -0.2626373172, -0.2335653752, 0.020059783, 0.0920770317, -0.4317518771, 0.5605172515, -0.3023820519, -0.3800684214, -0.0546554178, 0.0166958384, 0.3058081269, 0.0560380369, 0.2623710632, -0.0891196281, -0.3048815131, -0.1546770036, -0.302428782, 0.0612832271, 0.0386250988, 0.0938880295, 0.3024204671, -0.0061313659, 0.0253996179, -0.2326646149, -0.322717607, -0.141769588, -0.3823908567, 0.1145998687, -0.3576403856, -0.1850683689, 0.2572281957, 0.3836848736, 0.036017634, 0.2342237383, -0.4448953271, 0.2590478957, -0.2176698148, -0.0653394014, -0.0312395431, 0.2600190639, -0.0327088535, -0.2574275434, 0.1754403114, 0.216270119, 0.1199889854, 0.1412032098, 0.0373653807, -0.1117986739, 0.1029489934, 0.1834249049, -0.1107472628, 0.1684505045, 0.0811558217, -0.1483062059, -0.3009883165, -0.2652986348, 0.1343660951, -0.110703364, -0.025855042, -0.1303594559, -0.1217091084, -0.1124878824, 0.3323766887, 0.273825258, 0.204004705, 0.283308506, -0.0734990016, 0.0767017305, -0.2428331971, -0.2653931975, -0.0510372035, 0.1903245151, 0.0616438314, 0.0863676816, -0.091865845, -0.1731874794, -0.3799477816, -0.0381177552, 0.031768769, 0.4498935342, 0.0424941368, -0.288366735, 0.1852962673, 0.0379372723, -0.279720515, -0.1952765882, 0.3624272048, -0.4507014155, 0.2002285123, 0.4017176628, 0.264575094, 0.165723592, -0.4832744896, 0.0937633291, -0.2345170975, 0.0963053331, -0.4337074161, -0.0904509723, 0.3514744341, -0.1948998272, 0.2041253299, 0.3052140176, 0.2311197519, 0.608917892, 0.0314239822, 0.2752898932, 0.1878772229, 0.2133275419, -0.321703732, -0.1798363924, 0.2906687558, 0.2322686911, -0.031773366, -0.207844764, 0.0090947673, 0.2347344905, 0.2440356463, -0.5169644952, -0.2611280978, 0.1630212218, -0.1220196411, -0.1281809658, 0.4117490649, 0.056770578, -0.2780817747, 0.2270265967, 0.0776640698, 0.1923735887, -0.12724787, 0.200874269, 0.2934534252, 0.2212006599, -0.0231135469, 0.0910241455, 0.4337711036, -0.3367398977, -0.2079152465, -0.0111510456, -0.0027164277, 0.0235891603, -0.1512227803, 0.2809454203, 0.2448254377, -0.0555030257, 0.2687212825, -0.0504412428, -0.0088712834, 0.0438045114, -0.0344004743, -0.1084132344, -0.1003934816, 0.1006172895, -0.0908769071, -0.12853387, -0.1207235307, -0.2426326871, 0.2026134133, -0.1804250181, 0.023068646, 0.3459427953, -0.097540006, -0.3948053718, 0.0952415317, -0.283303082, 0.0691806301, 0.1062702984, -0.35660097, -0.0891359076, 0.2603065968, -0.0016339011, -0.4257489145, 0.5468894243, 0.1724049449, 0.1286818981, -0.3299409449, -0.0014341325, -0.3207880855, -0.0345096029, -0.5890922546, 0.112635538, 0.1176836789, 0.4403542876, 0.073925823, -0.0703548416, 0.4031083882, -0.4079710841, 0.0992394984, 0.3735488653, -0.1734417975, -0.0306228567, -0.4397856295, -0.0738478824, 0.0422837138, -0.3743225038, 0.2847958505, -0.1282065511, -0.0147695504, 0.192371577, -0.0202696919, 0.1226511821, 0.0626825988, 0.529878974, -0.0979443267, 0.0000545271, -0.0964538679, 0.008635208, -0.2321902663, 0.1219587475, -0.2070783675, 0.0085760355, -0.0218881518, 0.1733753383, -0.2073741853, -0.3919602334, -0.1815344989, 0.4176574349, 0.3126300573, -0.4186963737, 0.1980271637, 0.1526591927, -0.1558283567, 0.4795942008, 0.1503627598, 0.22828421, 0.1467330605, -0.034051232, -0.3561269641, -0.1054199785, 0.6236685514, -0.1882941574, -0.0293614641, -0.3494382203, 0.2549013793, 0.4437919259, 0.5510438085, -0.2645766139, 0.086238116, 0.121943526, 0.0535738505, -0.2103942186, 0.5777597427, 0.1868615597, 0.0147709623, -0.0737834573, -0.2648073733, -0.0630889311, -0.0029668435, -0.3532100618, -0.2814308703 ]
https://github.com/huggingface/datasets/issues/2046
add_faisis_index gets very slow when doing it interatively
@lhoestq on a different note, I read about using Faiss-GPU, but the documentation says we should use it when the dataset has the ability to fit into the GPU memory. Although this might work, in the long-term this is not that practical for me. https://github.com/matsui528/faiss_tips
As the below code suggests, I want to run add_faisis_index in every nth interaction from the training loop. I have 7.2 million documents. Usually, it takes 2.5 hours (if I run an as a separate process similar to the script given in rag/use_own_knowleldge_dataset.py). Now, this takes usually 5hrs. Is this normal? Any way to make this process faster? @lhoestq ``` def training_step(self, batch, batch_idx) -> Dict: if (not batch_idx==0) and (batch_idx%5==0): print("******************************************************") ctx_encoder=self.trainer.model.module.module.model.rag.ctx_encoder model_copy =type(ctx_encoder)(self.config_dpr) # get a new instance #this will be load in the CPU model_copy.load_state_dict(ctx_encoder.state_dict()) # copy weights and stuff list_of_gpus = ['cuda:2','cuda:3'] c_dir='/custom/cache/dir' kb_dataset = load_dataset("csv", data_files=[self.custom_config.csv_path], split="train", delimiter="\t", column_names=["title", "text"],cache_dir=c_dir) print(kb_dataset) n=len(list_of_gpus) #nunber of dedicated GPUs kb_list=[kb_dataset.shard(n, i, contiguous=True) for i in range(n)] #kb_dataset.save_to_disk('/hpc/gsir059/MY-Test/RAY/transformers/examples/research_projects/rag/haha-dir') print(self.trainer.global_rank) dataset_shards = self.re_encode_kb(model_copy.to(device=list_of_gpus[self.trainer.global_rank]),kb_list[self.trainer.global_rank]) output = [None for _ in list_of_gpus] #self.trainer.accelerator_connector.accelerator.barrier("embedding_process") dist.all_gather_object(output, dataset_shards) #This creation and re-initlaization of the new index if (self.trainer.global_rank==0): #saving will be done in the main process combined_dataset = concatenate_datasets(output) passages_path =self.config.passages_path logger.info("saving the dataset with ") #combined_dataset.save_to_disk('/hpc/gsir059/MY-Test/RAY/transformers/examples/research_projects/rag/MY-Passage') combined_dataset.save_to_disk(passages_path) logger.info("Add faiss index to the dataset that consist of embeddings") embedding_dataset=combined_dataset index = faiss.IndexHNSWFlat(768, 128, faiss.METRIC_INNER_PRODUCT) embedding_dataset.add_faiss_index("embeddings", custom_index=index) embedding_dataset.get_index("embeddings").save(self.config.index_path)
45
add_faisis_index gets very slow when doing it interatively As the below code suggests, I want to run add_faisis_index in every nth interaction from the training loop. I have 7.2 million documents. Usually, it takes 2.5 hours (if I run an as a separate process similar to the script given in rag/use_own_knowleldge_dataset.py). Now, this takes usually 5hrs. Is this normal? Any way to make this process faster? @lhoestq ``` def training_step(self, batch, batch_idx) -> Dict: if (not batch_idx==0) and (batch_idx%5==0): print("******************************************************") ctx_encoder=self.trainer.model.module.module.model.rag.ctx_encoder model_copy =type(ctx_encoder)(self.config_dpr) # get a new instance #this will be load in the CPU model_copy.load_state_dict(ctx_encoder.state_dict()) # copy weights and stuff list_of_gpus = ['cuda:2','cuda:3'] c_dir='/custom/cache/dir' kb_dataset = load_dataset("csv", data_files=[self.custom_config.csv_path], split="train", delimiter="\t", column_names=["title", "text"],cache_dir=c_dir) print(kb_dataset) n=len(list_of_gpus) #nunber of dedicated GPUs kb_list=[kb_dataset.shard(n, i, contiguous=True) for i in range(n)] #kb_dataset.save_to_disk('/hpc/gsir059/MY-Test/RAY/transformers/examples/research_projects/rag/haha-dir') print(self.trainer.global_rank) dataset_shards = self.re_encode_kb(model_copy.to(device=list_of_gpus[self.trainer.global_rank]),kb_list[self.trainer.global_rank]) output = [None for _ in list_of_gpus] #self.trainer.accelerator_connector.accelerator.barrier("embedding_process") dist.all_gather_object(output, dataset_shards) #This creation and re-initlaization of the new index if (self.trainer.global_rank==0): #saving will be done in the main process combined_dataset = concatenate_datasets(output) passages_path =self.config.passages_path logger.info("saving the dataset with ") #combined_dataset.save_to_disk('/hpc/gsir059/MY-Test/RAY/transformers/examples/research_projects/rag/MY-Passage') combined_dataset.save_to_disk(passages_path) logger.info("Add faiss index to the dataset that consist of embeddings") embedding_dataset=combined_dataset index = faiss.IndexHNSWFlat(768, 128, faiss.METRIC_INNER_PRODUCT) embedding_dataset.add_faiss_index("embeddings", custom_index=index) embedding_dataset.get_index("embeddings").save(self.config.index_path) @lhoestq on a different note, I read about using Faiss-GPU, but the documentation says we should use it when the dataset has the ability to fit into the GPU memory. Although this might work, in the long-term this is not that practical for me. https://github.com/matsui528/faiss_tips
[ -0.49882406, -0.2682778239, -0.0245006736, 0.128228277, 0.0594398603, 0.2077842206, 0.1214628518, 0.4241297245, 0.291742146, 0.2924967408, -0.1188250929, 0.1883152723, 0.1372129172, 0.0858210027, -0.1362565756, 0.1750426739, 0.2370327115, 0.0853343457, 0.2607979178, -0.1344141364, -0.3274792731, -0.3090644181, -0.1589121073, -0.2578624189, -0.4006921649, -0.0958188921, -0.2436217368, -0.0820505768, 0.1982477158, -0.4729164839, -0.1375326514, 0.1398428977, 0.3402582407, 0.2582925856, -0.0001220497, 0.0556765273, 0.2280079424, 0.0654630885, -0.2229974568, 0.6411960125, 0.3400722742, -0.0694884509, -0.1751100719, -0.3107711375, -0.1455551237, -0.111042127, 0.0810792744, -0.0469298586, -0.1663650125, 0.1943014562, 0.0266240463, -0.0582866669, 0.0522548854, -0.0153998528, 0.4025117457, -0.0755913556, -0.0691774189, 0.317471087, 0.1635125726, -0.072238043, 0.0997431278, 0.4481078684, 0.1206413805, -0.226777032, 0.1089041457, 0.2051614374, 0.7838162184, 0.0224399716, 0.0652681589, 0.1526694596, 0.0153403673, -0.0905529708, -0.443008393, -0.1029035673, 0.4257143438, -0.6180592179, -0.0674015656, -0.0837423205, -0.1014747322, 0.0538602658, 0.1745852381, -0.0302297864, 0.0363180265, 0.0474507548, 0.174899742, 0.1653568596, 0.3874710798, -0.059902437, 0.5584336519, 0.0424473844, -0.116854243, 0.0448822752, -0.0920772031, 0.0121964924, -0.6050299406, 0.0880847722, -0.0309159234, -0.0993313715, -0.0926872939, 0.0178017914, -0.3694863915, 0.0061656032, 0.2365597636, 0.0033365716, -0.1830647737, -0.0902575329, -0.5061046481, 0.0558814742, 0.0839016736, 0.1062869281, -0.3780879378, 0.0992342234, -0.0033382811, -0.0043096952, -0.3259800673, -0.2981351912, -0.2288902253, 0.2228070349, -0.1811425388, 0.0771881342, -0.4039684236, -0.2522764802, 0.2050727606, 0.4162216485, -0.1177444085, -0.0761366487, 0.010839574, -0.0346155465, -0.2344280928, 0.1761686206, -0.222017318, 0.2306603789, -0.0319640413, 0.5045983195, -0.0291064456, -0.2213939279, -0.0890686885, -0.0217308737, 0.0839633644, -0.0078425631, -0.044163242, -0.2998933792, 0.2466678619, 0.0749232024, -0.2632142305, -0.0676851645, -0.0939519331, 0.1211104244, -0.227823168, 0.2215077132, -0.2173947543, -0.3651024401, 0.0271582548, 0.0193312131, 0.3086773753, -0.0630926192, 0.4208227694, 0.1143969446, 0.1730183959, 0.1613353044, 0.1591763794, -0.1314438283, -0.2680213749, 0.0831864774, 0.2267844081, 0.3627383709, 0.0937217921, 0.0347716659, 0.2980124354, 0.3901304901, 0.2124052346, 0.3999935985, -0.1159488261, 0.6762602329, -0.3200044036, 0.0842917711, 0.2451202422, -0.2553783655, -0.2924264371, 0.1869048178, -0.1663641632, -0.0773257613, 0.3296631873, 0.5182707906, 0.3120290041, 0.0870155022, 0.3410930037, 0.3062553406, 0.0090269931, -0.0312470607, -0.405068934, -0.0582716987, 0.2639192045, 0.3804078102, -0.3354528248, 0.101740703, -0.0401815772, -0.3298805356, 0.6009739637, -0.476105541, -0.1217621565, 0.0680583566, 0.361573875, 0.3393868208, 0.2328696698, 0.2761103511, 0.1495421231, 0.1626260579, 0.0960144401, 0.0987889394, 0.1701553166, -0.4183503091, 0.2156295925, -0.0257501453, -0.2181930244, 0.1078815162, -0.0609780252, 0.1500250548, -0.0456763245, -0.1998731494, -0.1568868756, 0.5427840352, -0.6157976389, 0.0279458687, -0.248897016, -0.1560834944, 0.0070150904, -0.2134258449, -0.0342435353, 0.1429588348, 0.0524965525, -0.3868666887, -0.0538335219, 0.102861084, 0.1266251504, -0.1876762211, 0.5111069679, -0.1136960983, -0.0370366834, 0.2962220609, 0.0449534059, -0.15126504, 0.1090167761, -0.1937615573, -0.0018786415, 0.4852040112, 0.3487839699, 0.2458341271, -0.0214935839, -0.2332082689, 0.0470291078, -0.0406503305, -0.079387024, 0.2275252491, 0.079944022, 0.130253002, 0.4091726542, -0.0333355777, -0.3332441747, 0.2324642241, 0.1857772619, -0.2031296641, -0.4314083755, 0.2710415721, 0.3516988158, -0.0368977077, -0.3497086763, -0.522008419, 0.2360267788, 0.3185988069, 0.1883932352, -0.0716536641, -0.0276509151, -0.2472812533, 0.1691095531, 0.0565534979, -0.0483720265, 0.1000481844, 0.1766417921, -0.214544788, -0.2067900896, -0.2552963495, -0.1363972127, 0.428645879, -0.0443387665, 0.309440732, 0.1777623594, 0.2771869302, -0.1247248203, -0.1249762028, 0.2887520194, 0.0088402331, 0.0416108891, -0.1089352667, -0.03623835, 0.1931091249, -0.0469497964, 0.3649182916, 0.1957944334, -0.325090766, 0.0198443085, -0.0984711498, -0.1214953735, -0.078978613, 0.1210054755, -0.150549829, 0.117400378, 0.0439469814, -0.052580554, -0.1851365566, -0.0862714499, -0.1575877219, -0.0794771016, -0.2974507809, -0.1662346572, -0.2460685521, -0.1250372827, -0.1196447536, 0.0043306984, 0.0005500466, -0.0106873699, -0.0404875614, -0.2826740444, -0.1588368416, 0.0607949346, -0.2936335206, -0.2167017609, -0.1739189327, 0.2281412482, -0.0243998468, 0.0930587798, -0.1156691834, 0.0667520165, 0.1222409755, -0.0957002044, -0.1543300748, -0.0534615964, -0.2331427634, 0.2917098403, 0.1491723955, 0.0468313806, -0.0794369131, -0.4122961164, -0.0143968826, 0.4969035089, -0.5218710899, -0.0407989882, -0.3583914638, 0.2859595418, -0.3150940537, 0.4582990706, 0.0567066781, -0.2462485135, -0.1380135864, 0.364482671, 0.174510017, 0.3875305951, -0.0617132038, 0.0549773537, -0.0879176408, 0.267544955, -0.1149757057, 0.5162413716, 0.3272316158, -0.2136982232, -0.0478193611, -0.262396425, 0.1159516424, 0.0527697653, -0.1398819387, 0.2965241671, 0.08347781, -0.3149954677, 0.1665280759, -0.2887442112, -0.4117944837, 0.0320427418, -0.052759815, 0.1982455254, -0.2443106472, 0.3169921339, 0.0489503853, 0.4910989106, -0.1780501604, 0.2910963595, -0.2383606136, -0.1767041385, 0.1975147724, 0.2727530003, 0.244900763, -0.1675577164, 0.0264964402, -0.5409095287, -0.421677649, 0.2834407687, 0.1674793661, 0.2352837026, 0.2791199088, -0.1008349881, 0.5258054137, -0.1562114209, 0.7999857664, 0.0206832271, -0.3363375962, 0.3844911158, -0.1618196666, 0.0528763086, -0.2177933156, -0.1827092618, -0.0659896284, 0.233773917, 0.4407469928, -0.0931774676, -0.2479647696, 0.6446050406, 0.0670878738, -0.1472482681, -0.3441519141, -0.1861819327, -0.3543057442, -0.0412188545, 0.767854929, -0.1216908172, 0.1556898803, 0.1822192967, -0.0512347631, -0.3818883598, 0.1598659158, 0.2386750579, -0.005119741, 0.0505827777, 0.4557840526, 0.4348104894, 0.0714177042, 0.000731538, 0.11927405, -0.0369113646, -0.3043969274, 0.0731522888, -0.1888462156, -0.2556852102, 0.3799423575, 0.700673759, 0.1868768781, 0.2484071106, -0.2102308869, 0.3775886297, -0.1914454848, 0.0245311707, 0.4383128285, -0.0020623617, -0.1787723899, -0.5383265615, 0.3112787008, 0.2034227699, 0.0733026266, 0.0608615763, -0.0757306963, -0.0163801294, 0.3021711707, 0.1249999553, 0.983823359, -0.0269194804, 0.1929831952, 0.5063084364, 0.0048407093, -0.2439047992, -0.6487342119, 0.3692771494, -0.332921207, -0.224152863, 0.1931167245, -0.1011414081, -0.0847682953, 0.0735342056, -0.0393424518, 0.0991453677, -0.0472757295, -0.0862561613, -0.2586017251, 0.3895539641, 0.3151937425, -0.4278397262, 0.0248835608, 0.0013510659, 0.2714570165, -0.0987159535, 0.1278158873, -0.1633998603, -0.1108864546, 0.0184412077, 0.1251736879, -0.0791134462, -0.1283783466, 0.0130585097, -0.0487736166, -0.0873112977, -0.2329256237, -0.3244179785, 0.4604190886, -0.0299461968, 0.0995342061, 0.0815838799, -0.0991101265, 0.0721637011, -0.0867691487, -0.4970834553, 0.2265412658, 0.0808125585, -0.1736777276, 0.1493705809, 0.0787264109, -0.3227707148, -0.1460987329, 0.1744303405, 0.0205770656, 0.0075484142, -0.0367378667, 0.3179991543, -0.2626373172, -0.2335653752, 0.020059783, 0.0920770317, -0.4317518771, 0.5605172515, -0.3023820519, -0.3800684214, -0.0546554178, 0.0166958384, 0.3058081269, 0.0560380369, 0.2623710632, -0.0891196281, -0.3048815131, -0.1546770036, -0.302428782, 0.0612832271, 0.0386250988, 0.0938880295, 0.3024204671, -0.0061313659, 0.0253996179, -0.2326646149, -0.322717607, -0.141769588, -0.3823908567, 0.1145998687, -0.3576403856, -0.1850683689, 0.2572281957, 0.3836848736, 0.036017634, 0.2342237383, -0.4448953271, 0.2590478957, -0.2176698148, -0.0653394014, -0.0312395431, 0.2600190639, -0.0327088535, -0.2574275434, 0.1754403114, 0.216270119, 0.1199889854, 0.1412032098, 0.0373653807, -0.1117986739, 0.1029489934, 0.1834249049, -0.1107472628, 0.1684505045, 0.0811558217, -0.1483062059, -0.3009883165, -0.2652986348, 0.1343660951, -0.110703364, -0.025855042, -0.1303594559, -0.1217091084, -0.1124878824, 0.3323766887, 0.273825258, 0.204004705, 0.283308506, -0.0734990016, 0.0767017305, -0.2428331971, -0.2653931975, -0.0510372035, 0.1903245151, 0.0616438314, 0.0863676816, -0.091865845, -0.1731874794, -0.3799477816, -0.0381177552, 0.031768769, 0.4498935342, 0.0424941368, -0.288366735, 0.1852962673, 0.0379372723, -0.279720515, -0.1952765882, 0.3624272048, -0.4507014155, 0.2002285123, 0.4017176628, 0.264575094, 0.165723592, -0.4832744896, 0.0937633291, -0.2345170975, 0.0963053331, -0.4337074161, -0.0904509723, 0.3514744341, -0.1948998272, 0.2041253299, 0.3052140176, 0.2311197519, 0.608917892, 0.0314239822, 0.2752898932, 0.1878772229, 0.2133275419, -0.321703732, -0.1798363924, 0.2906687558, 0.2322686911, -0.031773366, -0.207844764, 0.0090947673, 0.2347344905, 0.2440356463, -0.5169644952, -0.2611280978, 0.1630212218, -0.1220196411, -0.1281809658, 0.4117490649, 0.056770578, -0.2780817747, 0.2270265967, 0.0776640698, 0.1923735887, -0.12724787, 0.200874269, 0.2934534252, 0.2212006599, -0.0231135469, 0.0910241455, 0.4337711036, -0.3367398977, -0.2079152465, -0.0111510456, -0.0027164277, 0.0235891603, -0.1512227803, 0.2809454203, 0.2448254377, -0.0555030257, 0.2687212825, -0.0504412428, -0.0088712834, 0.0438045114, -0.0344004743, -0.1084132344, -0.1003934816, 0.1006172895, -0.0908769071, -0.12853387, -0.1207235307, -0.2426326871, 0.2026134133, -0.1804250181, 0.023068646, 0.3459427953, -0.097540006, -0.3948053718, 0.0952415317, -0.283303082, 0.0691806301, 0.1062702984, -0.35660097, -0.0891359076, 0.2603065968, -0.0016339011, -0.4257489145, 0.5468894243, 0.1724049449, 0.1286818981, -0.3299409449, -0.0014341325, -0.3207880855, -0.0345096029, -0.5890922546, 0.112635538, 0.1176836789, 0.4403542876, 0.073925823, -0.0703548416, 0.4031083882, -0.4079710841, 0.0992394984, 0.3735488653, -0.1734417975, -0.0306228567, -0.4397856295, -0.0738478824, 0.0422837138, -0.3743225038, 0.2847958505, -0.1282065511, -0.0147695504, 0.192371577, -0.0202696919, 0.1226511821, 0.0626825988, 0.529878974, -0.0979443267, 0.0000545271, -0.0964538679, 0.008635208, -0.2321902663, 0.1219587475, -0.2070783675, 0.0085760355, -0.0218881518, 0.1733753383, -0.2073741853, -0.3919602334, -0.1815344989, 0.4176574349, 0.3126300573, -0.4186963737, 0.1980271637, 0.1526591927, -0.1558283567, 0.4795942008, 0.1503627598, 0.22828421, 0.1467330605, -0.034051232, -0.3561269641, -0.1054199785, 0.6236685514, -0.1882941574, -0.0293614641, -0.3494382203, 0.2549013793, 0.4437919259, 0.5510438085, -0.2645766139, 0.086238116, 0.121943526, 0.0535738505, -0.2103942186, 0.5777597427, 0.1868615597, 0.0147709623, -0.0737834573, -0.2648073733, -0.0630889311, -0.0029668435, -0.3532100618, -0.2814308703 ]
https://github.com/huggingface/datasets/issues/2046
add_faisis_index gets very slow when doing it interatively
@lhoestq Hi, I executed the **use_own_dataset.py** script independently and ask a few of my friends to run their programs in the HPC machine at the same time. Once there are so many other processes are running the add_index function gets slows down naturally. So basically the speed of the add_index depends entirely on the number of CPU processes. Then I set the number of threads as you have mentioned and got actually the same time for RAG training and independat running. So you are correct! :) Then I added this [issue in Faiss repostiary](https://github.com/facebookresearch/faiss/issues/1767). I got an answer saying our current **IndexHNSWFlat** can get slow for 30 million vectors and it would be better to use alternatives. What do you think?
As the below code suggests, I want to run add_faisis_index in every nth interaction from the training loop. I have 7.2 million documents. Usually, it takes 2.5 hours (if I run an as a separate process similar to the script given in rag/use_own_knowleldge_dataset.py). Now, this takes usually 5hrs. Is this normal? Any way to make this process faster? @lhoestq ``` def training_step(self, batch, batch_idx) -> Dict: if (not batch_idx==0) and (batch_idx%5==0): print("******************************************************") ctx_encoder=self.trainer.model.module.module.model.rag.ctx_encoder model_copy =type(ctx_encoder)(self.config_dpr) # get a new instance #this will be load in the CPU model_copy.load_state_dict(ctx_encoder.state_dict()) # copy weights and stuff list_of_gpus = ['cuda:2','cuda:3'] c_dir='/custom/cache/dir' kb_dataset = load_dataset("csv", data_files=[self.custom_config.csv_path], split="train", delimiter="\t", column_names=["title", "text"],cache_dir=c_dir) print(kb_dataset) n=len(list_of_gpus) #nunber of dedicated GPUs kb_list=[kb_dataset.shard(n, i, contiguous=True) for i in range(n)] #kb_dataset.save_to_disk('/hpc/gsir059/MY-Test/RAY/transformers/examples/research_projects/rag/haha-dir') print(self.trainer.global_rank) dataset_shards = self.re_encode_kb(model_copy.to(device=list_of_gpus[self.trainer.global_rank]),kb_list[self.trainer.global_rank]) output = [None for _ in list_of_gpus] #self.trainer.accelerator_connector.accelerator.barrier("embedding_process") dist.all_gather_object(output, dataset_shards) #This creation and re-initlaization of the new index if (self.trainer.global_rank==0): #saving will be done in the main process combined_dataset = concatenate_datasets(output) passages_path =self.config.passages_path logger.info("saving the dataset with ") #combined_dataset.save_to_disk('/hpc/gsir059/MY-Test/RAY/transformers/examples/research_projects/rag/MY-Passage') combined_dataset.save_to_disk(passages_path) logger.info("Add faiss index to the dataset that consist of embeddings") embedding_dataset=combined_dataset index = faiss.IndexHNSWFlat(768, 128, faiss.METRIC_INNER_PRODUCT) embedding_dataset.add_faiss_index("embeddings", custom_index=index) embedding_dataset.get_index("embeddings").save(self.config.index_path)
121
add_faisis_index gets very slow when doing it interatively As the below code suggests, I want to run add_faisis_index in every nth interaction from the training loop. I have 7.2 million documents. Usually, it takes 2.5 hours (if I run an as a separate process similar to the script given in rag/use_own_knowleldge_dataset.py). Now, this takes usually 5hrs. Is this normal? Any way to make this process faster? @lhoestq ``` def training_step(self, batch, batch_idx) -> Dict: if (not batch_idx==0) and (batch_idx%5==0): print("******************************************************") ctx_encoder=self.trainer.model.module.module.model.rag.ctx_encoder model_copy =type(ctx_encoder)(self.config_dpr) # get a new instance #this will be load in the CPU model_copy.load_state_dict(ctx_encoder.state_dict()) # copy weights and stuff list_of_gpus = ['cuda:2','cuda:3'] c_dir='/custom/cache/dir' kb_dataset = load_dataset("csv", data_files=[self.custom_config.csv_path], split="train", delimiter="\t", column_names=["title", "text"],cache_dir=c_dir) print(kb_dataset) n=len(list_of_gpus) #nunber of dedicated GPUs kb_list=[kb_dataset.shard(n, i, contiguous=True) for i in range(n)] #kb_dataset.save_to_disk('/hpc/gsir059/MY-Test/RAY/transformers/examples/research_projects/rag/haha-dir') print(self.trainer.global_rank) dataset_shards = self.re_encode_kb(model_copy.to(device=list_of_gpus[self.trainer.global_rank]),kb_list[self.trainer.global_rank]) output = [None for _ in list_of_gpus] #self.trainer.accelerator_connector.accelerator.barrier("embedding_process") dist.all_gather_object(output, dataset_shards) #This creation and re-initlaization of the new index if (self.trainer.global_rank==0): #saving will be done in the main process combined_dataset = concatenate_datasets(output) passages_path =self.config.passages_path logger.info("saving the dataset with ") #combined_dataset.save_to_disk('/hpc/gsir059/MY-Test/RAY/transformers/examples/research_projects/rag/MY-Passage') combined_dataset.save_to_disk(passages_path) logger.info("Add faiss index to the dataset that consist of embeddings") embedding_dataset=combined_dataset index = faiss.IndexHNSWFlat(768, 128, faiss.METRIC_INNER_PRODUCT) embedding_dataset.add_faiss_index("embeddings", custom_index=index) embedding_dataset.get_index("embeddings").save(self.config.index_path) @lhoestq Hi, I executed the **use_own_dataset.py** script independently and ask a few of my friends to run their programs in the HPC machine at the same time. Once there are so many other processes are running the add_index function gets slows down naturally. So basically the speed of the add_index depends entirely on the number of CPU processes. Then I set the number of threads as you have mentioned and got actually the same time for RAG training and independat running. So you are correct! :) Then I added this [issue in Faiss repostiary](https://github.com/facebookresearch/faiss/issues/1767). I got an answer saying our current **IndexHNSWFlat** can get slow for 30 million vectors and it would be better to use alternatives. What do you think?
[ -0.49882406, -0.2682778239, -0.0245006736, 0.128228277, 0.0594398603, 0.2077842206, 0.1214628518, 0.4241297245, 0.291742146, 0.2924967408, -0.1188250929, 0.1883152723, 0.1372129172, 0.0858210027, -0.1362565756, 0.1750426739, 0.2370327115, 0.0853343457, 0.2607979178, -0.1344141364, -0.3274792731, -0.3090644181, -0.1589121073, -0.2578624189, -0.4006921649, -0.0958188921, -0.2436217368, -0.0820505768, 0.1982477158, -0.4729164839, -0.1375326514, 0.1398428977, 0.3402582407, 0.2582925856, -0.0001220497, 0.0556765273, 0.2280079424, 0.0654630885, -0.2229974568, 0.6411960125, 0.3400722742, -0.0694884509, -0.1751100719, -0.3107711375, -0.1455551237, -0.111042127, 0.0810792744, -0.0469298586, -0.1663650125, 0.1943014562, 0.0266240463, -0.0582866669, 0.0522548854, -0.0153998528, 0.4025117457, -0.0755913556, -0.0691774189, 0.317471087, 0.1635125726, -0.072238043, 0.0997431278, 0.4481078684, 0.1206413805, -0.226777032, 0.1089041457, 0.2051614374, 0.7838162184, 0.0224399716, 0.0652681589, 0.1526694596, 0.0153403673, -0.0905529708, -0.443008393, -0.1029035673, 0.4257143438, -0.6180592179, -0.0674015656, -0.0837423205, -0.1014747322, 0.0538602658, 0.1745852381, -0.0302297864, 0.0363180265, 0.0474507548, 0.174899742, 0.1653568596, 0.3874710798, -0.059902437, 0.5584336519, 0.0424473844, -0.116854243, 0.0448822752, -0.0920772031, 0.0121964924, -0.6050299406, 0.0880847722, -0.0309159234, -0.0993313715, -0.0926872939, 0.0178017914, -0.3694863915, 0.0061656032, 0.2365597636, 0.0033365716, -0.1830647737, -0.0902575329, -0.5061046481, 0.0558814742, 0.0839016736, 0.1062869281, -0.3780879378, 0.0992342234, -0.0033382811, -0.0043096952, -0.3259800673, -0.2981351912, -0.2288902253, 0.2228070349, -0.1811425388, 0.0771881342, -0.4039684236, -0.2522764802, 0.2050727606, 0.4162216485, -0.1177444085, -0.0761366487, 0.010839574, -0.0346155465, -0.2344280928, 0.1761686206, -0.222017318, 0.2306603789, -0.0319640413, 0.5045983195, -0.0291064456, -0.2213939279, -0.0890686885, -0.0217308737, 0.0839633644, -0.0078425631, -0.044163242, -0.2998933792, 0.2466678619, 0.0749232024, -0.2632142305, -0.0676851645, -0.0939519331, 0.1211104244, -0.227823168, 0.2215077132, -0.2173947543, -0.3651024401, 0.0271582548, 0.0193312131, 0.3086773753, -0.0630926192, 0.4208227694, 0.1143969446, 0.1730183959, 0.1613353044, 0.1591763794, -0.1314438283, -0.2680213749, 0.0831864774, 0.2267844081, 0.3627383709, 0.0937217921, 0.0347716659, 0.2980124354, 0.3901304901, 0.2124052346, 0.3999935985, -0.1159488261, 0.6762602329, -0.3200044036, 0.0842917711, 0.2451202422, -0.2553783655, -0.2924264371, 0.1869048178, -0.1663641632, -0.0773257613, 0.3296631873, 0.5182707906, 0.3120290041, 0.0870155022, 0.3410930037, 0.3062553406, 0.0090269931, -0.0312470607, -0.405068934, -0.0582716987, 0.2639192045, 0.3804078102, -0.3354528248, 0.101740703, -0.0401815772, -0.3298805356, 0.6009739637, -0.476105541, -0.1217621565, 0.0680583566, 0.361573875, 0.3393868208, 0.2328696698, 0.2761103511, 0.1495421231, 0.1626260579, 0.0960144401, 0.0987889394, 0.1701553166, -0.4183503091, 0.2156295925, -0.0257501453, -0.2181930244, 0.1078815162, -0.0609780252, 0.1500250548, -0.0456763245, -0.1998731494, -0.1568868756, 0.5427840352, -0.6157976389, 0.0279458687, -0.248897016, -0.1560834944, 0.0070150904, -0.2134258449, -0.0342435353, 0.1429588348, 0.0524965525, -0.3868666887, -0.0538335219, 0.102861084, 0.1266251504, -0.1876762211, 0.5111069679, -0.1136960983, -0.0370366834, 0.2962220609, 0.0449534059, -0.15126504, 0.1090167761, -0.1937615573, -0.0018786415, 0.4852040112, 0.3487839699, 0.2458341271, -0.0214935839, -0.2332082689, 0.0470291078, -0.0406503305, -0.079387024, 0.2275252491, 0.079944022, 0.130253002, 0.4091726542, -0.0333355777, -0.3332441747, 0.2324642241, 0.1857772619, -0.2031296641, -0.4314083755, 0.2710415721, 0.3516988158, -0.0368977077, -0.3497086763, -0.522008419, 0.2360267788, 0.3185988069, 0.1883932352, -0.0716536641, -0.0276509151, -0.2472812533, 0.1691095531, 0.0565534979, -0.0483720265, 0.1000481844, 0.1766417921, -0.214544788, -0.2067900896, -0.2552963495, -0.1363972127, 0.428645879, -0.0443387665, 0.309440732, 0.1777623594, 0.2771869302, -0.1247248203, -0.1249762028, 0.2887520194, 0.0088402331, 0.0416108891, -0.1089352667, -0.03623835, 0.1931091249, -0.0469497964, 0.3649182916, 0.1957944334, -0.325090766, 0.0198443085, -0.0984711498, -0.1214953735, -0.078978613, 0.1210054755, -0.150549829, 0.117400378, 0.0439469814, -0.052580554, -0.1851365566, -0.0862714499, -0.1575877219, -0.0794771016, -0.2974507809, -0.1662346572, -0.2460685521, -0.1250372827, -0.1196447536, 0.0043306984, 0.0005500466, -0.0106873699, -0.0404875614, -0.2826740444, -0.1588368416, 0.0607949346, -0.2936335206, -0.2167017609, -0.1739189327, 0.2281412482, -0.0243998468, 0.0930587798, -0.1156691834, 0.0667520165, 0.1222409755, -0.0957002044, -0.1543300748, -0.0534615964, -0.2331427634, 0.2917098403, 0.1491723955, 0.0468313806, -0.0794369131, -0.4122961164, -0.0143968826, 0.4969035089, -0.5218710899, -0.0407989882, -0.3583914638, 0.2859595418, -0.3150940537, 0.4582990706, 0.0567066781, -0.2462485135, -0.1380135864, 0.364482671, 0.174510017, 0.3875305951, -0.0617132038, 0.0549773537, -0.0879176408, 0.267544955, -0.1149757057, 0.5162413716, 0.3272316158, -0.2136982232, -0.0478193611, -0.262396425, 0.1159516424, 0.0527697653, -0.1398819387, 0.2965241671, 0.08347781, -0.3149954677, 0.1665280759, -0.2887442112, -0.4117944837, 0.0320427418, -0.052759815, 0.1982455254, -0.2443106472, 0.3169921339, 0.0489503853, 0.4910989106, -0.1780501604, 0.2910963595, -0.2383606136, -0.1767041385, 0.1975147724, 0.2727530003, 0.244900763, -0.1675577164, 0.0264964402, -0.5409095287, -0.421677649, 0.2834407687, 0.1674793661, 0.2352837026, 0.2791199088, -0.1008349881, 0.5258054137, -0.1562114209, 0.7999857664, 0.0206832271, -0.3363375962, 0.3844911158, -0.1618196666, 0.0528763086, -0.2177933156, -0.1827092618, -0.0659896284, 0.233773917, 0.4407469928, -0.0931774676, -0.2479647696, 0.6446050406, 0.0670878738, -0.1472482681, -0.3441519141, -0.1861819327, -0.3543057442, -0.0412188545, 0.767854929, -0.1216908172, 0.1556898803, 0.1822192967, -0.0512347631, -0.3818883598, 0.1598659158, 0.2386750579, -0.005119741, 0.0505827777, 0.4557840526, 0.4348104894, 0.0714177042, 0.000731538, 0.11927405, -0.0369113646, -0.3043969274, 0.0731522888, -0.1888462156, -0.2556852102, 0.3799423575, 0.700673759, 0.1868768781, 0.2484071106, -0.2102308869, 0.3775886297, -0.1914454848, 0.0245311707, 0.4383128285, -0.0020623617, -0.1787723899, -0.5383265615, 0.3112787008, 0.2034227699, 0.0733026266, 0.0608615763, -0.0757306963, -0.0163801294, 0.3021711707, 0.1249999553, 0.983823359, -0.0269194804, 0.1929831952, 0.5063084364, 0.0048407093, -0.2439047992, -0.6487342119, 0.3692771494, -0.332921207, -0.224152863, 0.1931167245, -0.1011414081, -0.0847682953, 0.0735342056, -0.0393424518, 0.0991453677, -0.0472757295, -0.0862561613, -0.2586017251, 0.3895539641, 0.3151937425, -0.4278397262, 0.0248835608, 0.0013510659, 0.2714570165, -0.0987159535, 0.1278158873, -0.1633998603, -0.1108864546, 0.0184412077, 0.1251736879, -0.0791134462, -0.1283783466, 0.0130585097, -0.0487736166, -0.0873112977, -0.2329256237, -0.3244179785, 0.4604190886, -0.0299461968, 0.0995342061, 0.0815838799, -0.0991101265, 0.0721637011, -0.0867691487, -0.4970834553, 0.2265412658, 0.0808125585, -0.1736777276, 0.1493705809, 0.0787264109, -0.3227707148, -0.1460987329, 0.1744303405, 0.0205770656, 0.0075484142, -0.0367378667, 0.3179991543, -0.2626373172, -0.2335653752, 0.020059783, 0.0920770317, -0.4317518771, 0.5605172515, -0.3023820519, -0.3800684214, -0.0546554178, 0.0166958384, 0.3058081269, 0.0560380369, 0.2623710632, -0.0891196281, -0.3048815131, -0.1546770036, -0.302428782, 0.0612832271, 0.0386250988, 0.0938880295, 0.3024204671, -0.0061313659, 0.0253996179, -0.2326646149, -0.322717607, -0.141769588, -0.3823908567, 0.1145998687, -0.3576403856, -0.1850683689, 0.2572281957, 0.3836848736, 0.036017634, 0.2342237383, -0.4448953271, 0.2590478957, -0.2176698148, -0.0653394014, -0.0312395431, 0.2600190639, -0.0327088535, -0.2574275434, 0.1754403114, 0.216270119, 0.1199889854, 0.1412032098, 0.0373653807, -0.1117986739, 0.1029489934, 0.1834249049, -0.1107472628, 0.1684505045, 0.0811558217, -0.1483062059, -0.3009883165, -0.2652986348, 0.1343660951, -0.110703364, -0.025855042, -0.1303594559, -0.1217091084, -0.1124878824, 0.3323766887, 0.273825258, 0.204004705, 0.283308506, -0.0734990016, 0.0767017305, -0.2428331971, -0.2653931975, -0.0510372035, 0.1903245151, 0.0616438314, 0.0863676816, -0.091865845, -0.1731874794, -0.3799477816, -0.0381177552, 0.031768769, 0.4498935342, 0.0424941368, -0.288366735, 0.1852962673, 0.0379372723, -0.279720515, -0.1952765882, 0.3624272048, -0.4507014155, 0.2002285123, 0.4017176628, 0.264575094, 0.165723592, -0.4832744896, 0.0937633291, -0.2345170975, 0.0963053331, -0.4337074161, -0.0904509723, 0.3514744341, -0.1948998272, 0.2041253299, 0.3052140176, 0.2311197519, 0.608917892, 0.0314239822, 0.2752898932, 0.1878772229, 0.2133275419, -0.321703732, -0.1798363924, 0.2906687558, 0.2322686911, -0.031773366, -0.207844764, 0.0090947673, 0.2347344905, 0.2440356463, -0.5169644952, -0.2611280978, 0.1630212218, -0.1220196411, -0.1281809658, 0.4117490649, 0.056770578, -0.2780817747, 0.2270265967, 0.0776640698, 0.1923735887, -0.12724787, 0.200874269, 0.2934534252, 0.2212006599, -0.0231135469, 0.0910241455, 0.4337711036, -0.3367398977, -0.2079152465, -0.0111510456, -0.0027164277, 0.0235891603, -0.1512227803, 0.2809454203, 0.2448254377, -0.0555030257, 0.2687212825, -0.0504412428, -0.0088712834, 0.0438045114, -0.0344004743, -0.1084132344, -0.1003934816, 0.1006172895, -0.0908769071, -0.12853387, -0.1207235307, -0.2426326871, 0.2026134133, -0.1804250181, 0.023068646, 0.3459427953, -0.097540006, -0.3948053718, 0.0952415317, -0.283303082, 0.0691806301, 0.1062702984, -0.35660097, -0.0891359076, 0.2603065968, -0.0016339011, -0.4257489145, 0.5468894243, 0.1724049449, 0.1286818981, -0.3299409449, -0.0014341325, -0.3207880855, -0.0345096029, -0.5890922546, 0.112635538, 0.1176836789, 0.4403542876, 0.073925823, -0.0703548416, 0.4031083882, -0.4079710841, 0.0992394984, 0.3735488653, -0.1734417975, -0.0306228567, -0.4397856295, -0.0738478824, 0.0422837138, -0.3743225038, 0.2847958505, -0.1282065511, -0.0147695504, 0.192371577, -0.0202696919, 0.1226511821, 0.0626825988, 0.529878974, -0.0979443267, 0.0000545271, -0.0964538679, 0.008635208, -0.2321902663, 0.1219587475, -0.2070783675, 0.0085760355, -0.0218881518, 0.1733753383, -0.2073741853, -0.3919602334, -0.1815344989, 0.4176574349, 0.3126300573, -0.4186963737, 0.1980271637, 0.1526591927, -0.1558283567, 0.4795942008, 0.1503627598, 0.22828421, 0.1467330605, -0.034051232, -0.3561269641, -0.1054199785, 0.6236685514, -0.1882941574, -0.0293614641, -0.3494382203, 0.2549013793, 0.4437919259, 0.5510438085, -0.2645766139, 0.086238116, 0.121943526, 0.0535738505, -0.2103942186, 0.5777597427, 0.1868615597, 0.0147709623, -0.0737834573, -0.2648073733, -0.0630889311, -0.0029668435, -0.3532100618, -0.2814308703 ]
https://github.com/huggingface/datasets/issues/2046
add_faisis_index gets very slow when doing it interatively
It's a matter of tradeoffs. HSNW is fast at query time but takes some time to build. A flat index is flat to build but is "slow" at query time. An IVF index is probably a good choice for you: fast building and fast queries (but still slower queries than HSNW). Note that for an IVF index you would need to have an `nprobe` parameter (number of cells to visit for one query, there are `nlist` in total) that is not too small in order to have good retrieval accuracy, but not too big otherwise the queries will take too much time. From the faiss documentation: > The nprobe parameter is always a way of adjusting the tradeoff between speed and accuracy of the result. Setting nprobe = nlist gives the same result as the brute-force search (but slower). From my experience with indexes on DPR embeddings, setting nprobe around 1/4 of nlist gives really good retrieval accuracy and there's no need to have a value higher than that (or you would need to brute-force in order to see a difference).
As the below code suggests, I want to run add_faisis_index in every nth interaction from the training loop. I have 7.2 million documents. Usually, it takes 2.5 hours (if I run an as a separate process similar to the script given in rag/use_own_knowleldge_dataset.py). Now, this takes usually 5hrs. Is this normal? Any way to make this process faster? @lhoestq ``` def training_step(self, batch, batch_idx) -> Dict: if (not batch_idx==0) and (batch_idx%5==0): print("******************************************************") ctx_encoder=self.trainer.model.module.module.model.rag.ctx_encoder model_copy =type(ctx_encoder)(self.config_dpr) # get a new instance #this will be load in the CPU model_copy.load_state_dict(ctx_encoder.state_dict()) # copy weights and stuff list_of_gpus = ['cuda:2','cuda:3'] c_dir='/custom/cache/dir' kb_dataset = load_dataset("csv", data_files=[self.custom_config.csv_path], split="train", delimiter="\t", column_names=["title", "text"],cache_dir=c_dir) print(kb_dataset) n=len(list_of_gpus) #nunber of dedicated GPUs kb_list=[kb_dataset.shard(n, i, contiguous=True) for i in range(n)] #kb_dataset.save_to_disk('/hpc/gsir059/MY-Test/RAY/transformers/examples/research_projects/rag/haha-dir') print(self.trainer.global_rank) dataset_shards = self.re_encode_kb(model_copy.to(device=list_of_gpus[self.trainer.global_rank]),kb_list[self.trainer.global_rank]) output = [None for _ in list_of_gpus] #self.trainer.accelerator_connector.accelerator.barrier("embedding_process") dist.all_gather_object(output, dataset_shards) #This creation and re-initlaization of the new index if (self.trainer.global_rank==0): #saving will be done in the main process combined_dataset = concatenate_datasets(output) passages_path =self.config.passages_path logger.info("saving the dataset with ") #combined_dataset.save_to_disk('/hpc/gsir059/MY-Test/RAY/transformers/examples/research_projects/rag/MY-Passage') combined_dataset.save_to_disk(passages_path) logger.info("Add faiss index to the dataset that consist of embeddings") embedding_dataset=combined_dataset index = faiss.IndexHNSWFlat(768, 128, faiss.METRIC_INNER_PRODUCT) embedding_dataset.add_faiss_index("embeddings", custom_index=index) embedding_dataset.get_index("embeddings").save(self.config.index_path)
181
add_faisis_index gets very slow when doing it interatively As the below code suggests, I want to run add_faisis_index in every nth interaction from the training loop. I have 7.2 million documents. Usually, it takes 2.5 hours (if I run an as a separate process similar to the script given in rag/use_own_knowleldge_dataset.py). Now, this takes usually 5hrs. Is this normal? Any way to make this process faster? @lhoestq ``` def training_step(self, batch, batch_idx) -> Dict: if (not batch_idx==0) and (batch_idx%5==0): print("******************************************************") ctx_encoder=self.trainer.model.module.module.model.rag.ctx_encoder model_copy =type(ctx_encoder)(self.config_dpr) # get a new instance #this will be load in the CPU model_copy.load_state_dict(ctx_encoder.state_dict()) # copy weights and stuff list_of_gpus = ['cuda:2','cuda:3'] c_dir='/custom/cache/dir' kb_dataset = load_dataset("csv", data_files=[self.custom_config.csv_path], split="train", delimiter="\t", column_names=["title", "text"],cache_dir=c_dir) print(kb_dataset) n=len(list_of_gpus) #nunber of dedicated GPUs kb_list=[kb_dataset.shard(n, i, contiguous=True) for i in range(n)] #kb_dataset.save_to_disk('/hpc/gsir059/MY-Test/RAY/transformers/examples/research_projects/rag/haha-dir') print(self.trainer.global_rank) dataset_shards = self.re_encode_kb(model_copy.to(device=list_of_gpus[self.trainer.global_rank]),kb_list[self.trainer.global_rank]) output = [None for _ in list_of_gpus] #self.trainer.accelerator_connector.accelerator.barrier("embedding_process") dist.all_gather_object(output, dataset_shards) #This creation and re-initlaization of the new index if (self.trainer.global_rank==0): #saving will be done in the main process combined_dataset = concatenate_datasets(output) passages_path =self.config.passages_path logger.info("saving the dataset with ") #combined_dataset.save_to_disk('/hpc/gsir059/MY-Test/RAY/transformers/examples/research_projects/rag/MY-Passage') combined_dataset.save_to_disk(passages_path) logger.info("Add faiss index to the dataset that consist of embeddings") embedding_dataset=combined_dataset index = faiss.IndexHNSWFlat(768, 128, faiss.METRIC_INNER_PRODUCT) embedding_dataset.add_faiss_index("embeddings", custom_index=index) embedding_dataset.get_index("embeddings").save(self.config.index_path) It's a matter of tradeoffs. HSNW is fast at query time but takes some time to build. A flat index is flat to build but is "slow" at query time. An IVF index is probably a good choice for you: fast building and fast queries (but still slower queries than HSNW). Note that for an IVF index you would need to have an `nprobe` parameter (number of cells to visit for one query, there are `nlist` in total) that is not too small in order to have good retrieval accuracy, but not too big otherwise the queries will take too much time. From the faiss documentation: > The nprobe parameter is always a way of adjusting the tradeoff between speed and accuracy of the result. Setting nprobe = nlist gives the same result as the brute-force search (but slower). From my experience with indexes on DPR embeddings, setting nprobe around 1/4 of nlist gives really good retrieval accuracy and there's no need to have a value higher than that (or you would need to brute-force in order to see a difference).
[ -0.49882406, -0.2682778239, -0.0245006736, 0.128228277, 0.0594398603, 0.2077842206, 0.1214628518, 0.4241297245, 0.291742146, 0.2924967408, -0.1188250929, 0.1883152723, 0.1372129172, 0.0858210027, -0.1362565756, 0.1750426739, 0.2370327115, 0.0853343457, 0.2607979178, -0.1344141364, -0.3274792731, -0.3090644181, -0.1589121073, -0.2578624189, -0.4006921649, -0.0958188921, -0.2436217368, -0.0820505768, 0.1982477158, -0.4729164839, -0.1375326514, 0.1398428977, 0.3402582407, 0.2582925856, -0.0001220497, 0.0556765273, 0.2280079424, 0.0654630885, -0.2229974568, 0.6411960125, 0.3400722742, -0.0694884509, -0.1751100719, -0.3107711375, -0.1455551237, -0.111042127, 0.0810792744, -0.0469298586, -0.1663650125, 0.1943014562, 0.0266240463, -0.0582866669, 0.0522548854, -0.0153998528, 0.4025117457, -0.0755913556, -0.0691774189, 0.317471087, 0.1635125726, -0.072238043, 0.0997431278, 0.4481078684, 0.1206413805, -0.226777032, 0.1089041457, 0.2051614374, 0.7838162184, 0.0224399716, 0.0652681589, 0.1526694596, 0.0153403673, -0.0905529708, -0.443008393, -0.1029035673, 0.4257143438, -0.6180592179, -0.0674015656, -0.0837423205, -0.1014747322, 0.0538602658, 0.1745852381, -0.0302297864, 0.0363180265, 0.0474507548, 0.174899742, 0.1653568596, 0.3874710798, -0.059902437, 0.5584336519, 0.0424473844, -0.116854243, 0.0448822752, -0.0920772031, 0.0121964924, -0.6050299406, 0.0880847722, -0.0309159234, -0.0993313715, -0.0926872939, 0.0178017914, -0.3694863915, 0.0061656032, 0.2365597636, 0.0033365716, -0.1830647737, -0.0902575329, -0.5061046481, 0.0558814742, 0.0839016736, 0.1062869281, -0.3780879378, 0.0992342234, -0.0033382811, -0.0043096952, -0.3259800673, -0.2981351912, -0.2288902253, 0.2228070349, -0.1811425388, 0.0771881342, -0.4039684236, -0.2522764802, 0.2050727606, 0.4162216485, -0.1177444085, -0.0761366487, 0.010839574, -0.0346155465, -0.2344280928, 0.1761686206, -0.222017318, 0.2306603789, -0.0319640413, 0.5045983195, -0.0291064456, -0.2213939279, -0.0890686885, -0.0217308737, 0.0839633644, -0.0078425631, -0.044163242, -0.2998933792, 0.2466678619, 0.0749232024, -0.2632142305, -0.0676851645, -0.0939519331, 0.1211104244, -0.227823168, 0.2215077132, -0.2173947543, -0.3651024401, 0.0271582548, 0.0193312131, 0.3086773753, -0.0630926192, 0.4208227694, 0.1143969446, 0.1730183959, 0.1613353044, 0.1591763794, -0.1314438283, -0.2680213749, 0.0831864774, 0.2267844081, 0.3627383709, 0.0937217921, 0.0347716659, 0.2980124354, 0.3901304901, 0.2124052346, 0.3999935985, -0.1159488261, 0.6762602329, -0.3200044036, 0.0842917711, 0.2451202422, -0.2553783655, -0.2924264371, 0.1869048178, -0.1663641632, -0.0773257613, 0.3296631873, 0.5182707906, 0.3120290041, 0.0870155022, 0.3410930037, 0.3062553406, 0.0090269931, -0.0312470607, -0.405068934, -0.0582716987, 0.2639192045, 0.3804078102, -0.3354528248, 0.101740703, -0.0401815772, -0.3298805356, 0.6009739637, -0.476105541, -0.1217621565, 0.0680583566, 0.361573875, 0.3393868208, 0.2328696698, 0.2761103511, 0.1495421231, 0.1626260579, 0.0960144401, 0.0987889394, 0.1701553166, -0.4183503091, 0.2156295925, -0.0257501453, -0.2181930244, 0.1078815162, -0.0609780252, 0.1500250548, -0.0456763245, -0.1998731494, -0.1568868756, 0.5427840352, -0.6157976389, 0.0279458687, -0.248897016, -0.1560834944, 0.0070150904, -0.2134258449, -0.0342435353, 0.1429588348, 0.0524965525, -0.3868666887, -0.0538335219, 0.102861084, 0.1266251504, -0.1876762211, 0.5111069679, -0.1136960983, -0.0370366834, 0.2962220609, 0.0449534059, -0.15126504, 0.1090167761, -0.1937615573, -0.0018786415, 0.4852040112, 0.3487839699, 0.2458341271, -0.0214935839, -0.2332082689, 0.0470291078, -0.0406503305, -0.079387024, 0.2275252491, 0.079944022, 0.130253002, 0.4091726542, -0.0333355777, -0.3332441747, 0.2324642241, 0.1857772619, -0.2031296641, -0.4314083755, 0.2710415721, 0.3516988158, -0.0368977077, -0.3497086763, -0.522008419, 0.2360267788, 0.3185988069, 0.1883932352, -0.0716536641, -0.0276509151, -0.2472812533, 0.1691095531, 0.0565534979, -0.0483720265, 0.1000481844, 0.1766417921, -0.214544788, -0.2067900896, -0.2552963495, -0.1363972127, 0.428645879, -0.0443387665, 0.309440732, 0.1777623594, 0.2771869302, -0.1247248203, -0.1249762028, 0.2887520194, 0.0088402331, 0.0416108891, -0.1089352667, -0.03623835, 0.1931091249, -0.0469497964, 0.3649182916, 0.1957944334, -0.325090766, 0.0198443085, -0.0984711498, -0.1214953735, -0.078978613, 0.1210054755, -0.150549829, 0.117400378, 0.0439469814, -0.052580554, -0.1851365566, -0.0862714499, -0.1575877219, -0.0794771016, -0.2974507809, -0.1662346572, -0.2460685521, -0.1250372827, -0.1196447536, 0.0043306984, 0.0005500466, -0.0106873699, -0.0404875614, -0.2826740444, -0.1588368416, 0.0607949346, -0.2936335206, -0.2167017609, -0.1739189327, 0.2281412482, -0.0243998468, 0.0930587798, -0.1156691834, 0.0667520165, 0.1222409755, -0.0957002044, -0.1543300748, -0.0534615964, -0.2331427634, 0.2917098403, 0.1491723955, 0.0468313806, -0.0794369131, -0.4122961164, -0.0143968826, 0.4969035089, -0.5218710899, -0.0407989882, -0.3583914638, 0.2859595418, -0.3150940537, 0.4582990706, 0.0567066781, -0.2462485135, -0.1380135864, 0.364482671, 0.174510017, 0.3875305951, -0.0617132038, 0.0549773537, -0.0879176408, 0.267544955, -0.1149757057, 0.5162413716, 0.3272316158, -0.2136982232, -0.0478193611, -0.262396425, 0.1159516424, 0.0527697653, -0.1398819387, 0.2965241671, 0.08347781, -0.3149954677, 0.1665280759, -0.2887442112, -0.4117944837, 0.0320427418, -0.052759815, 0.1982455254, -0.2443106472, 0.3169921339, 0.0489503853, 0.4910989106, -0.1780501604, 0.2910963595, -0.2383606136, -0.1767041385, 0.1975147724, 0.2727530003, 0.244900763, -0.1675577164, 0.0264964402, -0.5409095287, -0.421677649, 0.2834407687, 0.1674793661, 0.2352837026, 0.2791199088, -0.1008349881, 0.5258054137, -0.1562114209, 0.7999857664, 0.0206832271, -0.3363375962, 0.3844911158, -0.1618196666, 0.0528763086, -0.2177933156, -0.1827092618, -0.0659896284, 0.233773917, 0.4407469928, -0.0931774676, -0.2479647696, 0.6446050406, 0.0670878738, -0.1472482681, -0.3441519141, -0.1861819327, -0.3543057442, -0.0412188545, 0.767854929, -0.1216908172, 0.1556898803, 0.1822192967, -0.0512347631, -0.3818883598, 0.1598659158, 0.2386750579, -0.005119741, 0.0505827777, 0.4557840526, 0.4348104894, 0.0714177042, 0.000731538, 0.11927405, -0.0369113646, -0.3043969274, 0.0731522888, -0.1888462156, -0.2556852102, 0.3799423575, 0.700673759, 0.1868768781, 0.2484071106, -0.2102308869, 0.3775886297, -0.1914454848, 0.0245311707, 0.4383128285, -0.0020623617, -0.1787723899, -0.5383265615, 0.3112787008, 0.2034227699, 0.0733026266, 0.0608615763, -0.0757306963, -0.0163801294, 0.3021711707, 0.1249999553, 0.983823359, -0.0269194804, 0.1929831952, 0.5063084364, 0.0048407093, -0.2439047992, -0.6487342119, 0.3692771494, -0.332921207, -0.224152863, 0.1931167245, -0.1011414081, -0.0847682953, 0.0735342056, -0.0393424518, 0.0991453677, -0.0472757295, -0.0862561613, -0.2586017251, 0.3895539641, 0.3151937425, -0.4278397262, 0.0248835608, 0.0013510659, 0.2714570165, -0.0987159535, 0.1278158873, -0.1633998603, -0.1108864546, 0.0184412077, 0.1251736879, -0.0791134462, -0.1283783466, 0.0130585097, -0.0487736166, -0.0873112977, -0.2329256237, -0.3244179785, 0.4604190886, -0.0299461968, 0.0995342061, 0.0815838799, -0.0991101265, 0.0721637011, -0.0867691487, -0.4970834553, 0.2265412658, 0.0808125585, -0.1736777276, 0.1493705809, 0.0787264109, -0.3227707148, -0.1460987329, 0.1744303405, 0.0205770656, 0.0075484142, -0.0367378667, 0.3179991543, -0.2626373172, -0.2335653752, 0.020059783, 0.0920770317, -0.4317518771, 0.5605172515, -0.3023820519, -0.3800684214, -0.0546554178, 0.0166958384, 0.3058081269, 0.0560380369, 0.2623710632, -0.0891196281, -0.3048815131, -0.1546770036, -0.302428782, 0.0612832271, 0.0386250988, 0.0938880295, 0.3024204671, -0.0061313659, 0.0253996179, -0.2326646149, -0.322717607, -0.141769588, -0.3823908567, 0.1145998687, -0.3576403856, -0.1850683689, 0.2572281957, 0.3836848736, 0.036017634, 0.2342237383, -0.4448953271, 0.2590478957, -0.2176698148, -0.0653394014, -0.0312395431, 0.2600190639, -0.0327088535, -0.2574275434, 0.1754403114, 0.216270119, 0.1199889854, 0.1412032098, 0.0373653807, -0.1117986739, 0.1029489934, 0.1834249049, -0.1107472628, 0.1684505045, 0.0811558217, -0.1483062059, -0.3009883165, -0.2652986348, 0.1343660951, -0.110703364, -0.025855042, -0.1303594559, -0.1217091084, -0.1124878824, 0.3323766887, 0.273825258, 0.204004705, 0.283308506, -0.0734990016, 0.0767017305, -0.2428331971, -0.2653931975, -0.0510372035, 0.1903245151, 0.0616438314, 0.0863676816, -0.091865845, -0.1731874794, -0.3799477816, -0.0381177552, 0.031768769, 0.4498935342, 0.0424941368, -0.288366735, 0.1852962673, 0.0379372723, -0.279720515, -0.1952765882, 0.3624272048, -0.4507014155, 0.2002285123, 0.4017176628, 0.264575094, 0.165723592, -0.4832744896, 0.0937633291, -0.2345170975, 0.0963053331, -0.4337074161, -0.0904509723, 0.3514744341, -0.1948998272, 0.2041253299, 0.3052140176, 0.2311197519, 0.608917892, 0.0314239822, 0.2752898932, 0.1878772229, 0.2133275419, -0.321703732, -0.1798363924, 0.2906687558, 0.2322686911, -0.031773366, -0.207844764, 0.0090947673, 0.2347344905, 0.2440356463, -0.5169644952, -0.2611280978, 0.1630212218, -0.1220196411, -0.1281809658, 0.4117490649, 0.056770578, -0.2780817747, 0.2270265967, 0.0776640698, 0.1923735887, -0.12724787, 0.200874269, 0.2934534252, 0.2212006599, -0.0231135469, 0.0910241455, 0.4337711036, -0.3367398977, -0.2079152465, -0.0111510456, -0.0027164277, 0.0235891603, -0.1512227803, 0.2809454203, 0.2448254377, -0.0555030257, 0.2687212825, -0.0504412428, -0.0088712834, 0.0438045114, -0.0344004743, -0.1084132344, -0.1003934816, 0.1006172895, -0.0908769071, -0.12853387, -0.1207235307, -0.2426326871, 0.2026134133, -0.1804250181, 0.023068646, 0.3459427953, -0.097540006, -0.3948053718, 0.0952415317, -0.283303082, 0.0691806301, 0.1062702984, -0.35660097, -0.0891359076, 0.2603065968, -0.0016339011, -0.4257489145, 0.5468894243, 0.1724049449, 0.1286818981, -0.3299409449, -0.0014341325, -0.3207880855, -0.0345096029, -0.5890922546, 0.112635538, 0.1176836789, 0.4403542876, 0.073925823, -0.0703548416, 0.4031083882, -0.4079710841, 0.0992394984, 0.3735488653, -0.1734417975, -0.0306228567, -0.4397856295, -0.0738478824, 0.0422837138, -0.3743225038, 0.2847958505, -0.1282065511, -0.0147695504, 0.192371577, -0.0202696919, 0.1226511821, 0.0626825988, 0.529878974, -0.0979443267, 0.0000545271, -0.0964538679, 0.008635208, -0.2321902663, 0.1219587475, -0.2070783675, 0.0085760355, -0.0218881518, 0.1733753383, -0.2073741853, -0.3919602334, -0.1815344989, 0.4176574349, 0.3126300573, -0.4186963737, 0.1980271637, 0.1526591927, -0.1558283567, 0.4795942008, 0.1503627598, 0.22828421, 0.1467330605, -0.034051232, -0.3561269641, -0.1054199785, 0.6236685514, -0.1882941574, -0.0293614641, -0.3494382203, 0.2549013793, 0.4437919259, 0.5510438085, -0.2645766139, 0.086238116, 0.121943526, 0.0535738505, -0.2103942186, 0.5777597427, 0.1868615597, 0.0147709623, -0.0737834573, -0.2648073733, -0.0630889311, -0.0029668435, -0.3532100618, -0.2814308703 ]
https://github.com/huggingface/datasets/issues/2046
add_faisis_index gets very slow when doing it interatively
@lhoestq Thanks a lot for sharing all this prior knowledge. Just asking what would be a good nlist of parameters for 30 million embeddings?
As the below code suggests, I want to run add_faisis_index in every nth interaction from the training loop. I have 7.2 million documents. Usually, it takes 2.5 hours (if I run an as a separate process similar to the script given in rag/use_own_knowleldge_dataset.py). Now, this takes usually 5hrs. Is this normal? Any way to make this process faster? @lhoestq ``` def training_step(self, batch, batch_idx) -> Dict: if (not batch_idx==0) and (batch_idx%5==0): print("******************************************************") ctx_encoder=self.trainer.model.module.module.model.rag.ctx_encoder model_copy =type(ctx_encoder)(self.config_dpr) # get a new instance #this will be load in the CPU model_copy.load_state_dict(ctx_encoder.state_dict()) # copy weights and stuff list_of_gpus = ['cuda:2','cuda:3'] c_dir='/custom/cache/dir' kb_dataset = load_dataset("csv", data_files=[self.custom_config.csv_path], split="train", delimiter="\t", column_names=["title", "text"],cache_dir=c_dir) print(kb_dataset) n=len(list_of_gpus) #nunber of dedicated GPUs kb_list=[kb_dataset.shard(n, i, contiguous=True) for i in range(n)] #kb_dataset.save_to_disk('/hpc/gsir059/MY-Test/RAY/transformers/examples/research_projects/rag/haha-dir') print(self.trainer.global_rank) dataset_shards = self.re_encode_kb(model_copy.to(device=list_of_gpus[self.trainer.global_rank]),kb_list[self.trainer.global_rank]) output = [None for _ in list_of_gpus] #self.trainer.accelerator_connector.accelerator.barrier("embedding_process") dist.all_gather_object(output, dataset_shards) #This creation and re-initlaization of the new index if (self.trainer.global_rank==0): #saving will be done in the main process combined_dataset = concatenate_datasets(output) passages_path =self.config.passages_path logger.info("saving the dataset with ") #combined_dataset.save_to_disk('/hpc/gsir059/MY-Test/RAY/transformers/examples/research_projects/rag/MY-Passage') combined_dataset.save_to_disk(passages_path) logger.info("Add faiss index to the dataset that consist of embeddings") embedding_dataset=combined_dataset index = faiss.IndexHNSWFlat(768, 128, faiss.METRIC_INNER_PRODUCT) embedding_dataset.add_faiss_index("embeddings", custom_index=index) embedding_dataset.get_index("embeddings").save(self.config.index_path)
24
add_faisis_index gets very slow when doing it interatively As the below code suggests, I want to run add_faisis_index in every nth interaction from the training loop. I have 7.2 million documents. Usually, it takes 2.5 hours (if I run an as a separate process similar to the script given in rag/use_own_knowleldge_dataset.py). Now, this takes usually 5hrs. Is this normal? Any way to make this process faster? @lhoestq ``` def training_step(self, batch, batch_idx) -> Dict: if (not batch_idx==0) and (batch_idx%5==0): print("******************************************************") ctx_encoder=self.trainer.model.module.module.model.rag.ctx_encoder model_copy =type(ctx_encoder)(self.config_dpr) # get a new instance #this will be load in the CPU model_copy.load_state_dict(ctx_encoder.state_dict()) # copy weights and stuff list_of_gpus = ['cuda:2','cuda:3'] c_dir='/custom/cache/dir' kb_dataset = load_dataset("csv", data_files=[self.custom_config.csv_path], split="train", delimiter="\t", column_names=["title", "text"],cache_dir=c_dir) print(kb_dataset) n=len(list_of_gpus) #nunber of dedicated GPUs kb_list=[kb_dataset.shard(n, i, contiguous=True) for i in range(n)] #kb_dataset.save_to_disk('/hpc/gsir059/MY-Test/RAY/transformers/examples/research_projects/rag/haha-dir') print(self.trainer.global_rank) dataset_shards = self.re_encode_kb(model_copy.to(device=list_of_gpus[self.trainer.global_rank]),kb_list[self.trainer.global_rank]) output = [None for _ in list_of_gpus] #self.trainer.accelerator_connector.accelerator.barrier("embedding_process") dist.all_gather_object(output, dataset_shards) #This creation and re-initlaization of the new index if (self.trainer.global_rank==0): #saving will be done in the main process combined_dataset = concatenate_datasets(output) passages_path =self.config.passages_path logger.info("saving the dataset with ") #combined_dataset.save_to_disk('/hpc/gsir059/MY-Test/RAY/transformers/examples/research_projects/rag/MY-Passage') combined_dataset.save_to_disk(passages_path) logger.info("Add faiss index to the dataset that consist of embeddings") embedding_dataset=combined_dataset index = faiss.IndexHNSWFlat(768, 128, faiss.METRIC_INNER_PRODUCT) embedding_dataset.add_faiss_index("embeddings", custom_index=index) embedding_dataset.get_index("embeddings").save(self.config.index_path) @lhoestq Thanks a lot for sharing all this prior knowledge. Just asking what would be a good nlist of parameters for 30 million embeddings?
[ -0.49882406, -0.2682778239, -0.0245006736, 0.128228277, 0.0594398603, 0.2077842206, 0.1214628518, 0.4241297245, 0.291742146, 0.2924967408, -0.1188250929, 0.1883152723, 0.1372129172, 0.0858210027, -0.1362565756, 0.1750426739, 0.2370327115, 0.0853343457, 0.2607979178, -0.1344141364, -0.3274792731, -0.3090644181, -0.1589121073, -0.2578624189, -0.4006921649, -0.0958188921, -0.2436217368, -0.0820505768, 0.1982477158, -0.4729164839, -0.1375326514, 0.1398428977, 0.3402582407, 0.2582925856, -0.0001220497, 0.0556765273, 0.2280079424, 0.0654630885, -0.2229974568, 0.6411960125, 0.3400722742, -0.0694884509, -0.1751100719, -0.3107711375, -0.1455551237, -0.111042127, 0.0810792744, -0.0469298586, -0.1663650125, 0.1943014562, 0.0266240463, -0.0582866669, 0.0522548854, -0.0153998528, 0.4025117457, -0.0755913556, -0.0691774189, 0.317471087, 0.1635125726, -0.072238043, 0.0997431278, 0.4481078684, 0.1206413805, -0.226777032, 0.1089041457, 0.2051614374, 0.7838162184, 0.0224399716, 0.0652681589, 0.1526694596, 0.0153403673, -0.0905529708, -0.443008393, -0.1029035673, 0.4257143438, -0.6180592179, -0.0674015656, -0.0837423205, -0.1014747322, 0.0538602658, 0.1745852381, -0.0302297864, 0.0363180265, 0.0474507548, 0.174899742, 0.1653568596, 0.3874710798, -0.059902437, 0.5584336519, 0.0424473844, -0.116854243, 0.0448822752, -0.0920772031, 0.0121964924, -0.6050299406, 0.0880847722, -0.0309159234, -0.0993313715, -0.0926872939, 0.0178017914, -0.3694863915, 0.0061656032, 0.2365597636, 0.0033365716, -0.1830647737, -0.0902575329, -0.5061046481, 0.0558814742, 0.0839016736, 0.1062869281, -0.3780879378, 0.0992342234, -0.0033382811, -0.0043096952, -0.3259800673, -0.2981351912, -0.2288902253, 0.2228070349, -0.1811425388, 0.0771881342, -0.4039684236, -0.2522764802, 0.2050727606, 0.4162216485, -0.1177444085, -0.0761366487, 0.010839574, -0.0346155465, -0.2344280928, 0.1761686206, -0.222017318, 0.2306603789, -0.0319640413, 0.5045983195, -0.0291064456, -0.2213939279, -0.0890686885, -0.0217308737, 0.0839633644, -0.0078425631, -0.044163242, -0.2998933792, 0.2466678619, 0.0749232024, -0.2632142305, -0.0676851645, -0.0939519331, 0.1211104244, -0.227823168, 0.2215077132, -0.2173947543, -0.3651024401, 0.0271582548, 0.0193312131, 0.3086773753, -0.0630926192, 0.4208227694, 0.1143969446, 0.1730183959, 0.1613353044, 0.1591763794, -0.1314438283, -0.2680213749, 0.0831864774, 0.2267844081, 0.3627383709, 0.0937217921, 0.0347716659, 0.2980124354, 0.3901304901, 0.2124052346, 0.3999935985, -0.1159488261, 0.6762602329, -0.3200044036, 0.0842917711, 0.2451202422, -0.2553783655, -0.2924264371, 0.1869048178, -0.1663641632, -0.0773257613, 0.3296631873, 0.5182707906, 0.3120290041, 0.0870155022, 0.3410930037, 0.3062553406, 0.0090269931, -0.0312470607, -0.405068934, -0.0582716987, 0.2639192045, 0.3804078102, -0.3354528248, 0.101740703, -0.0401815772, -0.3298805356, 0.6009739637, -0.476105541, -0.1217621565, 0.0680583566, 0.361573875, 0.3393868208, 0.2328696698, 0.2761103511, 0.1495421231, 0.1626260579, 0.0960144401, 0.0987889394, 0.1701553166, -0.4183503091, 0.2156295925, -0.0257501453, -0.2181930244, 0.1078815162, -0.0609780252, 0.1500250548, -0.0456763245, -0.1998731494, -0.1568868756, 0.5427840352, -0.6157976389, 0.0279458687, -0.248897016, -0.1560834944, 0.0070150904, -0.2134258449, -0.0342435353, 0.1429588348, 0.0524965525, -0.3868666887, -0.0538335219, 0.102861084, 0.1266251504, -0.1876762211, 0.5111069679, -0.1136960983, -0.0370366834, 0.2962220609, 0.0449534059, -0.15126504, 0.1090167761, -0.1937615573, -0.0018786415, 0.4852040112, 0.3487839699, 0.2458341271, -0.0214935839, -0.2332082689, 0.0470291078, -0.0406503305, -0.079387024, 0.2275252491, 0.079944022, 0.130253002, 0.4091726542, -0.0333355777, -0.3332441747, 0.2324642241, 0.1857772619, -0.2031296641, -0.4314083755, 0.2710415721, 0.3516988158, -0.0368977077, -0.3497086763, -0.522008419, 0.2360267788, 0.3185988069, 0.1883932352, -0.0716536641, -0.0276509151, -0.2472812533, 0.1691095531, 0.0565534979, -0.0483720265, 0.1000481844, 0.1766417921, -0.214544788, -0.2067900896, -0.2552963495, -0.1363972127, 0.428645879, -0.0443387665, 0.309440732, 0.1777623594, 0.2771869302, -0.1247248203, -0.1249762028, 0.2887520194, 0.0088402331, 0.0416108891, -0.1089352667, -0.03623835, 0.1931091249, -0.0469497964, 0.3649182916, 0.1957944334, -0.325090766, 0.0198443085, -0.0984711498, -0.1214953735, -0.078978613, 0.1210054755, -0.150549829, 0.117400378, 0.0439469814, -0.052580554, -0.1851365566, -0.0862714499, -0.1575877219, -0.0794771016, -0.2974507809, -0.1662346572, -0.2460685521, -0.1250372827, -0.1196447536, 0.0043306984, 0.0005500466, -0.0106873699, -0.0404875614, -0.2826740444, -0.1588368416, 0.0607949346, -0.2936335206, -0.2167017609, -0.1739189327, 0.2281412482, -0.0243998468, 0.0930587798, -0.1156691834, 0.0667520165, 0.1222409755, -0.0957002044, -0.1543300748, -0.0534615964, -0.2331427634, 0.2917098403, 0.1491723955, 0.0468313806, -0.0794369131, -0.4122961164, -0.0143968826, 0.4969035089, -0.5218710899, -0.0407989882, -0.3583914638, 0.2859595418, -0.3150940537, 0.4582990706, 0.0567066781, -0.2462485135, -0.1380135864, 0.364482671, 0.174510017, 0.3875305951, -0.0617132038, 0.0549773537, -0.0879176408, 0.267544955, -0.1149757057, 0.5162413716, 0.3272316158, -0.2136982232, -0.0478193611, -0.262396425, 0.1159516424, 0.0527697653, -0.1398819387, 0.2965241671, 0.08347781, -0.3149954677, 0.1665280759, -0.2887442112, -0.4117944837, 0.0320427418, -0.052759815, 0.1982455254, -0.2443106472, 0.3169921339, 0.0489503853, 0.4910989106, -0.1780501604, 0.2910963595, -0.2383606136, -0.1767041385, 0.1975147724, 0.2727530003, 0.244900763, -0.1675577164, 0.0264964402, -0.5409095287, -0.421677649, 0.2834407687, 0.1674793661, 0.2352837026, 0.2791199088, -0.1008349881, 0.5258054137, -0.1562114209, 0.7999857664, 0.0206832271, -0.3363375962, 0.3844911158, -0.1618196666, 0.0528763086, -0.2177933156, -0.1827092618, -0.0659896284, 0.233773917, 0.4407469928, -0.0931774676, -0.2479647696, 0.6446050406, 0.0670878738, -0.1472482681, -0.3441519141, -0.1861819327, -0.3543057442, -0.0412188545, 0.767854929, -0.1216908172, 0.1556898803, 0.1822192967, -0.0512347631, -0.3818883598, 0.1598659158, 0.2386750579, -0.005119741, 0.0505827777, 0.4557840526, 0.4348104894, 0.0714177042, 0.000731538, 0.11927405, -0.0369113646, -0.3043969274, 0.0731522888, -0.1888462156, -0.2556852102, 0.3799423575, 0.700673759, 0.1868768781, 0.2484071106, -0.2102308869, 0.3775886297, -0.1914454848, 0.0245311707, 0.4383128285, -0.0020623617, -0.1787723899, -0.5383265615, 0.3112787008, 0.2034227699, 0.0733026266, 0.0608615763, -0.0757306963, -0.0163801294, 0.3021711707, 0.1249999553, 0.983823359, -0.0269194804, 0.1929831952, 0.5063084364, 0.0048407093, -0.2439047992, -0.6487342119, 0.3692771494, -0.332921207, -0.224152863, 0.1931167245, -0.1011414081, -0.0847682953, 0.0735342056, -0.0393424518, 0.0991453677, -0.0472757295, -0.0862561613, -0.2586017251, 0.3895539641, 0.3151937425, -0.4278397262, 0.0248835608, 0.0013510659, 0.2714570165, -0.0987159535, 0.1278158873, -0.1633998603, -0.1108864546, 0.0184412077, 0.1251736879, -0.0791134462, -0.1283783466, 0.0130585097, -0.0487736166, -0.0873112977, -0.2329256237, -0.3244179785, 0.4604190886, -0.0299461968, 0.0995342061, 0.0815838799, -0.0991101265, 0.0721637011, -0.0867691487, -0.4970834553, 0.2265412658, 0.0808125585, -0.1736777276, 0.1493705809, 0.0787264109, -0.3227707148, -0.1460987329, 0.1744303405, 0.0205770656, 0.0075484142, -0.0367378667, 0.3179991543, -0.2626373172, -0.2335653752, 0.020059783, 0.0920770317, -0.4317518771, 0.5605172515, -0.3023820519, -0.3800684214, -0.0546554178, 0.0166958384, 0.3058081269, 0.0560380369, 0.2623710632, -0.0891196281, -0.3048815131, -0.1546770036, -0.302428782, 0.0612832271, 0.0386250988, 0.0938880295, 0.3024204671, -0.0061313659, 0.0253996179, -0.2326646149, -0.322717607, -0.141769588, -0.3823908567, 0.1145998687, -0.3576403856, -0.1850683689, 0.2572281957, 0.3836848736, 0.036017634, 0.2342237383, -0.4448953271, 0.2590478957, -0.2176698148, -0.0653394014, -0.0312395431, 0.2600190639, -0.0327088535, -0.2574275434, 0.1754403114, 0.216270119, 0.1199889854, 0.1412032098, 0.0373653807, -0.1117986739, 0.1029489934, 0.1834249049, -0.1107472628, 0.1684505045, 0.0811558217, -0.1483062059, -0.3009883165, -0.2652986348, 0.1343660951, -0.110703364, -0.025855042, -0.1303594559, -0.1217091084, -0.1124878824, 0.3323766887, 0.273825258, 0.204004705, 0.283308506, -0.0734990016, 0.0767017305, -0.2428331971, -0.2653931975, -0.0510372035, 0.1903245151, 0.0616438314, 0.0863676816, -0.091865845, -0.1731874794, -0.3799477816, -0.0381177552, 0.031768769, 0.4498935342, 0.0424941368, -0.288366735, 0.1852962673, 0.0379372723, -0.279720515, -0.1952765882, 0.3624272048, -0.4507014155, 0.2002285123, 0.4017176628, 0.264575094, 0.165723592, -0.4832744896, 0.0937633291, -0.2345170975, 0.0963053331, -0.4337074161, -0.0904509723, 0.3514744341, -0.1948998272, 0.2041253299, 0.3052140176, 0.2311197519, 0.608917892, 0.0314239822, 0.2752898932, 0.1878772229, 0.2133275419, -0.321703732, -0.1798363924, 0.2906687558, 0.2322686911, -0.031773366, -0.207844764, 0.0090947673, 0.2347344905, 0.2440356463, -0.5169644952, -0.2611280978, 0.1630212218, -0.1220196411, -0.1281809658, 0.4117490649, 0.056770578, -0.2780817747, 0.2270265967, 0.0776640698, 0.1923735887, -0.12724787, 0.200874269, 0.2934534252, 0.2212006599, -0.0231135469, 0.0910241455, 0.4337711036, -0.3367398977, -0.2079152465, -0.0111510456, -0.0027164277, 0.0235891603, -0.1512227803, 0.2809454203, 0.2448254377, -0.0555030257, 0.2687212825, -0.0504412428, -0.0088712834, 0.0438045114, -0.0344004743, -0.1084132344, -0.1003934816, 0.1006172895, -0.0908769071, -0.12853387, -0.1207235307, -0.2426326871, 0.2026134133, -0.1804250181, 0.023068646, 0.3459427953, -0.097540006, -0.3948053718, 0.0952415317, -0.283303082, 0.0691806301, 0.1062702984, -0.35660097, -0.0891359076, 0.2603065968, -0.0016339011, -0.4257489145, 0.5468894243, 0.1724049449, 0.1286818981, -0.3299409449, -0.0014341325, -0.3207880855, -0.0345096029, -0.5890922546, 0.112635538, 0.1176836789, 0.4403542876, 0.073925823, -0.0703548416, 0.4031083882, -0.4079710841, 0.0992394984, 0.3735488653, -0.1734417975, -0.0306228567, -0.4397856295, -0.0738478824, 0.0422837138, -0.3743225038, 0.2847958505, -0.1282065511, -0.0147695504, 0.192371577, -0.0202696919, 0.1226511821, 0.0626825988, 0.529878974, -0.0979443267, 0.0000545271, -0.0964538679, 0.008635208, -0.2321902663, 0.1219587475, -0.2070783675, 0.0085760355, -0.0218881518, 0.1733753383, -0.2073741853, -0.3919602334, -0.1815344989, 0.4176574349, 0.3126300573, -0.4186963737, 0.1980271637, 0.1526591927, -0.1558283567, 0.4795942008, 0.1503627598, 0.22828421, 0.1467330605, -0.034051232, -0.3561269641, -0.1054199785, 0.6236685514, -0.1882941574, -0.0293614641, -0.3494382203, 0.2549013793, 0.4437919259, 0.5510438085, -0.2645766139, 0.086238116, 0.121943526, 0.0535738505, -0.2103942186, 0.5777597427, 0.1868615597, 0.0147709623, -0.0737834573, -0.2648073733, -0.0630889311, -0.0029668435, -0.3532100618, -0.2814308703 ]
https://github.com/huggingface/datasets/issues/2046
add_faisis_index gets very slow when doing it interatively
When IVF is used alone, nlist should be between `4*sqrt(n)` and `16*sqrt(n)`. For more details take a look at [this section of the Faiss wiki](https://github.com/facebookresearch/faiss/wiki/Guidelines-to-choose-an-index#how-big-is-the-dataset)
As the below code suggests, I want to run add_faisis_index in every nth interaction from the training loop. I have 7.2 million documents. Usually, it takes 2.5 hours (if I run an as a separate process similar to the script given in rag/use_own_knowleldge_dataset.py). Now, this takes usually 5hrs. Is this normal? Any way to make this process faster? @lhoestq ``` def training_step(self, batch, batch_idx) -> Dict: if (not batch_idx==0) and (batch_idx%5==0): print("******************************************************") ctx_encoder=self.trainer.model.module.module.model.rag.ctx_encoder model_copy =type(ctx_encoder)(self.config_dpr) # get a new instance #this will be load in the CPU model_copy.load_state_dict(ctx_encoder.state_dict()) # copy weights and stuff list_of_gpus = ['cuda:2','cuda:3'] c_dir='/custom/cache/dir' kb_dataset = load_dataset("csv", data_files=[self.custom_config.csv_path], split="train", delimiter="\t", column_names=["title", "text"],cache_dir=c_dir) print(kb_dataset) n=len(list_of_gpus) #nunber of dedicated GPUs kb_list=[kb_dataset.shard(n, i, contiguous=True) for i in range(n)] #kb_dataset.save_to_disk('/hpc/gsir059/MY-Test/RAY/transformers/examples/research_projects/rag/haha-dir') print(self.trainer.global_rank) dataset_shards = self.re_encode_kb(model_copy.to(device=list_of_gpus[self.trainer.global_rank]),kb_list[self.trainer.global_rank]) output = [None for _ in list_of_gpus] #self.trainer.accelerator_connector.accelerator.barrier("embedding_process") dist.all_gather_object(output, dataset_shards) #This creation and re-initlaization of the new index if (self.trainer.global_rank==0): #saving will be done in the main process combined_dataset = concatenate_datasets(output) passages_path =self.config.passages_path logger.info("saving the dataset with ") #combined_dataset.save_to_disk('/hpc/gsir059/MY-Test/RAY/transformers/examples/research_projects/rag/MY-Passage') combined_dataset.save_to_disk(passages_path) logger.info("Add faiss index to the dataset that consist of embeddings") embedding_dataset=combined_dataset index = faiss.IndexHNSWFlat(768, 128, faiss.METRIC_INNER_PRODUCT) embedding_dataset.add_faiss_index("embeddings", custom_index=index) embedding_dataset.get_index("embeddings").save(self.config.index_path)
25
add_faisis_index gets very slow when doing it interatively As the below code suggests, I want to run add_faisis_index in every nth interaction from the training loop. I have 7.2 million documents. Usually, it takes 2.5 hours (if I run an as a separate process similar to the script given in rag/use_own_knowleldge_dataset.py). Now, this takes usually 5hrs. Is this normal? Any way to make this process faster? @lhoestq ``` def training_step(self, batch, batch_idx) -> Dict: if (not batch_idx==0) and (batch_idx%5==0): print("******************************************************") ctx_encoder=self.trainer.model.module.module.model.rag.ctx_encoder model_copy =type(ctx_encoder)(self.config_dpr) # get a new instance #this will be load in the CPU model_copy.load_state_dict(ctx_encoder.state_dict()) # copy weights and stuff list_of_gpus = ['cuda:2','cuda:3'] c_dir='/custom/cache/dir' kb_dataset = load_dataset("csv", data_files=[self.custom_config.csv_path], split="train", delimiter="\t", column_names=["title", "text"],cache_dir=c_dir) print(kb_dataset) n=len(list_of_gpus) #nunber of dedicated GPUs kb_list=[kb_dataset.shard(n, i, contiguous=True) for i in range(n)] #kb_dataset.save_to_disk('/hpc/gsir059/MY-Test/RAY/transformers/examples/research_projects/rag/haha-dir') print(self.trainer.global_rank) dataset_shards = self.re_encode_kb(model_copy.to(device=list_of_gpus[self.trainer.global_rank]),kb_list[self.trainer.global_rank]) output = [None for _ in list_of_gpus] #self.trainer.accelerator_connector.accelerator.barrier("embedding_process") dist.all_gather_object(output, dataset_shards) #This creation and re-initlaization of the new index if (self.trainer.global_rank==0): #saving will be done in the main process combined_dataset = concatenate_datasets(output) passages_path =self.config.passages_path logger.info("saving the dataset with ") #combined_dataset.save_to_disk('/hpc/gsir059/MY-Test/RAY/transformers/examples/research_projects/rag/MY-Passage') combined_dataset.save_to_disk(passages_path) logger.info("Add faiss index to the dataset that consist of embeddings") embedding_dataset=combined_dataset index = faiss.IndexHNSWFlat(768, 128, faiss.METRIC_INNER_PRODUCT) embedding_dataset.add_faiss_index("embeddings", custom_index=index) embedding_dataset.get_index("embeddings").save(self.config.index_path) When IVF is used alone, nlist should be between `4*sqrt(n)` and `16*sqrt(n)`. For more details take a look at [this section of the Faiss wiki](https://github.com/facebookresearch/faiss/wiki/Guidelines-to-choose-an-index#how-big-is-the-dataset)
[ -0.49882406, -0.2682778239, -0.0245006736, 0.128228277, 0.0594398603, 0.2077842206, 0.1214628518, 0.4241297245, 0.291742146, 0.2924967408, -0.1188250929, 0.1883152723, 0.1372129172, 0.0858210027, -0.1362565756, 0.1750426739, 0.2370327115, 0.0853343457, 0.2607979178, -0.1344141364, -0.3274792731, -0.3090644181, -0.1589121073, -0.2578624189, -0.4006921649, -0.0958188921, -0.2436217368, -0.0820505768, 0.1982477158, -0.4729164839, -0.1375326514, 0.1398428977, 0.3402582407, 0.2582925856, -0.0001220497, 0.0556765273, 0.2280079424, 0.0654630885, -0.2229974568, 0.6411960125, 0.3400722742, -0.0694884509, -0.1751100719, -0.3107711375, -0.1455551237, -0.111042127, 0.0810792744, -0.0469298586, -0.1663650125, 0.1943014562, 0.0266240463, -0.0582866669, 0.0522548854, -0.0153998528, 0.4025117457, -0.0755913556, -0.0691774189, 0.317471087, 0.1635125726, -0.072238043, 0.0997431278, 0.4481078684, 0.1206413805, -0.226777032, 0.1089041457, 0.2051614374, 0.7838162184, 0.0224399716, 0.0652681589, 0.1526694596, 0.0153403673, -0.0905529708, -0.443008393, -0.1029035673, 0.4257143438, -0.6180592179, -0.0674015656, -0.0837423205, -0.1014747322, 0.0538602658, 0.1745852381, -0.0302297864, 0.0363180265, 0.0474507548, 0.174899742, 0.1653568596, 0.3874710798, -0.059902437, 0.5584336519, 0.0424473844, -0.116854243, 0.0448822752, -0.0920772031, 0.0121964924, -0.6050299406, 0.0880847722, -0.0309159234, -0.0993313715, -0.0926872939, 0.0178017914, -0.3694863915, 0.0061656032, 0.2365597636, 0.0033365716, -0.1830647737, -0.0902575329, -0.5061046481, 0.0558814742, 0.0839016736, 0.1062869281, -0.3780879378, 0.0992342234, -0.0033382811, -0.0043096952, -0.3259800673, -0.2981351912, -0.2288902253, 0.2228070349, -0.1811425388, 0.0771881342, -0.4039684236, -0.2522764802, 0.2050727606, 0.4162216485, -0.1177444085, -0.0761366487, 0.010839574, -0.0346155465, -0.2344280928, 0.1761686206, -0.222017318, 0.2306603789, -0.0319640413, 0.5045983195, -0.0291064456, -0.2213939279, -0.0890686885, -0.0217308737, 0.0839633644, -0.0078425631, -0.044163242, -0.2998933792, 0.2466678619, 0.0749232024, -0.2632142305, -0.0676851645, -0.0939519331, 0.1211104244, -0.227823168, 0.2215077132, -0.2173947543, -0.3651024401, 0.0271582548, 0.0193312131, 0.3086773753, -0.0630926192, 0.4208227694, 0.1143969446, 0.1730183959, 0.1613353044, 0.1591763794, -0.1314438283, -0.2680213749, 0.0831864774, 0.2267844081, 0.3627383709, 0.0937217921, 0.0347716659, 0.2980124354, 0.3901304901, 0.2124052346, 0.3999935985, -0.1159488261, 0.6762602329, -0.3200044036, 0.0842917711, 0.2451202422, -0.2553783655, -0.2924264371, 0.1869048178, -0.1663641632, -0.0773257613, 0.3296631873, 0.5182707906, 0.3120290041, 0.0870155022, 0.3410930037, 0.3062553406, 0.0090269931, -0.0312470607, -0.405068934, -0.0582716987, 0.2639192045, 0.3804078102, -0.3354528248, 0.101740703, -0.0401815772, -0.3298805356, 0.6009739637, -0.476105541, -0.1217621565, 0.0680583566, 0.361573875, 0.3393868208, 0.2328696698, 0.2761103511, 0.1495421231, 0.1626260579, 0.0960144401, 0.0987889394, 0.1701553166, -0.4183503091, 0.2156295925, -0.0257501453, -0.2181930244, 0.1078815162, -0.0609780252, 0.1500250548, -0.0456763245, -0.1998731494, -0.1568868756, 0.5427840352, -0.6157976389, 0.0279458687, -0.248897016, -0.1560834944, 0.0070150904, -0.2134258449, -0.0342435353, 0.1429588348, 0.0524965525, -0.3868666887, -0.0538335219, 0.102861084, 0.1266251504, -0.1876762211, 0.5111069679, -0.1136960983, -0.0370366834, 0.2962220609, 0.0449534059, -0.15126504, 0.1090167761, -0.1937615573, -0.0018786415, 0.4852040112, 0.3487839699, 0.2458341271, -0.0214935839, -0.2332082689, 0.0470291078, -0.0406503305, -0.079387024, 0.2275252491, 0.079944022, 0.130253002, 0.4091726542, -0.0333355777, -0.3332441747, 0.2324642241, 0.1857772619, -0.2031296641, -0.4314083755, 0.2710415721, 0.3516988158, -0.0368977077, -0.3497086763, -0.522008419, 0.2360267788, 0.3185988069, 0.1883932352, -0.0716536641, -0.0276509151, -0.2472812533, 0.1691095531, 0.0565534979, -0.0483720265, 0.1000481844, 0.1766417921, -0.214544788, -0.2067900896, -0.2552963495, -0.1363972127, 0.428645879, -0.0443387665, 0.309440732, 0.1777623594, 0.2771869302, -0.1247248203, -0.1249762028, 0.2887520194, 0.0088402331, 0.0416108891, -0.1089352667, -0.03623835, 0.1931091249, -0.0469497964, 0.3649182916, 0.1957944334, -0.325090766, 0.0198443085, -0.0984711498, -0.1214953735, -0.078978613, 0.1210054755, -0.150549829, 0.117400378, 0.0439469814, -0.052580554, -0.1851365566, -0.0862714499, -0.1575877219, -0.0794771016, -0.2974507809, -0.1662346572, -0.2460685521, -0.1250372827, -0.1196447536, 0.0043306984, 0.0005500466, -0.0106873699, -0.0404875614, -0.2826740444, -0.1588368416, 0.0607949346, -0.2936335206, -0.2167017609, -0.1739189327, 0.2281412482, -0.0243998468, 0.0930587798, -0.1156691834, 0.0667520165, 0.1222409755, -0.0957002044, -0.1543300748, -0.0534615964, -0.2331427634, 0.2917098403, 0.1491723955, 0.0468313806, -0.0794369131, -0.4122961164, -0.0143968826, 0.4969035089, -0.5218710899, -0.0407989882, -0.3583914638, 0.2859595418, -0.3150940537, 0.4582990706, 0.0567066781, -0.2462485135, -0.1380135864, 0.364482671, 0.174510017, 0.3875305951, -0.0617132038, 0.0549773537, -0.0879176408, 0.267544955, -0.1149757057, 0.5162413716, 0.3272316158, -0.2136982232, -0.0478193611, -0.262396425, 0.1159516424, 0.0527697653, -0.1398819387, 0.2965241671, 0.08347781, -0.3149954677, 0.1665280759, -0.2887442112, -0.4117944837, 0.0320427418, -0.052759815, 0.1982455254, -0.2443106472, 0.3169921339, 0.0489503853, 0.4910989106, -0.1780501604, 0.2910963595, -0.2383606136, -0.1767041385, 0.1975147724, 0.2727530003, 0.244900763, -0.1675577164, 0.0264964402, -0.5409095287, -0.421677649, 0.2834407687, 0.1674793661, 0.2352837026, 0.2791199088, -0.1008349881, 0.5258054137, -0.1562114209, 0.7999857664, 0.0206832271, -0.3363375962, 0.3844911158, -0.1618196666, 0.0528763086, -0.2177933156, -0.1827092618, -0.0659896284, 0.233773917, 0.4407469928, -0.0931774676, -0.2479647696, 0.6446050406, 0.0670878738, -0.1472482681, -0.3441519141, -0.1861819327, -0.3543057442, -0.0412188545, 0.767854929, -0.1216908172, 0.1556898803, 0.1822192967, -0.0512347631, -0.3818883598, 0.1598659158, 0.2386750579, -0.005119741, 0.0505827777, 0.4557840526, 0.4348104894, 0.0714177042, 0.000731538, 0.11927405, -0.0369113646, -0.3043969274, 0.0731522888, -0.1888462156, -0.2556852102, 0.3799423575, 0.700673759, 0.1868768781, 0.2484071106, -0.2102308869, 0.3775886297, -0.1914454848, 0.0245311707, 0.4383128285, -0.0020623617, -0.1787723899, -0.5383265615, 0.3112787008, 0.2034227699, 0.0733026266, 0.0608615763, -0.0757306963, -0.0163801294, 0.3021711707, 0.1249999553, 0.983823359, -0.0269194804, 0.1929831952, 0.5063084364, 0.0048407093, -0.2439047992, -0.6487342119, 0.3692771494, -0.332921207, -0.224152863, 0.1931167245, -0.1011414081, -0.0847682953, 0.0735342056, -0.0393424518, 0.0991453677, -0.0472757295, -0.0862561613, -0.2586017251, 0.3895539641, 0.3151937425, -0.4278397262, 0.0248835608, 0.0013510659, 0.2714570165, -0.0987159535, 0.1278158873, -0.1633998603, -0.1108864546, 0.0184412077, 0.1251736879, -0.0791134462, -0.1283783466, 0.0130585097, -0.0487736166, -0.0873112977, -0.2329256237, -0.3244179785, 0.4604190886, -0.0299461968, 0.0995342061, 0.0815838799, -0.0991101265, 0.0721637011, -0.0867691487, -0.4970834553, 0.2265412658, 0.0808125585, -0.1736777276, 0.1493705809, 0.0787264109, -0.3227707148, -0.1460987329, 0.1744303405, 0.0205770656, 0.0075484142, -0.0367378667, 0.3179991543, -0.2626373172, -0.2335653752, 0.020059783, 0.0920770317, -0.4317518771, 0.5605172515, -0.3023820519, -0.3800684214, -0.0546554178, 0.0166958384, 0.3058081269, 0.0560380369, 0.2623710632, -0.0891196281, -0.3048815131, -0.1546770036, -0.302428782, 0.0612832271, 0.0386250988, 0.0938880295, 0.3024204671, -0.0061313659, 0.0253996179, -0.2326646149, -0.322717607, -0.141769588, -0.3823908567, 0.1145998687, -0.3576403856, -0.1850683689, 0.2572281957, 0.3836848736, 0.036017634, 0.2342237383, -0.4448953271, 0.2590478957, -0.2176698148, -0.0653394014, -0.0312395431, 0.2600190639, -0.0327088535, -0.2574275434, 0.1754403114, 0.216270119, 0.1199889854, 0.1412032098, 0.0373653807, -0.1117986739, 0.1029489934, 0.1834249049, -0.1107472628, 0.1684505045, 0.0811558217, -0.1483062059, -0.3009883165, -0.2652986348, 0.1343660951, -0.110703364, -0.025855042, -0.1303594559, -0.1217091084, -0.1124878824, 0.3323766887, 0.273825258, 0.204004705, 0.283308506, -0.0734990016, 0.0767017305, -0.2428331971, -0.2653931975, -0.0510372035, 0.1903245151, 0.0616438314, 0.0863676816, -0.091865845, -0.1731874794, -0.3799477816, -0.0381177552, 0.031768769, 0.4498935342, 0.0424941368, -0.288366735, 0.1852962673, 0.0379372723, -0.279720515, -0.1952765882, 0.3624272048, -0.4507014155, 0.2002285123, 0.4017176628, 0.264575094, 0.165723592, -0.4832744896, 0.0937633291, -0.2345170975, 0.0963053331, -0.4337074161, -0.0904509723, 0.3514744341, -0.1948998272, 0.2041253299, 0.3052140176, 0.2311197519, 0.608917892, 0.0314239822, 0.2752898932, 0.1878772229, 0.2133275419, -0.321703732, -0.1798363924, 0.2906687558, 0.2322686911, -0.031773366, -0.207844764, 0.0090947673, 0.2347344905, 0.2440356463, -0.5169644952, -0.2611280978, 0.1630212218, -0.1220196411, -0.1281809658, 0.4117490649, 0.056770578, -0.2780817747, 0.2270265967, 0.0776640698, 0.1923735887, -0.12724787, 0.200874269, 0.2934534252, 0.2212006599, -0.0231135469, 0.0910241455, 0.4337711036, -0.3367398977, -0.2079152465, -0.0111510456, -0.0027164277, 0.0235891603, -0.1512227803, 0.2809454203, 0.2448254377, -0.0555030257, 0.2687212825, -0.0504412428, -0.0088712834, 0.0438045114, -0.0344004743, -0.1084132344, -0.1003934816, 0.1006172895, -0.0908769071, -0.12853387, -0.1207235307, -0.2426326871, 0.2026134133, -0.1804250181, 0.023068646, 0.3459427953, -0.097540006, -0.3948053718, 0.0952415317, -0.283303082, 0.0691806301, 0.1062702984, -0.35660097, -0.0891359076, 0.2603065968, -0.0016339011, -0.4257489145, 0.5468894243, 0.1724049449, 0.1286818981, -0.3299409449, -0.0014341325, -0.3207880855, -0.0345096029, -0.5890922546, 0.112635538, 0.1176836789, 0.4403542876, 0.073925823, -0.0703548416, 0.4031083882, -0.4079710841, 0.0992394984, 0.3735488653, -0.1734417975, -0.0306228567, -0.4397856295, -0.0738478824, 0.0422837138, -0.3743225038, 0.2847958505, -0.1282065511, -0.0147695504, 0.192371577, -0.0202696919, 0.1226511821, 0.0626825988, 0.529878974, -0.0979443267, 0.0000545271, -0.0964538679, 0.008635208, -0.2321902663, 0.1219587475, -0.2070783675, 0.0085760355, -0.0218881518, 0.1733753383, -0.2073741853, -0.3919602334, -0.1815344989, 0.4176574349, 0.3126300573, -0.4186963737, 0.1980271637, 0.1526591927, -0.1558283567, 0.4795942008, 0.1503627598, 0.22828421, 0.1467330605, -0.034051232, -0.3561269641, -0.1054199785, 0.6236685514, -0.1882941574, -0.0293614641, -0.3494382203, 0.2549013793, 0.4437919259, 0.5510438085, -0.2645766139, 0.086238116, 0.121943526, 0.0535738505, -0.2103942186, 0.5777597427, 0.1868615597, 0.0147709623, -0.0737834573, -0.2648073733, -0.0630889311, -0.0029668435, -0.3532100618, -0.2814308703 ]
https://github.com/huggingface/datasets/issues/2046
add_faisis_index gets very slow when doing it interatively
@lhoestq Thanks a lot for the help you have given to solve this issue. As per my experiments, IVF index suits well for my case and it is a lot faster. The use of this can make the entire RAG end-to-end trainable lot faster. So I will close this issue. Will do the final PR soon.
As the below code suggests, I want to run add_faisis_index in every nth interaction from the training loop. I have 7.2 million documents. Usually, it takes 2.5 hours (if I run an as a separate process similar to the script given in rag/use_own_knowleldge_dataset.py). Now, this takes usually 5hrs. Is this normal? Any way to make this process faster? @lhoestq ``` def training_step(self, batch, batch_idx) -> Dict: if (not batch_idx==0) and (batch_idx%5==0): print("******************************************************") ctx_encoder=self.trainer.model.module.module.model.rag.ctx_encoder model_copy =type(ctx_encoder)(self.config_dpr) # get a new instance #this will be load in the CPU model_copy.load_state_dict(ctx_encoder.state_dict()) # copy weights and stuff list_of_gpus = ['cuda:2','cuda:3'] c_dir='/custom/cache/dir' kb_dataset = load_dataset("csv", data_files=[self.custom_config.csv_path], split="train", delimiter="\t", column_names=["title", "text"],cache_dir=c_dir) print(kb_dataset) n=len(list_of_gpus) #nunber of dedicated GPUs kb_list=[kb_dataset.shard(n, i, contiguous=True) for i in range(n)] #kb_dataset.save_to_disk('/hpc/gsir059/MY-Test/RAY/transformers/examples/research_projects/rag/haha-dir') print(self.trainer.global_rank) dataset_shards = self.re_encode_kb(model_copy.to(device=list_of_gpus[self.trainer.global_rank]),kb_list[self.trainer.global_rank]) output = [None for _ in list_of_gpus] #self.trainer.accelerator_connector.accelerator.barrier("embedding_process") dist.all_gather_object(output, dataset_shards) #This creation and re-initlaization of the new index if (self.trainer.global_rank==0): #saving will be done in the main process combined_dataset = concatenate_datasets(output) passages_path =self.config.passages_path logger.info("saving the dataset with ") #combined_dataset.save_to_disk('/hpc/gsir059/MY-Test/RAY/transformers/examples/research_projects/rag/MY-Passage') combined_dataset.save_to_disk(passages_path) logger.info("Add faiss index to the dataset that consist of embeddings") embedding_dataset=combined_dataset index = faiss.IndexHNSWFlat(768, 128, faiss.METRIC_INNER_PRODUCT) embedding_dataset.add_faiss_index("embeddings", custom_index=index) embedding_dataset.get_index("embeddings").save(self.config.index_path)
56
add_faisis_index gets very slow when doing it interatively As the below code suggests, I want to run add_faisis_index in every nth interaction from the training loop. I have 7.2 million documents. Usually, it takes 2.5 hours (if I run an as a separate process similar to the script given in rag/use_own_knowleldge_dataset.py). Now, this takes usually 5hrs. Is this normal? Any way to make this process faster? @lhoestq ``` def training_step(self, batch, batch_idx) -> Dict: if (not batch_idx==0) and (batch_idx%5==0): print("******************************************************") ctx_encoder=self.trainer.model.module.module.model.rag.ctx_encoder model_copy =type(ctx_encoder)(self.config_dpr) # get a new instance #this will be load in the CPU model_copy.load_state_dict(ctx_encoder.state_dict()) # copy weights and stuff list_of_gpus = ['cuda:2','cuda:3'] c_dir='/custom/cache/dir' kb_dataset = load_dataset("csv", data_files=[self.custom_config.csv_path], split="train", delimiter="\t", column_names=["title", "text"],cache_dir=c_dir) print(kb_dataset) n=len(list_of_gpus) #nunber of dedicated GPUs kb_list=[kb_dataset.shard(n, i, contiguous=True) for i in range(n)] #kb_dataset.save_to_disk('/hpc/gsir059/MY-Test/RAY/transformers/examples/research_projects/rag/haha-dir') print(self.trainer.global_rank) dataset_shards = self.re_encode_kb(model_copy.to(device=list_of_gpus[self.trainer.global_rank]),kb_list[self.trainer.global_rank]) output = [None for _ in list_of_gpus] #self.trainer.accelerator_connector.accelerator.barrier("embedding_process") dist.all_gather_object(output, dataset_shards) #This creation and re-initlaization of the new index if (self.trainer.global_rank==0): #saving will be done in the main process combined_dataset = concatenate_datasets(output) passages_path =self.config.passages_path logger.info("saving the dataset with ") #combined_dataset.save_to_disk('/hpc/gsir059/MY-Test/RAY/transformers/examples/research_projects/rag/MY-Passage') combined_dataset.save_to_disk(passages_path) logger.info("Add faiss index to the dataset that consist of embeddings") embedding_dataset=combined_dataset index = faiss.IndexHNSWFlat(768, 128, faiss.METRIC_INNER_PRODUCT) embedding_dataset.add_faiss_index("embeddings", custom_index=index) embedding_dataset.get_index("embeddings").save(self.config.index_path) @lhoestq Thanks a lot for the help you have given to solve this issue. As per my experiments, IVF index suits well for my case and it is a lot faster. The use of this can make the entire RAG end-to-end trainable lot faster. So I will close this issue. Will do the final PR soon.
[ -0.49882406, -0.2682778239, -0.0245006736, 0.128228277, 0.0594398603, 0.2077842206, 0.1214628518, 0.4241297245, 0.291742146, 0.2924967408, -0.1188250929, 0.1883152723, 0.1372129172, 0.0858210027, -0.1362565756, 0.1750426739, 0.2370327115, 0.0853343457, 0.2607979178, -0.1344141364, -0.3274792731, -0.3090644181, -0.1589121073, -0.2578624189, -0.4006921649, -0.0958188921, -0.2436217368, -0.0820505768, 0.1982477158, -0.4729164839, -0.1375326514, 0.1398428977, 0.3402582407, 0.2582925856, -0.0001220497, 0.0556765273, 0.2280079424, 0.0654630885, -0.2229974568, 0.6411960125, 0.3400722742, -0.0694884509, -0.1751100719, -0.3107711375, -0.1455551237, -0.111042127, 0.0810792744, -0.0469298586, -0.1663650125, 0.1943014562, 0.0266240463, -0.0582866669, 0.0522548854, -0.0153998528, 0.4025117457, -0.0755913556, -0.0691774189, 0.317471087, 0.1635125726, -0.072238043, 0.0997431278, 0.4481078684, 0.1206413805, -0.226777032, 0.1089041457, 0.2051614374, 0.7838162184, 0.0224399716, 0.0652681589, 0.1526694596, 0.0153403673, -0.0905529708, -0.443008393, -0.1029035673, 0.4257143438, -0.6180592179, -0.0674015656, -0.0837423205, -0.1014747322, 0.0538602658, 0.1745852381, -0.0302297864, 0.0363180265, 0.0474507548, 0.174899742, 0.1653568596, 0.3874710798, -0.059902437, 0.5584336519, 0.0424473844, -0.116854243, 0.0448822752, -0.0920772031, 0.0121964924, -0.6050299406, 0.0880847722, -0.0309159234, -0.0993313715, -0.0926872939, 0.0178017914, -0.3694863915, 0.0061656032, 0.2365597636, 0.0033365716, -0.1830647737, -0.0902575329, -0.5061046481, 0.0558814742, 0.0839016736, 0.1062869281, -0.3780879378, 0.0992342234, -0.0033382811, -0.0043096952, -0.3259800673, -0.2981351912, -0.2288902253, 0.2228070349, -0.1811425388, 0.0771881342, -0.4039684236, -0.2522764802, 0.2050727606, 0.4162216485, -0.1177444085, -0.0761366487, 0.010839574, -0.0346155465, -0.2344280928, 0.1761686206, -0.222017318, 0.2306603789, -0.0319640413, 0.5045983195, -0.0291064456, -0.2213939279, -0.0890686885, -0.0217308737, 0.0839633644, -0.0078425631, -0.044163242, -0.2998933792, 0.2466678619, 0.0749232024, -0.2632142305, -0.0676851645, -0.0939519331, 0.1211104244, -0.227823168, 0.2215077132, -0.2173947543, -0.3651024401, 0.0271582548, 0.0193312131, 0.3086773753, -0.0630926192, 0.4208227694, 0.1143969446, 0.1730183959, 0.1613353044, 0.1591763794, -0.1314438283, -0.2680213749, 0.0831864774, 0.2267844081, 0.3627383709, 0.0937217921, 0.0347716659, 0.2980124354, 0.3901304901, 0.2124052346, 0.3999935985, -0.1159488261, 0.6762602329, -0.3200044036, 0.0842917711, 0.2451202422, -0.2553783655, -0.2924264371, 0.1869048178, -0.1663641632, -0.0773257613, 0.3296631873, 0.5182707906, 0.3120290041, 0.0870155022, 0.3410930037, 0.3062553406, 0.0090269931, -0.0312470607, -0.405068934, -0.0582716987, 0.2639192045, 0.3804078102, -0.3354528248, 0.101740703, -0.0401815772, -0.3298805356, 0.6009739637, -0.476105541, -0.1217621565, 0.0680583566, 0.361573875, 0.3393868208, 0.2328696698, 0.2761103511, 0.1495421231, 0.1626260579, 0.0960144401, 0.0987889394, 0.1701553166, -0.4183503091, 0.2156295925, -0.0257501453, -0.2181930244, 0.1078815162, -0.0609780252, 0.1500250548, -0.0456763245, -0.1998731494, -0.1568868756, 0.5427840352, -0.6157976389, 0.0279458687, -0.248897016, -0.1560834944, 0.0070150904, -0.2134258449, -0.0342435353, 0.1429588348, 0.0524965525, -0.3868666887, -0.0538335219, 0.102861084, 0.1266251504, -0.1876762211, 0.5111069679, -0.1136960983, -0.0370366834, 0.2962220609, 0.0449534059, -0.15126504, 0.1090167761, -0.1937615573, -0.0018786415, 0.4852040112, 0.3487839699, 0.2458341271, -0.0214935839, -0.2332082689, 0.0470291078, -0.0406503305, -0.079387024, 0.2275252491, 0.079944022, 0.130253002, 0.4091726542, -0.0333355777, -0.3332441747, 0.2324642241, 0.1857772619, -0.2031296641, -0.4314083755, 0.2710415721, 0.3516988158, -0.0368977077, -0.3497086763, -0.522008419, 0.2360267788, 0.3185988069, 0.1883932352, -0.0716536641, -0.0276509151, -0.2472812533, 0.1691095531, 0.0565534979, -0.0483720265, 0.1000481844, 0.1766417921, -0.214544788, -0.2067900896, -0.2552963495, -0.1363972127, 0.428645879, -0.0443387665, 0.309440732, 0.1777623594, 0.2771869302, -0.1247248203, -0.1249762028, 0.2887520194, 0.0088402331, 0.0416108891, -0.1089352667, -0.03623835, 0.1931091249, -0.0469497964, 0.3649182916, 0.1957944334, -0.325090766, 0.0198443085, -0.0984711498, -0.1214953735, -0.078978613, 0.1210054755, -0.150549829, 0.117400378, 0.0439469814, -0.052580554, -0.1851365566, -0.0862714499, -0.1575877219, -0.0794771016, -0.2974507809, -0.1662346572, -0.2460685521, -0.1250372827, -0.1196447536, 0.0043306984, 0.0005500466, -0.0106873699, -0.0404875614, -0.2826740444, -0.1588368416, 0.0607949346, -0.2936335206, -0.2167017609, -0.1739189327, 0.2281412482, -0.0243998468, 0.0930587798, -0.1156691834, 0.0667520165, 0.1222409755, -0.0957002044, -0.1543300748, -0.0534615964, -0.2331427634, 0.2917098403, 0.1491723955, 0.0468313806, -0.0794369131, -0.4122961164, -0.0143968826, 0.4969035089, -0.5218710899, -0.0407989882, -0.3583914638, 0.2859595418, -0.3150940537, 0.4582990706, 0.0567066781, -0.2462485135, -0.1380135864, 0.364482671, 0.174510017, 0.3875305951, -0.0617132038, 0.0549773537, -0.0879176408, 0.267544955, -0.1149757057, 0.5162413716, 0.3272316158, -0.2136982232, -0.0478193611, -0.262396425, 0.1159516424, 0.0527697653, -0.1398819387, 0.2965241671, 0.08347781, -0.3149954677, 0.1665280759, -0.2887442112, -0.4117944837, 0.0320427418, -0.052759815, 0.1982455254, -0.2443106472, 0.3169921339, 0.0489503853, 0.4910989106, -0.1780501604, 0.2910963595, -0.2383606136, -0.1767041385, 0.1975147724, 0.2727530003, 0.244900763, -0.1675577164, 0.0264964402, -0.5409095287, -0.421677649, 0.2834407687, 0.1674793661, 0.2352837026, 0.2791199088, -0.1008349881, 0.5258054137, -0.1562114209, 0.7999857664, 0.0206832271, -0.3363375962, 0.3844911158, -0.1618196666, 0.0528763086, -0.2177933156, -0.1827092618, -0.0659896284, 0.233773917, 0.4407469928, -0.0931774676, -0.2479647696, 0.6446050406, 0.0670878738, -0.1472482681, -0.3441519141, -0.1861819327, -0.3543057442, -0.0412188545, 0.767854929, -0.1216908172, 0.1556898803, 0.1822192967, -0.0512347631, -0.3818883598, 0.1598659158, 0.2386750579, -0.005119741, 0.0505827777, 0.4557840526, 0.4348104894, 0.0714177042, 0.000731538, 0.11927405, -0.0369113646, -0.3043969274, 0.0731522888, -0.1888462156, -0.2556852102, 0.3799423575, 0.700673759, 0.1868768781, 0.2484071106, -0.2102308869, 0.3775886297, -0.1914454848, 0.0245311707, 0.4383128285, -0.0020623617, -0.1787723899, -0.5383265615, 0.3112787008, 0.2034227699, 0.0733026266, 0.0608615763, -0.0757306963, -0.0163801294, 0.3021711707, 0.1249999553, 0.983823359, -0.0269194804, 0.1929831952, 0.5063084364, 0.0048407093, -0.2439047992, -0.6487342119, 0.3692771494, -0.332921207, -0.224152863, 0.1931167245, -0.1011414081, -0.0847682953, 0.0735342056, -0.0393424518, 0.0991453677, -0.0472757295, -0.0862561613, -0.2586017251, 0.3895539641, 0.3151937425, -0.4278397262, 0.0248835608, 0.0013510659, 0.2714570165, -0.0987159535, 0.1278158873, -0.1633998603, -0.1108864546, 0.0184412077, 0.1251736879, -0.0791134462, -0.1283783466, 0.0130585097, -0.0487736166, -0.0873112977, -0.2329256237, -0.3244179785, 0.4604190886, -0.0299461968, 0.0995342061, 0.0815838799, -0.0991101265, 0.0721637011, -0.0867691487, -0.4970834553, 0.2265412658, 0.0808125585, -0.1736777276, 0.1493705809, 0.0787264109, -0.3227707148, -0.1460987329, 0.1744303405, 0.0205770656, 0.0075484142, -0.0367378667, 0.3179991543, -0.2626373172, -0.2335653752, 0.020059783, 0.0920770317, -0.4317518771, 0.5605172515, -0.3023820519, -0.3800684214, -0.0546554178, 0.0166958384, 0.3058081269, 0.0560380369, 0.2623710632, -0.0891196281, -0.3048815131, -0.1546770036, -0.302428782, 0.0612832271, 0.0386250988, 0.0938880295, 0.3024204671, -0.0061313659, 0.0253996179, -0.2326646149, -0.322717607, -0.141769588, -0.3823908567, 0.1145998687, -0.3576403856, -0.1850683689, 0.2572281957, 0.3836848736, 0.036017634, 0.2342237383, -0.4448953271, 0.2590478957, -0.2176698148, -0.0653394014, -0.0312395431, 0.2600190639, -0.0327088535, -0.2574275434, 0.1754403114, 0.216270119, 0.1199889854, 0.1412032098, 0.0373653807, -0.1117986739, 0.1029489934, 0.1834249049, -0.1107472628, 0.1684505045, 0.0811558217, -0.1483062059, -0.3009883165, -0.2652986348, 0.1343660951, -0.110703364, -0.025855042, -0.1303594559, -0.1217091084, -0.1124878824, 0.3323766887, 0.273825258, 0.204004705, 0.283308506, -0.0734990016, 0.0767017305, -0.2428331971, -0.2653931975, -0.0510372035, 0.1903245151, 0.0616438314, 0.0863676816, -0.091865845, -0.1731874794, -0.3799477816, -0.0381177552, 0.031768769, 0.4498935342, 0.0424941368, -0.288366735, 0.1852962673, 0.0379372723, -0.279720515, -0.1952765882, 0.3624272048, -0.4507014155, 0.2002285123, 0.4017176628, 0.264575094, 0.165723592, -0.4832744896, 0.0937633291, -0.2345170975, 0.0963053331, -0.4337074161, -0.0904509723, 0.3514744341, -0.1948998272, 0.2041253299, 0.3052140176, 0.2311197519, 0.608917892, 0.0314239822, 0.2752898932, 0.1878772229, 0.2133275419, -0.321703732, -0.1798363924, 0.2906687558, 0.2322686911, -0.031773366, -0.207844764, 0.0090947673, 0.2347344905, 0.2440356463, -0.5169644952, -0.2611280978, 0.1630212218, -0.1220196411, -0.1281809658, 0.4117490649, 0.056770578, -0.2780817747, 0.2270265967, 0.0776640698, 0.1923735887, -0.12724787, 0.200874269, 0.2934534252, 0.2212006599, -0.0231135469, 0.0910241455, 0.4337711036, -0.3367398977, -0.2079152465, -0.0111510456, -0.0027164277, 0.0235891603, -0.1512227803, 0.2809454203, 0.2448254377, -0.0555030257, 0.2687212825, -0.0504412428, -0.0088712834, 0.0438045114, -0.0344004743, -0.1084132344, -0.1003934816, 0.1006172895, -0.0908769071, -0.12853387, -0.1207235307, -0.2426326871, 0.2026134133, -0.1804250181, 0.023068646, 0.3459427953, -0.097540006, -0.3948053718, 0.0952415317, -0.283303082, 0.0691806301, 0.1062702984, -0.35660097, -0.0891359076, 0.2603065968, -0.0016339011, -0.4257489145, 0.5468894243, 0.1724049449, 0.1286818981, -0.3299409449, -0.0014341325, -0.3207880855, -0.0345096029, -0.5890922546, 0.112635538, 0.1176836789, 0.4403542876, 0.073925823, -0.0703548416, 0.4031083882, -0.4079710841, 0.0992394984, 0.3735488653, -0.1734417975, -0.0306228567, -0.4397856295, -0.0738478824, 0.0422837138, -0.3743225038, 0.2847958505, -0.1282065511, -0.0147695504, 0.192371577, -0.0202696919, 0.1226511821, 0.0626825988, 0.529878974, -0.0979443267, 0.0000545271, -0.0964538679, 0.008635208, -0.2321902663, 0.1219587475, -0.2070783675, 0.0085760355, -0.0218881518, 0.1733753383, -0.2073741853, -0.3919602334, -0.1815344989, 0.4176574349, 0.3126300573, -0.4186963737, 0.1980271637, 0.1526591927, -0.1558283567, 0.4795942008, 0.1503627598, 0.22828421, 0.1467330605, -0.034051232, -0.3561269641, -0.1054199785, 0.6236685514, -0.1882941574, -0.0293614641, -0.3494382203, 0.2549013793, 0.4437919259, 0.5510438085, -0.2645766139, 0.086238116, 0.121943526, 0.0535738505, -0.2103942186, 0.5777597427, 0.1868615597, 0.0147709623, -0.0737834573, -0.2648073733, -0.0630889311, -0.0029668435, -0.3532100618, -0.2814308703 ]
https://github.com/huggingface/datasets/issues/2040
ValueError: datasets' indices [1] come from memory and datasets' indices [0] come from disk
Hi ! To help me understand the situation, can you print the values of `load_from_disk(PATH_DATA_CLS_A)['train']._indices_data_files` and `load_from_disk(PATH_DATA_CLS_B)['train']._indices_data_files` ? They should both have a path to an arrow file Also note that from #2025 concatenating datasets will no longer have such restrictions.
Hi there, I am trying to concat two datasets that I've previously saved to disk via `save_to_disk()` like so (note that both are saved as `DataDict`, `PATH_DATA_CLS_*` are `Path`-objects): ```python concatenate_datasets([load_from_disk(PATH_DATA_CLS_A)['train'], load_from_disk(PATH_DATA_CLS_B)['train']]) ``` Yielding the following error: ```python ValueError: Datasets' indices should ALL come from memory, or should ALL come from disk. However datasets' indices [1] come from memory and datasets' indices [0] come from disk. ``` Been trying to solve this for quite some time now. Both `DataDict` have been created by reading in a `csv` via `load_dataset` and subsequently processed using the various `datasets` methods (i.e. filter, map, remove col, rename col). Can't figure out tho... `load_from_disk(PATH_DATA_CLS_A)['train']` yields: ```python Dataset({ features: ['labels', 'text'], num_rows: 785 }) ``` `load_from_disk(PATH_DATA_CLS_B)['train']` yields: ```python Dataset({ features: ['labels', 'text'], num_rows: 3341 }) ```
41
ValueError: datasets' indices [1] come from memory and datasets' indices [0] come from disk Hi there, I am trying to concat two datasets that I've previously saved to disk via `save_to_disk()` like so (note that both are saved as `DataDict`, `PATH_DATA_CLS_*` are `Path`-objects): ```python concatenate_datasets([load_from_disk(PATH_DATA_CLS_A)['train'], load_from_disk(PATH_DATA_CLS_B)['train']]) ``` Yielding the following error: ```python ValueError: Datasets' indices should ALL come from memory, or should ALL come from disk. However datasets' indices [1] come from memory and datasets' indices [0] come from disk. ``` Been trying to solve this for quite some time now. Both `DataDict` have been created by reading in a `csv` via `load_dataset` and subsequently processed using the various `datasets` methods (i.e. filter, map, remove col, rename col). Can't figure out tho... `load_from_disk(PATH_DATA_CLS_A)['train']` yields: ```python Dataset({ features: ['labels', 'text'], num_rows: 785 }) ``` `load_from_disk(PATH_DATA_CLS_B)['train']` yields: ```python Dataset({ features: ['labels', 'text'], num_rows: 3341 }) ``` Hi ! To help me understand the situation, can you print the values of `load_from_disk(PATH_DATA_CLS_A)['train']._indices_data_files` and `load_from_disk(PATH_DATA_CLS_B)['train']._indices_data_files` ? They should both have a path to an arrow file Also note that from #2025 concatenating datasets will no longer have such restrictions.
[ -0.0112981424, -0.0258982927, -0.0449593291, 0.5074424744, 0.171503216, 0.1827170849, 0.0579556972, 0.1286474168, -0.0628908053, 0.1336228251, 0.0703731626, 0.2955007553, -0.0843800306, -0.1025008261, -0.325756669, -0.123899281, 0.2124682665, -0.0417845622, -0.1874169409, -0.1163776293, -0.433899045, 0.3035928905, -0.0941291675, 0.0441321544, -0.3788502514, -0.1216486767, -0.3139136434, 0.363966018, -0.1314387023, -0.1400639117, 0.3840754032, -0.0434935763, 0.1431434602, 0.4993312955, -0.000123913, -0.0518494248, -0.0255158022, -0.1264898181, -0.3373903036, -0.3795107901, -0.295440495, -0.249354139, 0.1174824461, -0.3515412211, 0.3774076104, -0.196201697, -0.1029745117, -0.726500392, 0.2809566557, 0.2295498848, 0.0761976391, 0.1972941756, 0.1317067742, -0.0478946008, 0.0319102854, 0.0735821426, 0.1537165642, 0.2029607296, -0.0550395995, 0.0238704309, 0.1942697763, -0.0005483404, -0.2328487635, -0.1185948476, 0.1362629533, 0.4979305565, 0.0554191321, -0.5291481614, -0.0690566152, 0.0863208547, 0.4802348614, -0.3763852715, -0.3781011403, -0.175945282, 0.0070047528, -0.3268713355, 0.1010298133, 0.3545841277, 0.0001946315, 0.1118082702, -0.0617501959, -0.0342380553, -0.29418993, 0.0725948513, -0.0851017088, 0.0358604863, -0.0858849734, 0.1781403422, 0.4493534565, 0.0479513183, 0.3216395676, -0.4869165421, 0.0636959374, 0.19227162, -0.109695144, 0.1452182531, -0.1640023291, -0.5908123255, 0.0066754296, -0.0109493863, 0.1836390793, -0.1348266304, -0.1758416891, 0.3022006452, 0.2534690201, 0.3053897023, -0.0141318664, 0.428830117, -0.010318242, -0.1330456585, 0.0501372218, -0.0258551203, -0.0293558482, -0.4226582348, 0.0796899796, -0.071814239, 0.1062269658, 0.0129514933, -0.3877183795, 0.1803555787, -0.2840075493, -0.1573116332, 0.0971624628, -0.0178046376, 0.0777066946, 0.3530091047, 0.3876339793, 0.3053706884, 0.0820671618, 0.2978774607, -0.1446357667, 0.1967320442, 0.0749062747, 0.0838977098, 0.1068454832, 0.0016407557, 0.011990726, 0.1067730039, 0.0797290653, -0.1220690906, 0.0271953717, -0.3416926563, 0.2821959853, 0.1566369832, 0.0981630906, 0.3480811417, 0.2592438161, -0.2748635411, -0.1870556772, 0.3995106518, -0.3576479256, -0.1869690418, -0.137632221, 0.0494736806, -0.1045718789, 0.1410057247, -0.422994107, -0.0059974971, 0.3018892109, 0.305195868, -0.1290160865, -0.0568313412, -0.1296139956, -0.4591296911, 0.3412264884, 0.0073851123, -0.458101809, 0.0097236559, 0.290378809, 0.1048898101, 0.1965612173, 0.4308505654, -0.1441583931, 0.3636822701, -0.3045047522, 0.0102363527, 0.4004560113, -0.40942204, -0.1038567796, 0.1716970056, -0.1796123087, -0.0410918482, 0.3645088375, 0.0270345993, 0.006306611, 0.2094055414, 0.7220624685, 0.2425592542, 0.0746656358, -0.1657414138, -0.0952380747, -0.2326028198, 0.3555580974, -0.2086945176, -0.1339796185, -0.0259474702, -0.2588166595, -0.5167700648, 0.4240074754, -0.2052070498, 0.0640659183, 0.4364212155, 0.3568806648, -0.1233669221, -0.1038491502, 0.1537690908, -0.1934180111, 0.1686592996, -0.0148308054, -0.2227092534, -0.2647582591, -0.0220493861, -0.2106938809, 0.1269539297, -0.07098037, 0.0814450234, -0.0153742544, 0.0325088874, 0.0056665614, -0.1054476053, -0.3481855392, 0.556371212, -0.1631453037, 0.0219017267, -0.2541755736, 0.4569383562, -0.1578050256, -0.0263905507, -0.0453713126, 0.0369336903, 0.2729865313, 0.1677789688, 0.0227814466, 0.4717352092, -0.0430071801, 0.0950461105, 0.0893388093, 0.0808450878, 0.1716277003, 0.0057403296, 0.1627614498, -0.0579363331, 0.1558342427, -0.1728037298, -0.0909185708, 0.4870926142, -0.3344884515, 0.448584795, 0.1146493554, 0.0512755588, 0.1062388048, 0.0439710915, -0.0784750283, -0.2369315773, 0.0169221424, 0.0849663466, 0.2192246616, 0.2170425504, -0.3525520861, 0.0700841248, 0.182912603, 0.0754988715, -0.0589675307, -0.0108340783, -0.1080611646, -0.0159976743, -0.1095018834, 0.3902997971, 0.5840014219, 0.1719548702, 0.1649899632, -0.1167305633, -0.1371311247, -0.1706055403, 0.3417835832, 0.1398364305, 0.2364145964, 0.1728816032, -0.0857253522, -0.0756205469, -0.0717299879, -0.0175314397, -0.1918955594, 0.0328853503, -0.5536922812, -0.0458903685, -0.2176485807, -0.1098992974, -0.4481918216, -0.3460380733, -0.097493574, -0.5419759154, -0.2592168152, 0.4547414482, -0.116945371, -0.0527838543, -0.2844992876, 0.1456627846, 0.0052284151, 0.067862004, 0.1234739423, 0.0104366802, -0.0783165395, -0.031852223, -0.1368812919, 0.0180017278, -0.0136507219, -0.0726329312, 0.2563135326, -0.2595609725, 0.0669643283, -0.1467583627, -0.153361395, 0.084959954, 0.0322468951, 0.3159064353, -0.2281426638, -0.6266647577, 0.0580364093, 0.5674743652, -0.1389605701, 0.0900545344, 0.2620215416, -0.1841858178, 0.0017383844, -0.2506843805, -0.4523788989, -0.2502114773, 0.0298638679, -0.1747045815, 0.249132365, 0.1712760329, 0.2696705759, 0.1090814993, 0.3577366769, 0.1941004395, -0.113538526, -0.2557306886, 0.4422731102, -0.0536300763, -0.1642774642, 0.001775898, 0.0088768378, 0.0754110813, 0.150459066, -0.3661915958, 0.018025592, -0.2361498624, 0.1363366842, -0.1147485897, 0.3011988699, 0.1340018958, 0.4595840573, -0.04627873, -0.2586545944, -0.2737222016, 0.2683786154, 0.1589273065, 0.304402709, -0.0123009915, 0.2090223283, 0.0731706768, 0.3439157307, 0.364087671, 0.1217380762, 0.2549827397, 0.1836444139, 0.5346711874, 0.0144410506, -0.4406894147, -0.4077025354, -0.0011523739, -0.2065868378, -0.1394887567, 0.0483932979, 0.087238878, -0.0935866386, 0.2118120641, -0.2357507199, -0.3036771417, 0.093802765, -0.3211863041, 0.1250000745, -0.2163254917, -0.0679505914, -0.2828489542, 0.3194230497, -0.1286117285, 0.0600241721, 0.2188933343, -0.1355677247, -0.3572334945, -0.3390059769, -0.3777069449, 0.3049446046, 0.0543894358, 0.3831128478, 0.0539904982, -0.2907817662, -0.2016689628, 0.0449486636, 0.7679040432, 0.2945112884, -0.3783249855, 0.4131021798, 0.0676535219, -0.5299782157, -0.0380809642, 0.0837753117, 0.2424824834, -0.2675105631, 0.4022999704, -0.2402880788, -0.1255396158, -0.1106791645, 0.4439464211, -0.1429796815, 0.0849766582, -0.031319581, -0.1303118765, -0.1526849568, -0.3208153844, 0.054221727, 0.3823355734, -0.3698828816, -0.062625654, -0.0008340031, -0.2915799022, 0.3242531419, -0.3542225659, 0.6015853882, -0.0703037158, 0.109065339, 0.2168456316, 0.1730600744, 0.491481483, 0.4670768678, -0.2443519235, -0.1175285652, 0.0126574226, 0.0911093652, 0.5109781623, 0.3323255479, -0.222559914, -0.0301947966, 0.0194205046, -0.099132672, -0.2740882337, -0.1163048521, 0.2955110669, -0.0105293319, -0.4240541756, -0.3991221786, 0.2900099158, 0.358366251, -0.1670623422, 0.4418199062, 0.0083775986, -0.4729837179, 0.3470163941, -0.1212990731, 1.0756554604, 0.0404349267, 0.2828830481, 0.1625708193, -0.2942947745, 0.090401344, 0.2924498618, -0.0318742804, -0.1988104433, -0.1252882332, -0.1203402281, -0.3440371752, 0.0014599636, 0.2321630865, -0.3387199342, 0.1795613021, -0.5210162401, -0.1161918789, -0.2029710412, 0.0473355129, -0.1271825582, -0.2273617685, -0.3534165025, -0.020986367, 0.2143521607, -0.1160489842, -0.0184174217, -0.172926873, -0.525724113, -0.1964707673, -0.1285268068, 0.0401091948, -0.319824785, 0.6732960939, -0.2941886783, -0.4334103465, -0.4329435527, 0.3981277049, 0.4085629582, -0.0319072455, 0.0262822602, -0.1287884414, 0.0475806072, 0.0084447935, -0.0751561224, -0.2583682537, 0.1939779073, 0.1476750821, -0.0745911226, 0.1135493517, -0.0817413554, -0.3694066107, -0.0846802145, 0.1008996367, 0.033948265, -0.2673567235, -0.3413450718, 0.1735767424, -0.0646070689, -0.0645264909, 0.0239265915, 0.3677726984, -0.0626552254, 0.2074288577, -0.2126592696, -0.3376843631, -0.0560690351, 0.4843720198, 0.313125968, -0.0178009942, 0.5047685504, -0.036133565, -0.1005942374, -0.0298031196, 0.3686381876, 0.2418306321, 0.1030878872, 0.3431330025, 0.0801178291, 0.0010803342, -0.1808100641, 0.3765241504, 0.3969093859, 0.2314938307, -0.0998979881, -0.2665145397, -0.5434694886, 0.4034372866, 0.0367556736, 0.4078212678, -0.0284727588, -0.4364439249, -0.0923393518, -0.0955636352, -0.1985140443, 0.0572784543, -0.1068869606, 0.0202852525, 0.2047134936, 0.019870393, 0.1778992414, -0.0135630481, 0.0580113679, -0.1984193176, -0.0634630844, -0.0782512799, 0.0476517305, 0.1854498386, 0.1121996194, -0.0773322135, -0.1123948768, -0.4440906644, 0.0286658444, -0.2024708092, -0.1707076877, 0.5613838434, 0.0619375221, 0.116167143, 0.000050419, 0.2100528926, 0.0161765292, 0.1269423068, 0.0819808766, 0.2238184214, 0.0458779633, 0.2438222766, -0.3202714026, -0.2187681645, -0.3172677457, 0.0508361608, -0.1387192309, -0.033538565, 0.1269544363, -0.1474213898, -0.2226727903, 0.034095902, 0.394638598, 0.4278355241, -0.1175068319, 0.158357352, -0.0283106677, 0.0834255889, 0.1216280907, -0.2142874599, -0.1380103379, -0.1968068928, -0.2094020545, 0.1497981846, 0.0626814216, -0.0821177587, -0.3396138549, 0.0256715864, 0.548568368, -0.1606156379, 0.400190115, 0.0932296813, 0.150862515, 0.0077853804, -0.0089486009, 0.2421150953, 0.4247481823, -0.0585652813, -0.214465037, 0.0903657526, 0.4816089571, -0.1609709859, 0.2162280679, -0.2308553606, -0.0546205975, 0.1499199867, -0.168884322, -0.0110076778, 0.0624806061, 0.362059474, -0.3919824064, -0.2237456888, 0.09815979, 0.3435719311, -0.1242572963, -0.1706208289, 0.0088113025, -0.2805444002, 0.0362512469, -0.1801572889, 0.1347273439, -0.3597923219, 0.1951784492, -0.0274088383, 0.0288215354, -0.1145169735, 0.3473953903, 0.407449156, 0.1072440222, -0.2372733653, -0.0107776746, 0.1962230355, -0.0470065661, 0.1492603123, 0.189502418, 0.5935683846, 0.5518576503, -0.0385353565, 0.1228286922, 0.0862646252, -0.2647487819, 0.0007322058, -0.026916774, -0.2013372183, -0.389487952, 0.408411026, 0.1807919592, 0.0093471557, 0.0648568571, 0.2460977882, 0.5886132717, -0.1220219657, 0.1053812802, -0.1613059342, -0.2382543087, 0.152579248, -0.0851621479, -0.3969841003, -0.2639619708, 0.441046834, -0.0716997609, 0.1276208758, 0.2629283071, 0.0381973386, 0.0462067649, 0.2446827888, 0.2988676131, 0.1290013641, -0.4679643214, -0.0109865665, -0.3217748106, -0.2128873467, 0.3092115521, 0.174817577, -0.1901312023, 0.3667966127, 0.163945958, -0.0158233903, 0.2488794923, 0.0814522803, -0.160589084, 0.1002153754, -0.4152258933, -0.1393944621, 0.3665909171, 0.0396436453, -0.058329083, -0.2068109065, 0.1909675598, 0.124023512, 0.0127987266, 0.0291861296, 0.0827608779, 0.1202378049, 0.4333841801, 0.2898517251, 0.1749396473, 0.2608097792, -0.1220641583, 0.0228222013, 0.0182277188, -0.3067568243, -0.044615835, 0.1826511025, -0.0878289491, 0.4609194994, -0.5516212583, 0.0427910797, -0.1169719249, 0.0292598344, -0.0026024356, -0.4689412415, -0.0616024919, 0.0664887577, -0.0075735375, -0.0252797734, 0.1431802213, 0.2222636491, 0.0159162581, 0.583158493, 0.0704734623, -0.4461384118, 0.4071059823, 0.0208624825, -0.112545751, 0.1859320402, -0.0085478127, 0.3054597974, 0.425175488, -0.6048346758, -0.1813081652, 0.4282563031, -0.2483881563, -0.267211616, 0.009246964, -0.0783348456, -0.029941678, 0.0153824687, 0.4939104021, -0.1024938822, -0.3544384241, -0.0302168392, -0.2761021256 ]
https://github.com/huggingface/datasets/issues/2040
ValueError: datasets' indices [1] come from memory and datasets' indices [0] come from disk
Sure, thanks for the fast reply! For dataset A: `[{'filename': 'drive/MyDrive/data_target_task/dataset_a/train/cache-4797266bf4db1eb7.arrow'}]` For dataset B: `[]` No clue why for B it returns nothing. `PATH_DATA_CLS_B` is exactly the same in `save_to_disk` and `load_from_disk`... Also I can verify that the folder physically exists under 'drive/MyDrive/data_target_task/dataset_b/'
Hi there, I am trying to concat two datasets that I've previously saved to disk via `save_to_disk()` like so (note that both are saved as `DataDict`, `PATH_DATA_CLS_*` are `Path`-objects): ```python concatenate_datasets([load_from_disk(PATH_DATA_CLS_A)['train'], load_from_disk(PATH_DATA_CLS_B)['train']]) ``` Yielding the following error: ```python ValueError: Datasets' indices should ALL come from memory, or should ALL come from disk. However datasets' indices [1] come from memory and datasets' indices [0] come from disk. ``` Been trying to solve this for quite some time now. Both `DataDict` have been created by reading in a `csv` via `load_dataset` and subsequently processed using the various `datasets` methods (i.e. filter, map, remove col, rename col). Can't figure out tho... `load_from_disk(PATH_DATA_CLS_A)['train']` yields: ```python Dataset({ features: ['labels', 'text'], num_rows: 785 }) ``` `load_from_disk(PATH_DATA_CLS_B)['train']` yields: ```python Dataset({ features: ['labels', 'text'], num_rows: 3341 }) ```
43
ValueError: datasets' indices [1] come from memory and datasets' indices [0] come from disk Hi there, I am trying to concat two datasets that I've previously saved to disk via `save_to_disk()` like so (note that both are saved as `DataDict`, `PATH_DATA_CLS_*` are `Path`-objects): ```python concatenate_datasets([load_from_disk(PATH_DATA_CLS_A)['train'], load_from_disk(PATH_DATA_CLS_B)['train']]) ``` Yielding the following error: ```python ValueError: Datasets' indices should ALL come from memory, or should ALL come from disk. However datasets' indices [1] come from memory and datasets' indices [0] come from disk. ``` Been trying to solve this for quite some time now. Both `DataDict` have been created by reading in a `csv` via `load_dataset` and subsequently processed using the various `datasets` methods (i.e. filter, map, remove col, rename col). Can't figure out tho... `load_from_disk(PATH_DATA_CLS_A)['train']` yields: ```python Dataset({ features: ['labels', 'text'], num_rows: 785 }) ``` `load_from_disk(PATH_DATA_CLS_B)['train']` yields: ```python Dataset({ features: ['labels', 'text'], num_rows: 3341 }) ``` Sure, thanks for the fast reply! For dataset A: `[{'filename': 'drive/MyDrive/data_target_task/dataset_a/train/cache-4797266bf4db1eb7.arrow'}]` For dataset B: `[]` No clue why for B it returns nothing. `PATH_DATA_CLS_B` is exactly the same in `save_to_disk` and `load_from_disk`... Also I can verify that the folder physically exists under 'drive/MyDrive/data_target_task/dataset_b/'
[ -0.0077575222, -0.0073157102, -0.0188265741, 0.5390485525, 0.2280753851, 0.1842924505, 0.0531080253, 0.1309663355, -0.0564403385, 0.1484984457, 0.0628864095, 0.2342553437, -0.032504499, -0.1666056067, -0.3268122673, -0.0597664677, 0.2327090651, 0.0071997382, -0.0789073855, -0.1194586158, -0.4220421612, 0.2971967459, -0.1387292147, -0.0585790575, -0.3954503238, -0.0667554662, -0.4116057456, 0.438683033, -0.1577688605, -0.1015269533, 0.5081788301, -0.0862841606, 0.1224371046, 0.6370722651, -0.0001226115, -0.0308203474, -0.0324795656, -0.2020162642, -0.2702163458, -0.4532003403, -0.2112331688, -0.235674724, -0.0447951704, -0.3365783691, 0.264066726, -0.0735307261, -0.1124738976, -0.7267843485, 0.1495839357, 0.261577189, 0.0758541524, 0.2023935914, 0.0412548631, -0.0115463994, -0.0034606364, 0.142917946, 0.1469981521, 0.1667422056, -0.0944770128, -0.0606663227, 0.2073462009, -0.0751990601, -0.3042544127, 0.013135083, 0.1142958254, 0.4793723524, -0.0599413887, -0.4340186417, -0.0781596974, -0.0228614267, 0.4604326189, -0.369572401, -0.371353507, -0.1061629355, 0.0483908728, -0.2898162007, 0.1351521015, 0.3806917369, -0.0266378522, 0.1082227156, -0.2135585248, 0.0090290196, -0.2528335452, -0.0439740047, -0.1308443546, -0.0517334156, -0.0689104199, 0.1527520269, 0.4263559282, 0.1246832386, 0.3369888663, -0.5939992666, 0.024772441, 0.2136670351, -0.2035792917, 0.0758956596, -0.0231924728, -0.4214425087, 0.0178546011, -0.0495418161, 0.2194834501, -0.1294465512, -0.1592089534, 0.2647929192, 0.179338038, 0.4705995023, -0.0306801461, 0.4814175367, 0.0561166406, -0.1248712614, -0.0164851621, 0.0220424589, -0.0107341707, -0.2809271216, 0.1725067347, -0.0376347303, 0.0512934774, 0.0172457844, -0.4902623296, 0.1722747684, -0.262779057, -0.1579496711, 0.1375526786, -0.0358219519, 0.0247514099, 0.3958358169, 0.3578866124, 0.3385948539, 0.0773074776, 0.3362585306, -0.1757470071, 0.2379209846, 0.0614542291, 0.1129006073, 0.2048764229, -0.0268171616, -0.0324295536, 0.066908583, 0.0196866039, -0.0630927831, 0.0071893558, -0.4055668712, 0.2116441131, 0.1468406767, 0.165586859, 0.3385899663, 0.3134982884, -0.3476324379, -0.1363859475, 0.3720192015, -0.3901686966, -0.1624981314, -0.0608658493, 0.0683364347, -0.1990798563, 0.0822413862, -0.4669095576, 0.0059261909, 0.2804733217, 0.3146547377, -0.2105136067, -0.031150423, -0.2271653265, -0.4472228885, 0.3580997884, 0.0410961248, -0.4393668771, 0.0318102092, 0.2659561336, 0.1168274432, 0.2134186029, 0.4657851756, -0.0183208343, 0.4720542431, -0.3376356959, -0.0125898048, 0.3418795168, -0.4551292956, -0.1726364791, 0.2068521082, -0.1711760163, -0.0108987913, 0.3100949228, 0.0450180359, -0.0124489479, 0.2387016267, 0.7105069757, 0.3106862605, -0.0368100852, -0.0591206737, -0.1282612979, -0.1791669428, 0.3601859808, -0.1305136532, -0.0717395842, 0.1258465946, -0.2418703735, -0.4316971898, 0.3587985933, -0.2525397241, 0.0563762337, 0.4634283185, 0.3992074728, -0.1521522701, -0.1093364805, 0.0702472553, -0.1755596846, 0.2409662753, 0.0380811989, -0.1411439776, -0.2892435789, 0.0492359251, -0.1995350271, 0.0720837414, -0.1083422229, 0.0309190042, 0.0110550076, 0.1900500506, 0.0202374086, -0.1286933422, -0.2456141263, 0.641156435, -0.0821434781, -0.0126172639, -0.1710730493, 0.562953949, -0.2242325991, -0.0949675143, -0.0774522573, -0.004756799, 0.2522276938, 0.1173366532, 0.0192383677, 0.458130002, -0.0293524787, 0.0652105361, 0.1646006107, -0.0015375614, 0.1587027013, 0.0926403031, 0.1691076756, -0.032237038, 0.2578332424, -0.2327928543, -0.1162924469, 0.3702287376, -0.3233275414, 0.4082518816, 0.1217193305, -0.0517718978, 0.1363518834, 0.058862187, 0.0029766634, -0.1529111415, 0.0995616466, 0.1531849653, 0.2225985825, 0.2118729651, -0.3046700358, -0.012798503, 0.2571276724, 0.0371879637, 0.0053215036, 0.0151514327, -0.0527291819, -0.1384251118, -0.2007957995, 0.3541594744, 0.7381991148, 0.1167204231, 0.1836724877, -0.0615903586, -0.1565952301, -0.1144139469, 0.2958693504, 0.138365984, 0.1884904504, 0.2836688757, 0.0051929057, -0.0268546753, -0.1313908696, 0.0052785426, -0.1450086385, 0.0549793616, -0.5187077522, -0.0354223959, -0.1969224811, -0.0688648522, -0.3841020763, -0.3000257611, -0.0957661122, -0.5155738592, -0.2982622981, 0.4832044542, 0.0340701863, -0.1017186865, -0.2168411165, 0.1896801293, 0.0425127372, -0.0658029765, 0.0900251493, -0.0020253323, -0.1174458116, -0.0193232819, -0.1849122196, -0.0644799918, 0.0272127073, -0.1759794652, 0.2759290636, -0.3246735334, 0.0726153404, -0.1426634192, -0.2029586136, 0.173454687, 0.0779780746, 0.2803866267, -0.2035321891, -0.5924381018, 0.1457234025, 0.5013510585, -0.1869185865, 0.1658067554, 0.2946106493, -0.2110975385, -0.0700025037, -0.2169884592, -0.3874441981, -0.2615769506, -0.0783753842, -0.1965804696, 0.1751648784, 0.092607893, 0.1931919456, 0.1270972043, 0.3630622327, 0.1643961668, -0.1537376493, -0.3676389158, 0.4445556402, 0.0054612793, -0.1883691251, -0.0298497751, 0.0075801015, 0.1189814508, 0.1703368425, -0.3710668683, -0.0209496059, -0.2660011649, 0.1324575543, -0.098675251, 0.3205012679, 0.1483412683, 0.3702242672, -0.0279011838, -0.2777627707, -0.3389348686, 0.1872114688, 0.2447299212, 0.3925766051, -0.0807117224, 0.2742601037, 0.1444839537, 0.3211854696, 0.3186563253, 0.0706981346, 0.3618191183, 0.2049421519, 0.5604658127, -0.0410338007, -0.5407702327, -0.3021300137, -0.0544502735, -0.2745860219, -0.0456634499, 0.0395166986, 0.0254856572, -0.1716780066, 0.1394793391, -0.2076469362, -0.2167316377, 0.0467618108, -0.2657448649, 0.135040313, -0.1639407128, -0.040993914, -0.296751529, 0.2964038551, -0.1615645885, 0.1278746128, 0.2145498991, -0.0778272599, -0.3957502842, -0.3447404504, -0.4116416276, 0.3273962438, 0.1121813655, 0.3608625829, 0.0535268709, -0.2476405501, -0.2672667503, 0.0001896769, 0.8296083808, 0.285964936, -0.3504905105, 0.4240784049, -0.0052014738, -0.4869098067, -0.0699315667, 0.0651893318, 0.1953275949, -0.3118863702, 0.4359986484, -0.2213546336, -0.021483345, -0.1237546206, 0.5002306104, -0.1325320303, 0.029593315, -0.1533934325, -0.2113335431, -0.1027416587, -0.2540703416, -0.0137129389, 0.4512711465, -0.3278295994, -0.014840968, 0.0140139256, -0.2825434506, 0.3552675843, -0.3786018491, 0.5898548365, -0.083783254, 0.1461852938, 0.0838905722, 0.1358464807, 0.3902836144, 0.4980374873, -0.2678964138, -0.0898635238, 0.058067102, 0.0452436954, 0.4692693353, 0.2317845523, -0.2059549093, -0.1364584416, -0.0980530083, -0.080729939, -0.3447629809, -0.048269283, 0.3455117047, 0.0466460697, -0.3898507059, -0.3483806252, 0.2334388494, 0.3130779266, -0.1007196903, 0.3356811106, 0.0064239167, -0.4863872826, 0.3060376644, -0.169282347, 0.9695222378, 0.0690705925, 0.2858234942, 0.2072305381, -0.2142318636, 0.0614584759, 0.2536994815, 0.0811275467, -0.1540392935, -0.2758865952, -0.1287538707, -0.3111578822, 0.039787069, 0.2840383947, -0.3629770875, 0.3248742819, -0.4089420438, -0.1213362664, -0.1199787036, 0.0567531586, -0.117572926, -0.1675238907, -0.3534537852, 0.0193217769, 0.1732373387, 0.0113889016, -0.00916766, -0.0419987626, -0.4983078539, -0.2119647264, -0.129663229, 0.12950477, -0.272218734, 0.6612727642, -0.3607719541, -0.4087212384, -0.459644258, 0.353454113, 0.4468975961, -0.0406767912, 0.0203793477, -0.0941188112, -0.004010452, 0.1347249746, 0.0148611069, -0.2953514159, 0.193438977, 0.1635863036, -0.0587045252, -0.0635411888, -0.0726571903, -0.3442116082, -0.0935277343, 0.0591623671, -0.002229861, -0.2073688209, -0.3623815179, 0.1780840904, 0.0290745646, -0.0666612834, 0.0257020891, 0.3393504918, -0.0507446118, 0.3158521056, -0.354182601, -0.3773806691, -0.0739707127, 0.53126508, 0.2242578119, -0.0562741533, 0.4126945138, -0.0774750262, -0.1203337163, -0.0022460669, 0.3146800399, 0.1522160023, 0.2107284367, 0.3843654692, -0.0186383054, -0.003637597, -0.0969061926, 0.3600208163, 0.3548287451, 0.1859156191, -0.0842138082, -0.2710143328, -0.4922532737, 0.3682185411, 0.1036621332, 0.3379028738, 0.0438436046, -0.3522382975, 0.0508226231, -0.139111653, -0.1926676035, 0.012873847, -0.2097491324, 0.0421815291, 0.2238098681, -0.0165761653, 0.1855691075, 0.0448212698, 0.072865963, -0.186019212, -0.0052392334, -0.0883278996, 0.0931256637, 0.1873928308, 0.1110863537, 0.011903815, -0.0057461262, -0.4661685228, 0.025892809, -0.2465316355, -0.0944531038, 0.5793569088, 0.0175720509, 0.1690878868, -0.0196274985, 0.2136962116, 0.0616993308, 0.0763889551, -0.002538003, 0.1215913668, 0.0036699474, 0.2305392474, -0.2393221259, -0.1587930322, -0.3834435344, -0.0233673751, -0.1116822585, 0.0098161288, 0.2292732447, -0.1504142582, -0.1484250426, -0.0124735348, 0.3728411794, 0.353838712, -0.1588052958, 0.1364239454, -0.0716918707, 0.0865089893, 0.0492605269, -0.2904603779, -0.1947804838, -0.2292597294, -0.2107806206, 0.1381398141, -0.0088701472, -0.0149322003, -0.4017887115, -0.010099031, 0.7563083172, -0.1419933736, 0.2795634568, 0.0461811349, 0.0902776569, 0.0505698137, 0.0326939747, 0.1408357024, 0.3030179441, 0.0640627444, -0.1083736196, 0.1676551849, 0.3823307157, -0.1280302703, 0.2609054744, -0.1799257994, -0.0088659041, 0.112049751, -0.1318456829, -0.0275408626, 0.0511897318, 0.1771028489, -0.5174022317, -0.1464340985, 0.0079958811, 0.3008128405, -0.1359507591, -0.1351794899, 0.0749862194, -0.2732969522, 0.0489556789, -0.1438184083, 0.1196195781, -0.2969893515, 0.1513876021, -0.0544956587, -0.0423916541, -0.0471483618, 0.2694115937, 0.387237221, 0.059957359, -0.2542598844, 0.0099735279, 0.211408183, -0.0544679351, 0.1391246319, 0.2713522911, 0.5723232031, 0.575420022, 0.0224323608, 0.0843970776, 0.042722024, -0.2839963734, -0.0437580571, 0.0650864989, -0.3334129751, -0.374307096, 0.3329986334, 0.1922888905, 0.0142769516, 0.0668352544, 0.2160840034, 0.5071801543, -0.2229149938, 0.2355358303, -0.1977868676, -0.2077812254, 0.1037064493, 0.0138595086, -0.382393539, -0.2068969756, 0.343218267, -0.0100477785, 0.1653653383, 0.1960690916, 0.0451612584, 0.0618036091, 0.194689393, 0.271327883, 0.0085707968, -0.4885700643, -0.0148431361, -0.413444221, -0.1725317538, 0.3790317774, 0.1948208213, -0.2688860595, 0.4094077647, 0.1388222575, -0.0694580898, 0.1629870385, 0.1621202677, -0.1625235081, 0.0518667698, -0.4363813102, -0.1906350106, 0.2093260288, -0.0331976041, -0.0653620884, -0.318926692, 0.1869715452, 0.165536806, 0.0406783968, -0.008566672, 0.0848987103, 0.1778646111, 0.4394781291, 0.2291012257, 0.1987496614, 0.3351501822, -0.1279800385, -0.0079938248, -0.0180614982, -0.2785052359, -0.0973233134, 0.0944774672, -0.1241476387, 0.4446902871, -0.5122811198, 0.0918898135, -0.159281224, 0.0154880844, 0.0713982508, -0.3703899086, -0.1454001218, 0.0396946669, -0.0367689654, 0.0127519444, 0.1586246192, 0.2262332588, 0.0452174842, 0.556222856, 0.0172790885, -0.4441854656, 0.3679265082, 0.1131614074, -0.1632416844, 0.0926662683, -0.0541829765, 0.1721483618, 0.3824457228, -0.5713040829, -0.1840981096, 0.4492423832, -0.2179423869, -0.3280408084, 0.0755849704, -0.1019628122, 0.0461993292, -0.0079677179, 0.3582439125, -0.1322501749, -0.3258390427, 0.0553666055, -0.1872067451 ]
https://github.com/huggingface/datasets/issues/2040
ValueError: datasets' indices [1] come from memory and datasets' indices [0] come from disk
In the next release you'll be able to concatenate any kinds of dataset (either from memory or from disk). For now I'd suggest you to flatten the indices of the A and B datasets. This will remove the indices mapping and you will be able to concatenate them. You can flatten the indices with ```python dataset = dataset.flatten_indices() ```
Hi there, I am trying to concat two datasets that I've previously saved to disk via `save_to_disk()` like so (note that both are saved as `DataDict`, `PATH_DATA_CLS_*` are `Path`-objects): ```python concatenate_datasets([load_from_disk(PATH_DATA_CLS_A)['train'], load_from_disk(PATH_DATA_CLS_B)['train']]) ``` Yielding the following error: ```python ValueError: Datasets' indices should ALL come from memory, or should ALL come from disk. However datasets' indices [1] come from memory and datasets' indices [0] come from disk. ``` Been trying to solve this for quite some time now. Both `DataDict` have been created by reading in a `csv` via `load_dataset` and subsequently processed using the various `datasets` methods (i.e. filter, map, remove col, rename col). Can't figure out tho... `load_from_disk(PATH_DATA_CLS_A)['train']` yields: ```python Dataset({ features: ['labels', 'text'], num_rows: 785 }) ``` `load_from_disk(PATH_DATA_CLS_B)['train']` yields: ```python Dataset({ features: ['labels', 'text'], num_rows: 3341 }) ```
59
ValueError: datasets' indices [1] come from memory and datasets' indices [0] come from disk Hi there, I am trying to concat two datasets that I've previously saved to disk via `save_to_disk()` like so (note that both are saved as `DataDict`, `PATH_DATA_CLS_*` are `Path`-objects): ```python concatenate_datasets([load_from_disk(PATH_DATA_CLS_A)['train'], load_from_disk(PATH_DATA_CLS_B)['train']]) ``` Yielding the following error: ```python ValueError: Datasets' indices should ALL come from memory, or should ALL come from disk. However datasets' indices [1] come from memory and datasets' indices [0] come from disk. ``` Been trying to solve this for quite some time now. Both `DataDict` have been created by reading in a `csv` via `load_dataset` and subsequently processed using the various `datasets` methods (i.e. filter, map, remove col, rename col). Can't figure out tho... `load_from_disk(PATH_DATA_CLS_A)['train']` yields: ```python Dataset({ features: ['labels', 'text'], num_rows: 785 }) ``` `load_from_disk(PATH_DATA_CLS_B)['train']` yields: ```python Dataset({ features: ['labels', 'text'], num_rows: 3341 }) ``` In the next release you'll be able to concatenate any kinds of dataset (either from memory or from disk). For now I'd suggest you to flatten the indices of the A and B datasets. This will remove the indices mapping and you will be able to concatenate them. You can flatten the indices with ```python dataset = dataset.flatten_indices() ```
[ -0.0903854594, -0.0803094581, -0.0217147656, 0.4296610951, 0.2122903466, 0.2667315602, 0.0407165214, 0.179516077, -0.0718928874, 0.1746955514, -0.0009915121, 0.1995584071, -0.0881772041, -0.0326919854, -0.3439055681, -0.0558384433, 0.1930518299, 0.0187108144, -0.1041581258, 0.0098617524, -0.4442352355, 0.2436518371, -0.1552205533, -0.0359290279, -0.3114731908, -0.0647422001, -0.3580108285, 0.341842711, -0.1153117344, -0.120612368, 0.5508388877, -0.0477536805, 0.0869863629, 0.5565170646, -0.0001167422, -0.0058712438, -0.03981179, -0.1596838981, -0.2412980646, -0.4698687196, -0.2993327379, -0.2401565313, -0.0213558376, -0.2968688607, 0.2086624652, -0.1860080659, -0.1097182333, -0.7185213566, 0.2358155251, 0.2194239348, 0.1316162497, 0.16060552, 0.1590325832, -0.0537229814, 0.0060945675, 0.060413979, 0.1772609055, 0.1795203984, -0.1299276203, -0.0358635709, 0.2642757297, -0.0068642981, -0.386862874, -0.0542206168, 0.1337350309, 0.4457708597, 0.0942109972, -0.4561158121, -0.1477256268, 0.0752305984, 0.4200158417, -0.3262959123, -0.3272231221, -0.0913663208, 0.0971422195, -0.385856986, 0.1183448881, 0.3693803251, 0.063981913, 0.1274227798, -0.2128300518, -0.0889140666, -0.1895784289, 0.0065885279, -0.1150115207, 0.0218902212, -0.0210954361, 0.1646570265, 0.509967804, -0.0325126052, 0.4155707061, -0.5363279581, 0.0476032048, 0.1897671819, -0.1991210133, 0.0359908193, -0.0857117325, -0.5460634232, 0.070686318, -0.1810738891, 0.1162747443, -0.1160382777, -0.1602856815, 0.325933516, 0.1867990047, 0.4233537316, 0.0459592789, 0.5026446581, 0.0342945084, -0.0802171007, 0.0644281656, 0.0524055958, 0.0719279125, -0.3668625653, 0.0957351848, 0.0153417774, 0.1143159568, 0.000816375, -0.4245221019, 0.1277351379, -0.2855325937, -0.084807992, 0.0569598041, -0.0795745701, 0.0466363281, 0.3995072544, 0.3896422982, 0.3132680655, 0.0783833936, 0.2504096329, -0.1776385605, 0.1767179668, 0.1419999748, 0.1240316182, 0.1526342332, -0.0639882386, -0.0817169994, 0.1919679493, -0.0037846658, 0.0142076164, 0.0226851329, -0.3594811559, 0.1906331778, 0.1651128232, 0.1070037484, 0.2670378387, 0.306810528, -0.3512371182, -0.1848160625, 0.3993568122, -0.4019359946, -0.160067901, -0.1483421326, 0.1177687943, -0.1106533557, 0.0929519087, -0.4305931926, 0.103664197, 0.2892509997, 0.2214406729, -0.2550333142, -0.105156973, -0.2563719749, -0.3879457116, 0.307394594, -0.050108701, -0.4317593575, -0.0085135475, 0.2673157454, 0.109905079, 0.2351313233, 0.4662027955, -0.0782096833, 0.3340338469, -0.2627856433, -0.0979301035, 0.1698982716, -0.33203125, -0.198821649, 0.13421987, -0.1535138339, 0.0350322872, 0.1987938881, 0.0435759202, 0.0285200812, 0.249815613, 0.7739898562, 0.3166610599, -0.0380969718, -0.1191874295, -0.1531614512, -0.2666217685, 0.4661262035, -0.1315011084, -0.1416644454, 0.0988493264, -0.3725161254, -0.3975748122, 0.3472750485, -0.2832826376, 0.0636296719, 0.4213289618, 0.3263689578, -0.1817165613, -0.1018906757, 0.0246236771, -0.2054287493, 0.1895039678, -0.0335670002, -0.1018205658, -0.226662606, -0.0587006398, -0.167301923, 0.018740207, -0.0538977571, 0.141298756, 0.0392031297, 0.01416797, -0.0718829036, -0.1022609472, -0.2673952579, 0.5654742718, -0.0903327316, 0.0383024849, -0.2548474073, 0.4797315001, -0.1687237769, -0.0423460156, -0.025789313, -0.0071856193, 0.2499664575, 0.0986101702, -0.006040886, 0.4919345379, -0.0936737508, 0.0119196624, 0.0779167935, 0.0159201697, 0.2271927744, 0.0178501457, 0.0769849941, 0.0056218989, 0.1291653216, -0.1870338917, -0.0795804411, 0.4245121181, -0.3667977154, 0.3369197547, 0.031463407, 0.0869894773, 0.2149221003, -0.0200442076, -0.0327522457, -0.2353003621, 0.0180128068, 0.00779346, 0.05984734, 0.159738794, -0.3271048963, -0.0502551608, 0.1370069683, 0.0435919762, -0.0081595909, 0.0476350971, -0.079299137, -0.0775589496, -0.1422456801, 0.2626616657, 0.5957342386, 0.2051413357, 0.0933413208, 0.0301319715, -0.1562048495, -0.046285145, 0.3124067187, 0.1212166175, 0.1940273941, 0.2194420397, -0.0138918385, -0.0226648599, -0.0724642575, 0.0575235263, -0.1133961082, 0.1180532202, -0.5014939904, -0.0962724015, -0.3015750051, -0.1021734104, -0.3828295469, -0.3004685044, -0.1973972619, -0.4838761091, -0.2615418732, 0.4586670697, -0.0590237677, 0.0382067412, -0.1270174533, 0.1683130562, 0.0720052496, 0.0265390966, 0.155890137, -0.0216731243, -0.05831879, 0.0444995835, -0.0778576285, -0.062246874, 0.0591109917, -0.1217501611, 0.2177443802, -0.241019845, 0.0385864079, -0.1500954926, -0.18275778, 0.0993428603, 0.0969478935, 0.2907015681, -0.2663249075, -0.5855749846, 0.1232845783, 0.5215253234, -0.1266573966, 0.1730047166, 0.2626030445, -0.1829805523, -0.0798321143, -0.2237951607, -0.3680775166, -0.237143904, -0.0798083246, -0.2592631876, 0.2472726107, 0.0990317017, 0.264949888, 0.0820235908, 0.3654113114, 0.1007735506, -0.1446048766, -0.2878364325, 0.3886062503, -0.0084413663, -0.1790605038, 0.006530799, -0.0050053298, 0.0862752795, 0.1664553583, -0.3701835871, -0.0095430873, -0.1804278344, 0.0963535309, -0.1326223463, 0.2878192067, 0.1116803885, 0.4846866727, -0.0532262698, -0.1380140185, -0.3144215047, 0.1558962464, 0.1922056675, 0.3816481233, -0.0430141129, 0.2722983062, 0.0688321367, 0.2513544858, 0.3474907279, 0.106031701, 0.2202703655, 0.2680481374, 0.4671444893, -0.0679678991, -0.5600995421, -0.3960496187, -0.0207858607, -0.2079265714, -0.0920799971, -0.0302988999, 0.0046056211, -0.1437470913, 0.1522495002, -0.1051040664, -0.2345130146, 0.0889610201, -0.2979528308, 0.1742400825, -0.1462115496, -0.1123137474, -0.317248702, 0.2338034958, -0.1621078104, 0.007230226, 0.182626307, -0.1477538943, -0.394855231, -0.3019555211, -0.4231872261, 0.4284076095, 0.0940117761, 0.3600375652, 0.1029909328, -0.2116029114, -0.3140146434, 0.0644623041, 0.7793228626, 0.2428839654, -0.4793570042, 0.4762117863, 0.0486608446, -0.5282110572, -0.0892102942, 0.0776741207, 0.1703046262, -0.2709624171, 0.5176334977, -0.2395982444, 0.0078169256, -0.0545136146, 0.51475209, -0.1700832844, 0.0628876686, -0.0855601877, -0.2372393459, -0.1355617344, -0.2421568483, -0.0071063861, 0.523964107, -0.2932553887, -0.0072201639, -0.0405996889, -0.2700953484, 0.4007335603, -0.3850301206, 0.5835527778, -0.0071736127, 0.1568863988, 0.1716207862, 0.1505170017, 0.34743312, 0.4852840006, -0.2380063385, -0.1381065845, -0.018534258, 0.1223379448, 0.476254642, 0.232466951, -0.1201754212, -0.0048018433, -0.0342462584, 0.0178178921, -0.3697008789, -0.0657595471, 0.2507537007, 0.0280163549, -0.4654096961, -0.4313579798, 0.2042629272, 0.3102702498, -0.1245824024, 0.3593559563, -0.0323422626, -0.4702596962, 0.3982969522, -0.1162719652, 0.9791235924, -0.0679159909, 0.1978093684, 0.1263819933, -0.1889856458, 0.1685776711, 0.2858900726, 0.1136948094, -0.2019076943, -0.2907351255, -0.1255357862, -0.269372344, 0.0491761304, 0.2388660014, -0.442566812, 0.2669604719, -0.4332692027, -0.099027656, -0.1775870919, 0.0657881945, -0.0341668501, -0.2173337638, -0.3752555251, 0.0614643916, 0.0879903138, -0.1109583825, 0.0080183223, -0.0633541867, -0.385807693, -0.1335167587, -0.1101690903, 0.0976585299, -0.199130863, 0.765714705, -0.3843825758, -0.3101258874, -0.3907932043, 0.2589003146, 0.4397603273, 0.002420201, 0.0508852676, -0.1327614486, 0.0165402647, 0.0422839932, -0.0125444643, -0.2453636527, 0.1864331365, 0.1857317537, -0.1204649359, 0.0721949935, 0.0246092752, -0.3490176797, -0.1142050922, 0.0029151104, -0.0094686784, -0.2998000383, -0.3640497923, 0.1790684015, 0.1427506059, -0.0608195364, 0.066834718, 0.3294080496, -0.0538919866, 0.2757903636, -0.3172314465, -0.342712611, -0.0965486541, 0.5646896362, 0.3627416492, -0.0236708894, 0.4135937393, -0.0395331532, -0.0701678023, -0.0161431879, 0.3499984443, 0.1511654556, 0.2037111074, 0.443051815, 0.0101720877, -0.0109117031, -0.1815683097, 0.3628647923, 0.3714287281, 0.2277034521, -0.0420892723, -0.1646641493, -0.5605288148, 0.3672234416, 0.1599867791, 0.3651220202, 0.081818372, -0.3125768006, -0.102124393, -0.0895856842, -0.2543858886, 0.0288696587, -0.1790505648, 0.0381931476, 0.1982562095, -0.0407773256, 0.1313471794, -0.0527273268, 0.137776047, -0.2134714723, 0.012442518, -0.1549428403, 0.0620773062, 0.1388073862, 0.0865523964, -0.120078966, -0.0210390165, -0.4546805918, -0.0239885803, -0.2092133462, -0.094084695, 0.6052911878, 0.0361988097, 0.1405510157, -0.06117782, 0.1395591795, 0.0812327787, 0.0595502295, 0.0576572046, 0.0565804616, -0.0629662275, 0.220543921, -0.2835114896, -0.1896281838, -0.3457252979, 0.010538293, -0.1799466014, -0.0584226027, 0.2393827438, -0.1386644095, -0.2037059665, 0.1689531803, 0.3811870813, 0.3318368196, -0.1980984211, 0.1788565964, -0.0079738665, 0.1412327886, -0.0037087128, -0.2662275434, -0.090247348, -0.1298979372, -0.2266340107, 0.0693537444, -0.023085326, 0.0241437554, -0.3969610035, 0.0425186381, 0.6044140458, -0.1729187369, 0.3787427247, 0.0949075818, 0.106430769, -0.0563942455, 0.0330813155, 0.1187555194, 0.4463940561, -0.0473615937, -0.119650051, 0.0988506079, 0.3390354514, -0.1144947559, 0.2200873196, -0.2309978008, 0.0215807483, 0.2077858448, -0.1855533123, 0.0140401237, 0.140755415, 0.2351654172, -0.521561265, -0.2858956456, 0.0506992936, 0.4173050821, -0.176013127, -0.1280165762, 0.1223989576, -0.1778523773, 0.0480350256, -0.1471844316, 0.1240581423, -0.3219695091, 0.1912059784, -0.0857974589, -0.0282379463, -0.0344606563, 0.2446112335, 0.4152517319, 0.1087238789, -0.2196065784, -0.1193915233, 0.2977907658, -0.073524639, 0.1069011837, 0.3158180714, 0.5540587306, 0.5522786975, -0.0312055312, 0.130866915, 0.0689573213, -0.2048622668, 0.0429762155, 0.0134647861, -0.2174230367, -0.2798502743, 0.4076701701, 0.1971635222, -0.03081608, 0.0530912243, 0.1769339591, 0.5629745126, -0.1761536449, 0.1420218349, -0.0943727791, -0.183952868, 0.1142071486, 0.0349502191, -0.3102144003, -0.2542951405, 0.3667086363, -0.0110501722, 0.1435459554, 0.2448736578, 0.0854233056, 0.0631785914, 0.1999259591, 0.3337060809, -0.0418819897, -0.5096417069, -0.005424872, -0.4245629907, -0.1814159751, 0.2851062417, 0.2403239012, -0.1437006891, 0.362650305, 0.1679270864, -0.0371575579, 0.0659629405, 0.0472929701, -0.190938279, -0.0524985306, -0.3705115914, -0.1487302482, 0.2106343061, -0.0604468286, -0.058744695, -0.2856876254, 0.271946162, 0.1523068398, 0.0535924584, 0.0091662481, 0.1640532464, 0.1470796019, 0.3854426146, 0.1948200017, 0.2095015943, 0.3070428967, -0.1152507216, 0.0316455215, 0.019572299, -0.3304351866, -0.1423638761, 0.1332146674, -0.0860143155, 0.507271409, -0.5292456746, 0.0353101231, -0.1213731244, 0.1196245253, 0.0159201697, -0.4145378768, -0.229220435, 0.103146188, -0.011365287, -0.0491568036, 0.0773869827, 0.2998970747, 0.0154600115, 0.5862024426, 0.098146528, -0.4228115082, 0.4048634171, 0.1132649779, -0.1494788527, 0.0822542608, -0.0872517452, 0.2043190449, 0.3383574188, -0.5801489353, -0.2121738791, 0.4233351052, -0.2602576613, -0.3111740351, 0.1098242179, -0.1028580964, 0.0029295087, 0.0121319368, 0.4039595127, -0.0641846657, -0.4016014636, 0.0237525851, -0.2212911546 ]
https://github.com/huggingface/datasets/issues/2040
ValueError: datasets' indices [1] come from memory and datasets' indices [0] come from disk
Indeed this works. Not the most elegant solution, but it does the trick. Thanks a lot!
Hi there, I am trying to concat two datasets that I've previously saved to disk via `save_to_disk()` like so (note that both are saved as `DataDict`, `PATH_DATA_CLS_*` are `Path`-objects): ```python concatenate_datasets([load_from_disk(PATH_DATA_CLS_A)['train'], load_from_disk(PATH_DATA_CLS_B)['train']]) ``` Yielding the following error: ```python ValueError: Datasets' indices should ALL come from memory, or should ALL come from disk. However datasets' indices [1] come from memory and datasets' indices [0] come from disk. ``` Been trying to solve this for quite some time now. Both `DataDict` have been created by reading in a `csv` via `load_dataset` and subsequently processed using the various `datasets` methods (i.e. filter, map, remove col, rename col). Can't figure out tho... `load_from_disk(PATH_DATA_CLS_A)['train']` yields: ```python Dataset({ features: ['labels', 'text'], num_rows: 785 }) ``` `load_from_disk(PATH_DATA_CLS_B)['train']` yields: ```python Dataset({ features: ['labels', 'text'], num_rows: 3341 }) ```
16
ValueError: datasets' indices [1] come from memory and datasets' indices [0] come from disk Hi there, I am trying to concat two datasets that I've previously saved to disk via `save_to_disk()` like so (note that both are saved as `DataDict`, `PATH_DATA_CLS_*` are `Path`-objects): ```python concatenate_datasets([load_from_disk(PATH_DATA_CLS_A)['train'], load_from_disk(PATH_DATA_CLS_B)['train']]) ``` Yielding the following error: ```python ValueError: Datasets' indices should ALL come from memory, or should ALL come from disk. However datasets' indices [1] come from memory and datasets' indices [0] come from disk. ``` Been trying to solve this for quite some time now. Both `DataDict` have been created by reading in a `csv` via `load_dataset` and subsequently processed using the various `datasets` methods (i.e. filter, map, remove col, rename col). Can't figure out tho... `load_from_disk(PATH_DATA_CLS_A)['train']` yields: ```python Dataset({ features: ['labels', 'text'], num_rows: 785 }) ``` `load_from_disk(PATH_DATA_CLS_B)['train']` yields: ```python Dataset({ features: ['labels', 'text'], num_rows: 3341 }) ``` Indeed this works. Not the most elegant solution, but it does the trick. Thanks a lot!
[ -0.0483821705, -0.0796564668, -0.0216173045, 0.4603257477, 0.1872408986, 0.265417695, 0.0407088138, 0.1193436086, -0.047967948, 0.1485674381, 0.0525874943, 0.1789598763, -0.0630661175, -0.0712667257, -0.2987713218, -0.0633005202, 0.2559679747, -0.0143306889, -0.1243882328, -0.033502534, -0.4365566373, 0.253057301, -0.1242121682, -0.0446647108, -0.3036777675, -0.0668844804, -0.4069906473, 0.355432868, -0.0752543584, -0.1231009811, 0.5189287663, -0.0201260969, 0.0941633135, 0.5816606283, -0.0001213742, -0.0043543056, -0.1039499044, -0.1759780794, -0.2422224283, -0.4407138228, -0.2366059721, -0.2508822978, -0.0364467539, -0.293184936, 0.2539069057, -0.1341373324, -0.1175962016, -0.7231463194, 0.2457880676, 0.1986137331, 0.0922246724, 0.1944194734, 0.065648973, -0.0409410298, -0.0409295447, 0.1304790825, 0.1995795071, 0.1953563541, -0.1021023542, -0.0277386717, 0.243166402, -0.0192548875, -0.3580237627, -0.0478651114, 0.1482314169, 0.453169167, -0.0053289849, -0.4363864064, -0.1360749751, 0.007988262, 0.4547100663, -0.3950956762, -0.3489310741, -0.1171680018, 0.083775267, -0.3639189899, 0.114596419, 0.3478944302, 0.0078785717, 0.1255421937, -0.235276863, -0.1032306701, -0.2160908282, -0.0336091444, -0.130381614, -0.0233337842, -0.0100514274, 0.1940190047, 0.4782028198, 0.0310361311, 0.3325328529, -0.5216779709, 0.0565000474, 0.2090532631, -0.1852711439, 0.0392924547, -0.0924739093, -0.5081062317, 0.0348229483, -0.1193102971, 0.1242328659, -0.146930784, -0.1655235589, 0.3356410861, 0.2434249073, 0.3892989159, 0.0107191298, 0.4672598243, 0.052102454, -0.1690675616, 0.0195897222, 0.028832946, 0.0493386313, -0.3185646832, 0.139673233, -0.0642717555, 0.0394780561, 0.0019534677, -0.4597355127, 0.2338105589, -0.2746946514, -0.1261484921, 0.1121938527, -0.0276271887, 0.0581163056, 0.3988307714, 0.4030521512, 0.321760118, 0.0658211112, 0.2085608244, -0.1650105268, 0.2475845367, 0.1256019175, 0.1402797699, 0.1536212564, -0.0288808625, -0.0635678023, 0.1218632162, 0.0053792065, -0.0764346719, -0.0092227384, -0.3630716205, 0.1362045407, 0.1413985193, 0.1619118005, 0.3276949525, 0.2981007397, -0.3494324088, -0.173856169, 0.4263888597, -0.3527105451, -0.1570559442, -0.1083387285, 0.076661557, -0.1636048257, 0.0801624656, -0.4262653291, 0.0944421738, 0.3520646691, 0.2512076497, -0.2572673559, -0.0548669621, -0.2776345909, -0.4151388705, 0.3119908869, 0.0014739782, -0.4745103717, -0.0321234614, 0.2938989997, 0.098933503, 0.1729962528, 0.4579009712, -0.0473461151, 0.4347837865, -0.2784128189, -0.0760163963, 0.2648217082, -0.3892310262, -0.1594605893, 0.1499804407, -0.1660074443, 0.0081462115, 0.254525125, 0.0666958392, -0.0031892583, 0.2272638232, 0.7549237609, 0.3503754139, -0.0465827137, -0.0890979618, -0.1083980203, -0.202978611, 0.4351125062, -0.1151679456, -0.0740921795, 0.0758218691, -0.3071581721, -0.4076966047, 0.3597155809, -0.2330858558, 0.0511178821, 0.4509952366, 0.3342948556, -0.1403182, -0.1222750917, 0.0558321774, -0.165494591, 0.1752089411, 0.0425064862, -0.1681343168, -0.2135874629, -0.0231747702, -0.2340224385, 0.0914139301, -0.0404030308, 0.1261011064, -0.006041605, 0.0984407067, -0.0675812066, -0.0924197137, -0.2483516783, 0.6367931366, -0.1156129912, 0.0506182909, -0.2480135262, 0.5165681839, -0.1867620796, -0.0749847591, -0.071630992, -0.0034893807, 0.2698659003, 0.1431923807, 0.0232767351, 0.501124382, -0.0864260271, 0.0465389788, 0.1062586457, -0.0283291638, 0.2086666673, 0.0641515255, 0.1096678525, -0.0449993089, 0.1842889935, -0.2220495045, -0.1296048462, 0.4378692508, -0.3333465159, 0.3640975654, 0.0791068152, 0.0575427338, 0.1631729901, 0.0447131991, 0.0018772557, -0.2020851225, 0.073730804, 0.1014029384, 0.1597454399, 0.1903139502, -0.3452678919, -0.0405620374, 0.1253633946, 0.0527347028, 0.013652226, 0.0142114498, -0.0673971027, -0.0898623765, -0.1306386292, 0.3200006485, 0.6371324062, 0.1329655349, 0.0911493748, -0.035395667, -0.2003276348, -0.053009972, 0.2857241929, 0.115386948, 0.169890523, 0.183574602, -0.0004649237, -0.0553120598, -0.0652938485, 0.0293044969, -0.1215850785, 0.088426888, -0.5587559938, -0.0408844166, -0.2592019439, -0.0891954005, -0.4326560497, -0.3007503748, -0.1785827279, -0.5216223598, -0.2752330303, 0.5282120109, -0.04446413, -0.0342008583, -0.1716002226, 0.1994300187, 0.0160331801, 0.015833078, 0.2233744562, -0.0164535809, -0.0683608353, -0.0021435097, -0.1374312937, -0.0709896088, 0.0867678225, -0.1476975679, 0.2106373757, -0.2377518564, 0.0644207299, -0.1513042301, -0.1804698706, 0.125428617, 0.0607751161, 0.2815026343, -0.2824746668, -0.6274943352, 0.1269656569, 0.5603992939, -0.1214348227, 0.1552201211, 0.2652802765, -0.2035025358, -0.0397575274, -0.1804064214, -0.3837978244, -0.2179224491, -0.0579303838, -0.2351760864, 0.2247657776, 0.1102719605, 0.2297354937, 0.0725847036, 0.3910378814, 0.141173631, -0.1505567282, -0.3173218966, 0.402831018, -0.0106663555, -0.1393473595, 0.0115733966, 0.0248939246, 0.0791705623, 0.167945236, -0.371491313, -0.0036191754, -0.1924351156, 0.1260193735, -0.1266134977, 0.2927981019, 0.0760919154, 0.4290401042, -0.0072637275, -0.2153419256, -0.3689439297, 0.1965476274, 0.1868613362, 0.3983033299, -0.0778280124, 0.295641005, 0.1176377982, 0.2697819769, 0.3012257814, 0.0938747153, 0.2848663926, 0.2522515655, 0.507684648, -0.0031350218, -0.5560576916, -0.3561554551, -0.0455510169, -0.2627854049, -0.1099143475, -0.0035716407, 0.0282398164, -0.1696555763, 0.1573155522, -0.1575001776, -0.2193346024, 0.0123279933, -0.2399484366, 0.1458226889, -0.1426558793, -0.0676003397, -0.3264601231, 0.2706413865, -0.1785920858, 0.0445352495, 0.2091869712, -0.116511561, -0.4453096092, -0.3459740877, -0.4078504145, 0.3821879923, 0.0803221837, 0.372910738, 0.076028049, -0.2197804451, -0.2744782567, 0.0357371233, 0.8388230801, 0.2913858891, -0.4263603985, 0.3884173632, 0.0263923928, -0.5281165838, -0.0850613564, 0.1199569777, 0.1918410063, -0.2607578337, 0.3966218233, -0.2330011725, 0.0217180848, -0.0491459668, 0.5023080111, -0.198769331, 0.0102225281, -0.0815038085, -0.2123834789, -0.132671833, -0.2198649049, 0.0007040799, 0.4571667016, -0.3032934666, 0.0313698202, 0.0264573824, -0.2583824694, 0.4094302058, -0.3536216617, 0.602432251, -0.0385145098, 0.1886682957, 0.1286868006, 0.1300334632, 0.3836225569, 0.500721097, -0.2303153127, -0.1833073199, 0.007825803, 0.1063220873, 0.4872780144, 0.2422617078, -0.1522427797, -0.0383135378, -0.0520322658, -0.0673812181, -0.3485014141, -0.068705976, 0.276588887, 0.0112871677, -0.4571101367, -0.4127929807, 0.2228423953, 0.324077785, -0.1180540174, 0.3458716571, -0.0390548632, -0.4746814966, 0.3770342171, -0.1490742564, 1.0115315914, -0.0302792154, 0.2235892117, 0.1392253339, -0.2224711925, 0.1609474719, 0.2818366289, 0.0586570837, -0.1898104101, -0.2558057904, -0.1155660152, -0.2795867324, 0.0443630815, 0.2588214874, -0.3928961456, 0.3099094629, -0.4455200732, -0.101827994, -0.1641740501, 0.0484614298, -0.0464083031, -0.222067818, -0.3521371782, 0.0185462013, 0.1050290316, -0.0609447919, -0.0374624729, -0.0209581889, -0.4371872544, -0.1583186388, -0.1735190749, 0.0985002816, -0.1609059274, 0.7278358936, -0.3450309634, -0.3661646843, -0.4455929995, 0.3316723108, 0.481972158, 0.0272444077, 0.0398239195, -0.1074403375, -0.0060053784, 0.0863998532, -0.0281225648, -0.2376883924, 0.1929191202, 0.178489998, -0.0919381902, 0.0154876094, 0.0067069419, -0.331926018, -0.133037135, 0.0451704711, 0.0000289623, -0.2735182643, -0.3578085005, 0.1885159016, 0.101432234, -0.1184045076, 0.0265282299, 0.3572264016, -0.0651484355, 0.2823159695, -0.368131876, -0.3245560229, -0.0924429297, 0.542809844, 0.3373906314, -0.0709237084, 0.3994650245, -0.0069445148, -0.1154889762, 0.0111194104, 0.3332045972, 0.1729923338, 0.1851277649, 0.4267688394, 0.0069293492, -0.0070109814, -0.1956736743, 0.3540216088, 0.3503941298, 0.1956198215, 0.0313798487, -0.2186258435, -0.5530779958, 0.3396945298, 0.1706298739, 0.3276751041, 0.1049652547, -0.3088965118, -0.0684687346, -0.0234603602, -0.2058249116, 0.0000218563, -0.1870581508, 0.0434526987, 0.2184442431, 0.0287766065, 0.0832638443, -0.0101456344, 0.0987747163, -0.1689890921, 0.0233575441, -0.0975201651, 0.0628543347, 0.1782513857, 0.0738014728, -0.0904068351, 0.0051430091, -0.4593445957, 0.0140079446, -0.2294314802, -0.1217437983, 0.6715190411, 0.0510697924, 0.1214957312, 0.0158860479, 0.22858271, 0.0680387169, 0.0878004432, 0.0484749712, 0.0963512659, 0.0100166164, 0.2222521603, -0.2736037672, -0.1764543056, -0.3879476786, -0.0089697354, -0.1200429872, -0.0471001305, 0.2031806707, -0.1601869911, -0.2005194128, 0.1108037904, 0.4110423625, 0.3873534501, -0.1979260892, 0.1900832802, -0.0304578282, 0.0874345601, 0.0168909505, -0.2827234864, -0.0983206034, -0.184925288, -0.275777936, 0.1254783422, 0.0075807944, 0.0357760489, -0.3907295465, 0.0127608478, 0.6847842932, -0.1335172206, 0.3405170739, 0.0607743673, 0.1156367511, -0.0105972067, -0.02507139, 0.1619509161, 0.4223309159, -0.0091834972, -0.1420732439, 0.0973932073, 0.3798941672, -0.137937054, 0.2299740613, -0.2404857874, 0.0408823937, 0.1885398328, -0.1650808752, -0.0241937153, 0.0771468356, 0.1839595735, -0.5160557032, -0.248030141, 0.0020997077, 0.4248026609, -0.1385779381, -0.1343549192, 0.090764001, -0.2246544659, 0.0027839839, -0.1104548573, 0.1289765537, -0.3996536136, 0.1721114516, -0.0819726288, -0.0096012466, -0.0884573162, 0.235558033, 0.3815259337, 0.0721742958, -0.2652969658, -0.050738655, 0.2551622093, -0.069453001, 0.1916286349, 0.2259949893, 0.5554207563, 0.5561283231, 0.0255504586, 0.1406385601, 0.0032016709, -0.2122266889, -0.0053525381, -0.0025254879, -0.293577224, -0.3012858033, 0.4094854295, 0.1750783324, 0.0024358667, 0.0674763769, 0.2661319077, 0.547737062, -0.2297872901, 0.1564589739, -0.159625262, -0.2005820125, 0.0917253941, 0.0024658293, -0.3389187455, -0.2536998391, 0.3616603911, -0.0187023357, 0.1398177296, 0.2566124499, 0.0528876297, 0.0547341108, 0.1891521066, 0.2871242464, -0.0130727142, -0.5009989738, -0.0356705934, -0.418515265, -0.1472509205, 0.3142977059, 0.1910638213, -0.1895872653, 0.3773266077, 0.1416849792, -0.0410859212, 0.1177174151, 0.1273608208, -0.1753464341, 0.0234480891, -0.3930686414, -0.1863918751, 0.2176949382, -0.0762478486, -0.0608635694, -0.236634627, 0.2287172526, 0.1713469028, 0.0196565539, 0.0119340867, 0.0836446807, 0.1588284969, 0.4142069817, 0.2572518885, 0.1691020429, 0.3638535142, -0.100316897, 0.0047955513, 0.0438851267, -0.3505227566, -0.1583047211, 0.13003169, -0.1268358976, 0.5008469224, -0.5447793007, 0.0813270807, -0.1266756356, 0.0849692672, 0.0344078988, -0.4037502408, -0.175865829, 0.055066213, -0.0133668706, 0.0183155946, 0.1382131875, 0.2336797565, 0.0256982986, 0.6657630801, 0.0608549118, -0.4091666937, 0.4009991884, 0.1377360076, -0.1514992267, 0.0492458157, -0.0779660195, 0.1826996505, 0.3516889811, -0.6099097729, -0.2157331407, 0.4358258247, -0.2188645601, -0.2990227044, 0.0933736116, -0.094781369, -0.0106869563, 0.0053799152, 0.4136136174, -0.1291242689, -0.3908877671, 0.0667114928, -0.2082781494 ]
https://github.com/huggingface/datasets/issues/2038
outdated dataset_infos.json might fail verifications
Hi ! Thanks for reporting. To update the dataset_infos.json you can run: ``` datasets-cli test ./datasets/doc2dial --all_configs --save_infos --ignore_verifications ```
The [doc2dial/dataset_infos.json](https://github.com/huggingface/datasets/blob/master/datasets/doc2dial/dataset_infos.json) is outdated. It would fail data_loader when verifying download checksum etc.. Could you please update this file or point me how to update this file? Thank you.
20
outdated dataset_infos.json might fail verifications The [doc2dial/dataset_infos.json](https://github.com/huggingface/datasets/blob/master/datasets/doc2dial/dataset_infos.json) is outdated. It would fail data_loader when verifying download checksum etc.. Could you please update this file or point me how to update this file? Thank you. Hi ! Thanks for reporting. To update the dataset_infos.json you can run: ``` datasets-cli test ./datasets/doc2dial --all_configs --save_infos --ignore_verifications ```
[ -0.1200921983, 0.1984143555, -0.1118749306, 0.1850016862, 0.1130968332, 0.2163037956, 0.1035634354, 0.4946834147, 0.2069725096, -0.0703190863, 0.0729325116, 0.0472203121, 0.1981546879, 0.2417429984, -0.0689254105, -0.0911238268, -0.0267711729, 0.266407162, 0.0681156963, 0.0885862112, -0.0266230926, 0.1407280713, -0.1923577189, -0.1282282472, -0.2190601528, -0.0406582803, 0.0387160257, 0.1655929387, -0.541421771, -0.499253422, 0.430462122, 0.4793900251, 0.0819710568, 0.3855613172, -0.0001081329, -0.0376770496, 0.546626091, -0.0290584676, -0.4618391097, -0.0519541204, -0.3342087269, -0.1855135858, -0.1411469579, -0.0835440457, -0.0152580366, -0.325507164, -0.1239994392, 0.0789588913, 0.2135803401, 0.1726308167, 0.2469212413, 0.4211305082, 0.5330953002, -0.184871763, 0.109444201, -0.0424621105, 0.1855425984, 0.4435176849, 0.3252076805, 0.031663239, 0.2927803099, 0.3482066095, -0.0668814927, -0.1015634686, 0.1929740459, -0.1665298641, 0.1315119565, -0.1064370498, 0.1657461971, 0.1777221113, 0.6516275406, -0.3433515429, -0.3737467229, -0.0835308582, -0.1550709009, -0.1994560659, 0.3918645084, -0.2893850803, 0.2753104866, 0.219562158, -0.1972355098, -0.3501671851, -0.0167718828, 0.0552800521, -0.084302105, -0.1005979851, -0.1842757612, -0.145524174, 0.1457500458, -0.1432102323, -0.131790176, -0.0046239048, -0.3207758367, 0.0597513467, -0.0772144794, -0.2997913957, -0.20403409, 0.1048172414, 0.3750508726, 0.2149083018, 0.0941931009, 0.049751021, -0.3412809372, 0.1715232432, 0.1495141238, 0.1182385832, 0.4304282069, -0.0208123438, 0.3718365431, 0.6826691031, 0.1144596562, -0.0479873084, -0.0042079985, -0.2481481582, 0.0243404284, 0.0238256231, 0.3393539488, -0.4905769527, -0.0651530176, 0.1865616739, -0.0159939453, -0.0557380281, 0.23562859, 0.3187639713, -0.3612933159, 0.1625731736, 0.1662799418, -0.0296568442, 0.0446117818, -0.3122761548, -0.0763919055, 0.0261262991, -0.0284054726, 0.2153080702, 0.3751755953, -0.375791043, 0.4739308655, 0.0353368782, -0.1602191031, 0.0439417958, -0.0744506717, -0.120797947, -0.2017624974, 0.2391943038, -0.0254517198, 0.050476864, -0.0973943323, -0.0127743632, 0.0273164064, -0.1816864759, -0.3045565486, -0.3762091994, -0.2405498922, 0.2019521892, -0.0234627239, -0.1118206978, -0.2365112156, -0.1028555036, 0.1793440133, -0.4997897744, -0.045549795, -0.07300964, -0.1554110944, -0.0220387224, 0.1926499307, 0.3321073353, -0.0709209889, 0.0900683254, 0.0667347014, -0.3115290999, -0.2241201848, 0.2014637887, -0.0882983953, 0.1940479875, -0.2010300159, 0.0603738874, -0.0404517874, -0.616574347, -0.3859307766, 0.1060368121, 0.2230717093, -0.0932434499, -0.1347033978, -0.2367651761, 0.2366413772, -0.2952266037, -0.1073616147, 0.0489997864, 0.1050880775, -0.023957409, -0.3267242014, -0.2293678224, -0.0333118029, 0.1030365303, -0.042991925, 0.0195008721, 0.0344421379, 0.4565274715, 0.1423134655, -0.040945705, 0.0469591692, 0.2812899649, 0.4166462421, 0.0335947797, -0.0447670668, -0.0408999324, -0.5700744987, 0.2099355161, 0.1407438815, -0.125422433, -0.1250809729, -0.1638532281, -0.2609324455, -0.0597878546, -0.0657038689, -0.0178747289, 0.155588299, 0.1592801511, 0.3321815133, 0.1094370484, -0.119144015, 0.2130118608, -0.5373791456, 0.1782786101, -0.2622480989, 0.1779329479, -0.0304579418, 0.1253202409, 0.3239288926, -0.0993102491, 0.0879661962, -0.1290885657, -0.0831438452, 0.5027292967, 0.0093871281, 0.1357943714, 0.2471981645, 0.3728530705, 0.0543976128, -0.0852175057, 0.0808361992, -0.1652670801, -0.0419658124, 0.0343084037, -0.2673317194, 0.0326814502, -0.0849871933, -0.0673846304, 0.2248895764, -0.074119322, 0.3140821159, -0.0297689512, -0.0388832167, -0.2751836777, -0.1777118891, -0.075173527, 0.3607106805, -0.143013671, -0.0626581609, 0.155980736, 0.4095157683, -0.0206290781, -0.0906745046, 0.1984052807, 0.0815257803, -0.2291128337, -0.0816608146, 0.2641116977, 0.2345743179, 0.2276796997, -0.0140125286, 0.1894859225, 0.0711762905, -0.0561926775, 0.1673862636, -0.1691849828, -0.0097604431, 0.4036226571, 0.1256836057, 0.010898456, -0.2650367618, 0.0454337001, 0.2030117661, 0.5164206028, -0.3069399595, -0.0780195817, -0.2033134997, -0.0223648846, -0.0027795415, -0.3437185287, -0.3578515053, -0.1349753886, 0.0679996237, 0.4726887345, 0.1156927049, 0.1248631254, -0.0538582765, 0.2224535346, 0.0925403982, -0.1651448905, -0.1871403009, 0.0658759102, -0.0979111195, 0.0556773692, 0.3926018476, -0.0635674968, 0.3531547189, -0.5244259834, -0.1744994223, -0.5462659001, -0.4836140275, 0.2196641564, -0.2057813108, 0.2577607632, 0.276102066, 0.3172794878, 0.1261564344, -0.0000817738, 0.1553584188, -0.2760592997, -0.354603827, -0.255794704, -0.0191662535, -0.1092162132, -0.1351921409, -0.3698327243, 0.1012538895, -0.2100866884, 0.1020707488, 0.0008241907, 0.0267242268, 0.2857051194, 0.0814514309, 0.186185956, -0.1705828309, 0.2064653337, -0.2983563542, -0.7436743975, 0.0950698778, -0.1993617415, -0.2288203537, 0.0111967102, 0.2518720627, 0.2966251075, -0.0640644431, -0.4512533545, -0.3920637369, -0.0903875157, 0.1593727767, 0.0165096186, -0.1554336101, 0.3954574466, -0.0997765288, -0.1225270629, -0.1927511096, -0.3537535369, 0.1185756326, -0.074408114, 0.3598249853, -0.0353287831, 0.2783927321, -0.0069326386, 0.5527369976, 0.0637155697, -0.3731840253, 0.2554654181, 0.0361721367, 0.5047956109, -0.1203779429, -0.187614426, -0.0881335586, -0.0018534958, 0.1378800869, 0.1637526155, 0.0805528089, 0.1937587857, -0.2014652491, -0.364148438, -0.4616737366, -0.1876392365, -0.1725012213, 0.2224397659, 0.3064265251, -0.0367343016, 0.038223967, -0.1044298559, -0.0385644287, 0.2388698757, 0.6212209463, 0.0579102412, 0.1147978008, -0.2876328528, 0.2032406032, -0.1122878641, 0.4098141491, -0.0514038652, 0.2883840799, -0.0588750988, 0.0835440829, -0.0875768065, -0.2908472419, 0.3274447024, -0.1836213171, 0.3218430877, 0.0458330438, -0.1038442999, 0.023511894, -0.1497751623, -0.1295837462, 0.1956032217, 0.2656331062, 0.4955188334, -0.4432011247, -0.3598157763, 0.3211881816, 0.0673752353, -0.0559839495, -0.1024618968, -0.1567427069, -0.1922605783, -0.2763613462, -0.0230158046, -0.221704036, 0.0376868583, -0.156988278, 0.0427967757, 0.1348345876, -0.0168493614, 0.0792321488, 0.2699025273, 0.2004429847, 0.1592652202, 0.2687500119, 0.21280393, 0.2716594338, 0.6806362271, 0.3026634157, -0.0993542373, -0.1245264858, -0.201151073, -0.0846632048, 0.067340292, 0.164976269, -0.0475492217, 0.1596613973, 0.337010175, -0.1489346027, -0.0169883911, 0.0854196325, 0.4840287268, 0.0210708082, -0.2948286831, -0.2754923701, 0.2434898913, 0.1808882803, -0.0636725053, 0.1274698377, 0.1030134782, -0.1275836229, -0.2348645478, 0.1591082811, 0.7583658695, 0.0867968947, -0.3215256929, 0.1678165495, -0.2078518569, 0.3344700336, -0.3076876998, -0.0956156254, -0.3612340689, -0.0629241914, 0.018215932, 0.0518250689, 0.2038844377, -0.2713728547, -0.4220632017, 0.2160599679, -0.2913265228, 0.0490426272, -0.1281299889, 0.4355080724, -0.1518869102, -0.0533980057, -0.418733269, 0.2262399793, 0.0377858318, 0.1134104207, -0.2614863217, -0.1508179903, 0.0885038078, -0.4387354255, -0.2300231755, -0.0084299594, 0.0856357366, -0.076801613, 0.1855610311, 0.2683861852, 0.1197182089, 0.0316687971, 0.4012097418, 0.2393575609, -0.3454666138, 0.0814239383, -0.3129982352, -0.1795912385, -0.0088281892, -0.0792567655, 0.3597063422, -0.2641719282, -0.3239217699, -0.0188620351, -0.0921397656, -0.3278949857, -0.0180037916, -0.2467570305, -0.2671567202, -0.2533732653, -0.0436262488, 0.0642350465, -0.1675364673, -0.2751357555, 0.2132403404, -0.0257320814, -0.0082351938, 0.0102761146, 0.2115839124, -0.1840820611, -0.0640984327, 0.5821511745, -0.2382154018, 0.0018266365, 0.4449839592, 0.0454295352, -0.0873582587, -0.3670883775, -0.262354672, -0.0204444379, -0.2235719264, 0.0712911338, 0.1381032318, 0.2234358042, 0.0132092461, 0.2815969288, 0.2363383323, -0.0803335607, 0.2098324597, -0.57824862, -0.3554055393, 0.2415508181, -0.2080072463, 0.1350495368, -0.1409765184, 0.1401208639, -0.0375344902, -0.0232218616, -0.3887763321, 0.2520698905, -0.1794510484, 0.1692464352, 0.335322082, 0.0583293922, 0.2780822217, -0.1733773649, 0.0913909301, -0.101633437, -0.3689282238, -0.1969298422, -0.1718817353, 0.1263723224, 0.0359876864, 0.0617917255, 0.1393480003, -0.0402229466, -0.2844004631, 0.0475090668, -0.0473839827, -0.0463266298, 0.1311319917, 0.1752662957, 0.0194595549, 0.2657258511, 0.0524946973, -0.0032033473, 0.1948534101, 0.1250243187, -0.0769357234, 0.1401852965, -0.2970585525, -0.1372712106, 0.1731650829, 0.2029392123, 0.1774634421, -0.1687951386, 0.1919314563, -0.2113260329, 0.1138484553, 0.2148860991, 0.3608187139, 0.5215636492, -0.1709477156, 0.0289681256, 0.132463485, 0.2687727511, -0.1644562483, 0.0366511457, 0.2581137717, -0.0537407622, -0.1529437453, 0.0027488843, 0.3482574224, -0.213498041, 0.2003033161, 0.2779767811, 0.326761663, -0.1841546297, 0.0532508232, 0.2237274647, -0.2742609382, -0.0029422585, 0.2484384179, 0.0194264948, 0.0884080678, 0.2186543345, -0.1588414907, 0.0872128308, -0.1164116487, 0.3795853853, -0.0588840991, -0.2583574653, 0.2092459649, 0.4876077771, 0.2635891736, -0.0730531812, 0.0753363222, 0.4748780131, 0.0822155476, -0.0485138036, -0.530344367, 0.154234603, -0.1189721227, -0.1307222992, -0.2884334326, -0.3437520862, 0.0124431252, 0.0092095658, -0.043059133, 0.0256439, 0.0688225552, -0.004309319, -0.397151798, -0.5800523162, -0.1741507351, 0.2551027834, 0.1090598032, -0.1722018868, 0.2795855105, 0.2570461035, -0.1520545781, 0.3070888519, 0.7304962873, 0.4203175008, 0.2456785887, 0.2398923486, -0.1011303142, -0.3405101001, 0.0049241036, 0.0588031113, 0.4122328758, 0.0230989158, -0.3534130156, 0.2803241313, 0.1893058568, -0.1752358079, 0.0789262503, -0.2120950669, 0.0533215478, -0.1163322404, -0.0487634055, 0.1541925073, 0.1408227384, -0.3030185997, 0.1664287746, -0.3497418463, -0.0581532456, 0.2189171612, 0.2301873118, 0.1888950318, 0.0403145477, 0.1150402725, -0.0352208279, 0.5214559436, 0.3677417636, -0.1461051553, 0.0032994114, -0.2817922831, -0.6077658534, -0.0128701031, 0.0303864703, 0.1156281382, -0.0765311122, -0.0257929787, 0.1060033739, 0.1566843539, 0.3102232516, -0.2241889387, -0.1152937263, -0.3192281425, -0.3017614782, 0.2308929563, -0.106633693, -0.0629993454, 0.124540925, -0.1716696918, 0.095440492, -0.0398960561, 0.0247016251, -0.0732379109, 0.3276504576, -0.2639654875, 0.0717817619, 0.5029467344, 0.2613283098, 0.4752801657, -0.2293337882, -0.2174243331, -0.4161623716, -0.0664636418, -0.2767214775, 0.4328136742, 0.1306509674, 0.1294761896, -0.0277894363, -0.1076732576, -0.2423769683, 0.5078532696, 0.0326114893, -0.2268678844, -0.4183290005, -0.055471018, 0.0693707615, -0.065114364, -0.0651555955, 0.0281292312, 0.0025855275, 0.0613466725, -0.5129873753, -0.0875921994, 0.5630139112, -0.0581568927, 0.0108211264, -0.0710180849, 0.2790162265, 0.1725583225, -0.3536725938, -0.6980355382, 0.2993614078, 0.2710727453, 0.0164053105, -0.2873922586, 0.3345268369, -0.0833234489, 0.2824676037, -0.0970921963, 0.2147707939, 0.0305273831, -0.2756705284, -0.1090890393, 0.0299154148 ]
https://github.com/huggingface/datasets/issues/2035
wiki40b/wikipedia for almost all languages cannot be downloaded
Dear @lhoestq for wikipedia dataset I also get the same error, I greatly appreciate if you could have a look into this dataset as well. Below please find the command to reproduce the error: ``` dataset = load_dataset("wikipedia", "20200501.bg") print(dataset) ``` Your library is my only chance to be able training the models at scale and I am grateful for your help.
Hi I am trying to download the data as below: ``` from datasets import load_dataset dataset = load_dataset("wiki40b", "cs") print(dataset) ``` I am getting this error. @lhoestq I will be grateful if you could assist me with this error. For almost all languages except english I am getting this error. I really need majority of languages in this dataset to be able to train my models for a deadline and your great scalable super well-written library is my only hope to train the models at scale while being low on resources. thank you very much. ``` (fast) dara@vgne046:/user/dara/dev/codes/seq2seq$ python test_data.py Downloading and preparing dataset wiki40b/cs (download: Unknown size, generated: Unknown size, post-processed: Unknown size, total: Unknown size) to temp/dara/cache_home_2/datasets/wiki40b/cs/1.1.0/063778187363ffb294896eaa010fc254b42b73e31117c71573a953b0b0bf010f... Traceback (most recent call last): File "test_data.py", line 3, in <module> dataset = load_dataset("wiki40b", "cs") File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/datasets/load.py", line 746, in load_dataset use_auth_token=use_auth_token, File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/datasets/builder.py", line 579, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/datasets/builder.py", line 1105, in _download_and_prepare import apache_beam as beam File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/apache_beam-2.28.0-py3.7-linux-x86_64.egg/apache_beam/__init__.py", line 96, in <module> from apache_beam import io File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/apache_beam-2.28.0-py3.7-linux-x86_64.egg/apache_beam/io/__init__.py", line 23, in <module> from apache_beam.io.avroio import * File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/apache_beam-2.28.0-py3.7-linux-x86_64.egg/apache_beam/io/avroio.py", line 55, in <module> import avro File "<frozen importlib._bootstrap>", line 983, in _find_and_load File "<frozen importlib._bootstrap>", line 967, in _find_and_load_unlocked File "<frozen importlib._bootstrap>", line 668, in _load_unlocked File "<frozen importlib._bootstrap>", line 638, in _load_backward_compatible File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/avro_python3-1.9.2.1-py3.7.egg/avro/__init__.py", line 34, in <module> File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/avro_python3-1.9.2.1-py3.7.egg/avro/__init__.py", line 30, in LoadResource NotADirectoryError: [Errno 20] Not a directory: '/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/avro_python3-1.9.2.1-py3.7.egg/avro/VERSION.txt' ```
62
wiki40b/wikipedia for almost all languages cannot be downloaded Hi I am trying to download the data as below: ``` from datasets import load_dataset dataset = load_dataset("wiki40b", "cs") print(dataset) ``` I am getting this error. @lhoestq I will be grateful if you could assist me with this error. For almost all languages except english I am getting this error. I really need majority of languages in this dataset to be able to train my models for a deadline and your great scalable super well-written library is my only hope to train the models at scale while being low on resources. thank you very much. ``` (fast) dara@vgne046:/user/dara/dev/codes/seq2seq$ python test_data.py Downloading and preparing dataset wiki40b/cs (download: Unknown size, generated: Unknown size, post-processed: Unknown size, total: Unknown size) to temp/dara/cache_home_2/datasets/wiki40b/cs/1.1.0/063778187363ffb294896eaa010fc254b42b73e31117c71573a953b0b0bf010f... Traceback (most recent call last): File "test_data.py", line 3, in <module> dataset = load_dataset("wiki40b", "cs") File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/datasets/load.py", line 746, in load_dataset use_auth_token=use_auth_token, File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/datasets/builder.py", line 579, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/datasets/builder.py", line 1105, in _download_and_prepare import apache_beam as beam File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/apache_beam-2.28.0-py3.7-linux-x86_64.egg/apache_beam/__init__.py", line 96, in <module> from apache_beam import io File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/apache_beam-2.28.0-py3.7-linux-x86_64.egg/apache_beam/io/__init__.py", line 23, in <module> from apache_beam.io.avroio import * File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/apache_beam-2.28.0-py3.7-linux-x86_64.egg/apache_beam/io/avroio.py", line 55, in <module> import avro File "<frozen importlib._bootstrap>", line 983, in _find_and_load File "<frozen importlib._bootstrap>", line 967, in _find_and_load_unlocked File "<frozen importlib._bootstrap>", line 668, in _load_unlocked File "<frozen importlib._bootstrap>", line 638, in _load_backward_compatible File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/avro_python3-1.9.2.1-py3.7.egg/avro/__init__.py", line 34, in <module> File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/avro_python3-1.9.2.1-py3.7.egg/avro/__init__.py", line 30, in LoadResource NotADirectoryError: [Errno 20] Not a directory: '/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/avro_python3-1.9.2.1-py3.7.egg/avro/VERSION.txt' ``` Dear @lhoestq for wikipedia dataset I also get the same error, I greatly appreciate if you could have a look into this dataset as well. Below please find the command to reproduce the error: ``` dataset = load_dataset("wikipedia", "20200501.bg") print(dataset) ``` Your library is my only chance to be able training the models at scale and I am grateful for your help.
[ -0.2544980943, -0.0779203922, -0.1537583023, 0.4308665693, 0.3997027874, 0.3504618108, 0.1368505955, 0.5331581235, 0.1893273741, 0.0235844627, -0.1773032993, -0.0942177325, 0.0944039673, 0.0111838356, -0.0297048613, -0.4591734409, -0.0672903955, 0.0295372121, -0.1352711022, -0.1168933213, -0.2519629598, 0.1256148666, -0.0791748315, -0.0490287244, -0.0387458354, -0.1828400791, -0.0958353654, -0.2073056251, -0.3507466912, -0.2408646047, 0.3545784652, 0.0192575045, 0.3101118207, 0.1529971063, -0.0001114368, -0.0509648919, 0.3131164014, -0.2357944846, -0.2936121821, -0.2888575792, -0.0720895901, -0.3261859417, -0.0904391259, -0.4200315475, 0.1274462193, 0.0466824137, 0.0806714669, -0.1318009794, 0.0757574588, 0.2992253006, 0.2468712628, -0.1426033527, 0.3134340644, -0.1457377225, 0.3651964068, -0.3777082264, -0.0280338377, 0.3395859897, 0.2187205851, 0.0713427216, 0.2154793739, 0.2220427394, -0.2341406941, 0.0134995393, 0.0482247174, -0.2912237346, 0.2222054899, -0.6297014952, 0.5206415057, 0.5344282389, 0.8290325403, -0.1283515543, -0.0874670148, 0.0723919421, -0.0260593556, -0.0313743465, -0.055740077, 0.4819797873, -0.1893263608, 0.0975979418, 0.1261649877, -0.1254300475, -0.1567188501, 0.4228464663, -0.1241364852, 0.4435882568, -0.0527198985, 0.2112595141, -0.0216666255, -0.102701813, -0.2636416256, -0.0696594715, -0.096159853, 0.2933216393, -0.2793980837, 0.019635722, -0.1615017503, 0.0556469783, 0.3511351347, -0.1503834128, -0.2346211374, -0.0450780764, 0.0960105732, 0.1575746238, 0.1801502407, 0.1637833863, 0.0620480925, -0.2000063807, 0.2782809138, 0.3079039752, -0.0842120126, -0.0761707574, -0.2100430727, -0.223056376, -0.2947567999, 0.0944294631, 0.0875294209, -0.2031711042, -0.1779465973, 0.0071132444, -0.1443609744, -0.0194387883, -0.2023949325, 0.3628211319, -0.150142923, 0.4312383831, 0.1779013574, 0.3288218677, -0.1035725772, -0.2613096237, -0.0173522905, 0.3065481186, -0.1393198222, -0.1036602259, 0.2187826782, -0.1099158973, 0.2648517191, -0.0893723071, -0.1031380296, -0.1764119267, -0.153690964, -0.3695676923, -0.1791032255, 0.2304090708, 0.1619766951, 0.2839275897, 0.1476142257, -0.2447477877, -0.2305806428, 0.1207451373, -0.3596145809, -0.1681547314, -0.2051545531, 0.1944684535, 0.0610983893, -0.0546504818, -0.3160063624, 0.2876639962, 0.3030639291, -0.1423989236, 0.118072845, -0.0075458987, -0.0232542455, -0.2251897305, 0.1790114045, 0.4908003807, -0.399959445, 0.0918976963, -0.023850657, -0.0337116867, 0.1897820383, 0.1842968464, -0.177952528, 0.25654158, -0.0978841782, 0.0381604433, 0.2101309747, -0.3214418292, -0.577635169, 0.1860538572, 0.1134095564, -0.1670033634, 0.0994795859, 0.0160008743, 0.2750304043, -0.0493874773, 0.0524543673, 0.3956745267, 0.1368377656, -0.1056450084, -0.3274506927, -0.5078234673, 0.3264816999, 0.1633175761, 0.4547143877, -0.1322698593, 0.2759853303, 0.2917215526, 0.3191740811, -0.1915476471, 0.1246786341, 0.2333604097, -0.0089483699, -0.0445757024, -0.0025623105, -0.3310274482, -0.3097582459, 0.1477600038, 0.1029132903, 0.1654649079, -0.1609552503, 0.0296833292, -0.3161897063, -0.0888076052, -0.1953117102, 0.103268832, 0.1995638311, -0.1052768379, 0.119593136, 0.485458374, 0.12651667, -0.0994595736, -0.415690273, -0.0948528498, -0.1789346635, 0.0923319161, -0.2174283415, 0.204492107, 0.0336809307, 0.025808936, 0.1796841472, 0.0730526596, -0.1607237756, -0.0110611115, -0.0784519166, -0.1035446078, 0.1354628652, 0.1169638559, 0.1331282556, -0.4173748493, 0.1920300871, 0.1084798574, 0.329746455, -0.1357725263, 0.1178164184, 0.1222370416, 0.0399735123, 0.3655341566, 0.1234309673, 0.1498312652, 0.4555992186, 0.0305262208, 0.1263546646, -0.0049749911, 0.3271190524, 0.1556601673, 0.0127487481, -0.1329595447, -0.029277496, -0.113514185, 0.3166725636, -0.0845337585, 0.2671486139, 0.2927594781, -0.0765188709, -0.0048597306, -0.0978271887, 0.1533987373, 0.0522076972, 0.0699051321, 0.1065891907, -0.0998439118, 0.3596490026, -0.1293926835, 0.2643094361, 0.1755418181, 0.1863328815, 0.2091354728, 0.1350801587, -0.0111756194, -0.1882828176, -0.1296792477, 0.0699940249, 0.3717177212, 0.0691838264, 0.1659455299, -0.0484347418, -0.1418599188, 0.0841908157, -0.052392181, -0.2509430945, -0.2163173556, -0.1256381869, -0.0857284963, 0.0915832594, -0.0001049675, -0.3266667724, -0.0721022189, 0.0621664599, -0.3203503489, -0.1605682224, -0.298122853, -0.368449837, 0.0767874122, 0.387129724, 0.1112902611, 0.2952098846, -0.3326289654, -0.1918787807, -0.0899461061, -0.2681113482, -0.0143136587, -0.1569703817, 0.2413950115, -0.0241168067, 0.7152199149, -0.1799962223, -0.2514213324, 0.184648633, -0.0070199743, 0.0658745542, 0.2497711182, -0.1534786224, -0.0429238901, 0.0845355988, -0.485653311, -0.515576601, -0.2696562707, 0.0125193018, 0.0485177934, 0.0878062025, 0.1686408371, 0.192484051, 0.0680268556, 0.1211878806, 0.1809064746, -0.1900434047, -0.1518693268, 0.4496892393, -0.0274133831, -0.4299623072, 0.188186571, 0.0109940469, 0.3149319291, 0.0079272352, -0.6572358608, 0.1441125125, -0.2763589025, 0.2499429733, -0.0219931006, 0.1834769845, 0.114344269, -0.2136969417, 0.0479722694, 0.0449954867, 0.1059099361, -0.040621087, -0.2095249593, 0.2556222677, 0.0299455188, 0.2961854041, 0.1644206494, 0.6888412237, 0.0548556149, 0.1658408046, 0.4367814064, 0.2385820597, 0.2310311794, -0.2314288169, -0.3645713925, 0.0605744086, -0.2394920886, -0.031003058, 0.2670124471, -0.162319988, -0.4674171805, -0.3477125168, -0.2426845282, -0.3674673736, -0.2107712477, 0.1539979279, -0.0501818061, 0.082940504, 0.0575964078, 0.1203985885, 0.0215731636, -0.2823500931, 0.2137889713, 0.5317090154, -0.2486013621, 0.1685893983, -0.2782665193, -0.3421222866, -0.4126344323, 0.2524553537, 0.0777070895, 0.4147610366, -0.0938023105, 0.3499189019, 0.2011798322, -0.0892689079, 0.29062289, -0.1702442914, 0.1230506301, 0.1972467899, 0.1049929112, -0.2152170837, -0.0624400601, -0.2943331003, -0.0166880898, 0.3054167032, -0.0444555506, -0.6709657311, 0.0843290389, -0.0425857566, 0.5003298521, -0.0571770817, -0.0173499174, -0.1618569046, -0.5653647184, -0.4854038954, -0.0276873522, 0.1895758212, 0.4046096206, -0.1972091496, 0.2628989816, -0.1020785645, 0.2205627859, 0.0213166662, 0.0077354982, 0.2132564187, 0.2327860445, 0.0974325836, -0.1967879534, -0.1378472447, 0.15032655, 0.3620435596, -0.0635322034, -0.2343122214, -0.1212477535, -0.0430036522, 0.0434830859, 0.1415461898, -0.101290524, 0.047706943, 0.1486631781, -0.137935102, 0.1658205688, -0.0128415711, 0.2519465983, -0.1063374802, -0.496234715, -0.5676655769, 0.6620465517, 0.0233820751, 0.0701420158, 0.2541714609, 0.1754048467, -0.1958613545, 0.3753730059, 0.1058034673, 1.1372189522, -0.2281342149, 0.1104203761, -0.1039843038, 0.1094664782, 0.3614170253, -0.3578396738, 0.208407253, -0.3226416111, -0.1089070588, -0.0195197351, 0.0736747012, -0.0461387485, 0.0998933241, -0.3072272539, 0.2564416528, -0.3662325144, -0.0869540572, 0.1056493521, 0.2329858243, -0.4058891535, -0.0680367798, -0.3213796318, 0.1196287572, -0.2146602869, 0.2546931207, -0.2110012174, -0.1254786551, -0.061424572, -0.2672703862, -0.5050507784, 0.070643574, -0.2883503139, 0.3298687041, -0.4893510938, -0.189774543, 0.3386202455, 0.4448713958, 0.0414798521, 0.4031542242, -0.2879834175, 0.1116522104, -0.263861239, -0.423619777, 0.0944911912, 0.0112071671, 0.0871337876, -0.1816289872, -0.3709903359, 0.1669727117, -0.0575723127, 0.0528491586, -0.0959876478, 0.1043775529, 0.2016539872, -0.0458974987, -0.3565551937, -0.0222828016, -0.0943856835, -0.0894330293, 0.1241666228, 0.0821967572, -0.1119038314, 0.1409133375, 0.1852951944, -0.3349809051, 0.0217914172, 0.3491057754, 0.1834492087, 0.0239539966, 0.6245266199, 0.3155457377, -0.3965406716, -0.1898149252, 0.0439141914, -0.2713774443, -0.4585740864, -0.0896048397, -0.0421896465, 0.3383432627, -0.4149284959, 0.3502536714, 0.1749068648, -0.2348314226, 0.2064643502, -0.7065885067, -0.1240217313, 0.2160939574, -0.0789091662, 0.0065748976, 0.0840708017, -0.30959934, 0.1218284369, 0.2352634966, -0.2610889673, 0.2092307359, -0.3233409226, 0.1007636189, 0.0994939283, 0.0633323044, 0.0223014504, 0.1991024166, 0.0650480315, 0.0691617727, -0.0496639088, -0.2599099278, -0.0702273548, 0.1948126853, 0.205114007, -0.0579007193, 0.2278749943, -0.5071965456, -0.1686701477, 0.0822388381, -0.0584756732, 0.1155844331, 0.0038600247, 0.1811006814, 0.2013252676, 0.2885710597, -0.3500798345, 0.2458776534, -0.0869046748, 0.2614989579, 0.1408280283, 0.07593593, 0.4579921663, 0.0213007778, -0.3352100253, -0.0335409567, -0.0300774835, 0.0866356418, 0.2558809817, -0.233358562, 0.300347209, 0.198920697, -0.1174949631, 0.5623857379, -0.1496047378, 0.2065961957, 0.4130832553, 0.1872232705, -0.369863838, 0.0016460642, 0.2932012379, -0.0966371149, -0.0709825084, 0.0759613067, 0.2589091659, -0.3223279715, 0.1137204766, -0.0657392666, 0.1647822559, -0.0565514416, 0.1922588348, 0.6700764298, 0.2270729095, 0.0499260873, -0.0694645271, 0.1699931175, 0.0953946412, 0.3628065586, -0.2234564424, 0.1927638352, -0.0520042777, 0.0246352106, -0.1621609479, -0.3400559425, 0.2986115217, 0.1632018387, -0.0247745402, 0.0986763462, -0.172257483, 0.2616477609, 0.1543591619, 0.0302231647, -0.2611559331, 0.1914432049, -0.1224777997, -0.0129828155, -0.0442104824, -0.2680072784, 0.0015668869, 0.1556259841, -0.0046619838, -0.3565733731, 0.2555732429, 0.3037430048, -0.2440860868, -0.4411395192, 0.1348090917, 0.212492615, 0.0311707221, -0.3002212942, 0.1577610523, 0.4137803316, 0.0780922323, -0.1270552874, 0.2019163519, 0.4433458745, 0.4205472767, -0.3373265266, 0.0424413942, 0.0753406212, -0.0656808019, -0.0233783536, 0.2276100814, 0.4672247767, 0.2502681613, 0.3970100284, 0.1184259653, -0.1416000128, -0.031975396, 0.2360502481, -0.0639188141, -0.0566705838, -0.0451857932, -0.0590354763, 0.1407209486, -0.4205533266, -0.0135846995, -0.5078690052, 0.3400223851, 0.1610560864, 0.0025874451, 0.177529186, -0.0925812125, 0.0479857475, -0.1569758505, 0.3962932825, 0.3195853829, 0.1991413683, -0.3908326626, -0.0089955479, -0.4645192027, -0.018635571, -0.2982346117, 0.1121006534, -0.0814325362, 0.1286558807, 0.0755082965, 0.2132718563, 0.036632318, 0.0450983681, 0.0668025166, 0.4949165583, -0.2315313965, -0.2447034419, -0.1948167384, 0.2191624641, -0.1583236754, -0.3909314275, 0.0575938486, -0.1385610253, 0.0340730473, -0.3200198114, -0.0665003657, 0.0955725014, 0.0059600119, 0.332428515, 0.1523780823, 0.5925300717, -0.1540946811, -0.2021767795, -0.2086715847, -0.0110699423, -0.1599349231, 0.3116775751, 0.1967295557, 0.0989066958, -0.1607933789, -0.1119711921, -0.0295641012, 0.2984873056, -0.0448160134, 0.1949228942, -0.3669615686, -0.3863568008, 0.057917431, 0.1138559952, 0.1190271452, 0.0469262153, -0.1308563054, -0.0533181056, -0.3421496153, -0.3086864054, 0.3866544366, -0.3773034811, -0.5697818398, -0.0921549499, 0.0079287291, 0.0470565483, 0.1902976483, -0.3660884202, 0.2775550485, 0.3897728622, 0.0513336472, -0.1509680748, 0.1664217561, 0.0286486112, -0.0162156448, -0.0940432623, 0.1160702854, -0.0082844896, -0.3563149273, -0.220584631, -0.391258359 ]
https://github.com/huggingface/datasets/issues/2035
wiki40b/wikipedia for almost all languages cannot be downloaded
Hi @dorost1234, Try installing this library first, `pip install 'apache-beam[gcp]' --use-feature=2020-resolver` followed by loading dataset like this using beam runner. `dataset = load_dataset("wiki40b", "cs", beam_runner='DirectRunner')` I also read in error stack trace that: > Trying to generate a dataset using Apache Beam, yet no Beam Runner or PipelineOptions() has been provided in `load_dataset` or in the builder arguments. For big datasets it has to run on large-scale data processing tools like Dataflow, Spark, etc. Worked perfectly fine after this (Ignore these warnings) ![image](https://user-images.githubusercontent.com/19718818/110908410-c7e2ce00-8334-11eb-8d10-7354359e9ec3.png)
Hi I am trying to download the data as below: ``` from datasets import load_dataset dataset = load_dataset("wiki40b", "cs") print(dataset) ``` I am getting this error. @lhoestq I will be grateful if you could assist me with this error. For almost all languages except english I am getting this error. I really need majority of languages in this dataset to be able to train my models for a deadline and your great scalable super well-written library is my only hope to train the models at scale while being low on resources. thank you very much. ``` (fast) dara@vgne046:/user/dara/dev/codes/seq2seq$ python test_data.py Downloading and preparing dataset wiki40b/cs (download: Unknown size, generated: Unknown size, post-processed: Unknown size, total: Unknown size) to temp/dara/cache_home_2/datasets/wiki40b/cs/1.1.0/063778187363ffb294896eaa010fc254b42b73e31117c71573a953b0b0bf010f... Traceback (most recent call last): File "test_data.py", line 3, in <module> dataset = load_dataset("wiki40b", "cs") File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/datasets/load.py", line 746, in load_dataset use_auth_token=use_auth_token, File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/datasets/builder.py", line 579, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/datasets/builder.py", line 1105, in _download_and_prepare import apache_beam as beam File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/apache_beam-2.28.0-py3.7-linux-x86_64.egg/apache_beam/__init__.py", line 96, in <module> from apache_beam import io File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/apache_beam-2.28.0-py3.7-linux-x86_64.egg/apache_beam/io/__init__.py", line 23, in <module> from apache_beam.io.avroio import * File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/apache_beam-2.28.0-py3.7-linux-x86_64.egg/apache_beam/io/avroio.py", line 55, in <module> import avro File "<frozen importlib._bootstrap>", line 983, in _find_and_load File "<frozen importlib._bootstrap>", line 967, in _find_and_load_unlocked File "<frozen importlib._bootstrap>", line 668, in _load_unlocked File "<frozen importlib._bootstrap>", line 638, in _load_backward_compatible File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/avro_python3-1.9.2.1-py3.7.egg/avro/__init__.py", line 34, in <module> File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/avro_python3-1.9.2.1-py3.7.egg/avro/__init__.py", line 30, in LoadResource NotADirectoryError: [Errno 20] Not a directory: '/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/avro_python3-1.9.2.1-py3.7.egg/avro/VERSION.txt' ```
83
wiki40b/wikipedia for almost all languages cannot be downloaded Hi I am trying to download the data as below: ``` from datasets import load_dataset dataset = load_dataset("wiki40b", "cs") print(dataset) ``` I am getting this error. @lhoestq I will be grateful if you could assist me with this error. For almost all languages except english I am getting this error. I really need majority of languages in this dataset to be able to train my models for a deadline and your great scalable super well-written library is my only hope to train the models at scale while being low on resources. thank you very much. ``` (fast) dara@vgne046:/user/dara/dev/codes/seq2seq$ python test_data.py Downloading and preparing dataset wiki40b/cs (download: Unknown size, generated: Unknown size, post-processed: Unknown size, total: Unknown size) to temp/dara/cache_home_2/datasets/wiki40b/cs/1.1.0/063778187363ffb294896eaa010fc254b42b73e31117c71573a953b0b0bf010f... Traceback (most recent call last): File "test_data.py", line 3, in <module> dataset = load_dataset("wiki40b", "cs") File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/datasets/load.py", line 746, in load_dataset use_auth_token=use_auth_token, File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/datasets/builder.py", line 579, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/datasets/builder.py", line 1105, in _download_and_prepare import apache_beam as beam File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/apache_beam-2.28.0-py3.7-linux-x86_64.egg/apache_beam/__init__.py", line 96, in <module> from apache_beam import io File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/apache_beam-2.28.0-py3.7-linux-x86_64.egg/apache_beam/io/__init__.py", line 23, in <module> from apache_beam.io.avroio import * File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/apache_beam-2.28.0-py3.7-linux-x86_64.egg/apache_beam/io/avroio.py", line 55, in <module> import avro File "<frozen importlib._bootstrap>", line 983, in _find_and_load File "<frozen importlib._bootstrap>", line 967, in _find_and_load_unlocked File "<frozen importlib._bootstrap>", line 668, in _load_unlocked File "<frozen importlib._bootstrap>", line 638, in _load_backward_compatible File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/avro_python3-1.9.2.1-py3.7.egg/avro/__init__.py", line 34, in <module> File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/avro_python3-1.9.2.1-py3.7.egg/avro/__init__.py", line 30, in LoadResource NotADirectoryError: [Errno 20] Not a directory: '/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/avro_python3-1.9.2.1-py3.7.egg/avro/VERSION.txt' ``` Hi @dorost1234, Try installing this library first, `pip install 'apache-beam[gcp]' --use-feature=2020-resolver` followed by loading dataset like this using beam runner. `dataset = load_dataset("wiki40b", "cs", beam_runner='DirectRunner')` I also read in error stack trace that: > Trying to generate a dataset using Apache Beam, yet no Beam Runner or PipelineOptions() has been provided in `load_dataset` or in the builder arguments. For big datasets it has to run on large-scale data processing tools like Dataflow, Spark, etc. Worked perfectly fine after this (Ignore these warnings) ![image](https://user-images.githubusercontent.com/19718818/110908410-c7e2ce00-8334-11eb-8d10-7354359e9ec3.png)
[ -0.2544980943, -0.0779203922, -0.1537583023, 0.4308665693, 0.3997027874, 0.3504618108, 0.1368505955, 0.5331581235, 0.1893273741, 0.0235844627, -0.1773032993, -0.0942177325, 0.0944039673, 0.0111838356, -0.0297048613, -0.4591734409, -0.0672903955, 0.0295372121, -0.1352711022, -0.1168933213, -0.2519629598, 0.1256148666, -0.0791748315, -0.0490287244, -0.0387458354, -0.1828400791, -0.0958353654, -0.2073056251, -0.3507466912, -0.2408646047, 0.3545784652, 0.0192575045, 0.3101118207, 0.1529971063, -0.0001114368, -0.0509648919, 0.3131164014, -0.2357944846, -0.2936121821, -0.2888575792, -0.0720895901, -0.3261859417, -0.0904391259, -0.4200315475, 0.1274462193, 0.0466824137, 0.0806714669, -0.1318009794, 0.0757574588, 0.2992253006, 0.2468712628, -0.1426033527, 0.3134340644, -0.1457377225, 0.3651964068, -0.3777082264, -0.0280338377, 0.3395859897, 0.2187205851, 0.0713427216, 0.2154793739, 0.2220427394, -0.2341406941, 0.0134995393, 0.0482247174, -0.2912237346, 0.2222054899, -0.6297014952, 0.5206415057, 0.5344282389, 0.8290325403, -0.1283515543, -0.0874670148, 0.0723919421, -0.0260593556, -0.0313743465, -0.055740077, 0.4819797873, -0.1893263608, 0.0975979418, 0.1261649877, -0.1254300475, -0.1567188501, 0.4228464663, -0.1241364852, 0.4435882568, -0.0527198985, 0.2112595141, -0.0216666255, -0.102701813, -0.2636416256, -0.0696594715, -0.096159853, 0.2933216393, -0.2793980837, 0.019635722, -0.1615017503, 0.0556469783, 0.3511351347, -0.1503834128, -0.2346211374, -0.0450780764, 0.0960105732, 0.1575746238, 0.1801502407, 0.1637833863, 0.0620480925, -0.2000063807, 0.2782809138, 0.3079039752, -0.0842120126, -0.0761707574, -0.2100430727, -0.223056376, -0.2947567999, 0.0944294631, 0.0875294209, -0.2031711042, -0.1779465973, 0.0071132444, -0.1443609744, -0.0194387883, -0.2023949325, 0.3628211319, -0.150142923, 0.4312383831, 0.1779013574, 0.3288218677, -0.1035725772, -0.2613096237, -0.0173522905, 0.3065481186, -0.1393198222, -0.1036602259, 0.2187826782, -0.1099158973, 0.2648517191, -0.0893723071, -0.1031380296, -0.1764119267, -0.153690964, -0.3695676923, -0.1791032255, 0.2304090708, 0.1619766951, 0.2839275897, 0.1476142257, -0.2447477877, -0.2305806428, 0.1207451373, -0.3596145809, -0.1681547314, -0.2051545531, 0.1944684535, 0.0610983893, -0.0546504818, -0.3160063624, 0.2876639962, 0.3030639291, -0.1423989236, 0.118072845, -0.0075458987, -0.0232542455, -0.2251897305, 0.1790114045, 0.4908003807, -0.399959445, 0.0918976963, -0.023850657, -0.0337116867, 0.1897820383, 0.1842968464, -0.177952528, 0.25654158, -0.0978841782, 0.0381604433, 0.2101309747, -0.3214418292, -0.577635169, 0.1860538572, 0.1134095564, -0.1670033634, 0.0994795859, 0.0160008743, 0.2750304043, -0.0493874773, 0.0524543673, 0.3956745267, 0.1368377656, -0.1056450084, -0.3274506927, -0.5078234673, 0.3264816999, 0.1633175761, 0.4547143877, -0.1322698593, 0.2759853303, 0.2917215526, 0.3191740811, -0.1915476471, 0.1246786341, 0.2333604097, -0.0089483699, -0.0445757024, -0.0025623105, -0.3310274482, -0.3097582459, 0.1477600038, 0.1029132903, 0.1654649079, -0.1609552503, 0.0296833292, -0.3161897063, -0.0888076052, -0.1953117102, 0.103268832, 0.1995638311, -0.1052768379, 0.119593136, 0.485458374, 0.12651667, -0.0994595736, -0.415690273, -0.0948528498, -0.1789346635, 0.0923319161, -0.2174283415, 0.204492107, 0.0336809307, 0.025808936, 0.1796841472, 0.0730526596, -0.1607237756, -0.0110611115, -0.0784519166, -0.1035446078, 0.1354628652, 0.1169638559, 0.1331282556, -0.4173748493, 0.1920300871, 0.1084798574, 0.329746455, -0.1357725263, 0.1178164184, 0.1222370416, 0.0399735123, 0.3655341566, 0.1234309673, 0.1498312652, 0.4555992186, 0.0305262208, 0.1263546646, -0.0049749911, 0.3271190524, 0.1556601673, 0.0127487481, -0.1329595447, -0.029277496, -0.113514185, 0.3166725636, -0.0845337585, 0.2671486139, 0.2927594781, -0.0765188709, -0.0048597306, -0.0978271887, 0.1533987373, 0.0522076972, 0.0699051321, 0.1065891907, -0.0998439118, 0.3596490026, -0.1293926835, 0.2643094361, 0.1755418181, 0.1863328815, 0.2091354728, 0.1350801587, -0.0111756194, -0.1882828176, -0.1296792477, 0.0699940249, 0.3717177212, 0.0691838264, 0.1659455299, -0.0484347418, -0.1418599188, 0.0841908157, -0.052392181, -0.2509430945, -0.2163173556, -0.1256381869, -0.0857284963, 0.0915832594, -0.0001049675, -0.3266667724, -0.0721022189, 0.0621664599, -0.3203503489, -0.1605682224, -0.298122853, -0.368449837, 0.0767874122, 0.387129724, 0.1112902611, 0.2952098846, -0.3326289654, -0.1918787807, -0.0899461061, -0.2681113482, -0.0143136587, -0.1569703817, 0.2413950115, -0.0241168067, 0.7152199149, -0.1799962223, -0.2514213324, 0.184648633, -0.0070199743, 0.0658745542, 0.2497711182, -0.1534786224, -0.0429238901, 0.0845355988, -0.485653311, -0.515576601, -0.2696562707, 0.0125193018, 0.0485177934, 0.0878062025, 0.1686408371, 0.192484051, 0.0680268556, 0.1211878806, 0.1809064746, -0.1900434047, -0.1518693268, 0.4496892393, -0.0274133831, -0.4299623072, 0.188186571, 0.0109940469, 0.3149319291, 0.0079272352, -0.6572358608, 0.1441125125, -0.2763589025, 0.2499429733, -0.0219931006, 0.1834769845, 0.114344269, -0.2136969417, 0.0479722694, 0.0449954867, 0.1059099361, -0.040621087, -0.2095249593, 0.2556222677, 0.0299455188, 0.2961854041, 0.1644206494, 0.6888412237, 0.0548556149, 0.1658408046, 0.4367814064, 0.2385820597, 0.2310311794, -0.2314288169, -0.3645713925, 0.0605744086, -0.2394920886, -0.031003058, 0.2670124471, -0.162319988, -0.4674171805, -0.3477125168, -0.2426845282, -0.3674673736, -0.2107712477, 0.1539979279, -0.0501818061, 0.082940504, 0.0575964078, 0.1203985885, 0.0215731636, -0.2823500931, 0.2137889713, 0.5317090154, -0.2486013621, 0.1685893983, -0.2782665193, -0.3421222866, -0.4126344323, 0.2524553537, 0.0777070895, 0.4147610366, -0.0938023105, 0.3499189019, 0.2011798322, -0.0892689079, 0.29062289, -0.1702442914, 0.1230506301, 0.1972467899, 0.1049929112, -0.2152170837, -0.0624400601, -0.2943331003, -0.0166880898, 0.3054167032, -0.0444555506, -0.6709657311, 0.0843290389, -0.0425857566, 0.5003298521, -0.0571770817, -0.0173499174, -0.1618569046, -0.5653647184, -0.4854038954, -0.0276873522, 0.1895758212, 0.4046096206, -0.1972091496, 0.2628989816, -0.1020785645, 0.2205627859, 0.0213166662, 0.0077354982, 0.2132564187, 0.2327860445, 0.0974325836, -0.1967879534, -0.1378472447, 0.15032655, 0.3620435596, -0.0635322034, -0.2343122214, -0.1212477535, -0.0430036522, 0.0434830859, 0.1415461898, -0.101290524, 0.047706943, 0.1486631781, -0.137935102, 0.1658205688, -0.0128415711, 0.2519465983, -0.1063374802, -0.496234715, -0.5676655769, 0.6620465517, 0.0233820751, 0.0701420158, 0.2541714609, 0.1754048467, -0.1958613545, 0.3753730059, 0.1058034673, 1.1372189522, -0.2281342149, 0.1104203761, -0.1039843038, 0.1094664782, 0.3614170253, -0.3578396738, 0.208407253, -0.3226416111, -0.1089070588, -0.0195197351, 0.0736747012, -0.0461387485, 0.0998933241, -0.3072272539, 0.2564416528, -0.3662325144, -0.0869540572, 0.1056493521, 0.2329858243, -0.4058891535, -0.0680367798, -0.3213796318, 0.1196287572, -0.2146602869, 0.2546931207, -0.2110012174, -0.1254786551, -0.061424572, -0.2672703862, -0.5050507784, 0.070643574, -0.2883503139, 0.3298687041, -0.4893510938, -0.189774543, 0.3386202455, 0.4448713958, 0.0414798521, 0.4031542242, -0.2879834175, 0.1116522104, -0.263861239, -0.423619777, 0.0944911912, 0.0112071671, 0.0871337876, -0.1816289872, -0.3709903359, 0.1669727117, -0.0575723127, 0.0528491586, -0.0959876478, 0.1043775529, 0.2016539872, -0.0458974987, -0.3565551937, -0.0222828016, -0.0943856835, -0.0894330293, 0.1241666228, 0.0821967572, -0.1119038314, 0.1409133375, 0.1852951944, -0.3349809051, 0.0217914172, 0.3491057754, 0.1834492087, 0.0239539966, 0.6245266199, 0.3155457377, -0.3965406716, -0.1898149252, 0.0439141914, -0.2713774443, -0.4585740864, -0.0896048397, -0.0421896465, 0.3383432627, -0.4149284959, 0.3502536714, 0.1749068648, -0.2348314226, 0.2064643502, -0.7065885067, -0.1240217313, 0.2160939574, -0.0789091662, 0.0065748976, 0.0840708017, -0.30959934, 0.1218284369, 0.2352634966, -0.2610889673, 0.2092307359, -0.3233409226, 0.1007636189, 0.0994939283, 0.0633323044, 0.0223014504, 0.1991024166, 0.0650480315, 0.0691617727, -0.0496639088, -0.2599099278, -0.0702273548, 0.1948126853, 0.205114007, -0.0579007193, 0.2278749943, -0.5071965456, -0.1686701477, 0.0822388381, -0.0584756732, 0.1155844331, 0.0038600247, 0.1811006814, 0.2013252676, 0.2885710597, -0.3500798345, 0.2458776534, -0.0869046748, 0.2614989579, 0.1408280283, 0.07593593, 0.4579921663, 0.0213007778, -0.3352100253, -0.0335409567, -0.0300774835, 0.0866356418, 0.2558809817, -0.233358562, 0.300347209, 0.198920697, -0.1174949631, 0.5623857379, -0.1496047378, 0.2065961957, 0.4130832553, 0.1872232705, -0.369863838, 0.0016460642, 0.2932012379, -0.0966371149, -0.0709825084, 0.0759613067, 0.2589091659, -0.3223279715, 0.1137204766, -0.0657392666, 0.1647822559, -0.0565514416, 0.1922588348, 0.6700764298, 0.2270729095, 0.0499260873, -0.0694645271, 0.1699931175, 0.0953946412, 0.3628065586, -0.2234564424, 0.1927638352, -0.0520042777, 0.0246352106, -0.1621609479, -0.3400559425, 0.2986115217, 0.1632018387, -0.0247745402, 0.0986763462, -0.172257483, 0.2616477609, 0.1543591619, 0.0302231647, -0.2611559331, 0.1914432049, -0.1224777997, -0.0129828155, -0.0442104824, -0.2680072784, 0.0015668869, 0.1556259841, -0.0046619838, -0.3565733731, 0.2555732429, 0.3037430048, -0.2440860868, -0.4411395192, 0.1348090917, 0.212492615, 0.0311707221, -0.3002212942, 0.1577610523, 0.4137803316, 0.0780922323, -0.1270552874, 0.2019163519, 0.4433458745, 0.4205472767, -0.3373265266, 0.0424413942, 0.0753406212, -0.0656808019, -0.0233783536, 0.2276100814, 0.4672247767, 0.2502681613, 0.3970100284, 0.1184259653, -0.1416000128, -0.031975396, 0.2360502481, -0.0639188141, -0.0566705838, -0.0451857932, -0.0590354763, 0.1407209486, -0.4205533266, -0.0135846995, -0.5078690052, 0.3400223851, 0.1610560864, 0.0025874451, 0.177529186, -0.0925812125, 0.0479857475, -0.1569758505, 0.3962932825, 0.3195853829, 0.1991413683, -0.3908326626, -0.0089955479, -0.4645192027, -0.018635571, -0.2982346117, 0.1121006534, -0.0814325362, 0.1286558807, 0.0755082965, 0.2132718563, 0.036632318, 0.0450983681, 0.0668025166, 0.4949165583, -0.2315313965, -0.2447034419, -0.1948167384, 0.2191624641, -0.1583236754, -0.3909314275, 0.0575938486, -0.1385610253, 0.0340730473, -0.3200198114, -0.0665003657, 0.0955725014, 0.0059600119, 0.332428515, 0.1523780823, 0.5925300717, -0.1540946811, -0.2021767795, -0.2086715847, -0.0110699423, -0.1599349231, 0.3116775751, 0.1967295557, 0.0989066958, -0.1607933789, -0.1119711921, -0.0295641012, 0.2984873056, -0.0448160134, 0.1949228942, -0.3669615686, -0.3863568008, 0.057917431, 0.1138559952, 0.1190271452, 0.0469262153, -0.1308563054, -0.0533181056, -0.3421496153, -0.3086864054, 0.3866544366, -0.3773034811, -0.5697818398, -0.0921549499, 0.0079287291, 0.0470565483, 0.1902976483, -0.3660884202, 0.2775550485, 0.3897728622, 0.0513336472, -0.1509680748, 0.1664217561, 0.0286486112, -0.0162156448, -0.0940432623, 0.1160702854, -0.0082844896, -0.3563149273, -0.220584631, -0.391258359 ]
https://github.com/huggingface/datasets/issues/2035
wiki40b/wikipedia for almost all languages cannot be downloaded
For wikipedia dataset, looks like the files it's looking for are no longer available. For `bg`, I checked [here](https://dumps.wikimedia.org/bgwiki/). For this I think `dataset_infos.json` for this dataset has to made again? You'll have to load this dataset also using beam runner.
Hi I am trying to download the data as below: ``` from datasets import load_dataset dataset = load_dataset("wiki40b", "cs") print(dataset) ``` I am getting this error. @lhoestq I will be grateful if you could assist me with this error. For almost all languages except english I am getting this error. I really need majority of languages in this dataset to be able to train my models for a deadline and your great scalable super well-written library is my only hope to train the models at scale while being low on resources. thank you very much. ``` (fast) dara@vgne046:/user/dara/dev/codes/seq2seq$ python test_data.py Downloading and preparing dataset wiki40b/cs (download: Unknown size, generated: Unknown size, post-processed: Unknown size, total: Unknown size) to temp/dara/cache_home_2/datasets/wiki40b/cs/1.1.0/063778187363ffb294896eaa010fc254b42b73e31117c71573a953b0b0bf010f... Traceback (most recent call last): File "test_data.py", line 3, in <module> dataset = load_dataset("wiki40b", "cs") File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/datasets/load.py", line 746, in load_dataset use_auth_token=use_auth_token, File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/datasets/builder.py", line 579, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/datasets/builder.py", line 1105, in _download_and_prepare import apache_beam as beam File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/apache_beam-2.28.0-py3.7-linux-x86_64.egg/apache_beam/__init__.py", line 96, in <module> from apache_beam import io File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/apache_beam-2.28.0-py3.7-linux-x86_64.egg/apache_beam/io/__init__.py", line 23, in <module> from apache_beam.io.avroio import * File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/apache_beam-2.28.0-py3.7-linux-x86_64.egg/apache_beam/io/avroio.py", line 55, in <module> import avro File "<frozen importlib._bootstrap>", line 983, in _find_and_load File "<frozen importlib._bootstrap>", line 967, in _find_and_load_unlocked File "<frozen importlib._bootstrap>", line 668, in _load_unlocked File "<frozen importlib._bootstrap>", line 638, in _load_backward_compatible File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/avro_python3-1.9.2.1-py3.7.egg/avro/__init__.py", line 34, in <module> File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/avro_python3-1.9.2.1-py3.7.egg/avro/__init__.py", line 30, in LoadResource NotADirectoryError: [Errno 20] Not a directory: '/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/avro_python3-1.9.2.1-py3.7.egg/avro/VERSION.txt' ```
41
wiki40b/wikipedia for almost all languages cannot be downloaded Hi I am trying to download the data as below: ``` from datasets import load_dataset dataset = load_dataset("wiki40b", "cs") print(dataset) ``` I am getting this error. @lhoestq I will be grateful if you could assist me with this error. For almost all languages except english I am getting this error. I really need majority of languages in this dataset to be able to train my models for a deadline and your great scalable super well-written library is my only hope to train the models at scale while being low on resources. thank you very much. ``` (fast) dara@vgne046:/user/dara/dev/codes/seq2seq$ python test_data.py Downloading and preparing dataset wiki40b/cs (download: Unknown size, generated: Unknown size, post-processed: Unknown size, total: Unknown size) to temp/dara/cache_home_2/datasets/wiki40b/cs/1.1.0/063778187363ffb294896eaa010fc254b42b73e31117c71573a953b0b0bf010f... Traceback (most recent call last): File "test_data.py", line 3, in <module> dataset = load_dataset("wiki40b", "cs") File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/datasets/load.py", line 746, in load_dataset use_auth_token=use_auth_token, File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/datasets/builder.py", line 579, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/datasets/builder.py", line 1105, in _download_and_prepare import apache_beam as beam File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/apache_beam-2.28.0-py3.7-linux-x86_64.egg/apache_beam/__init__.py", line 96, in <module> from apache_beam import io File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/apache_beam-2.28.0-py3.7-linux-x86_64.egg/apache_beam/io/__init__.py", line 23, in <module> from apache_beam.io.avroio import * File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/apache_beam-2.28.0-py3.7-linux-x86_64.egg/apache_beam/io/avroio.py", line 55, in <module> import avro File "<frozen importlib._bootstrap>", line 983, in _find_and_load File "<frozen importlib._bootstrap>", line 967, in _find_and_load_unlocked File "<frozen importlib._bootstrap>", line 668, in _load_unlocked File "<frozen importlib._bootstrap>", line 638, in _load_backward_compatible File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/avro_python3-1.9.2.1-py3.7.egg/avro/__init__.py", line 34, in <module> File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/avro_python3-1.9.2.1-py3.7.egg/avro/__init__.py", line 30, in LoadResource NotADirectoryError: [Errno 20] Not a directory: '/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/avro_python3-1.9.2.1-py3.7.egg/avro/VERSION.txt' ``` For wikipedia dataset, looks like the files it's looking for are no longer available. For `bg`, I checked [here](https://dumps.wikimedia.org/bgwiki/). For this I think `dataset_infos.json` for this dataset has to made again? You'll have to load this dataset also using beam runner.
[ -0.2544980943, -0.0779203922, -0.1537583023, 0.4308665693, 0.3997027874, 0.3504618108, 0.1368505955, 0.5331581235, 0.1893273741, 0.0235844627, -0.1773032993, -0.0942177325, 0.0944039673, 0.0111838356, -0.0297048613, -0.4591734409, -0.0672903955, 0.0295372121, -0.1352711022, -0.1168933213, -0.2519629598, 0.1256148666, -0.0791748315, -0.0490287244, -0.0387458354, -0.1828400791, -0.0958353654, -0.2073056251, -0.3507466912, -0.2408646047, 0.3545784652, 0.0192575045, 0.3101118207, 0.1529971063, -0.0001114368, -0.0509648919, 0.3131164014, -0.2357944846, -0.2936121821, -0.2888575792, -0.0720895901, -0.3261859417, -0.0904391259, -0.4200315475, 0.1274462193, 0.0466824137, 0.0806714669, -0.1318009794, 0.0757574588, 0.2992253006, 0.2468712628, -0.1426033527, 0.3134340644, -0.1457377225, 0.3651964068, -0.3777082264, -0.0280338377, 0.3395859897, 0.2187205851, 0.0713427216, 0.2154793739, 0.2220427394, -0.2341406941, 0.0134995393, 0.0482247174, -0.2912237346, 0.2222054899, -0.6297014952, 0.5206415057, 0.5344282389, 0.8290325403, -0.1283515543, -0.0874670148, 0.0723919421, -0.0260593556, -0.0313743465, -0.055740077, 0.4819797873, -0.1893263608, 0.0975979418, 0.1261649877, -0.1254300475, -0.1567188501, 0.4228464663, -0.1241364852, 0.4435882568, -0.0527198985, 0.2112595141, -0.0216666255, -0.102701813, -0.2636416256, -0.0696594715, -0.096159853, 0.2933216393, -0.2793980837, 0.019635722, -0.1615017503, 0.0556469783, 0.3511351347, -0.1503834128, -0.2346211374, -0.0450780764, 0.0960105732, 0.1575746238, 0.1801502407, 0.1637833863, 0.0620480925, -0.2000063807, 0.2782809138, 0.3079039752, -0.0842120126, -0.0761707574, -0.2100430727, -0.223056376, -0.2947567999, 0.0944294631, 0.0875294209, -0.2031711042, -0.1779465973, 0.0071132444, -0.1443609744, -0.0194387883, -0.2023949325, 0.3628211319, -0.150142923, 0.4312383831, 0.1779013574, 0.3288218677, -0.1035725772, -0.2613096237, -0.0173522905, 0.3065481186, -0.1393198222, -0.1036602259, 0.2187826782, -0.1099158973, 0.2648517191, -0.0893723071, -0.1031380296, -0.1764119267, -0.153690964, -0.3695676923, -0.1791032255, 0.2304090708, 0.1619766951, 0.2839275897, 0.1476142257, -0.2447477877, -0.2305806428, 0.1207451373, -0.3596145809, -0.1681547314, -0.2051545531, 0.1944684535, 0.0610983893, -0.0546504818, -0.3160063624, 0.2876639962, 0.3030639291, -0.1423989236, 0.118072845, -0.0075458987, -0.0232542455, -0.2251897305, 0.1790114045, 0.4908003807, -0.399959445, 0.0918976963, -0.023850657, -0.0337116867, 0.1897820383, 0.1842968464, -0.177952528, 0.25654158, -0.0978841782, 0.0381604433, 0.2101309747, -0.3214418292, -0.577635169, 0.1860538572, 0.1134095564, -0.1670033634, 0.0994795859, 0.0160008743, 0.2750304043, -0.0493874773, 0.0524543673, 0.3956745267, 0.1368377656, -0.1056450084, -0.3274506927, -0.5078234673, 0.3264816999, 0.1633175761, 0.4547143877, -0.1322698593, 0.2759853303, 0.2917215526, 0.3191740811, -0.1915476471, 0.1246786341, 0.2333604097, -0.0089483699, -0.0445757024, -0.0025623105, -0.3310274482, -0.3097582459, 0.1477600038, 0.1029132903, 0.1654649079, -0.1609552503, 0.0296833292, -0.3161897063, -0.0888076052, -0.1953117102, 0.103268832, 0.1995638311, -0.1052768379, 0.119593136, 0.485458374, 0.12651667, -0.0994595736, -0.415690273, -0.0948528498, -0.1789346635, 0.0923319161, -0.2174283415, 0.204492107, 0.0336809307, 0.025808936, 0.1796841472, 0.0730526596, -0.1607237756, -0.0110611115, -0.0784519166, -0.1035446078, 0.1354628652, 0.1169638559, 0.1331282556, -0.4173748493, 0.1920300871, 0.1084798574, 0.329746455, -0.1357725263, 0.1178164184, 0.1222370416, 0.0399735123, 0.3655341566, 0.1234309673, 0.1498312652, 0.4555992186, 0.0305262208, 0.1263546646, -0.0049749911, 0.3271190524, 0.1556601673, 0.0127487481, -0.1329595447, -0.029277496, -0.113514185, 0.3166725636, -0.0845337585, 0.2671486139, 0.2927594781, -0.0765188709, -0.0048597306, -0.0978271887, 0.1533987373, 0.0522076972, 0.0699051321, 0.1065891907, -0.0998439118, 0.3596490026, -0.1293926835, 0.2643094361, 0.1755418181, 0.1863328815, 0.2091354728, 0.1350801587, -0.0111756194, -0.1882828176, -0.1296792477, 0.0699940249, 0.3717177212, 0.0691838264, 0.1659455299, -0.0484347418, -0.1418599188, 0.0841908157, -0.052392181, -0.2509430945, -0.2163173556, -0.1256381869, -0.0857284963, 0.0915832594, -0.0001049675, -0.3266667724, -0.0721022189, 0.0621664599, -0.3203503489, -0.1605682224, -0.298122853, -0.368449837, 0.0767874122, 0.387129724, 0.1112902611, 0.2952098846, -0.3326289654, -0.1918787807, -0.0899461061, -0.2681113482, -0.0143136587, -0.1569703817, 0.2413950115, -0.0241168067, 0.7152199149, -0.1799962223, -0.2514213324, 0.184648633, -0.0070199743, 0.0658745542, 0.2497711182, -0.1534786224, -0.0429238901, 0.0845355988, -0.485653311, -0.515576601, -0.2696562707, 0.0125193018, 0.0485177934, 0.0878062025, 0.1686408371, 0.192484051, 0.0680268556, 0.1211878806, 0.1809064746, -0.1900434047, -0.1518693268, 0.4496892393, -0.0274133831, -0.4299623072, 0.188186571, 0.0109940469, 0.3149319291, 0.0079272352, -0.6572358608, 0.1441125125, -0.2763589025, 0.2499429733, -0.0219931006, 0.1834769845, 0.114344269, -0.2136969417, 0.0479722694, 0.0449954867, 0.1059099361, -0.040621087, -0.2095249593, 0.2556222677, 0.0299455188, 0.2961854041, 0.1644206494, 0.6888412237, 0.0548556149, 0.1658408046, 0.4367814064, 0.2385820597, 0.2310311794, -0.2314288169, -0.3645713925, 0.0605744086, -0.2394920886, -0.031003058, 0.2670124471, -0.162319988, -0.4674171805, -0.3477125168, -0.2426845282, -0.3674673736, -0.2107712477, 0.1539979279, -0.0501818061, 0.082940504, 0.0575964078, 0.1203985885, 0.0215731636, -0.2823500931, 0.2137889713, 0.5317090154, -0.2486013621, 0.1685893983, -0.2782665193, -0.3421222866, -0.4126344323, 0.2524553537, 0.0777070895, 0.4147610366, -0.0938023105, 0.3499189019, 0.2011798322, -0.0892689079, 0.29062289, -0.1702442914, 0.1230506301, 0.1972467899, 0.1049929112, -0.2152170837, -0.0624400601, -0.2943331003, -0.0166880898, 0.3054167032, -0.0444555506, -0.6709657311, 0.0843290389, -0.0425857566, 0.5003298521, -0.0571770817, -0.0173499174, -0.1618569046, -0.5653647184, -0.4854038954, -0.0276873522, 0.1895758212, 0.4046096206, -0.1972091496, 0.2628989816, -0.1020785645, 0.2205627859, 0.0213166662, 0.0077354982, 0.2132564187, 0.2327860445, 0.0974325836, -0.1967879534, -0.1378472447, 0.15032655, 0.3620435596, -0.0635322034, -0.2343122214, -0.1212477535, -0.0430036522, 0.0434830859, 0.1415461898, -0.101290524, 0.047706943, 0.1486631781, -0.137935102, 0.1658205688, -0.0128415711, 0.2519465983, -0.1063374802, -0.496234715, -0.5676655769, 0.6620465517, 0.0233820751, 0.0701420158, 0.2541714609, 0.1754048467, -0.1958613545, 0.3753730059, 0.1058034673, 1.1372189522, -0.2281342149, 0.1104203761, -0.1039843038, 0.1094664782, 0.3614170253, -0.3578396738, 0.208407253, -0.3226416111, -0.1089070588, -0.0195197351, 0.0736747012, -0.0461387485, 0.0998933241, -0.3072272539, 0.2564416528, -0.3662325144, -0.0869540572, 0.1056493521, 0.2329858243, -0.4058891535, -0.0680367798, -0.3213796318, 0.1196287572, -0.2146602869, 0.2546931207, -0.2110012174, -0.1254786551, -0.061424572, -0.2672703862, -0.5050507784, 0.070643574, -0.2883503139, 0.3298687041, -0.4893510938, -0.189774543, 0.3386202455, 0.4448713958, 0.0414798521, 0.4031542242, -0.2879834175, 0.1116522104, -0.263861239, -0.423619777, 0.0944911912, 0.0112071671, 0.0871337876, -0.1816289872, -0.3709903359, 0.1669727117, -0.0575723127, 0.0528491586, -0.0959876478, 0.1043775529, 0.2016539872, -0.0458974987, -0.3565551937, -0.0222828016, -0.0943856835, -0.0894330293, 0.1241666228, 0.0821967572, -0.1119038314, 0.1409133375, 0.1852951944, -0.3349809051, 0.0217914172, 0.3491057754, 0.1834492087, 0.0239539966, 0.6245266199, 0.3155457377, -0.3965406716, -0.1898149252, 0.0439141914, -0.2713774443, -0.4585740864, -0.0896048397, -0.0421896465, 0.3383432627, -0.4149284959, 0.3502536714, 0.1749068648, -0.2348314226, 0.2064643502, -0.7065885067, -0.1240217313, 0.2160939574, -0.0789091662, 0.0065748976, 0.0840708017, -0.30959934, 0.1218284369, 0.2352634966, -0.2610889673, 0.2092307359, -0.3233409226, 0.1007636189, 0.0994939283, 0.0633323044, 0.0223014504, 0.1991024166, 0.0650480315, 0.0691617727, -0.0496639088, -0.2599099278, -0.0702273548, 0.1948126853, 0.205114007, -0.0579007193, 0.2278749943, -0.5071965456, -0.1686701477, 0.0822388381, -0.0584756732, 0.1155844331, 0.0038600247, 0.1811006814, 0.2013252676, 0.2885710597, -0.3500798345, 0.2458776534, -0.0869046748, 0.2614989579, 0.1408280283, 0.07593593, 0.4579921663, 0.0213007778, -0.3352100253, -0.0335409567, -0.0300774835, 0.0866356418, 0.2558809817, -0.233358562, 0.300347209, 0.198920697, -0.1174949631, 0.5623857379, -0.1496047378, 0.2065961957, 0.4130832553, 0.1872232705, -0.369863838, 0.0016460642, 0.2932012379, -0.0966371149, -0.0709825084, 0.0759613067, 0.2589091659, -0.3223279715, 0.1137204766, -0.0657392666, 0.1647822559, -0.0565514416, 0.1922588348, 0.6700764298, 0.2270729095, 0.0499260873, -0.0694645271, 0.1699931175, 0.0953946412, 0.3628065586, -0.2234564424, 0.1927638352, -0.0520042777, 0.0246352106, -0.1621609479, -0.3400559425, 0.2986115217, 0.1632018387, -0.0247745402, 0.0986763462, -0.172257483, 0.2616477609, 0.1543591619, 0.0302231647, -0.2611559331, 0.1914432049, -0.1224777997, -0.0129828155, -0.0442104824, -0.2680072784, 0.0015668869, 0.1556259841, -0.0046619838, -0.3565733731, 0.2555732429, 0.3037430048, -0.2440860868, -0.4411395192, 0.1348090917, 0.212492615, 0.0311707221, -0.3002212942, 0.1577610523, 0.4137803316, 0.0780922323, -0.1270552874, 0.2019163519, 0.4433458745, 0.4205472767, -0.3373265266, 0.0424413942, 0.0753406212, -0.0656808019, -0.0233783536, 0.2276100814, 0.4672247767, 0.2502681613, 0.3970100284, 0.1184259653, -0.1416000128, -0.031975396, 0.2360502481, -0.0639188141, -0.0566705838, -0.0451857932, -0.0590354763, 0.1407209486, -0.4205533266, -0.0135846995, -0.5078690052, 0.3400223851, 0.1610560864, 0.0025874451, 0.177529186, -0.0925812125, 0.0479857475, -0.1569758505, 0.3962932825, 0.3195853829, 0.1991413683, -0.3908326626, -0.0089955479, -0.4645192027, -0.018635571, -0.2982346117, 0.1121006534, -0.0814325362, 0.1286558807, 0.0755082965, 0.2132718563, 0.036632318, 0.0450983681, 0.0668025166, 0.4949165583, -0.2315313965, -0.2447034419, -0.1948167384, 0.2191624641, -0.1583236754, -0.3909314275, 0.0575938486, -0.1385610253, 0.0340730473, -0.3200198114, -0.0665003657, 0.0955725014, 0.0059600119, 0.332428515, 0.1523780823, 0.5925300717, -0.1540946811, -0.2021767795, -0.2086715847, -0.0110699423, -0.1599349231, 0.3116775751, 0.1967295557, 0.0989066958, -0.1607933789, -0.1119711921, -0.0295641012, 0.2984873056, -0.0448160134, 0.1949228942, -0.3669615686, -0.3863568008, 0.057917431, 0.1138559952, 0.1190271452, 0.0469262153, -0.1308563054, -0.0533181056, -0.3421496153, -0.3086864054, 0.3866544366, -0.3773034811, -0.5697818398, -0.0921549499, 0.0079287291, 0.0470565483, 0.1902976483, -0.3660884202, 0.2775550485, 0.3897728622, 0.0513336472, -0.1509680748, 0.1664217561, 0.0286486112, -0.0162156448, -0.0940432623, 0.1160702854, -0.0082844896, -0.3563149273, -0.220584631, -0.391258359 ]
https://github.com/huggingface/datasets/issues/2035
wiki40b/wikipedia for almost all languages cannot be downloaded
Hello @dorost1234, Indeed, Wikipedia datasets need a lot of preprocessing and this is done using Apache Beam. That is the reason why it is required that you install Apache Beam in order to preform this preprocessing. For some specific default parameters (English Wikipedia), Hugging Face has already preprocessed the dataset for you (and it is stored in the cloud). That is the reason why you do not get the error for English: the preprocessing is already done by HF and you just get the preprocessed dataset; Apache Beam is not required in that case.
Hi I am trying to download the data as below: ``` from datasets import load_dataset dataset = load_dataset("wiki40b", "cs") print(dataset) ``` I am getting this error. @lhoestq I will be grateful if you could assist me with this error. For almost all languages except english I am getting this error. I really need majority of languages in this dataset to be able to train my models for a deadline and your great scalable super well-written library is my only hope to train the models at scale while being low on resources. thank you very much. ``` (fast) dara@vgne046:/user/dara/dev/codes/seq2seq$ python test_data.py Downloading and preparing dataset wiki40b/cs (download: Unknown size, generated: Unknown size, post-processed: Unknown size, total: Unknown size) to temp/dara/cache_home_2/datasets/wiki40b/cs/1.1.0/063778187363ffb294896eaa010fc254b42b73e31117c71573a953b0b0bf010f... Traceback (most recent call last): File "test_data.py", line 3, in <module> dataset = load_dataset("wiki40b", "cs") File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/datasets/load.py", line 746, in load_dataset use_auth_token=use_auth_token, File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/datasets/builder.py", line 579, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/datasets/builder.py", line 1105, in _download_and_prepare import apache_beam as beam File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/apache_beam-2.28.0-py3.7-linux-x86_64.egg/apache_beam/__init__.py", line 96, in <module> from apache_beam import io File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/apache_beam-2.28.0-py3.7-linux-x86_64.egg/apache_beam/io/__init__.py", line 23, in <module> from apache_beam.io.avroio import * File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/apache_beam-2.28.0-py3.7-linux-x86_64.egg/apache_beam/io/avroio.py", line 55, in <module> import avro File "<frozen importlib._bootstrap>", line 983, in _find_and_load File "<frozen importlib._bootstrap>", line 967, in _find_and_load_unlocked File "<frozen importlib._bootstrap>", line 668, in _load_unlocked File "<frozen importlib._bootstrap>", line 638, in _load_backward_compatible File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/avro_python3-1.9.2.1-py3.7.egg/avro/__init__.py", line 34, in <module> File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/avro_python3-1.9.2.1-py3.7.egg/avro/__init__.py", line 30, in LoadResource NotADirectoryError: [Errno 20] Not a directory: '/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/avro_python3-1.9.2.1-py3.7.egg/avro/VERSION.txt' ```
94
wiki40b/wikipedia for almost all languages cannot be downloaded Hi I am trying to download the data as below: ``` from datasets import load_dataset dataset = load_dataset("wiki40b", "cs") print(dataset) ``` I am getting this error. @lhoestq I will be grateful if you could assist me with this error. For almost all languages except english I am getting this error. I really need majority of languages in this dataset to be able to train my models for a deadline and your great scalable super well-written library is my only hope to train the models at scale while being low on resources. thank you very much. ``` (fast) dara@vgne046:/user/dara/dev/codes/seq2seq$ python test_data.py Downloading and preparing dataset wiki40b/cs (download: Unknown size, generated: Unknown size, post-processed: Unknown size, total: Unknown size) to temp/dara/cache_home_2/datasets/wiki40b/cs/1.1.0/063778187363ffb294896eaa010fc254b42b73e31117c71573a953b0b0bf010f... Traceback (most recent call last): File "test_data.py", line 3, in <module> dataset = load_dataset("wiki40b", "cs") File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/datasets/load.py", line 746, in load_dataset use_auth_token=use_auth_token, File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/datasets/builder.py", line 579, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/datasets/builder.py", line 1105, in _download_and_prepare import apache_beam as beam File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/apache_beam-2.28.0-py3.7-linux-x86_64.egg/apache_beam/__init__.py", line 96, in <module> from apache_beam import io File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/apache_beam-2.28.0-py3.7-linux-x86_64.egg/apache_beam/io/__init__.py", line 23, in <module> from apache_beam.io.avroio import * File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/apache_beam-2.28.0-py3.7-linux-x86_64.egg/apache_beam/io/avroio.py", line 55, in <module> import avro File "<frozen importlib._bootstrap>", line 983, in _find_and_load File "<frozen importlib._bootstrap>", line 967, in _find_and_load_unlocked File "<frozen importlib._bootstrap>", line 668, in _load_unlocked File "<frozen importlib._bootstrap>", line 638, in _load_backward_compatible File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/avro_python3-1.9.2.1-py3.7.egg/avro/__init__.py", line 34, in <module> File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/avro_python3-1.9.2.1-py3.7.egg/avro/__init__.py", line 30, in LoadResource NotADirectoryError: [Errno 20] Not a directory: '/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/avro_python3-1.9.2.1-py3.7.egg/avro/VERSION.txt' ``` Hello @dorost1234, Indeed, Wikipedia datasets need a lot of preprocessing and this is done using Apache Beam. That is the reason why it is required that you install Apache Beam in order to preform this preprocessing. For some specific default parameters (English Wikipedia), Hugging Face has already preprocessed the dataset for you (and it is stored in the cloud). That is the reason why you do not get the error for English: the preprocessing is already done by HF and you just get the preprocessed dataset; Apache Beam is not required in that case.
[ -0.2544980943, -0.0779203922, -0.1537583023, 0.4308665693, 0.3997027874, 0.3504618108, 0.1368505955, 0.5331581235, 0.1893273741, 0.0235844627, -0.1773032993, -0.0942177325, 0.0944039673, 0.0111838356, -0.0297048613, -0.4591734409, -0.0672903955, 0.0295372121, -0.1352711022, -0.1168933213, -0.2519629598, 0.1256148666, -0.0791748315, -0.0490287244, -0.0387458354, -0.1828400791, -0.0958353654, -0.2073056251, -0.3507466912, -0.2408646047, 0.3545784652, 0.0192575045, 0.3101118207, 0.1529971063, -0.0001114368, -0.0509648919, 0.3131164014, -0.2357944846, -0.2936121821, -0.2888575792, -0.0720895901, -0.3261859417, -0.0904391259, -0.4200315475, 0.1274462193, 0.0466824137, 0.0806714669, -0.1318009794, 0.0757574588, 0.2992253006, 0.2468712628, -0.1426033527, 0.3134340644, -0.1457377225, 0.3651964068, -0.3777082264, -0.0280338377, 0.3395859897, 0.2187205851, 0.0713427216, 0.2154793739, 0.2220427394, -0.2341406941, 0.0134995393, 0.0482247174, -0.2912237346, 0.2222054899, -0.6297014952, 0.5206415057, 0.5344282389, 0.8290325403, -0.1283515543, -0.0874670148, 0.0723919421, -0.0260593556, -0.0313743465, -0.055740077, 0.4819797873, -0.1893263608, 0.0975979418, 0.1261649877, -0.1254300475, -0.1567188501, 0.4228464663, -0.1241364852, 0.4435882568, -0.0527198985, 0.2112595141, -0.0216666255, -0.102701813, -0.2636416256, -0.0696594715, -0.096159853, 0.2933216393, -0.2793980837, 0.019635722, -0.1615017503, 0.0556469783, 0.3511351347, -0.1503834128, -0.2346211374, -0.0450780764, 0.0960105732, 0.1575746238, 0.1801502407, 0.1637833863, 0.0620480925, -0.2000063807, 0.2782809138, 0.3079039752, -0.0842120126, -0.0761707574, -0.2100430727, -0.223056376, -0.2947567999, 0.0944294631, 0.0875294209, -0.2031711042, -0.1779465973, 0.0071132444, -0.1443609744, -0.0194387883, -0.2023949325, 0.3628211319, -0.150142923, 0.4312383831, 0.1779013574, 0.3288218677, -0.1035725772, -0.2613096237, -0.0173522905, 0.3065481186, -0.1393198222, -0.1036602259, 0.2187826782, -0.1099158973, 0.2648517191, -0.0893723071, -0.1031380296, -0.1764119267, -0.153690964, -0.3695676923, -0.1791032255, 0.2304090708, 0.1619766951, 0.2839275897, 0.1476142257, -0.2447477877, -0.2305806428, 0.1207451373, -0.3596145809, -0.1681547314, -0.2051545531, 0.1944684535, 0.0610983893, -0.0546504818, -0.3160063624, 0.2876639962, 0.3030639291, -0.1423989236, 0.118072845, -0.0075458987, -0.0232542455, -0.2251897305, 0.1790114045, 0.4908003807, -0.399959445, 0.0918976963, -0.023850657, -0.0337116867, 0.1897820383, 0.1842968464, -0.177952528, 0.25654158, -0.0978841782, 0.0381604433, 0.2101309747, -0.3214418292, -0.577635169, 0.1860538572, 0.1134095564, -0.1670033634, 0.0994795859, 0.0160008743, 0.2750304043, -0.0493874773, 0.0524543673, 0.3956745267, 0.1368377656, -0.1056450084, -0.3274506927, -0.5078234673, 0.3264816999, 0.1633175761, 0.4547143877, -0.1322698593, 0.2759853303, 0.2917215526, 0.3191740811, -0.1915476471, 0.1246786341, 0.2333604097, -0.0089483699, -0.0445757024, -0.0025623105, -0.3310274482, -0.3097582459, 0.1477600038, 0.1029132903, 0.1654649079, -0.1609552503, 0.0296833292, -0.3161897063, -0.0888076052, -0.1953117102, 0.103268832, 0.1995638311, -0.1052768379, 0.119593136, 0.485458374, 0.12651667, -0.0994595736, -0.415690273, -0.0948528498, -0.1789346635, 0.0923319161, -0.2174283415, 0.204492107, 0.0336809307, 0.025808936, 0.1796841472, 0.0730526596, -0.1607237756, -0.0110611115, -0.0784519166, -0.1035446078, 0.1354628652, 0.1169638559, 0.1331282556, -0.4173748493, 0.1920300871, 0.1084798574, 0.329746455, -0.1357725263, 0.1178164184, 0.1222370416, 0.0399735123, 0.3655341566, 0.1234309673, 0.1498312652, 0.4555992186, 0.0305262208, 0.1263546646, -0.0049749911, 0.3271190524, 0.1556601673, 0.0127487481, -0.1329595447, -0.029277496, -0.113514185, 0.3166725636, -0.0845337585, 0.2671486139, 0.2927594781, -0.0765188709, -0.0048597306, -0.0978271887, 0.1533987373, 0.0522076972, 0.0699051321, 0.1065891907, -0.0998439118, 0.3596490026, -0.1293926835, 0.2643094361, 0.1755418181, 0.1863328815, 0.2091354728, 0.1350801587, -0.0111756194, -0.1882828176, -0.1296792477, 0.0699940249, 0.3717177212, 0.0691838264, 0.1659455299, -0.0484347418, -0.1418599188, 0.0841908157, -0.052392181, -0.2509430945, -0.2163173556, -0.1256381869, -0.0857284963, 0.0915832594, -0.0001049675, -0.3266667724, -0.0721022189, 0.0621664599, -0.3203503489, -0.1605682224, -0.298122853, -0.368449837, 0.0767874122, 0.387129724, 0.1112902611, 0.2952098846, -0.3326289654, -0.1918787807, -0.0899461061, -0.2681113482, -0.0143136587, -0.1569703817, 0.2413950115, -0.0241168067, 0.7152199149, -0.1799962223, -0.2514213324, 0.184648633, -0.0070199743, 0.0658745542, 0.2497711182, -0.1534786224, -0.0429238901, 0.0845355988, -0.485653311, -0.515576601, -0.2696562707, 0.0125193018, 0.0485177934, 0.0878062025, 0.1686408371, 0.192484051, 0.0680268556, 0.1211878806, 0.1809064746, -0.1900434047, -0.1518693268, 0.4496892393, -0.0274133831, -0.4299623072, 0.188186571, 0.0109940469, 0.3149319291, 0.0079272352, -0.6572358608, 0.1441125125, -0.2763589025, 0.2499429733, -0.0219931006, 0.1834769845, 0.114344269, -0.2136969417, 0.0479722694, 0.0449954867, 0.1059099361, -0.040621087, -0.2095249593, 0.2556222677, 0.0299455188, 0.2961854041, 0.1644206494, 0.6888412237, 0.0548556149, 0.1658408046, 0.4367814064, 0.2385820597, 0.2310311794, -0.2314288169, -0.3645713925, 0.0605744086, -0.2394920886, -0.031003058, 0.2670124471, -0.162319988, -0.4674171805, -0.3477125168, -0.2426845282, -0.3674673736, -0.2107712477, 0.1539979279, -0.0501818061, 0.082940504, 0.0575964078, 0.1203985885, 0.0215731636, -0.2823500931, 0.2137889713, 0.5317090154, -0.2486013621, 0.1685893983, -0.2782665193, -0.3421222866, -0.4126344323, 0.2524553537, 0.0777070895, 0.4147610366, -0.0938023105, 0.3499189019, 0.2011798322, -0.0892689079, 0.29062289, -0.1702442914, 0.1230506301, 0.1972467899, 0.1049929112, -0.2152170837, -0.0624400601, -0.2943331003, -0.0166880898, 0.3054167032, -0.0444555506, -0.6709657311, 0.0843290389, -0.0425857566, 0.5003298521, -0.0571770817, -0.0173499174, -0.1618569046, -0.5653647184, -0.4854038954, -0.0276873522, 0.1895758212, 0.4046096206, -0.1972091496, 0.2628989816, -0.1020785645, 0.2205627859, 0.0213166662, 0.0077354982, 0.2132564187, 0.2327860445, 0.0974325836, -0.1967879534, -0.1378472447, 0.15032655, 0.3620435596, -0.0635322034, -0.2343122214, -0.1212477535, -0.0430036522, 0.0434830859, 0.1415461898, -0.101290524, 0.047706943, 0.1486631781, -0.137935102, 0.1658205688, -0.0128415711, 0.2519465983, -0.1063374802, -0.496234715, -0.5676655769, 0.6620465517, 0.0233820751, 0.0701420158, 0.2541714609, 0.1754048467, -0.1958613545, 0.3753730059, 0.1058034673, 1.1372189522, -0.2281342149, 0.1104203761, -0.1039843038, 0.1094664782, 0.3614170253, -0.3578396738, 0.208407253, -0.3226416111, -0.1089070588, -0.0195197351, 0.0736747012, -0.0461387485, 0.0998933241, -0.3072272539, 0.2564416528, -0.3662325144, -0.0869540572, 0.1056493521, 0.2329858243, -0.4058891535, -0.0680367798, -0.3213796318, 0.1196287572, -0.2146602869, 0.2546931207, -0.2110012174, -0.1254786551, -0.061424572, -0.2672703862, -0.5050507784, 0.070643574, -0.2883503139, 0.3298687041, -0.4893510938, -0.189774543, 0.3386202455, 0.4448713958, 0.0414798521, 0.4031542242, -0.2879834175, 0.1116522104, -0.263861239, -0.423619777, 0.0944911912, 0.0112071671, 0.0871337876, -0.1816289872, -0.3709903359, 0.1669727117, -0.0575723127, 0.0528491586, -0.0959876478, 0.1043775529, 0.2016539872, -0.0458974987, -0.3565551937, -0.0222828016, -0.0943856835, -0.0894330293, 0.1241666228, 0.0821967572, -0.1119038314, 0.1409133375, 0.1852951944, -0.3349809051, 0.0217914172, 0.3491057754, 0.1834492087, 0.0239539966, 0.6245266199, 0.3155457377, -0.3965406716, -0.1898149252, 0.0439141914, -0.2713774443, -0.4585740864, -0.0896048397, -0.0421896465, 0.3383432627, -0.4149284959, 0.3502536714, 0.1749068648, -0.2348314226, 0.2064643502, -0.7065885067, -0.1240217313, 0.2160939574, -0.0789091662, 0.0065748976, 0.0840708017, -0.30959934, 0.1218284369, 0.2352634966, -0.2610889673, 0.2092307359, -0.3233409226, 0.1007636189, 0.0994939283, 0.0633323044, 0.0223014504, 0.1991024166, 0.0650480315, 0.0691617727, -0.0496639088, -0.2599099278, -0.0702273548, 0.1948126853, 0.205114007, -0.0579007193, 0.2278749943, -0.5071965456, -0.1686701477, 0.0822388381, -0.0584756732, 0.1155844331, 0.0038600247, 0.1811006814, 0.2013252676, 0.2885710597, -0.3500798345, 0.2458776534, -0.0869046748, 0.2614989579, 0.1408280283, 0.07593593, 0.4579921663, 0.0213007778, -0.3352100253, -0.0335409567, -0.0300774835, 0.0866356418, 0.2558809817, -0.233358562, 0.300347209, 0.198920697, -0.1174949631, 0.5623857379, -0.1496047378, 0.2065961957, 0.4130832553, 0.1872232705, -0.369863838, 0.0016460642, 0.2932012379, -0.0966371149, -0.0709825084, 0.0759613067, 0.2589091659, -0.3223279715, 0.1137204766, -0.0657392666, 0.1647822559, -0.0565514416, 0.1922588348, 0.6700764298, 0.2270729095, 0.0499260873, -0.0694645271, 0.1699931175, 0.0953946412, 0.3628065586, -0.2234564424, 0.1927638352, -0.0520042777, 0.0246352106, -0.1621609479, -0.3400559425, 0.2986115217, 0.1632018387, -0.0247745402, 0.0986763462, -0.172257483, 0.2616477609, 0.1543591619, 0.0302231647, -0.2611559331, 0.1914432049, -0.1224777997, -0.0129828155, -0.0442104824, -0.2680072784, 0.0015668869, 0.1556259841, -0.0046619838, -0.3565733731, 0.2555732429, 0.3037430048, -0.2440860868, -0.4411395192, 0.1348090917, 0.212492615, 0.0311707221, -0.3002212942, 0.1577610523, 0.4137803316, 0.0780922323, -0.1270552874, 0.2019163519, 0.4433458745, 0.4205472767, -0.3373265266, 0.0424413942, 0.0753406212, -0.0656808019, -0.0233783536, 0.2276100814, 0.4672247767, 0.2502681613, 0.3970100284, 0.1184259653, -0.1416000128, -0.031975396, 0.2360502481, -0.0639188141, -0.0566705838, -0.0451857932, -0.0590354763, 0.1407209486, -0.4205533266, -0.0135846995, -0.5078690052, 0.3400223851, 0.1610560864, 0.0025874451, 0.177529186, -0.0925812125, 0.0479857475, -0.1569758505, 0.3962932825, 0.3195853829, 0.1991413683, -0.3908326626, -0.0089955479, -0.4645192027, -0.018635571, -0.2982346117, 0.1121006534, -0.0814325362, 0.1286558807, 0.0755082965, 0.2132718563, 0.036632318, 0.0450983681, 0.0668025166, 0.4949165583, -0.2315313965, -0.2447034419, -0.1948167384, 0.2191624641, -0.1583236754, -0.3909314275, 0.0575938486, -0.1385610253, 0.0340730473, -0.3200198114, -0.0665003657, 0.0955725014, 0.0059600119, 0.332428515, 0.1523780823, 0.5925300717, -0.1540946811, -0.2021767795, -0.2086715847, -0.0110699423, -0.1599349231, 0.3116775751, 0.1967295557, 0.0989066958, -0.1607933789, -0.1119711921, -0.0295641012, 0.2984873056, -0.0448160134, 0.1949228942, -0.3669615686, -0.3863568008, 0.057917431, 0.1138559952, 0.1190271452, 0.0469262153, -0.1308563054, -0.0533181056, -0.3421496153, -0.3086864054, 0.3866544366, -0.3773034811, -0.5697818398, -0.0921549499, 0.0079287291, 0.0470565483, 0.1902976483, -0.3660884202, 0.2775550485, 0.3897728622, 0.0513336472, -0.1509680748, 0.1664217561, 0.0286486112, -0.0162156448, -0.0940432623, 0.1160702854, -0.0082844896, -0.3563149273, -0.220584631, -0.391258359 ]
https://github.com/huggingface/datasets/issues/2035
wiki40b/wikipedia for almost all languages cannot be downloaded
Hi I really appreciate if huggingface can kindly provide preprocessed datasets, processing these datasets require sufficiently large resources and I do not have unfortunately access to, and perhaps many others too. thanks On Fri, Mar 12, 2021 at 9:04 AM Albert Villanova del Moral < ***@***.***> wrote: > Hello @dorost1234 <https://github.com/dorost1234>, > > Indeed, Wikipedia datasets need a lot of preprocessing and this is done > using Apache Beam. That is the reason why it is required that you install > Apache Beam in order to preform this preprocessing. > > For some specific default parameters (English Wikipedia), Hugging Face has > already preprocessed the dataset for you (and it is stored in the cloud). > That is the reason why you do not get the error for English: the > preprocessing is already done by HF and you just get the preprocessed > dataset; Apache Beam is not required in that case. > > — > You are receiving this because you were mentioned. > Reply to this email directly, view it on GitHub > <https://github.com/huggingface/datasets/issues/2035#issuecomment-797310899>, > or unsubscribe > <https://github.com/notifications/unsubscribe-auth/AS37NMXACFQZAGMK4VGXRETTDHDI3ANCNFSM4ZA5R2UA> > . >
Hi I am trying to download the data as below: ``` from datasets import load_dataset dataset = load_dataset("wiki40b", "cs") print(dataset) ``` I am getting this error. @lhoestq I will be grateful if you could assist me with this error. For almost all languages except english I am getting this error. I really need majority of languages in this dataset to be able to train my models for a deadline and your great scalable super well-written library is my only hope to train the models at scale while being low on resources. thank you very much. ``` (fast) dara@vgne046:/user/dara/dev/codes/seq2seq$ python test_data.py Downloading and preparing dataset wiki40b/cs (download: Unknown size, generated: Unknown size, post-processed: Unknown size, total: Unknown size) to temp/dara/cache_home_2/datasets/wiki40b/cs/1.1.0/063778187363ffb294896eaa010fc254b42b73e31117c71573a953b0b0bf010f... Traceback (most recent call last): File "test_data.py", line 3, in <module> dataset = load_dataset("wiki40b", "cs") File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/datasets/load.py", line 746, in load_dataset use_auth_token=use_auth_token, File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/datasets/builder.py", line 579, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/datasets/builder.py", line 1105, in _download_and_prepare import apache_beam as beam File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/apache_beam-2.28.0-py3.7-linux-x86_64.egg/apache_beam/__init__.py", line 96, in <module> from apache_beam import io File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/apache_beam-2.28.0-py3.7-linux-x86_64.egg/apache_beam/io/__init__.py", line 23, in <module> from apache_beam.io.avroio import * File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/apache_beam-2.28.0-py3.7-linux-x86_64.egg/apache_beam/io/avroio.py", line 55, in <module> import avro File "<frozen importlib._bootstrap>", line 983, in _find_and_load File "<frozen importlib._bootstrap>", line 967, in _find_and_load_unlocked File "<frozen importlib._bootstrap>", line 668, in _load_unlocked File "<frozen importlib._bootstrap>", line 638, in _load_backward_compatible File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/avro_python3-1.9.2.1-py3.7.egg/avro/__init__.py", line 34, in <module> File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/avro_python3-1.9.2.1-py3.7.egg/avro/__init__.py", line 30, in LoadResource NotADirectoryError: [Errno 20] Not a directory: '/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/avro_python3-1.9.2.1-py3.7.egg/avro/VERSION.txt' ```
185
wiki40b/wikipedia for almost all languages cannot be downloaded Hi I am trying to download the data as below: ``` from datasets import load_dataset dataset = load_dataset("wiki40b", "cs") print(dataset) ``` I am getting this error. @lhoestq I will be grateful if you could assist me with this error. For almost all languages except english I am getting this error. I really need majority of languages in this dataset to be able to train my models for a deadline and your great scalable super well-written library is my only hope to train the models at scale while being low on resources. thank you very much. ``` (fast) dara@vgne046:/user/dara/dev/codes/seq2seq$ python test_data.py Downloading and preparing dataset wiki40b/cs (download: Unknown size, generated: Unknown size, post-processed: Unknown size, total: Unknown size) to temp/dara/cache_home_2/datasets/wiki40b/cs/1.1.0/063778187363ffb294896eaa010fc254b42b73e31117c71573a953b0b0bf010f... Traceback (most recent call last): File "test_data.py", line 3, in <module> dataset = load_dataset("wiki40b", "cs") File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/datasets/load.py", line 746, in load_dataset use_auth_token=use_auth_token, File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/datasets/builder.py", line 579, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/datasets/builder.py", line 1105, in _download_and_prepare import apache_beam as beam File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/apache_beam-2.28.0-py3.7-linux-x86_64.egg/apache_beam/__init__.py", line 96, in <module> from apache_beam import io File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/apache_beam-2.28.0-py3.7-linux-x86_64.egg/apache_beam/io/__init__.py", line 23, in <module> from apache_beam.io.avroio import * File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/apache_beam-2.28.0-py3.7-linux-x86_64.egg/apache_beam/io/avroio.py", line 55, in <module> import avro File "<frozen importlib._bootstrap>", line 983, in _find_and_load File "<frozen importlib._bootstrap>", line 967, in _find_and_load_unlocked File "<frozen importlib._bootstrap>", line 668, in _load_unlocked File "<frozen importlib._bootstrap>", line 638, in _load_backward_compatible File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/avro_python3-1.9.2.1-py3.7.egg/avro/__init__.py", line 34, in <module> File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/avro_python3-1.9.2.1-py3.7.egg/avro/__init__.py", line 30, in LoadResource NotADirectoryError: [Errno 20] Not a directory: '/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/avro_python3-1.9.2.1-py3.7.egg/avro/VERSION.txt' ``` Hi I really appreciate if huggingface can kindly provide preprocessed datasets, processing these datasets require sufficiently large resources and I do not have unfortunately access to, and perhaps many others too. thanks On Fri, Mar 12, 2021 at 9:04 AM Albert Villanova del Moral < ***@***.***> wrote: > Hello @dorost1234 <https://github.com/dorost1234>, > > Indeed, Wikipedia datasets need a lot of preprocessing and this is done > using Apache Beam. That is the reason why it is required that you install > Apache Beam in order to preform this preprocessing. > > For some specific default parameters (English Wikipedia), Hugging Face has > already preprocessed the dataset for you (and it is stored in the cloud). > That is the reason why you do not get the error for English: the > preprocessing is already done by HF and you just get the preprocessed > dataset; Apache Beam is not required in that case. > > — > You are receiving this because you were mentioned. > Reply to this email directly, view it on GitHub > <https://github.com/huggingface/datasets/issues/2035#issuecomment-797310899>, > or unsubscribe > <https://github.com/notifications/unsubscribe-auth/AS37NMXACFQZAGMK4VGXRETTDHDI3ANCNFSM4ZA5R2UA> > . >
[ -0.2544980943, -0.0779203922, -0.1537583023, 0.4308665693, 0.3997027874, 0.3504618108, 0.1368505955, 0.5331581235, 0.1893273741, 0.0235844627, -0.1773032993, -0.0942177325, 0.0944039673, 0.0111838356, -0.0297048613, -0.4591734409, -0.0672903955, 0.0295372121, -0.1352711022, -0.1168933213, -0.2519629598, 0.1256148666, -0.0791748315, -0.0490287244, -0.0387458354, -0.1828400791, -0.0958353654, -0.2073056251, -0.3507466912, -0.2408646047, 0.3545784652, 0.0192575045, 0.3101118207, 0.1529971063, -0.0001114368, -0.0509648919, 0.3131164014, -0.2357944846, -0.2936121821, -0.2888575792, -0.0720895901, -0.3261859417, -0.0904391259, -0.4200315475, 0.1274462193, 0.0466824137, 0.0806714669, -0.1318009794, 0.0757574588, 0.2992253006, 0.2468712628, -0.1426033527, 0.3134340644, -0.1457377225, 0.3651964068, -0.3777082264, -0.0280338377, 0.3395859897, 0.2187205851, 0.0713427216, 0.2154793739, 0.2220427394, -0.2341406941, 0.0134995393, 0.0482247174, -0.2912237346, 0.2222054899, -0.6297014952, 0.5206415057, 0.5344282389, 0.8290325403, -0.1283515543, -0.0874670148, 0.0723919421, -0.0260593556, -0.0313743465, -0.055740077, 0.4819797873, -0.1893263608, 0.0975979418, 0.1261649877, -0.1254300475, -0.1567188501, 0.4228464663, -0.1241364852, 0.4435882568, -0.0527198985, 0.2112595141, -0.0216666255, -0.102701813, -0.2636416256, -0.0696594715, -0.096159853, 0.2933216393, -0.2793980837, 0.019635722, -0.1615017503, 0.0556469783, 0.3511351347, -0.1503834128, -0.2346211374, -0.0450780764, 0.0960105732, 0.1575746238, 0.1801502407, 0.1637833863, 0.0620480925, -0.2000063807, 0.2782809138, 0.3079039752, -0.0842120126, -0.0761707574, -0.2100430727, -0.223056376, -0.2947567999, 0.0944294631, 0.0875294209, -0.2031711042, -0.1779465973, 0.0071132444, -0.1443609744, -0.0194387883, -0.2023949325, 0.3628211319, -0.150142923, 0.4312383831, 0.1779013574, 0.3288218677, -0.1035725772, -0.2613096237, -0.0173522905, 0.3065481186, -0.1393198222, -0.1036602259, 0.2187826782, -0.1099158973, 0.2648517191, -0.0893723071, -0.1031380296, -0.1764119267, -0.153690964, -0.3695676923, -0.1791032255, 0.2304090708, 0.1619766951, 0.2839275897, 0.1476142257, -0.2447477877, -0.2305806428, 0.1207451373, -0.3596145809, -0.1681547314, -0.2051545531, 0.1944684535, 0.0610983893, -0.0546504818, -0.3160063624, 0.2876639962, 0.3030639291, -0.1423989236, 0.118072845, -0.0075458987, -0.0232542455, -0.2251897305, 0.1790114045, 0.4908003807, -0.399959445, 0.0918976963, -0.023850657, -0.0337116867, 0.1897820383, 0.1842968464, -0.177952528, 0.25654158, -0.0978841782, 0.0381604433, 0.2101309747, -0.3214418292, -0.577635169, 0.1860538572, 0.1134095564, -0.1670033634, 0.0994795859, 0.0160008743, 0.2750304043, -0.0493874773, 0.0524543673, 0.3956745267, 0.1368377656, -0.1056450084, -0.3274506927, -0.5078234673, 0.3264816999, 0.1633175761, 0.4547143877, -0.1322698593, 0.2759853303, 0.2917215526, 0.3191740811, -0.1915476471, 0.1246786341, 0.2333604097, -0.0089483699, -0.0445757024, -0.0025623105, -0.3310274482, -0.3097582459, 0.1477600038, 0.1029132903, 0.1654649079, -0.1609552503, 0.0296833292, -0.3161897063, -0.0888076052, -0.1953117102, 0.103268832, 0.1995638311, -0.1052768379, 0.119593136, 0.485458374, 0.12651667, -0.0994595736, -0.415690273, -0.0948528498, -0.1789346635, 0.0923319161, -0.2174283415, 0.204492107, 0.0336809307, 0.025808936, 0.1796841472, 0.0730526596, -0.1607237756, -0.0110611115, -0.0784519166, -0.1035446078, 0.1354628652, 0.1169638559, 0.1331282556, -0.4173748493, 0.1920300871, 0.1084798574, 0.329746455, -0.1357725263, 0.1178164184, 0.1222370416, 0.0399735123, 0.3655341566, 0.1234309673, 0.1498312652, 0.4555992186, 0.0305262208, 0.1263546646, -0.0049749911, 0.3271190524, 0.1556601673, 0.0127487481, -0.1329595447, -0.029277496, -0.113514185, 0.3166725636, -0.0845337585, 0.2671486139, 0.2927594781, -0.0765188709, -0.0048597306, -0.0978271887, 0.1533987373, 0.0522076972, 0.0699051321, 0.1065891907, -0.0998439118, 0.3596490026, -0.1293926835, 0.2643094361, 0.1755418181, 0.1863328815, 0.2091354728, 0.1350801587, -0.0111756194, -0.1882828176, -0.1296792477, 0.0699940249, 0.3717177212, 0.0691838264, 0.1659455299, -0.0484347418, -0.1418599188, 0.0841908157, -0.052392181, -0.2509430945, -0.2163173556, -0.1256381869, -0.0857284963, 0.0915832594, -0.0001049675, -0.3266667724, -0.0721022189, 0.0621664599, -0.3203503489, -0.1605682224, -0.298122853, -0.368449837, 0.0767874122, 0.387129724, 0.1112902611, 0.2952098846, -0.3326289654, -0.1918787807, -0.0899461061, -0.2681113482, -0.0143136587, -0.1569703817, 0.2413950115, -0.0241168067, 0.7152199149, -0.1799962223, -0.2514213324, 0.184648633, -0.0070199743, 0.0658745542, 0.2497711182, -0.1534786224, -0.0429238901, 0.0845355988, -0.485653311, -0.515576601, -0.2696562707, 0.0125193018, 0.0485177934, 0.0878062025, 0.1686408371, 0.192484051, 0.0680268556, 0.1211878806, 0.1809064746, -0.1900434047, -0.1518693268, 0.4496892393, -0.0274133831, -0.4299623072, 0.188186571, 0.0109940469, 0.3149319291, 0.0079272352, -0.6572358608, 0.1441125125, -0.2763589025, 0.2499429733, -0.0219931006, 0.1834769845, 0.114344269, -0.2136969417, 0.0479722694, 0.0449954867, 0.1059099361, -0.040621087, -0.2095249593, 0.2556222677, 0.0299455188, 0.2961854041, 0.1644206494, 0.6888412237, 0.0548556149, 0.1658408046, 0.4367814064, 0.2385820597, 0.2310311794, -0.2314288169, -0.3645713925, 0.0605744086, -0.2394920886, -0.031003058, 0.2670124471, -0.162319988, -0.4674171805, -0.3477125168, -0.2426845282, -0.3674673736, -0.2107712477, 0.1539979279, -0.0501818061, 0.082940504, 0.0575964078, 0.1203985885, 0.0215731636, -0.2823500931, 0.2137889713, 0.5317090154, -0.2486013621, 0.1685893983, -0.2782665193, -0.3421222866, -0.4126344323, 0.2524553537, 0.0777070895, 0.4147610366, -0.0938023105, 0.3499189019, 0.2011798322, -0.0892689079, 0.29062289, -0.1702442914, 0.1230506301, 0.1972467899, 0.1049929112, -0.2152170837, -0.0624400601, -0.2943331003, -0.0166880898, 0.3054167032, -0.0444555506, -0.6709657311, 0.0843290389, -0.0425857566, 0.5003298521, -0.0571770817, -0.0173499174, -0.1618569046, -0.5653647184, -0.4854038954, -0.0276873522, 0.1895758212, 0.4046096206, -0.1972091496, 0.2628989816, -0.1020785645, 0.2205627859, 0.0213166662, 0.0077354982, 0.2132564187, 0.2327860445, 0.0974325836, -0.1967879534, -0.1378472447, 0.15032655, 0.3620435596, -0.0635322034, -0.2343122214, -0.1212477535, -0.0430036522, 0.0434830859, 0.1415461898, -0.101290524, 0.047706943, 0.1486631781, -0.137935102, 0.1658205688, -0.0128415711, 0.2519465983, -0.1063374802, -0.496234715, -0.5676655769, 0.6620465517, 0.0233820751, 0.0701420158, 0.2541714609, 0.1754048467, -0.1958613545, 0.3753730059, 0.1058034673, 1.1372189522, -0.2281342149, 0.1104203761, -0.1039843038, 0.1094664782, 0.3614170253, -0.3578396738, 0.208407253, -0.3226416111, -0.1089070588, -0.0195197351, 0.0736747012, -0.0461387485, 0.0998933241, -0.3072272539, 0.2564416528, -0.3662325144, -0.0869540572, 0.1056493521, 0.2329858243, -0.4058891535, -0.0680367798, -0.3213796318, 0.1196287572, -0.2146602869, 0.2546931207, -0.2110012174, -0.1254786551, -0.061424572, -0.2672703862, -0.5050507784, 0.070643574, -0.2883503139, 0.3298687041, -0.4893510938, -0.189774543, 0.3386202455, 0.4448713958, 0.0414798521, 0.4031542242, -0.2879834175, 0.1116522104, -0.263861239, -0.423619777, 0.0944911912, 0.0112071671, 0.0871337876, -0.1816289872, -0.3709903359, 0.1669727117, -0.0575723127, 0.0528491586, -0.0959876478, 0.1043775529, 0.2016539872, -0.0458974987, -0.3565551937, -0.0222828016, -0.0943856835, -0.0894330293, 0.1241666228, 0.0821967572, -0.1119038314, 0.1409133375, 0.1852951944, -0.3349809051, 0.0217914172, 0.3491057754, 0.1834492087, 0.0239539966, 0.6245266199, 0.3155457377, -0.3965406716, -0.1898149252, 0.0439141914, -0.2713774443, -0.4585740864, -0.0896048397, -0.0421896465, 0.3383432627, -0.4149284959, 0.3502536714, 0.1749068648, -0.2348314226, 0.2064643502, -0.7065885067, -0.1240217313, 0.2160939574, -0.0789091662, 0.0065748976, 0.0840708017, -0.30959934, 0.1218284369, 0.2352634966, -0.2610889673, 0.2092307359, -0.3233409226, 0.1007636189, 0.0994939283, 0.0633323044, 0.0223014504, 0.1991024166, 0.0650480315, 0.0691617727, -0.0496639088, -0.2599099278, -0.0702273548, 0.1948126853, 0.205114007, -0.0579007193, 0.2278749943, -0.5071965456, -0.1686701477, 0.0822388381, -0.0584756732, 0.1155844331, 0.0038600247, 0.1811006814, 0.2013252676, 0.2885710597, -0.3500798345, 0.2458776534, -0.0869046748, 0.2614989579, 0.1408280283, 0.07593593, 0.4579921663, 0.0213007778, -0.3352100253, -0.0335409567, -0.0300774835, 0.0866356418, 0.2558809817, -0.233358562, 0.300347209, 0.198920697, -0.1174949631, 0.5623857379, -0.1496047378, 0.2065961957, 0.4130832553, 0.1872232705, -0.369863838, 0.0016460642, 0.2932012379, -0.0966371149, -0.0709825084, 0.0759613067, 0.2589091659, -0.3223279715, 0.1137204766, -0.0657392666, 0.1647822559, -0.0565514416, 0.1922588348, 0.6700764298, 0.2270729095, 0.0499260873, -0.0694645271, 0.1699931175, 0.0953946412, 0.3628065586, -0.2234564424, 0.1927638352, -0.0520042777, 0.0246352106, -0.1621609479, -0.3400559425, 0.2986115217, 0.1632018387, -0.0247745402, 0.0986763462, -0.172257483, 0.2616477609, 0.1543591619, 0.0302231647, -0.2611559331, 0.1914432049, -0.1224777997, -0.0129828155, -0.0442104824, -0.2680072784, 0.0015668869, 0.1556259841, -0.0046619838, -0.3565733731, 0.2555732429, 0.3037430048, -0.2440860868, -0.4411395192, 0.1348090917, 0.212492615, 0.0311707221, -0.3002212942, 0.1577610523, 0.4137803316, 0.0780922323, -0.1270552874, 0.2019163519, 0.4433458745, 0.4205472767, -0.3373265266, 0.0424413942, 0.0753406212, -0.0656808019, -0.0233783536, 0.2276100814, 0.4672247767, 0.2502681613, 0.3970100284, 0.1184259653, -0.1416000128, -0.031975396, 0.2360502481, -0.0639188141, -0.0566705838, -0.0451857932, -0.0590354763, 0.1407209486, -0.4205533266, -0.0135846995, -0.5078690052, 0.3400223851, 0.1610560864, 0.0025874451, 0.177529186, -0.0925812125, 0.0479857475, -0.1569758505, 0.3962932825, 0.3195853829, 0.1991413683, -0.3908326626, -0.0089955479, -0.4645192027, -0.018635571, -0.2982346117, 0.1121006534, -0.0814325362, 0.1286558807, 0.0755082965, 0.2132718563, 0.036632318, 0.0450983681, 0.0668025166, 0.4949165583, -0.2315313965, -0.2447034419, -0.1948167384, 0.2191624641, -0.1583236754, -0.3909314275, 0.0575938486, -0.1385610253, 0.0340730473, -0.3200198114, -0.0665003657, 0.0955725014, 0.0059600119, 0.332428515, 0.1523780823, 0.5925300717, -0.1540946811, -0.2021767795, -0.2086715847, -0.0110699423, -0.1599349231, 0.3116775751, 0.1967295557, 0.0989066958, -0.1607933789, -0.1119711921, -0.0295641012, 0.2984873056, -0.0448160134, 0.1949228942, -0.3669615686, -0.3863568008, 0.057917431, 0.1138559952, 0.1190271452, 0.0469262153, -0.1308563054, -0.0533181056, -0.3421496153, -0.3086864054, 0.3866544366, -0.3773034811, -0.5697818398, -0.0921549499, 0.0079287291, 0.0470565483, 0.1902976483, -0.3660884202, 0.2775550485, 0.3897728622, 0.0513336472, -0.1509680748, 0.1664217561, 0.0286486112, -0.0162156448, -0.0940432623, 0.1160702854, -0.0082844896, -0.3563149273, -0.220584631, -0.391258359 ]
https://github.com/huggingface/datasets/issues/2035
wiki40b/wikipedia for almost all languages cannot be downloaded
Hi everyone thanks for the helpful pointers, I did it as @bhavitvyamalik suggested, for me this freezes on this command for several hours, `Downloading and preparing dataset wiki40b/cs (download: Unknown size, generated: Unknown size, post-processed: Unknown size, total: Unknown size) to /users/dara/cache/datasets/wiki40b/cs/1.1.0/063778187363ffb294896eaa010fc254b42b73e31117c71573a953b0b0bf010f... ` Do you know how long this takes? Any specific requirements the machine should have? like very large memory or so? @lhoestq thanks
Hi I am trying to download the data as below: ``` from datasets import load_dataset dataset = load_dataset("wiki40b", "cs") print(dataset) ``` I am getting this error. @lhoestq I will be grateful if you could assist me with this error. For almost all languages except english I am getting this error. I really need majority of languages in this dataset to be able to train my models for a deadline and your great scalable super well-written library is my only hope to train the models at scale while being low on resources. thank you very much. ``` (fast) dara@vgne046:/user/dara/dev/codes/seq2seq$ python test_data.py Downloading and preparing dataset wiki40b/cs (download: Unknown size, generated: Unknown size, post-processed: Unknown size, total: Unknown size) to temp/dara/cache_home_2/datasets/wiki40b/cs/1.1.0/063778187363ffb294896eaa010fc254b42b73e31117c71573a953b0b0bf010f... Traceback (most recent call last): File "test_data.py", line 3, in <module> dataset = load_dataset("wiki40b", "cs") File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/datasets/load.py", line 746, in load_dataset use_auth_token=use_auth_token, File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/datasets/builder.py", line 579, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/datasets/builder.py", line 1105, in _download_and_prepare import apache_beam as beam File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/apache_beam-2.28.0-py3.7-linux-x86_64.egg/apache_beam/__init__.py", line 96, in <module> from apache_beam import io File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/apache_beam-2.28.0-py3.7-linux-x86_64.egg/apache_beam/io/__init__.py", line 23, in <module> from apache_beam.io.avroio import * File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/apache_beam-2.28.0-py3.7-linux-x86_64.egg/apache_beam/io/avroio.py", line 55, in <module> import avro File "<frozen importlib._bootstrap>", line 983, in _find_and_load File "<frozen importlib._bootstrap>", line 967, in _find_and_load_unlocked File "<frozen importlib._bootstrap>", line 668, in _load_unlocked File "<frozen importlib._bootstrap>", line 638, in _load_backward_compatible File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/avro_python3-1.9.2.1-py3.7.egg/avro/__init__.py", line 34, in <module> File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/avro_python3-1.9.2.1-py3.7.egg/avro/__init__.py", line 30, in LoadResource NotADirectoryError: [Errno 20] Not a directory: '/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/avro_python3-1.9.2.1-py3.7.egg/avro/VERSION.txt' ```
65
wiki40b/wikipedia for almost all languages cannot be downloaded Hi I am trying to download the data as below: ``` from datasets import load_dataset dataset = load_dataset("wiki40b", "cs") print(dataset) ``` I am getting this error. @lhoestq I will be grateful if you could assist me with this error. For almost all languages except english I am getting this error. I really need majority of languages in this dataset to be able to train my models for a deadline and your great scalable super well-written library is my only hope to train the models at scale while being low on resources. thank you very much. ``` (fast) dara@vgne046:/user/dara/dev/codes/seq2seq$ python test_data.py Downloading and preparing dataset wiki40b/cs (download: Unknown size, generated: Unknown size, post-processed: Unknown size, total: Unknown size) to temp/dara/cache_home_2/datasets/wiki40b/cs/1.1.0/063778187363ffb294896eaa010fc254b42b73e31117c71573a953b0b0bf010f... Traceback (most recent call last): File "test_data.py", line 3, in <module> dataset = load_dataset("wiki40b", "cs") File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/datasets/load.py", line 746, in load_dataset use_auth_token=use_auth_token, File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/datasets/builder.py", line 579, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/datasets/builder.py", line 1105, in _download_and_prepare import apache_beam as beam File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/apache_beam-2.28.0-py3.7-linux-x86_64.egg/apache_beam/__init__.py", line 96, in <module> from apache_beam import io File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/apache_beam-2.28.0-py3.7-linux-x86_64.egg/apache_beam/io/__init__.py", line 23, in <module> from apache_beam.io.avroio import * File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/apache_beam-2.28.0-py3.7-linux-x86_64.egg/apache_beam/io/avroio.py", line 55, in <module> import avro File "<frozen importlib._bootstrap>", line 983, in _find_and_load File "<frozen importlib._bootstrap>", line 967, in _find_and_load_unlocked File "<frozen importlib._bootstrap>", line 668, in _load_unlocked File "<frozen importlib._bootstrap>", line 638, in _load_backward_compatible File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/avro_python3-1.9.2.1-py3.7.egg/avro/__init__.py", line 34, in <module> File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/avro_python3-1.9.2.1-py3.7.egg/avro/__init__.py", line 30, in LoadResource NotADirectoryError: [Errno 20] Not a directory: '/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/avro_python3-1.9.2.1-py3.7.egg/avro/VERSION.txt' ``` Hi everyone thanks for the helpful pointers, I did it as @bhavitvyamalik suggested, for me this freezes on this command for several hours, `Downloading and preparing dataset wiki40b/cs (download: Unknown size, generated: Unknown size, post-processed: Unknown size, total: Unknown size) to /users/dara/cache/datasets/wiki40b/cs/1.1.0/063778187363ffb294896eaa010fc254b42b73e31117c71573a953b0b0bf010f... ` Do you know how long this takes? Any specific requirements the machine should have? like very large memory or so? @lhoestq thanks
[ -0.2544980943, -0.0779203922, -0.1537583023, 0.4308665693, 0.3997027874, 0.3504618108, 0.1368505955, 0.5331581235, 0.1893273741, 0.0235844627, -0.1773032993, -0.0942177325, 0.0944039673, 0.0111838356, -0.0297048613, -0.4591734409, -0.0672903955, 0.0295372121, -0.1352711022, -0.1168933213, -0.2519629598, 0.1256148666, -0.0791748315, -0.0490287244, -0.0387458354, -0.1828400791, -0.0958353654, -0.2073056251, -0.3507466912, -0.2408646047, 0.3545784652, 0.0192575045, 0.3101118207, 0.1529971063, -0.0001114368, -0.0509648919, 0.3131164014, -0.2357944846, -0.2936121821, -0.2888575792, -0.0720895901, -0.3261859417, -0.0904391259, -0.4200315475, 0.1274462193, 0.0466824137, 0.0806714669, -0.1318009794, 0.0757574588, 0.2992253006, 0.2468712628, -0.1426033527, 0.3134340644, -0.1457377225, 0.3651964068, -0.3777082264, -0.0280338377, 0.3395859897, 0.2187205851, 0.0713427216, 0.2154793739, 0.2220427394, -0.2341406941, 0.0134995393, 0.0482247174, -0.2912237346, 0.2222054899, -0.6297014952, 0.5206415057, 0.5344282389, 0.8290325403, -0.1283515543, -0.0874670148, 0.0723919421, -0.0260593556, -0.0313743465, -0.055740077, 0.4819797873, -0.1893263608, 0.0975979418, 0.1261649877, -0.1254300475, -0.1567188501, 0.4228464663, -0.1241364852, 0.4435882568, -0.0527198985, 0.2112595141, -0.0216666255, -0.102701813, -0.2636416256, -0.0696594715, -0.096159853, 0.2933216393, -0.2793980837, 0.019635722, -0.1615017503, 0.0556469783, 0.3511351347, -0.1503834128, -0.2346211374, -0.0450780764, 0.0960105732, 0.1575746238, 0.1801502407, 0.1637833863, 0.0620480925, -0.2000063807, 0.2782809138, 0.3079039752, -0.0842120126, -0.0761707574, -0.2100430727, -0.223056376, -0.2947567999, 0.0944294631, 0.0875294209, -0.2031711042, -0.1779465973, 0.0071132444, -0.1443609744, -0.0194387883, -0.2023949325, 0.3628211319, -0.150142923, 0.4312383831, 0.1779013574, 0.3288218677, -0.1035725772, -0.2613096237, -0.0173522905, 0.3065481186, -0.1393198222, -0.1036602259, 0.2187826782, -0.1099158973, 0.2648517191, -0.0893723071, -0.1031380296, -0.1764119267, -0.153690964, -0.3695676923, -0.1791032255, 0.2304090708, 0.1619766951, 0.2839275897, 0.1476142257, -0.2447477877, -0.2305806428, 0.1207451373, -0.3596145809, -0.1681547314, -0.2051545531, 0.1944684535, 0.0610983893, -0.0546504818, -0.3160063624, 0.2876639962, 0.3030639291, -0.1423989236, 0.118072845, -0.0075458987, -0.0232542455, -0.2251897305, 0.1790114045, 0.4908003807, -0.399959445, 0.0918976963, -0.023850657, -0.0337116867, 0.1897820383, 0.1842968464, -0.177952528, 0.25654158, -0.0978841782, 0.0381604433, 0.2101309747, -0.3214418292, -0.577635169, 0.1860538572, 0.1134095564, -0.1670033634, 0.0994795859, 0.0160008743, 0.2750304043, -0.0493874773, 0.0524543673, 0.3956745267, 0.1368377656, -0.1056450084, -0.3274506927, -0.5078234673, 0.3264816999, 0.1633175761, 0.4547143877, -0.1322698593, 0.2759853303, 0.2917215526, 0.3191740811, -0.1915476471, 0.1246786341, 0.2333604097, -0.0089483699, -0.0445757024, -0.0025623105, -0.3310274482, -0.3097582459, 0.1477600038, 0.1029132903, 0.1654649079, -0.1609552503, 0.0296833292, -0.3161897063, -0.0888076052, -0.1953117102, 0.103268832, 0.1995638311, -0.1052768379, 0.119593136, 0.485458374, 0.12651667, -0.0994595736, -0.415690273, -0.0948528498, -0.1789346635, 0.0923319161, -0.2174283415, 0.204492107, 0.0336809307, 0.025808936, 0.1796841472, 0.0730526596, -0.1607237756, -0.0110611115, -0.0784519166, -0.1035446078, 0.1354628652, 0.1169638559, 0.1331282556, -0.4173748493, 0.1920300871, 0.1084798574, 0.329746455, -0.1357725263, 0.1178164184, 0.1222370416, 0.0399735123, 0.3655341566, 0.1234309673, 0.1498312652, 0.4555992186, 0.0305262208, 0.1263546646, -0.0049749911, 0.3271190524, 0.1556601673, 0.0127487481, -0.1329595447, -0.029277496, -0.113514185, 0.3166725636, -0.0845337585, 0.2671486139, 0.2927594781, -0.0765188709, -0.0048597306, -0.0978271887, 0.1533987373, 0.0522076972, 0.0699051321, 0.1065891907, -0.0998439118, 0.3596490026, -0.1293926835, 0.2643094361, 0.1755418181, 0.1863328815, 0.2091354728, 0.1350801587, -0.0111756194, -0.1882828176, -0.1296792477, 0.0699940249, 0.3717177212, 0.0691838264, 0.1659455299, -0.0484347418, -0.1418599188, 0.0841908157, -0.052392181, -0.2509430945, -0.2163173556, -0.1256381869, -0.0857284963, 0.0915832594, -0.0001049675, -0.3266667724, -0.0721022189, 0.0621664599, -0.3203503489, -0.1605682224, -0.298122853, -0.368449837, 0.0767874122, 0.387129724, 0.1112902611, 0.2952098846, -0.3326289654, -0.1918787807, -0.0899461061, -0.2681113482, -0.0143136587, -0.1569703817, 0.2413950115, -0.0241168067, 0.7152199149, -0.1799962223, -0.2514213324, 0.184648633, -0.0070199743, 0.0658745542, 0.2497711182, -0.1534786224, -0.0429238901, 0.0845355988, -0.485653311, -0.515576601, -0.2696562707, 0.0125193018, 0.0485177934, 0.0878062025, 0.1686408371, 0.192484051, 0.0680268556, 0.1211878806, 0.1809064746, -0.1900434047, -0.1518693268, 0.4496892393, -0.0274133831, -0.4299623072, 0.188186571, 0.0109940469, 0.3149319291, 0.0079272352, -0.6572358608, 0.1441125125, -0.2763589025, 0.2499429733, -0.0219931006, 0.1834769845, 0.114344269, -0.2136969417, 0.0479722694, 0.0449954867, 0.1059099361, -0.040621087, -0.2095249593, 0.2556222677, 0.0299455188, 0.2961854041, 0.1644206494, 0.6888412237, 0.0548556149, 0.1658408046, 0.4367814064, 0.2385820597, 0.2310311794, -0.2314288169, -0.3645713925, 0.0605744086, -0.2394920886, -0.031003058, 0.2670124471, -0.162319988, -0.4674171805, -0.3477125168, -0.2426845282, -0.3674673736, -0.2107712477, 0.1539979279, -0.0501818061, 0.082940504, 0.0575964078, 0.1203985885, 0.0215731636, -0.2823500931, 0.2137889713, 0.5317090154, -0.2486013621, 0.1685893983, -0.2782665193, -0.3421222866, -0.4126344323, 0.2524553537, 0.0777070895, 0.4147610366, -0.0938023105, 0.3499189019, 0.2011798322, -0.0892689079, 0.29062289, -0.1702442914, 0.1230506301, 0.1972467899, 0.1049929112, -0.2152170837, -0.0624400601, -0.2943331003, -0.0166880898, 0.3054167032, -0.0444555506, -0.6709657311, 0.0843290389, -0.0425857566, 0.5003298521, -0.0571770817, -0.0173499174, -0.1618569046, -0.5653647184, -0.4854038954, -0.0276873522, 0.1895758212, 0.4046096206, -0.1972091496, 0.2628989816, -0.1020785645, 0.2205627859, 0.0213166662, 0.0077354982, 0.2132564187, 0.2327860445, 0.0974325836, -0.1967879534, -0.1378472447, 0.15032655, 0.3620435596, -0.0635322034, -0.2343122214, -0.1212477535, -0.0430036522, 0.0434830859, 0.1415461898, -0.101290524, 0.047706943, 0.1486631781, -0.137935102, 0.1658205688, -0.0128415711, 0.2519465983, -0.1063374802, -0.496234715, -0.5676655769, 0.6620465517, 0.0233820751, 0.0701420158, 0.2541714609, 0.1754048467, -0.1958613545, 0.3753730059, 0.1058034673, 1.1372189522, -0.2281342149, 0.1104203761, -0.1039843038, 0.1094664782, 0.3614170253, -0.3578396738, 0.208407253, -0.3226416111, -0.1089070588, -0.0195197351, 0.0736747012, -0.0461387485, 0.0998933241, -0.3072272539, 0.2564416528, -0.3662325144, -0.0869540572, 0.1056493521, 0.2329858243, -0.4058891535, -0.0680367798, -0.3213796318, 0.1196287572, -0.2146602869, 0.2546931207, -0.2110012174, -0.1254786551, -0.061424572, -0.2672703862, -0.5050507784, 0.070643574, -0.2883503139, 0.3298687041, -0.4893510938, -0.189774543, 0.3386202455, 0.4448713958, 0.0414798521, 0.4031542242, -0.2879834175, 0.1116522104, -0.263861239, -0.423619777, 0.0944911912, 0.0112071671, 0.0871337876, -0.1816289872, -0.3709903359, 0.1669727117, -0.0575723127, 0.0528491586, -0.0959876478, 0.1043775529, 0.2016539872, -0.0458974987, -0.3565551937, -0.0222828016, -0.0943856835, -0.0894330293, 0.1241666228, 0.0821967572, -0.1119038314, 0.1409133375, 0.1852951944, -0.3349809051, 0.0217914172, 0.3491057754, 0.1834492087, 0.0239539966, 0.6245266199, 0.3155457377, -0.3965406716, -0.1898149252, 0.0439141914, -0.2713774443, -0.4585740864, -0.0896048397, -0.0421896465, 0.3383432627, -0.4149284959, 0.3502536714, 0.1749068648, -0.2348314226, 0.2064643502, -0.7065885067, -0.1240217313, 0.2160939574, -0.0789091662, 0.0065748976, 0.0840708017, -0.30959934, 0.1218284369, 0.2352634966, -0.2610889673, 0.2092307359, -0.3233409226, 0.1007636189, 0.0994939283, 0.0633323044, 0.0223014504, 0.1991024166, 0.0650480315, 0.0691617727, -0.0496639088, -0.2599099278, -0.0702273548, 0.1948126853, 0.205114007, -0.0579007193, 0.2278749943, -0.5071965456, -0.1686701477, 0.0822388381, -0.0584756732, 0.1155844331, 0.0038600247, 0.1811006814, 0.2013252676, 0.2885710597, -0.3500798345, 0.2458776534, -0.0869046748, 0.2614989579, 0.1408280283, 0.07593593, 0.4579921663, 0.0213007778, -0.3352100253, -0.0335409567, -0.0300774835, 0.0866356418, 0.2558809817, -0.233358562, 0.300347209, 0.198920697, -0.1174949631, 0.5623857379, -0.1496047378, 0.2065961957, 0.4130832553, 0.1872232705, -0.369863838, 0.0016460642, 0.2932012379, -0.0966371149, -0.0709825084, 0.0759613067, 0.2589091659, -0.3223279715, 0.1137204766, -0.0657392666, 0.1647822559, -0.0565514416, 0.1922588348, 0.6700764298, 0.2270729095, 0.0499260873, -0.0694645271, 0.1699931175, 0.0953946412, 0.3628065586, -0.2234564424, 0.1927638352, -0.0520042777, 0.0246352106, -0.1621609479, -0.3400559425, 0.2986115217, 0.1632018387, -0.0247745402, 0.0986763462, -0.172257483, 0.2616477609, 0.1543591619, 0.0302231647, -0.2611559331, 0.1914432049, -0.1224777997, -0.0129828155, -0.0442104824, -0.2680072784, 0.0015668869, 0.1556259841, -0.0046619838, -0.3565733731, 0.2555732429, 0.3037430048, -0.2440860868, -0.4411395192, 0.1348090917, 0.212492615, 0.0311707221, -0.3002212942, 0.1577610523, 0.4137803316, 0.0780922323, -0.1270552874, 0.2019163519, 0.4433458745, 0.4205472767, -0.3373265266, 0.0424413942, 0.0753406212, -0.0656808019, -0.0233783536, 0.2276100814, 0.4672247767, 0.2502681613, 0.3970100284, 0.1184259653, -0.1416000128, -0.031975396, 0.2360502481, -0.0639188141, -0.0566705838, -0.0451857932, -0.0590354763, 0.1407209486, -0.4205533266, -0.0135846995, -0.5078690052, 0.3400223851, 0.1610560864, 0.0025874451, 0.177529186, -0.0925812125, 0.0479857475, -0.1569758505, 0.3962932825, 0.3195853829, 0.1991413683, -0.3908326626, -0.0089955479, -0.4645192027, -0.018635571, -0.2982346117, 0.1121006534, -0.0814325362, 0.1286558807, 0.0755082965, 0.2132718563, 0.036632318, 0.0450983681, 0.0668025166, 0.4949165583, -0.2315313965, -0.2447034419, -0.1948167384, 0.2191624641, -0.1583236754, -0.3909314275, 0.0575938486, -0.1385610253, 0.0340730473, -0.3200198114, -0.0665003657, 0.0955725014, 0.0059600119, 0.332428515, 0.1523780823, 0.5925300717, -0.1540946811, -0.2021767795, -0.2086715847, -0.0110699423, -0.1599349231, 0.3116775751, 0.1967295557, 0.0989066958, -0.1607933789, -0.1119711921, -0.0295641012, 0.2984873056, -0.0448160134, 0.1949228942, -0.3669615686, -0.3863568008, 0.057917431, 0.1138559952, 0.1190271452, 0.0469262153, -0.1308563054, -0.0533181056, -0.3421496153, -0.3086864054, 0.3866544366, -0.3773034811, -0.5697818398, -0.0921549499, 0.0079287291, 0.0470565483, 0.1902976483, -0.3660884202, 0.2775550485, 0.3897728622, 0.0513336472, -0.1509680748, 0.1664217561, 0.0286486112, -0.0162156448, -0.0940432623, 0.1160702854, -0.0082844896, -0.3563149273, -0.220584631, -0.391258359 ]
https://github.com/huggingface/datasets/issues/2035
wiki40b/wikipedia for almost all languages cannot be downloaded
HI @dorost1234, The dataset size is 631.84 MiB so depending on your internet speed it'll take some time. You can monitor your internet speed meanwhile to see if it's downloading the dataset or not (use `nload` if you're using linux/mac to monitor the same). In my case it took around 3-4 mins. Since they haven't used `download_and_extract` here that's why there's no download progress bar.
Hi I am trying to download the data as below: ``` from datasets import load_dataset dataset = load_dataset("wiki40b", "cs") print(dataset) ``` I am getting this error. @lhoestq I will be grateful if you could assist me with this error. For almost all languages except english I am getting this error. I really need majority of languages in this dataset to be able to train my models for a deadline and your great scalable super well-written library is my only hope to train the models at scale while being low on resources. thank you very much. ``` (fast) dara@vgne046:/user/dara/dev/codes/seq2seq$ python test_data.py Downloading and preparing dataset wiki40b/cs (download: Unknown size, generated: Unknown size, post-processed: Unknown size, total: Unknown size) to temp/dara/cache_home_2/datasets/wiki40b/cs/1.1.0/063778187363ffb294896eaa010fc254b42b73e31117c71573a953b0b0bf010f... Traceback (most recent call last): File "test_data.py", line 3, in <module> dataset = load_dataset("wiki40b", "cs") File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/datasets/load.py", line 746, in load_dataset use_auth_token=use_auth_token, File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/datasets/builder.py", line 579, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/datasets/builder.py", line 1105, in _download_and_prepare import apache_beam as beam File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/apache_beam-2.28.0-py3.7-linux-x86_64.egg/apache_beam/__init__.py", line 96, in <module> from apache_beam import io File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/apache_beam-2.28.0-py3.7-linux-x86_64.egg/apache_beam/io/__init__.py", line 23, in <module> from apache_beam.io.avroio import * File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/apache_beam-2.28.0-py3.7-linux-x86_64.egg/apache_beam/io/avroio.py", line 55, in <module> import avro File "<frozen importlib._bootstrap>", line 983, in _find_and_load File "<frozen importlib._bootstrap>", line 967, in _find_and_load_unlocked File "<frozen importlib._bootstrap>", line 668, in _load_unlocked File "<frozen importlib._bootstrap>", line 638, in _load_backward_compatible File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/avro_python3-1.9.2.1-py3.7.egg/avro/__init__.py", line 34, in <module> File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/avro_python3-1.9.2.1-py3.7.egg/avro/__init__.py", line 30, in LoadResource NotADirectoryError: [Errno 20] Not a directory: '/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/avro_python3-1.9.2.1-py3.7.egg/avro/VERSION.txt' ```
65
wiki40b/wikipedia for almost all languages cannot be downloaded Hi I am trying to download the data as below: ``` from datasets import load_dataset dataset = load_dataset("wiki40b", "cs") print(dataset) ``` I am getting this error. @lhoestq I will be grateful if you could assist me with this error. For almost all languages except english I am getting this error. I really need majority of languages in this dataset to be able to train my models for a deadline and your great scalable super well-written library is my only hope to train the models at scale while being low on resources. thank you very much. ``` (fast) dara@vgne046:/user/dara/dev/codes/seq2seq$ python test_data.py Downloading and preparing dataset wiki40b/cs (download: Unknown size, generated: Unknown size, post-processed: Unknown size, total: Unknown size) to temp/dara/cache_home_2/datasets/wiki40b/cs/1.1.0/063778187363ffb294896eaa010fc254b42b73e31117c71573a953b0b0bf010f... Traceback (most recent call last): File "test_data.py", line 3, in <module> dataset = load_dataset("wiki40b", "cs") File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/datasets/load.py", line 746, in load_dataset use_auth_token=use_auth_token, File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/datasets/builder.py", line 579, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/datasets/builder.py", line 1105, in _download_and_prepare import apache_beam as beam File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/apache_beam-2.28.0-py3.7-linux-x86_64.egg/apache_beam/__init__.py", line 96, in <module> from apache_beam import io File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/apache_beam-2.28.0-py3.7-linux-x86_64.egg/apache_beam/io/__init__.py", line 23, in <module> from apache_beam.io.avroio import * File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/apache_beam-2.28.0-py3.7-linux-x86_64.egg/apache_beam/io/avroio.py", line 55, in <module> import avro File "<frozen importlib._bootstrap>", line 983, in _find_and_load File "<frozen importlib._bootstrap>", line 967, in _find_and_load_unlocked File "<frozen importlib._bootstrap>", line 668, in _load_unlocked File "<frozen importlib._bootstrap>", line 638, in _load_backward_compatible File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/avro_python3-1.9.2.1-py3.7.egg/avro/__init__.py", line 34, in <module> File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/avro_python3-1.9.2.1-py3.7.egg/avro/__init__.py", line 30, in LoadResource NotADirectoryError: [Errno 20] Not a directory: '/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/avro_python3-1.9.2.1-py3.7.egg/avro/VERSION.txt' ``` HI @dorost1234, The dataset size is 631.84 MiB so depending on your internet speed it'll take some time. You can monitor your internet speed meanwhile to see if it's downloading the dataset or not (use `nload` if you're using linux/mac to monitor the same). In my case it took around 3-4 mins. Since they haven't used `download_and_extract` here that's why there's no download progress bar.
[ -0.2544980943, -0.0779203922, -0.1537583023, 0.4308665693, 0.3997027874, 0.3504618108, 0.1368505955, 0.5331581235, 0.1893273741, 0.0235844627, -0.1773032993, -0.0942177325, 0.0944039673, 0.0111838356, -0.0297048613, -0.4591734409, -0.0672903955, 0.0295372121, -0.1352711022, -0.1168933213, -0.2519629598, 0.1256148666, -0.0791748315, -0.0490287244, -0.0387458354, -0.1828400791, -0.0958353654, -0.2073056251, -0.3507466912, -0.2408646047, 0.3545784652, 0.0192575045, 0.3101118207, 0.1529971063, -0.0001114368, -0.0509648919, 0.3131164014, -0.2357944846, -0.2936121821, -0.2888575792, -0.0720895901, -0.3261859417, -0.0904391259, -0.4200315475, 0.1274462193, 0.0466824137, 0.0806714669, -0.1318009794, 0.0757574588, 0.2992253006, 0.2468712628, -0.1426033527, 0.3134340644, -0.1457377225, 0.3651964068, -0.3777082264, -0.0280338377, 0.3395859897, 0.2187205851, 0.0713427216, 0.2154793739, 0.2220427394, -0.2341406941, 0.0134995393, 0.0482247174, -0.2912237346, 0.2222054899, -0.6297014952, 0.5206415057, 0.5344282389, 0.8290325403, -0.1283515543, -0.0874670148, 0.0723919421, -0.0260593556, -0.0313743465, -0.055740077, 0.4819797873, -0.1893263608, 0.0975979418, 0.1261649877, -0.1254300475, -0.1567188501, 0.4228464663, -0.1241364852, 0.4435882568, -0.0527198985, 0.2112595141, -0.0216666255, -0.102701813, -0.2636416256, -0.0696594715, -0.096159853, 0.2933216393, -0.2793980837, 0.019635722, -0.1615017503, 0.0556469783, 0.3511351347, -0.1503834128, -0.2346211374, -0.0450780764, 0.0960105732, 0.1575746238, 0.1801502407, 0.1637833863, 0.0620480925, -0.2000063807, 0.2782809138, 0.3079039752, -0.0842120126, -0.0761707574, -0.2100430727, -0.223056376, -0.2947567999, 0.0944294631, 0.0875294209, -0.2031711042, -0.1779465973, 0.0071132444, -0.1443609744, -0.0194387883, -0.2023949325, 0.3628211319, -0.150142923, 0.4312383831, 0.1779013574, 0.3288218677, -0.1035725772, -0.2613096237, -0.0173522905, 0.3065481186, -0.1393198222, -0.1036602259, 0.2187826782, -0.1099158973, 0.2648517191, -0.0893723071, -0.1031380296, -0.1764119267, -0.153690964, -0.3695676923, -0.1791032255, 0.2304090708, 0.1619766951, 0.2839275897, 0.1476142257, -0.2447477877, -0.2305806428, 0.1207451373, -0.3596145809, -0.1681547314, -0.2051545531, 0.1944684535, 0.0610983893, -0.0546504818, -0.3160063624, 0.2876639962, 0.3030639291, -0.1423989236, 0.118072845, -0.0075458987, -0.0232542455, -0.2251897305, 0.1790114045, 0.4908003807, -0.399959445, 0.0918976963, -0.023850657, -0.0337116867, 0.1897820383, 0.1842968464, -0.177952528, 0.25654158, -0.0978841782, 0.0381604433, 0.2101309747, -0.3214418292, -0.577635169, 0.1860538572, 0.1134095564, -0.1670033634, 0.0994795859, 0.0160008743, 0.2750304043, -0.0493874773, 0.0524543673, 0.3956745267, 0.1368377656, -0.1056450084, -0.3274506927, -0.5078234673, 0.3264816999, 0.1633175761, 0.4547143877, -0.1322698593, 0.2759853303, 0.2917215526, 0.3191740811, -0.1915476471, 0.1246786341, 0.2333604097, -0.0089483699, -0.0445757024, -0.0025623105, -0.3310274482, -0.3097582459, 0.1477600038, 0.1029132903, 0.1654649079, -0.1609552503, 0.0296833292, -0.3161897063, -0.0888076052, -0.1953117102, 0.103268832, 0.1995638311, -0.1052768379, 0.119593136, 0.485458374, 0.12651667, -0.0994595736, -0.415690273, -0.0948528498, -0.1789346635, 0.0923319161, -0.2174283415, 0.204492107, 0.0336809307, 0.025808936, 0.1796841472, 0.0730526596, -0.1607237756, -0.0110611115, -0.0784519166, -0.1035446078, 0.1354628652, 0.1169638559, 0.1331282556, -0.4173748493, 0.1920300871, 0.1084798574, 0.329746455, -0.1357725263, 0.1178164184, 0.1222370416, 0.0399735123, 0.3655341566, 0.1234309673, 0.1498312652, 0.4555992186, 0.0305262208, 0.1263546646, -0.0049749911, 0.3271190524, 0.1556601673, 0.0127487481, -0.1329595447, -0.029277496, -0.113514185, 0.3166725636, -0.0845337585, 0.2671486139, 0.2927594781, -0.0765188709, -0.0048597306, -0.0978271887, 0.1533987373, 0.0522076972, 0.0699051321, 0.1065891907, -0.0998439118, 0.3596490026, -0.1293926835, 0.2643094361, 0.1755418181, 0.1863328815, 0.2091354728, 0.1350801587, -0.0111756194, -0.1882828176, -0.1296792477, 0.0699940249, 0.3717177212, 0.0691838264, 0.1659455299, -0.0484347418, -0.1418599188, 0.0841908157, -0.052392181, -0.2509430945, -0.2163173556, -0.1256381869, -0.0857284963, 0.0915832594, -0.0001049675, -0.3266667724, -0.0721022189, 0.0621664599, -0.3203503489, -0.1605682224, -0.298122853, -0.368449837, 0.0767874122, 0.387129724, 0.1112902611, 0.2952098846, -0.3326289654, -0.1918787807, -0.0899461061, -0.2681113482, -0.0143136587, -0.1569703817, 0.2413950115, -0.0241168067, 0.7152199149, -0.1799962223, -0.2514213324, 0.184648633, -0.0070199743, 0.0658745542, 0.2497711182, -0.1534786224, -0.0429238901, 0.0845355988, -0.485653311, -0.515576601, -0.2696562707, 0.0125193018, 0.0485177934, 0.0878062025, 0.1686408371, 0.192484051, 0.0680268556, 0.1211878806, 0.1809064746, -0.1900434047, -0.1518693268, 0.4496892393, -0.0274133831, -0.4299623072, 0.188186571, 0.0109940469, 0.3149319291, 0.0079272352, -0.6572358608, 0.1441125125, -0.2763589025, 0.2499429733, -0.0219931006, 0.1834769845, 0.114344269, -0.2136969417, 0.0479722694, 0.0449954867, 0.1059099361, -0.040621087, -0.2095249593, 0.2556222677, 0.0299455188, 0.2961854041, 0.1644206494, 0.6888412237, 0.0548556149, 0.1658408046, 0.4367814064, 0.2385820597, 0.2310311794, -0.2314288169, -0.3645713925, 0.0605744086, -0.2394920886, -0.031003058, 0.2670124471, -0.162319988, -0.4674171805, -0.3477125168, -0.2426845282, -0.3674673736, -0.2107712477, 0.1539979279, -0.0501818061, 0.082940504, 0.0575964078, 0.1203985885, 0.0215731636, -0.2823500931, 0.2137889713, 0.5317090154, -0.2486013621, 0.1685893983, -0.2782665193, -0.3421222866, -0.4126344323, 0.2524553537, 0.0777070895, 0.4147610366, -0.0938023105, 0.3499189019, 0.2011798322, -0.0892689079, 0.29062289, -0.1702442914, 0.1230506301, 0.1972467899, 0.1049929112, -0.2152170837, -0.0624400601, -0.2943331003, -0.0166880898, 0.3054167032, -0.0444555506, -0.6709657311, 0.0843290389, -0.0425857566, 0.5003298521, -0.0571770817, -0.0173499174, -0.1618569046, -0.5653647184, -0.4854038954, -0.0276873522, 0.1895758212, 0.4046096206, -0.1972091496, 0.2628989816, -0.1020785645, 0.2205627859, 0.0213166662, 0.0077354982, 0.2132564187, 0.2327860445, 0.0974325836, -0.1967879534, -0.1378472447, 0.15032655, 0.3620435596, -0.0635322034, -0.2343122214, -0.1212477535, -0.0430036522, 0.0434830859, 0.1415461898, -0.101290524, 0.047706943, 0.1486631781, -0.137935102, 0.1658205688, -0.0128415711, 0.2519465983, -0.1063374802, -0.496234715, -0.5676655769, 0.6620465517, 0.0233820751, 0.0701420158, 0.2541714609, 0.1754048467, -0.1958613545, 0.3753730059, 0.1058034673, 1.1372189522, -0.2281342149, 0.1104203761, -0.1039843038, 0.1094664782, 0.3614170253, -0.3578396738, 0.208407253, -0.3226416111, -0.1089070588, -0.0195197351, 0.0736747012, -0.0461387485, 0.0998933241, -0.3072272539, 0.2564416528, -0.3662325144, -0.0869540572, 0.1056493521, 0.2329858243, -0.4058891535, -0.0680367798, -0.3213796318, 0.1196287572, -0.2146602869, 0.2546931207, -0.2110012174, -0.1254786551, -0.061424572, -0.2672703862, -0.5050507784, 0.070643574, -0.2883503139, 0.3298687041, -0.4893510938, -0.189774543, 0.3386202455, 0.4448713958, 0.0414798521, 0.4031542242, -0.2879834175, 0.1116522104, -0.263861239, -0.423619777, 0.0944911912, 0.0112071671, 0.0871337876, -0.1816289872, -0.3709903359, 0.1669727117, -0.0575723127, 0.0528491586, -0.0959876478, 0.1043775529, 0.2016539872, -0.0458974987, -0.3565551937, -0.0222828016, -0.0943856835, -0.0894330293, 0.1241666228, 0.0821967572, -0.1119038314, 0.1409133375, 0.1852951944, -0.3349809051, 0.0217914172, 0.3491057754, 0.1834492087, 0.0239539966, 0.6245266199, 0.3155457377, -0.3965406716, -0.1898149252, 0.0439141914, -0.2713774443, -0.4585740864, -0.0896048397, -0.0421896465, 0.3383432627, -0.4149284959, 0.3502536714, 0.1749068648, -0.2348314226, 0.2064643502, -0.7065885067, -0.1240217313, 0.2160939574, -0.0789091662, 0.0065748976, 0.0840708017, -0.30959934, 0.1218284369, 0.2352634966, -0.2610889673, 0.2092307359, -0.3233409226, 0.1007636189, 0.0994939283, 0.0633323044, 0.0223014504, 0.1991024166, 0.0650480315, 0.0691617727, -0.0496639088, -0.2599099278, -0.0702273548, 0.1948126853, 0.205114007, -0.0579007193, 0.2278749943, -0.5071965456, -0.1686701477, 0.0822388381, -0.0584756732, 0.1155844331, 0.0038600247, 0.1811006814, 0.2013252676, 0.2885710597, -0.3500798345, 0.2458776534, -0.0869046748, 0.2614989579, 0.1408280283, 0.07593593, 0.4579921663, 0.0213007778, -0.3352100253, -0.0335409567, -0.0300774835, 0.0866356418, 0.2558809817, -0.233358562, 0.300347209, 0.198920697, -0.1174949631, 0.5623857379, -0.1496047378, 0.2065961957, 0.4130832553, 0.1872232705, -0.369863838, 0.0016460642, 0.2932012379, -0.0966371149, -0.0709825084, 0.0759613067, 0.2589091659, -0.3223279715, 0.1137204766, -0.0657392666, 0.1647822559, -0.0565514416, 0.1922588348, 0.6700764298, 0.2270729095, 0.0499260873, -0.0694645271, 0.1699931175, 0.0953946412, 0.3628065586, -0.2234564424, 0.1927638352, -0.0520042777, 0.0246352106, -0.1621609479, -0.3400559425, 0.2986115217, 0.1632018387, -0.0247745402, 0.0986763462, -0.172257483, 0.2616477609, 0.1543591619, 0.0302231647, -0.2611559331, 0.1914432049, -0.1224777997, -0.0129828155, -0.0442104824, -0.2680072784, 0.0015668869, 0.1556259841, -0.0046619838, -0.3565733731, 0.2555732429, 0.3037430048, -0.2440860868, -0.4411395192, 0.1348090917, 0.212492615, 0.0311707221, -0.3002212942, 0.1577610523, 0.4137803316, 0.0780922323, -0.1270552874, 0.2019163519, 0.4433458745, 0.4205472767, -0.3373265266, 0.0424413942, 0.0753406212, -0.0656808019, -0.0233783536, 0.2276100814, 0.4672247767, 0.2502681613, 0.3970100284, 0.1184259653, -0.1416000128, -0.031975396, 0.2360502481, -0.0639188141, -0.0566705838, -0.0451857932, -0.0590354763, 0.1407209486, -0.4205533266, -0.0135846995, -0.5078690052, 0.3400223851, 0.1610560864, 0.0025874451, 0.177529186, -0.0925812125, 0.0479857475, -0.1569758505, 0.3962932825, 0.3195853829, 0.1991413683, -0.3908326626, -0.0089955479, -0.4645192027, -0.018635571, -0.2982346117, 0.1121006534, -0.0814325362, 0.1286558807, 0.0755082965, 0.2132718563, 0.036632318, 0.0450983681, 0.0668025166, 0.4949165583, -0.2315313965, -0.2447034419, -0.1948167384, 0.2191624641, -0.1583236754, -0.3909314275, 0.0575938486, -0.1385610253, 0.0340730473, -0.3200198114, -0.0665003657, 0.0955725014, 0.0059600119, 0.332428515, 0.1523780823, 0.5925300717, -0.1540946811, -0.2021767795, -0.2086715847, -0.0110699423, -0.1599349231, 0.3116775751, 0.1967295557, 0.0989066958, -0.1607933789, -0.1119711921, -0.0295641012, 0.2984873056, -0.0448160134, 0.1949228942, -0.3669615686, -0.3863568008, 0.057917431, 0.1138559952, 0.1190271452, 0.0469262153, -0.1308563054, -0.0533181056, -0.3421496153, -0.3086864054, 0.3866544366, -0.3773034811, -0.5697818398, -0.0921549499, 0.0079287291, 0.0470565483, 0.1902976483, -0.3660884202, 0.2775550485, 0.3897728622, 0.0513336472, -0.1509680748, 0.1664217561, 0.0286486112, -0.0162156448, -0.0940432623, 0.1160702854, -0.0082844896, -0.3563149273, -0.220584631, -0.391258359 ]
https://github.com/huggingface/datasets/issues/2035
wiki40b/wikipedia for almost all languages cannot be downloaded
Hi thanks, my internet speed should be good, but this really freezes for me, this is how I try to get this dataset: `from datasets import load_dataset dataset = load_dataset("wiki40b", "cs", beam_runner='DirectRunner')` the output I see if different also from what you see after writing this command: `Downloading and preparing dataset wiki40b/cs (download: Unknown size, generated: Unknown size, post-processed: Unknown size, total: Unknown size) to /users/dara/cache/datasets/wiki40b/cs/1.1.0/063778187363ffb294896eaa010fc254b42b73e31117c71573a953b0b0bf010f...` do you have any idea why it might get freezed? anything I am missing @lhoestq @bhavitvyamalik. Do I need maybe to set anything special for apache-beam? thanks a lot On Tue, Mar 16, 2021 at 9:03 AM Bhavitvya Malik ***@***.***> wrote: > HI @dorost1234 <https://github.com/dorost1234>, > The dataset size is 631.84 MiB so depending on your internet speed it'll > take some time. You can monitor your internet speed meanwhile to see if > it's downloading the dataset or not (use nload if you're using linux/mac > to monitor the same). In my case it took around 3-4 mins. Since they > haven't used download_and_extract here that's why there's no download > progress bar. > > — > You are receiving this because you were mentioned. > Reply to this email directly, view it on GitHub > <https://github.com/huggingface/datasets/issues/2035#issuecomment-800044303>, > or unsubscribe > <https://github.com/notifications/unsubscribe-auth/AS37NMQIHNNLM2LGG6QKZ73TD4GDJANCNFSM4ZA5R2UA> > . >
Hi I am trying to download the data as below: ``` from datasets import load_dataset dataset = load_dataset("wiki40b", "cs") print(dataset) ``` I am getting this error. @lhoestq I will be grateful if you could assist me with this error. For almost all languages except english I am getting this error. I really need majority of languages in this dataset to be able to train my models for a deadline and your great scalable super well-written library is my only hope to train the models at scale while being low on resources. thank you very much. ``` (fast) dara@vgne046:/user/dara/dev/codes/seq2seq$ python test_data.py Downloading and preparing dataset wiki40b/cs (download: Unknown size, generated: Unknown size, post-processed: Unknown size, total: Unknown size) to temp/dara/cache_home_2/datasets/wiki40b/cs/1.1.0/063778187363ffb294896eaa010fc254b42b73e31117c71573a953b0b0bf010f... Traceback (most recent call last): File "test_data.py", line 3, in <module> dataset = load_dataset("wiki40b", "cs") File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/datasets/load.py", line 746, in load_dataset use_auth_token=use_auth_token, File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/datasets/builder.py", line 579, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/datasets/builder.py", line 1105, in _download_and_prepare import apache_beam as beam File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/apache_beam-2.28.0-py3.7-linux-x86_64.egg/apache_beam/__init__.py", line 96, in <module> from apache_beam import io File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/apache_beam-2.28.0-py3.7-linux-x86_64.egg/apache_beam/io/__init__.py", line 23, in <module> from apache_beam.io.avroio import * File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/apache_beam-2.28.0-py3.7-linux-x86_64.egg/apache_beam/io/avroio.py", line 55, in <module> import avro File "<frozen importlib._bootstrap>", line 983, in _find_and_load File "<frozen importlib._bootstrap>", line 967, in _find_and_load_unlocked File "<frozen importlib._bootstrap>", line 668, in _load_unlocked File "<frozen importlib._bootstrap>", line 638, in _load_backward_compatible File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/avro_python3-1.9.2.1-py3.7.egg/avro/__init__.py", line 34, in <module> File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/avro_python3-1.9.2.1-py3.7.egg/avro/__init__.py", line 30, in LoadResource NotADirectoryError: [Errno 20] Not a directory: '/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/avro_python3-1.9.2.1-py3.7.egg/avro/VERSION.txt' ```
212
wiki40b/wikipedia for almost all languages cannot be downloaded Hi I am trying to download the data as below: ``` from datasets import load_dataset dataset = load_dataset("wiki40b", "cs") print(dataset) ``` I am getting this error. @lhoestq I will be grateful if you could assist me with this error. For almost all languages except english I am getting this error. I really need majority of languages in this dataset to be able to train my models for a deadline and your great scalable super well-written library is my only hope to train the models at scale while being low on resources. thank you very much. ``` (fast) dara@vgne046:/user/dara/dev/codes/seq2seq$ python test_data.py Downloading and preparing dataset wiki40b/cs (download: Unknown size, generated: Unknown size, post-processed: Unknown size, total: Unknown size) to temp/dara/cache_home_2/datasets/wiki40b/cs/1.1.0/063778187363ffb294896eaa010fc254b42b73e31117c71573a953b0b0bf010f... Traceback (most recent call last): File "test_data.py", line 3, in <module> dataset = load_dataset("wiki40b", "cs") File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/datasets/load.py", line 746, in load_dataset use_auth_token=use_auth_token, File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/datasets/builder.py", line 579, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/datasets/builder.py", line 1105, in _download_and_prepare import apache_beam as beam File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/apache_beam-2.28.0-py3.7-linux-x86_64.egg/apache_beam/__init__.py", line 96, in <module> from apache_beam import io File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/apache_beam-2.28.0-py3.7-linux-x86_64.egg/apache_beam/io/__init__.py", line 23, in <module> from apache_beam.io.avroio import * File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/apache_beam-2.28.0-py3.7-linux-x86_64.egg/apache_beam/io/avroio.py", line 55, in <module> import avro File "<frozen importlib._bootstrap>", line 983, in _find_and_load File "<frozen importlib._bootstrap>", line 967, in _find_and_load_unlocked File "<frozen importlib._bootstrap>", line 668, in _load_unlocked File "<frozen importlib._bootstrap>", line 638, in _load_backward_compatible File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/avro_python3-1.9.2.1-py3.7.egg/avro/__init__.py", line 34, in <module> File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/avro_python3-1.9.2.1-py3.7.egg/avro/__init__.py", line 30, in LoadResource NotADirectoryError: [Errno 20] Not a directory: '/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/avro_python3-1.9.2.1-py3.7.egg/avro/VERSION.txt' ``` Hi thanks, my internet speed should be good, but this really freezes for me, this is how I try to get this dataset: `from datasets import load_dataset dataset = load_dataset("wiki40b", "cs", beam_runner='DirectRunner')` the output I see if different also from what you see after writing this command: `Downloading and preparing dataset wiki40b/cs (download: Unknown size, generated: Unknown size, post-processed: Unknown size, total: Unknown size) to /users/dara/cache/datasets/wiki40b/cs/1.1.0/063778187363ffb294896eaa010fc254b42b73e31117c71573a953b0b0bf010f...` do you have any idea why it might get freezed? anything I am missing @lhoestq @bhavitvyamalik. Do I need maybe to set anything special for apache-beam? thanks a lot On Tue, Mar 16, 2021 at 9:03 AM Bhavitvya Malik ***@***.***> wrote: > HI @dorost1234 <https://github.com/dorost1234>, > The dataset size is 631.84 MiB so depending on your internet speed it'll > take some time. You can monitor your internet speed meanwhile to see if > it's downloading the dataset or not (use nload if you're using linux/mac > to monitor the same). In my case it took around 3-4 mins. Since they > haven't used download_and_extract here that's why there's no download > progress bar. > > — > You are receiving this because you were mentioned. > Reply to this email directly, view it on GitHub > <https://github.com/huggingface/datasets/issues/2035#issuecomment-800044303>, > or unsubscribe > <https://github.com/notifications/unsubscribe-auth/AS37NMQIHNNLM2LGG6QKZ73TD4GDJANCNFSM4ZA5R2UA> > . >
[ -0.2544980943, -0.0779203922, -0.1537583023, 0.4308665693, 0.3997027874, 0.3504618108, 0.1368505955, 0.5331581235, 0.1893273741, 0.0235844627, -0.1773032993, -0.0942177325, 0.0944039673, 0.0111838356, -0.0297048613, -0.4591734409, -0.0672903955, 0.0295372121, -0.1352711022, -0.1168933213, -0.2519629598, 0.1256148666, -0.0791748315, -0.0490287244, -0.0387458354, -0.1828400791, -0.0958353654, -0.2073056251, -0.3507466912, -0.2408646047, 0.3545784652, 0.0192575045, 0.3101118207, 0.1529971063, -0.0001114368, -0.0509648919, 0.3131164014, -0.2357944846, -0.2936121821, -0.2888575792, -0.0720895901, -0.3261859417, -0.0904391259, -0.4200315475, 0.1274462193, 0.0466824137, 0.0806714669, -0.1318009794, 0.0757574588, 0.2992253006, 0.2468712628, -0.1426033527, 0.3134340644, -0.1457377225, 0.3651964068, -0.3777082264, -0.0280338377, 0.3395859897, 0.2187205851, 0.0713427216, 0.2154793739, 0.2220427394, -0.2341406941, 0.0134995393, 0.0482247174, -0.2912237346, 0.2222054899, -0.6297014952, 0.5206415057, 0.5344282389, 0.8290325403, -0.1283515543, -0.0874670148, 0.0723919421, -0.0260593556, -0.0313743465, -0.055740077, 0.4819797873, -0.1893263608, 0.0975979418, 0.1261649877, -0.1254300475, -0.1567188501, 0.4228464663, -0.1241364852, 0.4435882568, -0.0527198985, 0.2112595141, -0.0216666255, -0.102701813, -0.2636416256, -0.0696594715, -0.096159853, 0.2933216393, -0.2793980837, 0.019635722, -0.1615017503, 0.0556469783, 0.3511351347, -0.1503834128, -0.2346211374, -0.0450780764, 0.0960105732, 0.1575746238, 0.1801502407, 0.1637833863, 0.0620480925, -0.2000063807, 0.2782809138, 0.3079039752, -0.0842120126, -0.0761707574, -0.2100430727, -0.223056376, -0.2947567999, 0.0944294631, 0.0875294209, -0.2031711042, -0.1779465973, 0.0071132444, -0.1443609744, -0.0194387883, -0.2023949325, 0.3628211319, -0.150142923, 0.4312383831, 0.1779013574, 0.3288218677, -0.1035725772, -0.2613096237, -0.0173522905, 0.3065481186, -0.1393198222, -0.1036602259, 0.2187826782, -0.1099158973, 0.2648517191, -0.0893723071, -0.1031380296, -0.1764119267, -0.153690964, -0.3695676923, -0.1791032255, 0.2304090708, 0.1619766951, 0.2839275897, 0.1476142257, -0.2447477877, -0.2305806428, 0.1207451373, -0.3596145809, -0.1681547314, -0.2051545531, 0.1944684535, 0.0610983893, -0.0546504818, -0.3160063624, 0.2876639962, 0.3030639291, -0.1423989236, 0.118072845, -0.0075458987, -0.0232542455, -0.2251897305, 0.1790114045, 0.4908003807, -0.399959445, 0.0918976963, -0.023850657, -0.0337116867, 0.1897820383, 0.1842968464, -0.177952528, 0.25654158, -0.0978841782, 0.0381604433, 0.2101309747, -0.3214418292, -0.577635169, 0.1860538572, 0.1134095564, -0.1670033634, 0.0994795859, 0.0160008743, 0.2750304043, -0.0493874773, 0.0524543673, 0.3956745267, 0.1368377656, -0.1056450084, -0.3274506927, -0.5078234673, 0.3264816999, 0.1633175761, 0.4547143877, -0.1322698593, 0.2759853303, 0.2917215526, 0.3191740811, -0.1915476471, 0.1246786341, 0.2333604097, -0.0089483699, -0.0445757024, -0.0025623105, -0.3310274482, -0.3097582459, 0.1477600038, 0.1029132903, 0.1654649079, -0.1609552503, 0.0296833292, -0.3161897063, -0.0888076052, -0.1953117102, 0.103268832, 0.1995638311, -0.1052768379, 0.119593136, 0.485458374, 0.12651667, -0.0994595736, -0.415690273, -0.0948528498, -0.1789346635, 0.0923319161, -0.2174283415, 0.204492107, 0.0336809307, 0.025808936, 0.1796841472, 0.0730526596, -0.1607237756, -0.0110611115, -0.0784519166, -0.1035446078, 0.1354628652, 0.1169638559, 0.1331282556, -0.4173748493, 0.1920300871, 0.1084798574, 0.329746455, -0.1357725263, 0.1178164184, 0.1222370416, 0.0399735123, 0.3655341566, 0.1234309673, 0.1498312652, 0.4555992186, 0.0305262208, 0.1263546646, -0.0049749911, 0.3271190524, 0.1556601673, 0.0127487481, -0.1329595447, -0.029277496, -0.113514185, 0.3166725636, -0.0845337585, 0.2671486139, 0.2927594781, -0.0765188709, -0.0048597306, -0.0978271887, 0.1533987373, 0.0522076972, 0.0699051321, 0.1065891907, -0.0998439118, 0.3596490026, -0.1293926835, 0.2643094361, 0.1755418181, 0.1863328815, 0.2091354728, 0.1350801587, -0.0111756194, -0.1882828176, -0.1296792477, 0.0699940249, 0.3717177212, 0.0691838264, 0.1659455299, -0.0484347418, -0.1418599188, 0.0841908157, -0.052392181, -0.2509430945, -0.2163173556, -0.1256381869, -0.0857284963, 0.0915832594, -0.0001049675, -0.3266667724, -0.0721022189, 0.0621664599, -0.3203503489, -0.1605682224, -0.298122853, -0.368449837, 0.0767874122, 0.387129724, 0.1112902611, 0.2952098846, -0.3326289654, -0.1918787807, -0.0899461061, -0.2681113482, -0.0143136587, -0.1569703817, 0.2413950115, -0.0241168067, 0.7152199149, -0.1799962223, -0.2514213324, 0.184648633, -0.0070199743, 0.0658745542, 0.2497711182, -0.1534786224, -0.0429238901, 0.0845355988, -0.485653311, -0.515576601, -0.2696562707, 0.0125193018, 0.0485177934, 0.0878062025, 0.1686408371, 0.192484051, 0.0680268556, 0.1211878806, 0.1809064746, -0.1900434047, -0.1518693268, 0.4496892393, -0.0274133831, -0.4299623072, 0.188186571, 0.0109940469, 0.3149319291, 0.0079272352, -0.6572358608, 0.1441125125, -0.2763589025, 0.2499429733, -0.0219931006, 0.1834769845, 0.114344269, -0.2136969417, 0.0479722694, 0.0449954867, 0.1059099361, -0.040621087, -0.2095249593, 0.2556222677, 0.0299455188, 0.2961854041, 0.1644206494, 0.6888412237, 0.0548556149, 0.1658408046, 0.4367814064, 0.2385820597, 0.2310311794, -0.2314288169, -0.3645713925, 0.0605744086, -0.2394920886, -0.031003058, 0.2670124471, -0.162319988, -0.4674171805, -0.3477125168, -0.2426845282, -0.3674673736, -0.2107712477, 0.1539979279, -0.0501818061, 0.082940504, 0.0575964078, 0.1203985885, 0.0215731636, -0.2823500931, 0.2137889713, 0.5317090154, -0.2486013621, 0.1685893983, -0.2782665193, -0.3421222866, -0.4126344323, 0.2524553537, 0.0777070895, 0.4147610366, -0.0938023105, 0.3499189019, 0.2011798322, -0.0892689079, 0.29062289, -0.1702442914, 0.1230506301, 0.1972467899, 0.1049929112, -0.2152170837, -0.0624400601, -0.2943331003, -0.0166880898, 0.3054167032, -0.0444555506, -0.6709657311, 0.0843290389, -0.0425857566, 0.5003298521, -0.0571770817, -0.0173499174, -0.1618569046, -0.5653647184, -0.4854038954, -0.0276873522, 0.1895758212, 0.4046096206, -0.1972091496, 0.2628989816, -0.1020785645, 0.2205627859, 0.0213166662, 0.0077354982, 0.2132564187, 0.2327860445, 0.0974325836, -0.1967879534, -0.1378472447, 0.15032655, 0.3620435596, -0.0635322034, -0.2343122214, -0.1212477535, -0.0430036522, 0.0434830859, 0.1415461898, -0.101290524, 0.047706943, 0.1486631781, -0.137935102, 0.1658205688, -0.0128415711, 0.2519465983, -0.1063374802, -0.496234715, -0.5676655769, 0.6620465517, 0.0233820751, 0.0701420158, 0.2541714609, 0.1754048467, -0.1958613545, 0.3753730059, 0.1058034673, 1.1372189522, -0.2281342149, 0.1104203761, -0.1039843038, 0.1094664782, 0.3614170253, -0.3578396738, 0.208407253, -0.3226416111, -0.1089070588, -0.0195197351, 0.0736747012, -0.0461387485, 0.0998933241, -0.3072272539, 0.2564416528, -0.3662325144, -0.0869540572, 0.1056493521, 0.2329858243, -0.4058891535, -0.0680367798, -0.3213796318, 0.1196287572, -0.2146602869, 0.2546931207, -0.2110012174, -0.1254786551, -0.061424572, -0.2672703862, -0.5050507784, 0.070643574, -0.2883503139, 0.3298687041, -0.4893510938, -0.189774543, 0.3386202455, 0.4448713958, 0.0414798521, 0.4031542242, -0.2879834175, 0.1116522104, -0.263861239, -0.423619777, 0.0944911912, 0.0112071671, 0.0871337876, -0.1816289872, -0.3709903359, 0.1669727117, -0.0575723127, 0.0528491586, -0.0959876478, 0.1043775529, 0.2016539872, -0.0458974987, -0.3565551937, -0.0222828016, -0.0943856835, -0.0894330293, 0.1241666228, 0.0821967572, -0.1119038314, 0.1409133375, 0.1852951944, -0.3349809051, 0.0217914172, 0.3491057754, 0.1834492087, 0.0239539966, 0.6245266199, 0.3155457377, -0.3965406716, -0.1898149252, 0.0439141914, -0.2713774443, -0.4585740864, -0.0896048397, -0.0421896465, 0.3383432627, -0.4149284959, 0.3502536714, 0.1749068648, -0.2348314226, 0.2064643502, -0.7065885067, -0.1240217313, 0.2160939574, -0.0789091662, 0.0065748976, 0.0840708017, -0.30959934, 0.1218284369, 0.2352634966, -0.2610889673, 0.2092307359, -0.3233409226, 0.1007636189, 0.0994939283, 0.0633323044, 0.0223014504, 0.1991024166, 0.0650480315, 0.0691617727, -0.0496639088, -0.2599099278, -0.0702273548, 0.1948126853, 0.205114007, -0.0579007193, 0.2278749943, -0.5071965456, -0.1686701477, 0.0822388381, -0.0584756732, 0.1155844331, 0.0038600247, 0.1811006814, 0.2013252676, 0.2885710597, -0.3500798345, 0.2458776534, -0.0869046748, 0.2614989579, 0.1408280283, 0.07593593, 0.4579921663, 0.0213007778, -0.3352100253, -0.0335409567, -0.0300774835, 0.0866356418, 0.2558809817, -0.233358562, 0.300347209, 0.198920697, -0.1174949631, 0.5623857379, -0.1496047378, 0.2065961957, 0.4130832553, 0.1872232705, -0.369863838, 0.0016460642, 0.2932012379, -0.0966371149, -0.0709825084, 0.0759613067, 0.2589091659, -0.3223279715, 0.1137204766, -0.0657392666, 0.1647822559, -0.0565514416, 0.1922588348, 0.6700764298, 0.2270729095, 0.0499260873, -0.0694645271, 0.1699931175, 0.0953946412, 0.3628065586, -0.2234564424, 0.1927638352, -0.0520042777, 0.0246352106, -0.1621609479, -0.3400559425, 0.2986115217, 0.1632018387, -0.0247745402, 0.0986763462, -0.172257483, 0.2616477609, 0.1543591619, 0.0302231647, -0.2611559331, 0.1914432049, -0.1224777997, -0.0129828155, -0.0442104824, -0.2680072784, 0.0015668869, 0.1556259841, -0.0046619838, -0.3565733731, 0.2555732429, 0.3037430048, -0.2440860868, -0.4411395192, 0.1348090917, 0.212492615, 0.0311707221, -0.3002212942, 0.1577610523, 0.4137803316, 0.0780922323, -0.1270552874, 0.2019163519, 0.4433458745, 0.4205472767, -0.3373265266, 0.0424413942, 0.0753406212, -0.0656808019, -0.0233783536, 0.2276100814, 0.4672247767, 0.2502681613, 0.3970100284, 0.1184259653, -0.1416000128, -0.031975396, 0.2360502481, -0.0639188141, -0.0566705838, -0.0451857932, -0.0590354763, 0.1407209486, -0.4205533266, -0.0135846995, -0.5078690052, 0.3400223851, 0.1610560864, 0.0025874451, 0.177529186, -0.0925812125, 0.0479857475, -0.1569758505, 0.3962932825, 0.3195853829, 0.1991413683, -0.3908326626, -0.0089955479, -0.4645192027, -0.018635571, -0.2982346117, 0.1121006534, -0.0814325362, 0.1286558807, 0.0755082965, 0.2132718563, 0.036632318, 0.0450983681, 0.0668025166, 0.4949165583, -0.2315313965, -0.2447034419, -0.1948167384, 0.2191624641, -0.1583236754, -0.3909314275, 0.0575938486, -0.1385610253, 0.0340730473, -0.3200198114, -0.0665003657, 0.0955725014, 0.0059600119, 0.332428515, 0.1523780823, 0.5925300717, -0.1540946811, -0.2021767795, -0.2086715847, -0.0110699423, -0.1599349231, 0.3116775751, 0.1967295557, 0.0989066958, -0.1607933789, -0.1119711921, -0.0295641012, 0.2984873056, -0.0448160134, 0.1949228942, -0.3669615686, -0.3863568008, 0.057917431, 0.1138559952, 0.1190271452, 0.0469262153, -0.1308563054, -0.0533181056, -0.3421496153, -0.3086864054, 0.3866544366, -0.3773034811, -0.5697818398, -0.0921549499, 0.0079287291, 0.0470565483, 0.1902976483, -0.3660884202, 0.2775550485, 0.3897728622, 0.0513336472, -0.1509680748, 0.1664217561, 0.0286486112, -0.0162156448, -0.0940432623, 0.1160702854, -0.0082844896, -0.3563149273, -0.220584631, -0.391258359 ]
https://github.com/huggingface/datasets/issues/2035
wiki40b/wikipedia for almost all languages cannot be downloaded
I tried this on another machine (followed the same procedure I've mentioned above). This is what it shows (during the freeze period) for me: ``` >>> dataset = load_dataset("wiki40b", "cs", beam_runner='DirectRunner') Downloading: 5.26kB [00:00, 1.23MB/s] Downloading: 1.40kB [00:00, 327kB/s] Downloading and preparing dataset wiki40b/cs (download: Unknown size, generated: Unknown size, post-processed: Unknown size, total: Unknown size) to /home/bhavitvya/.cache/huggingface/datasets/wiki40b/cs/1.1.0/063778187363ffb294896eaa010fc254b42b73e31117c71573a953b0b0bf010f... WARNING:apache_beam.internal.gcp.auth:Unable to find default credentials to use: The Application Default Credentials are not available. They are available if running in Google Compute Engine. Otherwise, the environment variable GOOGLE_APPLICATION_CREDENTIALS must be defined pointing to a file defining the credentials. See https://developers.google.com/accounts/docs/application-default-credentials for more information. Connecting anonymously. WARNING:apache_beam.io.tfrecordio:Couldn't find python-snappy so the implementation of _TFRecordUtil._masked_crc32c is not as fast as it could be. ``` After around 10 minutes, here's the loading of dataset: ``` 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:16<00:00, 16.42s/sources] 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 1.12sources/s] 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 1.14sources/s] Dataset wiki40b downloaded and prepared to /home/bhavitvya/.cache/huggingface/datasets/wiki40b/cs/1.1.0/063778187363ffb294896eaa010fc254b42b73e31117c71573a953b0b0bf010f. Subsequent calls will reuse this data. ```
Hi I am trying to download the data as below: ``` from datasets import load_dataset dataset = load_dataset("wiki40b", "cs") print(dataset) ``` I am getting this error. @lhoestq I will be grateful if you could assist me with this error. For almost all languages except english I am getting this error. I really need majority of languages in this dataset to be able to train my models for a deadline and your great scalable super well-written library is my only hope to train the models at scale while being low on resources. thank you very much. ``` (fast) dara@vgne046:/user/dara/dev/codes/seq2seq$ python test_data.py Downloading and preparing dataset wiki40b/cs (download: Unknown size, generated: Unknown size, post-processed: Unknown size, total: Unknown size) to temp/dara/cache_home_2/datasets/wiki40b/cs/1.1.0/063778187363ffb294896eaa010fc254b42b73e31117c71573a953b0b0bf010f... Traceback (most recent call last): File "test_data.py", line 3, in <module> dataset = load_dataset("wiki40b", "cs") File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/datasets/load.py", line 746, in load_dataset use_auth_token=use_auth_token, File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/datasets/builder.py", line 579, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/datasets/builder.py", line 1105, in _download_and_prepare import apache_beam as beam File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/apache_beam-2.28.0-py3.7-linux-x86_64.egg/apache_beam/__init__.py", line 96, in <module> from apache_beam import io File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/apache_beam-2.28.0-py3.7-linux-x86_64.egg/apache_beam/io/__init__.py", line 23, in <module> from apache_beam.io.avroio import * File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/apache_beam-2.28.0-py3.7-linux-x86_64.egg/apache_beam/io/avroio.py", line 55, in <module> import avro File "<frozen importlib._bootstrap>", line 983, in _find_and_load File "<frozen importlib._bootstrap>", line 967, in _find_and_load_unlocked File "<frozen importlib._bootstrap>", line 668, in _load_unlocked File "<frozen importlib._bootstrap>", line 638, in _load_backward_compatible File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/avro_python3-1.9.2.1-py3.7.egg/avro/__init__.py", line 34, in <module> File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/avro_python3-1.9.2.1-py3.7.egg/avro/__init__.py", line 30, in LoadResource NotADirectoryError: [Errno 20] Not a directory: '/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/avro_python3-1.9.2.1-py3.7.egg/avro/VERSION.txt' ```
156
wiki40b/wikipedia for almost all languages cannot be downloaded Hi I am trying to download the data as below: ``` from datasets import load_dataset dataset = load_dataset("wiki40b", "cs") print(dataset) ``` I am getting this error. @lhoestq I will be grateful if you could assist me with this error. For almost all languages except english I am getting this error. I really need majority of languages in this dataset to be able to train my models for a deadline and your great scalable super well-written library is my only hope to train the models at scale while being low on resources. thank you very much. ``` (fast) dara@vgne046:/user/dara/dev/codes/seq2seq$ python test_data.py Downloading and preparing dataset wiki40b/cs (download: Unknown size, generated: Unknown size, post-processed: Unknown size, total: Unknown size) to temp/dara/cache_home_2/datasets/wiki40b/cs/1.1.0/063778187363ffb294896eaa010fc254b42b73e31117c71573a953b0b0bf010f... Traceback (most recent call last): File "test_data.py", line 3, in <module> dataset = load_dataset("wiki40b", "cs") File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/datasets/load.py", line 746, in load_dataset use_auth_token=use_auth_token, File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/datasets/builder.py", line 579, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/datasets/builder.py", line 1105, in _download_and_prepare import apache_beam as beam File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/apache_beam-2.28.0-py3.7-linux-x86_64.egg/apache_beam/__init__.py", line 96, in <module> from apache_beam import io File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/apache_beam-2.28.0-py3.7-linux-x86_64.egg/apache_beam/io/__init__.py", line 23, in <module> from apache_beam.io.avroio import * File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/apache_beam-2.28.0-py3.7-linux-x86_64.egg/apache_beam/io/avroio.py", line 55, in <module> import avro File "<frozen importlib._bootstrap>", line 983, in _find_and_load File "<frozen importlib._bootstrap>", line 967, in _find_and_load_unlocked File "<frozen importlib._bootstrap>", line 668, in _load_unlocked File "<frozen importlib._bootstrap>", line 638, in _load_backward_compatible File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/avro_python3-1.9.2.1-py3.7.egg/avro/__init__.py", line 34, in <module> File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/avro_python3-1.9.2.1-py3.7.egg/avro/__init__.py", line 30, in LoadResource NotADirectoryError: [Errno 20] Not a directory: '/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/avro_python3-1.9.2.1-py3.7.egg/avro/VERSION.txt' ``` I tried this on another machine (followed the same procedure I've mentioned above). This is what it shows (during the freeze period) for me: ``` >>> dataset = load_dataset("wiki40b", "cs", beam_runner='DirectRunner') Downloading: 5.26kB [00:00, 1.23MB/s] Downloading: 1.40kB [00:00, 327kB/s] Downloading and preparing dataset wiki40b/cs (download: Unknown size, generated: Unknown size, post-processed: Unknown size, total: Unknown size) to /home/bhavitvya/.cache/huggingface/datasets/wiki40b/cs/1.1.0/063778187363ffb294896eaa010fc254b42b73e31117c71573a953b0b0bf010f... WARNING:apache_beam.internal.gcp.auth:Unable to find default credentials to use: The Application Default Credentials are not available. They are available if running in Google Compute Engine. Otherwise, the environment variable GOOGLE_APPLICATION_CREDENTIALS must be defined pointing to a file defining the credentials. See https://developers.google.com/accounts/docs/application-default-credentials for more information. Connecting anonymously. WARNING:apache_beam.io.tfrecordio:Couldn't find python-snappy so the implementation of _TFRecordUtil._masked_crc32c is not as fast as it could be. ``` After around 10 minutes, here's the loading of dataset: ``` 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:16<00:00, 16.42s/sources] 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 1.12sources/s] 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 1.14sources/s] Dataset wiki40b downloaded and prepared to /home/bhavitvya/.cache/huggingface/datasets/wiki40b/cs/1.1.0/063778187363ffb294896eaa010fc254b42b73e31117c71573a953b0b0bf010f. Subsequent calls will reuse this data. ```
[ -0.2544980943, -0.0779203922, -0.1537583023, 0.4308665693, 0.3997027874, 0.3504618108, 0.1368505955, 0.5331581235, 0.1893273741, 0.0235844627, -0.1773032993, -0.0942177325, 0.0944039673, 0.0111838356, -0.0297048613, -0.4591734409, -0.0672903955, 0.0295372121, -0.1352711022, -0.1168933213, -0.2519629598, 0.1256148666, -0.0791748315, -0.0490287244, -0.0387458354, -0.1828400791, -0.0958353654, -0.2073056251, -0.3507466912, -0.2408646047, 0.3545784652, 0.0192575045, 0.3101118207, 0.1529971063, -0.0001114368, -0.0509648919, 0.3131164014, -0.2357944846, -0.2936121821, -0.2888575792, -0.0720895901, -0.3261859417, -0.0904391259, -0.4200315475, 0.1274462193, 0.0466824137, 0.0806714669, -0.1318009794, 0.0757574588, 0.2992253006, 0.2468712628, -0.1426033527, 0.3134340644, -0.1457377225, 0.3651964068, -0.3777082264, -0.0280338377, 0.3395859897, 0.2187205851, 0.0713427216, 0.2154793739, 0.2220427394, -0.2341406941, 0.0134995393, 0.0482247174, -0.2912237346, 0.2222054899, -0.6297014952, 0.5206415057, 0.5344282389, 0.8290325403, -0.1283515543, -0.0874670148, 0.0723919421, -0.0260593556, -0.0313743465, -0.055740077, 0.4819797873, -0.1893263608, 0.0975979418, 0.1261649877, -0.1254300475, -0.1567188501, 0.4228464663, -0.1241364852, 0.4435882568, -0.0527198985, 0.2112595141, -0.0216666255, -0.102701813, -0.2636416256, -0.0696594715, -0.096159853, 0.2933216393, -0.2793980837, 0.019635722, -0.1615017503, 0.0556469783, 0.3511351347, -0.1503834128, -0.2346211374, -0.0450780764, 0.0960105732, 0.1575746238, 0.1801502407, 0.1637833863, 0.0620480925, -0.2000063807, 0.2782809138, 0.3079039752, -0.0842120126, -0.0761707574, -0.2100430727, -0.223056376, -0.2947567999, 0.0944294631, 0.0875294209, -0.2031711042, -0.1779465973, 0.0071132444, -0.1443609744, -0.0194387883, -0.2023949325, 0.3628211319, -0.150142923, 0.4312383831, 0.1779013574, 0.3288218677, -0.1035725772, -0.2613096237, -0.0173522905, 0.3065481186, -0.1393198222, -0.1036602259, 0.2187826782, -0.1099158973, 0.2648517191, -0.0893723071, -0.1031380296, -0.1764119267, -0.153690964, -0.3695676923, -0.1791032255, 0.2304090708, 0.1619766951, 0.2839275897, 0.1476142257, -0.2447477877, -0.2305806428, 0.1207451373, -0.3596145809, -0.1681547314, -0.2051545531, 0.1944684535, 0.0610983893, -0.0546504818, -0.3160063624, 0.2876639962, 0.3030639291, -0.1423989236, 0.118072845, -0.0075458987, -0.0232542455, -0.2251897305, 0.1790114045, 0.4908003807, -0.399959445, 0.0918976963, -0.023850657, -0.0337116867, 0.1897820383, 0.1842968464, -0.177952528, 0.25654158, -0.0978841782, 0.0381604433, 0.2101309747, -0.3214418292, -0.577635169, 0.1860538572, 0.1134095564, -0.1670033634, 0.0994795859, 0.0160008743, 0.2750304043, -0.0493874773, 0.0524543673, 0.3956745267, 0.1368377656, -0.1056450084, -0.3274506927, -0.5078234673, 0.3264816999, 0.1633175761, 0.4547143877, -0.1322698593, 0.2759853303, 0.2917215526, 0.3191740811, -0.1915476471, 0.1246786341, 0.2333604097, -0.0089483699, -0.0445757024, -0.0025623105, -0.3310274482, -0.3097582459, 0.1477600038, 0.1029132903, 0.1654649079, -0.1609552503, 0.0296833292, -0.3161897063, -0.0888076052, -0.1953117102, 0.103268832, 0.1995638311, -0.1052768379, 0.119593136, 0.485458374, 0.12651667, -0.0994595736, -0.415690273, -0.0948528498, -0.1789346635, 0.0923319161, -0.2174283415, 0.204492107, 0.0336809307, 0.025808936, 0.1796841472, 0.0730526596, -0.1607237756, -0.0110611115, -0.0784519166, -0.1035446078, 0.1354628652, 0.1169638559, 0.1331282556, -0.4173748493, 0.1920300871, 0.1084798574, 0.329746455, -0.1357725263, 0.1178164184, 0.1222370416, 0.0399735123, 0.3655341566, 0.1234309673, 0.1498312652, 0.4555992186, 0.0305262208, 0.1263546646, -0.0049749911, 0.3271190524, 0.1556601673, 0.0127487481, -0.1329595447, -0.029277496, -0.113514185, 0.3166725636, -0.0845337585, 0.2671486139, 0.2927594781, -0.0765188709, -0.0048597306, -0.0978271887, 0.1533987373, 0.0522076972, 0.0699051321, 0.1065891907, -0.0998439118, 0.3596490026, -0.1293926835, 0.2643094361, 0.1755418181, 0.1863328815, 0.2091354728, 0.1350801587, -0.0111756194, -0.1882828176, -0.1296792477, 0.0699940249, 0.3717177212, 0.0691838264, 0.1659455299, -0.0484347418, -0.1418599188, 0.0841908157, -0.052392181, -0.2509430945, -0.2163173556, -0.1256381869, -0.0857284963, 0.0915832594, -0.0001049675, -0.3266667724, -0.0721022189, 0.0621664599, -0.3203503489, -0.1605682224, -0.298122853, -0.368449837, 0.0767874122, 0.387129724, 0.1112902611, 0.2952098846, -0.3326289654, -0.1918787807, -0.0899461061, -0.2681113482, -0.0143136587, -0.1569703817, 0.2413950115, -0.0241168067, 0.7152199149, -0.1799962223, -0.2514213324, 0.184648633, -0.0070199743, 0.0658745542, 0.2497711182, -0.1534786224, -0.0429238901, 0.0845355988, -0.485653311, -0.515576601, -0.2696562707, 0.0125193018, 0.0485177934, 0.0878062025, 0.1686408371, 0.192484051, 0.0680268556, 0.1211878806, 0.1809064746, -0.1900434047, -0.1518693268, 0.4496892393, -0.0274133831, -0.4299623072, 0.188186571, 0.0109940469, 0.3149319291, 0.0079272352, -0.6572358608, 0.1441125125, -0.2763589025, 0.2499429733, -0.0219931006, 0.1834769845, 0.114344269, -0.2136969417, 0.0479722694, 0.0449954867, 0.1059099361, -0.040621087, -0.2095249593, 0.2556222677, 0.0299455188, 0.2961854041, 0.1644206494, 0.6888412237, 0.0548556149, 0.1658408046, 0.4367814064, 0.2385820597, 0.2310311794, -0.2314288169, -0.3645713925, 0.0605744086, -0.2394920886, -0.031003058, 0.2670124471, -0.162319988, -0.4674171805, -0.3477125168, -0.2426845282, -0.3674673736, -0.2107712477, 0.1539979279, -0.0501818061, 0.082940504, 0.0575964078, 0.1203985885, 0.0215731636, -0.2823500931, 0.2137889713, 0.5317090154, -0.2486013621, 0.1685893983, -0.2782665193, -0.3421222866, -0.4126344323, 0.2524553537, 0.0777070895, 0.4147610366, -0.0938023105, 0.3499189019, 0.2011798322, -0.0892689079, 0.29062289, -0.1702442914, 0.1230506301, 0.1972467899, 0.1049929112, -0.2152170837, -0.0624400601, -0.2943331003, -0.0166880898, 0.3054167032, -0.0444555506, -0.6709657311, 0.0843290389, -0.0425857566, 0.5003298521, -0.0571770817, -0.0173499174, -0.1618569046, -0.5653647184, -0.4854038954, -0.0276873522, 0.1895758212, 0.4046096206, -0.1972091496, 0.2628989816, -0.1020785645, 0.2205627859, 0.0213166662, 0.0077354982, 0.2132564187, 0.2327860445, 0.0974325836, -0.1967879534, -0.1378472447, 0.15032655, 0.3620435596, -0.0635322034, -0.2343122214, -0.1212477535, -0.0430036522, 0.0434830859, 0.1415461898, -0.101290524, 0.047706943, 0.1486631781, -0.137935102, 0.1658205688, -0.0128415711, 0.2519465983, -0.1063374802, -0.496234715, -0.5676655769, 0.6620465517, 0.0233820751, 0.0701420158, 0.2541714609, 0.1754048467, -0.1958613545, 0.3753730059, 0.1058034673, 1.1372189522, -0.2281342149, 0.1104203761, -0.1039843038, 0.1094664782, 0.3614170253, -0.3578396738, 0.208407253, -0.3226416111, -0.1089070588, -0.0195197351, 0.0736747012, -0.0461387485, 0.0998933241, -0.3072272539, 0.2564416528, -0.3662325144, -0.0869540572, 0.1056493521, 0.2329858243, -0.4058891535, -0.0680367798, -0.3213796318, 0.1196287572, -0.2146602869, 0.2546931207, -0.2110012174, -0.1254786551, -0.061424572, -0.2672703862, -0.5050507784, 0.070643574, -0.2883503139, 0.3298687041, -0.4893510938, -0.189774543, 0.3386202455, 0.4448713958, 0.0414798521, 0.4031542242, -0.2879834175, 0.1116522104, -0.263861239, -0.423619777, 0.0944911912, 0.0112071671, 0.0871337876, -0.1816289872, -0.3709903359, 0.1669727117, -0.0575723127, 0.0528491586, -0.0959876478, 0.1043775529, 0.2016539872, -0.0458974987, -0.3565551937, -0.0222828016, -0.0943856835, -0.0894330293, 0.1241666228, 0.0821967572, -0.1119038314, 0.1409133375, 0.1852951944, -0.3349809051, 0.0217914172, 0.3491057754, 0.1834492087, 0.0239539966, 0.6245266199, 0.3155457377, -0.3965406716, -0.1898149252, 0.0439141914, -0.2713774443, -0.4585740864, -0.0896048397, -0.0421896465, 0.3383432627, -0.4149284959, 0.3502536714, 0.1749068648, -0.2348314226, 0.2064643502, -0.7065885067, -0.1240217313, 0.2160939574, -0.0789091662, 0.0065748976, 0.0840708017, -0.30959934, 0.1218284369, 0.2352634966, -0.2610889673, 0.2092307359, -0.3233409226, 0.1007636189, 0.0994939283, 0.0633323044, 0.0223014504, 0.1991024166, 0.0650480315, 0.0691617727, -0.0496639088, -0.2599099278, -0.0702273548, 0.1948126853, 0.205114007, -0.0579007193, 0.2278749943, -0.5071965456, -0.1686701477, 0.0822388381, -0.0584756732, 0.1155844331, 0.0038600247, 0.1811006814, 0.2013252676, 0.2885710597, -0.3500798345, 0.2458776534, -0.0869046748, 0.2614989579, 0.1408280283, 0.07593593, 0.4579921663, 0.0213007778, -0.3352100253, -0.0335409567, -0.0300774835, 0.0866356418, 0.2558809817, -0.233358562, 0.300347209, 0.198920697, -0.1174949631, 0.5623857379, -0.1496047378, 0.2065961957, 0.4130832553, 0.1872232705, -0.369863838, 0.0016460642, 0.2932012379, -0.0966371149, -0.0709825084, 0.0759613067, 0.2589091659, -0.3223279715, 0.1137204766, -0.0657392666, 0.1647822559, -0.0565514416, 0.1922588348, 0.6700764298, 0.2270729095, 0.0499260873, -0.0694645271, 0.1699931175, 0.0953946412, 0.3628065586, -0.2234564424, 0.1927638352, -0.0520042777, 0.0246352106, -0.1621609479, -0.3400559425, 0.2986115217, 0.1632018387, -0.0247745402, 0.0986763462, -0.172257483, 0.2616477609, 0.1543591619, 0.0302231647, -0.2611559331, 0.1914432049, -0.1224777997, -0.0129828155, -0.0442104824, -0.2680072784, 0.0015668869, 0.1556259841, -0.0046619838, -0.3565733731, 0.2555732429, 0.3037430048, -0.2440860868, -0.4411395192, 0.1348090917, 0.212492615, 0.0311707221, -0.3002212942, 0.1577610523, 0.4137803316, 0.0780922323, -0.1270552874, 0.2019163519, 0.4433458745, 0.4205472767, -0.3373265266, 0.0424413942, 0.0753406212, -0.0656808019, -0.0233783536, 0.2276100814, 0.4672247767, 0.2502681613, 0.3970100284, 0.1184259653, -0.1416000128, -0.031975396, 0.2360502481, -0.0639188141, -0.0566705838, -0.0451857932, -0.0590354763, 0.1407209486, -0.4205533266, -0.0135846995, -0.5078690052, 0.3400223851, 0.1610560864, 0.0025874451, 0.177529186, -0.0925812125, 0.0479857475, -0.1569758505, 0.3962932825, 0.3195853829, 0.1991413683, -0.3908326626, -0.0089955479, -0.4645192027, -0.018635571, -0.2982346117, 0.1121006534, -0.0814325362, 0.1286558807, 0.0755082965, 0.2132718563, 0.036632318, 0.0450983681, 0.0668025166, 0.4949165583, -0.2315313965, -0.2447034419, -0.1948167384, 0.2191624641, -0.1583236754, -0.3909314275, 0.0575938486, -0.1385610253, 0.0340730473, -0.3200198114, -0.0665003657, 0.0955725014, 0.0059600119, 0.332428515, 0.1523780823, 0.5925300717, -0.1540946811, -0.2021767795, -0.2086715847, -0.0110699423, -0.1599349231, 0.3116775751, 0.1967295557, 0.0989066958, -0.1607933789, -0.1119711921, -0.0295641012, 0.2984873056, -0.0448160134, 0.1949228942, -0.3669615686, -0.3863568008, 0.057917431, 0.1138559952, 0.1190271452, 0.0469262153, -0.1308563054, -0.0533181056, -0.3421496153, -0.3086864054, 0.3866544366, -0.3773034811, -0.5697818398, -0.0921549499, 0.0079287291, 0.0470565483, 0.1902976483, -0.3660884202, 0.2775550485, 0.3897728622, 0.0513336472, -0.1509680748, 0.1664217561, 0.0286486112, -0.0162156448, -0.0940432623, 0.1160702854, -0.0082844896, -0.3563149273, -0.220584631, -0.391258359 ]
https://github.com/huggingface/datasets/issues/2035
wiki40b/wikipedia for almost all languages cannot be downloaded
Hi I honestly also now tried on another machine and nothing shows up after hours of waiting. Are you sure you have not set any specific setting? maybe google cloud which seems it is used here, needs some credential setting? thanks for any suggestions on this On Tue, Mar 16, 2021 at 10:02 AM Bhavitvya Malik ***@***.***> wrote: > I tried this on another machine (followed the same procedure I've > mentioned above). This is what it shows (during the freeze period) for me: > > >>> dataset = load_dataset("wiki40b", "cs", beam_runner='DirectRunner') > Downloading: 5.26kB [00:00, 1.23MB/s] > Downloading: 1.40kB [00:00, 327kB/s] > Downloading and preparing dataset wiki40b/cs (download: Unknown size, generated: Unknown size, post-processed: Unknown size, total: Unknown size) to /home/bhavitvya/.cache/huggingface/datasets/wiki40b/cs/1.1.0/063778187363ffb294896eaa010fc254b42b73e31117c71573a953b0b0bf010f... > WARNING:apache_beam.internal.gcp.auth:Unable to find default credentials to use: The Application Default Credentials are not available. They are available if running in Google Compute Engine. Otherwise, the environment variable GOOGLE_APPLICATION_CREDENTIALS must be defined pointing to a file defining the credentials. See https://developers.google.com/accounts/docs/application-default-credentials for more information. > Connecting anonymously. > WARNING:apache_beam.io.tfrecordio:Couldn't find python-snappy so the implementation of _TFRecordUtil._masked_crc32c is not as fast as it could be. > > After around 10 minutes, here's the loading of dataset: > > 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:16<00:00, 16.42s/sources] > 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 1.12sources/s] > 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 1.14sources/s] > Dataset wiki40b downloaded and prepared to /home/bhavitvya/.cache/huggingface/datasets/wiki40b/cs/1.1.0/063778187363ffb294896eaa010fc254b42b73e31117c71573a953b0b0bf010f. Subsequent calls will reuse this data. > > — > You are receiving this because you were mentioned. > Reply to this email directly, view it on GitHub > <https://github.com/huggingface/datasets/issues/2035#issuecomment-800081772>, > or unsubscribe > <https://github.com/notifications/unsubscribe-auth/AS37NMX6A2ZTRZUIIZVFRCDTD4NC3ANCNFSM4ZA5R2UA> > . >
Hi I am trying to download the data as below: ``` from datasets import load_dataset dataset = load_dataset("wiki40b", "cs") print(dataset) ``` I am getting this error. @lhoestq I will be grateful if you could assist me with this error. For almost all languages except english I am getting this error. I really need majority of languages in this dataset to be able to train my models for a deadline and your great scalable super well-written library is my only hope to train the models at scale while being low on resources. thank you very much. ``` (fast) dara@vgne046:/user/dara/dev/codes/seq2seq$ python test_data.py Downloading and preparing dataset wiki40b/cs (download: Unknown size, generated: Unknown size, post-processed: Unknown size, total: Unknown size) to temp/dara/cache_home_2/datasets/wiki40b/cs/1.1.0/063778187363ffb294896eaa010fc254b42b73e31117c71573a953b0b0bf010f... Traceback (most recent call last): File "test_data.py", line 3, in <module> dataset = load_dataset("wiki40b", "cs") File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/datasets/load.py", line 746, in load_dataset use_auth_token=use_auth_token, File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/datasets/builder.py", line 579, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/datasets/builder.py", line 1105, in _download_and_prepare import apache_beam as beam File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/apache_beam-2.28.0-py3.7-linux-x86_64.egg/apache_beam/__init__.py", line 96, in <module> from apache_beam import io File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/apache_beam-2.28.0-py3.7-linux-x86_64.egg/apache_beam/io/__init__.py", line 23, in <module> from apache_beam.io.avroio import * File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/apache_beam-2.28.0-py3.7-linux-x86_64.egg/apache_beam/io/avroio.py", line 55, in <module> import avro File "<frozen importlib._bootstrap>", line 983, in _find_and_load File "<frozen importlib._bootstrap>", line 967, in _find_and_load_unlocked File "<frozen importlib._bootstrap>", line 668, in _load_unlocked File "<frozen importlib._bootstrap>", line 638, in _load_backward_compatible File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/avro_python3-1.9.2.1-py3.7.egg/avro/__init__.py", line 34, in <module> File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/avro_python3-1.9.2.1-py3.7.egg/avro/__init__.py", line 30, in LoadResource NotADirectoryError: [Errno 20] Not a directory: '/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/avro_python3-1.9.2.1-py3.7.egg/avro/VERSION.txt' ```
259
wiki40b/wikipedia for almost all languages cannot be downloaded Hi I am trying to download the data as below: ``` from datasets import load_dataset dataset = load_dataset("wiki40b", "cs") print(dataset) ``` I am getting this error. @lhoestq I will be grateful if you could assist me with this error. For almost all languages except english I am getting this error. I really need majority of languages in this dataset to be able to train my models for a deadline and your great scalable super well-written library is my only hope to train the models at scale while being low on resources. thank you very much. ``` (fast) dara@vgne046:/user/dara/dev/codes/seq2seq$ python test_data.py Downloading and preparing dataset wiki40b/cs (download: Unknown size, generated: Unknown size, post-processed: Unknown size, total: Unknown size) to temp/dara/cache_home_2/datasets/wiki40b/cs/1.1.0/063778187363ffb294896eaa010fc254b42b73e31117c71573a953b0b0bf010f... Traceback (most recent call last): File "test_data.py", line 3, in <module> dataset = load_dataset("wiki40b", "cs") File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/datasets/load.py", line 746, in load_dataset use_auth_token=use_auth_token, File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/datasets/builder.py", line 579, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/datasets/builder.py", line 1105, in _download_and_prepare import apache_beam as beam File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/apache_beam-2.28.0-py3.7-linux-x86_64.egg/apache_beam/__init__.py", line 96, in <module> from apache_beam import io File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/apache_beam-2.28.0-py3.7-linux-x86_64.egg/apache_beam/io/__init__.py", line 23, in <module> from apache_beam.io.avroio import * File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/apache_beam-2.28.0-py3.7-linux-x86_64.egg/apache_beam/io/avroio.py", line 55, in <module> import avro File "<frozen importlib._bootstrap>", line 983, in _find_and_load File "<frozen importlib._bootstrap>", line 967, in _find_and_load_unlocked File "<frozen importlib._bootstrap>", line 668, in _load_unlocked File "<frozen importlib._bootstrap>", line 638, in _load_backward_compatible File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/avro_python3-1.9.2.1-py3.7.egg/avro/__init__.py", line 34, in <module> File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/avro_python3-1.9.2.1-py3.7.egg/avro/__init__.py", line 30, in LoadResource NotADirectoryError: [Errno 20] Not a directory: '/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/avro_python3-1.9.2.1-py3.7.egg/avro/VERSION.txt' ``` Hi I honestly also now tried on another machine and nothing shows up after hours of waiting. Are you sure you have not set any specific setting? maybe google cloud which seems it is used here, needs some credential setting? thanks for any suggestions on this On Tue, Mar 16, 2021 at 10:02 AM Bhavitvya Malik ***@***.***> wrote: > I tried this on another machine (followed the same procedure I've > mentioned above). This is what it shows (during the freeze period) for me: > > >>> dataset = load_dataset("wiki40b", "cs", beam_runner='DirectRunner') > Downloading: 5.26kB [00:00, 1.23MB/s] > Downloading: 1.40kB [00:00, 327kB/s] > Downloading and preparing dataset wiki40b/cs (download: Unknown size, generated: Unknown size, post-processed: Unknown size, total: Unknown size) to /home/bhavitvya/.cache/huggingface/datasets/wiki40b/cs/1.1.0/063778187363ffb294896eaa010fc254b42b73e31117c71573a953b0b0bf010f... > WARNING:apache_beam.internal.gcp.auth:Unable to find default credentials to use: The Application Default Credentials are not available. They are available if running in Google Compute Engine. Otherwise, the environment variable GOOGLE_APPLICATION_CREDENTIALS must be defined pointing to a file defining the credentials. See https://developers.google.com/accounts/docs/application-default-credentials for more information. > Connecting anonymously. > WARNING:apache_beam.io.tfrecordio:Couldn't find python-snappy so the implementation of _TFRecordUtil._masked_crc32c is not as fast as it could be. > > After around 10 minutes, here's the loading of dataset: > > 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:16<00:00, 16.42s/sources] > 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 1.12sources/s] > 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 1.14sources/s] > Dataset wiki40b downloaded and prepared to /home/bhavitvya/.cache/huggingface/datasets/wiki40b/cs/1.1.0/063778187363ffb294896eaa010fc254b42b73e31117c71573a953b0b0bf010f. Subsequent calls will reuse this data. > > — > You are receiving this because you were mentioned. > Reply to this email directly, view it on GitHub > <https://github.com/huggingface/datasets/issues/2035#issuecomment-800081772>, > or unsubscribe > <https://github.com/notifications/unsubscribe-auth/AS37NMX6A2ZTRZUIIZVFRCDTD4NC3ANCNFSM4ZA5R2UA> > . >
[ -0.2544980943, -0.0779203922, -0.1537583023, 0.4308665693, 0.3997027874, 0.3504618108, 0.1368505955, 0.5331581235, 0.1893273741, 0.0235844627, -0.1773032993, -0.0942177325, 0.0944039673, 0.0111838356, -0.0297048613, -0.4591734409, -0.0672903955, 0.0295372121, -0.1352711022, -0.1168933213, -0.2519629598, 0.1256148666, -0.0791748315, -0.0490287244, -0.0387458354, -0.1828400791, -0.0958353654, -0.2073056251, -0.3507466912, -0.2408646047, 0.3545784652, 0.0192575045, 0.3101118207, 0.1529971063, -0.0001114368, -0.0509648919, 0.3131164014, -0.2357944846, -0.2936121821, -0.2888575792, -0.0720895901, -0.3261859417, -0.0904391259, -0.4200315475, 0.1274462193, 0.0466824137, 0.0806714669, -0.1318009794, 0.0757574588, 0.2992253006, 0.2468712628, -0.1426033527, 0.3134340644, -0.1457377225, 0.3651964068, -0.3777082264, -0.0280338377, 0.3395859897, 0.2187205851, 0.0713427216, 0.2154793739, 0.2220427394, -0.2341406941, 0.0134995393, 0.0482247174, -0.2912237346, 0.2222054899, -0.6297014952, 0.5206415057, 0.5344282389, 0.8290325403, -0.1283515543, -0.0874670148, 0.0723919421, -0.0260593556, -0.0313743465, -0.055740077, 0.4819797873, -0.1893263608, 0.0975979418, 0.1261649877, -0.1254300475, -0.1567188501, 0.4228464663, -0.1241364852, 0.4435882568, -0.0527198985, 0.2112595141, -0.0216666255, -0.102701813, -0.2636416256, -0.0696594715, -0.096159853, 0.2933216393, -0.2793980837, 0.019635722, -0.1615017503, 0.0556469783, 0.3511351347, -0.1503834128, -0.2346211374, -0.0450780764, 0.0960105732, 0.1575746238, 0.1801502407, 0.1637833863, 0.0620480925, -0.2000063807, 0.2782809138, 0.3079039752, -0.0842120126, -0.0761707574, -0.2100430727, -0.223056376, -0.2947567999, 0.0944294631, 0.0875294209, -0.2031711042, -0.1779465973, 0.0071132444, -0.1443609744, -0.0194387883, -0.2023949325, 0.3628211319, -0.150142923, 0.4312383831, 0.1779013574, 0.3288218677, -0.1035725772, -0.2613096237, -0.0173522905, 0.3065481186, -0.1393198222, -0.1036602259, 0.2187826782, -0.1099158973, 0.2648517191, -0.0893723071, -0.1031380296, -0.1764119267, -0.153690964, -0.3695676923, -0.1791032255, 0.2304090708, 0.1619766951, 0.2839275897, 0.1476142257, -0.2447477877, -0.2305806428, 0.1207451373, -0.3596145809, -0.1681547314, -0.2051545531, 0.1944684535, 0.0610983893, -0.0546504818, -0.3160063624, 0.2876639962, 0.3030639291, -0.1423989236, 0.118072845, -0.0075458987, -0.0232542455, -0.2251897305, 0.1790114045, 0.4908003807, -0.399959445, 0.0918976963, -0.023850657, -0.0337116867, 0.1897820383, 0.1842968464, -0.177952528, 0.25654158, -0.0978841782, 0.0381604433, 0.2101309747, -0.3214418292, -0.577635169, 0.1860538572, 0.1134095564, -0.1670033634, 0.0994795859, 0.0160008743, 0.2750304043, -0.0493874773, 0.0524543673, 0.3956745267, 0.1368377656, -0.1056450084, -0.3274506927, -0.5078234673, 0.3264816999, 0.1633175761, 0.4547143877, -0.1322698593, 0.2759853303, 0.2917215526, 0.3191740811, -0.1915476471, 0.1246786341, 0.2333604097, -0.0089483699, -0.0445757024, -0.0025623105, -0.3310274482, -0.3097582459, 0.1477600038, 0.1029132903, 0.1654649079, -0.1609552503, 0.0296833292, -0.3161897063, -0.0888076052, -0.1953117102, 0.103268832, 0.1995638311, -0.1052768379, 0.119593136, 0.485458374, 0.12651667, -0.0994595736, -0.415690273, -0.0948528498, -0.1789346635, 0.0923319161, -0.2174283415, 0.204492107, 0.0336809307, 0.025808936, 0.1796841472, 0.0730526596, -0.1607237756, -0.0110611115, -0.0784519166, -0.1035446078, 0.1354628652, 0.1169638559, 0.1331282556, -0.4173748493, 0.1920300871, 0.1084798574, 0.329746455, -0.1357725263, 0.1178164184, 0.1222370416, 0.0399735123, 0.3655341566, 0.1234309673, 0.1498312652, 0.4555992186, 0.0305262208, 0.1263546646, -0.0049749911, 0.3271190524, 0.1556601673, 0.0127487481, -0.1329595447, -0.029277496, -0.113514185, 0.3166725636, -0.0845337585, 0.2671486139, 0.2927594781, -0.0765188709, -0.0048597306, -0.0978271887, 0.1533987373, 0.0522076972, 0.0699051321, 0.1065891907, -0.0998439118, 0.3596490026, -0.1293926835, 0.2643094361, 0.1755418181, 0.1863328815, 0.2091354728, 0.1350801587, -0.0111756194, -0.1882828176, -0.1296792477, 0.0699940249, 0.3717177212, 0.0691838264, 0.1659455299, -0.0484347418, -0.1418599188, 0.0841908157, -0.052392181, -0.2509430945, -0.2163173556, -0.1256381869, -0.0857284963, 0.0915832594, -0.0001049675, -0.3266667724, -0.0721022189, 0.0621664599, -0.3203503489, -0.1605682224, -0.298122853, -0.368449837, 0.0767874122, 0.387129724, 0.1112902611, 0.2952098846, -0.3326289654, -0.1918787807, -0.0899461061, -0.2681113482, -0.0143136587, -0.1569703817, 0.2413950115, -0.0241168067, 0.7152199149, -0.1799962223, -0.2514213324, 0.184648633, -0.0070199743, 0.0658745542, 0.2497711182, -0.1534786224, -0.0429238901, 0.0845355988, -0.485653311, -0.515576601, -0.2696562707, 0.0125193018, 0.0485177934, 0.0878062025, 0.1686408371, 0.192484051, 0.0680268556, 0.1211878806, 0.1809064746, -0.1900434047, -0.1518693268, 0.4496892393, -0.0274133831, -0.4299623072, 0.188186571, 0.0109940469, 0.3149319291, 0.0079272352, -0.6572358608, 0.1441125125, -0.2763589025, 0.2499429733, -0.0219931006, 0.1834769845, 0.114344269, -0.2136969417, 0.0479722694, 0.0449954867, 0.1059099361, -0.040621087, -0.2095249593, 0.2556222677, 0.0299455188, 0.2961854041, 0.1644206494, 0.6888412237, 0.0548556149, 0.1658408046, 0.4367814064, 0.2385820597, 0.2310311794, -0.2314288169, -0.3645713925, 0.0605744086, -0.2394920886, -0.031003058, 0.2670124471, -0.162319988, -0.4674171805, -0.3477125168, -0.2426845282, -0.3674673736, -0.2107712477, 0.1539979279, -0.0501818061, 0.082940504, 0.0575964078, 0.1203985885, 0.0215731636, -0.2823500931, 0.2137889713, 0.5317090154, -0.2486013621, 0.1685893983, -0.2782665193, -0.3421222866, -0.4126344323, 0.2524553537, 0.0777070895, 0.4147610366, -0.0938023105, 0.3499189019, 0.2011798322, -0.0892689079, 0.29062289, -0.1702442914, 0.1230506301, 0.1972467899, 0.1049929112, -0.2152170837, -0.0624400601, -0.2943331003, -0.0166880898, 0.3054167032, -0.0444555506, -0.6709657311, 0.0843290389, -0.0425857566, 0.5003298521, -0.0571770817, -0.0173499174, -0.1618569046, -0.5653647184, -0.4854038954, -0.0276873522, 0.1895758212, 0.4046096206, -0.1972091496, 0.2628989816, -0.1020785645, 0.2205627859, 0.0213166662, 0.0077354982, 0.2132564187, 0.2327860445, 0.0974325836, -0.1967879534, -0.1378472447, 0.15032655, 0.3620435596, -0.0635322034, -0.2343122214, -0.1212477535, -0.0430036522, 0.0434830859, 0.1415461898, -0.101290524, 0.047706943, 0.1486631781, -0.137935102, 0.1658205688, -0.0128415711, 0.2519465983, -0.1063374802, -0.496234715, -0.5676655769, 0.6620465517, 0.0233820751, 0.0701420158, 0.2541714609, 0.1754048467, -0.1958613545, 0.3753730059, 0.1058034673, 1.1372189522, -0.2281342149, 0.1104203761, -0.1039843038, 0.1094664782, 0.3614170253, -0.3578396738, 0.208407253, -0.3226416111, -0.1089070588, -0.0195197351, 0.0736747012, -0.0461387485, 0.0998933241, -0.3072272539, 0.2564416528, -0.3662325144, -0.0869540572, 0.1056493521, 0.2329858243, -0.4058891535, -0.0680367798, -0.3213796318, 0.1196287572, -0.2146602869, 0.2546931207, -0.2110012174, -0.1254786551, -0.061424572, -0.2672703862, -0.5050507784, 0.070643574, -0.2883503139, 0.3298687041, -0.4893510938, -0.189774543, 0.3386202455, 0.4448713958, 0.0414798521, 0.4031542242, -0.2879834175, 0.1116522104, -0.263861239, -0.423619777, 0.0944911912, 0.0112071671, 0.0871337876, -0.1816289872, -0.3709903359, 0.1669727117, -0.0575723127, 0.0528491586, -0.0959876478, 0.1043775529, 0.2016539872, -0.0458974987, -0.3565551937, -0.0222828016, -0.0943856835, -0.0894330293, 0.1241666228, 0.0821967572, -0.1119038314, 0.1409133375, 0.1852951944, -0.3349809051, 0.0217914172, 0.3491057754, 0.1834492087, 0.0239539966, 0.6245266199, 0.3155457377, -0.3965406716, -0.1898149252, 0.0439141914, -0.2713774443, -0.4585740864, -0.0896048397, -0.0421896465, 0.3383432627, -0.4149284959, 0.3502536714, 0.1749068648, -0.2348314226, 0.2064643502, -0.7065885067, -0.1240217313, 0.2160939574, -0.0789091662, 0.0065748976, 0.0840708017, -0.30959934, 0.1218284369, 0.2352634966, -0.2610889673, 0.2092307359, -0.3233409226, 0.1007636189, 0.0994939283, 0.0633323044, 0.0223014504, 0.1991024166, 0.0650480315, 0.0691617727, -0.0496639088, -0.2599099278, -0.0702273548, 0.1948126853, 0.205114007, -0.0579007193, 0.2278749943, -0.5071965456, -0.1686701477, 0.0822388381, -0.0584756732, 0.1155844331, 0.0038600247, 0.1811006814, 0.2013252676, 0.2885710597, -0.3500798345, 0.2458776534, -0.0869046748, 0.2614989579, 0.1408280283, 0.07593593, 0.4579921663, 0.0213007778, -0.3352100253, -0.0335409567, -0.0300774835, 0.0866356418, 0.2558809817, -0.233358562, 0.300347209, 0.198920697, -0.1174949631, 0.5623857379, -0.1496047378, 0.2065961957, 0.4130832553, 0.1872232705, -0.369863838, 0.0016460642, 0.2932012379, -0.0966371149, -0.0709825084, 0.0759613067, 0.2589091659, -0.3223279715, 0.1137204766, -0.0657392666, 0.1647822559, -0.0565514416, 0.1922588348, 0.6700764298, 0.2270729095, 0.0499260873, -0.0694645271, 0.1699931175, 0.0953946412, 0.3628065586, -0.2234564424, 0.1927638352, -0.0520042777, 0.0246352106, -0.1621609479, -0.3400559425, 0.2986115217, 0.1632018387, -0.0247745402, 0.0986763462, -0.172257483, 0.2616477609, 0.1543591619, 0.0302231647, -0.2611559331, 0.1914432049, -0.1224777997, -0.0129828155, -0.0442104824, -0.2680072784, 0.0015668869, 0.1556259841, -0.0046619838, -0.3565733731, 0.2555732429, 0.3037430048, -0.2440860868, -0.4411395192, 0.1348090917, 0.212492615, 0.0311707221, -0.3002212942, 0.1577610523, 0.4137803316, 0.0780922323, -0.1270552874, 0.2019163519, 0.4433458745, 0.4205472767, -0.3373265266, 0.0424413942, 0.0753406212, -0.0656808019, -0.0233783536, 0.2276100814, 0.4672247767, 0.2502681613, 0.3970100284, 0.1184259653, -0.1416000128, -0.031975396, 0.2360502481, -0.0639188141, -0.0566705838, -0.0451857932, -0.0590354763, 0.1407209486, -0.4205533266, -0.0135846995, -0.5078690052, 0.3400223851, 0.1610560864, 0.0025874451, 0.177529186, -0.0925812125, 0.0479857475, -0.1569758505, 0.3962932825, 0.3195853829, 0.1991413683, -0.3908326626, -0.0089955479, -0.4645192027, -0.018635571, -0.2982346117, 0.1121006534, -0.0814325362, 0.1286558807, 0.0755082965, 0.2132718563, 0.036632318, 0.0450983681, 0.0668025166, 0.4949165583, -0.2315313965, -0.2447034419, -0.1948167384, 0.2191624641, -0.1583236754, -0.3909314275, 0.0575938486, -0.1385610253, 0.0340730473, -0.3200198114, -0.0665003657, 0.0955725014, 0.0059600119, 0.332428515, 0.1523780823, 0.5925300717, -0.1540946811, -0.2021767795, -0.2086715847, -0.0110699423, -0.1599349231, 0.3116775751, 0.1967295557, 0.0989066958, -0.1607933789, -0.1119711921, -0.0295641012, 0.2984873056, -0.0448160134, 0.1949228942, -0.3669615686, -0.3863568008, 0.057917431, 0.1138559952, 0.1190271452, 0.0469262153, -0.1308563054, -0.0533181056, -0.3421496153, -0.3086864054, 0.3866544366, -0.3773034811, -0.5697818398, -0.0921549499, 0.0079287291, 0.0470565483, 0.1902976483, -0.3660884202, 0.2775550485, 0.3897728622, 0.0513336472, -0.1509680748, 0.1664217561, 0.0286486112, -0.0162156448, -0.0940432623, 0.1160702854, -0.0082844896, -0.3563149273, -0.220584631, -0.391258359 ]
https://github.com/huggingface/datasets/issues/2031
wikipedia.py generator that extracts XML doesn't release memory
Hi @miyamonz Thanks for investigating this issue, good job ! It would be awesome to integrate your fix in the library, could you open a pull request ?
I tried downloading Japanese wikipedia, but it always failed because of out of memory maybe. I found that the generator function that extracts XML data in wikipedia.py doesn't release memory in the loop. https://github.com/huggingface/datasets/blob/13a5b7db992ad5cf77895e4c0f76595314390418/datasets/wikipedia/wikipedia.py#L464-L502 `root.clear()` intend to clear memory, but it doesn't. https://github.com/huggingface/datasets/blob/13a5b7db992ad5cf77895e4c0f76595314390418/datasets/wikipedia/wikipedia.py#L490 https://github.com/huggingface/datasets/blob/13a5b7db992ad5cf77895e4c0f76595314390418/datasets/wikipedia/wikipedia.py#L494 I replaced them with `elem.clear()`, then it seems to work correctly. here is the notebook to reproduce it. https://gist.github.com/miyamonz/dc06117302b6e85fa51cbf46dde6bb51#file-xtract_content-ipynb
28
wikipedia.py generator that extracts XML doesn't release memory I tried downloading Japanese wikipedia, but it always failed because of out of memory maybe. I found that the generator function that extracts XML data in wikipedia.py doesn't release memory in the loop. https://github.com/huggingface/datasets/blob/13a5b7db992ad5cf77895e4c0f76595314390418/datasets/wikipedia/wikipedia.py#L464-L502 `root.clear()` intend to clear memory, but it doesn't. https://github.com/huggingface/datasets/blob/13a5b7db992ad5cf77895e4c0f76595314390418/datasets/wikipedia/wikipedia.py#L490 https://github.com/huggingface/datasets/blob/13a5b7db992ad5cf77895e4c0f76595314390418/datasets/wikipedia/wikipedia.py#L494 I replaced them with `elem.clear()`, then it seems to work correctly. here is the notebook to reproduce it. https://gist.github.com/miyamonz/dc06117302b6e85fa51cbf46dde6bb51#file-xtract_content-ipynb Hi @miyamonz Thanks for investigating this issue, good job ! It would be awesome to integrate your fix in the library, could you open a pull request ?
[ 0.2186527401, -0.110962607, -0.0523671806, 0.624684751, 0.3160348237, 0.0942653492, -0.2117367834, 0.3332335353, 0.2093811631, 0.2579503059, 0.0060536712, 0.1517626643, 0.2327896953, -0.1265531182, -0.2175299823, -0.2103439867, 0.0437293351, 0.0743474662, 0.0371216498, -0.2225494683, -0.2259664983, 0.1241695434, -0.2827934623, -0.1214709356, -0.175700739, 0.1507509202, 0.0834618956, -0.1925339103, -0.1768442988, -0.3868057132, 0.1427424401, 0.0021262895, -0.1252807975, 0.2270926535, -0.0001113044, -0.1786880791, 0.587048769, -0.0175461955, -0.1438791454, 0.1073923707, -0.2037123442, -0.0739123225, -0.1006894037, -0.2878379226, 0.1415052116, -0.03001846, 0.1694547534, -0.2743771672, 0.3588359654, -0.0555355698, 0.2296687067, -0.0995118618, 0.4134440422, -0.0468070544, 0.7186953425, 0.26628986, -0.0335873179, 0.0294991471, 0.1483322084, -0.1202115491, 0.0261038169, 0.4042425454, -0.156917274, 0.0165871568, 0.2526494563, -0.1493370831, 0.04398866, -0.506665647, 0.4620766044, 0.3427118957, 0.5755246282, -0.1499215364, 0.1062824875, 0.0310698599, -0.103971675, -0.1315817535, 0.2247123122, 0.40015921, -0.6533280611, -0.0683356225, 0.3109063804, -0.4820677042, -0.1790920198, 0.2063480318, -0.0007486492, 0.3183760643, -0.0073742326, 0.0634120852, 0.2590226829, -0.0018344736, -0.1167005226, -0.0434841923, -0.0742316619, 0.2187659442, 0.0305327661, 0.1633390784, 0.184405461, -0.1822959483, 0.2779971361, -0.4200803041, -0.4094336927, 0.0066293925, 0.2780646682, -0.0407773852, 0.3894083798, 0.0270340517, -0.0170563459, 0.1133426726, 0.3600498438, 0.2115769088, -0.3496324718, -0.0846007988, 0.1303889602, 0.0520466827, 0.0831238925, -0.1065113097, 0.0191856921, -0.0676593333, 0.1701020151, 0.2386856079, -0.2658782005, -0.0708773434, -0.2080524564, 0.4120155275, -0.0438276865, 0.3727593422, 0.1869972795, 0.0853896886, -0.4100779295, -0.3116191924, -0.1378389895, 0.252219975, -0.2821929455, 0.0472869426, 0.0010044649, -0.1443123966, 0.2116985619, 0.1731064618, -0.1932027191, -0.4035507739, 0.0540766492, -0.1906529367, 0.2073850483, 0.2648634017, 0.0696726367, 0.2217063457, -0.1199444979, -0.08726345, -0.0428387672, 0.2829095721, -0.0179266781, -0.0642533153, 0.0001697391, 0.2416816503, 0.0659805089, 0.1953769773, 0.0082763955, -0.1624779105, 0.5027114153, 0.1204012185, 0.0157041587, 0.0061149281, -0.0120038465, -0.2563001215, 0.1782664955, 0.4500469565, 0.115413025, 0.1249706, -0.1744929701, 0.1334432662, 0.4826314747, 0.1633791029, 0.0041833222, 0.4243834913, -0.1227872074, 0.259170264, -0.0239812732, -0.2639948726, -0.3197956681, -0.0183570608, 0.1209946126, 0.217003569, -0.039485395, 0.0274868868, 0.1240424365, 0.3383143246, 0.0136307124, 0.2789423764, 0.0746847838, 0.1292003393, -0.4539270401, -0.2271739841, 0.2193471789, -0.3085441887, 0.3155324161, -0.0395954885, 0.127644062, 0.4033351839, 0.6220804453, -0.2563410401, 0.368049711, 0.1581973433, 0.3149208426, 0.0550057404, 0.0325525329, -0.1054981202, -0.1210824996, 0.0815542564, -0.2072693259, 0.3825250268, -0.064579308, -0.1309957951, -0.1074617207, 0.0873794854, -0.2546546161, -0.3456026912, 0.204991594, 0.1016073003, 0.3502484858, 0.277103126, 0.1317819357, -0.448538065, -0.1533706784, 0.1642218679, -0.7328391671, 0.0174814463, -0.1648580134, -0.0856673419, -0.1884648502, 0.0739085227, -0.0746879131, 0.0146211572, -0.1174388006, -0.1440369636, 0.2105430961, 0.1954230964, -0.276990205, -0.0807572752, 0.2259410173, -0.4512322843, 0.1940928847, 0.458763957, 0.1753474176, -0.0962864012, 0.1605662107, -0.1155883223, -0.0212012604, 0.045373667, 0.1233117431, 0.044528611, 0.2474221289, 0.1230116561, 0.1593003869, -0.1362756491, 0.1121828258, 0.5882786512, -0.0906394124, 0.0201323088, -0.1109913588, -0.0526720248, 0.448946178, 0.2313284427, 0.1596061587, 0.0479361005, -0.3074401319, -0.3058310747, 0.0191243645, 0.0920184851, -0.1586149931, -0.0036710165, 0.132458359, -0.0507994518, 0.3378244936, -0.2958720326, 0.4203758836, -0.0014916137, 0.1611884683, 0.2169837654, 0.1296710074, -0.027682716, -0.3015902936, 0.2943031788, -0.0072420239, 0.3758420348, 0.1096901, -0.2038992941, 0.0588487312, -0.4482650459, 0.0137914382, -0.1235478967, -0.2024695873, -0.3298225403, 0.1109552532, 0.2990665436, -0.2745771408, -0.1786492169, 0.0398274213, -0.2857562602, 0.0882398337, -0.064183563, -0.1608577967, -0.367818296, -0.1747341454, 0.0267359912, 0.2860378623, -0.0619837157, 0.0603971481, 0.0625114292, -0.2241586, -0.2190744281, -0.1240185574, 0.2660339475, -0.0900255665, 0.017763814, -0.2295578867, 0.4114501178, 0.1463363618, -0.1430454403, 0.2513377666, -0.3257460594, 0.0158339441, 0.2487397492, 0.1499993205, 0.1744737774, -0.1233965829, -0.4725925922, 0.0953733474, -0.4844039679, 0.2165416479, -0.0715495646, 0.1014147699, 0.6841793656, 0.0560018569, -0.0651493147, -0.0548733696, 0.1761158109, -0.308172822, -0.1929735541, 0.2051041424, -0.1673522145, -0.3377017081, 0.0364819467, -0.0153454132, 0.3164588809, 0.3823059499, -0.2814792991, 0.2819818854, -0.1632006913, 0.3446782231, 0.0712388456, 0.2762086987, 0.1284641922, -0.0342607163, -0.0964971036, 0.0976974294, 0.4960942864, -0.0526960567, -0.0706967413, 0.0776836947, 0.1368725002, 0.0494218245, 0.0495293438, 0.4761865437, 0.143674314, 0.587387979, 0.3695217967, 0.1171235964, 0.099482283, -0.0463384204, -0.1920553446, 0.0076179989, -0.2097371817, -0.2204041779, 0.1437853128, 0.0391848274, -0.1361604631, -0.1121592149, -0.0174566358, -0.1355144083, -0.496463865, 0.2188594788, 0.2334726304, 0.3340347707, -0.0010710433, 0.2686021328, 0.1284435093, -0.3472019136, 0.0751791298, -0.2073792964, 0.2089844346, -0.0089350641, 0.0095380172, -0.3298081756, -0.5612026453, 0.0703180507, 0.0946091935, -0.1601822376, 0.1369473636, -0.2673761547, 0.191539079, -0.0156703647, 0.2761345208, 0.1296468824, 0.0107780909, 0.0797569603, -0.0402334668, -0.0932373703, 0.2106628567, -0.1364918947, -0.0208927915, 0.2161008418, -0.0451993011, -0.4547621608, -0.1504538953, 0.000492638, 0.3498812616, -0.1717811823, 0.0372960791, -0.1772451997, -0.3322713375, -0.5068717599, -0.1046340764, 0.1379763186, 0.4159509838, 0.0982623771, -0.1348451972, 0.2821017802, 0.0894632638, -0.0784474909, 0.0764088333, 0.3025164604, -0.1999042481, -0.0024880841, -0.0331885591, -0.2916371524, 0.0972171351, 0.1391352564, 0.0937778056, 0.0013576299, -0.3511090875, -0.142632246, -0.1238652319, 0.0209072307, -0.0997717083, 0.2029338479, -0.0969601199, 0.1006510481, -0.2624905109, -0.1832822263, 0.1236000955, -0.1975306869, 0.1065529957, -0.209393084, 0.3150331974, -0.0883087069, 0.0970240682, 0.5454168916, 0.001329843, -0.3294948936, -0.0218487754, 0.2135732472, 0.8503887653, -0.1525957286, 0.2035499066, 0.3837126791, 0.2043782175, 0.4438611567, -0.0951673165, 0.4557699263, -0.4460807443, 0.1965772659, 0.1880088151, 0.2044648081, -0.1236269996, -0.3261243999, -0.0760761574, 0.0926751941, -0.1996018887, 0.0572183728, -0.0746133327, 0.3386762142, -0.0680004507, -0.1012850702, -0.1137886867, 0.0897194594, -0.038105119, 0.374781549, -0.1996066123, 0.109280467, 0.1518607736, -0.0086165667, -0.35714221, 0.1347110569, -0.1278683692, 0.3138391376, -0.1692617834, -0.2985732257, -0.1522773206, 0.2091226727, -0.3088805377, 0.266836971, -0.1183214337, 0.0090399794, -0.1343427002, -0.3013682663, -0.0981241837, 0.2041147202, 0.2514209151, -0.079350993, -0.391546905, 0.3663364649, -0.1248373911, -0.2694852352, -0.388055712, 0.0063175336, -0.2515435219, -0.0010343678, -0.0199072883, -0.0388661847, -0.4225255251, -0.0467491597, 0.1766573191, 0.2087342888, -0.3466228545, 0.1273147464, -0.2620411217, -0.155855611, -0.0108479355, -0.0530654863, 0.4631012976, 0.1669984162, 0.498549521, 0.3981516361, -0.1369813979, -0.2070305347, -0.2525362372, -0.2442409098, -0.2741567492, 0.3001501262, -0.0792824626, -0.0194022804, -0.2108328044, 0.1423035264, -0.1996141821, -0.2362211049, 0.0427226871, -0.1615915745, -0.2933999598, 0.2349667847, -0.0004800148, 0.074467361, -0.0216564685, 0.0198188648, 0.1276597679, 0.1310802996, -0.2810684443, -0.0354295038, -0.0050439388, 0.1445889771, 0.1383122802, -0.1445307732, -0.0625240952, -0.0294954088, 0.0763280541, 0.1032244861, -0.1214116663, -0.2354752123, 0.1276704073, 0.0888684988, 0.0758988559, -0.1377898604, 0.1375189573, -0.2588723898, 0.0512370579, -0.2434950173, 0.1451593488, 0.0246920809, -0.122356616, 0.2717656493, 0.0594721809, 0.0915278792, -0.1313971579, 0.25220263, 0.0426173843, 0.3345506787, 0.0080393031, 0.1259251237, 0.3993855715, -0.1260973811, -0.741415441, -0.0434417576, -0.1235160604, -0.1203080267, 0.3450511098, -0.0021814555, -0.2966971993, 0.3581520915, 0.1455202848, 0.3638100326, 0.0317699797, 0.0791694373, 0.033060655, 0.2661412954, -0.1345175207, 0.1233595535, 0.0110243559, -0.1922682673, -0.1088286936, 0.0627268478, -0.0308706239, -0.2388404906, 0.0254228469, 0.1598430723, -0.0791819021, -0.1824397594, 0.4027221501, 0.051598426, 0.1644680947, -0.0325862989, 0.022465067, 0.1362169534, 0.1064555049, 0.2732833028, 0.182095632, 0.1362056583, 0.0950576812, 0.0025314912, -0.1988526136, 0.0505051613, -0.1160304248, 0.4192362428, -0.3653099537, 0.24053967, -0.1250740588, 0.0292007774, 0.2645376921, 0.0168230645, -0.2856100798, 0.2863124907, -0.2693564296, -0.1376816332, 0.0908490419, -0.3488933742, 0.0829972923, 0.13612625, 0.2529470325, -0.1999786049, 0.2733371258, 0.099795714, -0.4058674574, -0.3179625869, 0.6245741844, -0.0224795528, 0.2209906429, -0.4029294848, -0.1296219826, 0.1554763317, -0.1812816113, -0.4392130971, 0.4111103117, 0.2919531465, 0.4301742017, -0.5130153298, 0.1023000777, -0.1698187441, -0.0790033191, -0.2631183267, 0.2411454171, 0.1912722737, 0.1533513218, -0.0848818719, 0.08822079, -0.2010699958, -0.3969240189, 0.5125553012, 0.291836381, -0.0400132947, -0.2914661169, 0.0826321095, -0.2327852845, -0.100454092, -0.1515383869, -0.4054411948, 0.5398057103, 0.1902051568, 0.0122690164, -0.0175530836, -0.2326767147, 0.0941384584, -0.1395606548, 0.2033522129, 0.1744118333, 0.0770207196, -0.3007368147, -0.2969956994, -0.4083119333, 0.4256492853, -0.3481347263, -0.1179603934, 0.0067753009, 0.4143896103, -0.2831633091, -0.0244600028, -0.1137406081, -0.4053595066, 0.0567632802, 0.2254755348, -0.1330941021, 0.0131690539, 0.0438832156, -0.2902200818, -0.0594619326, -0.4011068344, 0.3153991103, -0.3039937913, 0.0327932537, -0.0892020315, 0.2010952234, 0.244383797, 0.1934108883, 0.3121202886, 0.1702418923, -0.1130371168, -0.08695779, -0.5135855675, -0.2686931193, -0.0153138489, 0.098428905, 0.1275862306, 0.0767477453, 0.3675938249, -0.2123592198, -0.0594636425, -0.5560926199, 0.4299427271, -0.2201286256, 0.0037102178, -0.2014354169, -0.1379736662, -0.0401602462, 0.0747391135, 0.136429593, 0.3669695258, -0.2426817715, 0.0443306342, -0.5643947721, -0.4570702016, 0.0585050285, -0.4836919904, -0.5538266301, -0.1202634647, 0.2507526278, -0.0282403827, -0.1778520942, -0.3676698208, 0.2605848312, 0.0732465088, 0.0482598767, -0.2900910974, -0.1871772259, -0.0593818575, -0.0868129209, 0.1022005975, 0.2677105069, 0.307443738, -0.3321141005, 0.2800378203, -0.1016467363 ]
https://github.com/huggingface/datasets/issues/2029
Loading a faiss index KeyError
In your code `dataset2` doesn't contain the "embeddings" column, since it is created from the pandas DataFrame with columns "text" and "label". Therefore when you call `dataset2[embeddings_name]`, you get a `KeyError`. If you want the "embeddings" column back, you can create `dataset2` with ```python dataset2 = load_from_disk(dataset_filename) ``` where `dataset_filename` is the place where you saved you dataset with the embeddings in the first place.
I've recently been testing out RAG and DPR embeddings, and I've run into an issue that is not apparent in the documentation. The basic steps are: 1. Create a dataset (dataset1) 2. Create an embeddings column using DPR 3. Add a faiss index to the dataset 4. Save faiss index to a file 5. Create a new dataset (dataset2) with the same text and label information as dataset1 6. Try to load the faiss index from file to dataset2 7. Get `KeyError: "Column embeddings not in the dataset"` I've made a colab notebook that should show exactly what I did. Please switch to GPU runtime; I didn't check on CPU. https://colab.research.google.com/drive/1X0S9ZuZ8k0ybcoei4w7so6dS_WrABmIx?usp=sharing Ubuntu Version VERSION="18.04.5 LTS (Bionic Beaver)" datasets==1.4.1 faiss==1.5.3 faiss-gpu==1.7.0 torch==1.8.0+cu101 transformers==4.3.3 NVIDIA-SMI 460.56 Driver Version: 460.32.03 CUDA Version: 11.2 Tesla K80 I was basically following the steps here: https://huggingface.co/docs/datasets/faiss_and_ea.html#adding-a-faiss-index I included the exact code from the documentation at the end of the notebook to show that they don't work either.
65
Loading a faiss index KeyError I've recently been testing out RAG and DPR embeddings, and I've run into an issue that is not apparent in the documentation. The basic steps are: 1. Create a dataset (dataset1) 2. Create an embeddings column using DPR 3. Add a faiss index to the dataset 4. Save faiss index to a file 5. Create a new dataset (dataset2) with the same text and label information as dataset1 6. Try to load the faiss index from file to dataset2 7. Get `KeyError: "Column embeddings not in the dataset"` I've made a colab notebook that should show exactly what I did. Please switch to GPU runtime; I didn't check on CPU. https://colab.research.google.com/drive/1X0S9ZuZ8k0ybcoei4w7so6dS_WrABmIx?usp=sharing Ubuntu Version VERSION="18.04.5 LTS (Bionic Beaver)" datasets==1.4.1 faiss==1.5.3 faiss-gpu==1.7.0 torch==1.8.0+cu101 transformers==4.3.3 NVIDIA-SMI 460.56 Driver Version: 460.32.03 CUDA Version: 11.2 Tesla K80 I was basically following the steps here: https://huggingface.co/docs/datasets/faiss_and_ea.html#adding-a-faiss-index I included the exact code from the documentation at the end of the notebook to show that they don't work either. In your code `dataset2` doesn't contain the "embeddings" column, since it is created from the pandas DataFrame with columns "text" and "label". Therefore when you call `dataset2[embeddings_name]`, you get a `KeyError`. If you want the "embeddings" column back, you can create `dataset2` with ```python dataset2 = load_from_disk(dataset_filename) ``` where `dataset_filename` is the place where you saved you dataset with the embeddings in the first place.
[ 0.0550740212, -0.6190826297, 0.070250012, 0.3613133132, 0.1553995907, 0.2710707784, 0.3453342915, 0.0510572568, 0.5391325951, 0.2844026089, -0.0778134689, 0.1564424038, 0.4091767967, -0.0636665672, -0.0600454137, -0.0365854874, 0.22996445, 0.2709697187, 0.2771185637, -0.1172370762, -0.213283062, 0.1254137456, -0.2415117025, 0.2396505475, -0.2419934273, 0.1532630175, -0.2360695302, 0.0207496695, -0.1963149607, -0.4184429049, 0.3218451142, -0.28172189, 0.6558505893, 0.196295619, -0.0001232087, 0.0766334534, 0.3582345247, -0.1224537194, -0.2154054046, 0.0617958084, 0.1387541592, 0.0691664815, 0.2078343928, -0.0417269915, -0.0147009417, -0.6515749097, 0.0266366173, -0.15972808, 0.2974435091, -0.005564075, 0.0943732411, 0.0098314062, 0.0809607953, -0.3012821674, 0.0691150725, -0.3261918724, -0.0540433377, 0.2427325994, 0.045289997, 0.0076504722, 0.0668616593, 0.2988044918, -0.0401020609, 0.0219107121, 0.4202643037, 0.2766121626, 0.3658127785, -0.1659394354, 0.1298123896, 0.1871755272, 0.3916550279, -0.1082114726, -0.4308946133, -0.1739239097, 0.2771784067, -0.1161138117, 0.2110203058, -0.3297834098, -0.0157120787, 0.2792977989, 0.4298000336, -0.2434481382, 0.1159290224, 0.0830418319, -0.0895657614, -0.0029295608, -0.1924941242, 0.0390619785, 0.1796051562, -0.1281744689, -0.3079978228, -0.114442274, 0.1000975817, 0.1209594309, -0.3051658273, 0.1096481979, 0.1938897073, 0.0081681274, -0.1355558336, 0.0080527831, -0.2509583235, -0.0373694636, 0.0572970472, 0.3799480498, -0.1640040576, 0.0147696733, 0.0900322944, 0.0611759499, 0.060466446, 0.2328324467, 0.0334700868, -0.2108222544, -0.1764003336, -0.1549167782, -0.4953104258, -0.3186214566, -0.0450256616, -0.3158306777, -0.4681289494, 0.3127003908, -0.4021080732, -0.1081994772, -0.0031758323, 0.5753401518, 0.2059749961, -0.173127085, 0.281745553, 0.3410768807, -0.2425619364, 0.2558034956, -0.1618469656, 0.1206274703, -0.1269560158, 0.3744793534, 0.052770637, -0.4389052391, 0.2052890956, 0.0444827005, 0.2107004225, 0.1028747708, -0.4216091633, 0.0001693293, 0.2830246389, 0.2812860608, -0.0830774456, 0.0920132846, 0.3403275609, -0.3423232436, -0.1909657121, 0.0451864675, -0.114821963, -0.0747316331, -0.1784882843, 0.0911492407, -0.0704007521, -0.0897244811, 0.1744004637, 0.0561905541, 0.1586269736, -0.258104533, 0.0801396072, 0.0251990259, -0.1384506971, -0.1799933612, 0.4784157872, 0.3956212997, -0.7722766995, -0.3988276422, 0.1143982112, 0.1689771861, -0.134438023, 0.285587132, -0.0892434269, 0.0623671934, -0.2319802642, 0.4219357967, 0.1115481406, -0.1278711259, -0.1927444637, 0.0685717613, 0.0679319128, 0.0048263073, 0.2271310389, -0.1617613137, 0.3247580826, 0.1531334221, 0.3888320029, 0.0713371933, 0.0399589017, -0.3257414103, -0.178989023, -0.3758667111, 0.0991171598, 0.102676332, -0.0961193293, -0.0742356926, -0.1836105436, -0.3227060139, 0.0883148015, -0.2380026877, -0.048561506, 0.0400441699, 0.30230847, 0.4282280207, 0.4427759051, 0.0368305221, -0.0115638785, 0.2662013173, 0.0324873105, 0.0951556414, -0.2985552251, -0.0519877821, -0.2356912494, 0.0464015156, -0.0661984682, -0.2013382465, -0.065909341, -0.009109851, -0.0246786252, 0.0475275517, -0.3220714629, 0.0777287632, -0.1947696209, 0.2195263505, -0.4618269503, 0.4788578153, -0.2620447576, -0.2415874451, 0.0462660939, 0.3040082157, 0.1866383255, -0.1725841463, 0.1663334072, 0.0949392319, -0.0937456638, -0.1992229074, 0.1190166771, -0.1917671561, 0.1593576521, -0.1571005285, 0.057443656, -0.0669228137, 0.1923550218, 0.1220771298, -0.1792985797, 0.4870288372, 0.0392016396, 0.2792650163, -0.1853858829, -0.1539816856, 0.1131258458, -0.0026401728, 0.0101035312, -0.3382650316, -0.0889251381, -0.004655838, -0.1199176013, -0.0626573786, 0.02681005, 0.1231291443, 0.0174140763, 0.0285699964, -0.1038768142, 0.0535349809, -0.3347165585, 0.0676238164, 0.0471458361, -0.368193686, 0.3542414308, 0.2893677354, -0.166988343, -0.2466789037, -0.2466314584, -0.2522492707, 0.1304650903, -0.0527897552, -0.2380275428, 0.0619877391, -0.1329464763, 0.0930445492, -0.2039633691, -0.0393126272, 0.0073517933, 0.1990105063, -0.5885120034, 0.0874702409, -0.3268994987, -0.0848521739, -0.0089325886, -0.1183205396, -0.0350332335, -0.3714102507, 0.1818680167, -0.1842872202, -0.0339049362, 0.2288197726, 0.010824427, 0.1986061782, -0.0158731341, 0.0349432826, -0.1994722784, -0.1922688782, -0.2766529322, -0.0750846118, -0.0261267386, 0.2121437788, 0.2464042455, -0.0174933374, -0.1035186127, -0.1036007181, -0.2901810408, 0.2608532012, -0.2184687555, 0.0960315987, -0.1443013549, 0.1334663481, -0.1150142699, -0.2030867338, 0.3162395954, -0.0712849498, -0.2233369052, -0.0748687908, 0.1445922256, -0.0172572434, -0.1171412915, -0.3439748585, 0.0865703449, -0.201768294, -0.0519001596, -0.1715557873, -0.0757853091, -0.3403173983, 0.3888872564, 0.109802939, -0.1206587031, 0.0835883021, -0.2783560157, 0.0760338008, 0.3620345891, -0.0495058559, -0.2294214368, 0.160861358, 0.0534701496, -0.2114239931, -0.0739707947, -0.3018965721, -0.5255081654, -0.0137852458, 0.2082936019, 0.2294149846, 0.4104635715, 0.1461436152, -0.0166889019, -0.0821893662, -0.0818068385, -0.3491122127, 0.0339907035, -0.1274579614, 0.1863526702, -0.1580067724, 0.5168378949, -0.2627624571, 0.4241447151, 0.4182261825, -0.3344831169, 0.4018633664, -0.1026426628, 0.4811016917, -0.1938900799, -0.1900713742, 0.1305031031, 0.0521102846, 0.0414346829, 0.2256225348, -0.0783846006, 0.1515786946, 0.0500758439, 0.27468431, -0.1358631402, -0.2487671077, 0.0696824342, -0.0265747663, -0.0034897421, -0.1062733307, 0.2850162983, -0.1292749196, 0.1503621191, 0.2282376289, 0.4088185132, 0.3697285652, -0.1107954457, 0.3304606676, -0.3246174157, -0.2479230464, 0.5417060256, 0.0769142509, 0.2590821385, -0.1951617897, -0.0886175185, 0.4172723889, 0.1633315235, 0.5660607219, -0.3769993186, -0.3231419027, 0.2717082798, 0.2671844363, -0.3712123036, -0.1177443564, -0.0206982791, -0.0435315929, -0.0180329401, 0.6748076081, -0.4430411458, -0.0473422892, 0.2658809721, 0.0650960803, -0.1818181276, -0.4256837666, -0.4909739494, -0.1080661044, -0.4735231102, -0.0377670266, -0.0643602759, 0.3547736406, 0.0587000549, 0.2814425826, -0.0720051825, 0.0213223547, 0.2308119237, 0.3325810432, 0.0880558342, 0.0596564226, 0.1927492917, 0.4122956991, 0.4405753016, 0.2876456082, 0.3852201998, -0.0886232555, -0.5030117035, 0.1189954579, 0.0795292407, 0.1915132552, 0.3066504598, -0.0577339083, 0.2583629787, -0.1517117023, 0.0912910551, -0.2620268762, -0.3267898262, 0.123038061, 0.1136145443, 0.0319998786, -0.2792305648, 0.4609560966, -0.0027986169, -0.1177052855, -0.1131940335, 0.7454818487, -0.0445638113, 0.9066889286, -0.0224903412, 0.9038153887, -0.1837666482, 0.0054946383, 0.4124699235, -0.1430424899, 0.5982547402, -0.1397467703, 0.0056405067, -0.4372065961, -0.1494944692, -0.0543741919, 0.0136122257, 0.2145186216, -0.0728711635, -0.3070851862, 0.122802332, -0.0723007768, -0.1465179473, -0.0893572718, -0.0270681828, 0.061101988, -0.4498354495, -0.3294595182, 0.0078241155, 0.4473244548, 0.3218045235, 0.0595411137, -0.0798306018, -0.318333894, 0.0049138218, -0.3588389754, 0.0712881237, 0.2994556129, 0.1605605185, 0.3601668179, -0.2049200982, 0.2669720948, 0.1277437657, 0.7160637975, -0.3889602721, -0.2528814971, 0.1204798222, -0.3667645752, -0.2427174896, -0.1280356348, -0.3013761342, 0.3244976699, 0.2448951155, -0.4326145053, 0.294529438, 0.180695951, -0.1646514237, -0.1618567705, 0.1455045342, -0.067706421, -0.3563483357, -0.11755234, -0.0905724168, 0.3375670612, -0.144400835, 0.0659764856, 0.2046830654, -0.0820474625, 0.1091365963, 0.0838295892, -0.1231091321, -0.0055335485, 0.5033708811, -0.2285593301, 0.1146046817, 0.3499402702, 0.1286232769, -0.4498928189, 0.0003880858, -0.4983138442, 0.5014636517, -0.3836682439, -0.1845147461, 0.3491200507, -0.2349706888, -0.022677362, -0.0013708137, 0.3730077446, -0.2326381356, -0.2815312445, -0.2601917684, -0.1082755998, 0.3613977134, -0.1328594089, 0.1616757214, -0.08604417, 0.1158279479, -0.1279035658, 0.0128333289, -0.2126484215, 0.1579231322, -0.1372291446, 0.0753514022, -0.0734350532, -0.214303419, -0.0054208264, -0.2459962666, 0.0198298469, 0.1660509408, 0.0280936547, -0.0167213921, -0.0102716051, 0.172118336, 0.0617212579, 0.1258158088, -0.4139369428, -0.0717702582, -0.0320812128, -0.3967057168, 0.354354471, 0.2007510811, -0.0468915515, -0.0718144253, 0.0021624709, 0.0731868744, 0.0412617102, 0.2462118864, 0.1241778955, 0.5196715593, 0.2802631259, -0.1163902059, -0.4827331007, 0.1483893692, 0.0242194384, 0.40922755, 0.1506150216, -0.0409021303, 0.3504681587, -0.2940048277, -0.0680307671, 0.0042703301, 0.2235938311, 0.3811897635, -0.097750783, 0.0681165606, 0.2136990279, 0.0474056751, -0.2503565252, 0.0347793624, 0.3809844553, -0.147470668, -0.0341240168, 0.233868897, 0.1812997907, 0.1227881312, -0.1979242414, 0.0692600459, 0.2064259797, 0.1313118488, -0.391759038, 0.0485446379, 0.1434888095, 0.2531651556, 0.4207600951, 0.2260636836, 0.361533463, 0.1074412838, -0.1683155298, 0.0304051582, -0.0428695939, 0.3624764085, -0.1702775657, -0.5442957878, 0.4591154754, 0.199081108, 0.4446198642, -0.3005708456, 0.011094043, 0.2246439457, -0.0075122677, 0.002991043, -0.1264298111, 0.0194796454, -0.2073530108, -0.4814676344, 0.2469700277, 0.0070393085, -0.1617953628, -0.0748416781, 0.090463303, -0.1671434641, -0.1127615124, -0.1288223565, -0.3127627373, -0.163330093, -0.3798960149, 0.2976241112, 0.2746289074, 0.017205961, -0.092430152, -0.082037434, -0.0129509754, 0.3628854454, 0.0710032061, 0.5582454205, 0.0928329527, -0.1161191389, 0.1136861965, 0.0108318217, 0.0522575602, -0.0147899427, 0.1180376336, -0.1604056805, 0.2515514493, 0.2814066112, 0.0793316215, -0.1262226403, -0.3866679072, -0.0260214284, 0.6515321732, 0.0928581357, -0.1293684244, -0.4074531794, 0.0724369287, -0.11088036, 0.0383628458, -0.3113241196, 0.2983473539, 0.0368693396, -0.0962491184, -0.0129023716, 0.2667494118, 0.0236880518, -0.1871164739, 0.2547544241, 0.8629198074, -0.0874771327, -0.2432615161, 0.1577603519, -0.5931994319, 0.2370045781, -0.0749397129, -0.2206317186, 0.2276036292, 0.6163495779, 0.4311287403, -0.0319100469, -0.0105084553, -0.0449877977, 0.2689789534, 0.4219911993, -0.0000862032, -0.3120775521, -0.1198637336, -0.2052940875, -0.1085833162, 0.016001083, 0.1113149896, -0.1017316133, -0.0438833274, 0.0389879122, 0.1228805631, -0.1738749892, -0.3629507422, 0.6114474535, 0.0369079188, 0.347084403, -0.1360601783, -0.0059694052, -0.1750842184, -0.1696823686, 0.0329453573, 0.2829146981, -0.1806607395, 0.2205718458, -0.1766614616, -0.2883687913, -0.2644259334, 0.25165236, 0.0712013543, -0.2701528668, -0.2092000246, 0.1826224476, -0.1758242846, 0.044812832, -0.0361686051, 0.0521937199, -0.0462340191, 0.296639353, 0.1056769788, -0.2640371919, 0.6632550359, -0.3797849715, 0.0318564326, 0.1826306581, 0.1951089203, 0.4907486439, 0.0071049202, -0.8905534744, 0.0415126085, 0.0382944271, -0.0612080023, -0.3231999576, -0.0907067284, 0.2005216479, 0.0787762851, -0.231130749, -0.1733233929, 0.0168194808, 0.121690698, 0.0177741349, -0.2673079967 ]
https://github.com/huggingface/datasets/issues/2029
Loading a faiss index KeyError
Ok in that case HF should fix their misleading example at https://huggingface.co/docs/datasets/faiss_and_ea.html#adding-a-faiss-index I copy-pasted it here. > When you are done with your queries you can save your index on disk: > > ```python > ds_with_embeddings.save_faiss_index('embeddings', 'my_index.faiss') > ``` > Then reload it later: > > ```python > ds = load_dataset('crime_and_punish', split='train[:100]') > ds.load_faiss_index('embeddings', 'my_index.faiss') > ```
I've recently been testing out RAG and DPR embeddings, and I've run into an issue that is not apparent in the documentation. The basic steps are: 1. Create a dataset (dataset1) 2. Create an embeddings column using DPR 3. Add a faiss index to the dataset 4. Save faiss index to a file 5. Create a new dataset (dataset2) with the same text and label information as dataset1 6. Try to load the faiss index from file to dataset2 7. Get `KeyError: "Column embeddings not in the dataset"` I've made a colab notebook that should show exactly what I did. Please switch to GPU runtime; I didn't check on CPU. https://colab.research.google.com/drive/1X0S9ZuZ8k0ybcoei4w7so6dS_WrABmIx?usp=sharing Ubuntu Version VERSION="18.04.5 LTS (Bionic Beaver)" datasets==1.4.1 faiss==1.5.3 faiss-gpu==1.7.0 torch==1.8.0+cu101 transformers==4.3.3 NVIDIA-SMI 460.56 Driver Version: 460.32.03 CUDA Version: 11.2 Tesla K80 I was basically following the steps here: https://huggingface.co/docs/datasets/faiss_and_ea.html#adding-a-faiss-index I included the exact code from the documentation at the end of the notebook to show that they don't work either.
57
Loading a faiss index KeyError I've recently been testing out RAG and DPR embeddings, and I've run into an issue that is not apparent in the documentation. The basic steps are: 1. Create a dataset (dataset1) 2. Create an embeddings column using DPR 3. Add a faiss index to the dataset 4. Save faiss index to a file 5. Create a new dataset (dataset2) with the same text and label information as dataset1 6. Try to load the faiss index from file to dataset2 7. Get `KeyError: "Column embeddings not in the dataset"` I've made a colab notebook that should show exactly what I did. Please switch to GPU runtime; I didn't check on CPU. https://colab.research.google.com/drive/1X0S9ZuZ8k0ybcoei4w7so6dS_WrABmIx?usp=sharing Ubuntu Version VERSION="18.04.5 LTS (Bionic Beaver)" datasets==1.4.1 faiss==1.5.3 faiss-gpu==1.7.0 torch==1.8.0+cu101 transformers==4.3.3 NVIDIA-SMI 460.56 Driver Version: 460.32.03 CUDA Version: 11.2 Tesla K80 I was basically following the steps here: https://huggingface.co/docs/datasets/faiss_and_ea.html#adding-a-faiss-index I included the exact code from the documentation at the end of the notebook to show that they don't work either. Ok in that case HF should fix their misleading example at https://huggingface.co/docs/datasets/faiss_and_ea.html#adding-a-faiss-index I copy-pasted it here. > When you are done with your queries you can save your index on disk: > > ```python > ds_with_embeddings.save_faiss_index('embeddings', 'my_index.faiss') > ``` > Then reload it later: > > ```python > ds = load_dataset('crime_and_punish', split='train[:100]') > ds.load_faiss_index('embeddings', 'my_index.faiss') > ```
[ 0.017279394, -0.5772305727, 0.0631228313, 0.2795126438, 0.0801497549, 0.2722069025, 0.31793046, 0.1032484844, 0.5430008769, 0.2702876031, -0.1154732481, 0.1119506583, 0.4107089639, -0.1057187468, -0.0582557358, -0.0193880983, 0.2288172245, 0.2564588487, 0.2251710296, -0.1339421719, -0.2051006854, 0.0973475575, -0.2735079527, 0.2104549855, -0.2178771794, 0.1518887281, -0.2278767526, 0.0568944737, -0.1768645197, -0.4319817126, 0.3245589137, -0.2239340246, 0.6598062515, 0.1977223754, -0.0001215702, 0.1218786687, 0.3807428479, -0.1595102698, -0.2513682842, 0.1151004583, 0.0764165968, 0.0272241533, 0.2132133842, -0.0726774037, 0.0061008707, -0.6095625162, 0.0533288047, -0.1794199944, 0.2412756979, 0.0245587006, 0.112601161, 0.0576792583, 0.042204529, -0.3755269945, 0.0992326364, -0.3127267957, -0.0681920201, 0.2848210037, -0.0071599819, 0.0022997372, 0.0063479431, 0.3573624492, -0.0200692229, 0.0193409659, 0.4004622102, 0.2284757495, 0.3043693602, -0.1044263244, 0.1567364186, 0.1700626463, 0.3159222007, -0.1548775434, -0.3962084949, -0.1216676831, 0.1943067908, -0.1263989955, 0.1970368922, -0.3063473701, 0.0235134065, 0.3119212985, 0.3952245116, -0.1900371909, 0.1177400053, 0.0820097029, -0.0645475835, -0.0513841659, -0.2108547091, 0.0240788888, 0.190279603, -0.0865307301, -0.2820095718, -0.1559732556, 0.0747635961, 0.0823273957, -0.3504088223, 0.1680513024, 0.2065457106, 0.0209432133, -0.0723238587, -0.0248584133, -0.2064311206, 0.0152600054, 0.1569407582, 0.3611029387, -0.2030454278, -0.0178112537, 0.0448898673, 0.0191623606, 0.1014062315, 0.2769635916, -0.0010164753, -0.216907233, -0.1131692529, -0.1501648277, -0.490227282, -0.3367263079, -0.0414408445, -0.3489937484, -0.4786966741, 0.3067216575, -0.455272913, -0.1304347366, 0.0186457708, 0.652844727, 0.1860148013, -0.2571897507, 0.2522351146, 0.3296820521, -0.3448678255, 0.2203891128, -0.1981094927, 0.1131347865, -0.1160798594, 0.4127854705, 0.1097561568, -0.4600387514, 0.1754468083, 0.0120849647, 0.2221797109, 0.0842841864, -0.3430342078, -0.0307905432, 0.3162080944, 0.2977693379, -0.0658049285, 0.07196711, 0.3783292472, -0.3262059689, -0.224006474, 0.0465684608, -0.1261168867, -0.1155301705, -0.1683063507, 0.1149995327, -0.044719182, -0.0695156157, 0.23598212, 0.0991609246, 0.1431573927, -0.26346156, 0.0815167725, 0.0393044688, -0.1817215383, -0.1781527549, 0.4668314457, 0.4261374474, -0.7533154488, -0.3583070636, 0.1044595018, 0.2246399969, -0.1304671317, 0.2801529169, -0.1336553544, 0.0512034595, -0.2663240433, 0.4776736498, 0.160535872, -0.1500920951, -0.2101145983, 0.1152874678, 0.1037182957, 0.0163556933, 0.1906678081, -0.1538437903, 0.3397403955, 0.1171111017, 0.3372933865, -0.0242129937, 0.0364698246, -0.3472737372, -0.2551965117, -0.3373096883, 0.0823269337, 0.0959323943, -0.0580285862, -0.1127975583, -0.1097773612, -0.3149938881, 0.1116438881, -0.2194288373, -0.0689910501, 0.1341976076, 0.2931414545, 0.3978089988, 0.4509917796, 0.0653037578, -0.0793156326, 0.260440141, 0.0285844505, 0.0608431734, -0.1846121848, -0.1017720327, -0.2828641534, 0.0477871895, -0.1088202596, -0.2191659808, -0.0282451306, -0.0028138347, -0.0579026528, 0.0574616939, -0.3144204021, 0.1071909443, -0.2037624121, 0.1530472934, -0.4385947585, 0.4663406014, -0.3173540533, -0.2310286611, 0.0460030884, 0.2543343306, 0.1745007932, -0.1636389196, 0.1295264959, 0.1026975513, -0.0566199571, -0.2618733644, 0.1746409833, -0.1655092835, 0.1427620202, -0.2291906178, 0.0832304582, -0.041944664, 0.2045520395, 0.1157637686, -0.2281852067, 0.4575836062, 0.0520606637, 0.2677702308, -0.1473598033, -0.2205033451, 0.1386882067, 0.0298013538, -0.0034480728, -0.3238339424, -0.1025568098, 0.0377515182, -0.116453141, -0.0653850511, 0.0181213915, 0.1922574043, 0.0198898986, 0.0316700488, -0.1030553281, 0.0811384618, -0.2599278092, 0.0253880695, 0.0923050418, -0.4249452949, 0.360475868, 0.2861750722, -0.1327145696, -0.2303949296, -0.2657186985, -0.2874988019, 0.0673751235, -0.0804421827, -0.2273134589, 0.1274016947, -0.0742553473, 0.0862707049, -0.2223928124, -0.0440519378, 0.012266472, 0.1490373462, -0.5887739658, 0.1396590173, -0.3880035877, -0.0942457169, 0.0291197114, -0.1383639872, -0.0869039148, -0.3894476593, 0.2312372327, -0.1868143827, -0.0542587452, 0.2351474464, -0.0808565244, 0.1829113215, 0.0158672705, -0.0098375846, -0.1690038294, -0.1615709364, -0.3648664057, -0.0854422301, -0.0241523348, 0.2970386744, 0.2358444035, -0.0316452086, -0.1209298596, -0.1339868903, -0.3524389267, 0.2762561142, -0.1432652473, 0.129147619, -0.1065491512, 0.0773713142, -0.1703559011, -0.1709824055, 0.3147133887, -0.0222135372, -0.1975480616, -0.0149076097, 0.1242614985, 0.0355619639, -0.0651534423, -0.3328300118, 0.104707092, -0.2776856422, -0.1136711612, -0.1886595935, -0.0535953641, -0.3046754301, 0.3891737163, 0.119593516, -0.1083315834, 0.0964703709, -0.2930320501, 0.1472295225, 0.3678101003, -0.1009713262, -0.2994406521, 0.1863134652, 0.0289017856, -0.2174459398, -0.0438997895, -0.39642483, -0.4838356376, -0.0262635387, 0.2240000814, 0.2083174288, 0.3773665428, 0.1585733891, -0.0878762901, -0.085768953, -0.0988790095, -0.3516179025, 0.0867618173, -0.1840333343, 0.1607313007, -0.1917378157, 0.5027086139, -0.2363250703, 0.4415203929, 0.4734843969, -0.3138490915, 0.435981214, -0.056027025, 0.5026715398, -0.2558837533, -0.1605992317, 0.1289677322, 0.0415620208, -0.0153029747, 0.2319121212, -0.0699342415, 0.1313169599, 0.0795841068, 0.2480210662, -0.0846441761, -0.2826346755, 0.1131232157, 0.0279451311, 0.0049014175, -0.0829244778, 0.2915314436, -0.0784449205, 0.1364881992, 0.2619971335, 0.499494195, 0.3746815324, -0.0595981218, 0.3922797441, -0.271604538, -0.2988324463, 0.5406865478, 0.0766687542, 0.2704479396, -0.2316273153, -0.132910952, 0.3817057908, 0.1187167168, 0.4669494927, -0.3202126622, -0.2769587636, 0.3623041809, 0.2157477885, -0.3539118767, -0.1602835357, -0.0421989039, -0.0649767295, -0.0456612483, 0.6810312867, -0.4488100708, -0.0919197574, 0.2719630301, 0.0484942794, -0.1917752773, -0.4296598136, -0.4913113117, -0.2099978328, -0.4370380044, -0.0712675601, -0.0832092911, 0.2882453203, 0.0675762668, 0.2692579627, -0.063986592, 0.0211348981, 0.1759270579, 0.2988153696, 0.0854446366, 0.0554002561, 0.2225781828, 0.3516509235, 0.4493588209, 0.3105465472, 0.3761476278, -0.0922996476, -0.3685176373, 0.1949788332, 0.1215487123, 0.134762153, 0.3488337696, -0.0598918684, 0.3128322661, -0.1410941035, 0.1342670172, -0.2591913342, -0.3105554283, 0.0768896565, 0.0582710132, 0.0437598154, -0.2096962929, 0.5280876756, -0.0176828094, -0.1088422239, -0.1019319296, 0.7750855088, -0.0008787215, 0.8857612014, 0.0565028675, 0.9090358615, -0.1713171899, 0.0234894324, 0.4463818669, -0.1876297444, 0.4825898111, -0.1951463073, 0.042612765, -0.437391907, -0.2519874573, -0.0566141047, 0.0048723295, 0.1658106595, -0.0841312259, -0.3571432531, 0.1029771715, -0.0496159866, -0.1644605994, -0.0859975368, -0.0637872368, -0.0010359753, -0.3792616725, -0.3039008677, 0.0290286019, 0.4822969735, 0.3695410192, 0.0220441073, -0.0790326223, -0.2914418578, 0.0064430386, -0.3014763594, 0.0409130752, 0.2598648965, 0.1597630382, 0.3091950417, -0.1646124572, 0.2454793304, 0.0359588228, 0.6067770123, -0.3963742256, -0.2278277278, 0.0660856143, -0.2978229523, -0.2367137372, -0.0910730511, -0.3210307062, 0.3530060053, 0.2164138407, -0.3930767179, 0.2455596924, 0.1277558804, -0.1699521244, -0.1908746213, 0.1798235774, -0.1001085415, -0.3621916175, -0.0792512074, -0.0853151754, 0.243548125, -0.0945237502, 0.0748395696, 0.1713629216, -0.0192911848, 0.1398163736, 0.1292545199, -0.1324251145, 0.0063686185, 0.5463542342, -0.2605176866, 0.1305043399, 0.3212527633, 0.154641062, -0.4956638813, -0.0322360545, -0.5321478248, 0.4935289025, -0.3097328544, -0.1765690595, 0.2286674082, -0.1850275993, -0.0002240017, 0.0356550142, 0.4112834334, -0.3013075888, -0.2987967134, -0.2700887918, -0.095146589, 0.4340414703, -0.0944091976, 0.1565037072, -0.0819239318, 0.0799017251, -0.1040568948, 0.0419621989, -0.2391066104, 0.1509060711, -0.1227875948, 0.0378886387, -0.1788288951, -0.2138815671, 0.020580098, -0.175560683, 0.0168482065, 0.1716373265, -0.0522179455, -0.0424937643, 0.0114652291, 0.1759464294, 0.0268446207, 0.0967809036, -0.3826611936, -0.0819118991, -0.0648975, -0.3780139089, 0.3031314313, 0.1970614195, -0.0779176354, -0.1188660562, 0.0153417764, 0.0307866521, 0.0624901205, 0.2531222999, 0.1842303425, 0.5281670094, 0.2460186183, -0.1327631027, -0.5212604403, 0.1234881952, 0.0725356936, 0.4531141818, 0.1454980373, -0.0640453994, 0.371576637, -0.3348659277, -0.0354459882, -0.0635816008, 0.2820002735, 0.368634671, -0.1174698845, 0.0312432274, 0.1743298769, 0.0696530491, -0.2446891218, 0.067464292, 0.3783980608, -0.1276391596, 0.0212465674, 0.2595110536, 0.1960686445, 0.1245094538, -0.1776775569, 0.0934917778, 0.1437720954, 0.1801261157, -0.4203799069, 0.0146655077, 0.0593923628, 0.2737781405, 0.3931543231, 0.1846985817, 0.4034122229, 0.0729814619, -0.1266165823, 0.0767258406, 0.004841499, 0.3915551901, -0.2059019208, -0.6314299703, 0.4730731845, 0.2434373647, 0.520319283, -0.3003266752, -0.0273208246, 0.2113478631, 0.0158677213, 0.0019208677, -0.1404470056, 0.0087239556, -0.1797019541, -0.4228441119, 0.2603079975, -0.0135753453, -0.2500581443, -0.1014533639, 0.0556353107, -0.1375435889, -0.1221991032, -0.0983669534, -0.273822993, -0.1351662725, -0.2959289551, 0.3009160459, 0.2911666036, 0.0407973975, -0.0253567286, -0.0420551375, 0.0072704572, 0.3467206955, 0.0485006571, 0.532879591, 0.1421399862, -0.1048814058, 0.0760595575, 0.0631728023, 0.0589938685, 0.0000361204, 0.1344168782, -0.1673478186, 0.218190521, 0.3409719169, 0.0637019649, -0.1314154118, -0.3197772205, -0.0504972637, 0.5998362303, 0.1000026166, -0.1618768424, -0.3587872386, 0.1046118215, -0.0621896721, 0.0215113424, -0.2632645369, 0.2826019228, 0.1195048839, -0.1405349374, 0.0846821219, 0.2874369025, 0.038590692, -0.1772707701, 0.3113383353, 0.8044197559, -0.0780337378, -0.2670658231, 0.1288083196, -0.5427350402, 0.2680163085, -0.1829782426, -0.1850351244, 0.2906186581, 0.6496263742, 0.4190322459, -0.0323070511, 0.0721310526, -0.1104712784, 0.3419900537, 0.4437325597, 0.0212638527, -0.3350872397, -0.1664215028, -0.2112396955, -0.1398439109, -0.0645551085, 0.1304072738, -0.0612436682, -0.0121064931, 0.0348460712, 0.1060872674, -0.0949874818, -0.3437106311, 0.6024443507, 0.038086839, 0.3508693576, -0.1602425873, -0.0448030606, -0.1796191037, -0.1176820695, 0.0382442325, 0.2302421629, -0.2109967023, 0.1636526734, -0.1435654461, -0.3141820431, -0.2684747577, 0.2933230698, 0.0934768766, -0.2817204595, -0.1717183292, 0.1432595849, -0.2002488226, 0.0334749036, -0.0270989388, 0.078893207, -0.03356627, 0.3309990764, 0.0754428059, -0.2962703109, 0.6966267228, -0.3728352487, 0.0705314651, 0.203852579, 0.2360534221, 0.5011438131, 0.032880947, -0.8710229397, -0.0064148009, 0.0906481519, -0.071954459, -0.2740328312, -0.0554651432, 0.1980941594, 0.0384439602, -0.2326388359, -0.0869512558, -0.0006069196, 0.113678433, -0.0463077202, -0.2873270512 ]
https://github.com/huggingface/datasets/issues/2029
Loading a faiss index KeyError
Hi ! The code of the example is valid. An index is a search engine, it's not considered a column of a dataset. When you do `ds.load_faiss_index("embeddings", 'my_index.faiss')`, it attaches an index named "embeddings" to the dataset but it doesn't re-add the "embeddings" column. You can list the indexes of a dataset by using `ds.list_indexes()`. If I understand correctly by reading this example you thought that it was re-adding the "embeddings" column. This looks misleading indeed, and we should add a note to make it more explicit that it doesn't store the column that was used to build the index. Feel free to open a PR to suggest an improvement on the documentation if you want to contribute :)
I've recently been testing out RAG and DPR embeddings, and I've run into an issue that is not apparent in the documentation. The basic steps are: 1. Create a dataset (dataset1) 2. Create an embeddings column using DPR 3. Add a faiss index to the dataset 4. Save faiss index to a file 5. Create a new dataset (dataset2) with the same text and label information as dataset1 6. Try to load the faiss index from file to dataset2 7. Get `KeyError: "Column embeddings not in the dataset"` I've made a colab notebook that should show exactly what I did. Please switch to GPU runtime; I didn't check on CPU. https://colab.research.google.com/drive/1X0S9ZuZ8k0ybcoei4w7so6dS_WrABmIx?usp=sharing Ubuntu Version VERSION="18.04.5 LTS (Bionic Beaver)" datasets==1.4.1 faiss==1.5.3 faiss-gpu==1.7.0 torch==1.8.0+cu101 transformers==4.3.3 NVIDIA-SMI 460.56 Driver Version: 460.32.03 CUDA Version: 11.2 Tesla K80 I was basically following the steps here: https://huggingface.co/docs/datasets/faiss_and_ea.html#adding-a-faiss-index I included the exact code from the documentation at the end of the notebook to show that they don't work either.
119
Loading a faiss index KeyError I've recently been testing out RAG and DPR embeddings, and I've run into an issue that is not apparent in the documentation. The basic steps are: 1. Create a dataset (dataset1) 2. Create an embeddings column using DPR 3. Add a faiss index to the dataset 4. Save faiss index to a file 5. Create a new dataset (dataset2) with the same text and label information as dataset1 6. Try to load the faiss index from file to dataset2 7. Get `KeyError: "Column embeddings not in the dataset"` I've made a colab notebook that should show exactly what I did. Please switch to GPU runtime; I didn't check on CPU. https://colab.research.google.com/drive/1X0S9ZuZ8k0ybcoei4w7so6dS_WrABmIx?usp=sharing Ubuntu Version VERSION="18.04.5 LTS (Bionic Beaver)" datasets==1.4.1 faiss==1.5.3 faiss-gpu==1.7.0 torch==1.8.0+cu101 transformers==4.3.3 NVIDIA-SMI 460.56 Driver Version: 460.32.03 CUDA Version: 11.2 Tesla K80 I was basically following the steps here: https://huggingface.co/docs/datasets/faiss_and_ea.html#adding-a-faiss-index I included the exact code from the documentation at the end of the notebook to show that they don't work either. Hi ! The code of the example is valid. An index is a search engine, it's not considered a column of a dataset. When you do `ds.load_faiss_index("embeddings", 'my_index.faiss')`, it attaches an index named "embeddings" to the dataset but it doesn't re-add the "embeddings" column. You can list the indexes of a dataset by using `ds.list_indexes()`. If I understand correctly by reading this example you thought that it was re-adding the "embeddings" column. This looks misleading indeed, and we should add a note to make it more explicit that it doesn't store the column that was used to build the index. Feel free to open a PR to suggest an improvement on the documentation if you want to contribute :)
[ 0.139708057, -0.5335460901, 0.0514716581, 0.3196976781, 0.1264747083, 0.2750567198, 0.4119961858, -0.0404783934, 0.6586287618, 0.2073547393, -0.062413279, 0.1538583934, 0.3866051435, -0.0489011258, 0.0130301192, -0.0173615348, 0.3034025431, 0.2208624482, 0.2414611578, -0.1565982699, -0.1813700199, 0.0717175677, -0.2770503163, 0.1112727821, -0.1968310773, 0.1754430979, -0.2499135435, -0.0327950269, -0.2255384028, -0.3927152753, 0.3298938572, -0.2455042452, 0.639608562, 0.1909309328, -0.0001244103, 0.1136667281, 0.3821778297, -0.137237981, -0.2595387399, 0.1243395805, -0.0407924615, 0.0283891335, 0.2259731293, -0.0741745532, 0.0444000363, -0.6045319438, 0.0306178797, -0.266409874, 0.2041674256, 0.0784027874, 0.0811233073, 0.0266721323, 0.0594933182, -0.350158602, 0.1453063488, -0.2944702804, -0.107239835, 0.2723379135, 0.0363665819, 0.0591787547, 0.0967703685, 0.2234832346, -0.0297006965, -0.0044607688, 0.3816767931, 0.3206751049, 0.3233527839, -0.1499409825, 0.1832969487, 0.1396443099, 0.4778428078, -0.0867145658, -0.3786844909, -0.1274589747, 0.2133218944, -0.1693469584, 0.1781801432, -0.3018350601, 0.0494875461, 0.2833382189, 0.3947208524, -0.2305173427, 0.1729188263, 0.1110189557, -0.1058649942, 0.0296108834, -0.2333698273, 0.0812686607, 0.1254784465, -0.0815553144, -0.2309125662, -0.1110216528, 0.1203841418, 0.1144594327, -0.3478138149, 0.2244479954, 0.2105001062, 0.0192311313, -0.1170736402, 0.0355053544, -0.1175122783, 0.0451516919, 0.082569845, 0.3602947891, -0.1612786949, 0.0425951667, 0.0905498713, -0.0014761835, 0.031570971, 0.2060630172, 0.0346704125, -0.2354731709, -0.127318114, -0.0511644408, -0.4601171017, -0.3972397149, -0.0220844969, -0.2939673066, -0.4682563543, 0.3269698918, -0.394901216, -0.1495507061, 0.0359076448, 0.6100535989, 0.2423654795, -0.2410030365, 0.2574198246, 0.3329066336, -0.2494071722, 0.2505551577, -0.2155790776, 0.100160934, -0.1791633964, 0.416097641, 0.0883166194, -0.43629843, 0.2058902085, -0.0156855248, 0.1153184399, 0.0160861313, -0.4422801733, -0.010799408, 0.3289081752, 0.3100942373, -0.1181552038, 0.0646989718, 0.2906966805, -0.39395082, -0.1781440824, 0.0867635608, -0.113260746, -0.0243501216, -0.1908863485, 0.0711472929, -0.111399278, -0.1381538808, 0.2029103786, 0.1236760095, 0.1540797651, -0.2610227168, 0.1042372286, 0.0324437693, -0.1694492251, -0.1880512238, 0.5441298485, 0.3905662894, -0.7543743849, -0.3546567559, 0.021022331, 0.1953680366, -0.0898331776, 0.2088247389, -0.0703034401, 0.1384414136, -0.2801352143, 0.4364031553, 0.2500101924, -0.0299271047, -0.1367250532, -0.0278816372, 0.0822835714, 0.0112902075, 0.1462397575, -0.0464111567, 0.3089676499, 0.2303744853, 0.2861489654, 0.0061389431, 0.059796147, -0.3615940809, -0.1948384941, -0.2727176845, 0.1160122082, 0.080430977, -0.0372424051, -0.0280091986, -0.0962931365, -0.3618796766, 0.0644502714, -0.1609585285, -0.0479049087, 0.0518078879, 0.319955498, 0.4249473512, 0.4439717233, 0.0635534003, -0.1428374946, 0.27312392, 0.166857481, 0.002476454, -0.1946395487, -0.0410472378, -0.310497582, 0.1002359837, -0.0861711651, -0.1901267171, -0.093602933, 0.0434047692, -0.039303679, 0.0348567963, -0.3543616533, 0.0917699412, -0.1389931142, 0.1869313568, -0.4618311524, 0.468799144, -0.2446717322, -0.2399785519, -0.0660562143, 0.2928887308, 0.0953238457, -0.230501622, 0.1591468751, 0.1184904724, 0.0150074922, -0.2839364409, 0.1743020713, -0.1755252033, 0.1507221162, -0.2129493505, 0.1087338775, -0.0652897507, 0.2566758394, 0.0690952316, -0.2392739952, 0.4237159491, 0.0181187503, 0.2957785726, -0.1987943351, -0.2114779949, 0.1270287335, 0.0418511331, -0.0545732677, -0.3016966879, -0.1867247373, -0.0259513203, -0.1224484518, -0.0458273441, 0.0013798252, 0.1479831338, -0.0317736864, 0.0533249974, -0.0762054548, 0.0467843078, -0.3594029844, 0.0175262317, 0.063300997, -0.4014998078, 0.4099876881, 0.2676882744, -0.042483557, -0.2847336233, -0.1580410302, -0.292766422, 0.0362488069, -0.0372611769, -0.2339012325, 0.1330190301, -0.0564496815, 0.0249524526, -0.2709621489, 0.0384882241, 0.1010745913, 0.1226189584, -0.5553828478, 0.0918595418, -0.3217411339, -0.0228083283, 0.0247969888, -0.107280463, -0.0440436229, -0.3912599981, 0.1531036496, -0.1146240085, -0.0169350877, 0.2143236995, -0.0619996637, 0.218171075, -0.0247203968, -0.0401441865, -0.1876533329, -0.2124548256, -0.3034581542, -0.0988074839, -0.0032460243, 0.2954038978, 0.2241867483, -0.0202664472, -0.0708822906, -0.1617211103, -0.3294916451, 0.2559997439, -0.167335391, 0.1325892657, -0.1250995994, 0.1196720004, -0.1969904155, -0.12603122, 0.2635343373, -0.0487388074, -0.1794923544, -0.0537556745, 0.1822658628, 0.0249122456, -0.1008232087, -0.4248001873, 0.1342135072, -0.1854075938, -0.0751740113, -0.168325603, -0.0700722188, -0.2950832546, 0.3934320807, 0.1232630163, -0.0822990239, 0.0814589858, -0.3621647954, 0.1432948411, 0.3559267521, -0.0511643477, -0.3062043786, 0.2269724607, -0.0238696188, -0.2126530409, -0.0232426878, -0.3001647592, -0.4479039311, 0.0247276817, 0.1486494839, 0.3076384664, 0.4144200981, 0.1959237605, -0.1259265244, -0.0382228903, -0.1248018444, -0.4207607806, 0.1242522299, -0.0117371157, 0.1973399967, -0.0983321369, 0.507497251, -0.3051089346, 0.4946762919, 0.3491694927, -0.4038629532, 0.4498752654, -0.1538047045, 0.5353226066, -0.2270278186, -0.1876465976, 0.0977308527, 0.0977129266, -0.0742567703, 0.2291563749, -0.0771463215, 0.1077798083, 0.0786253512, 0.399854809, -0.1534989774, -0.2350585461, 0.0933814943, 0.0416992158, -0.0043323617, -0.0967478007, 0.2947269976, -0.0990583822, 0.1402980238, 0.1448269039, 0.4661462605, 0.4105895162, -0.1144728512, 0.364074111, -0.2789013982, -0.3221740127, 0.5076092482, -0.0094895475, 0.3112457097, -0.1909678876, -0.2257635295, 0.427090615, 0.1622132659, 0.509469986, -0.3713757992, -0.3883593082, 0.3326302767, 0.2954972982, -0.3631882966, -0.1525407434, -0.0273868963, -0.0215933956, -0.0370031446, 0.652684629, -0.4228728414, -0.0011687092, 0.2416596711, 0.0818427429, -0.2017996013, -0.3822226822, -0.5365281105, -0.2004129291, -0.369192183, -0.0537203215, -0.117436491, 0.3132624626, 0.169392556, 0.1766944528, -0.0936179087, -0.061889492, 0.1937378794, 0.3094623685, 0.0849093944, 0.1815104485, 0.2277317643, 0.3715902567, 0.4876295626, 0.2552195787, 0.3997566998, -0.1900377721, -0.2439508289, 0.1860181689, 0.025717821, 0.2117740065, 0.2899105847, -0.0330045, 0.2036442906, -0.1958998144, 0.0649255291, -0.2201661766, -0.2590923011, 0.1462914646, 0.0934912264, 0.0041816011, -0.2914547026, 0.5448598862, -0.0175984465, -0.2207260579, -0.1630170643, 0.7354040742, -0.0529473573, 0.8978896737, -0.0028410591, 0.9030035734, -0.2579964399, -0.0560950264, 0.4146473408, -0.0845780373, 0.5710944533, -0.1455392838, 0.0741490573, -0.4189852774, -0.2335895747, -0.0828633755, -0.0523095466, 0.1802418381, -0.1072507203, -0.2900472283, 0.0874738321, -0.0836210847, -0.1342562586, -0.0875005871, -0.0732036307, 0.1548388898, -0.3399553001, -0.2096614838, 0.0111379363, 0.4751352072, 0.3716222644, 0.0004492737, -0.0049822964, -0.3148493171, -0.0208311304, -0.2948210835, 0.0259203836, 0.3043395877, 0.1437454224, 0.3011053205, -0.246835947, 0.2028663605, 0.1360371411, 0.576368928, -0.4888342619, -0.1904985756, 0.1182537898, -0.3001484871, -0.2296492755, -0.1586820632, -0.3349230886, 0.2959029078, 0.3055292368, -0.3957143426, 0.2116836607, 0.1347503811, -0.216088146, -0.1810225248, 0.2022089213, -0.0348851793, -0.4023382366, -0.1147626564, 0.008068407, 0.2858682871, -0.0976247936, 0.0407560803, 0.1661279798, -0.0370494276, 0.20139274, 0.1474736482, -0.1411545873, -0.0054668314, 0.5710300803, -0.2033823282, 0.1725043207, 0.2977307439, 0.1402335614, -0.4358295202, -0.0353425965, -0.5515818, 0.5049034953, -0.2644135952, -0.2070167959, 0.2630946934, -0.1769468486, 0.0523213856, 0.0210846774, 0.3146515489, -0.2509734929, -0.3915979862, -0.2711706758, -0.0476894826, 0.4246589243, -0.0891587585, 0.1883838773, -0.1719499528, 0.0001764446, -0.0920155197, 0.0131452475, -0.1961169541, 0.1657241136, -0.0758268759, 0.1075028852, -0.029734578, -0.1764873117, 0.0076233894, -0.315418452, 0.012184687, 0.0821586177, 0.0200672969, -0.017369438, 0.0558539629, 0.1841937155, 0.0815486461, 0.1543058157, -0.4690372348, -0.036916934, -0.0566249825, -0.4456325471, 0.3262777925, 0.1444024295, -0.1596532762, -0.131791532, 0.0373504125, 0.1413362324, 0.047460869, 0.2125568092, 0.1360687166, 0.5164859891, 0.2325790972, -0.1356122941, -0.4268548489, 0.1551965773, 0.0897995904, 0.4254205227, 0.1661586761, -0.148136586, 0.3840100169, -0.3068833649, 0.011267595, -0.0135343894, 0.2134611905, 0.4560753107, -0.0628298819, 0.0791655332, 0.1910352558, 0.0411779024, -0.1962541938, 0.083633393, 0.3954754472, -0.1042645499, 0.0151065737, 0.2821960449, 0.2161115706, 0.157437712, -0.2313302159, 0.0467249751, 0.1695627272, 0.2741906643, -0.3947871625, -0.0031681359, 0.0739469901, 0.2783550918, 0.440362215, 0.1706482619, 0.3151623607, 0.1510324627, -0.1643123925, 0.1035962477, 0.0389908142, 0.4055018127, -0.1853338778, -0.5798714161, 0.5499576926, 0.2564823925, 0.4967415929, -0.2785115838, 0.0276360475, 0.2131632268, 0.0077695474, -0.0112875998, -0.2104987502, 0.0370271429, -0.1464018673, -0.443143785, 0.2175286859, -0.0443867967, -0.2370197475, -0.1008000821, 0.0298513696, -0.1973168403, -0.1029085964, -0.1672845483, -0.3034963012, -0.161239028, -0.3351872563, 0.2984618545, 0.223748982, 0.0694231391, -0.0510132238, -0.172666043, -0.0147905312, 0.3651044965, 0.0982870832, 0.4093312323, 0.0922426432, -0.0501662195, 0.1371538043, 0.0476711802, 0.0098275542, -0.0680906475, 0.1368499696, -0.2060675323, 0.1784706116, 0.2098882496, 0.06241256, -0.0611174479, -0.3300629556, -0.0272070058, 0.6360579729, 0.0477022678, -0.1378113627, -0.3980536759, 0.0392395407, -0.0832633972, -0.0116747953, -0.2653490305, 0.2788210809, 0.0598349944, -0.1342644691, 0.0567126572, 0.3222054839, 0.0116631091, -0.2166979313, 0.265363574, 0.7818461657, -0.0992647856, -0.1718615741, 0.1167360693, -0.5884338617, 0.2082715929, -0.1338329762, -0.2299387753, 0.2374173701, 0.6179018617, 0.4279896915, -0.0581783094, 0.0317358412, -0.0683931485, 0.2986147106, 0.3998090923, 0.0247496739, -0.3153728843, -0.1626438498, -0.1644560993, -0.1396196187, 0.0125087276, 0.1287268549, -0.149626404, -0.0612785928, 0.0495574027, 0.112962544, -0.1767140329, -0.3649266362, 0.7231635451, 0.0115466285, 0.3714818954, -0.1130694896, 0.0516387075, -0.2628453374, -0.2042689323, 0.0472767912, 0.3148730695, -0.1929401159, 0.1571572423, -0.149489969, -0.2276145816, -0.1884863526, 0.247605592, 0.0908745378, -0.2714474797, -0.230994463, 0.1285224706, -0.2478740066, 0.0102837831, -0.0149863884, 0.0248445943, -0.0483204201, 0.2772888243, 0.1054854095, -0.2724974751, 0.5993978381, -0.4096091092, 0.1013206393, 0.0972106084, 0.2211802304, 0.573055923, 0.0223233644, -0.8656448126, -0.005809918, 0.0837967545, -0.1317083091, -0.2458975166, -0.098705031, 0.1803887486, 0.0558536276, -0.3165008128, -0.1591797024, -0.0125578744, 0.1369657367, -0.0901830792, -0.2896225154 ]
https://github.com/huggingface/datasets/issues/2029
Loading a faiss index KeyError
> If I understand correctly by reading this example you thought that it was re-adding the "embeddings" column. Yes. I was trying to use the dataset in RAG and it complained that the dataset didn't have the right columns. No problems when loading the dataset with `load_from_disk` and then doing `load_faiss_index` What I learned was 1. column and index are different 2. loading the index does not create a column 3. the column is not needed to be able to use the index 4. RAG needs both the embeddings column and the index If I can come up with a way to articulate this in the right spot in the docs, I'll open a PR
I've recently been testing out RAG and DPR embeddings, and I've run into an issue that is not apparent in the documentation. The basic steps are: 1. Create a dataset (dataset1) 2. Create an embeddings column using DPR 3. Add a faiss index to the dataset 4. Save faiss index to a file 5. Create a new dataset (dataset2) with the same text and label information as dataset1 6. Try to load the faiss index from file to dataset2 7. Get `KeyError: "Column embeddings not in the dataset"` I've made a colab notebook that should show exactly what I did. Please switch to GPU runtime; I didn't check on CPU. https://colab.research.google.com/drive/1X0S9ZuZ8k0ybcoei4w7so6dS_WrABmIx?usp=sharing Ubuntu Version VERSION="18.04.5 LTS (Bionic Beaver)" datasets==1.4.1 faiss==1.5.3 faiss-gpu==1.7.0 torch==1.8.0+cu101 transformers==4.3.3 NVIDIA-SMI 460.56 Driver Version: 460.32.03 CUDA Version: 11.2 Tesla K80 I was basically following the steps here: https://huggingface.co/docs/datasets/faiss_and_ea.html#adding-a-faiss-index I included the exact code from the documentation at the end of the notebook to show that they don't work either.
115
Loading a faiss index KeyError I've recently been testing out RAG and DPR embeddings, and I've run into an issue that is not apparent in the documentation. The basic steps are: 1. Create a dataset (dataset1) 2. Create an embeddings column using DPR 3. Add a faiss index to the dataset 4. Save faiss index to a file 5. Create a new dataset (dataset2) with the same text and label information as dataset1 6. Try to load the faiss index from file to dataset2 7. Get `KeyError: "Column embeddings not in the dataset"` I've made a colab notebook that should show exactly what I did. Please switch to GPU runtime; I didn't check on CPU. https://colab.research.google.com/drive/1X0S9ZuZ8k0ybcoei4w7so6dS_WrABmIx?usp=sharing Ubuntu Version VERSION="18.04.5 LTS (Bionic Beaver)" datasets==1.4.1 faiss==1.5.3 faiss-gpu==1.7.0 torch==1.8.0+cu101 transformers==4.3.3 NVIDIA-SMI 460.56 Driver Version: 460.32.03 CUDA Version: 11.2 Tesla K80 I was basically following the steps here: https://huggingface.co/docs/datasets/faiss_and_ea.html#adding-a-faiss-index I included the exact code from the documentation at the end of the notebook to show that they don't work either. > If I understand correctly by reading this example you thought that it was re-adding the "embeddings" column. Yes. I was trying to use the dataset in RAG and it complained that the dataset didn't have the right columns. No problems when loading the dataset with `load_from_disk` and then doing `load_faiss_index` What I learned was 1. column and index are different 2. loading the index does not create a column 3. the column is not needed to be able to use the index 4. RAG needs both the embeddings column and the index If I can come up with a way to articulate this in the right spot in the docs, I'll open a PR
[ 0.1141662598, -0.609364152, 0.0622363761, 0.3725111485, 0.1373021007, 0.2862833738, 0.4066284597, 0.0279654749, 0.5614455938, 0.2074247599, -0.0576393679, 0.1514220834, 0.4737914801, -0.0607360005, -0.0529891066, -0.0416151732, 0.270290494, 0.2431623936, 0.2737343907, -0.1626691967, -0.2025646865, 0.1247655973, -0.2621257603, 0.1718705297, -0.248211056, 0.2487475723, -0.2778122425, 0.0308961645, -0.2404204309, -0.3826127648, 0.3425856829, -0.295202136, 0.6600481868, 0.1492619216, -0.0001231915, 0.1020781994, 0.3273306191, -0.187194109, -0.2122853994, 0.0915358737, 0.1122795865, 0.0143893361, 0.2014686167, -0.087056607, -0.0057213902, -0.6249670982, -0.0121625485, -0.164482221, 0.1824401617, 0.0332698934, 0.1068646386, -0.0065373927, 0.0351545066, -0.3783898652, 0.2051122189, -0.3338989317, -0.1093248725, 0.3227839172, 0.0918179899, 0.0659411773, 0.054192327, 0.1877556145, -0.0682540014, 0.1206277013, 0.4152823389, 0.2805345654, 0.3271452487, -0.094156161, 0.1916973293, 0.1926268041, 0.4542698264, -0.0401833169, -0.3339143097, -0.11438407, 0.2563902736, -0.1585263312, 0.2307870388, -0.2589790821, 0.0183757842, 0.3088288009, 0.3913375139, -0.208302319, 0.1492117345, 0.1125608236, -0.070196867, -0.0499438383, -0.2336435467, 0.1062824577, 0.1187616289, -0.0412240289, -0.2293081284, -0.1664852053, 0.0698031932, 0.0867944658, -0.3313304186, 0.1300157309, 0.1641415209, 0.0661594719, -0.1091428548, 0.0547849499, -0.1893745512, -0.026487615, 0.1374494731, 0.3345860839, -0.1803768724, 0.0246971287, 0.0444204435, -0.0005221069, -0.0113881733, 0.2225163728, 0.0441293418, -0.2677801251, -0.0962477773, -0.1068620458, -0.5135743022, -0.3039867282, -0.1129444689, -0.3393257856, -0.4211431742, 0.222263366, -0.4232878089, -0.1412900239, -0.0298156515, 0.5755093694, 0.2752491832, -0.1636070311, 0.2179995477, 0.3787244558, -0.2972564697, 0.1781837493, -0.1884080321, 0.0873633623, -0.1798179895, 0.4388459623, 0.1041528657, -0.4247674644, 0.2150660753, 0.0994248241, 0.0897854045, 0.0637221783, -0.377047509, -0.0550758801, 0.3408401906, 0.2761131227, -0.08713191, 0.0847103298, 0.3560985327, -0.2921205163, -0.2050969601, 0.059205804, -0.123608917, -0.107633315, -0.1479508877, 0.0917600915, -0.0937497392, -0.0581443347, 0.1996403486, 0.0405036584, 0.1504988968, -0.329996109, 0.0449839272, -0.0093833255, -0.1618901789, -0.2245410979, 0.4479079843, 0.372436136, -0.7759338617, -0.336835444, 0.0550398305, 0.1556857973, -0.0823370665, 0.242778331, -0.1244229078, 0.1349113882, -0.2709989548, 0.4014903903, 0.1220543385, -0.0901545957, -0.1708913445, 0.0448938385, 0.0930248946, 0.0285858735, 0.2380019575, -0.0986707732, 0.3254885077, 0.1497478783, 0.335411042, -0.0001984835, 0.0043548103, -0.3671830297, -0.1630479395, -0.3921638727, 0.0697728395, 0.0956225693, -0.1325729638, -0.0251714103, -0.1350776553, -0.4143712521, 0.0810392052, -0.2481820881, -0.0480556376, 0.0244531147, 0.2674900293, 0.345554471, 0.4671977758, 0.0824592412, -0.1673386991, 0.2564875185, 0.1291600764, 0.0423052944, -0.1225515828, -0.0157381222, -0.2794286907, -0.0127060711, -0.049682159, -0.1818128228, -0.0790600851, 0.0145897456, -0.0118769184, -0.0757849813, -0.3321083784, 0.130343765, -0.2576686442, 0.2069558948, -0.5300258398, 0.45209077, -0.2802710235, -0.2228663415, 0.0329988599, 0.2488916814, 0.1472433656, -0.2128630728, 0.1438024789, 0.1014063805, -0.0003674775, -0.258580029, 0.1111175418, -0.1829439104, 0.1620031446, -0.1446014494, 0.0851274878, -0.1179837883, 0.2549684644, 0.0650629997, -0.22447294, 0.4591357708, -0.0234922171, 0.305220902, -0.2029888034, -0.2119346857, 0.1173566431, -0.0178666338, -0.0267287754, -0.3300511539, -0.1173001453, 0.0439030714, -0.1680183709, -0.0541883633, 0.0857987478, 0.1069040224, -0.0282333083, 0.052294679, -0.1552649736, 0.0112996604, -0.2901854515, 0.0189378262, 0.0887713656, -0.372099638, 0.4891067445, 0.2894640565, -0.1515059769, -0.2688132226, -0.2140418589, -0.331325233, 0.0595770776, -0.084036611, -0.2100378126, 0.1587173939, -0.1157231778, 0.0546813495, -0.2241607159, 0.0081045479, 0.0759626701, 0.1576974988, -0.5991174579, 0.0572369248, -0.3049146533, -0.0366016068, 0.0308596827, -0.1012303904, 0.04151861, -0.3487311006, 0.1815760732, -0.1190841645, -0.037794508, 0.1511289775, -0.0626411363, 0.2203111798, -0.0816777423, 0.0488701835, -0.1951135695, -0.2207871377, -0.3345488608, -0.0690884292, -0.0555740222, 0.3011595011, 0.1825913638, -0.0411623195, -0.1298973858, -0.1396411359, -0.2877672911, 0.3002022207, -0.1688951254, 0.1524759531, -0.1127931476, 0.1133968607, -0.1385277808, -0.1531697065, 0.3262205124, -0.0357739106, -0.1949458867, -0.0704273432, 0.0943011194, -0.0298895258, -0.0883331075, -0.4785193205, 0.1902282685, -0.2006300986, -0.1416561007, -0.1947052777, -0.083978653, -0.4174040854, 0.4110862911, 0.0925740153, -0.0698830038, 0.0942998901, -0.3801020384, 0.069809109, 0.3063394725, -0.0815021545, -0.289435029, 0.1465223581, 0.0096549168, -0.2156973034, 0.039008338, -0.3196032643, -0.5543977618, 0.0217471439, 0.1595108211, 0.2703957856, 0.4036833644, 0.1567672938, -0.1057035476, -0.0533164702, -0.1179204807, -0.4052336514, 0.0328001715, -0.0535211265, 0.2113655061, -0.1147606522, 0.4869489968, -0.3206720948, 0.5223788023, 0.3810575604, -0.3383181691, 0.4276521802, -0.1127691492, 0.5202959776, -0.2422706187, -0.1422120482, 0.1987453401, 0.0586946048, 0.0017598197, 0.2437188774, -0.0958644971, 0.1190662012, 0.0689602196, 0.3653152585, -0.0896217525, -0.2674027681, 0.1314047575, 0.0305515714, -0.0160452239, -0.0716383159, 0.3272545934, -0.0920906961, 0.1545765698, 0.1849214286, 0.3969686329, 0.3998635113, -0.0730622336, 0.2712456584, -0.3327037394, -0.2081063688, 0.5384799838, 0.0814217925, 0.2804940045, -0.1965025365, -0.1623134911, 0.4398680329, 0.185253486, 0.5423489213, -0.4256879687, -0.3764910698, 0.3058631122, 0.3216747642, -0.4337252975, -0.1476147473, -0.0224916786, -0.0453609005, -0.0149930883, 0.7402040958, -0.4742539227, -0.0177628286, 0.2606263161, 0.1066690534, -0.1701063812, -0.4776918888, -0.5002131462, -0.1444375664, -0.4203992486, -0.0762695372, -0.2062743008, 0.3078434169, 0.1021931022, 0.236718744, -0.081215784, 0.0129864961, 0.1501801312, 0.3022861183, 0.0446065664, 0.0525975823, 0.2101491988, 0.4190897048, 0.4358887672, 0.2720904946, 0.4205085933, -0.1399782449, -0.3320227265, 0.2088845372, -0.0006849058, 0.1612279266, 0.3638102412, 0.029952392, 0.2056960016, -0.166926384, 0.0103232227, -0.2124236226, -0.3417513072, 0.0968278572, 0.062706925, 0.0718243718, -0.2635459304, 0.49067536, 0.0296073109, -0.1465215683, -0.1024474353, 0.7082787156, -0.0038828291, 0.9643501043, -0.0068480894, 0.9512914419, -0.1551676989, -0.0376358181, 0.4408626556, -0.1820308119, 0.4978238046, -0.1612352878, 0.1090127975, -0.4382876754, -0.2174162567, -0.079214409, -0.0454562381, 0.1918788105, -0.023382904, -0.2681636214, 0.1553366929, -0.102278918, -0.0949524641, -0.0957577527, -0.0553629361, 0.0645108372, -0.401076436, -0.1922826767, 0.018740356, 0.4626623988, 0.3580816388, 0.025602825, 0.0297266878, -0.3238193393, -0.011519596, -0.3098014593, 0.0463715643, 0.312068969, 0.1080761254, 0.3823556304, -0.2416801602, 0.2194239795, 0.1066802219, 0.6348167062, -0.490947783, -0.1986658722, 0.1314473748, -0.2250171453, -0.2495675087, -0.1412056088, -0.3402720392, 0.3036343157, 0.2455487996, -0.4158509672, 0.261015892, 0.1105015427, -0.1313997507, -0.1638647914, 0.152633369, 0.0098768212, -0.47593081, -0.1079158038, -0.0234594829, 0.3508500755, -0.0961575508, 0.0572824068, 0.1041795388, -0.0218206365, 0.1986285597, 0.0722783953, -0.1242033541, -0.0319023356, 0.4855901897, -0.1633225381, 0.1417823583, 0.334489882, 0.0986912698, -0.4170293212, -0.0284617878, -0.5361012816, 0.5242940187, -0.3646398783, -0.1897099912, 0.3145851791, -0.1721121818, 0.0639136136, 0.014535049, 0.3819755316, -0.2045628875, -0.2862967551, -0.2601954341, -0.0206425674, 0.3878619075, -0.062540859, 0.1380120516, -0.1181079894, 0.0041950569, -0.120675087, 0.0701417029, -0.2063860893, 0.176971972, -0.0697777718, 0.130528897, -0.0349914953, -0.2045270205, -0.0364284068, -0.2391807884, 0.0181266442, 0.0927698761, -0.0183126926, -0.0059972778, 0.0139026269, 0.1815475971, 0.0901802033, 0.1111630872, -0.4262259603, -0.0474816225, -0.0676279813, -0.3948302865, 0.3541821241, 0.1756358445, -0.1166954637, -0.16516307, 0.049595397, 0.0697007328, -0.056395188, 0.2638914287, 0.1273394823, 0.5054331422, 0.2831273675, -0.1307982951, -0.4669467509, 0.1515468359, 0.0683479458, 0.3996827602, 0.1805761456, -0.0922710001, 0.3608167768, -0.2189325839, 0.028939575, -0.0035553612, 0.1313322783, 0.4595068395, -0.0530053526, 0.0577949211, 0.1733680218, 0.0563398972, -0.1533014923, 0.09759368, 0.3312346637, -0.0935289562, -0.0380809717, 0.2321974039, 0.2101738453, 0.0921624303, -0.1772079766, 0.0337093547, 0.2256147265, 0.1871288568, -0.3880461156, -0.0120702852, 0.1033218354, 0.2610354424, 0.4901574552, 0.1079507321, 0.3249963522, 0.0446725786, -0.108773455, 0.0432826355, 0.0471097492, 0.4198777676, -0.1686376631, -0.6134326458, 0.5157350302, 0.2900372148, 0.4744553864, -0.3256699443, 0.036297854, 0.2324467301, 0.0131477043, -0.0064870752, -0.1716697514, -0.032282576, -0.1626161039, -0.449457705, 0.1296899617, -0.0375099704, -0.1559709162, -0.0305808894, 0.0236072652, -0.0976388007, -0.0056413636, -0.0976482481, -0.3179895282, -0.1804527193, -0.3293995857, 0.2765713334, 0.2327001095, 0.065743342, -0.0451876372, -0.1133554876, -0.0320091844, 0.4509783685, 0.0384965613, 0.5022713542, 0.1259164363, 0.0164804831, 0.0336954668, 0.0694671348, 0.0463825017, -0.0118554533, 0.2121431828, -0.1274946183, 0.2494786978, 0.2408227921, 0.0902939737, -0.1038250476, -0.3525880277, -0.0541385636, 0.5762382746, 0.0636185855, -0.1043968797, -0.3979018331, 0.0523120314, -0.0834135637, 0.0134530459, -0.1997366846, 0.3871743381, -0.0032992922, -0.1049191281, 0.0381017551, 0.3390268981, 0.023447983, -0.1851809621, 0.2432607561, 0.818215549, -0.2200945169, -0.2327183336, 0.1255898774, -0.5277732611, 0.258382082, -0.1381704658, -0.1659806371, 0.2066944242, 0.641851902, 0.4926264584, -0.0448905528, -0.0263894796, -0.0407650135, 0.2749047875, 0.4152512252, 0.0423218012, -0.3399312496, -0.0948813707, -0.2120661438, -0.1627362072, -0.0597310178, 0.109805733, -0.0464067236, -0.0607467182, 0.0680684894, 0.0699820295, -0.1350309551, -0.367993474, 0.623201251, 0.0587595478, 0.3626817167, -0.1151083559, 0.0254578963, -0.280436337, -0.1538051963, -0.0043472983, 0.2639604509, -0.1937403977, 0.148279801, -0.1594251692, -0.1516766846, -0.2438268363, 0.2302544266, 0.0425606519, -0.1830167174, -0.2047591805, 0.1614384353, -0.2503420711, 0.0224260502, -0.0029814094, 0.023191236, -0.0504193529, 0.2751447856, 0.0746591985, -0.2265361845, 0.617156148, -0.3164286315, 0.0909381285, 0.1647377461, 0.2101886719, 0.4974496961, 0.0436608866, -0.8163816929, -0.0133223534, 0.0778877512, -0.139490217, -0.2482404113, -0.0961590409, 0.2267883867, 0.0229925811, -0.2847950459, -0.2223566324, 0.0500374697, 0.0527015701, -0.0666388422, -0.2481244653 ]
https://github.com/huggingface/datasets/issues/2026
KeyError on using map after renaming a column
Hi, Actually, the error occurs due to these two lines: ```python raw_dataset.set_format('torch',columns=['img','label']) raw_dataset = raw_dataset.rename_column('img','image') ``` `Dataset.rename_column` doesn't update the `_format_columns` attribute, previously defined by `Dataset.set_format`, with a new column name which is why this new column is missing in the output.
Hi, I'm trying to use `cifar10` dataset. I want to rename the `img` feature to `image` in order to make it consistent with `mnist`, which I'm also planning to use. By doing this, I was trying to avoid modifying `prepare_train_features` function. Here is what I try: ```python transform = Compose([ToPILImage(),ToTensor(),Normalize([0.0,0.0,0.0],[1.0,1.0,1.0])]) def prepare_features(examples): images = [] labels = [] print(examples) for example_idx, example in enumerate(examples["image"]): if transform is not None: images.append(transform(examples["image"][example_idx].permute(2,0,1))) else: images.append(examples["image"][example_idx].permute(2,0,1)) labels.append(examples["label"][example_idx]) output = {"label":labels, "image":images} return output raw_dataset = load_dataset('cifar10') raw_dataset.set_format('torch',columns=['img','label']) raw_dataset = raw_dataset.rename_column('img','image') features = datasets.Features({ "image": datasets.Array3D(shape=(3,32,32),dtype="float32"), "label": datasets.features.ClassLabel(names=[ "airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck", ]), }) train_dataset = raw_dataset.map(prepare_features, features = features,batched=True, batch_size=10000) ``` The error: ```python --------------------------------------------------------------------------- KeyError Traceback (most recent call last) <ipython-input-54-bf29672c53ee> in <module>() 14 ]), 15 }) ---> 16 train_dataset = raw_dataset.map(prepare_features, features = features,batched=True, batch_size=10000) 2 frames /usr/local/lib/python3.7/dist-packages/datasets/arrow_dataset.py in map(self, function, with_indices, input_columns, batched, batch_size, drop_last_batch, remove_columns, keep_in_memory, load_from_cache_file, cache_file_name, writer_batch_size, features, disable_nullable, fn_kwargs, num_proc, suffix_template, new_fingerprint) 1287 test_inputs = self[:2] if batched else self[0] 1288 test_indices = [0, 1] if batched else 0 -> 1289 update_data = does_function_return_dict(test_inputs, test_indices) 1290 logger.info("Testing finished, running the mapping function on the dataset") 1291 /usr/local/lib/python3.7/dist-packages/datasets/arrow_dataset.py in does_function_return_dict(inputs, indices) 1258 fn_args = [inputs] if input_columns is None else [inputs[col] for col in input_columns] 1259 processed_inputs = ( -> 1260 function(*fn_args, indices, **fn_kwargs) if with_indices else function(*fn_args, **fn_kwargs) 1261 ) 1262 does_return_dict = isinstance(processed_inputs, Mapping) <ipython-input-52-b4dccbafb70d> in prepare_features(examples) 3 labels = [] 4 print(examples) ----> 5 for example_idx, example in enumerate(examples["image"]): 6 if transform is not None: 7 images.append(transform(examples["image"][example_idx].permute(2,0,1))) KeyError: 'image' ``` The print statement inside returns this: ```python {'label': tensor([6, 9])} ``` Apparently, both `img` and `image` do not exist after renaming. Note that this code works fine with `img` everywhere. Notebook: https://colab.research.google.com/drive/1SzESAlz3BnVYrgQeJ838vbMp1OsukiA2?usp=sharing
42
KeyError on using map after renaming a column Hi, I'm trying to use `cifar10` dataset. I want to rename the `img` feature to `image` in order to make it consistent with `mnist`, which I'm also planning to use. By doing this, I was trying to avoid modifying `prepare_train_features` function. Here is what I try: ```python transform = Compose([ToPILImage(),ToTensor(),Normalize([0.0,0.0,0.0],[1.0,1.0,1.0])]) def prepare_features(examples): images = [] labels = [] print(examples) for example_idx, example in enumerate(examples["image"]): if transform is not None: images.append(transform(examples["image"][example_idx].permute(2,0,1))) else: images.append(examples["image"][example_idx].permute(2,0,1)) labels.append(examples["label"][example_idx]) output = {"label":labels, "image":images} return output raw_dataset = load_dataset('cifar10') raw_dataset.set_format('torch',columns=['img','label']) raw_dataset = raw_dataset.rename_column('img','image') features = datasets.Features({ "image": datasets.Array3D(shape=(3,32,32),dtype="float32"), "label": datasets.features.ClassLabel(names=[ "airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck", ]), }) train_dataset = raw_dataset.map(prepare_features, features = features,batched=True, batch_size=10000) ``` The error: ```python --------------------------------------------------------------------------- KeyError Traceback (most recent call last) <ipython-input-54-bf29672c53ee> in <module>() 14 ]), 15 }) ---> 16 train_dataset = raw_dataset.map(prepare_features, features = features,batched=True, batch_size=10000) 2 frames /usr/local/lib/python3.7/dist-packages/datasets/arrow_dataset.py in map(self, function, with_indices, input_columns, batched, batch_size, drop_last_batch, remove_columns, keep_in_memory, load_from_cache_file, cache_file_name, writer_batch_size, features, disable_nullable, fn_kwargs, num_proc, suffix_template, new_fingerprint) 1287 test_inputs = self[:2] if batched else self[0] 1288 test_indices = [0, 1] if batched else 0 -> 1289 update_data = does_function_return_dict(test_inputs, test_indices) 1290 logger.info("Testing finished, running the mapping function on the dataset") 1291 /usr/local/lib/python3.7/dist-packages/datasets/arrow_dataset.py in does_function_return_dict(inputs, indices) 1258 fn_args = [inputs] if input_columns is None else [inputs[col] for col in input_columns] 1259 processed_inputs = ( -> 1260 function(*fn_args, indices, **fn_kwargs) if with_indices else function(*fn_args, **fn_kwargs) 1261 ) 1262 does_return_dict = isinstance(processed_inputs, Mapping) <ipython-input-52-b4dccbafb70d> in prepare_features(examples) 3 labels = [] 4 print(examples) ----> 5 for example_idx, example in enumerate(examples["image"]): 6 if transform is not None: 7 images.append(transform(examples["image"][example_idx].permute(2,0,1))) KeyError: 'image' ``` The print statement inside returns this: ```python {'label': tensor([6, 9])} ``` Apparently, both `img` and `image` do not exist after renaming. Note that this code works fine with `img` everywhere. Notebook: https://colab.research.google.com/drive/1SzESAlz3BnVYrgQeJ838vbMp1OsukiA2?usp=sharing Hi, Actually, the error occurs due to these two lines: ```python raw_dataset.set_format('torch',columns=['img','label']) raw_dataset = raw_dataset.rename_column('img','image') ``` `Dataset.rename_column` doesn't update the `_format_columns` attribute, previously defined by `Dataset.set_format`, with a new column name which is why this new column is missing in the output.
[ 0.0343904346, 0.0062002242, -0.0635800734, -0.334228307, 0.480843991, 0.2616389692, 0.6042657495, 0.2373324633, 0.1370918304, 0.0865910947, 0.0540352985, 0.5270301104, -0.1558951885, 0.2994624376, -0.1945006847, -0.0881170183, 0.4133822322, 0.0935035348, -0.1156333238, 0.1972021013, -0.4435484409, 0.0497061387, -0.3014573455, 0.2807841599, -0.314751178, -0.1778968722, 0.0545335039, -0.1938546747, -0.2473183572, -0.2746688724, -0.0492157266, 0.0971026421, -0.0223659687, 0.6005278826, -0.0001189421, 0.0826988965, 0.1887074411, -0.0865512565, 0.0829853863, -0.2960746884, -0.1819150895, -0.0115417913, -0.2230612636, -0.514274478, 0.0406857952, -0.0636158288, -0.077172339, -0.2671772838, 0.1024496928, 0.2466997951, 0.1638299823, -0.113882862, 0.2209229171, -0.0220485628, 0.04394719, 0.2382541746, -0.1926509887, 0.0769317001, 0.0491049141, -0.3582006991, 0.2290982753, 0.693174243, -0.2142525017, -0.0826260895, 0.2492943257, 0.1485664099, 0.4132113457, -0.3595764935, 0.3614653349, -0.1366177946, 0.2379050851, -0.1512385905, -0.1043807045, -0.0542324856, -0.0018234104, -0.2537844181, -0.0232359283, -0.3196380734, 0.077695787, -0.2296992093, -0.3305272758, -0.1850074083, 0.1285367161, 0.2078441083, 0.1231132895, -0.0971983597, -0.0296083391, 0.4492812753, 0.1049037129, -0.3226708174, -0.1246059686, 0.0269130357, 0.0980833769, 0.2211731076, -0.2241782397, -0.0697753876, 0.1054666713, -0.0227156654, -0.2865684032, -0.6728144288, 0.0171009563, -0.1154987961, 0.1804634333, 0.0785015672, 0.106362395, 0.2072906196, -0.0879258811, 0.3839029074, 0.0437420271, 0.0499910675, -0.3903310299, -0.2533303499, 0.1843823045, -0.3990155756, 0.3597592115, 0.2472613603, 0.3776054382, 0.0936779231, 0.4118514657, -0.0127617531, 0.1394363344, -0.0965100527, -0.0235802773, 0.3582356274, 0.2444261611, -0.0504653156, 0.1044971496, 0.1474119276, -0.0377256721, 0.2744557261, -0.0399701297, 0.1520810872, -0.5921467543, -0.1053766981, -0.1591846943, 0.0644561127, 0.0273747295, -0.1856064796, 0.1200416535, -0.1029790193, -0.0174147524, -0.0625613779, 0.4089110494, 0.1914608181, -0.3518826067, 0.1143235937, 0.2287519872, -0.2352552414, -0.1231608912, 0.2178231776, -0.6010239124, -0.1866195798, -0.1935402304, 0.0911872908, 0.2030772567, 0.1996436864, -0.2752966583, -0.1346442401, 0.5062404871, -0.4040708542, 0.0826782584, -0.2427094877, -0.2949000895, -0.2364553511, -0.1690335274, -0.0339538753, -0.0462759398, -0.0256845132, -0.1759426594, 0.3576542139, 0.015509896, -0.0486620925, -0.1009824798, 0.2132531852, -0.0342833102, 0.1602661759, 0.4271645248, -0.3145628273, -0.2063583732, -0.0152598191, -0.2203991413, -0.1616606265, -0.09202227, 0.0930306166, 0.203904599, -0.0727140978, 0.4399832189, -0.1544140726, -0.0898715556, 0.1785478592, 0.131158486, -0.0462151021, 0.177530393, -0.0791233629, 0.1281121075, 0.2086730897, 0.1111351103, 0.0116959848, -0.0227944665, -0.2068921924, 0.0939346701, 0.0991030037, 0.219252184, -0.0245536827, 0.0360569209, 0.0803692341, -0.3255302012, 0.1678814143, 0.1803426594, 0.1416130215, -0.2925769091, -0.1196025908, -0.2550839484, -0.1336406767, -0.1760667711, 0.0316430219, 0.0552045293, -0.0540007018, -0.0344209075, -0.1491249204, -0.1648835242, -0.1527558863, 0.0497403517, 0.1093317121, -0.3486708105, -0.0184661113, -0.2111000419, -0.1441622972, -0.3850232363, 0.0132766915, 0.1881344318, -0.0540968366, -0.2381075621, 0.3495655358, 0.1393088996, 0.044096753, -0.3154116869, 0.1756072193, 0.0911009386, -0.0334517881, -0.0013043154, 0.1042697579, 0.181465134, -0.0348046124, 0.11235708, 0.2557911873, -0.2581355572, 0.380661875, -0.2395887673, 0.1288559437, -0.0841590911, -0.1766915023, -0.2373665869, -0.3937819302, -0.1437821388, -0.2950776815, -0.2323312908, -0.0712197199, 0.3053761125, -0.2079800665, 0.5871573687, -0.0409828015, 0.0240915157, -0.0057100118, 0.0615633242, 0.2896172106, 0.0114169251, 0.1064899266, 0.2978290915, -0.0096142087, -0.2233591825, 0.2672611773, 0.1708518118, 0.2767235637, 0.2040939629, 0.2167058289, 0.2447037548, 0.048026897, 0.1485540867, -0.0613895729, 0.0164967924, -0.2999011576, 0.3099987805, 0.2844225764, -0.2336354107, 0.0998228192, -0.0660421029, 0.0700869858, 0.2823906243, -0.15271689, 0.0562226214, -0.2700430155, -0.094888553, 0.3865871131, 0.0920765251, 0.4332137108, -0.1842425168, -0.3789014816, 0.2417964786, -0.3546546996, -0.0365539119, -0.4494334459, 0.0306257233, -0.0325058289, 0.0856915116, -0.4606233537, 0.0817556083, -0.1647824347, -0.1355614513, -0.1211328581, -0.522761941, 0.121855706, -0.4426470697, 0.0148035157, 0.2468886226, 0.2771111429, -0.2926219702, -0.1771502197, 0.4542587996, -0.2178658098, -0.1494310051, 0.1258672476, 0.0121635534, -0.0393339433, -0.1180344895, -0.1904156506, -0.0265279263, -0.1234949455, 0.1169078946, -0.2646971345, 0.0163138099, 0.5068842769, 0.2759181857, -0.2442609668, 0.1430361718, -0.0489323251, -0.1584291011, -0.382278651, 0.2083152086, -0.0868596733, 0.083841227, 0.0047294945, -0.1143030301, -0.0037284507, 0.0410411544, -0.1813218296, -0.2923726737, -0.0811145827, 0.2520660758, 0.1551320255, 0.1015878022, 0.2861322165, 0.4163931012, -0.1233832687, 0.0155466795, -0.229762271, -0.040773809, 0.4496160746, 0.275044471, 0.2839063108, 0.4489243329, -0.0161299035, 0.2931135595, -0.1320107281, -0.1058139056, 0.45527336, -0.3281628191, 0.097139731, -0.4271512926, -0.4983297586, 0.0212257653, -0.345652312, -0.2692154348, -0.2526132166, -0.197403416, -0.2074295729, -0.1250825822, 0.2784188986, -0.4862348437, -0.3314015865, 0.1603580415, 0.0705961883, 0.307423532, 0.0487647504, -0.0192790478, -0.4495791793, -0.1688798666, 0.0980952233, 0.0244838651, 0.0559060127, -0.3355075121, -0.6632701159, -0.2365224063, -0.3934517503, 0.4276642203, 0.113160342, 0.1529776305, -0.1410120428, -0.0606672354, -0.0556475148, 0.0688655525, 0.7746016979, -0.4415770173, -0.1148998588, 0.3010857999, -0.0476227142, -0.0988454744, -0.2432977855, -0.0672430396, 0.273360908, 0.0472895131, 0.8124080896, 0.0474172235, 0.0843916833, 0.2145456821, 0.062955007, -0.0658331811, 0.0286182128, -0.406054467, -0.2894010544, -0.5907236338, -0.0206707977, 0.0572946742, 0.2173587978, 0.3088782132, 0.1889962703, 0.1960789263, -0.1945680082, 0.015450146, 0.266408205, 0.198687762, 0.3779758811, 0.0560513511, -0.0483675823, 0.1246333122, 0.0030196272, 0.1406395286, -0.2207600623, -0.2776941955, -0.0573595352, 0.0422720909, 0.346041292, 0.2213216722, 0.0628878772, 0.0959235132, 0.1461027265, 0.2581582069, -0.2759141326, 0.2963348031, 0.4933304191, 0.1403305084, -0.4810523093, -0.3202238679, 0.2370315939, 0.2185061425, -0.1690100878, 0.3816430569, 0.0929527655, -0.3298313618, 0.5882652998, 0.0854708105, 0.8382588625, -0.3112325966, 0.0554846041, -0.0850671679, 0.0784882009, 0.2867376506, 0.0625670552, 0.2233815342, -0.1989950538, -0.4336816967, 0.0294411108, -0.0587243289, 0.3476181924, 0.0871919692, -0.1870900542, 0.2699610591, -0.2224866599, 0.5848439336, -0.2539536059, -0.2409918159, 0.2116027772, -0.3743124604, 0.1243178025, 0.0566493645, -0.0686613768, 0.0904509872, 0.0100759268, 0.1401853412, -0.1021841094, -0.3583539426, 0.0675276518, -0.053939797, -0.2007294595, 0.2325115353, -0.213707, -0.2194651961, -0.0675615817, 0.3379039466, 0.3049488962, 0.2256916016, 0.0769785792, 0.2345013171, 0.4431699514, 0.2091674507, -0.0408832356, -0.1617857516, -0.047028698, 0.1401213109, -0.2852284014, 0.1369484961, -0.0141867064, -0.2416300923, -0.3642432094, 0.0415633768, 0.432344377, -0.3393744528, -0.2499045432, -0.1570414156, -0.0112912729, -0.1000936329, 0.0678599402, -0.3800917268, -0.1897210181, 0.4002567828, -0.1145982146, -0.4112877846, 0.1257441044, 0.3634688258, 0.0822052658, 0.0131316707, 0.5031769276, -0.1995398104, 0.0113480762, -0.0863427743, 0.098204419, 0.2158660889, -0.0867506266, 0.0297969319, 0.3238883317, -0.0309051275, -0.1596031636, 0.4304634929, 0.0567141995, 0.2015251815, 0.0784539506, -0.2432672083, -0.6696434021, 0.4877872467, 0.1031507403, 0.2492163479, 0.1051926315, 0.3467668891, -0.2948553562, -0.0112462891, -0.2399553359, 0.064920634, -0.0438206159, 0.3154605329, 0.4421719313, 0.0253378805, -0.0896077305, -0.2898143828, 0.2092778534, 0.2641292512, -0.0850463212, -0.2138591409, -0.016767785, 0.1183085889, 0.1053169072, -0.1505646706, -0.024389552, -0.3231567144, -0.0274437703, -0.2703392804, -0.0828691125, 0.3389024436, 0.0339184068, 0.1923668236, -0.5534642339, -0.0861903727, 0.3065198362, 0.1393100321, -0.1251810491, -0.0567401424, 0.2653052509, 0.177614972, -0.0504076891, 0.0970637202, -0.2915790677, -0.0684080645, -0.1543521285, 0.1156140566, 0.3472285271, -0.1888153553, 0.1339827627, 0.0561050028, 0.2796279788, 0.1310019046, -0.2598960102, -0.1948143542, 0.3021288812, 0.0988667011, -0.3267250657, -0.1829231381, 0.521592617, -0.0156409442, 0.2411123514, 0.2352424264, -0.0485076271, 0.1316875368, -0.2601725757, -0.0177906826, 0.1529347152, -0.0737775415, 0.246981293, 0.6254127026, -0.1150747687, 0.2715166509, 0.2926050723, 0.3730808496, -0.1249768585, 0.6644846797, 0.0635501295, 0.2042203844, 0.1586621851, 0.2688656449, -0.114481315, -0.0899511203, 0.5314691067, 0.1346582174, -0.2235023379, 0.2969568372, 0.1907870173, -0.2590559721, -0.0018364377, -0.2252579033, -0.077544868, 0.2807585299, -0.2177532166, -0.2554297447, -0.1515020132, -0.0360629484, 0.0017210692, 0.0805627555, -0.0572087206, 0.0685866922, 0.6512499452, 0.0260288492, 0.0510048456, 0.0960444584, -0.5209684372, 0.1352974176, 0.3933673799, -0.1334355325, -0.0179998484, 0.0571533591, 0.1642049849, 0.2200044841, 0.015519673, 0.3567884862, 0.1692757905, -0.2766985595, 0.1629790664, -0.0195908546, -0.1051776558, 0.2641954124, 0.0439048968, 0.3267834783, 0.0087466706, 0.1000832319, 0.0357459821, -0.1855375022, -0.1050799936, 0.1487796754, 0.1994473785, 0.1967058629, -0.0666738972, 0.0776692405, -0.1384184062, -0.0612891726, 0.1662918627, -0.2106761634, -0.2168655396, 0.4741012752, -0.1182754859, 0.18315503, 0.131424278, 0.0622665919, 0.1147598699, 0.1901854724, 0.1068616286, -0.1823743731, -0.5617815852, -0.0506491438, -0.3618878722, -0.1454605013, -0.0483253188, 0.0958935097, 0.0001837052, -0.2958848774, 0.2807197273, 0.1011901796, 0.4350568056, -0.4830625951, -0.0566597544, 0.5606930256, 0.0539843962, -0.0601438954, 0.0202839598, 0.247342959, 0.1078897938, -0.3471126258, 0.0970268697, 0.0586620197, -0.0088258013, -0.3392794132, -0.1747092456, -0.2541411221, -0.2222283334, 0.4715788364, 0.1747033447, 0.4249304831, -0.1517660022, -0.0727759227, 0.1637438685, -0.1676822007, -0.0168346837, 0.2095229626, 0.2309507281, 0.3883237243, -0.0711033419, 0.1280176193, -0.397090137, 0.0074613318, 0.0302018747, -0.1853105426, -0.37659356, 0.1869209707, 0.2549928427, 0.0408341102, -0.185344249, 0.360789746, 0.0388966501, 0.5180018544, -0.0680313334, -0.369066447, 0.7985041142, -0.3579203188, -0.6600226164, 0.0823597759, -0.0900154859, -0.1427420974, 0.0412079096, -0.2388157248, -0.0630645454, 0.0736409128, -0.03345339, -0.3466158509, 0.0901281238, -0.1645772308, 0.0798356682, 0.0364476442, 0.4860980213, -0.3197672069, -0.0945575908, -0.2467263341, -0.0632383674 ]
https://github.com/huggingface/datasets/issues/2026
KeyError on using map after renaming a column
Hi @mariosasko, Thanks for opening a PR on this :) Why does the old name also disappear?
Hi, I'm trying to use `cifar10` dataset. I want to rename the `img` feature to `image` in order to make it consistent with `mnist`, which I'm also planning to use. By doing this, I was trying to avoid modifying `prepare_train_features` function. Here is what I try: ```python transform = Compose([ToPILImage(),ToTensor(),Normalize([0.0,0.0,0.0],[1.0,1.0,1.0])]) def prepare_features(examples): images = [] labels = [] print(examples) for example_idx, example in enumerate(examples["image"]): if transform is not None: images.append(transform(examples["image"][example_idx].permute(2,0,1))) else: images.append(examples["image"][example_idx].permute(2,0,1)) labels.append(examples["label"][example_idx]) output = {"label":labels, "image":images} return output raw_dataset = load_dataset('cifar10') raw_dataset.set_format('torch',columns=['img','label']) raw_dataset = raw_dataset.rename_column('img','image') features = datasets.Features({ "image": datasets.Array3D(shape=(3,32,32),dtype="float32"), "label": datasets.features.ClassLabel(names=[ "airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck", ]), }) train_dataset = raw_dataset.map(prepare_features, features = features,batched=True, batch_size=10000) ``` The error: ```python --------------------------------------------------------------------------- KeyError Traceback (most recent call last) <ipython-input-54-bf29672c53ee> in <module>() 14 ]), 15 }) ---> 16 train_dataset = raw_dataset.map(prepare_features, features = features,batched=True, batch_size=10000) 2 frames /usr/local/lib/python3.7/dist-packages/datasets/arrow_dataset.py in map(self, function, with_indices, input_columns, batched, batch_size, drop_last_batch, remove_columns, keep_in_memory, load_from_cache_file, cache_file_name, writer_batch_size, features, disable_nullable, fn_kwargs, num_proc, suffix_template, new_fingerprint) 1287 test_inputs = self[:2] if batched else self[0] 1288 test_indices = [0, 1] if batched else 0 -> 1289 update_data = does_function_return_dict(test_inputs, test_indices) 1290 logger.info("Testing finished, running the mapping function on the dataset") 1291 /usr/local/lib/python3.7/dist-packages/datasets/arrow_dataset.py in does_function_return_dict(inputs, indices) 1258 fn_args = [inputs] if input_columns is None else [inputs[col] for col in input_columns] 1259 processed_inputs = ( -> 1260 function(*fn_args, indices, **fn_kwargs) if with_indices else function(*fn_args, **fn_kwargs) 1261 ) 1262 does_return_dict = isinstance(processed_inputs, Mapping) <ipython-input-52-b4dccbafb70d> in prepare_features(examples) 3 labels = [] 4 print(examples) ----> 5 for example_idx, example in enumerate(examples["image"]): 6 if transform is not None: 7 images.append(transform(examples["image"][example_idx].permute(2,0,1))) KeyError: 'image' ``` The print statement inside returns this: ```python {'label': tensor([6, 9])} ``` Apparently, both `img` and `image` do not exist after renaming. Note that this code works fine with `img` everywhere. Notebook: https://colab.research.google.com/drive/1SzESAlz3BnVYrgQeJ838vbMp1OsukiA2?usp=sharing
17
KeyError on using map after renaming a column Hi, I'm trying to use `cifar10` dataset. I want to rename the `img` feature to `image` in order to make it consistent with `mnist`, which I'm also planning to use. By doing this, I was trying to avoid modifying `prepare_train_features` function. Here is what I try: ```python transform = Compose([ToPILImage(),ToTensor(),Normalize([0.0,0.0,0.0],[1.0,1.0,1.0])]) def prepare_features(examples): images = [] labels = [] print(examples) for example_idx, example in enumerate(examples["image"]): if transform is not None: images.append(transform(examples["image"][example_idx].permute(2,0,1))) else: images.append(examples["image"][example_idx].permute(2,0,1)) labels.append(examples["label"][example_idx]) output = {"label":labels, "image":images} return output raw_dataset = load_dataset('cifar10') raw_dataset.set_format('torch',columns=['img','label']) raw_dataset = raw_dataset.rename_column('img','image') features = datasets.Features({ "image": datasets.Array3D(shape=(3,32,32),dtype="float32"), "label": datasets.features.ClassLabel(names=[ "airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck", ]), }) train_dataset = raw_dataset.map(prepare_features, features = features,batched=True, batch_size=10000) ``` The error: ```python --------------------------------------------------------------------------- KeyError Traceback (most recent call last) <ipython-input-54-bf29672c53ee> in <module>() 14 ]), 15 }) ---> 16 train_dataset = raw_dataset.map(prepare_features, features = features,batched=True, batch_size=10000) 2 frames /usr/local/lib/python3.7/dist-packages/datasets/arrow_dataset.py in map(self, function, with_indices, input_columns, batched, batch_size, drop_last_batch, remove_columns, keep_in_memory, load_from_cache_file, cache_file_name, writer_batch_size, features, disable_nullable, fn_kwargs, num_proc, suffix_template, new_fingerprint) 1287 test_inputs = self[:2] if batched else self[0] 1288 test_indices = [0, 1] if batched else 0 -> 1289 update_data = does_function_return_dict(test_inputs, test_indices) 1290 logger.info("Testing finished, running the mapping function on the dataset") 1291 /usr/local/lib/python3.7/dist-packages/datasets/arrow_dataset.py in does_function_return_dict(inputs, indices) 1258 fn_args = [inputs] if input_columns is None else [inputs[col] for col in input_columns] 1259 processed_inputs = ( -> 1260 function(*fn_args, indices, **fn_kwargs) if with_indices else function(*fn_args, **fn_kwargs) 1261 ) 1262 does_return_dict = isinstance(processed_inputs, Mapping) <ipython-input-52-b4dccbafb70d> in prepare_features(examples) 3 labels = [] 4 print(examples) ----> 5 for example_idx, example in enumerate(examples["image"]): 6 if transform is not None: 7 images.append(transform(examples["image"][example_idx].permute(2,0,1))) KeyError: 'image' ``` The print statement inside returns this: ```python {'label': tensor([6, 9])} ``` Apparently, both `img` and `image` do not exist after renaming. Note that this code works fine with `img` everywhere. Notebook: https://colab.research.google.com/drive/1SzESAlz3BnVYrgQeJ838vbMp1OsukiA2?usp=sharing Hi @mariosasko, Thanks for opening a PR on this :) Why does the old name also disappear?
[ 0.0343904346, 0.0062002242, -0.0635800734, -0.334228307, 0.480843991, 0.2616389692, 0.6042657495, 0.2373324633, 0.1370918304, 0.0865910947, 0.0540352985, 0.5270301104, -0.1558951885, 0.2994624376, -0.1945006847, -0.0881170183, 0.4133822322, 0.0935035348, -0.1156333238, 0.1972021013, -0.4435484409, 0.0497061387, -0.3014573455, 0.2807841599, -0.314751178, -0.1778968722, 0.0545335039, -0.1938546747, -0.2473183572, -0.2746688724, -0.0492157266, 0.0971026421, -0.0223659687, 0.6005278826, -0.0001189421, 0.0826988965, 0.1887074411, -0.0865512565, 0.0829853863, -0.2960746884, -0.1819150895, -0.0115417913, -0.2230612636, -0.514274478, 0.0406857952, -0.0636158288, -0.077172339, -0.2671772838, 0.1024496928, 0.2466997951, 0.1638299823, -0.113882862, 0.2209229171, -0.0220485628, 0.04394719, 0.2382541746, -0.1926509887, 0.0769317001, 0.0491049141, -0.3582006991, 0.2290982753, 0.693174243, -0.2142525017, -0.0826260895, 0.2492943257, 0.1485664099, 0.4132113457, -0.3595764935, 0.3614653349, -0.1366177946, 0.2379050851, -0.1512385905, -0.1043807045, -0.0542324856, -0.0018234104, -0.2537844181, -0.0232359283, -0.3196380734, 0.077695787, -0.2296992093, -0.3305272758, -0.1850074083, 0.1285367161, 0.2078441083, 0.1231132895, -0.0971983597, -0.0296083391, 0.4492812753, 0.1049037129, -0.3226708174, -0.1246059686, 0.0269130357, 0.0980833769, 0.2211731076, -0.2241782397, -0.0697753876, 0.1054666713, -0.0227156654, -0.2865684032, -0.6728144288, 0.0171009563, -0.1154987961, 0.1804634333, 0.0785015672, 0.106362395, 0.2072906196, -0.0879258811, 0.3839029074, 0.0437420271, 0.0499910675, -0.3903310299, -0.2533303499, 0.1843823045, -0.3990155756, 0.3597592115, 0.2472613603, 0.3776054382, 0.0936779231, 0.4118514657, -0.0127617531, 0.1394363344, -0.0965100527, -0.0235802773, 0.3582356274, 0.2444261611, -0.0504653156, 0.1044971496, 0.1474119276, -0.0377256721, 0.2744557261, -0.0399701297, 0.1520810872, -0.5921467543, -0.1053766981, -0.1591846943, 0.0644561127, 0.0273747295, -0.1856064796, 0.1200416535, -0.1029790193, -0.0174147524, -0.0625613779, 0.4089110494, 0.1914608181, -0.3518826067, 0.1143235937, 0.2287519872, -0.2352552414, -0.1231608912, 0.2178231776, -0.6010239124, -0.1866195798, -0.1935402304, 0.0911872908, 0.2030772567, 0.1996436864, -0.2752966583, -0.1346442401, 0.5062404871, -0.4040708542, 0.0826782584, -0.2427094877, -0.2949000895, -0.2364553511, -0.1690335274, -0.0339538753, -0.0462759398, -0.0256845132, -0.1759426594, 0.3576542139, 0.015509896, -0.0486620925, -0.1009824798, 0.2132531852, -0.0342833102, 0.1602661759, 0.4271645248, -0.3145628273, -0.2063583732, -0.0152598191, -0.2203991413, -0.1616606265, -0.09202227, 0.0930306166, 0.203904599, -0.0727140978, 0.4399832189, -0.1544140726, -0.0898715556, 0.1785478592, 0.131158486, -0.0462151021, 0.177530393, -0.0791233629, 0.1281121075, 0.2086730897, 0.1111351103, 0.0116959848, -0.0227944665, -0.2068921924, 0.0939346701, 0.0991030037, 0.219252184, -0.0245536827, 0.0360569209, 0.0803692341, -0.3255302012, 0.1678814143, 0.1803426594, 0.1416130215, -0.2925769091, -0.1196025908, -0.2550839484, -0.1336406767, -0.1760667711, 0.0316430219, 0.0552045293, -0.0540007018, -0.0344209075, -0.1491249204, -0.1648835242, -0.1527558863, 0.0497403517, 0.1093317121, -0.3486708105, -0.0184661113, -0.2111000419, -0.1441622972, -0.3850232363, 0.0132766915, 0.1881344318, -0.0540968366, -0.2381075621, 0.3495655358, 0.1393088996, 0.044096753, -0.3154116869, 0.1756072193, 0.0911009386, -0.0334517881, -0.0013043154, 0.1042697579, 0.181465134, -0.0348046124, 0.11235708, 0.2557911873, -0.2581355572, 0.380661875, -0.2395887673, 0.1288559437, -0.0841590911, -0.1766915023, -0.2373665869, -0.3937819302, -0.1437821388, -0.2950776815, -0.2323312908, -0.0712197199, 0.3053761125, -0.2079800665, 0.5871573687, -0.0409828015, 0.0240915157, -0.0057100118, 0.0615633242, 0.2896172106, 0.0114169251, 0.1064899266, 0.2978290915, -0.0096142087, -0.2233591825, 0.2672611773, 0.1708518118, 0.2767235637, 0.2040939629, 0.2167058289, 0.2447037548, 0.048026897, 0.1485540867, -0.0613895729, 0.0164967924, -0.2999011576, 0.3099987805, 0.2844225764, -0.2336354107, 0.0998228192, -0.0660421029, 0.0700869858, 0.2823906243, -0.15271689, 0.0562226214, -0.2700430155, -0.094888553, 0.3865871131, 0.0920765251, 0.4332137108, -0.1842425168, -0.3789014816, 0.2417964786, -0.3546546996, -0.0365539119, -0.4494334459, 0.0306257233, -0.0325058289, 0.0856915116, -0.4606233537, 0.0817556083, -0.1647824347, -0.1355614513, -0.1211328581, -0.522761941, 0.121855706, -0.4426470697, 0.0148035157, 0.2468886226, 0.2771111429, -0.2926219702, -0.1771502197, 0.4542587996, -0.2178658098, -0.1494310051, 0.1258672476, 0.0121635534, -0.0393339433, -0.1180344895, -0.1904156506, -0.0265279263, -0.1234949455, 0.1169078946, -0.2646971345, 0.0163138099, 0.5068842769, 0.2759181857, -0.2442609668, 0.1430361718, -0.0489323251, -0.1584291011, -0.382278651, 0.2083152086, -0.0868596733, 0.083841227, 0.0047294945, -0.1143030301, -0.0037284507, 0.0410411544, -0.1813218296, -0.2923726737, -0.0811145827, 0.2520660758, 0.1551320255, 0.1015878022, 0.2861322165, 0.4163931012, -0.1233832687, 0.0155466795, -0.229762271, -0.040773809, 0.4496160746, 0.275044471, 0.2839063108, 0.4489243329, -0.0161299035, 0.2931135595, -0.1320107281, -0.1058139056, 0.45527336, -0.3281628191, 0.097139731, -0.4271512926, -0.4983297586, 0.0212257653, -0.345652312, -0.2692154348, -0.2526132166, -0.197403416, -0.2074295729, -0.1250825822, 0.2784188986, -0.4862348437, -0.3314015865, 0.1603580415, 0.0705961883, 0.307423532, 0.0487647504, -0.0192790478, -0.4495791793, -0.1688798666, 0.0980952233, 0.0244838651, 0.0559060127, -0.3355075121, -0.6632701159, -0.2365224063, -0.3934517503, 0.4276642203, 0.113160342, 0.1529776305, -0.1410120428, -0.0606672354, -0.0556475148, 0.0688655525, 0.7746016979, -0.4415770173, -0.1148998588, 0.3010857999, -0.0476227142, -0.0988454744, -0.2432977855, -0.0672430396, 0.273360908, 0.0472895131, 0.8124080896, 0.0474172235, 0.0843916833, 0.2145456821, 0.062955007, -0.0658331811, 0.0286182128, -0.406054467, -0.2894010544, -0.5907236338, -0.0206707977, 0.0572946742, 0.2173587978, 0.3088782132, 0.1889962703, 0.1960789263, -0.1945680082, 0.015450146, 0.266408205, 0.198687762, 0.3779758811, 0.0560513511, -0.0483675823, 0.1246333122, 0.0030196272, 0.1406395286, -0.2207600623, -0.2776941955, -0.0573595352, 0.0422720909, 0.346041292, 0.2213216722, 0.0628878772, 0.0959235132, 0.1461027265, 0.2581582069, -0.2759141326, 0.2963348031, 0.4933304191, 0.1403305084, -0.4810523093, -0.3202238679, 0.2370315939, 0.2185061425, -0.1690100878, 0.3816430569, 0.0929527655, -0.3298313618, 0.5882652998, 0.0854708105, 0.8382588625, -0.3112325966, 0.0554846041, -0.0850671679, 0.0784882009, 0.2867376506, 0.0625670552, 0.2233815342, -0.1989950538, -0.4336816967, 0.0294411108, -0.0587243289, 0.3476181924, 0.0871919692, -0.1870900542, 0.2699610591, -0.2224866599, 0.5848439336, -0.2539536059, -0.2409918159, 0.2116027772, -0.3743124604, 0.1243178025, 0.0566493645, -0.0686613768, 0.0904509872, 0.0100759268, 0.1401853412, -0.1021841094, -0.3583539426, 0.0675276518, -0.053939797, -0.2007294595, 0.2325115353, -0.213707, -0.2194651961, -0.0675615817, 0.3379039466, 0.3049488962, 0.2256916016, 0.0769785792, 0.2345013171, 0.4431699514, 0.2091674507, -0.0408832356, -0.1617857516, -0.047028698, 0.1401213109, -0.2852284014, 0.1369484961, -0.0141867064, -0.2416300923, -0.3642432094, 0.0415633768, 0.432344377, -0.3393744528, -0.2499045432, -0.1570414156, -0.0112912729, -0.1000936329, 0.0678599402, -0.3800917268, -0.1897210181, 0.4002567828, -0.1145982146, -0.4112877846, 0.1257441044, 0.3634688258, 0.0822052658, 0.0131316707, 0.5031769276, -0.1995398104, 0.0113480762, -0.0863427743, 0.098204419, 0.2158660889, -0.0867506266, 0.0297969319, 0.3238883317, -0.0309051275, -0.1596031636, 0.4304634929, 0.0567141995, 0.2015251815, 0.0784539506, -0.2432672083, -0.6696434021, 0.4877872467, 0.1031507403, 0.2492163479, 0.1051926315, 0.3467668891, -0.2948553562, -0.0112462891, -0.2399553359, 0.064920634, -0.0438206159, 0.3154605329, 0.4421719313, 0.0253378805, -0.0896077305, -0.2898143828, 0.2092778534, 0.2641292512, -0.0850463212, -0.2138591409, -0.016767785, 0.1183085889, 0.1053169072, -0.1505646706, -0.024389552, -0.3231567144, -0.0274437703, -0.2703392804, -0.0828691125, 0.3389024436, 0.0339184068, 0.1923668236, -0.5534642339, -0.0861903727, 0.3065198362, 0.1393100321, -0.1251810491, -0.0567401424, 0.2653052509, 0.177614972, -0.0504076891, 0.0970637202, -0.2915790677, -0.0684080645, -0.1543521285, 0.1156140566, 0.3472285271, -0.1888153553, 0.1339827627, 0.0561050028, 0.2796279788, 0.1310019046, -0.2598960102, -0.1948143542, 0.3021288812, 0.0988667011, -0.3267250657, -0.1829231381, 0.521592617, -0.0156409442, 0.2411123514, 0.2352424264, -0.0485076271, 0.1316875368, -0.2601725757, -0.0177906826, 0.1529347152, -0.0737775415, 0.246981293, 0.6254127026, -0.1150747687, 0.2715166509, 0.2926050723, 0.3730808496, -0.1249768585, 0.6644846797, 0.0635501295, 0.2042203844, 0.1586621851, 0.2688656449, -0.114481315, -0.0899511203, 0.5314691067, 0.1346582174, -0.2235023379, 0.2969568372, 0.1907870173, -0.2590559721, -0.0018364377, -0.2252579033, -0.077544868, 0.2807585299, -0.2177532166, -0.2554297447, -0.1515020132, -0.0360629484, 0.0017210692, 0.0805627555, -0.0572087206, 0.0685866922, 0.6512499452, 0.0260288492, 0.0510048456, 0.0960444584, -0.5209684372, 0.1352974176, 0.3933673799, -0.1334355325, -0.0179998484, 0.0571533591, 0.1642049849, 0.2200044841, 0.015519673, 0.3567884862, 0.1692757905, -0.2766985595, 0.1629790664, -0.0195908546, -0.1051776558, 0.2641954124, 0.0439048968, 0.3267834783, 0.0087466706, 0.1000832319, 0.0357459821, -0.1855375022, -0.1050799936, 0.1487796754, 0.1994473785, 0.1967058629, -0.0666738972, 0.0776692405, -0.1384184062, -0.0612891726, 0.1662918627, -0.2106761634, -0.2168655396, 0.4741012752, -0.1182754859, 0.18315503, 0.131424278, 0.0622665919, 0.1147598699, 0.1901854724, 0.1068616286, -0.1823743731, -0.5617815852, -0.0506491438, -0.3618878722, -0.1454605013, -0.0483253188, 0.0958935097, 0.0001837052, -0.2958848774, 0.2807197273, 0.1011901796, 0.4350568056, -0.4830625951, -0.0566597544, 0.5606930256, 0.0539843962, -0.0601438954, 0.0202839598, 0.247342959, 0.1078897938, -0.3471126258, 0.0970268697, 0.0586620197, -0.0088258013, -0.3392794132, -0.1747092456, -0.2541411221, -0.2222283334, 0.4715788364, 0.1747033447, 0.4249304831, -0.1517660022, -0.0727759227, 0.1637438685, -0.1676822007, -0.0168346837, 0.2095229626, 0.2309507281, 0.3883237243, -0.0711033419, 0.1280176193, -0.397090137, 0.0074613318, 0.0302018747, -0.1853105426, -0.37659356, 0.1869209707, 0.2549928427, 0.0408341102, -0.185344249, 0.360789746, 0.0388966501, 0.5180018544, -0.0680313334, -0.369066447, 0.7985041142, -0.3579203188, -0.6600226164, 0.0823597759, -0.0900154859, -0.1427420974, 0.0412079096, -0.2388157248, -0.0630645454, 0.0736409128, -0.03345339, -0.3466158509, 0.0901281238, -0.1645772308, 0.0798356682, 0.0364476442, 0.4860980213, -0.3197672069, -0.0945575908, -0.2467263341, -0.0632383674 ]
https://github.com/huggingface/datasets/issues/2026
KeyError on using map after renaming a column
I just merged a @mariosasko 's PR that fixes this issue. If it happens again, feel free to re-open :)
Hi, I'm trying to use `cifar10` dataset. I want to rename the `img` feature to `image` in order to make it consistent with `mnist`, which I'm also planning to use. By doing this, I was trying to avoid modifying `prepare_train_features` function. Here is what I try: ```python transform = Compose([ToPILImage(),ToTensor(),Normalize([0.0,0.0,0.0],[1.0,1.0,1.0])]) def prepare_features(examples): images = [] labels = [] print(examples) for example_idx, example in enumerate(examples["image"]): if transform is not None: images.append(transform(examples["image"][example_idx].permute(2,0,1))) else: images.append(examples["image"][example_idx].permute(2,0,1)) labels.append(examples["label"][example_idx]) output = {"label":labels, "image":images} return output raw_dataset = load_dataset('cifar10') raw_dataset.set_format('torch',columns=['img','label']) raw_dataset = raw_dataset.rename_column('img','image') features = datasets.Features({ "image": datasets.Array3D(shape=(3,32,32),dtype="float32"), "label": datasets.features.ClassLabel(names=[ "airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck", ]), }) train_dataset = raw_dataset.map(prepare_features, features = features,batched=True, batch_size=10000) ``` The error: ```python --------------------------------------------------------------------------- KeyError Traceback (most recent call last) <ipython-input-54-bf29672c53ee> in <module>() 14 ]), 15 }) ---> 16 train_dataset = raw_dataset.map(prepare_features, features = features,batched=True, batch_size=10000) 2 frames /usr/local/lib/python3.7/dist-packages/datasets/arrow_dataset.py in map(self, function, with_indices, input_columns, batched, batch_size, drop_last_batch, remove_columns, keep_in_memory, load_from_cache_file, cache_file_name, writer_batch_size, features, disable_nullable, fn_kwargs, num_proc, suffix_template, new_fingerprint) 1287 test_inputs = self[:2] if batched else self[0] 1288 test_indices = [0, 1] if batched else 0 -> 1289 update_data = does_function_return_dict(test_inputs, test_indices) 1290 logger.info("Testing finished, running the mapping function on the dataset") 1291 /usr/local/lib/python3.7/dist-packages/datasets/arrow_dataset.py in does_function_return_dict(inputs, indices) 1258 fn_args = [inputs] if input_columns is None else [inputs[col] for col in input_columns] 1259 processed_inputs = ( -> 1260 function(*fn_args, indices, **fn_kwargs) if with_indices else function(*fn_args, **fn_kwargs) 1261 ) 1262 does_return_dict = isinstance(processed_inputs, Mapping) <ipython-input-52-b4dccbafb70d> in prepare_features(examples) 3 labels = [] 4 print(examples) ----> 5 for example_idx, example in enumerate(examples["image"]): 6 if transform is not None: 7 images.append(transform(examples["image"][example_idx].permute(2,0,1))) KeyError: 'image' ``` The print statement inside returns this: ```python {'label': tensor([6, 9])} ``` Apparently, both `img` and `image` do not exist after renaming. Note that this code works fine with `img` everywhere. Notebook: https://colab.research.google.com/drive/1SzESAlz3BnVYrgQeJ838vbMp1OsukiA2?usp=sharing
20
KeyError on using map after renaming a column Hi, I'm trying to use `cifar10` dataset. I want to rename the `img` feature to `image` in order to make it consistent with `mnist`, which I'm also planning to use. By doing this, I was trying to avoid modifying `prepare_train_features` function. Here is what I try: ```python transform = Compose([ToPILImage(),ToTensor(),Normalize([0.0,0.0,0.0],[1.0,1.0,1.0])]) def prepare_features(examples): images = [] labels = [] print(examples) for example_idx, example in enumerate(examples["image"]): if transform is not None: images.append(transform(examples["image"][example_idx].permute(2,0,1))) else: images.append(examples["image"][example_idx].permute(2,0,1)) labels.append(examples["label"][example_idx]) output = {"label":labels, "image":images} return output raw_dataset = load_dataset('cifar10') raw_dataset.set_format('torch',columns=['img','label']) raw_dataset = raw_dataset.rename_column('img','image') features = datasets.Features({ "image": datasets.Array3D(shape=(3,32,32),dtype="float32"), "label": datasets.features.ClassLabel(names=[ "airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck", ]), }) train_dataset = raw_dataset.map(prepare_features, features = features,batched=True, batch_size=10000) ``` The error: ```python --------------------------------------------------------------------------- KeyError Traceback (most recent call last) <ipython-input-54-bf29672c53ee> in <module>() 14 ]), 15 }) ---> 16 train_dataset = raw_dataset.map(prepare_features, features = features,batched=True, batch_size=10000) 2 frames /usr/local/lib/python3.7/dist-packages/datasets/arrow_dataset.py in map(self, function, with_indices, input_columns, batched, batch_size, drop_last_batch, remove_columns, keep_in_memory, load_from_cache_file, cache_file_name, writer_batch_size, features, disable_nullable, fn_kwargs, num_proc, suffix_template, new_fingerprint) 1287 test_inputs = self[:2] if batched else self[0] 1288 test_indices = [0, 1] if batched else 0 -> 1289 update_data = does_function_return_dict(test_inputs, test_indices) 1290 logger.info("Testing finished, running the mapping function on the dataset") 1291 /usr/local/lib/python3.7/dist-packages/datasets/arrow_dataset.py in does_function_return_dict(inputs, indices) 1258 fn_args = [inputs] if input_columns is None else [inputs[col] for col in input_columns] 1259 processed_inputs = ( -> 1260 function(*fn_args, indices, **fn_kwargs) if with_indices else function(*fn_args, **fn_kwargs) 1261 ) 1262 does_return_dict = isinstance(processed_inputs, Mapping) <ipython-input-52-b4dccbafb70d> in prepare_features(examples) 3 labels = [] 4 print(examples) ----> 5 for example_idx, example in enumerate(examples["image"]): 6 if transform is not None: 7 images.append(transform(examples["image"][example_idx].permute(2,0,1))) KeyError: 'image' ``` The print statement inside returns this: ```python {'label': tensor([6, 9])} ``` Apparently, both `img` and `image` do not exist after renaming. Note that this code works fine with `img` everywhere. Notebook: https://colab.research.google.com/drive/1SzESAlz3BnVYrgQeJ838vbMp1OsukiA2?usp=sharing I just merged a @mariosasko 's PR that fixes this issue. If it happens again, feel free to re-open :)
[ 0.0343904346, 0.0062002242, -0.0635800734, -0.334228307, 0.480843991, 0.2616389692, 0.6042657495, 0.2373324633, 0.1370918304, 0.0865910947, 0.0540352985, 0.5270301104, -0.1558951885, 0.2994624376, -0.1945006847, -0.0881170183, 0.4133822322, 0.0935035348, -0.1156333238, 0.1972021013, -0.4435484409, 0.0497061387, -0.3014573455, 0.2807841599, -0.314751178, -0.1778968722, 0.0545335039, -0.1938546747, -0.2473183572, -0.2746688724, -0.0492157266, 0.0971026421, -0.0223659687, 0.6005278826, -0.0001189421, 0.0826988965, 0.1887074411, -0.0865512565, 0.0829853863, -0.2960746884, -0.1819150895, -0.0115417913, -0.2230612636, -0.514274478, 0.0406857952, -0.0636158288, -0.077172339, -0.2671772838, 0.1024496928, 0.2466997951, 0.1638299823, -0.113882862, 0.2209229171, -0.0220485628, 0.04394719, 0.2382541746, -0.1926509887, 0.0769317001, 0.0491049141, -0.3582006991, 0.2290982753, 0.693174243, -0.2142525017, -0.0826260895, 0.2492943257, 0.1485664099, 0.4132113457, -0.3595764935, 0.3614653349, -0.1366177946, 0.2379050851, -0.1512385905, -0.1043807045, -0.0542324856, -0.0018234104, -0.2537844181, -0.0232359283, -0.3196380734, 0.077695787, -0.2296992093, -0.3305272758, -0.1850074083, 0.1285367161, 0.2078441083, 0.1231132895, -0.0971983597, -0.0296083391, 0.4492812753, 0.1049037129, -0.3226708174, -0.1246059686, 0.0269130357, 0.0980833769, 0.2211731076, -0.2241782397, -0.0697753876, 0.1054666713, -0.0227156654, -0.2865684032, -0.6728144288, 0.0171009563, -0.1154987961, 0.1804634333, 0.0785015672, 0.106362395, 0.2072906196, -0.0879258811, 0.3839029074, 0.0437420271, 0.0499910675, -0.3903310299, -0.2533303499, 0.1843823045, -0.3990155756, 0.3597592115, 0.2472613603, 0.3776054382, 0.0936779231, 0.4118514657, -0.0127617531, 0.1394363344, -0.0965100527, -0.0235802773, 0.3582356274, 0.2444261611, -0.0504653156, 0.1044971496, 0.1474119276, -0.0377256721, 0.2744557261, -0.0399701297, 0.1520810872, -0.5921467543, -0.1053766981, -0.1591846943, 0.0644561127, 0.0273747295, -0.1856064796, 0.1200416535, -0.1029790193, -0.0174147524, -0.0625613779, 0.4089110494, 0.1914608181, -0.3518826067, 0.1143235937, 0.2287519872, -0.2352552414, -0.1231608912, 0.2178231776, -0.6010239124, -0.1866195798, -0.1935402304, 0.0911872908, 0.2030772567, 0.1996436864, -0.2752966583, -0.1346442401, 0.5062404871, -0.4040708542, 0.0826782584, -0.2427094877, -0.2949000895, -0.2364553511, -0.1690335274, -0.0339538753, -0.0462759398, -0.0256845132, -0.1759426594, 0.3576542139, 0.015509896, -0.0486620925, -0.1009824798, 0.2132531852, -0.0342833102, 0.1602661759, 0.4271645248, -0.3145628273, -0.2063583732, -0.0152598191, -0.2203991413, -0.1616606265, -0.09202227, 0.0930306166, 0.203904599, -0.0727140978, 0.4399832189, -0.1544140726, -0.0898715556, 0.1785478592, 0.131158486, -0.0462151021, 0.177530393, -0.0791233629, 0.1281121075, 0.2086730897, 0.1111351103, 0.0116959848, -0.0227944665, -0.2068921924, 0.0939346701, 0.0991030037, 0.219252184, -0.0245536827, 0.0360569209, 0.0803692341, -0.3255302012, 0.1678814143, 0.1803426594, 0.1416130215, -0.2925769091, -0.1196025908, -0.2550839484, -0.1336406767, -0.1760667711, 0.0316430219, 0.0552045293, -0.0540007018, -0.0344209075, -0.1491249204, -0.1648835242, -0.1527558863, 0.0497403517, 0.1093317121, -0.3486708105, -0.0184661113, -0.2111000419, -0.1441622972, -0.3850232363, 0.0132766915, 0.1881344318, -0.0540968366, -0.2381075621, 0.3495655358, 0.1393088996, 0.044096753, -0.3154116869, 0.1756072193, 0.0911009386, -0.0334517881, -0.0013043154, 0.1042697579, 0.181465134, -0.0348046124, 0.11235708, 0.2557911873, -0.2581355572, 0.380661875, -0.2395887673, 0.1288559437, -0.0841590911, -0.1766915023, -0.2373665869, -0.3937819302, -0.1437821388, -0.2950776815, -0.2323312908, -0.0712197199, 0.3053761125, -0.2079800665, 0.5871573687, -0.0409828015, 0.0240915157, -0.0057100118, 0.0615633242, 0.2896172106, 0.0114169251, 0.1064899266, 0.2978290915, -0.0096142087, -0.2233591825, 0.2672611773, 0.1708518118, 0.2767235637, 0.2040939629, 0.2167058289, 0.2447037548, 0.048026897, 0.1485540867, -0.0613895729, 0.0164967924, -0.2999011576, 0.3099987805, 0.2844225764, -0.2336354107, 0.0998228192, -0.0660421029, 0.0700869858, 0.2823906243, -0.15271689, 0.0562226214, -0.2700430155, -0.094888553, 0.3865871131, 0.0920765251, 0.4332137108, -0.1842425168, -0.3789014816, 0.2417964786, -0.3546546996, -0.0365539119, -0.4494334459, 0.0306257233, -0.0325058289, 0.0856915116, -0.4606233537, 0.0817556083, -0.1647824347, -0.1355614513, -0.1211328581, -0.522761941, 0.121855706, -0.4426470697, 0.0148035157, 0.2468886226, 0.2771111429, -0.2926219702, -0.1771502197, 0.4542587996, -0.2178658098, -0.1494310051, 0.1258672476, 0.0121635534, -0.0393339433, -0.1180344895, -0.1904156506, -0.0265279263, -0.1234949455, 0.1169078946, -0.2646971345, 0.0163138099, 0.5068842769, 0.2759181857, -0.2442609668, 0.1430361718, -0.0489323251, -0.1584291011, -0.382278651, 0.2083152086, -0.0868596733, 0.083841227, 0.0047294945, -0.1143030301, -0.0037284507, 0.0410411544, -0.1813218296, -0.2923726737, -0.0811145827, 0.2520660758, 0.1551320255, 0.1015878022, 0.2861322165, 0.4163931012, -0.1233832687, 0.0155466795, -0.229762271, -0.040773809, 0.4496160746, 0.275044471, 0.2839063108, 0.4489243329, -0.0161299035, 0.2931135595, -0.1320107281, -0.1058139056, 0.45527336, -0.3281628191, 0.097139731, -0.4271512926, -0.4983297586, 0.0212257653, -0.345652312, -0.2692154348, -0.2526132166, -0.197403416, -0.2074295729, -0.1250825822, 0.2784188986, -0.4862348437, -0.3314015865, 0.1603580415, 0.0705961883, 0.307423532, 0.0487647504, -0.0192790478, -0.4495791793, -0.1688798666, 0.0980952233, 0.0244838651, 0.0559060127, -0.3355075121, -0.6632701159, -0.2365224063, -0.3934517503, 0.4276642203, 0.113160342, 0.1529776305, -0.1410120428, -0.0606672354, -0.0556475148, 0.0688655525, 0.7746016979, -0.4415770173, -0.1148998588, 0.3010857999, -0.0476227142, -0.0988454744, -0.2432977855, -0.0672430396, 0.273360908, 0.0472895131, 0.8124080896, 0.0474172235, 0.0843916833, 0.2145456821, 0.062955007, -0.0658331811, 0.0286182128, -0.406054467, -0.2894010544, -0.5907236338, -0.0206707977, 0.0572946742, 0.2173587978, 0.3088782132, 0.1889962703, 0.1960789263, -0.1945680082, 0.015450146, 0.266408205, 0.198687762, 0.3779758811, 0.0560513511, -0.0483675823, 0.1246333122, 0.0030196272, 0.1406395286, -0.2207600623, -0.2776941955, -0.0573595352, 0.0422720909, 0.346041292, 0.2213216722, 0.0628878772, 0.0959235132, 0.1461027265, 0.2581582069, -0.2759141326, 0.2963348031, 0.4933304191, 0.1403305084, -0.4810523093, -0.3202238679, 0.2370315939, 0.2185061425, -0.1690100878, 0.3816430569, 0.0929527655, -0.3298313618, 0.5882652998, 0.0854708105, 0.8382588625, -0.3112325966, 0.0554846041, -0.0850671679, 0.0784882009, 0.2867376506, 0.0625670552, 0.2233815342, -0.1989950538, -0.4336816967, 0.0294411108, -0.0587243289, 0.3476181924, 0.0871919692, -0.1870900542, 0.2699610591, -0.2224866599, 0.5848439336, -0.2539536059, -0.2409918159, 0.2116027772, -0.3743124604, 0.1243178025, 0.0566493645, -0.0686613768, 0.0904509872, 0.0100759268, 0.1401853412, -0.1021841094, -0.3583539426, 0.0675276518, -0.053939797, -0.2007294595, 0.2325115353, -0.213707, -0.2194651961, -0.0675615817, 0.3379039466, 0.3049488962, 0.2256916016, 0.0769785792, 0.2345013171, 0.4431699514, 0.2091674507, -0.0408832356, -0.1617857516, -0.047028698, 0.1401213109, -0.2852284014, 0.1369484961, -0.0141867064, -0.2416300923, -0.3642432094, 0.0415633768, 0.432344377, -0.3393744528, -0.2499045432, -0.1570414156, -0.0112912729, -0.1000936329, 0.0678599402, -0.3800917268, -0.1897210181, 0.4002567828, -0.1145982146, -0.4112877846, 0.1257441044, 0.3634688258, 0.0822052658, 0.0131316707, 0.5031769276, -0.1995398104, 0.0113480762, -0.0863427743, 0.098204419, 0.2158660889, -0.0867506266, 0.0297969319, 0.3238883317, -0.0309051275, -0.1596031636, 0.4304634929, 0.0567141995, 0.2015251815, 0.0784539506, -0.2432672083, -0.6696434021, 0.4877872467, 0.1031507403, 0.2492163479, 0.1051926315, 0.3467668891, -0.2948553562, -0.0112462891, -0.2399553359, 0.064920634, -0.0438206159, 0.3154605329, 0.4421719313, 0.0253378805, -0.0896077305, -0.2898143828, 0.2092778534, 0.2641292512, -0.0850463212, -0.2138591409, -0.016767785, 0.1183085889, 0.1053169072, -0.1505646706, -0.024389552, -0.3231567144, -0.0274437703, -0.2703392804, -0.0828691125, 0.3389024436, 0.0339184068, 0.1923668236, -0.5534642339, -0.0861903727, 0.3065198362, 0.1393100321, -0.1251810491, -0.0567401424, 0.2653052509, 0.177614972, -0.0504076891, 0.0970637202, -0.2915790677, -0.0684080645, -0.1543521285, 0.1156140566, 0.3472285271, -0.1888153553, 0.1339827627, 0.0561050028, 0.2796279788, 0.1310019046, -0.2598960102, -0.1948143542, 0.3021288812, 0.0988667011, -0.3267250657, -0.1829231381, 0.521592617, -0.0156409442, 0.2411123514, 0.2352424264, -0.0485076271, 0.1316875368, -0.2601725757, -0.0177906826, 0.1529347152, -0.0737775415, 0.246981293, 0.6254127026, -0.1150747687, 0.2715166509, 0.2926050723, 0.3730808496, -0.1249768585, 0.6644846797, 0.0635501295, 0.2042203844, 0.1586621851, 0.2688656449, -0.114481315, -0.0899511203, 0.5314691067, 0.1346582174, -0.2235023379, 0.2969568372, 0.1907870173, -0.2590559721, -0.0018364377, -0.2252579033, -0.077544868, 0.2807585299, -0.2177532166, -0.2554297447, -0.1515020132, -0.0360629484, 0.0017210692, 0.0805627555, -0.0572087206, 0.0685866922, 0.6512499452, 0.0260288492, 0.0510048456, 0.0960444584, -0.5209684372, 0.1352974176, 0.3933673799, -0.1334355325, -0.0179998484, 0.0571533591, 0.1642049849, 0.2200044841, 0.015519673, 0.3567884862, 0.1692757905, -0.2766985595, 0.1629790664, -0.0195908546, -0.1051776558, 0.2641954124, 0.0439048968, 0.3267834783, 0.0087466706, 0.1000832319, 0.0357459821, -0.1855375022, -0.1050799936, 0.1487796754, 0.1994473785, 0.1967058629, -0.0666738972, 0.0776692405, -0.1384184062, -0.0612891726, 0.1662918627, -0.2106761634, -0.2168655396, 0.4741012752, -0.1182754859, 0.18315503, 0.131424278, 0.0622665919, 0.1147598699, 0.1901854724, 0.1068616286, -0.1823743731, -0.5617815852, -0.0506491438, -0.3618878722, -0.1454605013, -0.0483253188, 0.0958935097, 0.0001837052, -0.2958848774, 0.2807197273, 0.1011901796, 0.4350568056, -0.4830625951, -0.0566597544, 0.5606930256, 0.0539843962, -0.0601438954, 0.0202839598, 0.247342959, 0.1078897938, -0.3471126258, 0.0970268697, 0.0586620197, -0.0088258013, -0.3392794132, -0.1747092456, -0.2541411221, -0.2222283334, 0.4715788364, 0.1747033447, 0.4249304831, -0.1517660022, -0.0727759227, 0.1637438685, -0.1676822007, -0.0168346837, 0.2095229626, 0.2309507281, 0.3883237243, -0.0711033419, 0.1280176193, -0.397090137, 0.0074613318, 0.0302018747, -0.1853105426, -0.37659356, 0.1869209707, 0.2549928427, 0.0408341102, -0.185344249, 0.360789746, 0.0388966501, 0.5180018544, -0.0680313334, -0.369066447, 0.7985041142, -0.3579203188, -0.6600226164, 0.0823597759, -0.0900154859, -0.1427420974, 0.0412079096, -0.2388157248, -0.0630645454, 0.0736409128, -0.03345339, -0.3466158509, 0.0901281238, -0.1645772308, 0.0798356682, 0.0364476442, 0.4860980213, -0.3197672069, -0.0945575908, -0.2467263341, -0.0632383674 ]
https://github.com/huggingface/datasets/issues/2022
ValueError when rename_column on splitted dataset
Hi, This is a bug so thanks for reporting it. `Dataset.__setstate__` is the problem, which is called when `Dataset.rename_column` tries to copy the dataset with `copy.deepcopy(self)`. This only happens if the `split` arg in `load_dataset` was defined as `ReadInstruction`. To overcome this issue, use the named splits API (for now): ```python train_ds, test_ds = load_dataset( path='csv', delimiter='\t', data_files=text_files, split=['train[:90%]', 'train[-10%:]'], ) train_ds = train_ds.rename_column('sentence', 'text') ```
Hi there, I am loading `.tsv` file via `load_dataset` and subsequently split the rows into training and test set via the `ReadInstruction` API like so: ```python split = { 'train': ReadInstruction('train', to=90, unit='%'), 'test': ReadInstruction('train', from_=-10, unit='%') } dataset = load_dataset( path='csv', # use 'text' loading script to load from local txt-files delimiter='\t', # xxx data_files=text_files, # list of paths to local text files split=split, # xxx ) dataset ``` Part of output: ```python DatasetDict({ train: Dataset({ features: ['sentence', 'sentiment'], num_rows: 900 }) test: Dataset({ features: ['sentence', 'sentiment'], num_rows: 100 }) }) ``` Afterwards I'd like to rename the 'sentence' column to 'text' in order to be compatible with my modelin pipeline. If I run the following code I experience a `ValueError` however: ```python dataset['train'].rename_column('sentence', 'text') ``` ```python /usr/local/lib/python3.7/dist-packages/datasets/splits.py in __init__(self, name) 353 for split_name in split_names_from_instruction: 354 if not re.match(_split_re, split_name): --> 355 raise ValueError(f"Split name should match '{_split_re}'' but got '{split_name}'.") 356 357 def __str__(self): ValueError: Split name should match '^\w+(\.\w+)*$'' but got 'ReadInstruction('. ``` In particular, these behavior does not arise if I use the deprecated `rename_column_` method. Any idea what causes the error? Would assume something in the way I defined the split. Thanks in advance! :)
66
ValueError when rename_column on splitted dataset Hi there, I am loading `.tsv` file via `load_dataset` and subsequently split the rows into training and test set via the `ReadInstruction` API like so: ```python split = { 'train': ReadInstruction('train', to=90, unit='%'), 'test': ReadInstruction('train', from_=-10, unit='%') } dataset = load_dataset( path='csv', # use 'text' loading script to load from local txt-files delimiter='\t', # xxx data_files=text_files, # list of paths to local text files split=split, # xxx ) dataset ``` Part of output: ```python DatasetDict({ train: Dataset({ features: ['sentence', 'sentiment'], num_rows: 900 }) test: Dataset({ features: ['sentence', 'sentiment'], num_rows: 100 }) }) ``` Afterwards I'd like to rename the 'sentence' column to 'text' in order to be compatible with my modelin pipeline. If I run the following code I experience a `ValueError` however: ```python dataset['train'].rename_column('sentence', 'text') ``` ```python /usr/local/lib/python3.7/dist-packages/datasets/splits.py in __init__(self, name) 353 for split_name in split_names_from_instruction: 354 if not re.match(_split_re, split_name): --> 355 raise ValueError(f"Split name should match '{_split_re}'' but got '{split_name}'.") 356 357 def __str__(self): ValueError: Split name should match '^\w+(\.\w+)*$'' but got 'ReadInstruction('. ``` In particular, these behavior does not arise if I use the deprecated `rename_column_` method. Any idea what causes the error? Would assume something in the way I defined the split. Thanks in advance! :) Hi, This is a bug so thanks for reporting it. `Dataset.__setstate__` is the problem, which is called when `Dataset.rename_column` tries to copy the dataset with `copy.deepcopy(self)`. This only happens if the `split` arg in `load_dataset` was defined as `ReadInstruction`. To overcome this issue, use the named splits API (for now): ```python train_ds, test_ds = load_dataset( path='csv', delimiter='\t', data_files=text_files, split=['train[:90%]', 'train[-10%:]'], ) train_ds = train_ds.rename_column('sentence', 'text') ```
[ -0.0835754722, 0.2197992504, -0.0348291695, -0.042384401, 0.420876801, 0.0730621517, 0.6438040137, 0.4179840088, -0.02255271, 0.3396533728, -0.0866866112, 0.3978037536, -0.0521847606, 0.3644354939, -0.2562586963, -0.2477054149, 0.1044135988, -0.0795422792, 0.1267364621, 0.2697293758, -0.3300530612, 0.0778075382, -0.3932775855, 0.1260685772, -0.0781338811, 0.0623800904, 0.0325198993, 0.095377028, 0.0282755755, -0.3610773087, 0.1441162527, -0.0355102718, 0.1899645627, 0.5556836128, -0.0001162362, 0.1232812628, 0.2225488722, -0.1280172914, -0.1891634315, -0.4528476298, -0.0052786991, -0.1680361032, 0.0017362982, -0.3506764174, 0.1707243323, 0.2284772098, -0.2309947014, -0.2584792078, 0.1006068587, 0.3693118691, 0.1076899171, 0.0965301394, -0.0107201263, 0.119124189, 0.1085150391, 0.0212475434, -0.304772526, 0.0899829715, -0.0761239678, -0.1792216301, -0.1137905866, 0.2317513227, -0.0711765811, 0.1480420083, -0.0235447995, 0.3106741011, 0.0345895365, -0.0469644926, 0.0888524503, 0.067180112, 0.2144693732, -0.2401782572, -0.4639912546, -0.4442961216, 0.1637720019, -0.3250162899, 0.2570497692, -0.1877464354, 0.1232364774, 0.184074536, -0.1398661435, 0.0523618944, -0.1373050064, -0.1406387985, -0.0923045054, 0.089361459, -0.0323617086, 0.4094692767, -0.1002932563, -0.1114298552, 0.1749084294, 0.0513333715, -0.0785199329, -0.1311809123, -0.5019621253, 0.0278141052, -0.2302472442, -0.2595576644, -0.3201278448, -0.1200024262, 0.0158369392, -0.2517311871, 0.2726787329, 0.2164973319, -0.036297407, 0.1996524483, 0.1300998479, 0.4851776958, 0.235996604, 0.1402988285, -0.2038473338, -0.0915255919, 0.0607342906, -0.2988733649, 0.1496173888, 0.1908585429, 0.1388384998, 0.1012243927, -0.4223222733, -0.0214156471, -0.2999309897, -0.1886164695, -0.0305336583, 0.221455723, 0.203239277, 0.4568884075, 0.1693873107, 0.0574800149, -0.0006993152, -0.1406515241, -0.0371252149, 0.1793323159, -0.301969707, 0.1505987048, 0.0399701372, 0.1964563131, 0.0814437792, -0.2706572115, -0.0208246484, -0.2991543114, -0.0203199238, -0.1991915256, 0.0952111781, 0.2918279767, -0.083551839, -0.1079087034, 0.1164139062, -0.4457986951, 0.0352155119, 0.2579236329, -0.2536047995, -0.3207926154, 0.1397260278, 0.1286003292, 0.0399009511, -0.052753862, 0.0482412465, -0.022960389, 0.6056432724, -0.1394456327, 0.1351452023, -0.3096874356, -0.2267052233, -0.0160398521, -0.0332792625, 0.100044392, -0.5333274603, -0.1184840947, 0.0636191741, 0.194196701, 0.1769787967, 0.1755303741, 0.1830015182, 0.158333376, 0.1335392594, 0.2669038773, 0.2967287898, -0.3958651125, 0.0288950354, 0.2807648778, -0.3185537159, -0.1601908207, 0.3707809448, -0.2173385769, 0.1207502633, -0.10769362, 0.1341802329, 0.0113364831, -0.0657369122, 0.0960767344, -0.0378143936, -0.0701454952, 0.3307214081, -0.0180217437, 0.0188635159, -0.1157905161, -0.1568620354, -0.2933052778, 0.3243607283, -0.0264654048, 0.1164178774, 0.1300329119, 0.1057567596, 0.5420783162, 0.1200009882, -0.0832296014, -0.2253143042, 0.0283839256, 0.3180815578, -0.1683247089, -0.3165953159, -0.170928359, -0.432600975, 0.0489438325, -0.0752225071, 0.0472048894, 0.0313137695, 0.2542939484, -0.1051333249, -0.1217909753, -0.4117277265, 0.29516536, -0.5749083757, 0.2464327514, -0.3180007637, 0.0775999352, 0.0061796736, -0.3219504058, -0.250230968, 0.155267179, 0.171471864, -0.0112889539, -0.2374311686, 0.6657512188, 0.3477511406, 0.0463436879, -0.3765339851, -0.2769812047, -0.1085002273, 0.2417755872, -0.2358049899, -0.1330700368, 0.2457469106, -0.0412520841, -0.0628124997, 0.2938635051, -0.4202156961, 0.5500615835, -0.0109362453, -0.1532361507, 0.0020682961, -0.2575076818, -0.1037363708, -0.3930053115, -0.1505553424, -0.331161648, 0.1140192896, -0.1965572387, -0.1869238317, -0.29323107, 0.6310690045, -0.0536830612, -0.1708037257, 0.0077963714, 0.1357935965, -0.0466479957, -0.0799034908, 0.623110652, 0.4926961064, 0.0294923112, -0.1018568501, 0.251108706, 0.1871848553, -0.2857355177, 0.2048225999, 0.2681160569, 0.1419735998, 0.4111416936, 0.245643124, 0.0051553212, -0.2268374562, -0.1838647425, 0.396805048, 0.1195368245, -0.4919123054, 0.0235622823, -0.1649121344, 0.2419193387, -0.205700919, -0.2267123461, 0.1853085905, -0.5442620516, -0.2349178791, 0.3472461104, -0.3372889161, 0.3051024675, -0.1589922011, -0.3950487971, 0.0922144875, -0.166128397, -0.0719224811, -0.1782117486, -0.0885191113, -0.0458368137, -0.1261464655, -0.0972288772, 0.0410269871, -0.1662224531, -0.0943965465, -0.1365419626, -0.2923831344, -0.0274041556, -0.4529349506, -0.0093844514, 0.4005092084, 0.0366893299, 0.1800100803, -0.4637694061, 0.2288458645, 0.0775951669, -0.0209742077, 0.0346014276, 0.2929466665, 0.0061278157, -0.1640410125, -0.6690229774, -0.2725983262, -0.3042470217, 0.1338291764, -0.2729790211, -0.1675992906, 0.0596727617, -0.1618383378, 0.0142356679, 0.1734490097, 0.1514363438, -0.0215064287, 0.011957176, 0.1503855139, 0.0146297254, 0.1776954383, 0.1265312433, 0.1827683002, -0.1011584997, 0.0592229851, -0.1364729702, -0.0564791225, -0.0916980729, 0.3380534053, 0.0930300206, -0.0017821193, 0.2639890909, 0.2979952693, -0.0363331549, -0.1717990637, -0.2675011754, 0.2465604544, 0.0576315075, 0.1198231429, 0.0803304315, 0.6318508387, 0.2055417746, 0.1752792299, -0.1507172287, -0.0701788217, 0.0658942088, -0.0693153441, 0.0188847296, -0.1903809011, -0.0143463276, -0.0719317645, -0.3799415827, -0.2754400671, 0.096847266, -0.1404150426, -0.0746425688, -0.0370620154, 0.0086294189, 0.0436806381, -0.2274770588, -0.0524390116, -0.0882401913, 0.42756778, 0.1327887625, 0.1390787363, -0.0748876557, -0.058731541, 0.1260322481, 0.1799936295, 0.1219585538, -0.3082248867, -0.234809041, 0.0278904065, -0.2218732983, 0.2311759591, 0.3654351532, 0.5237159133, 0.1095001996, -0.4189087451, 0.0391255692, 0.1244077235, 0.5819939375, -0.2301921695, -0.030865334, 0.1820009053, -0.1582550257, 0.0998640805, -0.1680943221, -0.2026171386, -0.0297280047, 0.2626559436, 0.4312619865, -0.0818836987, -0.0455454849, 0.502107501, 0.2213870883, -0.0002617091, -0.2003733218, -0.1444071233, -0.3349114954, -0.2491312325, -0.0207628198, 0.0515861884, 0.1574814767, 0.0513999909, 0.3127939701, -0.0301314443, -0.3142571151, 0.1404970884, 0.2325979918, -0.0428320765, -0.077659674, 0.1895498186, 0.0559758693, 0.178773731, 0.0804948658, 0.2318655849, -0.4986414015, -0.6792057157, -0.0838988721, -0.1733063757, 0.4837496877, 0.2373595238, -0.235502705, 0.2386440337, -0.0622688383, 0.2222549319, -0.10557428, -0.0054894798, 0.3826479316, 0.0841320679, -0.3165596724, -0.5406338573, 0.3414801657, 0.0795639902, -0.0830518901, 0.0900764465, 0.366597414, -0.4676117897, 0.4190024734, -0.1272705048, 0.539450109, 0.171179533, -0.0342088602, 0.4204015136, -0.1584543139, -0.0678921416, -0.0687831193, 0.1058085859, -0.3747583032, -0.2032313049, -0.0629145056, 0.0981254727, 0.4457719028, 0.0439918824, -0.0239877179, 0.313187331, -0.0377461463, 0.3181698024, -0.0129596572, -0.0236805677, -0.1248436719, -0.2890896499, 0.0314166732, 0.0170258507, 0.0585119836, -0.330789119, 0.3468234539, 0.1850595623, -0.0445545875, -0.006880112, -0.1796742976, -0.0920961201, -0.0396211259, 0.2621532381, -0.0702736154, -0.2068293691, 0.2561680377, 0.236001268, 0.3455247879, 0.12043906, 0.2218236923, 0.2901316285, 0.0536014549, 0.3150189519, 0.0510932729, -0.0520140976, 0.3549726307, 0.2559574842, -0.1892664731, -0.1287591755, -0.0970652103, -0.1592885554, -0.1369862258, 0.0045311898, 0.3254040182, -0.7125178576, -0.2792512178, -0.1463442147, 0.0076216683, -0.2057143152, 0.0702228248, -0.4360502064, -0.3211262226, 0.0423503108, -0.2473160923, -0.5409809947, -0.0410528854, 0.2723688781, 0.0928784534, 0.423668772, 0.6302573681, 0.0744518265, -0.1189604327, -0.0769283846, 0.2815293074, -0.0017068423, -0.2372873724, 0.3587241769, 0.2491544187, 0.0125261098, 0.1421518475, 0.0894049481, 0.0139237689, 0.1374352574, -0.1794731319, -0.2946612239, -0.2364348322, 0.0364807472, 0.2371772826, 0.098581776, 0.1828024089, 0.2921198308, -0.4138015211, -0.1671659946, -0.198004961, -0.0679664612, -0.0445374288, 0.339509964, 0.2307618409, 0.075798817, -0.0225775409, -0.169207111, 0.2093006521, 0.3660114408, 0.3369349241, -0.1701855958, -0.311543256, 0.1045252085, 0.0879618824, 0.3199936748, -0.2685279846, -0.0645285249, -0.1654909551, -0.2432914227, 0.1397912651, 0.4403591752, 0.0093705337, 0.6279397607, -0.2326393127, 0.0618091598, -0.0221134052, 0.1973510981, -0.3701750338, 0.1364085078, -0.1778948903, 0.3094801605, -0.0463115722, 0.1947897226, -0.3871261775, -0.1407454759, -0.1017041951, 0.0919172615, 0.1624630839, -0.2329884022, 0.0275496468, -0.227638945, 0.3421430886, 0.5766687989, -0.0366017483, -0.3406233788, 0.2601457238, 0.0938545614, -0.2149891406, 0.2604699731, 0.1313988566, -0.3491405845, 0.2399219424, 0.2198219746, 0.0238257498, 0.2739399672, -0.4158227444, 0.096231617, 0.4593586028, -0.2312580794, 0.0933080837, 0.7471668124, -0.071688354, 0.3275979161, 0.2411195785, 0.117423825, -0.1474772096, 0.5122222304, 0.2956357896, 0.3313481212, 0.183595404, 0.0873704702, -0.1988351345, -0.0440698043, 0.0718022883, 0.0233150348, -0.2806161344, -0.0010324921, 0.0523833483, 0.0993889421, -0.1351291388, 0.0063865371, 0.0764460936, 0.0787784681, -0.0853213221, -0.3726899028, -0.1807305515, -0.0773206875, -0.4351953268, 0.01000458, -0.001013499, 0.2239075601, 0.5572529435, -0.0631000623, 0.2330804467, -0.4022645056, -0.1216403395, -0.0671673715, 0.3376493156, -0.4362980723, 0.0450067744, 0.1967760026, 0.0978502408, 0.346116513, -0.2736424804, 0.3674904108, 0.0158710591, -0.031347651, -0.3278319538, -0.2703052759, -0.1479445398, 0.2584277987, 0.4770183861, -0.2473758906, 0.1601272225, 0.3426006138, 0.0708494037, -0.0214187577, 0.300971657, 0.292106092, 0.1484787315, -0.3536860943, 0.6270409822, 0.0342788883, -0.1725030243, -0.0649002492, 0.0291265883, -0.2207117975, 0.0153457336, 0.4927926064, -0.0857062191, 0.2625670433, 0.0981514752, 0.0294043235, 0.2018339932, 0.3894337118, 0.2932920158, -0.4533610344, -0.0536825396, 0.165880993, -0.3433844149, -0.1413581818, 0.1090333909, -0.1523896754, -0.1043179706, -0.2610398531, 0.1003694683, -0.0362397209, 0.044841513, 0.1843627393, -0.2561531365, 0.2380366623, -0.0057347491, -0.3758707047, -0.0841977522, 0.0209679883, 0.0370424837, -0.3455042839, -0.0190410353, 0.4193590879, -0.1062776893, -0.2612064779, -0.1117051169, 0.3965738416, 0.0212083366, -0.0702140629, 0.2049696892, 0.5175045133, -0.213140443, 0.1191594154, 0.0022139298, -0.3588144183, -0.4568067789, 0.4172986746, -0.0768358037, 0.3570567071, 0.037398994, 0.0126484632, -0.0493576191, 0.1037035882, -0.2392888069, 0.0344576761, -0.4673057795, 0.0310814008, 0.2342381775, 0.064965196, 0.1397205591, 0.2943554223, 0.1055683643, 0.4483829439, -0.1242293492, -0.3101114631, 0.5607992411, -0.3047521412, -0.6528938413, 0.1209914237, -0.1744094193, 0.3874824047, 0.0959179103, -0.6975601912, -0.1059783548, 0.3279696107, -0.0964663476, -0.2087820768, 0.1775739044, 0.2100795209, -0.0227710307, 0.0247898623, 0.1218382269, 0.0436750501, -0.1834022552, -0.0161777064, -0.0734408498 ]
https://github.com/huggingface/datasets/issues/2022
ValueError when rename_column on splitted dataset
This has been fixed in #2043 , thanks @mariosasko The fix is available on master and we'll do a new release soon :) feel free to re-open if you still have issues
Hi there, I am loading `.tsv` file via `load_dataset` and subsequently split the rows into training and test set via the `ReadInstruction` API like so: ```python split = { 'train': ReadInstruction('train', to=90, unit='%'), 'test': ReadInstruction('train', from_=-10, unit='%') } dataset = load_dataset( path='csv', # use 'text' loading script to load from local txt-files delimiter='\t', # xxx data_files=text_files, # list of paths to local text files split=split, # xxx ) dataset ``` Part of output: ```python DatasetDict({ train: Dataset({ features: ['sentence', 'sentiment'], num_rows: 900 }) test: Dataset({ features: ['sentence', 'sentiment'], num_rows: 100 }) }) ``` Afterwards I'd like to rename the 'sentence' column to 'text' in order to be compatible with my modelin pipeline. If I run the following code I experience a `ValueError` however: ```python dataset['train'].rename_column('sentence', 'text') ``` ```python /usr/local/lib/python3.7/dist-packages/datasets/splits.py in __init__(self, name) 353 for split_name in split_names_from_instruction: 354 if not re.match(_split_re, split_name): --> 355 raise ValueError(f"Split name should match '{_split_re}'' but got '{split_name}'.") 356 357 def __str__(self): ValueError: Split name should match '^\w+(\.\w+)*$'' but got 'ReadInstruction('. ``` In particular, these behavior does not arise if I use the deprecated `rename_column_` method. Any idea what causes the error? Would assume something in the way I defined the split. Thanks in advance! :)
32
ValueError when rename_column on splitted dataset Hi there, I am loading `.tsv` file via `load_dataset` and subsequently split the rows into training and test set via the `ReadInstruction` API like so: ```python split = { 'train': ReadInstruction('train', to=90, unit='%'), 'test': ReadInstruction('train', from_=-10, unit='%') } dataset = load_dataset( path='csv', # use 'text' loading script to load from local txt-files delimiter='\t', # xxx data_files=text_files, # list of paths to local text files split=split, # xxx ) dataset ``` Part of output: ```python DatasetDict({ train: Dataset({ features: ['sentence', 'sentiment'], num_rows: 900 }) test: Dataset({ features: ['sentence', 'sentiment'], num_rows: 100 }) }) ``` Afterwards I'd like to rename the 'sentence' column to 'text' in order to be compatible with my modelin pipeline. If I run the following code I experience a `ValueError` however: ```python dataset['train'].rename_column('sentence', 'text') ``` ```python /usr/local/lib/python3.7/dist-packages/datasets/splits.py in __init__(self, name) 353 for split_name in split_names_from_instruction: 354 if not re.match(_split_re, split_name): --> 355 raise ValueError(f"Split name should match '{_split_re}'' but got '{split_name}'.") 356 357 def __str__(self): ValueError: Split name should match '^\w+(\.\w+)*$'' but got 'ReadInstruction('. ``` In particular, these behavior does not arise if I use the deprecated `rename_column_` method. Any idea what causes the error? Would assume something in the way I defined the split. Thanks in advance! :) This has been fixed in #2043 , thanks @mariosasko The fix is available on master and we'll do a new release soon :) feel free to re-open if you still have issues
[ -0.0835754722, 0.2197992504, -0.0348291695, -0.042384401, 0.420876801, 0.0730621517, 0.6438040137, 0.4179840088, -0.02255271, 0.3396533728, -0.0866866112, 0.3978037536, -0.0521847606, 0.3644354939, -0.2562586963, -0.2477054149, 0.1044135988, -0.0795422792, 0.1267364621, 0.2697293758, -0.3300530612, 0.0778075382, -0.3932775855, 0.1260685772, -0.0781338811, 0.0623800904, 0.0325198993, 0.095377028, 0.0282755755, -0.3610773087, 0.1441162527, -0.0355102718, 0.1899645627, 0.5556836128, -0.0001162362, 0.1232812628, 0.2225488722, -0.1280172914, -0.1891634315, -0.4528476298, -0.0052786991, -0.1680361032, 0.0017362982, -0.3506764174, 0.1707243323, 0.2284772098, -0.2309947014, -0.2584792078, 0.1006068587, 0.3693118691, 0.1076899171, 0.0965301394, -0.0107201263, 0.119124189, 0.1085150391, 0.0212475434, -0.304772526, 0.0899829715, -0.0761239678, -0.1792216301, -0.1137905866, 0.2317513227, -0.0711765811, 0.1480420083, -0.0235447995, 0.3106741011, 0.0345895365, -0.0469644926, 0.0888524503, 0.067180112, 0.2144693732, -0.2401782572, -0.4639912546, -0.4442961216, 0.1637720019, -0.3250162899, 0.2570497692, -0.1877464354, 0.1232364774, 0.184074536, -0.1398661435, 0.0523618944, -0.1373050064, -0.1406387985, -0.0923045054, 0.089361459, -0.0323617086, 0.4094692767, -0.1002932563, -0.1114298552, 0.1749084294, 0.0513333715, -0.0785199329, -0.1311809123, -0.5019621253, 0.0278141052, -0.2302472442, -0.2595576644, -0.3201278448, -0.1200024262, 0.0158369392, -0.2517311871, 0.2726787329, 0.2164973319, -0.036297407, 0.1996524483, 0.1300998479, 0.4851776958, 0.235996604, 0.1402988285, -0.2038473338, -0.0915255919, 0.0607342906, -0.2988733649, 0.1496173888, 0.1908585429, 0.1388384998, 0.1012243927, -0.4223222733, -0.0214156471, -0.2999309897, -0.1886164695, -0.0305336583, 0.221455723, 0.203239277, 0.4568884075, 0.1693873107, 0.0574800149, -0.0006993152, -0.1406515241, -0.0371252149, 0.1793323159, -0.301969707, 0.1505987048, 0.0399701372, 0.1964563131, 0.0814437792, -0.2706572115, -0.0208246484, -0.2991543114, -0.0203199238, -0.1991915256, 0.0952111781, 0.2918279767, -0.083551839, -0.1079087034, 0.1164139062, -0.4457986951, 0.0352155119, 0.2579236329, -0.2536047995, -0.3207926154, 0.1397260278, 0.1286003292, 0.0399009511, -0.052753862, 0.0482412465, -0.022960389, 0.6056432724, -0.1394456327, 0.1351452023, -0.3096874356, -0.2267052233, -0.0160398521, -0.0332792625, 0.100044392, -0.5333274603, -0.1184840947, 0.0636191741, 0.194196701, 0.1769787967, 0.1755303741, 0.1830015182, 0.158333376, 0.1335392594, 0.2669038773, 0.2967287898, -0.3958651125, 0.0288950354, 0.2807648778, -0.3185537159, -0.1601908207, 0.3707809448, -0.2173385769, 0.1207502633, -0.10769362, 0.1341802329, 0.0113364831, -0.0657369122, 0.0960767344, -0.0378143936, -0.0701454952, 0.3307214081, -0.0180217437, 0.0188635159, -0.1157905161, -0.1568620354, -0.2933052778, 0.3243607283, -0.0264654048, 0.1164178774, 0.1300329119, 0.1057567596, 0.5420783162, 0.1200009882, -0.0832296014, -0.2253143042, 0.0283839256, 0.3180815578, -0.1683247089, -0.3165953159, -0.170928359, -0.432600975, 0.0489438325, -0.0752225071, 0.0472048894, 0.0313137695, 0.2542939484, -0.1051333249, -0.1217909753, -0.4117277265, 0.29516536, -0.5749083757, 0.2464327514, -0.3180007637, 0.0775999352, 0.0061796736, -0.3219504058, -0.250230968, 0.155267179, 0.171471864, -0.0112889539, -0.2374311686, 0.6657512188, 0.3477511406, 0.0463436879, -0.3765339851, -0.2769812047, -0.1085002273, 0.2417755872, -0.2358049899, -0.1330700368, 0.2457469106, -0.0412520841, -0.0628124997, 0.2938635051, -0.4202156961, 0.5500615835, -0.0109362453, -0.1532361507, 0.0020682961, -0.2575076818, -0.1037363708, -0.3930053115, -0.1505553424, -0.331161648, 0.1140192896, -0.1965572387, -0.1869238317, -0.29323107, 0.6310690045, -0.0536830612, -0.1708037257, 0.0077963714, 0.1357935965, -0.0466479957, -0.0799034908, 0.623110652, 0.4926961064, 0.0294923112, -0.1018568501, 0.251108706, 0.1871848553, -0.2857355177, 0.2048225999, 0.2681160569, 0.1419735998, 0.4111416936, 0.245643124, 0.0051553212, -0.2268374562, -0.1838647425, 0.396805048, 0.1195368245, -0.4919123054, 0.0235622823, -0.1649121344, 0.2419193387, -0.205700919, -0.2267123461, 0.1853085905, -0.5442620516, -0.2349178791, 0.3472461104, -0.3372889161, 0.3051024675, -0.1589922011, -0.3950487971, 0.0922144875, -0.166128397, -0.0719224811, -0.1782117486, -0.0885191113, -0.0458368137, -0.1261464655, -0.0972288772, 0.0410269871, -0.1662224531, -0.0943965465, -0.1365419626, -0.2923831344, -0.0274041556, -0.4529349506, -0.0093844514, 0.4005092084, 0.0366893299, 0.1800100803, -0.4637694061, 0.2288458645, 0.0775951669, -0.0209742077, 0.0346014276, 0.2929466665, 0.0061278157, -0.1640410125, -0.6690229774, -0.2725983262, -0.3042470217, 0.1338291764, -0.2729790211, -0.1675992906, 0.0596727617, -0.1618383378, 0.0142356679, 0.1734490097, 0.1514363438, -0.0215064287, 0.011957176, 0.1503855139, 0.0146297254, 0.1776954383, 0.1265312433, 0.1827683002, -0.1011584997, 0.0592229851, -0.1364729702, -0.0564791225, -0.0916980729, 0.3380534053, 0.0930300206, -0.0017821193, 0.2639890909, 0.2979952693, -0.0363331549, -0.1717990637, -0.2675011754, 0.2465604544, 0.0576315075, 0.1198231429, 0.0803304315, 0.6318508387, 0.2055417746, 0.1752792299, -0.1507172287, -0.0701788217, 0.0658942088, -0.0693153441, 0.0188847296, -0.1903809011, -0.0143463276, -0.0719317645, -0.3799415827, -0.2754400671, 0.096847266, -0.1404150426, -0.0746425688, -0.0370620154, 0.0086294189, 0.0436806381, -0.2274770588, -0.0524390116, -0.0882401913, 0.42756778, 0.1327887625, 0.1390787363, -0.0748876557, -0.058731541, 0.1260322481, 0.1799936295, 0.1219585538, -0.3082248867, -0.234809041, 0.0278904065, -0.2218732983, 0.2311759591, 0.3654351532, 0.5237159133, 0.1095001996, -0.4189087451, 0.0391255692, 0.1244077235, 0.5819939375, -0.2301921695, -0.030865334, 0.1820009053, -0.1582550257, 0.0998640805, -0.1680943221, -0.2026171386, -0.0297280047, 0.2626559436, 0.4312619865, -0.0818836987, -0.0455454849, 0.502107501, 0.2213870883, -0.0002617091, -0.2003733218, -0.1444071233, -0.3349114954, -0.2491312325, -0.0207628198, 0.0515861884, 0.1574814767, 0.0513999909, 0.3127939701, -0.0301314443, -0.3142571151, 0.1404970884, 0.2325979918, -0.0428320765, -0.077659674, 0.1895498186, 0.0559758693, 0.178773731, 0.0804948658, 0.2318655849, -0.4986414015, -0.6792057157, -0.0838988721, -0.1733063757, 0.4837496877, 0.2373595238, -0.235502705, 0.2386440337, -0.0622688383, 0.2222549319, -0.10557428, -0.0054894798, 0.3826479316, 0.0841320679, -0.3165596724, -0.5406338573, 0.3414801657, 0.0795639902, -0.0830518901, 0.0900764465, 0.366597414, -0.4676117897, 0.4190024734, -0.1272705048, 0.539450109, 0.171179533, -0.0342088602, 0.4204015136, -0.1584543139, -0.0678921416, -0.0687831193, 0.1058085859, -0.3747583032, -0.2032313049, -0.0629145056, 0.0981254727, 0.4457719028, 0.0439918824, -0.0239877179, 0.313187331, -0.0377461463, 0.3181698024, -0.0129596572, -0.0236805677, -0.1248436719, -0.2890896499, 0.0314166732, 0.0170258507, 0.0585119836, -0.330789119, 0.3468234539, 0.1850595623, -0.0445545875, -0.006880112, -0.1796742976, -0.0920961201, -0.0396211259, 0.2621532381, -0.0702736154, -0.2068293691, 0.2561680377, 0.236001268, 0.3455247879, 0.12043906, 0.2218236923, 0.2901316285, 0.0536014549, 0.3150189519, 0.0510932729, -0.0520140976, 0.3549726307, 0.2559574842, -0.1892664731, -0.1287591755, -0.0970652103, -0.1592885554, -0.1369862258, 0.0045311898, 0.3254040182, -0.7125178576, -0.2792512178, -0.1463442147, 0.0076216683, -0.2057143152, 0.0702228248, -0.4360502064, -0.3211262226, 0.0423503108, -0.2473160923, -0.5409809947, -0.0410528854, 0.2723688781, 0.0928784534, 0.423668772, 0.6302573681, 0.0744518265, -0.1189604327, -0.0769283846, 0.2815293074, -0.0017068423, -0.2372873724, 0.3587241769, 0.2491544187, 0.0125261098, 0.1421518475, 0.0894049481, 0.0139237689, 0.1374352574, -0.1794731319, -0.2946612239, -0.2364348322, 0.0364807472, 0.2371772826, 0.098581776, 0.1828024089, 0.2921198308, -0.4138015211, -0.1671659946, -0.198004961, -0.0679664612, -0.0445374288, 0.339509964, 0.2307618409, 0.075798817, -0.0225775409, -0.169207111, 0.2093006521, 0.3660114408, 0.3369349241, -0.1701855958, -0.311543256, 0.1045252085, 0.0879618824, 0.3199936748, -0.2685279846, -0.0645285249, -0.1654909551, -0.2432914227, 0.1397912651, 0.4403591752, 0.0093705337, 0.6279397607, -0.2326393127, 0.0618091598, -0.0221134052, 0.1973510981, -0.3701750338, 0.1364085078, -0.1778948903, 0.3094801605, -0.0463115722, 0.1947897226, -0.3871261775, -0.1407454759, -0.1017041951, 0.0919172615, 0.1624630839, -0.2329884022, 0.0275496468, -0.227638945, 0.3421430886, 0.5766687989, -0.0366017483, -0.3406233788, 0.2601457238, 0.0938545614, -0.2149891406, 0.2604699731, 0.1313988566, -0.3491405845, 0.2399219424, 0.2198219746, 0.0238257498, 0.2739399672, -0.4158227444, 0.096231617, 0.4593586028, -0.2312580794, 0.0933080837, 0.7471668124, -0.071688354, 0.3275979161, 0.2411195785, 0.117423825, -0.1474772096, 0.5122222304, 0.2956357896, 0.3313481212, 0.183595404, 0.0873704702, -0.1988351345, -0.0440698043, 0.0718022883, 0.0233150348, -0.2806161344, -0.0010324921, 0.0523833483, 0.0993889421, -0.1351291388, 0.0063865371, 0.0764460936, 0.0787784681, -0.0853213221, -0.3726899028, -0.1807305515, -0.0773206875, -0.4351953268, 0.01000458, -0.001013499, 0.2239075601, 0.5572529435, -0.0631000623, 0.2330804467, -0.4022645056, -0.1216403395, -0.0671673715, 0.3376493156, -0.4362980723, 0.0450067744, 0.1967760026, 0.0978502408, 0.346116513, -0.2736424804, 0.3674904108, 0.0158710591, -0.031347651, -0.3278319538, -0.2703052759, -0.1479445398, 0.2584277987, 0.4770183861, -0.2473758906, 0.1601272225, 0.3426006138, 0.0708494037, -0.0214187577, 0.300971657, 0.292106092, 0.1484787315, -0.3536860943, 0.6270409822, 0.0342788883, -0.1725030243, -0.0649002492, 0.0291265883, -0.2207117975, 0.0153457336, 0.4927926064, -0.0857062191, 0.2625670433, 0.0981514752, 0.0294043235, 0.2018339932, 0.3894337118, 0.2932920158, -0.4533610344, -0.0536825396, 0.165880993, -0.3433844149, -0.1413581818, 0.1090333909, -0.1523896754, -0.1043179706, -0.2610398531, 0.1003694683, -0.0362397209, 0.044841513, 0.1843627393, -0.2561531365, 0.2380366623, -0.0057347491, -0.3758707047, -0.0841977522, 0.0209679883, 0.0370424837, -0.3455042839, -0.0190410353, 0.4193590879, -0.1062776893, -0.2612064779, -0.1117051169, 0.3965738416, 0.0212083366, -0.0702140629, 0.2049696892, 0.5175045133, -0.213140443, 0.1191594154, 0.0022139298, -0.3588144183, -0.4568067789, 0.4172986746, -0.0768358037, 0.3570567071, 0.037398994, 0.0126484632, -0.0493576191, 0.1037035882, -0.2392888069, 0.0344576761, -0.4673057795, 0.0310814008, 0.2342381775, 0.064965196, 0.1397205591, 0.2943554223, 0.1055683643, 0.4483829439, -0.1242293492, -0.3101114631, 0.5607992411, -0.3047521412, -0.6528938413, 0.1209914237, -0.1744094193, 0.3874824047, 0.0959179103, -0.6975601912, -0.1059783548, 0.3279696107, -0.0964663476, -0.2087820768, 0.1775739044, 0.2100795209, -0.0227710307, 0.0247898623, 0.1218382269, 0.0436750501, -0.1834022552, -0.0161777064, -0.0734408498 ]
https://github.com/huggingface/datasets/issues/2021
Interactively doing save_to_disk and load_from_disk corrupts the datasets object?
Hi, Can you give us a minimal reproducible example? This [part](https://huggingface.co/docs/datasets/master/processing.html#controling-the-cache-behavior) of the docs explains how to control caching.
dataset_info.json file saved after using save_to_disk gets corrupted as follows. ![image](https://user-images.githubusercontent.com/16892570/110568474-ed969880-81b7-11eb-832f-2e5129656016.png) Is there a way to disable the cache that will save to /tmp/huggiface/datastes ? I have a feeling there is a serious issue with cashing.
19
Interactively doing save_to_disk and load_from_disk corrupts the datasets object? dataset_info.json file saved after using save_to_disk gets corrupted as follows. ![image](https://user-images.githubusercontent.com/16892570/110568474-ed969880-81b7-11eb-832f-2e5129656016.png) Is there a way to disable the cache that will save to /tmp/huggiface/datastes ? I have a feeling there is a serious issue with cashing. Hi, Can you give us a minimal reproducible example? This [part](https://huggingface.co/docs/datasets/master/processing.html#controling-the-cache-behavior) of the docs explains how to control caching.
[ -0.0748547912, -0.146971494, 0.0561724305, 0.7758016586, 0.2905217111, 0.3213841319, -0.2317181975, 0.1311902702, 0.1942948848, 0.1316707879, -0.1502694786, 0.0668354183, 0.2389938831, 0.2033746541, 0.1379984319, 0.2394487262, 0.4092518091, -0.1022173688, -0.2969144583, -0.0024890825, -0.0571398847, 0.2013203353, 0.2392441332, -0.0475087091, -0.370827049, -0.1665402651, 0.0865428671, 0.3370099664, -0.0457872003, -0.3307514489, 0.1703148633, 0.2500182688, -0.2806943655, 0.3997520804, -0.0001322348, -0.2780959606, 0.0654913187, -0.1120894626, -0.4807300568, 0.3449935913, -0.2146831155, 0.1056198552, 0.1832562089, -0.0514746308, 0.0180760622, 0.0305720828, -0.0448684469, -0.2771771252, 0.4946137667, -0.1418090761, 0.0099721849, 0.2939891815, 0.0540789515, 0.1705434173, -0.0891117454, 0.3520072103, -0.1730326861, 0.2473762333, -0.0567084551, -0.0422368608, -0.1335353255, 0.3271781206, -0.1942923069, -0.2215318084, 0.4750730395, 0.1670784354, -0.226108849, -0.1015614122, 0.141680479, 0.0300045274, 0.2404651642, -0.4413734674, -0.4901422262, -0.4094578326, -0.1626338214, -0.2622802556, 0.4829568267, 0.1149292886, 0.0237634219, 0.2698064744, -0.6267797351, -0.3822418451, -0.0752122849, 0.1046850979, 0.2587685883, -0.6426107287, -0.2962203622, -0.0202893727, 0.0960971713, -0.0269153304, -0.2518187761, -0.2842940092, -0.4094382823, 0.2043644935, -0.2804296017, -0.1706220806, -0.0365121365, 0.6992855072, 0.3096772432, 0.0266735889, 0.1539710611, -0.0268793497, -0.3828507066, 0.0570360199, 0.4450926781, 0.1841095537, -0.151034236, -0.3038637638, 0.1937831342, 0.248701632, 0.1934031546, -0.1279371381, 0.6235288978, 0.0654037744, 0.3158102334, -0.2794089615, 0.1027024388, -0.4267749786, -0.1581874192, 0.2238550335, 0.1136851385, 0.1270825267, 0.1518256664, 0.2743179798, -0.2032473385, 0.2388761938, -0.1741431803, 0.2308165133, -0.1112834439, -0.1644694954, -0.241180405, 0.0200549439, -0.1028403565, 0.4697911739, 0.357298106, -0.2158574462, 0.155540809, 0.1488800794, -0.2194773555, -0.2177102566, -0.1413963139, -0.1730891615, 0.2110489011, 0.2001751959, -0.0784014389, 0.2614493966, 0.0442140587, 0.1813441366, -0.1044088304, -0.0167491958, -0.3025810421, -0.1653331518, 0.2371430695, -0.0093310531, -0.3137513995, -0.0204300433, -0.3833121955, -0.0406768061, 0.373403877, -0.0606608316, 0.2270979583, 0.3761094809, -0.4323393703, -0.2126268297, 0.1186987385, 0.7272847295, -0.0777009726, -0.1809045672, 0.338031143, -0.0677056834, -0.0976456702, 0.4955671728, -0.0461679175, 0.1240396574, -0.1751255691, -0.0000537038, 0.0921349525, -0.4036756754, -0.5119620562, -0.0031918176, 0.2435679734, 0.1814949512, 0.0818847716, 0.1703975797, 0.0276781544, -0.208033964, -0.3021431863, 0.2457523346, 0.0571981445, 0.1007415652, -0.2472882271, -0.2150124907, 0.0834209472, -0.0444381759, -0.3568455577, 0.4231319427, -0.0431621484, -0.0345391482, 0.029222291, -0.0048336089, 0.2021771967, 0.328456074, 0.237211287, 0.1297817677, 0.0238767341, 0.0728911459, -0.4457365572, 0.1206497997, 0.0823690742, -0.2579559386, -0.0335217603, -0.2511535883, -0.0211947151, 0.1351120174, -0.0782659054, 0.1193074286, -0.0983167142, -0.0323054232, 0.2460307479, 0.1717047989, -0.2977083921, 0.8645339608, 0.0648761541, 0.2302660048, -0.5460050702, -0.0653680637, 0.1276176274, -0.0912411958, -0.3207087517, -0.1451039314, 0.1751978993, -0.2126637995, -0.0814764425, 0.6701143384, -0.0175035708, 0.4155430198, 0.0389865376, 0.3504513502, 0.2606140077, 0.1764133275, -0.0385824405, -0.0113052428, 0.1953108758, 0.0030963644, -0.2079167813, 0.232373789, 0.0401255973, -0.0596018545, -0.0595627092, -0.1137472913, 0.1619166136, -0.1846331656, 0.020550631, -0.3181634545, -0.0380235463, -0.2064875662, 0.2917070389, -0.023800889, -0.3807864189, 0.115795292, 0.2447306365, 0.024722591, 0.0320938826, -0.0001367891, -0.0198976733, -0.3366125822, 0.0410211235, 0.2540480793, 0.5070416331, -0.0893042535, 0.0645957068, 0.0287314374, 0.0835926831, -0.0630108565, 0.1469513476, 0.0372381955, 0.0762840137, 0.1165314913, 0.027034834, -0.0039834026, -0.455496192, 0.4673796296, -0.1203903332, 0.1310743392, -0.4288455844, 0.3027191758, -0.0754572228, -0.1827245206, -0.0489478521, 0.0194735937, -0.358630389, -0.2553177774, 0.1200568303, 0.7634334564, 0.0096857026, -0.0343592837, -0.0973855406, 0.6595609188, -0.137425229, 0.1637320817, -0.5104170442, 0.0852933675, -0.1150373667, -0.2006238699, 0.1317943037, -0.2283477783, 0.3360624313, -0.2017662823, -0.1169519424, -0.3274323046, 0.1613984853, 0.1672956645, 0.1527269483, 0.1604951322, -0.0304518752, 0.136500746, -0.0491771251, 0.2691927254, 0.026231572, -0.2377795279, -0.2840477526, 0.0405841619, 0.134171769, 0.0388818756, -0.113904506, 0.3498015404, -0.0329404138, -0.054174602, 0.256265223, -0.1604388058, 0.0446979553, 0.1442909241, 0.0514639802, -0.1174161881, -0.2412369102, 0.0953688994, -0.3460168839, -0.8206090927, 0.327139616, 0.0187047534, -0.2429234087, 0.1773413569, 0.4334362745, -0.0686252639, 0.2557430863, -0.4300454557, -0.3236351013, -0.1416158527, -0.1264074296, -0.2315829545, 0.02077269, 0.1110523641, 0.1076804698, 0.0291785002, -0.0460483767, -0.2006753981, 0.2317097336, -0.0316281766, 0.4652905762, -0.1587825567, 0.2857138216, 0.144543305, 0.1652268171, 0.0474155918, 0.0871283561, 0.5161065459, 0.1988771409, 0.7607294917, -0.0900924504, -0.1815165579, -0.3419688642, -0.2872555256, -0.1473708451, -0.0324975625, 0.2255662382, 0.2973237932, -0.0842173323, 0.0380378515, -0.1443547606, -0.2730957866, -0.1276720762, 0.0462879427, 0.1948998421, -0.0110854879, 0.0630232841, 0.0096931159, -0.2521273494, 0.1720576137, 0.3098351061, 0.3786352873, 0.0557165742, -0.3670054078, 0.0577389821, -0.2918666899, 0.0747628957, -0.3715943992, 0.2076220661, -0.1661171019, 0.0529628769, 0.1380391121, -0.1151387021, 1.0467970371, 0.0593483597, 0.2043456137, -0.1869149506, -0.3095418513, -0.0777510256, 0.0691587701, 0.0161839649, 0.2611722946, 0.0595142879, 0.6162334085, -0.1501958072, -0.4283817112, -0.0670606047, 0.2121833265, -0.3520035744, -0.1192601696, -0.0290309042, -0.0092237443, -0.1950488985, -0.1264072806, -0.0532117859, -0.0326081142, 0.070903495, 0.1760477722, -0.1867098063, 0.130140543, 0.0816659778, -0.0664822236, 0.407472223, -0.0674879551, 0.1242028102, 0.0730614066, 0.2456011325, 0.1384441555, 0.238099277, 0.1998928189, -0.1974644661, -0.1380943656, 0.2215231359, -0.0196412355, 0.3996661305, -0.1574785411, -0.0589960851, 0.1405602843, -0.1138249561, -0.3557966352, 0.1030612364, 0.066083394, 0.049211368, -0.3060366213, -0.0036102235, 0.260648489, 0.1160127074, -0.0404057056, -0.1814966798, 0.1962469518, -0.3767838776, 0.2850162387, 0.2217986137, 1.1114579439, -0.0965870693, 0.4467280507, -0.0190250892, -0.1858024299, 0.4888449311, -0.4004943371, 0.0697800368, -0.3076685667, 0.0705442131, -0.238184765, -0.0994821116, 0.0114009995, 0.0542057976, -0.02640374, 0.3500375152, -0.3125453889, 0.3876648843, -0.2943257689, -0.0302391946, -0.2995472848, -0.4565080106, -0.154296428, 0.0095068254, -0.1227839589, 0.0694234222, 0.0924300402, -0.1352427453, -0.0731392652, 0.0310237408, -0.0755948275, 0.0435000807, -0.1127257198, 0.0468672477, 0.1002517045, -0.1901458949, -0.1807046235, 0.4376675189, 0.5001233816, 0.0209765062, -0.2449199557, 0.0116411801, -0.282494545, 0.025381051, -0.1500499249, 0.1342826188, 0.2004400641, 0.0859993398, 0.1513374895, -0.1590438485, -0.0797575414, -0.119704023, -0.0414699018, -0.0937320963, -0.1113541573, -0.414583981, -0.4675276279, -0.054155048, 0.2668151855, -0.1406587213, -0.0024488969, 0.3070694208, -0.0184369944, 0.078645274, -0.3082566261, -0.1136914194, -0.1069943011, 0.6052974463, -0.0238780454, -0.1746399403, 0.2837358713, -0.2377169132, -0.079407163, -0.1719004959, -0.1476997137, 0.1923366785, -0.4884539247, 0.0662492812, 0.0631098226, -0.0760514662, -0.3701545894, -0.1271536499, 0.0942048281, -0.1351931691, 0.0251704082, -0.1850658506, -0.4053340554, 0.0911819786, 0.404601872, 0.2675653994, 0.1915952116, -0.2586055994, -0.3346119821, 0.008307999, -0.1136095151, 0.0293385535, -0.0723344758, -0.1758127511, 0.4042055011, 0.1595691442, 0.362873435, -0.3410278857, -0.1344438195, -0.0828421861, -0.2898583114, -0.0524391085, -0.0671124384, 0.2208082378, 0.1286535859, -0.2424932718, -0.0785712004, -0.0933794379, 0.1115619689, -0.2209188342, 0.1932240576, 0.3436001539, 0.0891952366, 0.0913300514, -0.0406275205, 0.3802589178, 0.0568003356, -0.1113137752, 0.1512761712, 0.1528165638, -0.0399669856, 0.0099180071, -0.3080689907, -0.2685752511, -0.2312733382, 0.1376548707, 0.3123865426, 0.0286115706, 0.0696552843, -0.2291846722, -0.1985615194, 0.1794014275, 0.4456975758, 0.3498790264, -0.1561811119, -0.1637625694, 0.2775177956, -0.0343011096, 0.2283123732, -0.2759071589, 0.3110446632, -0.1442942619, -0.218152836, 0.2194915116, 0.1457756162, 0.0894247741, 0.1508737952, -0.0159937441, 0.5966027975, 0.1635359824, 0.1562797129, -0.0331902616, -0.1755575538, 0.2858831882, 0.270332545, 0.2711177766, 0.0543093048, 0.2297405452, 0.1829447448, 0.2589284778, -0.0046062702, 0.1549369991, -0.2851570845, -0.3397420347, 0.1565560848, 0.127226159, -0.1917469949, 0.2534335554, 0.007706169, 0.5218215585, -0.0336394496, -0.5268296599, -0.2592499256, 0.3149911463, -0.2393057048, -0.1920983195, 0.1573893428, -0.0409390852, 0.3146926761, 0.3009056151, -0.1844608039, -0.219509542, 0.3485588431, -0.0360614881, -0.0218565017, -0.1828768402, -0.0929952711, 0.1665183753, 0.1911560595, -0.0352359004, -0.0829481557, -0.1525169462, 0.0117238965, -0.2291644812, 0.3340144753, 0.0944076255, 0.1614549905, 0.2619740963, 0.1246221364, 0.0411863625, 0.04916206, 0.1089007854, 0.1243209392, -0.1317131817, -0.2439180017, 0.1301478744, -0.1043872461, 0.081305787, -0.0305604711, 0.0009523472, 0.5091176033, -0.1864435971, -0.135356307, -0.1505177021, -0.0499468185, -0.1239092797, 0.0432746448, -0.2306687236, -0.039436128, 0.3530201316, -0.0909414887, 0.0934866518, -0.0840714127, -0.0211621206, 0.1385386586, 0.6743149161, 0.3110594153, -0.2636904418, -0.1781879663, 0.0558292866, -0.378416121, 0.1127926484, 0.1490977108, 0.2689663172, -0.2375580668, 0.0925043374, -0.2027711868, 0.1909043193, 0.016391553, -0.2266670167, -0.0408781841, 0.2388921529, -0.0339325815, -0.103230536, -0.0601589568, 0.0945416167, 0.0901062638, -0.1053358912, 0.4479222298, 0.253994137, -0.0884995013, 0.1033504903, 0.2387162298, -0.6483799219, -0.0095174573, 0.3108656406, 0.3298614025, -0.1611236781, 0.0723901093, -0.132466808, -0.0474596024, -0.1372134238, -0.155210346, -0.0879192054, -0.0672587752, 0.2128997892, -0.304141134, -0.0716678947, -0.2815505266, 0.2846009135, 0.1085598171, -0.1737359911, -0.1152780652, 0.1978367865, 0.1536781639, -0.0098531581, 0.3255879283, 0.2880613208, -0.1077120379, 0.4771925509, -0.5032347441, 0.124744758, 0.3944432735, -0.1870741546, -0.0229146667, 0.1646422446, 0.2516718209, 0.4809958339, -0.5691510439, -0.6756885052, 0.0115083754, -0.0385030508, -0.1943025887, -0.2786020935, 0.5799129009, -0.4410839677, -0.1232315674, 0.0045274347, 0.6662638783, 0.375352025, -0.1191731691, 0.3322762847, -0.0927175581 ]
https://github.com/huggingface/datasets/issues/2012
No upstream branch
What's the issue exactly ? Given an `upstream` remote repository with url `https://github.com/huggingface/datasets.git`, you can totally rebase from `upstream/master`. It's mentioned at the beginning how to add the `upstream` remote repository https://github.com/huggingface/datasets/blob/987df6b4e9e20fc0c92bc9df48137d170756fd7b/ADD_NEW_DATASET.md#L10-L14
Feels like the documentation on adding a new dataset is outdated? https://github.com/huggingface/datasets/blob/987df6b4e9e20fc0c92bc9df48137d170756fd7b/ADD_NEW_DATASET.md#L49-L54 There is no upstream branch on remote.
32
No upstream branch Feels like the documentation on adding a new dataset is outdated? https://github.com/huggingface/datasets/blob/987df6b4e9e20fc0c92bc9df48137d170756fd7b/ADD_NEW_DATASET.md#L49-L54 There is no upstream branch on remote. What's the issue exactly ? Given an `upstream` remote repository with url `https://github.com/huggingface/datasets.git`, you can totally rebase from `upstream/master`. It's mentioned at the beginning how to add the `upstream` remote repository https://github.com/huggingface/datasets/blob/987df6b4e9e20fc0c92bc9df48137d170756fd7b/ADD_NEW_DATASET.md#L10-L14
[ -0.0541969836, -0.34290272, -0.0709576011, -0.2234125435, 0.1322250068, 0.0014154986, 0.1212345809, 0.0149744786, -0.4329248071, 0.1663284153, 0.0103836693, -0.0504561663, 0.1446348578, 0.2027386278, 0.0767328441, -0.062212456, 0.215923205, -0.1112823188, 0.0094950069, -0.3877196014, -0.095946677, 0.040786393, 0.0525700152, -0.4642565548, -0.0445149578, 0.0981033444, -0.1298273951, 0.007910287, -0.490185231, -0.416392386, 0.3651942015, -0.0329051539, -0.0429882258, 0.476279676, -0.0001129406, -0.0150295869, 0.3386002183, 0.005578585, -0.1953439713, -0.2580167949, -0.4318860769, -0.4034748673, -0.0033087097, 0.2223091424, -0.1875632107, 0.0652673468, 0.1741568893, 0.0976457894, 0.1949371994, 0.1445426643, 0.2238370776, 0.2049380243, 0.2905165553, -0.4031757712, 0.136987254, 0.3619070053, -0.2284916788, 0.6680124998, 0.254555732, 0.4873508215, 0.0701366439, 0.1429863274, 0.3143945336, -0.1501744688, 0.2716189325, 0.000799261, 0.0826400369, -0.1987706721, 0.0030307462, 0.1926566064, 0.6094882488, 0.1220267266, -0.5760815144, -0.1504709423, -0.0158564355, -0.2908192873, 0.0060966238, 0.151765734, -0.0127053633, 0.1186981499, -0.2797864974, -0.5576733351, -0.1758413911, 0.3202893436, 0.2198289335, 0.2837738395, -0.158690244, -0.0596120171, 0.1148350313, 0.1583347321, -0.3049240708, 0.2595873177, -0.1861922741, 0.0499550365, 0.0524862371, -0.1112520993, 0.0173772741, 0.1793416142, 0.1147995591, 0.4388840795, -0.2054878473, -0.2199700773, -0.2314781249, 0.0753106698, 0.2165308744, 0.0756218284, -0.0312718675, -0.0790866166, 0.1986977011, 0.0602078661, 0.3548206687, -0.2259036601, 0.0818690136, -0.0484482832, -0.3386690021, -0.1433114409, 0.2231087387, -0.3168764412, 0.1877764761, -0.2154596299, -0.026034981, -0.0105402917, -0.0132224932, -0.0294338539, 0.0110923722, -0.0049995445, -0.1991399229, 0.2391584814, -0.1727279127, -0.0976904407, -0.2451282144, 0.0471843742, -0.3421869576, -0.0774905086, -0.0103979781, -0.5276143551, 0.4298352599, 0.2547619045, 0.2393216342, 0.2254776955, -0.4373149276, 0.1930024922, -0.0207108371, 0.2717286944, -0.0286173485, -0.0238102004, -0.0957148671, 0.0014505982, -0.0622847676, -0.3066671491, -0.2370887548, -0.3535678387, -0.3002386987, 0.1684076339, -0.2077748924, -0.083942458, -0.4613351524, 0.2800758779, -0.2034401, -0.1949638426, 0.2160708904, 0.3117632568, -0.1525011063, -0.201926142, 0.3219580054, 0.3567755222, 0.1260176897, -0.2448612601, -0.1671652496, 0.0270010605, 0.018594183, 0.2317681015, -0.1968214065, 0.066111058, -0.1416387856, -0.3127048016, 0.1076085269, -0.3901762366, -0.2116605043, 0.1747916639, -0.1828833222, -0.219727844, -0.0311868936, 0.1089670658, 0.0628406852, -0.1208446473, -0.1521588266, -0.0260007437, -0.2195287198, -0.3192837834, -0.1481101513, -0.1362627447, -0.4844513834, -0.0842960477, 0.0573403202, 0.1630787402, 0.3549591899, -0.0026103519, -0.1355064809, 0.0839674771, 0.0962491184, 0.409735173, 0.6342183948, 0.2227145433, -0.1482923627, 0.0710427612, -0.4192635715, 0.1008313969, 0.1169340014, 0.3873185813, 0.152123034, -0.085023053, -0.0443590172, -0.1968232393, -0.0004861765, -0.4259003103, 0.0244928822, 0.1884885579, 0.2138531506, 0.2234973907, -0.2566773891, 0.0958833918, -0.02949173, 0.1528881937, -0.6297131777, 0.108810842, -0.1664843112, 0.0939436555, 0.0237174928, 0.2124969214, 0.0070326352, -0.2777434587, 0.0966234356, 0.3237042427, -0.2774698436, 0.2817158997, 0.3697198331, 0.1944118738, 0.3049988151, -0.1333858073, -0.0943498984, -0.1449736357, -0.0889540166, 0.1931200027, -0.2182801515, 0.0946670696, 0.0110948272, -0.0022163242, 0.2311755121, 0.1143168584, 0.2847479582, 0.0765318573, -0.0514176935, -0.3194246292, 0.1716015935, -0.0226424746, 0.2445032597, -0.0863722786, -0.1692863703, 0.2999426723, 0.1181777567, -0.1917341799, -0.2504562438, 0.2126441002, 0.0553064831, -0.0349405408, 0.1509421468, 0.3782612085, 0.2094810903, 0.3140183389, 0.2590822577, 0.2057404071, 0.2297553867, -0.2771492302, 0.0332852416, -0.01336601, -0.0976354107, 0.010199843, 0.2610310018, 0.0893153325, -0.2038081735, 0.2617340088, -0.1053256392, 0.2662072778, 0.0394539684, 0.1391787827, -0.2544877827, -0.1987808496, -0.2773377001, -0.4256399572, -0.4906130135, -0.2860663533, 0.0503330231, 0.2227458358, 0.0436122641, 0.048166059, 0.1802771986, 0.0652743503, -0.3773153424, 0.0741535202, -0.0229748935, -0.2716955245, -0.0949637741, 0.1281140298, 0.0593439452, -0.1130555123, 0.5370509028, -0.321662873, -0.0148119293, -0.5511780977, -0.7157520652, 0.1464817822, -0.1888094842, 0.2367567122, 0.371858567, -0.0906209797, -0.0535562597, -0.1214696318, 0.1372004449, -0.3795278668, -0.2920963764, -0.2372150421, -0.1862316877, -0.0549145676, -0.1697188318, -0.5078220367, 0.0070132855, -0.3114490211, 0.6385714412, -0.1654118896, -0.0597808547, 0.3390492201, 0.0503282435, -0.1282749176, -0.2300441414, 0.0783428103, -0.1004792303, -0.3781206012, 0.1260284483, -0.3046660423, -0.3719866872, 0.3863869607, 0.1393264085, 0.4151363373, -0.105866462, -0.5360229015, 0.0873727575, -0.1337158531, 0.125972569, 0.2594905198, 0.3358611166, 0.4246500134, -0.2974679768, -0.0998068005, -0.1367077082, -0.1937780976, 0.0255700406, 0.0290752612, 0.3333814442, -0.1351309121, 0.600617528, -0.0499075949, 0.6402547359, -0.0982803553, -0.0154748252, 0.1143735573, -0.1493916661, 0.6323477626, -0.3316773176, -0.3233625889, 0.1364961267, 0.0345527083, 0.0068871006, 0.112579532, 0.4248796701, 0.092324838, -0.246812731, -0.3051477373, -0.100264065, -0.1460120976, -0.1558081508, -0.1389604807, 0.0273382794, 0.1567372084, -0.1699367911, -0.1294647753, 0.0594991818, -0.1904825866, 0.4983609915, 0.3119196594, 0.1762959957, -0.1139166653, -0.0200245008, -0.3287766874, 0.0223798975, 0.1333617568, 0.1110151783, -0.0989660397, 0.0227769986, 0.0639505535, 0.0045186281, 0.0821689889, -0.2684126496, -0.0876870155, -0.1755535901, -0.3973682225, -0.0734747499, 0.0761879236, 0.1294650882, 0.2193844914, 0.5229235291, 0.1918777078, -0.4371405244, -0.2494709045, 0.4528581202, -0.1036303267, 0.0242377147, 0.077480346, -0.363913089, -0.1927819699, -0.1417670846, -0.1561276019, -0.1499823332, -0.2423301041, 0.2002396286, 0.2097415328, 0.0804553628, 0.1307309866, -0.021857623, -0.1100865752, -0.0781898052, 0.1754273772, 0.1059264243, 0.1379512101, 0.2865154743, 0.5018662214, 0.679810524, -0.1456865519, -0.0953030586, 0.1463418156, -0.1023477539, 0.3624458611, 0.2534083426, 0.3015637696, 0.3917586207, 0.3839931488, 0.0469164066, -0.1379913241, 0.0368468389, 0.1982229352, 0.0981238633, -0.1525484174, -0.5134528875, 0.3481763303, -0.2456053644, 0.1051678061, 0.2561168969, 0.6245749593, 0.1192330122, -0.1702458113, -0.1379130036, 0.7449841499, 0.2711578012, 0.1839512587, 0.281359762, -0.2067983896, 0.6587559581, -0.025255695, 0.1205998957, 0.0192948729, 0.1490722448, -0.0277019106, -0.0383052491, -0.1677704155, -0.3307254016, 0.1468949914, 0.3333958983, 0.2054205686, 0.8445011973, 0.1578491628, 0.2077129036, 0.1023799852, 0.10105744, -0.3259066343, 0.1762959063, 0.1065438688, 0.1627651304, -0.2111753374, -0.3545361757, -0.2533887625, -0.207382068, -0.2653508186, -0.1439166963, 0.1521333605, 0.1510452032, 0.153021574, -0.4044550061, 0.1483868659, -0.1124779284, 0.6150484681, 0.0065370481, -0.4030734301, 0.0843152255, -0.0826880336, -0.2517297268, -0.0360667855, 0.03238919, 0.0447336063, -0.2364159077, -0.3017364144, -0.1546250284, -0.0294626243, -0.6098449826, -0.1334956437, 0.0929761529, -0.4606901705, 0.0419839025, 0.1105692238, 0.3218737245, -0.0663351864, -0.2480001301, 0.0948794633, 0.0347459316, -0.1556086987, -0.4615311027, 0.2726503015, -0.0990651846, -0.3219063878, 0.4335669875, -0.0901326239, -0.1981203258, 0.0350438282, 0.1176132932, -0.1752158105, -0.0787030011, -0.259971261, 0.4198156595, -0.6655979156, -0.0720200092, -0.060266111, 0.1404732168, 0.2696124613, 0.0201429613, 0.193198815, -0.1554903388, -0.0399053767, -0.0657759979, -0.4366454184, 0.4004327655, -0.4324069321, -0.0296750553, -0.0345098861, -0.0262645427, 0.2609001994, 0.0994911641, -0.3136252463, 0.1021841243, 0.0710774586, 0.1782092452, 0.1231844276, -0.1891826391, 0.366171211, -0.3087967634, -0.0154167376, -0.2810226381, -0.3800629973, -0.1121124029, -0.0706324354, 0.1056832373, -0.0388634056, 0.0025967099, -0.010811843, 0.0262669921, -0.2635313869, 0.0649378523, 0.1543995291, 0.20396173, 0.0449462645, -0.0805021301, 0.213281855, 0.1636171937, 0.0024137646, -0.0155848907, 0.279817313, 0.2435319722, -0.0116383843, -0.0579944104, -0.124335967, -0.060525883, -0.0442779325, 0.1273368895, -0.0094821528, 0.0360431261, 0.2648444772, -0.0183522552, 0.203474462, -0.140474543, 0.4461745322, -0.0409633294, 0.2287864536, 0.2913950682, 0.1161271855, 0.1003619805, -0.1521703154, -0.0122980438, 0.132845059, 0.1795764863, 0.1124674082, 0.3269711733, 0.5192694664, -0.0869513154, 0.1475432813, 0.2571843266, -0.0131180361, -0.0253289267, 0.332609117, 0.3951195776, 0.0955787897, 0.1072609276, 0.0986684561, 0.2187077552, 0.1012296379, 0.0415244959, -0.0990247726, 0.2544951439, 0.0086008646, -0.0534022599, 0.2118665427, -0.0729226992, -0.1415673941, 0.0891039744, 0.3963586986, -0.1169428974, -0.000647001, 0.4232807755, 0.0812315792, -0.114453584, -0.1230813488, 0.2472335249, 0.0531455018, -0.1036688834, -0.1387123317, -0.0699666366, 0.0223778635, 0.0309684873, 0.0588698089, -0.1924860924, 0.2392428219, -0.046143759, -0.117736809, -0.122255221, 0.0664885789, -0.0201427285, 0.2105911374, 0.1161603108, 0.2627844214, 0.3309718072, -0.3042770624, 0.1512639821, 0.4403744638, 0.344622612, 0.0783986375, 0.3008101583, 0.2424589843, 0.1001096666, -0.1045981199, 0.0281084329, 0.4148677886, -0.0387379974, 0.1191422045, -0.0958627015, 0.1689062715, -0.0897561014, 0.5723361373, -0.162355721, 0.11403469, -0.079784885, 0.4220882654, -0.1311382651, 0.0350477174, -0.2059665173, 0.3387074471, -0.3323360085, 0.1330699772, 0.1188882887, -0.0054400414, -0.100324288, -0.0844215602, 0.1077453792, 0.1567729861, 0.4633114338, 0.5227731466, 0.0973721445, -0.0121585745, -0.3283231854, -0.3530427814, -0.0891448855, -0.1584777087, 0.1687249392, -0.1021848619, 0.1534795463, 0.1190976426, 0.046624355, 0.1040748507, -0.1226317957, -0.0831451565, -0.1003637761, -0.0197657943, -0.1404772699, -0.0286275297, -0.0737156719, 0.0457007661, 0.2124550343, 0.0754460767, -0.1354752481, 0.0448201969, 0.2117479295, 0.3482756019, -0.0373941846, -0.1236425862, -0.1607388109, 0.1037758365, 0.1800481379, -0.1206174046, -0.5101877451, -0.4385742247, -0.2309196591, -0.2537135184, 0.3338176906, -0.2255730182, 0.4225820303, -0.2648856342, -0.2386319041, -0.3333467245, 0.1711943746, 0.1513846517, 0.0108096339, -0.2621186376, 0.2301333845, -0.1468752027, -0.0217886884, 0.2312789559, 0.150733605, -0.0992861763, -0.0273188278, -0.3974135816, -0.1334388405, 0.5408660173, -0.3637285531, 0.2908587456, -0.1150251925, 0.0339614525, 0.6897443533, -0.2622001469, -0.721809268, 0.1165164411, 0.1182704791, 0.1573731899, -0.2257874012, 0.3257893324, -0.2251303047, -0.3165771365, 0.0178392008, 0.4571692944, 0.132865116, -0.3172666728, 0.1752415299, -0.1456605047 ]
https://github.com/huggingface/datasets/issues/2012
No upstream branch
~~What difference is there with the default `origin` remote that is set when you clone the repo?~~ I've just understood that this applies to **forks** of the repo 🤡
Feels like the documentation on adding a new dataset is outdated? https://github.com/huggingface/datasets/blob/987df6b4e9e20fc0c92bc9df48137d170756fd7b/ADD_NEW_DATASET.md#L49-L54 There is no upstream branch on remote.
29
No upstream branch Feels like the documentation on adding a new dataset is outdated? https://github.com/huggingface/datasets/blob/987df6b4e9e20fc0c92bc9df48137d170756fd7b/ADD_NEW_DATASET.md#L49-L54 There is no upstream branch on remote. ~~What difference is there with the default `origin` remote that is set when you clone the repo?~~ I've just understood that this applies to **forks** of the repo 🤡
[ -0.1526435912, -0.390818119, -0.056868542, -0.3803966045, -0.0535282902, -0.1234396175, 0.3151807785, -0.002233495, -0.3539058566, 0.2694292963, -0.0092935748, -0.0466277301, 0.3955129981, 0.2351266295, 0.2467389703, -0.0680189282, 0.3274163902, -0.1903978884, 0.2409141213, -0.7290984988, -0.218036443, -0.0492808595, 0.1212636977, -0.2099992037, -0.1465393603, 0.2308078855, 0.0482761562, 0.1814906746, -0.2902172506, -0.3672443926, 0.4538207054, 0.0617857501, 0.0159860626, 0.453631103, -0.000121437, -0.0352861062, 0.4274772406, 0.0357964784, -0.261028409, -0.1529752016, -0.5940439701, -0.2314038724, 0.0071181804, 0.0715086907, -0.0290649831, 0.180494383, 0.2290720046, -0.1103390679, 0.0469164401, 0.1295337677, 0.1420780271, 0.1913976073, 0.0362160355, -0.3778529167, 0.282125622, 0.4759960175, -0.2266932726, 0.8752228022, 0.241710335, 0.5030208826, 0.1716819406, -0.0652810335, 0.1075377837, 0.0430663824, -0.03737038, 0.1029732674, 0.1749994755, -0.1549439877, 0.1622279137, 0.4301559329, 0.7702748775, 0.2360706031, -0.4754007459, 0.0212695524, -0.0125337951, -0.3896002173, -0.0593700148, 0.3834991753, 0.0646640062, 0.0951502174, -0.1979419887, -0.3189466894, -0.3143385053, 0.2806484401, -0.0658179969, 0.4146604538, -0.1366889328, 0.0840012729, -0.0252127331, 0.2557756901, -0.1660641432, 0.0732250512, -0.2152944207, -0.1190668494, 0.0150900576, -0.1759966314, 0.0897790641, 0.0872922093, 0.0718125105, 0.5886424184, -0.3382132947, -0.1244901568, -0.254632771, 0.0834159404, 0.1628781557, -0.0049643181, 0.0689398944, 0.1233233064, 0.343439281, -0.1844356656, 0.3132755458, -0.1580081135, 0.0624264702, 0.1461663246, -0.2167896032, -0.1568919867, 0.3482615948, -0.4060584307, 0.2222377658, -0.1124552339, -0.1277003288, -0.2261943817, -0.1769109666, -0.0030165557, 0.0541891046, 0.1421895027, -0.4768751264, 0.2858991921, -0.1810345054, -0.160856843, -0.2593809664, -0.1099006534, -0.1611193269, -0.0340505987, -0.0575046465, -0.4412372112, 0.4918141961, 0.1535722166, 0.2645317614, 0.3689870834, -0.1172588021, 0.0552311465, 0.0956317112, 0.3831592202, -0.1270996779, 0.0321268588, -0.1134602726, 0.1048267782, -0.1427421868, -0.0269445926, -0.198996976, -0.481903106, -0.2253123522, 0.0954172239, -0.282834053, -0.2053876668, -0.6288796663, 0.1489581317, -0.3456098139, -0.0665438846, 0.3376176953, 0.1509420127, -0.0143864602, -0.1780399382, 0.0957164243, 0.4086880088, -0.0168424696, -0.2962555289, -0.1248485148, -0.1975781918, -0.0173993483, 0.2092629224, -0.3593127429, -0.0457936302, 0.0538109764, -0.0989740118, 0.0449749008, -0.4179222584, -0.1543740034, 0.0906203985, -0.2368869334, -0.2399966121, 0.0398534425, 0.0818399712, 0.2099035531, -0.1554738879, -0.1764333546, 0.0391691774, -0.2171973586, -0.220608145, -0.1783547401, -0.0482929796, -0.3847341537, 0.111188218, 0.0142515702, 0.1173516214, 0.3190359771, -0.1395799816, -0.2348846793, 0.062280789, -0.1315764487, 0.1852909029, 0.709539175, -0.0590319261, -0.1003816575, 0.2234233022, -0.5277831554, 0.1685786694, 0.1947847903, 0.2524722815, 0.3422008157, -0.0094506741, 0.075596422, -0.0866310447, -0.1810857356, -0.1649610847, -0.089419663, 0.2465170175, 0.2977790833, 0.1671321541, -0.527418375, 0.0090601966, -0.2239992619, 0.1525300145, -0.4646700323, 0.2709396183, -0.0408054926, 0.1490145922, -0.2467189431, 0.0117416978, -0.0781421736, -0.2670854628, 0.0479295775, 0.2713981867, -0.1804294884, 0.4189500213, 0.4851286113, 0.2931004167, 0.344198525, -0.247910127, 0.1567436159, -0.0440132841, -0.1111493856, 0.1980710328, -0.269190073, 0.0970356986, 0.1809615791, -0.0314299092, 0.1452762634, -0.1158270165, 0.2320697904, 0.01500462, -0.1041765213, -0.3393949866, 0.0519043766, 0.2170081139, 0.2867290676, -0.057962589, -0.1593402028, 0.3818153143, 0.09627828, -0.57216084, -0.2647395134, 0.2277707607, 0.0936380327, -0.2030421048, 0.1316751838, 0.5656309128, 0.3525890112, 0.1717998683, 0.2733195722, 0.1977958828, 0.0986280367, -0.4801002145, 0.1898614764, -0.0167465396, -0.1267502904, -0.0097042639, 0.1698032171, -0.0199275017, -0.1559549719, 0.0612977147, 0.0982962847, 0.2183146179, 0.1269361377, 0.0965892524, -0.3688340783, -0.1766268164, -0.3448288441, -0.2950823307, -0.5318114758, -0.334975481, -0.0198536441, 0.0183211192, -0.0965113938, -0.0817902535, 0.1770531088, 0.1709260792, -0.4175529778, 0.0343736336, -0.0304647163, -0.3974839151, -0.1017923281, 0.0360547081, -0.1647348255, -0.0609868616, 0.5170273781, -0.4658837318, -0.1691501737, -0.4035308957, -0.537556529, 0.1256887168, 0.059817791, 0.1879418939, 0.1697302461, 0.1899939179, 0.0890594646, 0.0315884613, 0.1639563292, -0.2339732051, -0.2296449244, -0.2627095282, -0.2379184365, -0.1141397357, -0.0046676099, -0.401268214, -0.1181752533, -0.2007207721, 0.464268446, -0.1780478954, 0.0379759371, 0.2009676695, -0.1617177278, -0.065694645, -0.2549103498, 0.0839422569, -0.1440754533, -0.5398854613, 0.0550482161, -0.2148226053, -0.1005781814, 0.3010261655, 0.0545759946, 0.2800721526, 0.0477071665, -0.5282684565, -0.0100663342, -0.1690361649, 0.3068681955, 0.5019598007, 0.3753701746, 0.5677351356, -0.4530458152, -0.007560201, 0.0147909969, -0.3003118038, 0.0370481238, 0.2082605958, 0.165003702, -0.0484849885, 0.4850201607, -0.272374332, 0.7536587119, -0.1300550848, 0.0822993144, -0.0404144637, 0.008437654, 0.5139192939, -0.407975316, -0.0811415091, 0.2301471084, 0.1241425276, -0.0654323995, 0.0256673619, 0.3337322772, -0.0201794878, -0.1728774905, -0.5013917685, 0.0714676529, -0.1127294376, -0.0697221234, -0.0687466413, 0.1283312738, 0.1590297222, -0.1638228595, -0.0739359632, 0.0784244463, -0.2701804638, 0.4493611753, 0.1999804676, -0.0080486834, -0.5328272581, -0.10791035, -0.144419685, 0.0893222541, 0.1260146946, -0.0015050583, -0.0078386292, -0.1675854027, 0.1276484281, -0.050465934, 0.0177277401, -0.3045563698, -0.1077800691, -0.2122404426, -0.4268773198, -0.0055088624, -0.1225961149, 0.0550628752, 0.1536032856, 0.4221287668, 0.2055980116, -0.2968250513, -0.2599083781, 0.4703330398, 0.091947332, -0.026870586, 0.1649599969, -0.3371908665, -0.0162043422, -0.1141687483, -0.0482300892, -0.38855654, -0.3450285196, -0.0113601871, 0.2983248234, 0.0268265437, 0.1325589418, -0.2346945405, 0.0812708586, -0.1878331155, -0.0034683682, 0.0483657271, 0.226061061, 0.1647791415, 0.5362101793, 0.6573818922, -0.1838726103, -0.2224894464, 0.0636850595, -0.0694223419, 0.2016168535, 0.4448968768, 0.4241686165, 0.2504867017, 0.3098898828, -0.0499738082, 0.0536904298, -0.0254457593, 0.0795244053, 0.1270529181, -0.2192231715, -0.3969984055, 0.453227371, -0.2484355718, 0.0308035165, 0.2647316158, 0.6452978849, 0.2309068143, -0.1614714861, -0.1040884852, 0.8261777163, 0.4181175232, 0.251329571, 0.3437061012, -0.2981663942, 0.4382251799, -0.0093540251, 0.0064928085, -0.0554458015, 0.1779247671, -0.0186350495, -0.1022791788, -0.0757012367, -0.1465046853, 0.2845976949, 0.1853841841, 0.0716182292, 0.7963954806, 0.1774622798, 0.1313206404, 0.2925500274, 0.1426705867, -0.2062414289, 0.077394709, -0.0784640163, 0.146626249, -0.1534090787, -0.1197255328, -0.1770538241, -0.1667885184, -0.266433835, -0.0546402112, 0.3031915128, 0.0117741264, 0.2971507311, -0.5078318119, -0.1206820384, -0.2457909137, 0.6949740648, -0.0030184754, -0.130738169, 0.0745628923, 0.1353506446, -0.021277396, 0.2675533593, -0.1156916171, 0.0138354357, -0.2264949679, -0.5466221571, -0.0605361164, -0.0539434589, -0.5696590543, -0.1581393927, 0.0199405812, -0.3625680804, 0.0265283212, 0.0525795519, 0.4546354413, -0.0310119353, -0.1170664877, 0.0229264237, 0.1107151136, -0.1056673229, -0.3512170911, 0.0517788343, -0.1526312381, -0.3998309374, 0.321311146, -0.0364836156, -0.2209535539, 0.0265420713, -0.0800674856, -0.1310898662, -0.0811286494, 0.0451739281, 0.3683876395, -0.7441091537, 0.0638631284, -0.1749020517, 0.0116591007, 0.2676517963, -0.0153750814, 0.0099125858, 0.0528788641, -0.1558086276, -0.0123552233, -0.157600224, 0.2336532176, -0.3643552959, 0.0906216353, 0.1775607169, -0.3076359332, 0.1613838375, -0.0623824969, -0.2264404446, 0.138854295, 0.098068364, 0.2257530987, 0.140710175, -0.0913139582, 0.2690130174, -0.3536027074, -0.0267340858, -0.3960964382, -0.2725752294, -0.1162829399, -0.2229142934, 0.18967098, -0.0910485834, -0.2563005686, 0.108081542, -0.1417182982, -0.1377778351, 0.2155235559, 0.218866691, 0.2175678313, 0.0644465387, 0.0149092674, 0.2243244201, 0.0360606872, -0.1561955214, 0.1475901157, 0.2517769337, 0.3375065029, -0.0272805411, 0.0907969028, -0.1516246051, -0.1514415294, -0.2205792516, 0.1333153248, -0.1322077215, 0.1608873457, 0.1646531224, -0.0180425327, 0.2100684196, -0.2077444494, 0.2365713418, 0.1006639898, 0.0847129151, 0.070497863, 0.1816994846, 0.1110279188, -0.0214973092, -0.1847312003, 0.3753150702, 0.2301633656, 0.0468968451, 0.3382747769, 0.4278500676, 0.010820508, 0.4604397416, 0.1821478456, 0.0776314884, -0.0883556232, 0.6449829936, 0.5471994281, 0.0260917097, 0.272680819, 0.0170382764, 0.2292096615, 0.0071518943, -0.0280058011, -0.0036751255, 0.1594763249, 0.2348791063, 0.0022362964, 0.3667230606, -0.0272776, -0.0535837039, -0.0611047596, 0.1047346592, -0.1418788582, 0.2086808383, 0.2416007966, -0.0101772081, -0.0855589956, -0.2205317616, 0.1717693806, 0.0124132279, -0.2053417861, -0.3689613938, 0.0545767844, 0.2000612319, 0.2004269958, -0.1807770431, -0.2027130872, 0.1707308292, 0.0611331202, -0.1006785557, -0.0421072878, 0.268745631, -0.2398386449, 0.1068275422, 0.2622801363, 0.2268816531, 0.4346128702, -0.3286221027, 0.2640410066, 0.4957014322, 0.1793235689, 0.0315486416, 0.3371669352, 0.3460940719, 0.30190292, -0.1499715, 0.1991121918, 0.2072296292, 0.0444982275, 0.1712988615, -0.1347510815, 0.14570418, 0.0161222145, 0.5959379673, -0.0484438576, 0.0492679439, -0.1122327, 0.4181310236, -0.0545023195, 0.1122141629, -0.2390366793, 0.3924510181, -0.297477901, 0.2598190904, 0.1190329716, 0.0362644047, -0.2335349321, -0.0534405634, 0.0490714461, 0.0111985505, 0.5582718253, 0.4555208385, 0.0861452371, -0.0428803228, -0.1485627741, 0.0097037703, -0.0047381595, -0.2231491953, 0.0895553976, -0.1604519486, 0.0750754997, 0.0948002413, 0.2105303705, -0.0350964367, -0.1206278354, -0.1463158727, 0.0992911533, 0.1164442301, -0.2136070132, 0.0344919153, -0.0069062114, -0.1713657677, 0.0482471883, 0.09963727, 0.0567169636, -0.1007899791, 0.1701202542, 0.1624996215, 0.1479488313, -0.1819941998, -0.2239580601, 0.1941968501, 0.1853149682, 0.1380937994, -0.3846306801, -0.2508639693, -0.1912686676, -0.4125629663, 0.2045010179, -0.2136579007, 0.3190740347, -0.0883172154, -0.1272104532, -0.160396263, 0.0490940809, 0.0788587928, 0.2051481903, -0.1112899035, -0.0165233016, -0.0758932829, -0.3586302698, 0.2597537637, 0.0315923728, 0.0149243679, -0.1502952278, -0.3193618655, 0.0743467212, 0.4109397233, -0.3343664706, 0.3913284242, -0.3347205818, 0.0273352228, 0.5880265236, -0.157536909, -0.4989512265, 0.1742942184, 0.1900556833, -0.1772026718, -0.3052073717, 0.3734639585, -0.0330673307, -0.3052959442, -0.0091744438, 0.4189302325, 0.1355580539, -0.4480019808, 0.0181252882, -0.0638757944 ]
https://github.com/huggingface/datasets/issues/2010
Local testing fails
I'm not able to reproduce on my side. Can you provide the full stacktrace please ? What version of `python` and `dill` do you have ? Which OS are you using ?
I'm following the CI setup as described in https://github.com/huggingface/datasets/blob/8eee4fa9e133fe873a7993ba746d32ca2b687551/.circleci/config.yml#L16-L19 in a new conda environment, at commit https://github.com/huggingface/datasets/commit/4de6dbf84e93dad97e1000120d6628c88954e5d4 and getting ``` FAILED tests/test_caching.py::RecurseDumpTest::test_dump_ipython_function - TypeError: an integer is required (got type bytes) 1 failed, 2321 passed, 5109 skipped, 10 warnings in 124.32s (0:02:04) ``` Seems like a discrepancy with CI, perhaps a lib version that's not controlled? Tried with `pyarrow=={1.0.0,0.17.1,2.0.0}`
32
Local testing fails I'm following the CI setup as described in https://github.com/huggingface/datasets/blob/8eee4fa9e133fe873a7993ba746d32ca2b687551/.circleci/config.yml#L16-L19 in a new conda environment, at commit https://github.com/huggingface/datasets/commit/4de6dbf84e93dad97e1000120d6628c88954e5d4 and getting ``` FAILED tests/test_caching.py::RecurseDumpTest::test_dump_ipython_function - TypeError: an integer is required (got type bytes) 1 failed, 2321 passed, 5109 skipped, 10 warnings in 124.32s (0:02:04) ``` Seems like a discrepancy with CI, perhaps a lib version that's not controlled? Tried with `pyarrow=={1.0.0,0.17.1,2.0.0}` I'm not able to reproduce on my side. Can you provide the full stacktrace please ? What version of `python` and `dill` do you have ? Which OS are you using ?
[ -0.1565997452, 0.0945404768, 0.0029506832, 0.0519757345, -0.1364503652, -0.2591088712, 0.4086023569, 0.2240647972, -0.1059590876, 0.267688632, -0.0058871582, 0.0788334906, -0.1537662894, 0.5032163858, -0.2350833565, 0.1064346135, 0.0292592663, 0.1519081146, -0.2006690502, 0.0791204572, -0.0376019441, 0.2799378037, -0.226582557, -0.0447771177, -0.3562316, -0.0341930538, -0.2187792361, 0.1896178573, -0.1608969271, -0.3254475594, 0.6411886215, 0.0324770771, 0.0277302638, 0.7641416788, -0.0001287132, 0.039347358, 0.4674039483, -0.1851539612, -0.3570636511, -0.2890091836, 0.352076441, -0.0747953504, 0.4789139628, -0.1217304096, -0.0535697341, 0.3681682944, -0.3571663499, -0.2829231024, 0.3377828598, 0.2963614166, 0.081957832, 0.5929399133, -0.1577763259, -0.0510140024, -0.0935964584, 0.618396759, -0.2803869545, 0.6484387517, 0.4351873994, -0.1534277201, -0.1185105294, -0.0808710009, 0.1125616208, 0.1081115901, -0.126539588, 0.0491174124, -0.1212577075, -0.2817675173, 0.1882838905, -0.0434962884, 0.4278689027, -0.3348491192, -0.3669345379, 0.2918595076, -0.1322663873, -0.3039443195, 0.4314470887, -0.0946971923, -0.4797498584, 0.2464619875, -0.5746458173, 0.1803815961, -0.0959844142, 0.1889844239, -0.3290428817, 0.0139240287, -0.0037792139, 0.0756974965, -0.0833094344, -0.0759190321, 0.0775502026, 0.2180757523, 0.1124901474, 0.2105471641, 0.0192037374, -0.1825948656, 0.0042888019, 0.2666110098, 0.2472052276, 0.4240627885, -0.1824765801, -0.1225749925, 0.0941482857, 0.1986425668, 0.0297925659, 0.4149532914, 0.1767902672, 0.3287167251, 0.4472731054, -0.0314276889, -0.0349341519, 0.2139810175, 0.2701269686, -0.2194718868, 0.087432757, -0.0599673912, 0.1236562133, -0.4884463251, -0.2430209368, 0.3342877626, -0.2255842686, 0.0130309686, 0.2921377718, 0.237574026, 0.087111555, 0.1962381154, 0.1621372402, 0.4079705775, -0.1178594455, 0.3706066608, -0.1039630175, -0.1124638095, -0.1322609037, 0.19034338, 0.5385649204, -0.047180634, 0.4167152941, -0.007027477, 0.5418524146, -0.0736424029, 0.0300187916, -0.0224938393, 0.1987536103, 0.5158849955, -0.2314251065, -0.0430947393, 0.2318388224, -0.1680151224, -0.2934476435, 0.1876368225, -0.0365538411, -0.360126406, -0.18115215, -0.0328331627, -0.2402830571, 0.0049480982, 0.4045212269, -0.4238606691, 0.1729898453, 0.0157311782, 0.0126331002, -0.240593791, 0.0043094456, 0.0955926478, 0.3255248964, 0.562417686, -0.1283845752, -0.0405456051, 0.0909307301, 0.0560351163, 0.3275013268, 0.3229975104, -0.2174922079, -0.0797654763, -0.1228105947, -0.1518610418, 0.3863776326, -0.5328124166, -0.2762475312, 0.3100044131, 0.1289286762, -0.1696587205, -0.1427438408, -0.2081097066, 0.1203561574, 0.1268336475, 0.3403024375, 0.0339690633, -0.1404905021, -0.0252437629, -0.3712667823, -0.2300165296, 0.0015917337, 0.0133343115, 0.0256100222, 0.1600132585, 0.1667645574, -0.4279125333, 0.1311004162, -0.0518474802, -0.1038101017, 0.0527332686, 0.4886051118, -0.4241810441, 0.0636515021, 0.2276827544, -0.1836991608, 0.3035299778, -0.0784529075, 0.3136447966, -0.1373229772, -0.0588412508, -0.5334229469, 0.4065409303, -0.0188788995, -0.126728341, -0.1220248491, 0.044822529, 0.3527236581, 0.113555178, -0.1742254794, 0.0604518652, -0.1182360575, 0.1045238972, 0.3406914473, -0.0194026902, -0.4063435495, -0.401393652, -0.1491003931, -0.0286080986, 0.0115145408, -0.2519136369, -0.3854121566, 0.2479812205, 0.0569711849, -0.2244201154, 0.2305825353, 0.0816857815, 0.2954340875, -0.0162095279, 0.0367702395, 0.000396993, -0.1849220842, -0.033913888, 0.0098310914, 0.3970496655, -0.0316919722, 0.169981882, -0.1750234067, 0.1441200525, 0.4002427161, 0.0310112908, -0.1585004628, -0.273660779, 0.3045324683, -0.0049117189, 0.5264109373, 0.0516449809, -0.1131984144, -0.019890476, -0.2378451526, -0.1569035947, 0.0667520463, 0.3204011917, 0.2629229128, -0.01348757, 0.2638952136, 0.0033946782, 0.5038722754, -0.124024272, 0.1816549152, 0.1384325027, -0.2771652341, -0.3122504354, 0.0401482582, -0.181804955, -0.0960171148, 0.2377833426, 0.2507986724, -0.0702293515, -0.2175700963, -0.2124914229, -0.1106224209, 0.3328878582, -0.2270732075, 0.2456764877, -0.1492203772, 0.1999557912, -0.1773371696, -0.2198433578, -0.1061054021, -0.2637875378, -0.0378570333, 0.2395730466, -0.0407096408, 0.2350496352, -0.3171923459, 0.4599720836, 0.1577050686, -0.6352956891, -0.2629724443, -0.1444387436, -0.3395791352, -0.0776635706, 0.3256201148, -0.3727453947, 0.184381187, -0.4821206033, 0.0123677328, 0.1615031362, -0.4731439352, 0.2949296832, 0.1354276538, 0.5952252746, -0.0459185243, 0.1508337259, -0.1922258288, -0.3344006836, 0.4108144343, -0.3192222118, -0.336582005, 0.0547792241, 0.0072664097, -0.1681361198, -0.505883038, -0.3063291013, -0.3148085773, -0.0533497371, 0.1918011606, 0.0501121804, 0.1443277299, 0.3339988887, 0.4101502895, -0.004436627, 0.2073386163, 0.0507005677, -0.0100286901, -0.4861390591, 0.2371547073, -0.3061427772, -0.3615094423, -0.1987366974, -0.0529230125, 0.3845669925, 0.1840775013, -0.5582749248, -0.2909575999, -0.1777921617, 0.4546240568, 0.1030157506, -0.0468169823, 0.2920679152, 0.0422039926, 0.036501158, -0.0270702094, -0.3199702501, 0.2881191671, 0.0237833783, 0.3060826361, -0.0239139274, 0.180309996, -0.0305550918, 0.7351323962, 0.1958532333, -0.240849793, 0.3919067383, 0.1805094928, 0.3743957281, -0.4311840534, -0.2628126442, 0.2902440429, 0.0368958637, -0.4468598068, 0.0280935615, 0.0327517726, -0.7290303707, -0.2692885697, 0.0021753013, -0.1888220906, -0.2501918375, 0.2722437978, -0.2999300957, 0.3638345003, -0.0839750767, 0.0755899698, -0.071091108, -0.022998061, 0.0046498589, 0.2835949957, -0.039383173, 0.0536701679, -0.1316981912, -0.4243864119, -0.4543825686, 0.2604157329, 0.1815056354, 0.7051233053, -0.3466788828, -0.284463048, 0.0826712996, -0.0128002912, 0.1547458768, 0.1888167262, -0.271261692, 0.243953526, -0.3359610438, -0.4482177496, -0.251649797, 0.0370885432, 0.3414701223, 0.1930959672, 0.4407690465, 0.0702781379, -0.0986779332, 0.1657221913, 0.1349698454, 0.0760150403, -0.0748338848, -0.3867755234, -0.4530234039, -0.3725789189, 0.3067516685, -0.056475848, 0.1185483485, -0.1779236794, 0.0036997274, 0.1722473353, -0.0218834691, -0.0572838672, 0.3491225243, 0.0232075639, -0.1563137323, 0.0927619785, -0.0239243172, 0.1609336138, 0.0487534776, 0.1074491143, -0.0694211125, 0.2719092667, 0.2726916969, -0.0642964765, 0.0035998076, 0.4597561657, -0.0078344569, -0.2611932456, -0.0098296497, -0.0911177099, -0.1698316485, 0.2874851227, -0.0188479237, -0.0519400202, -0.0542290248, 0.2032803297, -0.0349708684, 0.048101984, -0.0859208703, 0.428137213, -0.0671043545, 0.0126871988, 0.2742476761, 0.1784004271, 0.9760037661, -0.0434490852, 0.0564652458, 0.1795068681, 0.0215456784, -0.2822629511, 0.2678413093, -0.0515394285, -0.1963826418, 0.2389207929, 0.0208767429, -0.3305763304, 0.2563523054, -0.1427585185, -0.2644149065, 0.0721640959, -0.4716961384, 0.2073221356, 0.0974568203, -0.0784890503, -0.3223829567, 0.0074122734, 0.0452964865, 0.0926405191, 0.115573734, 0.6465581656, -0.1674461961, 0.1042679772, -0.4589020312, -0.3181271255, -0.3372456133, -0.0750408471, -0.3058600426, 0.1702498645, 0.4338039756, -0.6257210374, -0.126072377, 0.2802776694, 0.5041134953, 0.2558198571, -0.3557372093, -0.0234595686, -0.2054350376, 0.0840066522, 0.4423815906, -0.1081317663, 0.1212275475, -0.1389622241, -0.3716507256, -0.2003158927, -0.1685024351, -0.3224397302, 0.3863139153, 0.1003365219, -0.0086443871, -0.2109422237, 0.2304943353, -0.1333598942, -0.0340410545, -0.015915513, 0.0460458919, 0.0832818449, 0.0604302511, 0.3773463666, -0.0958932117, -0.1846659929, -0.1365639865, 0.0956185609, -0.0383090638, -0.1852353811, 0.3123596907, -0.0822096094, -0.0399585217, -0.0955228284, 0.1017741412, -0.3029925823, -0.1660039723, 0.0567768589, -0.1600363255, -0.3582682014, -0.2082923204, 0.5189054012, 0.3025406003, 0.2123357654, 0.0068270788, -0.1937336028, -0.6883789301, 0.1580583304, 0.1393261701, 0.2334798425, -0.0501986146, 0.3976538777, 0.0955951363, -0.0819226354, -0.1154661477, -0.0777929723, -0.423361361, 0.0948054641, 0.0910694897, -0.1875590533, 0.3472160697, -0.1100247949, -0.052694913, 0.0446531139, 0.0246982351, -0.0928223729, -0.045376271, 0.1755245328, 0.0206196755, -0.3655264974, 0.1706086099, -0.041536279, 0.119966045, -0.1534406543, -0.097506851, -0.0371740349, -0.0049483757, -0.0805909187, -0.2490547895, 0.1680928022, -0.0559434779, 0.1664372981, 0.0213865638, 0.3151870966, -0.0494114831, 0.1104305089, 0.0149667636, -0.1250572354, 0.168938905, 0.2227518409, -0.2050155699, 0.0805273652, 0.0157677941, -0.1730948836, -0.0178682581, -0.0220930129, 0.4400379062, 0.0800032467, -0.1780279428, 0.1011365578, 0.4403356314, 0.0641916692, -0.018031612, -0.0614107549, 0.1983542442, 0.1625595689, -0.0008158162, 0.4802031517, 0.0641894937, -0.3462334275, 0.4527821839, -0.0038470849, 0.1812500656, -0.0662144721, -0.0012352802, -0.0291393436, -0.0532596149, 0.3174810112, 0.1411475539, -0.1872005165, 0.1661785096, -0.0876656696, -0.0936506987, -0.0932971612, -0.2477654815, 0.2596847415, 0.0540901572, -0.171343863, 0.2499295026, -0.3742422462, 0.1550908685, -0.0024952795, -0.1267192066, 0.6321113706, -0.4966105819, -0.311875701, -0.3651082218, -0.0407321304, -0.1091231108, -0.1233011782, -0.2257379293, -0.0633397028, 0.1475429833, 0.0406722128, 0.0131586902, 0.1704793721, 0.2608255744, 0.1169239134, -0.2754318714, -0.4348378479, -0.0534833819, 0.103965342, 0.0875295699, -0.0200048983, 0.5283891559, 0.2062070221, -0.2827416956, -0.2568259835, 0.4794697464, 0.5924420953, 0.391443789, 0.088346675, -0.2070692778, -0.220862627, 0.0311342701, -0.3435670733, 0.2105429024, 0.1387034506, -0.0917733461, 0.0225521103, 0.0210673101, -0.0827917606, 0.0328725725, -0.1348567307, 0.1390836984, -0.0759687126, 0.3264750838, -0.0253337491, 0.0435018241, 0.0243979692, 0.1339571476, -0.2487529516, 0.3929114938, 0.0833412558, 0.0035572387, 0.1769813001, 0.0438138507, -0.0130078401, -0.0683163106, 0.4770765901, 0.3794437945, 0.3073866069, -0.2329626381, -0.2339459062, -0.1714244634, 0.1797962338, 0.1334394217, 0.3775701225, -0.0777675956, 0.1723695099, 0.1474084258, 0.1493646801, 0.0007749125, -0.2288632691, 0.0070789978, -0.0403417498, -0.2509399951, 0.0798591524, -0.5340794325, -0.1518707573, 0.0936043561, -0.3492440581, 0.3774882257, -0.2518046498, -0.0802711323, 0.0140890963, -0.2566488981, 0.1946000755, -0.0269123632, 0.2261867523, 0.3685006201, 0.466638267, 0.1896944642, -0.2133911699, -0.1679936349, -0.39074108, 0.1059956253, 0.0457643121, -0.2344073206, 0.2104584575, -0.2749533653, -0.0344560519, -0.1837853789, 0.4403217733, 0.196402058, -0.2830712795, 0.3341463208, -0.1689451337, -0.2094664425, -0.1900046766, 0.1234179065, 0.4776777625, -0.0616324171, 0.237126708, -0.2827216983, -0.1846236885, 0.5225759745, -0.2278445214, -0.0152753219, -0.074844867, -0.0244681016, -0.1231945008, -0.0727065876, -0.317384392, -0.109704107, -0.0619615912, -0.1095768288, -0.4085155129, 0.315499872, 0.2680286467, -0.0570439622, -0.0413177907, 0.5945860147, -0.1424865425, 0.0122228339, -0.0042421222, -0.076135233 ]
https://github.com/huggingface/datasets/issues/2010
Local testing fails
``` co_filename = '<ipython-input-2-e0383a102aae>', returned_obj = [0] def create_ipython_func(co_filename, returned_obj): def func(): return returned_obj code = func.__code__ > code = CodeType(*[getattr(code, k) if k != "co_filename" else co_filename for k in code_args]) E TypeError: an integer is required (got type bytes) tests/test_caching.py:152: TypeError ``` Python 3.8.8 dill==0.3.1.1
I'm following the CI setup as described in https://github.com/huggingface/datasets/blob/8eee4fa9e133fe873a7993ba746d32ca2b687551/.circleci/config.yml#L16-L19 in a new conda environment, at commit https://github.com/huggingface/datasets/commit/4de6dbf84e93dad97e1000120d6628c88954e5d4 and getting ``` FAILED tests/test_caching.py::RecurseDumpTest::test_dump_ipython_function - TypeError: an integer is required (got type bytes) 1 failed, 2321 passed, 5109 skipped, 10 warnings in 124.32s (0:02:04) ``` Seems like a discrepancy with CI, perhaps a lib version that's not controlled? Tried with `pyarrow=={1.0.0,0.17.1,2.0.0}`
47
Local testing fails I'm following the CI setup as described in https://github.com/huggingface/datasets/blob/8eee4fa9e133fe873a7993ba746d32ca2b687551/.circleci/config.yml#L16-L19 in a new conda environment, at commit https://github.com/huggingface/datasets/commit/4de6dbf84e93dad97e1000120d6628c88954e5d4 and getting ``` FAILED tests/test_caching.py::RecurseDumpTest::test_dump_ipython_function - TypeError: an integer is required (got type bytes) 1 failed, 2321 passed, 5109 skipped, 10 warnings in 124.32s (0:02:04) ``` Seems like a discrepancy with CI, perhaps a lib version that's not controlled? Tried with `pyarrow=={1.0.0,0.17.1,2.0.0}` ``` co_filename = '<ipython-input-2-e0383a102aae>', returned_obj = [0] def create_ipython_func(co_filename, returned_obj): def func(): return returned_obj code = func.__code__ > code = CodeType(*[getattr(code, k) if k != "co_filename" else co_filename for k in code_args]) E TypeError: an integer is required (got type bytes) tests/test_caching.py:152: TypeError ``` Python 3.8.8 dill==0.3.1.1
[ -0.159542188, 0.0836868584, 0.0080741122, 0.054194361, -0.0605912283, -0.2532823682, 0.432231456, 0.3210855424, 0.0665908083, 0.2115700841, -0.0241562277, 0.1039154232, -0.1923722029, 0.4951997995, -0.2158733308, 0.1359181404, 0.0552794635, 0.1934277713, -0.1318417042, 0.0838604942, -0.0959662497, 0.2499602437, -0.2564110756, -0.0410425775, -0.302298069, -0.0245998856, -0.1487214714, 0.1830329895, -0.1826663017, -0.360329479, 0.6797199249, 0.0199891496, -0.0009318292, 0.6896494031, -0.00012576, 0.0270791575, 0.505276382, -0.1809415221, -0.4039544761, -0.3320502937, 0.1519882828, 0.003736414, 0.3448631167, -0.1304059029, -0.0594432727, 0.4255077839, -0.2692721486, -0.3886939585, 0.2537175119, 0.3457769752, 0.0861627012, 0.6625929475, -0.1529202163, -0.0738564357, -0.0913384855, 0.7564920187, -0.296487093, 0.6160543561, 0.3982495666, -0.152993381, -0.0890130103, -0.0370635763, 0.1238623112, 0.2078802586, -0.1936956644, 0.1046221852, -0.1856211126, -0.3124095201, 0.1273616105, -0.0407237075, 0.3077146113, -0.2930817008, -0.4210142791, 0.2640115619, -0.1962426752, -0.4216319025, 0.4477262497, -0.0321061835, -0.5543992519, 0.1441133916, -0.6164287329, 0.3599110544, -0.0956345573, 0.1937018782, -0.2613512278, -0.0860238969, -0.1219524592, 0.1039444059, -0.0689690709, -0.1067538187, -0.0950205028, 0.1158439517, 0.0893241912, 0.2673542202, 0.0417058431, -0.2120663077, 0.0745661557, 0.288624078, 0.195686087, 0.4594942331, -0.2210506648, -0.0970079452, 0.0751854777, 0.1858524233, 0.0422295369, 0.3725648522, 0.156706214, 0.3691078126, 0.4090417624, 0.0981974378, -0.1236698776, 0.1423253119, 0.2234024554, -0.2243606001, 0.1463965625, 0.0168843754, 0.1898580045, -0.4522970319, -0.2817614079, 0.3050579429, -0.1572927237, 0.0335098468, 0.3083819151, 0.2298794389, 0.0924802572, 0.179027915, 0.1544674933, 0.3162519336, -0.2177806348, 0.2494844794, -0.0718300045, -0.0928377062, -0.1575594842, 0.2292732, 0.5492324829, 0.0396384113, 0.4059884548, 0.0170023702, 0.596901238, -0.0530269779, 0.084573023, -0.0820263401, 0.2296275645, 0.4612745047, -0.262329638, 0.0007761121, 0.2538800836, -0.1570122987, -0.3096913695, 0.0716574118, 0.025491612, -0.3389893174, -0.1903703362, -0.0041226735, -0.2362703383, 0.0440889075, 0.3062968254, -0.4115740657, 0.2350120395, -0.0339253992, 0.0666702315, -0.2979628444, 0.0334092677, 0.0907242894, 0.2940312922, 0.5816888213, 0.0320193842, -0.058713153, 0.0872225165, 0.1703665853, 0.3222622871, 0.3197822869, -0.2711986601, -0.0801071823, -0.2009896934, -0.2122241557, 0.4604290128, -0.5281282663, -0.2205270529, 0.3383588493, 0.1630104333, -0.0469929576, -0.0240376592, -0.1779367626, 0.1230152696, 0.0250450894, 0.3560107946, 0.0201154016, -0.1439756751, -0.0507277995, -0.3050993383, -0.2096914649, -0.0326527916, -0.0520014763, -0.0125009697, 0.1478218734, 0.1682517529, -0.3553976119, 0.13168706, -0.0926365033, -0.1003683954, -0.0265648104, 0.4984476566, -0.4364658296, -0.003353361, 0.1779424846, -0.1466664821, 0.3157602251, -0.0652016178, 0.3325459063, -0.1267911792, -0.078610003, -0.4938023388, 0.3182769716, -0.0920942053, -0.1416625381, -0.0879943371, 0.135008797, 0.3590694666, 0.1158088446, -0.2030636072, 0.1976776719, -0.1674306095, 0.0674082115, 0.1798964441, -0.1173201576, -0.331874907, -0.3938655555, -0.1756165922, -0.0437936969, -0.057612814, -0.2317660749, -0.3719635308, 0.2077534199, 0.0961103141, -0.1659799516, 0.102083683, 0.0658375546, 0.2748293579, 0.071163848, 0.0056705419, 0.013898138, -0.1340230554, 0.0324420705, -0.0586629361, 0.5032773018, 0.0161025506, 0.1436365396, -0.1191537231, 0.0993639976, 0.3589841723, 0.0462637693, -0.2223189771, -0.2488670945, 0.3026213646, 0.0815828592, 0.4269849062, 0.128200084, -0.1495230794, 0.0208275896, 0.0208049007, -0.1623553336, 0.0347991362, 0.2654783428, 0.274623394, -0.0285597853, 0.2743022144, -0.0487582237, 0.6123734117, -0.1288353503, 0.1622856557, 0.0833442286, -0.2782637179, -0.2611790001, 0.0942929536, -0.1272589862, -0.1881007999, 0.1684151292, 0.2399554849, -0.0283272155, -0.2438026667, -0.2251515687, -0.112357378, 0.2600669563, -0.3167211115, 0.3092109561, -0.1657240987, 0.1626480222, -0.2243665159, -0.1949149966, 0.0339776464, -0.2156327069, -0.1114068031, 0.3362268209, -0.0429509766, 0.2492925525, -0.3598662019, 0.3789108992, 0.1270721555, -0.6568129659, -0.2761151195, -0.0493919216, -0.3580279946, -0.0783266053, 0.3884333372, -0.3923025429, 0.2230748981, -0.4847135544, -0.0083079785, 0.1642360389, -0.4976351261, 0.2448468059, 0.1052227616, 0.5596273541, 0.0088492818, 0.0886568353, -0.2389028817, -0.412389487, 0.4063133895, -0.2631422281, -0.3811517954, 0.0973345414, -0.0332761146, -0.2352031916, -0.5069956779, -0.3434543014, -0.2640543878, -0.069031179, 0.3037875295, 0.0882633477, 0.1101690531, 0.4585252404, 0.4080488086, -0.002004277, 0.1282036453, 0.0467161164, -0.0791564807, -0.5806206465, 0.2987907231, -0.3213186562, -0.3068711162, -0.2398097068, -0.1218191832, 0.4034665227, 0.229523018, -0.4456579685, -0.1923155785, -0.1911011189, 0.4425348639, 0.1964616477, 0.009047335, 0.2945617437, 0.0079893619, 0.002994813, -0.0171323866, -0.2513278723, 0.2703384161, 0.1097455621, 0.3167887032, 0.0037344992, 0.2698606849, 0.0379689485, 0.6234936714, 0.3126415312, -0.2371504754, 0.3645983934, 0.1278414726, 0.4174309373, -0.5137652159, -0.320594728, 0.3046323359, -0.0243831724, -0.4611192942, -0.0523291454, 0.0129068531, -0.6639072895, -0.1939105988, 0.0162186176, -0.1264441311, -0.3065945506, 0.2799482644, -0.227790013, 0.3235549629, -0.0602759235, 0.0650714487, -0.177248016, -0.0182547197, -0.0232358538, 0.28954193, 0.0458125137, 0.0701253414, -0.0966768339, -0.3918623924, -0.4547606707, 0.2472248375, 0.2436320037, 0.6850364208, -0.2653805315, -0.272793889, -0.0125287808, 0.0156393722, 0.0085444413, 0.2388785332, -0.2327783704, 0.2690615058, -0.3548617661, -0.4105350077, -0.2229920626, -0.0113191679, 0.406648159, 0.1472586095, 0.4967995584, 0.0819322467, -0.1409920156, 0.2631053329, 0.1353669763, 0.055580236, 0.0363298319, -0.4470658302, -0.3837280273, -0.3355270028, 0.298820287, 0.0592850223, 0.0493520051, -0.1205604672, -0.0057287216, 0.1324134618, -0.0191628821, 0.0592209101, 0.3717749715, -0.031930998, -0.0958166644, 0.0943264961, -0.1094132364, 0.0194690805, -0.0191997848, 0.1649529189, 0.0110499896, 0.068709895, 0.2090960145, -0.0416294709, 0.0180175714, 0.4032599032, -0.0849663764, -0.3252246678, -0.0046235863, -0.0674575046, -0.2609461248, 0.3393780589, 0.0590509325, -0.0289673209, -0.1317606568, 0.1066779867, 0.0054079667, -0.030933354, -0.0670481548, 0.5506901741, -0.0220200792, -0.0417807475, 0.226880461, 0.1652174443, 0.8252400756, 0.0644449145, 0.1021422297, 0.2496581376, 0.0548897088, -0.191045031, 0.3437013626, 0.0162834972, -0.1306667179, 0.2628115118, 0.0059522688, -0.3169224858, 0.338708818, -0.1293207705, -0.247684747, 0.1091309935, -0.3752108812, 0.3533777893, 0.0685976297, -0.0344468206, -0.3180185556, -0.0550895073, -0.0110921469, 0.1156554297, 0.1104649305, 0.5969849825, -0.0907773077, 0.0594344512, -0.4712801278, -0.3245824575, -0.3380561769, -0.0460059568, -0.3487532437, 0.1952668577, 0.3555603921, -0.5530382395, -0.0638661161, 0.1838646531, 0.4580515325, 0.2221151441, -0.3360340595, -0.0448380634, -0.0872650817, 0.1277053952, 0.4157731831, -0.189916119, 0.1803600639, -0.0780538842, -0.2937187552, -0.2260477543, -0.1601121575, -0.3429051936, 0.3990277052, 0.0802358538, 0.066848062, -0.2352943122, 0.1735437661, -0.1413566917, 0.0017311424, -0.0245896243, 0.0601651557, 0.0110425036, 0.0504641458, 0.3054955602, -0.1586058587, -0.1889246404, -0.1347507536, 0.0767959729, -0.0377658233, -0.1541686952, 0.3368020058, -0.231702745, -0.0590792857, -0.1062082201, 0.1889457107, -0.2515740693, -0.2681212425, 0.0837746188, -0.1097013801, -0.335526228, -0.1889189184, 0.5555794239, 0.2536105812, 0.1449695677, 0.0675851554, -0.2199269384, -0.6909092069, 0.1423328817, 0.0476177782, 0.2239874005, -0.038532231, 0.3672915399, 0.0404754505, -0.1701401025, -0.130374223, -0.1746754646, -0.3640626073, 0.0801698416, 0.1796463877, -0.1369645745, 0.3592993319, -0.0891141146, -0.0150517263, 0.0554107428, 0.0056982525, -0.1087835059, -0.102339305, 0.161095053, -0.0209927224, -0.3436933756, 0.2249807864, 0.0064691603, 0.0898532122, -0.2450369895, -0.0761690065, 0.0171049312, -0.0176084712, -0.0669984296, -0.3150109053, 0.1212770492, 0.0127036572, 0.1613847017, -0.0117320716, 0.2935884595, -0.0230022445, 0.1198137179, 0.0001849383, -0.075052321, 0.1143962294, 0.2372387052, -0.2427394986, 0.1428275108, 0.0291058552, -0.1974081099, -0.0549758226, -0.0433403887, 0.3361031413, 0.1295173764, -0.1475600898, 0.0766782165, 0.3650746942, 0.0751591548, -0.019595217, -0.0257226881, 0.1018332988, 0.150598526, 0.0228368938, 0.5174662471, 0.0231226832, -0.3435837626, 0.5378302336, -0.0749444216, 0.2276362032, -0.1015104279, 0.1055783108, -0.0402407981, -0.0303137675, 0.2926291525, 0.1018690765, -0.1841749251, 0.2063314021, -0.0679177493, -0.1282241493, -0.1412272006, -0.1888820231, 0.2897827923, -0.0143539198, -0.139730081, 0.1568308473, -0.3757255375, 0.0937148109, 0.1500717103, -0.0578572005, 0.5642966032, -0.5855811834, -0.282994628, -0.3944428265, -0.1439433098, -0.079050988, -0.1622621417, -0.2222793698, -0.0152672529, 0.0844989717, 0.0522091389, 0.0321789905, 0.2010470927, 0.3205499649, 0.1275767982, -0.2623803914, -0.33414644, -0.0527928025, 0.0878488049, 0.0949490368, -0.0202663094, 0.5610432029, 0.2345624119, -0.2423797846, -0.2002234459, 0.4721878171, 0.5895761847, 0.3786362112, 0.1227317825, -0.1951044202, -0.2294457853, 0.0129831508, -0.3257730603, 0.2213951051, 0.1242720634, -0.0131641235, -0.0532544143, 0.0574237928, -0.0716467649, 0.0075355368, -0.1439876407, 0.0037623048, -0.1829030663, 0.4468247592, -0.0985436812, 0.093850553, 0.051419083, 0.1554655284, -0.2413605005, 0.2823244929, 0.088857308, 0.057352934, 0.2049225569, 0.1141106933, 0.0028201714, -0.0617850795, 0.4479654431, 0.2357168347, 0.2131760865, -0.2273445427, -0.1807401478, -0.1836011559, 0.1141179204, 0.1576029956, 0.2857300639, -0.1136938706, 0.224150151, 0.1839514375, 0.0712645575, -0.0494567901, -0.3080791831, 0.0026937127, -0.0428034551, -0.2135601491, -0.0127303666, -0.4230504036, -0.1899387538, 0.0915978923, -0.4213808775, 0.324290365, -0.2475095987, -0.0484455228, 0.0406978652, -0.2419209629, 0.1870483011, -0.1046732664, 0.2583915591, 0.420863241, 0.4123567641, 0.1219661981, -0.2801041603, -0.2073030472, -0.3272328377, 0.1092548072, 0.1512136757, -0.279641211, 0.3367857039, -0.2444264591, 0.0386394113, -0.2467679977, 0.3907269239, 0.1972018182, -0.3832681775, 0.3099579811, -0.1385186315, -0.2870473266, -0.11506854, 0.0446841791, 0.504111588, -0.1177574992, 0.2682076991, -0.252508074, -0.1620397717, 0.5046146512, -0.4364579916, -0.0934117883, -0.029393537, 0.0501450785, -0.1696912199, -0.0489451811, -0.352006346, -0.0549145415, -0.0120238252, -0.1073760539, -0.3854923248, 0.3357228041, 0.2234312892, -0.0321988314, -0.0404454656, 0.7254134417, -0.2031801343, -0.0253898278, 0.0430911481, -0.073573567 ]
https://github.com/huggingface/datasets/issues/2010
Local testing fails
I managed to reproduce. This comes from the CodeType init signature that is different in python 3.8.8 I opened a PR to fix this test Thanks !
I'm following the CI setup as described in https://github.com/huggingface/datasets/blob/8eee4fa9e133fe873a7993ba746d32ca2b687551/.circleci/config.yml#L16-L19 in a new conda environment, at commit https://github.com/huggingface/datasets/commit/4de6dbf84e93dad97e1000120d6628c88954e5d4 and getting ``` FAILED tests/test_caching.py::RecurseDumpTest::test_dump_ipython_function - TypeError: an integer is required (got type bytes) 1 failed, 2321 passed, 5109 skipped, 10 warnings in 124.32s (0:02:04) ``` Seems like a discrepancy with CI, perhaps a lib version that's not controlled? Tried with `pyarrow=={1.0.0,0.17.1,2.0.0}`
27
Local testing fails I'm following the CI setup as described in https://github.com/huggingface/datasets/blob/8eee4fa9e133fe873a7993ba746d32ca2b687551/.circleci/config.yml#L16-L19 in a new conda environment, at commit https://github.com/huggingface/datasets/commit/4de6dbf84e93dad97e1000120d6628c88954e5d4 and getting ``` FAILED tests/test_caching.py::RecurseDumpTest::test_dump_ipython_function - TypeError: an integer is required (got type bytes) 1 failed, 2321 passed, 5109 skipped, 10 warnings in 124.32s (0:02:04) ``` Seems like a discrepancy with CI, perhaps a lib version that's not controlled? Tried with `pyarrow=={1.0.0,0.17.1,2.0.0}` I managed to reproduce. This comes from the CodeType init signature that is different in python 3.8.8 I opened a PR to fix this test Thanks !
[ -0.2129508257, 0.082364887, 0.0238412842, 0.0946619809, 0.0496155657, -0.1908243597, 0.3812555373, 0.3104432821, 0.0505839065, 0.2253712416, 0.1375246346, 0.1101148576, -0.1860498786, 0.6575948, -0.1123831868, 0.1562343985, 0.0674786046, 0.2533715069, -0.026602108, 0.1312382519, -0.1200586036, 0.2680254877, -0.2432246357, -0.0653256029, -0.2336262465, -0.0076858914, -0.1573690474, 0.2269874513, -0.1869493127, -0.500551641, 0.725808382, -0.059695214, -0.0117774568, 0.6850966811, -0.0001276803, 0.0460290313, 0.5900765061, -0.1311246157, -0.2848139107, -0.2090542465, 0.1225330234, -0.0099038668, 0.4425726235, -0.0584857687, -0.0636172965, 0.4232134521, -0.3844326138, -0.4504121244, 0.308177352, 0.3412258327, 0.0856561661, 0.6891778708, -0.1833495498, -0.0647270307, -0.1557072252, 0.7216382027, -0.2735099196, 0.5735642314, 0.4503454268, -0.1201021299, -0.0678781047, -0.1077148318, 0.1148407757, 0.1880003363, -0.1224894151, 0.0224848352, -0.0936854854, -0.1882403195, 0.1383008957, -0.0737016052, 0.3249825537, -0.2547633946, -0.3429166377, 0.1858748794, -0.1495690346, -0.5330842733, 0.5146336555, -0.1113533378, -0.476841718, 0.1915979832, -0.5451621413, 0.2967489362, -0.0748953372, 0.155391559, -0.3125765324, -0.0832717046, -0.1046864018, 0.1107246205, -0.0891971067, -0.0674923211, 0.0989187881, 0.1787144393, -0.0076315282, 0.2872789204, 0.107047528, -0.2111830711, 0.0144703137, 0.399474442, 0.1787105352, 0.4556686878, -0.2514181435, -0.0727526993, 0.1222311929, 0.1218676567, -0.0088819824, 0.386351645, 0.2146191597, 0.2306630313, 0.3758420348, 0.023217272, -0.0810362771, 0.1415196508, 0.2208201438, -0.2816315591, 0.2822889686, -0.0321860909, 0.1462036669, -0.4389746785, -0.0922708511, 0.2229404896, -0.0682020634, 0.0167920701, 0.2327675074, 0.227241978, 0.1824134141, 0.1523491293, 0.0944300964, 0.4298301041, -0.1778352559, 0.2726736069, -0.0876458362, -0.1687569618, -0.1537639797, 0.1956511736, 0.4986811578, -0.1537046283, 0.4561297894, -0.0057977885, 0.6063700318, -0.0310989544, 0.0206639841, -0.0275878441, 0.2237466276, 0.4527344704, -0.266931951, -0.0231728628, 0.3080406785, -0.2273073494, -0.3217342496, 0.0499486551, 0.1005841792, -0.4410424232, -0.2197592854, -0.0188295748, -0.2830901444, -0.0106934207, 0.2729875743, -0.486402303, 0.207943067, 0.0007702708, 0.0649349838, -0.2876135111, 0.1068172604, 0.1075928435, 0.2090524435, 0.5335054994, 0.0195476189, -0.0479590818, 0.0798538774, 0.0793179646, 0.2857229412, 0.3176200092, -0.2670464516, -0.0958704799, -0.199275732, -0.1947424114, 0.4257675409, -0.5156859159, -0.1774298996, 0.374001354, 0.15634197, -0.1985574663, -0.0494492352, -0.2684140503, 0.0657715797, 0.0986223221, 0.240212515, 0.0567435585, -0.1665889174, 0.0601932853, -0.3022296429, -0.2904707193, -0.0210459642, 0.0338273644, 0.0249781366, 0.1769678295, 0.1998060495, -0.4017614126, 0.1179295629, -0.0926958993, -0.1164353788, 0.0205855407, 0.5448552966, -0.3864397705, -0.0036125556, 0.1999374628, -0.0327695049, 0.3577795029, -0.0780036896, 0.2045546174, -0.1400954425, -0.0209074393, -0.5408804417, 0.3800973594, -0.0991018713, -0.0528338365, -0.1179857701, 0.0609110817, 0.3830109835, 0.1435607076, -0.2402085066, 0.0653648302, -0.0774751231, 0.0946649462, 0.2909983695, -0.0861137137, -0.3287918866, -0.4251503646, -0.1563338935, -0.0233162418, 0.004896929, -0.224209398, -0.4006009698, 0.2171485275, 0.0886747688, -0.1416567564, 0.0746131316, 0.0953617096, 0.2319166213, 0.0282799155, -0.0058218967, 0.0119788982, -0.186917007, -0.0353846252, 0.0147935301, 0.4722610116, 0.0298200659, 0.0833991021, -0.1591883451, 0.1093276739, 0.3530661166, 0.0234854147, -0.1824235022, -0.315900147, 0.2667004168, 0.0317161456, 0.5888891816, 0.1291598827, -0.1410607845, -0.1075277328, -0.0508214198, -0.1599723399, -0.0017904975, 0.1870499849, 0.227101177, -0.0158884823, 0.2266932875, -0.1101665795, 0.5531958938, -0.1585794389, 0.0749337077, 0.1816506386, -0.2237859219, -0.3028708398, 0.1822274923, -0.1517623812, -0.0119574293, 0.146746099, 0.2263770401, -0.0592965446, -0.2383321226, -0.2199628204, -0.0692370981, 0.1834665984, -0.3558003008, 0.240716517, -0.1439508945, 0.0936439931, -0.3681105375, -0.2125535309, 0.0038104914, -0.253749609, -0.1256659776, 0.2570477426, 0.0167051107, 0.2124892175, -0.3055719733, 0.441704154, 0.110347122, -0.6165693998, -0.230748564, -0.0421805531, -0.2874613106, -0.110283412, 0.3440142572, -0.4251946807, 0.1442622691, -0.543674767, -0.0106434375, 0.2099768221, -0.5716858506, 0.3610413373, 0.1101279557, 0.5630649924, 0.0908893943, 0.1359782666, -0.083335869, -0.3285459876, 0.3907451034, -0.2811041474, -0.3202838898, 0.1116462946, -0.0592878833, -0.2386704385, -0.4834086895, -0.2241747826, -0.1732220054, -0.0486703813, 0.2961149812, 0.0813508257, 0.0692149922, 0.437248975, 0.3239247799, -0.0071030483, 0.0879163444, 0.0492145866, -0.0323043764, -0.600746274, 0.2518295944, -0.2372846305, -0.2854533494, -0.1597948074, -0.0864265785, 0.486228466, 0.0981934369, -0.399862349, -0.1802983582, -0.1212021858, 0.497818619, 0.1771861017, -0.0901312605, 0.3163527846, 0.0246621259, 0.0493822917, -0.0573717542, -0.226275444, 0.1844128221, -0.0043752557, 0.3145067692, 0.0178872608, 0.2293650359, -0.0737023428, 0.6722061634, 0.2346592993, -0.2608801126, 0.3040290177, 0.0912792236, 0.3293501139, -0.4512397349, -0.2017837465, 0.2601118386, 0.0243019983, -0.4762886763, -0.0437383465, 0.0247656256, -0.6657318473, -0.1394971162, 0.174485907, -0.1548581421, -0.1806099713, 0.2503745854, -0.2951571643, 0.3791862428, -0.0946984142, 0.113441363, -0.1352851093, -0.0312156025, -0.0109148696, 0.3398591578, -0.1045147628, 0.0421219617, -0.1297154725, -0.4960715175, -0.3819330633, 0.2305472791, 0.2182387561, 0.6499727964, -0.2102147937, -0.3641656041, 0.0249855798, 0.0465435944, 0.0963646397, 0.1762781739, -0.2380156815, 0.2721734643, -0.373503983, -0.4916274846, -0.2925335765, 0.0255827159, 0.4043449759, 0.0784002095, 0.5375290513, 0.1264642924, -0.1271788478, 0.1342840642, 0.1102667376, 0.092921719, -0.0375757851, -0.4543280005, -0.4238274693, -0.383325249, 0.3148331642, 0.0197402686, 0.0344986394, -0.2098481655, 0.0249782577, 0.0312266704, 0.0165385976, -0.0720839202, 0.3944137096, 0.02235201, -0.134516418, 0.0904433727, -0.0883589983, 0.0729418844, -0.0201757513, 0.1470245421, 0.1128853559, 0.094492808, 0.1423825324, -0.1168445051, -0.0356830731, 0.4573673308, -0.0383813828, -0.1947223842, 0.1069134474, -0.1083421409, -0.2660881579, 0.2129253894, 0.0121904835, -0.0684791058, -0.0959032029, 0.1370836198, 0.0226379819, -0.0034940094, -0.0994242653, 0.4119970798, -0.055169981, -0.0298770107, 0.3651518524, 0.1775615513, 0.8157603145, -0.0086661316, 0.0692775398, 0.2503995299, -0.0209909156, -0.3450806737, 0.5113016963, -0.0401660502, -0.2692535818, 0.2452156842, -0.0141844302, -0.3603076935, 0.31927827, -0.127044946, -0.2522834539, 0.0036984347, -0.4036071897, 0.3278362155, 0.0643667206, -0.1236023232, -0.3593874574, -0.0345869735, -0.142547518, 0.0836256593, 0.1283957362, 0.6133264303, -0.1106791943, 0.076793097, -0.3790451586, -0.3198165298, -0.3265846968, -0.065356195, -0.2735283077, 0.2031434327, 0.4923524261, -0.4473857284, -0.0076336041, 0.1897128075, 0.591006875, 0.2151011229, -0.3710517287, -0.0241357945, 0.0959770083, 0.0187282674, 0.391875118, -0.1623623967, 0.1390868127, -0.0467724167, -0.3181007504, -0.1999571621, -0.2435207069, -0.3389803469, 0.3941822052, 0.0037318971, -0.0933830887, -0.3095389307, 0.1387608051, -0.1527008861, 0.0707064718, -0.0347963274, 0.0451216698, 0.0071472926, 0.0995951816, 0.3269565701, -0.0798420236, -0.200729534, -0.1152878553, 0.0390936248, -0.0577857234, -0.1012966782, 0.3804950118, -0.1101721451, -0.0055040121, -0.1118167341, 0.1505404711, -0.2089612037, -0.2460994273, 0.0759303793, -0.1104965508, -0.3170505166, -0.0975174606, 0.5581841469, 0.2994670868, 0.1594980657, 0.0512617975, -0.1069933176, -0.6706629395, 0.1032542586, 0.0669696033, 0.2133814096, 0.0146427304, 0.4575371742, -0.0103570037, -0.2144230604, -0.1220074818, -0.0885186419, -0.3779916465, 0.0571433529, 0.0681565255, -0.0752217174, 0.351875782, -0.1678053439, -0.030530531, 0.0250397325, -0.049675025, -0.0900232494, -0.0462166145, 0.1742307395, 0.0484294742, -0.3221476078, 0.3157857955, 0.0064822212, 0.1183684319, -0.1151711941, 0.0057881027, -0.0856154263, 0.0142184095, -0.0809690505, -0.2023142278, 0.0976983607, -0.1170182303, 0.0960860699, -0.0926927924, 0.352399379, -0.0889857933, 0.1439663768, -0.0554913431, -0.0477975607, 0.252455771, 0.269974947, -0.2041554004, 0.1687509418, 0.0303093679, -0.2895765305, 0.0172198042, 0.0655824542, 0.304215163, 0.0805390775, -0.2911087871, 0.1201174483, 0.2948722243, 0.072234571, 0.0454733595, -0.012031164, -0.121737659, 0.1613793522, -0.0156146437, 0.4948703945, 0.2002598941, -0.3090690672, 0.4006706178, -0.0324272551, 0.3457435966, -0.030457817, 0.0559675545, -0.0055869753, -0.0296823457, 0.2638404071, 0.1978752911, -0.1267092228, 0.1102813631, -0.120378688, -0.0820246935, -0.0444043502, -0.2603599429, 0.3358690441, -0.0584290884, -0.1032191068, 0.2719577551, -0.3337040246, 0.1102374643, 0.0633105859, -0.0020897985, 0.6600574851, -0.6151894331, -0.3002284765, -0.3712920547, -0.1774303913, -0.0651965663, -0.1714657843, -0.354200989, 0.0501396358, 0.0443809777, 0.062221311, -0.0641278476, 0.2548420429, 0.3229342401, 0.122364223, -0.2019758523, -0.4548483789, -0.0604466051, 0.0894836709, 0.0883829892, -0.0564636737, 0.5304107666, 0.144706592, -0.315020293, -0.1222665757, 0.5399008393, 0.6615059972, 0.2859232128, 0.0971381664, -0.2560991645, -0.2292702198, 0.0099420771, -0.264998138, 0.1255937666, 0.1515678167, 0.1081603393, -0.058122091, 0.058435306, -0.0417930819, 0.0428362861, -0.1470208466, 0.0676142424, -0.1739848852, 0.3367730081, -0.0356600322, 0.1551565826, 0.0026476923, 0.1935734153, -0.2381478399, 0.3953499496, 0.1332025081, 0.0825401023, 0.1771984547, 0.1677246541, -0.0010881796, 0.0668807626, 0.5126707554, 0.2918180823, 0.1503741443, -0.1854126453, -0.287871629, -0.1938414276, 0.1387002468, 0.1663696468, 0.2949788272, -0.0488843136, 0.1859450042, 0.1205979288, 0.0894250721, -0.0119657665, -0.1441289485, -0.1215387881, -0.1335773766, -0.1835172176, -0.0250040293, -0.3701710701, -0.1906798035, 0.0149997175, -0.3371478915, 0.3524735868, -0.1409902722, -0.0637195706, -0.0543724336, -0.2187358737, 0.1781960726, -0.2250038683, 0.2600574791, 0.3480685949, 0.3272459209, 0.1648109108, -0.3105280697, -0.11078915, -0.4063547254, 0.0237596482, 0.1805662215, -0.3148143291, 0.3108049333, -0.2133537084, -0.0274858046, -0.2337998301, 0.2657325566, 0.1744325161, -0.3407870233, 0.1513769627, -0.1394252777, -0.2918333411, -0.0840961412, 0.1667219996, 0.4874754548, -0.1143286526, 0.2222250998, -0.1619910449, -0.2502763867, 0.4320522249, -0.3146131337, -0.0356789678, 0.0171356574, -0.0303362459, -0.2345731556, -0.052369196, -0.3275538683, -0.0547793359, -0.0755201578, -0.1453132331, -0.4074226916, 0.3302375078, 0.2467478365, -0.0292412937, -0.0792273358, 0.6571489573, -0.142957449, 0.0041965842, -0.0779270008, -0.0338360108 ]
https://github.com/huggingface/datasets/issues/2009
Ambiguous documentation
Hi @theo-m ! A few lines above this line, you'll find that the `_split_generators` method returns a list of `SplitGenerator`s objects: ```python datasets.SplitGenerator( name=datasets.Split.VALIDATION, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": os.path.join(data_dir, "dev.jsonl"), "split": "dev", }, ), ``` Notice the `gen_kwargs` argument passed to the constructor of `SplitGenerator`: this dict will be unpacked as keyword arguments to pass to the `_generat_examples` method (in this case the `filepath` and `split` arguments). Let me know if that helps!
https://github.com/huggingface/datasets/blob/2ac9a0d24a091989f869af55f9f6411b37ff5188/templates/new_dataset_script.py#L156-L158 Looking at the template, I find this documentation line to be confusing, the method parameters don't include the `gen_kwargs` so I'm unclear where they're coming from. Happy to push a PR with a clearer statement when I understand the meaning.
79
Ambiguous documentation https://github.com/huggingface/datasets/blob/2ac9a0d24a091989f869af55f9f6411b37ff5188/templates/new_dataset_script.py#L156-L158 Looking at the template, I find this documentation line to be confusing, the method parameters don't include the `gen_kwargs` so I'm unclear where they're coming from. Happy to push a PR with a clearer statement when I understand the meaning. Hi @theo-m ! A few lines above this line, you'll find that the `_split_generators` method returns a list of `SplitGenerator`s objects: ```python datasets.SplitGenerator( name=datasets.Split.VALIDATION, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": os.path.join(data_dir, "dev.jsonl"), "split": "dev", }, ), ``` Notice the `gen_kwargs` argument passed to the constructor of `SplitGenerator`: this dict will be unpacked as keyword arguments to pass to the `_generat_examples` method (in this case the `filepath` and `split` arguments). Let me know if that helps!
[ 0.0630260408, -0.0559886098, -0.0537044816, 0.1070297062, 0.0235676207, 0.1693244725, 0.3407928646, 0.1025087535, -0.1445973217, -0.1650754511, 0.0825748593, 0.3592205048, 0.0475478023, 0.0229654685, 0.1957675815, -0.2267205268, 0.0967703611, 0.1418143958, -0.0160178766, -0.1553119719, -0.3404799104, 0.2601730824, -0.3286117315, 0.303753078, -0.2405360788, -0.2140241861, -0.1296740174, 0.3539069295, -0.4259349704, -0.2638632357, 0.2149849981, 0.1732775569, -0.1561240852, 0.198760137, -0.0001124477, 0.0061696768, 0.2945779562, -0.1892530918, -0.1790917814, 0.0210833326, -0.3679367304, -0.1775044799, 0.0289062038, -0.3533603549, 0.1910022795, -0.3274490237, 0.0365875885, -0.1565576643, 0.5122279525, 0.19034338, 0.1555774957, 0.023026824, 0.1395212114, -0.1815900505, -0.16110304, 0.5714951754, -0.2454582006, -0.1139200181, 0.0408839323, 0.1185334101, 0.0628220066, 0.2183078676, 0.0905427039, -0.1116908193, 0.4655436575, -0.0411246568, -0.2104081213, -0.5389924645, 0.0971476063, 0.2854475975, 0.5018540025, -0.2640083432, -0.2595463395, -0.2530981004, -0.1830709279, -0.1483087242, -0.1307507455, 0.3472190797, -0.3724951744, -0.0102219656, -0.3185662925, -0.2991984785, -0.2664617002, -0.3025462925, 0.1488544643, 0.3738010526, -0.1506493092, 0.1400253773, 0.0473175086, 0.1209770739, -0.0652597249, -0.2275737971, 0.0284533836, 0.4920308888, 0.0334739797, -0.1478963792, 0.2251161933, 0.0053129215, 0.4009970427, 0.2251063585, -0.0026088376, -0.2663422525, 0.0731087774, 0.1978610009, 0.3588045239, -0.2031563818, 0.3699663877, 0.0002884939, 0.0691673085, 0.0147320218, 0.226357758, -0.16692774, 0.1684113741, -0.383089304, 0.0449415147, 0.037931852, 0.3937675059, -0.1123329327, -0.095852837, 0.0414179116, -0.1373911351, -0.3935704231, 0.0558246262, 0.0493344404, 0.2171517164, -0.0029185945, -0.0890621468, -0.1021663025, -0.1244851053, -0.2616608739, -0.240977183, 0.2836474478, -0.1866670698, 0.1743052602, -0.1942204237, -0.2025464326, 0.3773420453, 0.2009479702, 0.2653452158, 0.1425867379, 0.1070018485, 0.1838041693, 0.1337120235, 0.2818728089, -0.0353092588, 0.1737412214, 0.2208316773, 0.0379711837, -0.3028088808, 0.0211155564, -0.4155865312, -0.3842846155, 0.0451717004, 0.1054996476, -0.2765234709, 0.161722973, -0.2013296783, 0.3348643482, 0.0546007417, -0.1171724871, 0.0920718461, 0.010471303, -0.039068535, -0.5046520829, 0.3123726845, 0.4569101632, -0.4068635702, -0.1470855623, -0.197656855, -0.2394915223, -0.0142197944, 0.0178307183, -0.3050233722, 0.4071805775, -0.2098044753, 0.4111053944, 0.550224781, -0.0264272615, 0.2617900968, 0.4143198431, 0.2440983355, 0.0400958285, 0.1967812181, -0.3653973341, 0.1281254888, -0.1726319492, -0.2287605405, 0.1094249561, -0.1204197258, -0.2198888808, 0.092681244, 0.0025517866, -0.1228934675, -0.1769021749, -0.115951404, 0.0135558788, 0.0102812499, 0.1956630647, 0.4094672501, -0.2382919788, 0.1461004615, 0.3196184635, 0.3091382384, -0.1995505393, 0.2227864265, 0.0575039089, -0.6098823547, -0.0888738707, 0.019350931, 0.1056628823, -0.1684192866, -0.2631372809, -0.3937975764, 0.0714042485, -0.2420983762, -0.2368248403, 0.1145805269, -0.0982955545, 0.2783872485, -0.1827613115, -0.3041558862, -0.0179164037, -0.0206741206, 0.0775981098, -0.6391504407, 0.1906315386, -0.0363016278, 0.1559225917, -0.0530469008, 0.045944415, 0.0631186515, -0.2324766219, 0.1714748442, 0.4587955177, 0.4186863899, -0.0333929434, -0.0634000972, 0.3129426241, -0.0341993868, -0.0261274353, 0.3035817444, -0.0439401008, 0.1650854498, 0.057366915, -0.3358436823, 0.4323945045, -0.2407266796, 0.3330578804, 0.2003153414, 0.0207135305, 0.1567844748, 0.191863209, -0.1606839597, -0.1137877479, -0.2559687495, 0.206464529, 0.3144340813, 0.0809788406, -0.2916630507, 0.4554889798, 0.5633226037, -0.3260163367, -0.2243345827, 0.0192818921, 0.0195230301, -0.3728531599, -0.0673384219, 0.339428544, 0.5309391618, 0.0249873325, 0.174312681, 0.088684909, -0.2671060562, -0.226940006, 0.4196888208, 0.0794183612, 0.0610029176, 0.0651262626, -0.5002263188, -0.2657812238, -0.3489812911, -0.1541883349, 0.2562904358, 0.2185085118, -0.3675771952, 0.2802489102, 0.0644771978, 0.1209355146, -0.2625287175, -0.1141394302, -0.2750657201, -0.5612818003, 0.0426921397, -0.0299979113, -0.089888826, 0.0450082049, 0.0352849215, 0.2285882235, -0.0247035772, 0.1770927608, -0.300034672, -0.1925522536, -0.0262380894, 0.1083847135, -0.0044305325, 0.0198434927, 0.2194131464, -0.1660424173, 0.1192984357, -0.2669514716, -0.3701037765, 0.2968110442, -0.4268535376, 0.285499692, 0.7126972675, 0.3422036767, 0.0494979024, -0.2332900316, 0.0504640117, -0.1468915492, -0.2825330496, -0.2010694295, -0.1071048677, 0.0724876523, -0.35479182, -0.5272272825, 0.0341724604, -0.208056435, 0.2492886633, -0.0573889539, 0.2517395616, 0.2855527401, 0.2062863857, 0.2444445044, 0.0874436572, 0.1648582816, -0.1609758586, -0.3166236877, 0.2856169045, -0.4865407646, -0.15366292, 0.1032462716, -0.0922758505, 0.4634681642, -0.0369103625, -0.1064059958, -0.3701995611, -0.118655473, 0.0424702764, 0.0186971128, 0.3841694891, 0.1690156311, -0.0273057297, 0.0256084874, -0.3647845387, -0.1000135541, 0.0551920459, -0.3473075926, 0.1823514998, 0.0608921275, 0.4155499637, -0.0704484284, 0.6626814008, 0.3334256411, 0.0407075509, -0.0579510592, -0.1177551001, 0.4817963839, -0.0199303962, -0.1661502272, 0.0748708993, 0.1015366241, -0.1329633594, 0.0953430235, 0.0903725624, 0.093750827, 0.1487012357, -0.027414687, -0.263187021, -0.3521753252, 0.1254466772, 0.2102634013, 0.2774252594, -0.0712267011, 0.2989459038, -0.1903245449, 0.1821182519, -0.2548040748, 0.490855068, 0.6145688891, 0.0827760845, -0.3357670903, -0.1644797921, -0.3440630734, 0.1310023367, -0.0074124224, -0.0851846635, -0.0927430764, -0.1233961806, 0.1414812207, -0.146115765, 0.4138372242, -0.3477959037, -0.1935282052, 0.1525823325, -0.0163213983, -0.1738787591, 0.0659224167, -0.1577226371, 0.2936334908, 0.1764202863, 0.0440506004, -0.5996688604, -0.4980013967, 0.1934525818, 0.0108284354, -0.2041810453, 0.1298810095, -0.1511051208, -0.6448941827, -0.0861665308, -0.1322558522, 0.1849901974, 0.0545250028, -0.1793076396, 0.3947926164, 0.1312597692, 0.1218223572, 0.1520986259, 0.4695477784, 0.3066174984, -0.1120473966, -0.2064917237, 0.076541476, 0.1102180481, 0.0202545319, 0.3572824597, -0.1449249685, -0.2403617799, -0.0022130571, -0.2800559402, 0.5578082204, 0.2927030325, -0.1902350038, 0.0347933657, -0.1490895599, -0.1357689947, -0.2394866794, 0.0017740615, 0.3852311075, -0.303571552, -0.3060831428, -0.8698114753, 0.4335882068, 0.348095715, -0.2058622539, 0.34832564, 0.3761308789, -0.2476671189, 0.0583864078, 0.3835324347, 0.7816461921, 0.4372037649, 0.2335247844, 0.4435305297, -0.218887493, 0.5801468492, 0.0565141737, -0.0785416216, -0.4775753617, 0.0045595132, -0.2190326452, -0.1659437716, 0.2511467934, 0.3887834251, -0.2179742455, 0.1936334074, -0.1872209013, 0.0677073747, -0.161850363, 0.2255182415, -0.1253626496, -0.0913023725, -0.2029475421, 0.1133401245, 0.0569849834, -0.0039101383, -0.0460456908, -0.2679025233, 0.0644954443, -0.4196641445, -0.3684491515, -0.060995914, 0.3079551756, 0.0672422945, 0.2474591881, -0.2270308733, 0.3886539638, 0.1202158034, 0.2785611451, -0.0669819117, -0.1209644899, 0.1790649444, -0.1707368344, 0.0155605711, -0.1539040804, 0.16772376, 0.4168998003, 0.0969810188, -0.0540140793, 0.0565550886, -0.158933118, -0.0883349702, -0.4750371277, 0.1810634732, -0.2370463014, -0.51765728, -0.1148441136, 0.0828724504, -0.2824343443, -0.0762312263, 0.0554893985, 0.2443852872, -0.2320575714, 0.2936024964, -0.3024002314, -0.0224813595, 0.0489073731, -0.2302009016, 0.0862601995, 0.0368724465, 0.2618043125, 0.0112962425, -0.1381825507, -0.3272834122, 0.2000401616, 0.5726197362, -0.6263509393, 0.2564406693, 0.2468700707, 0.1769985855, 0.1548411995, 0.1777610928, -0.1841891706, 0.3437292874, -0.2117954642, -0.3027579188, 0.0321092233, 0.3065123856, -0.2223124951, 0.2031899095, 0.0234011188, -0.0157857761, 0.1977741718, 0.1179460809, -0.2993243635, 0.1151679307, 0.1789743006, 0.035914842, 0.2088570446, 0.015479886, 0.1003280431, 0.075209707, 0.0038779378, -0.0526533574, -0.3928079903, -0.1168736666, -0.2186908126, 0.1830580384, -0.0288587697, -0.187718451, 0.1499777138, 0.1668447107, -0.424885273, -0.0539348871, 0.3341397345, -0.0373083279, 0.0551678762, 0.2743196785, 0.1323890686, 0.1528704166, -0.1730083227, -0.1509547532, 0.1343626231, 0.4246540666, 0.2246308029, 0.243298471, -0.2240974009, -0.0863253772, -0.1576266587, 0.4860997796, 0.2494945377, -0.0847698748, 0.3280570209, 0.1216632724, 0.0873245001, -0.4062580466, 0.4440461695, 0.4752520621, -0.0179642662, 0.2364118993, -0.0518485829, 0.0944418684, -0.0688726678, -0.1788321435, 0.153708905, 0.04254077, 0.1513476074, 0.3643051386, 0.1570624113, 0.2181693763, -0.0542377979, -0.2468826175, 0.5586367846, -0.0006454065, 0.3511785269, 0.7551180124, -0.0354596749, 0.1235650107, 0.2820722163, 0.0567199737, 0.1068036035, 0.1088811457, 0.0239950363, 0.2393902093, 0.0669959038, -0.0123410504, 0.2862535715, -0.161956802, -0.0269896686, 0.2715640664, 0.0487066954, 0.1325714439, -0.0262094364, 0.2715280056, -0.0600217581, 0.1020966768, -0.2493348122, 0.2315692902, 0.0015933225, -0.2097301185, -0.4564829469, -0.2576332688, -0.1872606725, -0.0849314183, 0.0605744198, -0.4115418792, 0.3470728099, -0.3500344157, 0.2807442844, 0.0230731443, 0.4015869498, 0.0115207303, 0.0562061742, -0.0486792997, 0.0392037183, 0.1939413548, -0.0702419356, 0.2330794185, 0.4043900967, 0.446484834, 0.2524722815, 0.0869969353, -0.1364698708, -0.1309309006, -0.0494086891, 0.0036350116, 0.1537796557, -0.3043949604, -0.1800201833, 0.2208894789, 0.1544553638, -0.0029645152, -0.0388854332, 0.1989024132, 0.0792408809, -0.1073251516, 0.5643258691, -0.2565628588, -0.1210437492, -0.0079536689, 0.097522065, -0.3501306474, -0.3489462137, 0.2783757746, 0.2449498326, 0.052511774, -0.3614912331, 0.0828200877, -0.0364129394, 0.5925096273, 0.0213757567, 0.0422786586, -0.1893230081, -0.260879159, -0.4184705913, -0.1952398717, -0.0120764179, -0.3624277413, 0.1239401475, 0.2639780939, 0.0511847213, 0.0453205332, -0.1107775345, 0.0066594146, -0.0647144541, 0.3001201749, -0.2498513311, -0.1399868578, 0.0974657014, 0.1280570626, -0.1126332805, -0.0070936978, 0.1019565314, -0.0105432384, -0.0253550038, -0.0875790417, 0.1269022673, 0.3288882375, 0.3355785012, -0.188804552, 0.2449079752, 0.2353854477, -0.082510002, -0.2910901904, -0.2382964194, 0.16945678, -0.3728820682, 0.4929940999, -0.0161862709, 0.1797353327, -0.0702205598, -0.219833672, -0.2998577058, 0.2033131421, 0.0825979263, -0.0941108465, -0.2372616976, 0.2453477532, -0.4747848511, -0.020936694, 0.2546731234, 0.3233120739, -0.1294373125, 0.0668983907, -0.0858337283, -0.3203433454, 0.4812013507, -0.2044386864, -0.3090691864, -0.124149479, 0.0593834668, 0.0217449944, -0.3169496655, -0.5852499008, -0.064353019, 0.2532246113, -0.1113679633, -0.1404601187, 0.1280758828, 0.0493840389, -0.2989431918, -0.1453458816, 0.1923642606, 0.1709426343, -0.3089113832, 0.1824215204, -0.1736837327 ]
https://github.com/huggingface/datasets/issues/2009
Ambiguous documentation
Oh ok I hadn't made the connection between those two, will offer a tweak to the comment and the template then - thanks!
https://github.com/huggingface/datasets/blob/2ac9a0d24a091989f869af55f9f6411b37ff5188/templates/new_dataset_script.py#L156-L158 Looking at the template, I find this documentation line to be confusing, the method parameters don't include the `gen_kwargs` so I'm unclear where they're coming from. Happy to push a PR with a clearer statement when I understand the meaning.
23
Ambiguous documentation https://github.com/huggingface/datasets/blob/2ac9a0d24a091989f869af55f9f6411b37ff5188/templates/new_dataset_script.py#L156-L158 Looking at the template, I find this documentation line to be confusing, the method parameters don't include the `gen_kwargs` so I'm unclear where they're coming from. Happy to push a PR with a clearer statement when I understand the meaning. Oh ok I hadn't made the connection between those two, will offer a tweak to the comment and the template then - thanks!
[ 0.0907542109, -0.178482458, -0.0821815953, -0.1347766519, 0.2026103288, 0.1043048352, 0.4321018457, 0.0742142648, -0.0925439149, -0.1297513098, 0.1296097338, 0.207154572, 0.0149755441, 0.1009715199, 0.3126716912, 0.0319478549, 0.2020220757, 0.0814613104, -0.1270156205, -0.1860020608, -0.3509488106, 0.1204455867, -0.2026405036, 0.2474187464, -0.3214331269, -0.0715388507, -0.0957000107, 0.3153886497, -0.3801509142, -0.347201556, 0.3936365545, 0.2135883272, -0.1184881777, 0.1507876515, -0.0001064841, 0.031334877, 0.4308875799, -0.1848324835, -0.1925986707, 0.2388118207, -0.2063976824, -0.2435213625, 0.0402130559, -0.3196238577, 0.091954872, -0.283006072, 0.108221449, -0.0474155731, 0.3947280645, 0.2065674812, 0.2524825335, 0.0181181654, 0.0514024347, -0.2937715352, -0.0214617699, 0.3528165221, -0.2551087141, 0.1114551798, 0.1892900467, -0.0178189874, -0.2224147767, 0.3152567148, 0.0603582785, -0.2014648914, 0.5262851119, -0.0914602131, 0.1253805012, -0.3355516195, 0.2306746095, 0.1955231279, 0.6530072093, -0.2880723178, -0.3390622437, -0.1587801129, -0.0159976855, -0.1725629866, -0.1106832176, 0.1456157267, -0.4438186586, 0.0985822827, -0.3290767372, -0.2995273173, -0.3381352127, -0.1893776506, 0.1041533649, 0.3985582292, -0.1467224658, 0.0287830122, -0.0798098147, -0.0637107491, 0.0606429093, -0.0514687151, -0.0620312989, 0.4795161784, 0.047522407, -0.0571066551, 0.3913281858, 0.3072205782, 0.4849084914, 0.3319511116, 0.0647531301, -0.1249569356, 0.0482137986, 0.121980831, 0.1688567847, -0.0952119976, 0.2625272572, -0.1981393993, 0.1932670176, 0.0716888756, 0.2193523198, -0.1851042658, 0.1651636958, -0.4140139222, 0.0960270315, -0.1382639855, 0.3235097528, -0.2193561196, -0.0478595309, 0.0212957077, 0.1541703194, -0.2329802811, 0.0033719763, 0.1460005492, 0.0977545828, -0.0294089913, -0.0267412327, -0.0824773461, -0.1639434695, -0.0177765563, -0.3367516398, 0.2282176316, -0.2819629014, 0.2159064114, -0.2383442372, -0.1050835401, 0.3639848828, 0.2932412922, 0.2600688934, 0.3762286901, -0.1156290472, 0.2062499225, 0.1441387683, 0.2639552653, -0.3072521389, 0.1014633477, 0.151481837, 0.0976407006, -0.2121097147, 0.0222521499, -0.3375569284, -0.406891346, 0.0331564695, 0.1558644772, -0.27768749, -0.0517169014, -0.0528343245, 0.4435341954, 0.1255666316, -0.1862482429, 0.0439450257, 0.0011066943, -0.064373903, -0.4972920716, 0.310356468, 0.4556651711, -0.3002094626, -0.2015374005, -0.0556299016, -0.2588976324, 0.1801882982, 0.1800512671, -0.233802855, 0.1157818437, -0.2990378439, 0.2452955991, 0.4009965062, -0.0305051878, 0.1852109134, 0.2886864841, 0.2408439219, -0.0456029885, 0.2281848192, -0.1671768129, -0.1202183291, -0.1961424351, -0.1287863851, -0.0771346912, 0.0493373349, -0.1397653818, -0.1034402698, -0.0711304918, -0.0705193207, -0.1175254136, -0.1683062166, 0.0547598712, 0.0953353867, 0.1015540957, 0.3932325542, -0.234594062, 0.1285249889, 0.3467077017, 0.4189898372, -0.1288620979, 0.0794210583, 0.0565182716, -0.6715269089, -0.0466048308, 0.0131090432, 0.2423955202, -0.1882208139, -0.2485080808, -0.4149154127, 0.0028944239, -0.0466386192, -0.2650404572, 0.1491554081, -0.0113791265, 0.1515476704, -0.1366386563, -0.1981600225, -0.0785094574, -0.0282419287, 0.0117725171, -0.4073157907, 0.1264128685, -0.0308604334, 0.0549488366, 0.0660936683, 0.1211643815, 0.1455519199, 0.0127393566, 0.2302755564, 0.3799107969, 0.2193587273, 0.0544944517, 0.1166282296, 0.3671433926, -0.1192399859, 0.0965397283, 0.2640693784, -0.0831123888, 0.1438301653, -0.0361758322, -0.3096535206, 0.2935358286, 0.1455041766, 0.1645067036, 0.1982659101, -0.0875331238, 0.1234213486, 0.1111754775, -0.1437384486, -0.1031605303, -0.2327033132, 0.1511909366, 0.4141840637, 0.0949408859, -0.3783421516, 0.4364839196, 0.2460189164, -0.2534931302, -0.1884201169, 0.143451497, 0.0920638591, -0.4229133129, -0.0424714014, -0.0089845955, 0.4792380333, 0.1818936616, 0.2370544225, 0.1093301699, -0.2840775847, -0.3740888238, 0.2590413988, -0.0067266934, -0.0551691167, 0.0240312666, -0.125905484, -0.2680930495, -0.2931375206, -0.0103912577, 0.0646325499, 0.2418513149, -0.4246809781, 0.1512792557, 0.0138726383, -0.0488587618, -0.2073212564, -0.1320532858, -0.3677155674, -0.576834619, 0.0648535043, 0.001263133, -0.2023103535, 0.0999621749, -0.1299650371, 0.3149818182, 0.0695007369, 0.2884173393, -0.3500846028, -0.250990361, 0.0356565863, 0.1521711648, -0.0046586357, -0.1069711149, 0.3328806162, -0.1114896908, 0.0681737661, -0.4380571842, -0.5030035973, 0.1767321825, -0.3395257294, 0.3017330766, 0.5701351762, 0.4036958218, 0.0565249622, -0.0830227211, 0.0947983861, -0.1777531356, -0.243697226, -0.2531808615, -0.1625373811, 0.0825259537, -0.3432881534, -0.3473720849, -0.0341797061, -0.2782123089, 0.2322397381, 0.0811352506, 0.1493460685, 0.4569230676, 0.1185975298, 0.1602664292, 0.0463689454, 0.1483188272, -0.206144318, -0.3614012301, 0.3522815406, -0.3719356358, -0.2803906798, 0.0186989456, 0.0436757207, 0.4063161612, -0.0261210743, -0.2084700614, -0.4375243187, -0.098815389, 0.2255108953, 0.0795599371, 0.4632645547, 0.1754229516, -0.1288134903, -0.1690650731, -0.3697239757, -0.1438212395, 0.0056056567, -0.5320706367, 0.1350744367, 0.116125986, 0.2016550899, -0.1373724937, 0.6183987856, 0.1834116876, -0.0393329822, 0.0863247663, -0.2357013226, 0.6174336076, -0.1425572187, -0.0519839339, 0.1715779603, 0.0455173813, -0.0295403078, 0.2016071975, 0.1906788498, 0.0252237786, 0.0489921197, -0.0591119677, -0.0439602099, -0.3756274581, 0.0385444686, 0.2568564117, 0.187718153, -0.014530547, 0.1676346511, -0.2716952562, 0.007592272, -0.1225029528, 0.406919539, 0.4516629577, 0.1684547216, -0.2381349802, 0.0187007524, -0.4803555608, 0.2803090215, -0.0482403971, -0.0525972359, -0.1732230186, -0.2888439298, 0.1235277504, -0.0884484649, 0.2902471125, -0.2935280204, -0.2524641752, 0.1743178219, 0.1187511683, -0.3780839741, -0.015643321, -0.1283374727, 0.2648364305, 0.2669675052, 0.0926488936, -0.5838428736, -0.4488578439, 0.0871465802, 0.0339726023, -0.0944151655, 0.0418098122, -0.2512208521, -0.6246231198, -0.0316525847, -0.1325455159, 0.0676608235, -0.0896009058, -0.2021626085, 0.3516413867, 0.2178478837, 0.1741158664, 0.1369445175, 0.3481552303, 0.1863053888, 0.058536794, -0.1171584576, 0.0357604139, 0.2629092932, 0.1564122885, 0.3872847259, -0.2450017184, -0.155618161, -0.0913923979, -0.2430645823, 0.5037791729, 0.4062498212, -0.1907997727, 0.1011989266, -0.0680630654, -0.0576717071, -0.2223553509, -0.0498010106, 0.2901689112, -0.1759475172, -0.3967420757, -0.8526321054, 0.5501236916, 0.2221509218, -0.3509260416, 0.1233768985, 0.3864320219, -0.2540646791, -0.1042571515, 0.2390332371, 0.9269064665, 0.4665984809, 0.381388247, 0.5670028329, -0.0193574801, 0.3943982124, 0.2751504779, -0.0854455233, -0.5506339073, -0.1121300012, -0.1418148577, -0.1199333966, 0.1193927974, 0.3322305381, -0.0728060454, 0.2612600923, -0.2402742207, 0.1152073145, -0.128375113, -0.0113827363, -0.1996078044, -0.0877933651, -0.3388986886, 0.2031574249, 0.0803394839, -0.0278077107, -0.1115987673, -0.2137952596, 0.038340129, -0.3241895437, -0.3365110159, -0.0112347491, 0.1663065553, 0.1232653037, 0.1898582578, -0.1164371371, 0.1951513588, 0.0620347708, 0.3750990331, -0.0663105696, -0.2711078823, 0.1484340131, -0.1516668051, 0.0322640166, -0.0726142451, 0.2096667141, 0.5035307407, -0.0155195221, -0.1664480567, 0.0706075728, -0.037519183, -0.0495997034, -0.5324886441, 0.0037844758, -0.3056993783, -0.523783803, -0.2686620355, -0.05526774, -0.1828413159, -0.1046866551, 0.1207878217, 0.2544157505, 0.0414538234, 0.2985794842, -0.1615927219, -0.010248296, 0.013082277, 0.054699678, -0.0894690305, 0.0576737821, 0.3235439956, 0.0554720536, -0.3141050935, -0.3113207817, -0.002712898, 0.5453394651, -0.5239100456, 0.125055328, 0.4224224091, 0.1855458915, 0.0352303833, 0.2699261308, -0.1150506437, 0.1045580208, -0.1019807383, -0.2470863014, -0.2766984999, 0.3957057297, -0.215226084, 0.2896229029, -0.0420393683, -0.0012261178, 0.2128679752, -0.0650037825, -0.4069843888, -0.0639204308, 0.2035136074, -0.0313218459, 0.3573609293, 0.0283502452, 0.1642311513, 0.0997425616, 0.0617153645, -0.1078155935, -0.4556202292, -0.1732761264, -0.1620600224, 0.1470469832, -0.0821723938, -0.1966526806, 0.2791031301, 0.0727940947, -0.3431841135, -0.0373160839, 0.4923639596, 0.0939225256, -0.0151707269, 0.26184991, 0.0440335944, 0.1581652313, 0.1447547376, -0.0478182696, 0.2307636291, 0.2744838297, 0.1432124525, 0.078184396, -0.38925457, -0.1141836718, 0.3225950897, 0.5643661618, 0.230751738, -0.0074929465, 0.2125403583, 0.1136690676, -0.0127279311, -0.1772307605, 0.3757172823, 0.3366525471, -0.143966943, 0.1291634291, 0.0873714983, 0.1960115284, -0.2959817946, -0.1362829655, -0.001690235, 0.0013864264, 0.193554163, 0.2963778377, 0.1171803474, 0.0232160985, -0.0299493708, -0.1630606055, 0.4087221324, -0.1278824657, 0.030939322, 0.4737962186, -0.0006789714, 0.0457708798, 0.3533282876, 0.2377206981, 0.0006733835, 0.1627083123, 0.0224438682, 0.1393558532, 0.061435964, -0.0373764262, -0.0052461997, -0.2839750051, 0.0158074703, 0.3037021756, 0.0354406089, 0.0836520568, 0.0550174788, 0.3576851189, 0.2673793733, 0.0782655925, -0.1751666367, 0.2874324322, -0.029082194, -0.356898576, -0.2810842395, -0.2341431528, -0.0568822026, -0.2031300068, -0.0560245439, -0.346970439, 0.3962548673, -0.2842959762, 0.3317703903, -0.0262895264, 0.2526831627, 0.0308215246, 0.213883698, 0.0191824958, 0.105670087, 0.3438791037, -0.0920381472, 0.384839803, 0.4586823881, 0.6834427714, 0.2331954986, 0.2456310093, -0.1129713058, -0.1820156872, -0.0338710397, -0.038764488, 0.1852034926, -0.1110439897, -0.1605181992, 0.2998466492, 0.1813002825, -0.0675624982, 0.1590361893, 0.1981125027, 0.1491737962, -0.1206938177, 0.4673969448, -0.1642168313, -0.2568281293, -0.1632743776, 0.2003332227, -0.3464717865, -0.1483397633, 0.2493665367, 0.2265757024, 0.0990869328, -0.2746402621, 0.1339312792, 0.1253912151, 0.703727901, 0.1380411685, 0.0544935279, -0.0764222741, -0.1834019125, -0.5739238262, -0.1766331792, 0.1114693731, -0.4577991962, 0.0147802047, -0.0284790732, 0.1749310941, -0.0576869175, -0.0228515416, -0.0576025322, 0.0830657631, 0.0520924814, -0.3459965587, -0.0429476015, -0.016524747, 0.0558007583, -0.0455078408, -0.0307317153, 0.0758170187, -0.0435290188, 0.0906403959, -0.0488404483, 0.2820123732, 0.146483317, 0.3140296936, -0.048904404, 0.2010912895, 0.4074598253, -0.1519564092, -0.3234459758, -0.3913857937, -0.0676136911, -0.3365264535, 0.4239861071, -0.0204095412, 0.0350304917, -0.0516270138, -0.4418331385, -0.1930156797, 0.3930756748, 0.0923598334, -0.1800706536, -0.1732861996, 0.2495716214, -0.2952671647, -0.2162276208, 0.0389366671, 0.2992435098, -0.0870984122, -0.0171061456, -0.0439770073, -0.538633585, 0.7789407372, -0.2815497816, -0.2707868814, -0.1414672434, 0.1780964732, -0.0699511319, -0.2371913791, -0.6841173768, 0.1179752052, 0.1855071485, 0.077552557, -0.2221451551, 0.227658838, -0.1803619415, -0.2749416232, -0.1646128744, 0.2249431163, 0.1434902251, -0.2990714312, -0.0570986196, -0.2372342944 ]
https://github.com/huggingface/datasets/issues/2007
How to not load huggingface datasets into memory
So maybe a summary here: If I could fit a large model with batch_size = X into memory, is there a way I could train this model for huge datasets with keeping setting the same? thanks
Hi I am running this example from transformers library version 4.3.3: (Here is the full documentation https://github.com/huggingface/transformers/issues/8771 but the running command should work out of the box) USE_TF=0 deepspeed run_seq2seq.py --model_name_or_path google/mt5-base --dataset_name wmt16 --dataset_config_name ro-en --source_prefix "translate English to Romanian: " --task translation_en_to_ro --output_dir /test/test_large --do_train --do_eval --predict_with_generate --max_train_samples 500 --max_val_samples 500 --max_source_length 128 --max_target_length 128 --sortish_sampler --per_device_train_batch_size 8 --val_max_target_length 128 --deepspeed ds_config.json --num_train_epochs 1 --eval_steps 25000 --warmup_steps 500 --overwrite_output_dir (Here please find the script: https://github.com/huggingface/transformers/blob/master/examples/seq2seq/run_seq2seq.py) If you do not pass max_train_samples in above command to load the full dataset, then I get memory issue on a gpu with 24 GigBytes of memory. I need to train large-scale mt5 model on large-scale datasets of wikipedia (multiple of them concatenated or other datasets in multiple languages like OPUS), could you help me how I can avoid loading the full data into memory? to make the scripts not related to data size? In above example, I was hoping the script could work without relying on dataset size, so I can still train the model without subsampling training set. thank you so much @lhoestq for your great help in advance
36
How to not load huggingface datasets into memory Hi I am running this example from transformers library version 4.3.3: (Here is the full documentation https://github.com/huggingface/transformers/issues/8771 but the running command should work out of the box) USE_TF=0 deepspeed run_seq2seq.py --model_name_or_path google/mt5-base --dataset_name wmt16 --dataset_config_name ro-en --source_prefix "translate English to Romanian: " --task translation_en_to_ro --output_dir /test/test_large --do_train --do_eval --predict_with_generate --max_train_samples 500 --max_val_samples 500 --max_source_length 128 --max_target_length 128 --sortish_sampler --per_device_train_batch_size 8 --val_max_target_length 128 --deepspeed ds_config.json --num_train_epochs 1 --eval_steps 25000 --warmup_steps 500 --overwrite_output_dir (Here please find the script: https://github.com/huggingface/transformers/blob/master/examples/seq2seq/run_seq2seq.py) If you do not pass max_train_samples in above command to load the full dataset, then I get memory issue on a gpu with 24 GigBytes of memory. I need to train large-scale mt5 model on large-scale datasets of wikipedia (multiple of them concatenated or other datasets in multiple languages like OPUS), could you help me how I can avoid loading the full data into memory? to make the scripts not related to data size? In above example, I was hoping the script could work without relying on dataset size, so I can still train the model without subsampling training set. thank you so much @lhoestq for your great help in advance So maybe a summary here: If I could fit a large model with batch_size = X into memory, is there a way I could train this model for huge datasets with keeping setting the same? thanks
[ -0.1572746336, -0.5049956441, 0.0060413107, 0.530023396, 0.5585081577, 0.0471685678, 0.0790675133, 0.260130167, 0.3925337493, 0.1179507449, -0.0250127148, -0.2572242618, -0.3355451226, 0.3502959013, 0.0798837766, -0.1671072692, 0.0480986238, -0.0093382448, -0.4906487465, 0.0814424902, -0.2567531466, -0.0583362654, 0.023544237, -0.3496483564, -0.3608576357, 0.0781599581, 0.0802212954, 0.0628453791, 0.0150353052, -0.0004086569, 0.0273331255, -0.0705819726, 0.1996207088, 0.4450730383, -0.00012403, 0.0955725089, 0.1058855504, -0.343049705, -0.0113491118, -0.0202330202, -0.0401827209, -0.1584905088, 0.1759108603, -0.0960553885, -0.1249652952, 0.1642026156, 0.0570748597, -0.1192684919, 0.6155739427, 0.0377035737, 0.081197679, 0.155772537, -0.1867905557, 0.1391715854, 0.0997066349, 0.1715507954, 0.0613706484, 0.1924700439, -0.1117652357, 0.0804733187, -0.0205954909, 0.3296149373, -0.1551056802, -0.1606439948, 0.3712907732, -0.0296815541, 0.0977132395, -0.4963960648, 0.0698860809, 0.227807492, 0.3327122331, -0.1846725941, -0.2815981805, -0.2376728058, -0.2664919496, -0.2981772125, 0.0356218293, 0.387496531, -0.1627113819, 0.1952940524, -0.5647283196, -0.3583254814, -0.117329672, -0.0793816298, 0.0170948729, -0.147987783, -0.1117726564, 0.0931009725, 0.388677597, -0.1748270094, -0.3857357204, 0.0535075366, 0.124463819, 0.202183798, -0.4465095103, -0.2754252553, -0.0981327593, -0.0126579404, 0.5197054744, 0.0696834624, -0.0840648711, 0.1435510814, 0.3678053617, -0.0124554615, 0.2559286952, 0.2244561315, -0.3579395413, -0.0226895586, 0.3058382273, 0.1548229307, 0.0666358396, -0.0980799347, -0.048379682, -0.103982538, -0.1187501401, -0.217839554, 0.1938425303, -0.247209847, 0.1151940748, -0.1014177203, -0.0034160465, 0.1457038522, -0.0707054883, 0.5723392963, -0.1075767577, 0.2447873354, -0.0547036827, 0.1319086254, -0.4047716856, 0.0199617855, -0.1732324958, 0.1808787435, -0.2549793124, 0.3128552139, 0.376170963, 0.1077369526, 0.3884442747, -0.129555881, 0.066776216, -0.0720064715, 0.0200993642, -0.3184729815, 0.0743139833, 0.4120984674, 0.0514295846, 0.1046667621, 0.0525590815, 0.2978248, -0.2143004984, 0.3047825992, -0.1877877414, -0.3000202775, 0.464750886, 0.0260907747, -0.3193109632, 0.2963593304, -0.5062698126, 0.2329649329, 0.1344294995, 0.2149205208, 0.0263016, 0.0652707219, -0.3889724612, -0.0968876407, 0.4445874095, 0.7276238799, -0.0871042535, -0.3735776842, 0.2625142038, -0.091923818, 0.0998734608, 0.6178457737, -0.0144174192, 0.0265060961, 0.006341368, -0.336533308, 0.0979595855, -0.1402827203, -0.3693676591, 0.2471099943, -0.2083164006, 0.1737010628, 0.2634853125, 0.1960685551, -0.1570889056, 0.1254316419, -0.0142414495, 0.441101402, 0.0268203635, 0.2472619116, -0.139895454, -0.5316056013, 0.1208494306, 0.2106381506, 0.2256651819, 0.0572578907, -0.1509833634, 0.5526145697, 0.0886668786, -0.13657929, 0.1413097084, 0.4671049118, -0.0440799072, -0.1722707599, -0.0133903585, 0.0327297151, -0.509432435, 0.2002462298, -0.2553124428, 0.0325723588, -0.1079558209, -0.0101273805, 0.0486873984, -0.093021363, 0.1028226614, -0.1937772036, -0.0928162783, -0.3027747273, 0.1868070364, -0.0771669596, -0.0579811744, 0.1618710458, 0.0533703789, 0.2807010114, -0.6293295026, -0.1864139736, 0.0876692608, -0.0823404342, 0.0509210899, 0.0869899988, -0.0571691692, -0.0752617866, 0.1155380979, 0.1845812798, 0.0681406558, 0.0221216157, -0.2876865566, 0.5894066691, 0.2645456195, -0.2151781619, 0.1873777211, 0.0568238497, 0.0807577297, -0.0167976767, -0.2281121314, 0.2756060362, 0.0014039371, 0.3533560038, 0.0675163716, -0.2433756739, -0.0153766461, -0.2704689801, -0.0966261774, -0.3189066947, 0.1948168874, 0.3701252639, 0.2904973924, 0.3180951178, -0.109756887, -0.6400545835, 0.4141522348, 0.0285226256, 0.0119815301, 0.1240207702, -0.4441155791, -0.0441278294, -0.1043962464, -0.4297684133, 0.2082954347, 0.2234423757, -0.0286331624, 0.1574376374, 0.4532968104, -0.0383552089, 0.159727633, 0.3495735228, 0.2293857932, -0.0217217095, 0.0718963668, -0.1523362696, -0.1377299726, 0.147438556, 0.0416092426, -0.2868341506, -0.3908247054, 0.0496989563, -0.1045067087, -0.1814419925, -0.2212855369, 0.2457415015, -0.4682898819, 0.1405821741, -0.0243124664, 0.1828612834, -0.0790766552, 0.1298362613, 0.1344474256, 0.4491248131, 0.2074002028, -0.3838301897, 0.0398871005, 0.021069698, 0.0268762819, -0.0198071599, 0.1581041515, -0.1872719526, 0.2134436071, 0.1074105427, -0.2879979014, 0.0881522447, -0.1072508395, 0.2509249449, -0.1020307764, 0.340228647, -0.1145425364, 0.1728455126, 0.1816584468, 0.0474154353, -0.1080526188, -0.1735250354, -0.0394943357, 0.0962266028, 0.0592307411, 0.3814135194, -0.2071727216, -0.1616591364, -0.0630647466, -0.4113822579, 0.5235668421, 0.1085385829, -0.014470268, 0.38267079, 0.2527709901, 0.0553608909, -0.2323655039, 0.243974179, -0.0454036705, -0.1866946816, 0.4161212146, -0.0248942636, -0.2029846907, 0.1008611321, -0.112813808, 0.1595996022, 0.2732187808, -0.5897443295, -0.0266847834, -0.2009780854, -0.3303210735, -0.0016952255, 0.1910514981, 0.2152050734, -0.3849974573, 0.0567033663, 0.1027521864, -0.0541194454, 0.1080610901, -0.0217949282, 0.3186099529, 0.1336807758, 0.537432611, -0.0703098997, 0.8954895735, 0.0873754621, 0.2348248065, 0.0591825023, 0.0127960909, 0.187662527, -0.1213635653, 0.0318820775, -0.1025446951, -0.1158981025, -0.1761578023, 0.2353008837, -0.0091059282, 0.1402721405, -0.2111802548, -0.1160705388, 0.2083778828, -0.3471622765, 0.3769308329, 0.0272881053, 0.0852972567, -0.0675215125, -0.0631654114, 0.0236640275, -0.2326025665, 0.0497847721, 0.0912874043, 0.258425355, 0.1641100198, -0.1399657428, -0.037741296, -0.682384491, 0.0472905524, -0.1628510654, 0.0705489218, -0.0118348077, -0.3628767729, -0.1011039168, 0.1495704353, 0.7003598213, 0.2093109787, -0.0992960408, -0.1513697207, -0.6746278405, -0.383298099, 0.0087525994, -0.1994625926, -0.145947203, 0.1336368918, 0.3363016844, -0.2980453968, -0.195502907, 0.1403122395, 0.2218352109, -0.2850466669, -0.1815053374, -0.492549181, -0.0061126649, -0.4370324016, 0.1137481332, 0.3473304212, 0.0887766629, -0.1772826761, 0.0635332614, -0.0417179465, -0.0414814577, 0.3954696059, -0.0079498179, 0.2531653047, 0.0058497488, -0.0506546944, 0.1109775007, 0.0996189415, -0.007511802, 0.6166433096, 0.294585824, -0.2460391223, 0.1950680166, 0.2299358249, 0.4992119074, 0.2186084092, -0.0731274784, 0.0601155385, 0.1847864091, 0.3394135237, -0.414709866, 0.3623556495, -0.0575161502, -0.1000469178, -0.2485259622, -0.2642427385, 0.5508930683, 0.2732256651, 0.1602784395, -0.0658208132, -0.0929715931, -0.3220254779, 0.2822604775, 0.1427023858, 0.9183742404, -0.2307804972, 0.4209933281, 0.0939179286, 0.3291240931, 0.4919891357, -0.3210018277, 0.2628661692, -0.1850234866, -0.3845908344, 0.054186523, -0.2425589114, -0.0895841867, 0.2086639851, -0.1083808541, 0.5269114971, 0.0039222687, 0.0559042841, -0.0358919501, 0.2178483009, 0.0480020791, -0.5682676435, -0.3984384835, -0.031509053, 0.0182682388, 0.0549060255, -0.0910819247, 0.0196434967, 0.3000802994, -0.2966682911, 0.0915756971, 0.04706119, -0.6259864569, -0.062018618, -0.1373539865, 0.0400000662, 0.2674295306, 0.137915194, -0.0757279843, 0.3967710435, -0.1971820444, -0.135253489, -0.2323096693, -0.0285186283, -0.2319072485, 0.1366665065, 0.2972688973, 0.0881895274, -0.071653232, 0.0905371606, -0.0424033925, 0.005205363, -0.0677169114, -0.3298542798, -0.1358564794, -0.2493805438, -0.2000970989, -0.0352983214, -0.0061100125, 0.1681904048, 0.0240749251, -0.0144772045, -0.2260148525, 0.166260466, 0.1755388379, -0.4944984615, -0.191516459, 0.6306133866, 0.0581455752, -0.1318102479, 0.3846054673, 0.2682075202, 0.0156304315, -0.1055138856, -0.0801866353, 0.4531820118, -0.4024282694, 0.2040691674, 0.1334735155, -0.1669788957, -0.2300862372, 0.1760572046, 0.078346625, -0.2996079028, 0.0395548642, -0.0767421871, -0.6522592306, 0.5526912808, -0.1600838602, 0.1457248926, 0.2210732251, 0.0098218434, -0.1001033783, 0.3121755719, -0.1771326065, -0.1239204556, -0.2733046412, 0.0264999233, 0.1547733098, -0.166440472, 0.2666943967, 0.1607716382, -0.0716530904, 0.1832024008, -0.2298360318, -0.1442575157, -0.0083220936, 0.1810944229, -0.0127281807, 0.0924255773, -0.0273557566, -0.0063766018, 0.0125059448, -0.1734693944, 0.6875872016, 0.0699364245, 0.188678503, 0.0807866305, 0.0989775062, 0.0251815319, -0.3838297725, 0.1272813678, 0.0643471926, 0.1245059595, 0.3593577147, 0.0459399559, 0.0412661731, -0.003615886, -0.4344607294, -0.0119318627, 0.4488815367, -0.1360447109, -0.0200072974, -0.0839247853, -0.2861675024, 0.2059262395, 0.0695203543, 0.1605720073, -0.2592923045, -0.0067390241, 0.1479415148, 0.0630954057, -0.0758257955, 0.0062508136, 0.1269010454, -0.3414541483, 0.0104454011, 0.603374064, 0.1643067747, 0.0432603061, 0.0644857138, 0.1293437481, 0.2971208692, 0.048873309, 0.0711302161, 0.0600033887, 0.0165287331, 0.0223454591, 0.3840661645, 0.4498672783, 0.4290978312, 0.1533204615, -0.0152008682, 0.2711748481, -0.6283993125, 0.2273336202, -0.1653511077, -0.5089748502, -0.3248372674, 0.4284750223, -0.212226823, 0.1208920032, -0.4700192511, 0.0007581823, 0.3411901295, -0.1816000789, -0.235486567, 0.2056096196, -0.2333946675, -0.1625028551, 0.2038326412, -0.0410261974, -0.2441990972, 0.303809464, 0.0528431945, -0.3602627218, 0.2383425236, 0.2009565383, -0.0919394493, 0.184037149, -0.0409352481, 0.3867116868, -0.010937091, -0.3442849517, 0.0856590793, 0.1658637524, 0.1366323233, -0.0388555899, 0.0982626751, 0.0975964516, 0.0374999046, -0.096879825, -0.013247611, 0.2822808027, 0.0023817793, -0.1933202147, 0.189728871, 0.1748262346, 0.5260718465, 0.0271380395, 0.0026789345, -0.0231288876, -0.0301114861, 0.0078490851, 0.1332132965, -0.4083072245, 0.1105943918, 0.321596384, 0.0120332763, -0.2242654264, 0.1360994428, -0.5450905561, 0.1193025261, 0.3821793199, -0.321752429, 0.0950518847, 0.1002371535, -0.0032947548, -0.2248200029, 0.6864811182, 0.1166617274, 0.0842612833, -0.544264555, 0.189744994, -0.1960071623, 0.0287139788, -0.0612837784, 0.3867120147, 0.1448132247, 0.2428369373, -0.0364584997, 0.1784191728, -0.4886830151, -0.0889453739, -0.343078196, -0.1544512361, -0.1451502442, -0.1504171342, -0.4410759509, 0.3365387022, 0.1452546567, -0.1759848893, 0.0739880055, -0.1276947707, -0.2232113332, -0.1174634695, -0.0170458853, -0.0372439213, 0.3146266341, 0.2162882984, 0.1040517688, 0.1622671187, -0.1483355761, -0.1856831312, -0.1942186207, -0.0362637118, -0.2406355441, -0.2403439283, -0.0347793549, 0.2431448698, -0.2745272517, 0.0526007451, -0.2590029836, 0.0730434358, -0.0146220848, -0.3016214371, 0.0945673063, -0.1222141907, 0.0813925266, 0.2626328468, 0.179793641, 0.3855146468, -0.2010319531, -0.0622666441, -0.1728280932, -0.0252200998, 0.4078317881, -0.2210167348, -0.1623030901, -0.2203925997, 0.2522380948, -0.1805448681, -0.0796526298, -0.5692546368, 0.2579884529, 0.0481669456, 0.1522698104, -0.370057106, 0.4148778915, -0.0936165005, -0.1156239659, -0.2093267888, 0.1317287832, -0.0141857089, -0.1515180469, -0.2511226535, -0.3791811466 ]
https://github.com/huggingface/datasets/issues/2007
How to not load huggingface datasets into memory
The `datastets` library doesn't load datasets into memory. Therefore you can load a dataset that is terabytes big without filling up your RAM. The only thing that's loaded into memory during training is the batch used in the training step. So as long as your model works with batch_size = X, then you can load an even bigger dataset and it will work as well with the same batch_size. Note that you still have to take into account that some batches take more memory than others, depending on the texts lengths. If it works for a batch with batch_size = X and with texts of maximum length, then it will work for all batches. In your case I guess that there are a few long sentences in the dataset. For those long sentences you get a memory error on your GPU because they're too long. By passing `max_train_samples` you may have taken a subset of the dataset that only contain short sentences. That's probably why in your case it worked only when you set `max_train_samples`. I'd suggest you to reduce the batch size so that the batches with long sentences can be loaded on the GPU. Let me know if that helps or if you have other questions
Hi I am running this example from transformers library version 4.3.3: (Here is the full documentation https://github.com/huggingface/transformers/issues/8771 but the running command should work out of the box) USE_TF=0 deepspeed run_seq2seq.py --model_name_or_path google/mt5-base --dataset_name wmt16 --dataset_config_name ro-en --source_prefix "translate English to Romanian: " --task translation_en_to_ro --output_dir /test/test_large --do_train --do_eval --predict_with_generate --max_train_samples 500 --max_val_samples 500 --max_source_length 128 --max_target_length 128 --sortish_sampler --per_device_train_batch_size 8 --val_max_target_length 128 --deepspeed ds_config.json --num_train_epochs 1 --eval_steps 25000 --warmup_steps 500 --overwrite_output_dir (Here please find the script: https://github.com/huggingface/transformers/blob/master/examples/seq2seq/run_seq2seq.py) If you do not pass max_train_samples in above command to load the full dataset, then I get memory issue on a gpu with 24 GigBytes of memory. I need to train large-scale mt5 model on large-scale datasets of wikipedia (multiple of them concatenated or other datasets in multiple languages like OPUS), could you help me how I can avoid loading the full data into memory? to make the scripts not related to data size? In above example, I was hoping the script could work without relying on dataset size, so I can still train the model without subsampling training set. thank you so much @lhoestq for your great help in advance
208
How to not load huggingface datasets into memory Hi I am running this example from transformers library version 4.3.3: (Here is the full documentation https://github.com/huggingface/transformers/issues/8771 but the running command should work out of the box) USE_TF=0 deepspeed run_seq2seq.py --model_name_or_path google/mt5-base --dataset_name wmt16 --dataset_config_name ro-en --source_prefix "translate English to Romanian: " --task translation_en_to_ro --output_dir /test/test_large --do_train --do_eval --predict_with_generate --max_train_samples 500 --max_val_samples 500 --max_source_length 128 --max_target_length 128 --sortish_sampler --per_device_train_batch_size 8 --val_max_target_length 128 --deepspeed ds_config.json --num_train_epochs 1 --eval_steps 25000 --warmup_steps 500 --overwrite_output_dir (Here please find the script: https://github.com/huggingface/transformers/blob/master/examples/seq2seq/run_seq2seq.py) If you do not pass max_train_samples in above command to load the full dataset, then I get memory issue on a gpu with 24 GigBytes of memory. I need to train large-scale mt5 model on large-scale datasets of wikipedia (multiple of them concatenated or other datasets in multiple languages like OPUS), could you help me how I can avoid loading the full data into memory? to make the scripts not related to data size? In above example, I was hoping the script could work without relying on dataset size, so I can still train the model without subsampling training set. thank you so much @lhoestq for your great help in advance The `datastets` library doesn't load datasets into memory. Therefore you can load a dataset that is terabytes big without filling up your RAM. The only thing that's loaded into memory during training is the batch used in the training step. So as long as your model works with batch_size = X, then you can load an even bigger dataset and it will work as well with the same batch_size. Note that you still have to take into account that some batches take more memory than others, depending on the texts lengths. If it works for a batch with batch_size = X and with texts of maximum length, then it will work for all batches. In your case I guess that there are a few long sentences in the dataset. For those long sentences you get a memory error on your GPU because they're too long. By passing `max_train_samples` you may have taken a subset of the dataset that only contain short sentences. That's probably why in your case it worked only when you set `max_train_samples`. I'd suggest you to reduce the batch size so that the batches with long sentences can be loaded on the GPU. Let me know if that helps or if you have other questions
[ -0.1518767327, -0.5147148967, 0.0332165435, 0.4974523187, 0.5210766196, 0.0139152557, 0.1180270016, 0.2357332408, 0.4079455435, 0.1879966557, 0.0076194219, -0.202884391, -0.2850468457, 0.3407030404, 0.0886425972, -0.1032490209, 0.053281825, 0.0866248086, -0.5714512467, 0.0523501933, -0.2737417221, -0.016126873, 0.0159723312, -0.3641574383, -0.388654083, 0.1600881666, 0.0624868944, 0.1186244339, -0.0098639652, -0.0714206919, 0.1428124905, -0.0393949933, 0.1770166308, 0.4372488558, -0.0001269822, 0.1079647094, 0.1380945891, -0.3148225248, -0.0306412019, -0.0322296023, -0.0041919723, -0.205928117, 0.2809612155, -0.1789403856, -0.150394693, 0.1292394549, -0.0043967655, -0.1768302023, 0.6732685566, 0.0866886824, 0.0589532331, 0.1535411477, -0.2452390045, 0.166743964, 0.1576341093, 0.1976087689, 0.0586231351, 0.1164001673, -0.1049162522, 0.1034324691, 0.0304608122, 0.3367858529, -0.2480972409, -0.1271036267, 0.4123452902, 0.0033178963, 0.0176058263, -0.4697832763, 0.1020777225, 0.2507307827, 0.4073406458, -0.2239230871, -0.2138442993, -0.279469192, -0.3462487757, -0.2446088195, 0.1370271891, 0.3081846237, -0.1433692575, 0.2112532854, -0.5356808305, -0.3474309444, -0.1170949489, -0.0391616486, 0.0610947907, -0.1411526799, -0.1147687733, 0.1186081842, 0.4361450672, -0.1669550538, -0.3358580768, -0.0003866721, 0.1707515419, 0.2230681777, -0.5019465089, -0.3163250685, -0.0657729506, -0.1057257503, 0.4721099138, 0.1215848178, -0.0796094686, 0.0936991647, 0.3299094737, 0.00915867, 0.2849024534, 0.1574458182, -0.3003253341, -0.0072964206, 0.2969492078, 0.1490690708, 0.143429637, -0.1105326116, -0.0333795175, -0.0507380515, -0.2047496587, -0.2591543794, 0.2845849693, -0.2782021165, 0.0794591978, -0.0892998427, -0.0343102291, 0.1701262444, -0.0699237585, 0.5180570483, -0.0827051252, 0.3102357686, -0.0071109682, 0.1315970272, -0.4338740706, 0.0145768076, -0.1941799819, 0.2515984476, -0.2240197361, 0.3322903216, 0.4116675556, 0.0499279797, 0.3797041774, -0.0956690311, 0.0674586743, -0.0763125569, 0.0796642303, -0.3235810995, 0.1239140183, 0.4826914668, 0.0355792791, 0.1951071024, 0.0725166649, 0.1766026616, -0.213632375, 0.3968870938, -0.2307302654, -0.2883962095, 0.3630971014, 0.0053725475, -0.4209287167, 0.2904183865, -0.5321800709, 0.2664293945, 0.1223286241, 0.2021843791, 0.0557635203, 0.0789676607, -0.3984464407, -0.0862802863, 0.4873936772, 0.8010212183, -0.1476056874, -0.3931115866, 0.1329435706, -0.1004577428, 0.1959772259, 0.5725107789, -0.014279753, 0.0148478802, -0.0144559518, -0.2140351534, 0.0709254295, -0.141577825, -0.3544343412, 0.2842698991, -0.1708960533, 0.1742834747, 0.2594868243, 0.2458413392, -0.0926850289, 0.1357041597, -0.1018790007, 0.3744671047, 0.0681134239, 0.2252350301, -0.1271791458, -0.5379964709, 0.2040784806, 0.2169701457, 0.202263087, 0.0872880965, -0.1350938529, 0.6384111643, 0.0238447208, -0.1233227253, 0.1502556056, 0.5214668512, -0.0297721699, -0.0962150097, -0.0108517669, -0.0647931173, -0.5006044507, 0.1989260763, -0.0586795248, 0.0444421619, -0.104835175, 0.0006816685, 0.0573628359, -0.1273259223, 0.0957002342, -0.1771864146, -0.1211932525, -0.2916911542, 0.1514542997, -0.1347024888, -0.0903467983, 0.148862049, -0.0584072992, 0.2972844243, -0.609118104, -0.1088680774, 0.1102920026, -0.1234867498, 0.025996007, 0.1248040497, -0.0882154107, -0.0845851004, 0.1067790911, 0.2415025681, 0.1124195755, 0.0178396385, -0.2222642004, 0.6307320595, 0.2434311062, -0.3127700686, 0.1205126569, 0.0697666705, 0.1251268685, 0.0252606869, -0.1785959601, 0.1950398386, -0.1331373155, 0.3484589458, 0.0058567896, -0.2301435918, -0.0358799845, -0.2495761812, -0.1238652319, -0.3175207675, 0.2297710478, 0.3747280836, 0.3159514666, 0.3822623193, -0.1301641911, -0.6248890758, 0.4318447411, -0.0019923225, 0.0073695751, 0.1488063037, -0.4452290237, -0.0800927803, -0.0596903637, -0.3747646213, 0.2052791864, 0.2200762033, -0.0135827716, 0.1306919456, 0.4082519412, -0.0513370782, 0.1627495438, 0.349375844, 0.1488737762, -0.0548448749, -0.0312600359, -0.1541600078, -0.190421164, 0.2100086957, 0.0270099565, -0.2555874288, -0.428445518, 0.0546008199, -0.1863784492, -0.1533455104, -0.1971435249, 0.2054143548, -0.4946783781, 0.1187363937, -0.0151105635, 0.1751285791, -0.066243656, 0.1509772241, 0.1996802539, 0.441236496, 0.1918815076, -0.4602292776, -0.0057207718, 0.0038938709, 0.0292230472, -0.0567872413, 0.1562751234, -0.1057110652, 0.2035381347, 0.081427604, -0.2594136894, 0.0631291643, -0.1128865108, 0.241617769, -0.1343260258, 0.3047718704, -0.090869844, 0.2014539242, 0.1846027672, 0.0711603388, -0.1057426706, -0.1495921016, -0.0326357819, 0.1421226114, 0.0993309766, 0.3976775408, -0.305806011, -0.206270501, -0.001052659, -0.3736867905, 0.4215453863, 0.1011799052, -0.0064924583, 0.3571301103, 0.2769916654, 0.0848627388, -0.1952384114, 0.295611918, -0.0905103013, -0.2000135332, 0.4355372488, 0.020141419, -0.2268257737, 0.2055979222, -0.0464504436, 0.1957231015, 0.256519258, -0.6173763871, -0.0449292287, -0.2450659871, -0.3239590824, -0.0527183563, 0.2297548801, 0.2915317714, -0.3330807984, 0.0619429834, 0.0414179862, -0.1222935691, 0.0963733792, -0.0428841263, 0.2026364207, 0.200297147, 0.5743060708, -0.0909152254, 0.9312592745, 0.1241063774, 0.1804884076, 0.0755287111, -0.0374019444, 0.2525525391, -0.1314366311, 0.0153978989, -0.1186559945, -0.005834803, -0.1430699229, 0.2657732964, -0.0255036708, 0.1975010037, -0.2431700081, 0.0442305356, 0.1530372202, -0.296243906, 0.3551986516, -0.0067099985, 0.1253746152, -0.0403263383, -0.0258749351, 0.0108092576, -0.2412955165, 0.0123063661, 0.1530932486, 0.2456724793, 0.1957318783, -0.1906870604, -0.076054655, -0.6258144975, 0.0005806386, -0.1969400793, 0.0993859023, -0.0586043149, -0.3489128947, -0.0277032927, 0.1523523927, 0.6768873334, 0.2532057464, -0.1729896367, -0.1487431228, -0.7294561267, -0.4025166333, -0.0095958859, -0.2291609496, -0.1238157377, 0.0738095641, 0.3609042764, -0.3914927244, -0.2916173637, 0.073306188, 0.2556800544, -0.2727660239, -0.1538667381, -0.5318117738, -0.0920724124, -0.4376600981, 0.0552045815, 0.3393111825, 0.087072894, -0.1991933882, 0.0410293192, -0.0185954906, -0.0940066651, 0.4132980704, -0.043346528, 0.2744605541, -0.0019245334, -0.0136766434, 0.1732086092, 0.111656487, -0.0193674117, 0.6520431042, 0.3140731454, -0.1921581179, 0.1988083422, 0.2186889648, 0.4826216102, 0.2193188369, -0.1357713193, 0.1231536567, 0.1372125894, 0.2870839834, -0.467287004, 0.3837450147, 0.0091918744, -0.0902185589, -0.1464425921, -0.3138224185, 0.518935442, 0.3223371208, 0.1545020193, -0.0994460136, 0.0033906996, -0.2873595953, 0.1786355972, 0.1093035042, 0.9667984843, -0.2780709565, 0.4263838828, 0.0963514596, 0.3156808317, 0.6530103683, -0.2819087207, 0.2129288018, -0.1729734838, -0.3770290911, 0.0020607933, -0.2352292538, -0.0268045589, 0.2167586684, -0.0766808093, 0.4903028011, 0.0245775878, 0.2099642307, -0.0258129053, 0.2198755294, 0.1225688457, -0.5316356421, -0.3666519225, -0.0411538258, -0.0330701657, 0.0237536915, -0.0148274302, 0.0282775052, 0.2234193534, -0.3717511594, 0.0953895748, 0.0572573319, -0.4754981101, -0.0344232284, -0.1170824021, 0.0182390213, 0.3291777968, 0.2111403048, -0.0804236829, 0.3448341787, -0.2216808796, -0.2169556022, -0.3277770281, -0.0226133633, -0.2501813769, 0.1860277355, 0.2770847976, 0.0731897056, -0.0908857286, 0.1434042901, -0.0290257633, -0.0290761888, -0.0541500151, -0.2843365073, -0.0897050202, -0.267439872, -0.2032888681, 0.0334838256, 0.0284730121, 0.1863417029, 0.0086721592, 0.0532347448, -0.2010975778, 0.1519867182, 0.1226775944, -0.4970636964, -0.1683167219, 0.6233401895, 0.0827036947, -0.0550158806, 0.4000041485, 0.2361917943, -0.0242862068, -0.1113120914, -0.1081453785, 0.3746096492, -0.3981398046, 0.1701203287, 0.1448521018, -0.1961880624, -0.28914994, 0.1320092529, 0.0303236358, -0.2681392729, -0.0012037903, -0.0147273913, -0.5990896225, 0.5723323822, -0.1569625139, 0.2224691212, 0.2193523794, 0.0136697479, -0.1739601791, 0.2325650454, -0.162992999, -0.0749229416, -0.3024333417, 0.0509452, 0.1844851673, -0.1453208774, 0.2424791753, 0.0973963141, -0.0883141086, 0.1387361288, -0.2038188279, -0.1181401759, 0.0385502949, 0.205616191, 0.0101961549, 0.0345213041, -0.0567129031, -0.0300877728, -0.0445919558, -0.2133755982, 0.6652672887, 0.0559382141, 0.1515237242, 0.2013329864, 0.1088071689, 0.0293843113, -0.4303302169, 0.1400624067, 0.0157282501, 0.1691091657, 0.2504601181, 0.0828846321, 0.1003703624, -0.0310391486, -0.4541804194, 0.0629143268, 0.4600510597, -0.1720419079, -0.0807561874, -0.0880516171, -0.2382047176, 0.2162971795, 0.0730878189, 0.246860221, -0.269339025, -0.0418193936, 0.1638191193, 0.023993751, -0.0863870829, -0.0251841173, 0.099134922, -0.3105215728, 0.0191547275, 0.6123441458, 0.1744198352, 0.0566275716, 0.0871606022, 0.1088967323, 0.3070229888, 0.1072299629, 0.0915317014, 0.1431958973, -0.0377502143, 0.0073171812, 0.2631458044, 0.4207815528, 0.3498208225, 0.2286442369, -0.0336090475, 0.3077250719, -0.5739452243, 0.221634388, -0.2341078222, -0.4970017374, -0.328058362, 0.4078505933, -0.1767875105, 0.0454707667, -0.491936028, 0.0969320834, 0.2620432079, -0.1557283849, -0.228841275, 0.189757362, -0.1993205547, -0.1496075094, 0.1461619735, -0.0007469207, -0.3564026952, 0.2511368394, 0.0528331548, -0.3649171591, 0.3265803158, 0.1220586598, -0.1009769514, 0.1410528719, -0.0528258421, 0.4061150551, -0.0852792263, -0.2893260717, 0.0562756211, 0.143965289, 0.1041063592, 0.0213183761, 0.1177448258, 0.0637091547, 0.03044682, -0.0880027413, -0.0177029055, 0.2320952415, -0.0181747712, -0.1179957464, 0.2010703385, 0.0862523615, 0.4885618985, 0.0414115451, -0.0412043221, -0.0073162578, -0.1223620325, -0.0063679125, 0.1090922803, -0.4597767591, 0.1422398835, 0.255818665, 0.0264401436, -0.2183467448, 0.152957648, -0.5634789467, -0.0025338717, 0.3973644674, -0.2394968867, 0.0816483572, 0.0570384823, -0.0124045573, -0.2247119397, 0.7063222528, 0.1493252367, 0.1009955555, -0.4904623032, 0.0878694057, -0.2523313463, 0.0116968192, -0.0564800501, 0.3043068051, 0.1508431286, 0.2124760747, -0.0562993586, 0.2239234447, -0.508144021, -0.0757122263, -0.3126012683, -0.1842350364, -0.0984203294, -0.154834494, -0.4467169046, 0.2984541059, 0.1048930511, -0.1687076092, 0.094580844, -0.1009207442, -0.2375287265, -0.0783403218, 0.0572416782, -0.0377933383, 0.3225003183, 0.2368446738, 0.1222200543, 0.2072188556, -0.1605268121, -0.1555765569, -0.1473954618, -0.0927625597, -0.2573646605, -0.2115677297, -0.0741405338, 0.2012782693, -0.3087121248, 0.0707917586, -0.2480508238, 0.0743221641, -0.0339075215, -0.2258391678, 0.0630181059, -0.1184450686, -0.0050125569, 0.2903841138, 0.1295926124, 0.3474196196, -0.1978292167, 0.0190578923, -0.174993068, -0.0600226447, 0.4449535012, -0.2349970639, -0.1213462204, -0.2829078436, 0.2263376862, -0.0986070409, -0.113157928, -0.5062596202, 0.1941119432, 0.0572321936, 0.1676398665, -0.4304612577, 0.4660095274, -0.1316940784, -0.1142587513, -0.2120938748, 0.1924818307, 0.0097148102, -0.0852977782, -0.1749820113, -0.4122222066 ]
https://github.com/huggingface/datasets/issues/2005
Setting to torch format not working with torchvision and MNIST
Adding to the previous information, I think `torch.utils.data.DataLoader` is doing some conversion. What I tried: ```python train_dataset = load_dataset('mnist') ``` I don't use any `map` or `set_format` or any `transform`. I use this directly, and try to load batches using the `DataLoader` with batch size 2, I get an output like this for the `image`: ``` [[tensor([0, 0]), tensor([0, 0]), tensor([0, 0]), tensor([0, 0]), tensor([0, 0]), tensor([0, 0]), tensor([0, 0]), tensor([0, 0]), tensor([0, 0]), tensor... ``` For `label`, it works fine: ``` tensor([7, 6]) ``` Note that I didn't specify conversion to torch tensors anywhere. Basically, there are two problems here: 1. `dataset.map` doesn't return tensor type objects, even though it uses the transforms, the grayscale conversion in transform was done, but the output was lists only. 2. The `DataLoader` performs its own conversion, which may be not desired. I understand that we can't change `DataLoader` because it is a torch functionality, however, is there a way we can handle image data to allow using it with torch `DataLoader` and `torchvision` properly? I think if the `image` was a torch tensor (N,H,W,C), or a list of torch tensors (H,W,C), before it is passed to `DataLoader`, then we might not face this issue.
Hi I am trying to use `torchvision.transforms` to handle the transformation of the image data in the `mnist` dataset. Assume I have a `transform` variable which contains the `torchvision.transforms` object. A snippet of what I am trying to do: ```python def prepare_features(examples): images = [] labels = [] for example_idx, example in enumerate(examples["image"]): if transform is not None: images.append(transform( np.array(examples["image"][example_idx], dtype=np.uint8) )) else: images.append(torch.tensor(np.array(examples["image"][example_idx], dtype=np.uint8))) labels.append(torch.tensor(examples["label"][example_idx])) output = {"label":labels, "image":images} return output raw_dataset = load_dataset('mnist') train_dataset = raw_dataset.map(prepare_features, batched=True, batch_size=10000) train_dataset.set_format("torch",columns=["image","label"]) ``` After this, I check the type of the following: ```python print(type(train_dataset["train"]["label"])) print(type(train_dataset["train"]["image"][0])) ``` This leads to the following output: ```python <class 'torch.Tensor'> <class 'list'> ``` I use `torch.utils.DataLoader` for batches, the type of `batch["train"]["image"]` is also `<class 'list'>`. I don't understand why only the `label` is converted to a torch tensor, why does the image not get converted? How can I fix this issue? Thanks, Gunjan EDIT: I just checked the shapes, and the types, `batch[image]` is a actually a list of list of tensors. Shape is (1,28,2,28), where `batch_size` is 2. I don't understand why this is happening. Ideally it should be a tensor of shape (2,1,28,28). EDIT 2: Inside `prepare_train_features`, the shape of `images[0]` is `torch.Size([1,28,28])`, the conversion is working. However, the output of the `map` is a list of list of list of list.
202
Setting to torch format not working with torchvision and MNIST Hi I am trying to use `torchvision.transforms` to handle the transformation of the image data in the `mnist` dataset. Assume I have a `transform` variable which contains the `torchvision.transforms` object. A snippet of what I am trying to do: ```python def prepare_features(examples): images = [] labels = [] for example_idx, example in enumerate(examples["image"]): if transform is not None: images.append(transform( np.array(examples["image"][example_idx], dtype=np.uint8) )) else: images.append(torch.tensor(np.array(examples["image"][example_idx], dtype=np.uint8))) labels.append(torch.tensor(examples["label"][example_idx])) output = {"label":labels, "image":images} return output raw_dataset = load_dataset('mnist') train_dataset = raw_dataset.map(prepare_features, batched=True, batch_size=10000) train_dataset.set_format("torch",columns=["image","label"]) ``` After this, I check the type of the following: ```python print(type(train_dataset["train"]["label"])) print(type(train_dataset["train"]["image"][0])) ``` This leads to the following output: ```python <class 'torch.Tensor'> <class 'list'> ``` I use `torch.utils.DataLoader` for batches, the type of `batch["train"]["image"]` is also `<class 'list'>`. I don't understand why only the `label` is converted to a torch tensor, why does the image not get converted? How can I fix this issue? Thanks, Gunjan EDIT: I just checked the shapes, and the types, `batch[image]` is a actually a list of list of tensors. Shape is (1,28,2,28), where `batch_size` is 2. I don't understand why this is happening. Ideally it should be a tensor of shape (2,1,28,28). EDIT 2: Inside `prepare_train_features`, the shape of `images[0]` is `torch.Size([1,28,28])`, the conversion is working. However, the output of the `map` is a list of list of list of list. Adding to the previous information, I think `torch.utils.data.DataLoader` is doing some conversion. What I tried: ```python train_dataset = load_dataset('mnist') ``` I don't use any `map` or `set_format` or any `transform`. I use this directly, and try to load batches using the `DataLoader` with batch size 2, I get an output like this for the `image`: ``` [[tensor([0, 0]), tensor([0, 0]), tensor([0, 0]), tensor([0, 0]), tensor([0, 0]), tensor([0, 0]), tensor([0, 0]), tensor([0, 0]), tensor([0, 0]), tensor... ``` For `label`, it works fine: ``` tensor([7, 6]) ``` Note that I didn't specify conversion to torch tensors anywhere. Basically, there are two problems here: 1. `dataset.map` doesn't return tensor type objects, even though it uses the transforms, the grayscale conversion in transform was done, but the output was lists only. 2. The `DataLoader` performs its own conversion, which may be not desired. I understand that we can't change `DataLoader` because it is a torch functionality, however, is there a way we can handle image data to allow using it with torch `DataLoader` and `torchvision` properly? I think if the `image` was a torch tensor (N,H,W,C), or a list of torch tensors (H,W,C), before it is passed to `DataLoader`, then we might not face this issue.
[ -0.1273752749, -0.3511647582, -0.0179326795, 0.3536091447, 0.4760022461, 0.0887135565, 0.7330291867, 0.3804343939, 0.0655259714, -0.0380423442, -0.1111534908, 0.3819510043, -0.2329692245, -0.3339344263, 0.0351091474, -0.5614944696, 0.2225798666, -0.099827379, -0.2807980776, -0.0613474436, -0.2431336641, 0.0354891196, -0.2184971571, -0.1084964424, -0.5479354262, 0.0440962017, -0.0195558108, -0.0765686631, -0.0622993931, -0.139180094, 0.1223466694, -0.1744963974, 0.4444535673, 0.701292932, -0.0001277011, 0.070302099, 0.3642727733, -0.1737783253, 0.0499993004, -0.1610137224, 0.0400474221, -0.2573827505, 0.0727765039, -0.0946831703, -0.2234942913, -0.1708451807, 0.0959102586, -0.179029569, -0.0281418636, 0.4191685319, 0.0771300644, 0.2790111899, 0.2466611266, 0.138630569, 0.2278114408, 0.5182864666, -0.2734378874, -0.0561170802, 0.2261503488, 0.375477612, 0.1240047365, 0.5647346973, -0.2913346589, -0.0362335965, 0.2669449449, 0.1290051639, -0.1014551669, -0.3140054047, 0.0491569899, 0.0894629434, 0.4219439328, -0.149439171, -0.0807790309, -0.1436639577, -0.1439784318, -0.1273806691, 0.040591117, 0.2803192437, -0.0718411803, -0.1872383356, -0.5392426252, 0.3052918911, -0.1486238092, 0.2131594121, -0.2805242836, -0.0034205057, -0.1381632388, 0.2928087115, -0.0471188091, -0.1127128378, 0.1930810809, -0.1234146208, 0.1300752461, -0.0098258667, -0.1436316818, -0.0534910075, -0.3895993233, -0.3150123656, -0.200148046, -0.1602649093, 0.1664854437, 0.1392757893, -0.1163956225, 0.1280710995, 0.1826329976, 0.2680339515, 0.1057824045, 0.3207024932, -0.0858924091, -0.2895821333, -0.0469191186, 0.0877333283, -0.2962266207, -0.435752511, 0.1545345783, 0.3252967894, 0.2452210635, 0.0687425882, 0.129855454, -0.3239413798, -0.108922407, -0.0095864497, 0.0752250552, 0.2850381434, -0.1186792403, 0.2439045608, 0.4804830849, 0.3972029686, -0.1538182199, 0.0695627034, 0.0250724554, 0.0315209478, -0.4404954314, -0.2856986523, 0.1534098387, -0.1177730858, 0.1000700817, 0.0374315456, 0.0464156494, 0.1006964743, 0.0734964386, -0.1858696342, 0.6246293783, 0.1476476192, -0.1944742501, 0.2767928541, 0.2709068358, 0.5297795534, -0.3042984009, 0.2565314174, -0.509569943, 0.065252617, -0.0230914634, -0.0145438574, 0.2186551392, -0.0207219422, -0.2121626139, 0.0158291012, 0.5923119783, -0.0836779028, 0.2734875977, -0.5791625381, 0.0949642211, -0.1913350224, 0.0341523066, 0.0636691749, -0.2047153413, -0.0523586571, 0.3863436878, 0.0919495672, 0.315458715, 0.160281986, 0.0510831587, 0.0798701569, -0.2253530025, -0.2350504994, 0.3363233209, -0.3768562078, 0.0920384303, -0.017693229, 0.0938788056, -0.0638040304, 0.1120191738, 0.3361781538, 0.0326009206, -0.1280016899, 0.029448567, 0.1963145137, -0.1661820561, 0.1402871013, 0.0773597434, 0.1913032532, 0.1933747828, 0.0350064933, -0.0156835858, 0.2076536417, -0.2216713428, 0.1775762141, -0.0542803816, -0.0747133717, 0.0711773857, 0.0403781608, -0.3698906302, -0.0121968798, -0.0474697948, 0.186466679, -0.233100161, -0.0487212501, 0.0236349925, 0.0822170302, 0.0582789779, 0.0479249656, 0.0049781948, -0.1919565797, -0.1822057962, -0.1390272677, -0.0032420792, 0.0922107399, -0.209476456, -0.261723876, -0.0523434281, -0.1232488528, 0.1783037484, 0.0588376708, -0.3590369523, 0.0510258526, 0.0192735232, -0.3653306961, -0.2013598382, 0.1733923554, 0.2676689327, -0.0996210203, -0.0422347449, 0.1916032434, 0.063288942, 0.1146327555, -0.5482743382, 0.0834661424, 0.1778420508, -0.2469699681, 0.2043912709, 0.2162799537, 0.1485339105, -0.2755033076, -0.1960348189, 0.4387863874, 0.1604105085, 0.3159130216, -0.3300261199, 0.1161018834, -0.0726466402, -0.0394021273, -0.1906338036, -0.0408079922, -0.2772817612, 0.07302396, -0.1318596452, 0.0129822437, -0.4569185078, -0.044936087, 0.2962617576, 0.0887638777, 0.1758720577, -0.0012159873, -0.3998460472, 0.2133124024, 0.1771264523, -0.6013532877, 0.2978383601, -0.0043618418, 0.1892074049, -0.1050186455, 0.0955834612, -0.1625432372, 0.2484445572, 0.1140422225, 0.0907485932, -0.1994646788, 0.1418525875, -0.1079261974, 0.026846543, 0.0263703614, -0.1406289041, -0.2336928397, -0.3589505553, 0.2713828087, -0.1661833078, -0.1345183551, -0.4018547535, -0.26218611, 0.036056079, -0.074004896, -0.0823338926, 0.1507581919, 0.185567975, 0.1904346794, 0.263418138, -0.1818943173, 0.3743163645, -0.4130293727, -0.0353551954, -0.0750101507, -0.2867958844, -0.0991648883, 0.0896559358, -0.5234106779, 0.0914843455, -0.2289902121, -0.0931907073, -0.2501760125, 0.0135479569, 0.1418222338, -0.2678500712, -0.285002619, 0.3085913062, 0.1939284503, -0.1424820423, 0.0406624675, 0.2663514614, 0.0103069693, 0.0469011739, 0.1537837088, -0.0896201432, 0.1165603548, -0.0632983148, -0.1767407507, -0.0966183916, -0.0750616789, -0.0704163462, -0.0217595622, 0.0633769184, 0.3462583721, 0.3721840084, -0.0898905694, -0.0520421155, 0.0356089771, 0.0629647374, -0.397687614, 0.5225033164, -0.2261543274, -0.3608259261, 0.1192015857, 0.0238558576, 0.0651470274, 0.4862688482, 0.0605229586, 0.0497315228, 0.0117820259, -0.0789447725, 0.2525925934, 0.2211974561, 0.351020366, -0.0911251158, 0.0191657022, -0.1647070348, 0.015416719, -0.1018712372, -0.0632553771, 0.6088865399, 0.1850844324, 0.2399426997, 0.0992583334, 0.6996647716, -0.0611373074, -0.7380949259, 0.2168065608, -0.2425097823, 0.1921669692, -0.1181219816, -0.3539581597, 0.3988560438, -0.2094198465, 0.0643739402, -0.0859674141, -0.0249071717, -0.2391578257, -0.0902241915, 0.3573612273, -0.3172068, -0.1585737765, 0.4044301808, -0.1447022259, 0.276373148, -0.2313425094, 0.3245897889, -0.2609260082, -0.2137926072, 0.0600569621, 0.448772192, 0.1385136694, 0.0417248085, -0.3342841268, -0.2166968882, -0.1432268322, 0.3568274975, 0.119577229, 0.5672699213, -0.0980360731, -0.0744650736, 0.1015564278, 0.2413696051, 0.8307591677, 0.0455574095, -0.0904588774, 0.1514427066, -0.3478347063, -0.4549782574, -0.1022294387, -0.0514177941, 0.0906814858, 0.1716902852, 0.1203863025, -0.0910535455, -0.1833340377, -0.0058327634, 0.1955549121, -0.0551248007, 0.0347187556, -0.2269115746, 0.0587577075, -0.1296497881, -0.1552831382, 0.221182704, 0.0296753757, 0.0051618069, -0.3081279993, -0.3262302577, -0.1266998053, 0.1824818701, -0.1330119818, 0.411067158, 0.0992509723, -0.1780857891, 0.0769068673, 0.5561056137, 0.4184040427, -0.0389391743, -0.1187736243, 0.0806436464, 0.2931112051, 0.1064323708, 0.3002043366, 0.3208229244, -0.0618731268, -0.4396640956, -0.2268485874, -0.1938149631, -0.3305327892, 0.3972930908, 0.4080630243, 0.0989351422, -0.495355159, -0.4921703637, 0.3861902356, 0.2937195897, 0.1958302855, 0.2045914829, -0.5417589545, -0.4009674489, 0.0781785846, 0.4662418067, 0.8556221128, -0.0370787904, 0.3702828288, 0.0315654092, 0.0108071491, 0.1721021086, -0.001888819, 0.4117947817, -0.3542811275, 0.1392897964, -0.1648540199, -0.3125497699, 0.2525229454, -0.0602031313, -0.243969813, 0.0425363332, -0.3494715691, 0.1936194897, -0.1256935298, -0.0828533769, -0.0498264171, -0.4714176059, 0.1878737062, 0.015452154, -0.0825134218, 0.261738956, 0.1111609936, -0.1636207998, -0.37986058, 0.0616961569, -0.0762220845, -0.0150117278, -0.2459689379, -0.1632431597, -0.0243097618, -0.7298656702, 0.0586797595, 0.4961580634, 0.3345547616, -0.1605665386, -0.0478365757, 0.1396414042, 0.4438467324, 0.1629003286, -0.0990171283, -0.34018448, 0.285340488, 0.0973755419, 0.1843323559, 0.1086379066, 0.068148613, 0.2105205506, -0.5777891278, 0.0372511372, 0.3060286641, -0.3449504972, -0.3229842186, -0.1984501183, 0.0491852015, 0.0381636098, 0.0286185816, 0.1244890988, -0.038903255, 0.2072433978, -0.0415122993, -0.2264614105, 0.1328899413, 0.4523314238, 0.112983793, -0.3500463367, 0.3907566667, 0.3549588025, -0.044777751, -0.0437440015, 0.4166939259, 0.6353191733, -0.3456967175, 0.0994978324, -0.1027165204, -0.156986773, -0.0110737607, 0.5430940986, -0.2343174517, -0.1309779137, -0.2389574945, -0.0408176184, -0.4308937192, 0.0108133871, -0.316298455, 0.456630528, -0.0432225578, 0.3627103567, 0.2105056196, -0.1873493195, -0.1441360414, -0.2586486936, 0.1723506898, 0.3679332435, -0.2471823692, 0.2187609822, -0.1269585788, -0.122023046, -0.0362524018, 0.0260316655, -0.2497397512, -0.0333907977, -0.057677757, 0.1773061454, 0.0666143, -0.1135400012, -0.0735470206, -0.1736695617, -0.1385808587, -0.2681719363, -0.0377181172, 0.1109212637, -0.1159996986, 0.3531611562, -0.1783661991, 0.2312256545, 0.3186765909, -0.2700001597, -0.102622807, 0.0358715132, 0.2229628265, 0.0600506924, 0.0045315176, -0.0615565926, -0.2772367299, 0.1125917435, 0.1652030349, 0.2549746037, 0.2046176791, -0.0999964252, 0.1091780886, -0.0438068472, 0.2041843683, 0.1012552902, -0.1718704849, -0.0508286878, 0.0603731833, -0.0076233326, 0.1006218046, 0.1449988782, 0.0388690494, 0.1252815723, -0.0834641829, 0.2755779922, 0.066558972, 0.3113947511, -0.3705074787, 0.0451426804, 0.4178561866, -0.2410735786, 0.235085845, 0.4640145898, 0.0147998184, 0.1930493563, 0.2907045782, 0.1093435287, -0.1187016368, 0.3226964474, 0.3945166469, 0.8204311728, 0.5895957351, 0.0837696195, 0.2746028602, 0.0992571414, -0.1536075324, -0.2072514147, 0.2358238697, 0.3919682801, 0.018866688, 0.1856933236, -0.2407992482, -0.4871239364, 0.2258820236, 0.1217748523, -0.1946175396, -0.0822236091, -0.6648058295, 0.0118749738, 0.1358260363, -0.1866593063, -0.1797154844, -0.0501378737, 0.2205907255, 0.2597537935, -0.1032206565, -0.160912469, -0.1724744886, 0.0691012144, 0.0375293978, -0.0073297396, 0.1697572917, -0.1368461996, 0.1617608517, 0.2448242605, 0.1969081163, 0.2849534154, 0.4870798886, -0.1681717038, -0.1598938107, -0.0105535462, -0.1923658848, 0.0899017379, 0.0667121336, 0.0315336436, -0.1532075405, -0.0149565935, 0.0084626377, 0.0386277772, 0.0314603262, -0.0940810889, -0.2182594985, 0.1676249057, 0.3055746257, -0.3637771308, -0.1490927637, -0.0998983979, -0.2466560304, -0.3483099937, -0.2655349076, 0.532738626, 0.0278958529, 0.1280096769, 0.1421678513, -0.042159453, 0.0487859957, 0.1574120373, -0.1215567589, 0.0775769204, -0.1540937573, 0.1359659135, -0.0858048499, 0.0319102407, 0.118474707, -0.3834477663, -0.018849548, -0.0391643457, 0.2425418645, 0.0646753684, 0.2020900548, -0.0983474255, 0.4987448454, 0.6146565676, -0.1336154044, -0.1414808482, -0.1304193288, 0.3706512451, 0.0733085424, -0.0774657428, 0.0219212137, 0.1024274975, 0.0065070391, -0.3420651555, -0.255490303, -0.0199822746, 0.3041451573, 0.3512825668, 0.0932887495, 0.3203128576, -0.0192206055, 0.0484099612, -0.2411338985, 0.0504153408, -0.1276014149, 0.0096702836, -0.0228029191, 0.5810168982, -0.2244022489, -0.0593422018, -0.4136503935, 0.4290261567, 0.0905311108, -0.3388547599, -0.080519408, 0.358399868, -0.3173205256, -0.2010881901, 0.2261951864, 0.4100222588, 0.1513600647, 0.1943573505, -0.5254406333, -0.4069115222, 0.4472020864, -0.4417077601, -0.5069127083, 0.029074762, -0.3133940697, 0.0679037571, 0.4964233935, -0.471049726, -0.1491340101, 0.0015053898, -0.0808276385, -0.091604352, -0.0981936082, 0.2610402107, 0.0151107982, -0.2518461943, 0.1790074408, 0.1764502972, -0.0228160247, -0.4204157591, -0.2753599882 ]
https://github.com/huggingface/datasets/issues/2005
Setting to torch format not working with torchvision and MNIST
What's the feature types of your new dataset after `.map` ? Can you try with adding `features=` in the `.map` call in order to set the "image" feature type to `Array2D` ? The default feature type is lists of lists, we've not implemented shape verification to use ArrayXD instead of nested lists yet
Hi I am trying to use `torchvision.transforms` to handle the transformation of the image data in the `mnist` dataset. Assume I have a `transform` variable which contains the `torchvision.transforms` object. A snippet of what I am trying to do: ```python def prepare_features(examples): images = [] labels = [] for example_idx, example in enumerate(examples["image"]): if transform is not None: images.append(transform( np.array(examples["image"][example_idx], dtype=np.uint8) )) else: images.append(torch.tensor(np.array(examples["image"][example_idx], dtype=np.uint8))) labels.append(torch.tensor(examples["label"][example_idx])) output = {"label":labels, "image":images} return output raw_dataset = load_dataset('mnist') train_dataset = raw_dataset.map(prepare_features, batched=True, batch_size=10000) train_dataset.set_format("torch",columns=["image","label"]) ``` After this, I check the type of the following: ```python print(type(train_dataset["train"]["label"])) print(type(train_dataset["train"]["image"][0])) ``` This leads to the following output: ```python <class 'torch.Tensor'> <class 'list'> ``` I use `torch.utils.DataLoader` for batches, the type of `batch["train"]["image"]` is also `<class 'list'>`. I don't understand why only the `label` is converted to a torch tensor, why does the image not get converted? How can I fix this issue? Thanks, Gunjan EDIT: I just checked the shapes, and the types, `batch[image]` is a actually a list of list of tensors. Shape is (1,28,2,28), where `batch_size` is 2. I don't understand why this is happening. Ideally it should be a tensor of shape (2,1,28,28). EDIT 2: Inside `prepare_train_features`, the shape of `images[0]` is `torch.Size([1,28,28])`, the conversion is working. However, the output of the `map` is a list of list of list of list.
53
Setting to torch format not working with torchvision and MNIST Hi I am trying to use `torchvision.transforms` to handle the transformation of the image data in the `mnist` dataset. Assume I have a `transform` variable which contains the `torchvision.transforms` object. A snippet of what I am trying to do: ```python def prepare_features(examples): images = [] labels = [] for example_idx, example in enumerate(examples["image"]): if transform is not None: images.append(transform( np.array(examples["image"][example_idx], dtype=np.uint8) )) else: images.append(torch.tensor(np.array(examples["image"][example_idx], dtype=np.uint8))) labels.append(torch.tensor(examples["label"][example_idx])) output = {"label":labels, "image":images} return output raw_dataset = load_dataset('mnist') train_dataset = raw_dataset.map(prepare_features, batched=True, batch_size=10000) train_dataset.set_format("torch",columns=["image","label"]) ``` After this, I check the type of the following: ```python print(type(train_dataset["train"]["label"])) print(type(train_dataset["train"]["image"][0])) ``` This leads to the following output: ```python <class 'torch.Tensor'> <class 'list'> ``` I use `torch.utils.DataLoader` for batches, the type of `batch["train"]["image"]` is also `<class 'list'>`. I don't understand why only the `label` is converted to a torch tensor, why does the image not get converted? How can I fix this issue? Thanks, Gunjan EDIT: I just checked the shapes, and the types, `batch[image]` is a actually a list of list of tensors. Shape is (1,28,2,28), where `batch_size` is 2. I don't understand why this is happening. Ideally it should be a tensor of shape (2,1,28,28). EDIT 2: Inside `prepare_train_features`, the shape of `images[0]` is `torch.Size([1,28,28])`, the conversion is working. However, the output of the `map` is a list of list of list of list. What's the feature types of your new dataset after `.map` ? Can you try with adding `features=` in the `.map` call in order to set the "image" feature type to `Array2D` ? The default feature type is lists of lists, we've not implemented shape verification to use ArrayXD instead of nested lists yet
[ -0.1273752749, -0.3511647582, -0.0179326795, 0.3536091447, 0.4760022461, 0.0887135565, 0.7330291867, 0.3804343939, 0.0655259714, -0.0380423442, -0.1111534908, 0.3819510043, -0.2329692245, -0.3339344263, 0.0351091474, -0.5614944696, 0.2225798666, -0.099827379, -0.2807980776, -0.0613474436, -0.2431336641, 0.0354891196, -0.2184971571, -0.1084964424, -0.5479354262, 0.0440962017, -0.0195558108, -0.0765686631, -0.0622993931, -0.139180094, 0.1223466694, -0.1744963974, 0.4444535673, 0.701292932, -0.0001277011, 0.070302099, 0.3642727733, -0.1737783253, 0.0499993004, -0.1610137224, 0.0400474221, -0.2573827505, 0.0727765039, -0.0946831703, -0.2234942913, -0.1708451807, 0.0959102586, -0.179029569, -0.0281418636, 0.4191685319, 0.0771300644, 0.2790111899, 0.2466611266, 0.138630569, 0.2278114408, 0.5182864666, -0.2734378874, -0.0561170802, 0.2261503488, 0.375477612, 0.1240047365, 0.5647346973, -0.2913346589, -0.0362335965, 0.2669449449, 0.1290051639, -0.1014551669, -0.3140054047, 0.0491569899, 0.0894629434, 0.4219439328, -0.149439171, -0.0807790309, -0.1436639577, -0.1439784318, -0.1273806691, 0.040591117, 0.2803192437, -0.0718411803, -0.1872383356, -0.5392426252, 0.3052918911, -0.1486238092, 0.2131594121, -0.2805242836, -0.0034205057, -0.1381632388, 0.2928087115, -0.0471188091, -0.1127128378, 0.1930810809, -0.1234146208, 0.1300752461, -0.0098258667, -0.1436316818, -0.0534910075, -0.3895993233, -0.3150123656, -0.200148046, -0.1602649093, 0.1664854437, 0.1392757893, -0.1163956225, 0.1280710995, 0.1826329976, 0.2680339515, 0.1057824045, 0.3207024932, -0.0858924091, -0.2895821333, -0.0469191186, 0.0877333283, -0.2962266207, -0.435752511, 0.1545345783, 0.3252967894, 0.2452210635, 0.0687425882, 0.129855454, -0.3239413798, -0.108922407, -0.0095864497, 0.0752250552, 0.2850381434, -0.1186792403, 0.2439045608, 0.4804830849, 0.3972029686, -0.1538182199, 0.0695627034, 0.0250724554, 0.0315209478, -0.4404954314, -0.2856986523, 0.1534098387, -0.1177730858, 0.1000700817, 0.0374315456, 0.0464156494, 0.1006964743, 0.0734964386, -0.1858696342, 0.6246293783, 0.1476476192, -0.1944742501, 0.2767928541, 0.2709068358, 0.5297795534, -0.3042984009, 0.2565314174, -0.509569943, 0.065252617, -0.0230914634, -0.0145438574, 0.2186551392, -0.0207219422, -0.2121626139, 0.0158291012, 0.5923119783, -0.0836779028, 0.2734875977, -0.5791625381, 0.0949642211, -0.1913350224, 0.0341523066, 0.0636691749, -0.2047153413, -0.0523586571, 0.3863436878, 0.0919495672, 0.315458715, 0.160281986, 0.0510831587, 0.0798701569, -0.2253530025, -0.2350504994, 0.3363233209, -0.3768562078, 0.0920384303, -0.017693229, 0.0938788056, -0.0638040304, 0.1120191738, 0.3361781538, 0.0326009206, -0.1280016899, 0.029448567, 0.1963145137, -0.1661820561, 0.1402871013, 0.0773597434, 0.1913032532, 0.1933747828, 0.0350064933, -0.0156835858, 0.2076536417, -0.2216713428, 0.1775762141, -0.0542803816, -0.0747133717, 0.0711773857, 0.0403781608, -0.3698906302, -0.0121968798, -0.0474697948, 0.186466679, -0.233100161, -0.0487212501, 0.0236349925, 0.0822170302, 0.0582789779, 0.0479249656, 0.0049781948, -0.1919565797, -0.1822057962, -0.1390272677, -0.0032420792, 0.0922107399, -0.209476456, -0.261723876, -0.0523434281, -0.1232488528, 0.1783037484, 0.0588376708, -0.3590369523, 0.0510258526, 0.0192735232, -0.3653306961, -0.2013598382, 0.1733923554, 0.2676689327, -0.0996210203, -0.0422347449, 0.1916032434, 0.063288942, 0.1146327555, -0.5482743382, 0.0834661424, 0.1778420508, -0.2469699681, 0.2043912709, 0.2162799537, 0.1485339105, -0.2755033076, -0.1960348189, 0.4387863874, 0.1604105085, 0.3159130216, -0.3300261199, 0.1161018834, -0.0726466402, -0.0394021273, -0.1906338036, -0.0408079922, -0.2772817612, 0.07302396, -0.1318596452, 0.0129822437, -0.4569185078, -0.044936087, 0.2962617576, 0.0887638777, 0.1758720577, -0.0012159873, -0.3998460472, 0.2133124024, 0.1771264523, -0.6013532877, 0.2978383601, -0.0043618418, 0.1892074049, -0.1050186455, 0.0955834612, -0.1625432372, 0.2484445572, 0.1140422225, 0.0907485932, -0.1994646788, 0.1418525875, -0.1079261974, 0.026846543, 0.0263703614, -0.1406289041, -0.2336928397, -0.3589505553, 0.2713828087, -0.1661833078, -0.1345183551, -0.4018547535, -0.26218611, 0.036056079, -0.074004896, -0.0823338926, 0.1507581919, 0.185567975, 0.1904346794, 0.263418138, -0.1818943173, 0.3743163645, -0.4130293727, -0.0353551954, -0.0750101507, -0.2867958844, -0.0991648883, 0.0896559358, -0.5234106779, 0.0914843455, -0.2289902121, -0.0931907073, -0.2501760125, 0.0135479569, 0.1418222338, -0.2678500712, -0.285002619, 0.3085913062, 0.1939284503, -0.1424820423, 0.0406624675, 0.2663514614, 0.0103069693, 0.0469011739, 0.1537837088, -0.0896201432, 0.1165603548, -0.0632983148, -0.1767407507, -0.0966183916, -0.0750616789, -0.0704163462, -0.0217595622, 0.0633769184, 0.3462583721, 0.3721840084, -0.0898905694, -0.0520421155, 0.0356089771, 0.0629647374, -0.397687614, 0.5225033164, -0.2261543274, -0.3608259261, 0.1192015857, 0.0238558576, 0.0651470274, 0.4862688482, 0.0605229586, 0.0497315228, 0.0117820259, -0.0789447725, 0.2525925934, 0.2211974561, 0.351020366, -0.0911251158, 0.0191657022, -0.1647070348, 0.015416719, -0.1018712372, -0.0632553771, 0.6088865399, 0.1850844324, 0.2399426997, 0.0992583334, 0.6996647716, -0.0611373074, -0.7380949259, 0.2168065608, -0.2425097823, 0.1921669692, -0.1181219816, -0.3539581597, 0.3988560438, -0.2094198465, 0.0643739402, -0.0859674141, -0.0249071717, -0.2391578257, -0.0902241915, 0.3573612273, -0.3172068, -0.1585737765, 0.4044301808, -0.1447022259, 0.276373148, -0.2313425094, 0.3245897889, -0.2609260082, -0.2137926072, 0.0600569621, 0.448772192, 0.1385136694, 0.0417248085, -0.3342841268, -0.2166968882, -0.1432268322, 0.3568274975, 0.119577229, 0.5672699213, -0.0980360731, -0.0744650736, 0.1015564278, 0.2413696051, 0.8307591677, 0.0455574095, -0.0904588774, 0.1514427066, -0.3478347063, -0.4549782574, -0.1022294387, -0.0514177941, 0.0906814858, 0.1716902852, 0.1203863025, -0.0910535455, -0.1833340377, -0.0058327634, 0.1955549121, -0.0551248007, 0.0347187556, -0.2269115746, 0.0587577075, -0.1296497881, -0.1552831382, 0.221182704, 0.0296753757, 0.0051618069, -0.3081279993, -0.3262302577, -0.1266998053, 0.1824818701, -0.1330119818, 0.411067158, 0.0992509723, -0.1780857891, 0.0769068673, 0.5561056137, 0.4184040427, -0.0389391743, -0.1187736243, 0.0806436464, 0.2931112051, 0.1064323708, 0.3002043366, 0.3208229244, -0.0618731268, -0.4396640956, -0.2268485874, -0.1938149631, -0.3305327892, 0.3972930908, 0.4080630243, 0.0989351422, -0.495355159, -0.4921703637, 0.3861902356, 0.2937195897, 0.1958302855, 0.2045914829, -0.5417589545, -0.4009674489, 0.0781785846, 0.4662418067, 0.8556221128, -0.0370787904, 0.3702828288, 0.0315654092, 0.0108071491, 0.1721021086, -0.001888819, 0.4117947817, -0.3542811275, 0.1392897964, -0.1648540199, -0.3125497699, 0.2525229454, -0.0602031313, -0.243969813, 0.0425363332, -0.3494715691, 0.1936194897, -0.1256935298, -0.0828533769, -0.0498264171, -0.4714176059, 0.1878737062, 0.015452154, -0.0825134218, 0.261738956, 0.1111609936, -0.1636207998, -0.37986058, 0.0616961569, -0.0762220845, -0.0150117278, -0.2459689379, -0.1632431597, -0.0243097618, -0.7298656702, 0.0586797595, 0.4961580634, 0.3345547616, -0.1605665386, -0.0478365757, 0.1396414042, 0.4438467324, 0.1629003286, -0.0990171283, -0.34018448, 0.285340488, 0.0973755419, 0.1843323559, 0.1086379066, 0.068148613, 0.2105205506, -0.5777891278, 0.0372511372, 0.3060286641, -0.3449504972, -0.3229842186, -0.1984501183, 0.0491852015, 0.0381636098, 0.0286185816, 0.1244890988, -0.038903255, 0.2072433978, -0.0415122993, -0.2264614105, 0.1328899413, 0.4523314238, 0.112983793, -0.3500463367, 0.3907566667, 0.3549588025, -0.044777751, -0.0437440015, 0.4166939259, 0.6353191733, -0.3456967175, 0.0994978324, -0.1027165204, -0.156986773, -0.0110737607, 0.5430940986, -0.2343174517, -0.1309779137, -0.2389574945, -0.0408176184, -0.4308937192, 0.0108133871, -0.316298455, 0.456630528, -0.0432225578, 0.3627103567, 0.2105056196, -0.1873493195, -0.1441360414, -0.2586486936, 0.1723506898, 0.3679332435, -0.2471823692, 0.2187609822, -0.1269585788, -0.122023046, -0.0362524018, 0.0260316655, -0.2497397512, -0.0333907977, -0.057677757, 0.1773061454, 0.0666143, -0.1135400012, -0.0735470206, -0.1736695617, -0.1385808587, -0.2681719363, -0.0377181172, 0.1109212637, -0.1159996986, 0.3531611562, -0.1783661991, 0.2312256545, 0.3186765909, -0.2700001597, -0.102622807, 0.0358715132, 0.2229628265, 0.0600506924, 0.0045315176, -0.0615565926, -0.2772367299, 0.1125917435, 0.1652030349, 0.2549746037, 0.2046176791, -0.0999964252, 0.1091780886, -0.0438068472, 0.2041843683, 0.1012552902, -0.1718704849, -0.0508286878, 0.0603731833, -0.0076233326, 0.1006218046, 0.1449988782, 0.0388690494, 0.1252815723, -0.0834641829, 0.2755779922, 0.066558972, 0.3113947511, -0.3705074787, 0.0451426804, 0.4178561866, -0.2410735786, 0.235085845, 0.4640145898, 0.0147998184, 0.1930493563, 0.2907045782, 0.1093435287, -0.1187016368, 0.3226964474, 0.3945166469, 0.8204311728, 0.5895957351, 0.0837696195, 0.2746028602, 0.0992571414, -0.1536075324, -0.2072514147, 0.2358238697, 0.3919682801, 0.018866688, 0.1856933236, -0.2407992482, -0.4871239364, 0.2258820236, 0.1217748523, -0.1946175396, -0.0822236091, -0.6648058295, 0.0118749738, 0.1358260363, -0.1866593063, -0.1797154844, -0.0501378737, 0.2205907255, 0.2597537935, -0.1032206565, -0.160912469, -0.1724744886, 0.0691012144, 0.0375293978, -0.0073297396, 0.1697572917, -0.1368461996, 0.1617608517, 0.2448242605, 0.1969081163, 0.2849534154, 0.4870798886, -0.1681717038, -0.1598938107, -0.0105535462, -0.1923658848, 0.0899017379, 0.0667121336, 0.0315336436, -0.1532075405, -0.0149565935, 0.0084626377, 0.0386277772, 0.0314603262, -0.0940810889, -0.2182594985, 0.1676249057, 0.3055746257, -0.3637771308, -0.1490927637, -0.0998983979, -0.2466560304, -0.3483099937, -0.2655349076, 0.532738626, 0.0278958529, 0.1280096769, 0.1421678513, -0.042159453, 0.0487859957, 0.1574120373, -0.1215567589, 0.0775769204, -0.1540937573, 0.1359659135, -0.0858048499, 0.0319102407, 0.118474707, -0.3834477663, -0.018849548, -0.0391643457, 0.2425418645, 0.0646753684, 0.2020900548, -0.0983474255, 0.4987448454, 0.6146565676, -0.1336154044, -0.1414808482, -0.1304193288, 0.3706512451, 0.0733085424, -0.0774657428, 0.0219212137, 0.1024274975, 0.0065070391, -0.3420651555, -0.255490303, -0.0199822746, 0.3041451573, 0.3512825668, 0.0932887495, 0.3203128576, -0.0192206055, 0.0484099612, -0.2411338985, 0.0504153408, -0.1276014149, 0.0096702836, -0.0228029191, 0.5810168982, -0.2244022489, -0.0593422018, -0.4136503935, 0.4290261567, 0.0905311108, -0.3388547599, -0.080519408, 0.358399868, -0.3173205256, -0.2010881901, 0.2261951864, 0.4100222588, 0.1513600647, 0.1943573505, -0.5254406333, -0.4069115222, 0.4472020864, -0.4417077601, -0.5069127083, 0.029074762, -0.3133940697, 0.0679037571, 0.4964233935, -0.471049726, -0.1491340101, 0.0015053898, -0.0808276385, -0.091604352, -0.0981936082, 0.2610402107, 0.0151107982, -0.2518461943, 0.1790074408, 0.1764502972, -0.0228160247, -0.4204157591, -0.2753599882 ]
https://github.com/huggingface/datasets/issues/2005
Setting to torch format not working with torchvision and MNIST
Hi @lhoestq Raw feature types are like this: ``` Image: <class 'list'> 60000 #(type, len) <class 'list'> 28 <class 'list'> 28 <class 'int'> Label: <class 'list'> 60000 <class 'int'> ``` Inside the `prepare_feature` method with batch size 100000 , after processing, they are like this: Inside Prepare Train Features ``` Image: <class 'list'> 10000 <class 'torch.Tensor'> 1 <class 'torch.Tensor'> 28 <class 'torch.Tensor'> 28 <class 'torch.Tensor'> Label: <class 'list'> 10000 <class 'torch.Tensor'> ``` After map, the feature type are like this: ``` Image: <class 'list'> 60000 <class 'list'> 1 <class 'list'> 28 <class 'list'> 28 <class 'float'> Label: <class 'list'> 60000 <class 'int'> ``` After dataloader with batch size 2, the batch features are like this: ``` Image: <class 'list'> 1 <class 'list'> 28 <class 'list'> 28 <class 'torch.Tensor'> 2 <class 'torch.Tensor'> Label: <class 'torch.Tensor'> 2 <class 'torch.Tensor'> ``` <hr> When I was setting the format of `train_dataset` to 'torch' after mapping - ``` Image: <class 'list'> 60000 <class 'list'> 1 <class 'list'> 28 <class 'torch.Tensor'> 28 <class 'torch.Tensor'> Label: <class 'torch.Tensor'> 60000 <class 'torch.Tensor'> ``` Corresponding DataLoader batch: ``` From DataLoader batch features Image: <class 'list'> 1 <class 'list'> 28 <class 'torch.Tensor'> 2 <class 'torch.Tensor'> 28 <class 'torch.Tensor'> Label: <class 'torch.Tensor'> 2 <class 'torch.Tensor'> ``` I will check with features and get back.
Hi I am trying to use `torchvision.transforms` to handle the transformation of the image data in the `mnist` dataset. Assume I have a `transform` variable which contains the `torchvision.transforms` object. A snippet of what I am trying to do: ```python def prepare_features(examples): images = [] labels = [] for example_idx, example in enumerate(examples["image"]): if transform is not None: images.append(transform( np.array(examples["image"][example_idx], dtype=np.uint8) )) else: images.append(torch.tensor(np.array(examples["image"][example_idx], dtype=np.uint8))) labels.append(torch.tensor(examples["label"][example_idx])) output = {"label":labels, "image":images} return output raw_dataset = load_dataset('mnist') train_dataset = raw_dataset.map(prepare_features, batched=True, batch_size=10000) train_dataset.set_format("torch",columns=["image","label"]) ``` After this, I check the type of the following: ```python print(type(train_dataset["train"]["label"])) print(type(train_dataset["train"]["image"][0])) ``` This leads to the following output: ```python <class 'torch.Tensor'> <class 'list'> ``` I use `torch.utils.DataLoader` for batches, the type of `batch["train"]["image"]` is also `<class 'list'>`. I don't understand why only the `label` is converted to a torch tensor, why does the image not get converted? How can I fix this issue? Thanks, Gunjan EDIT: I just checked the shapes, and the types, `batch[image]` is a actually a list of list of tensors. Shape is (1,28,2,28), where `batch_size` is 2. I don't understand why this is happening. Ideally it should be a tensor of shape (2,1,28,28). EDIT 2: Inside `prepare_train_features`, the shape of `images[0]` is `torch.Size([1,28,28])`, the conversion is working. However, the output of the `map` is a list of list of list of list.
213
Setting to torch format not working with torchvision and MNIST Hi I am trying to use `torchvision.transforms` to handle the transformation of the image data in the `mnist` dataset. Assume I have a `transform` variable which contains the `torchvision.transforms` object. A snippet of what I am trying to do: ```python def prepare_features(examples): images = [] labels = [] for example_idx, example in enumerate(examples["image"]): if transform is not None: images.append(transform( np.array(examples["image"][example_idx], dtype=np.uint8) )) else: images.append(torch.tensor(np.array(examples["image"][example_idx], dtype=np.uint8))) labels.append(torch.tensor(examples["label"][example_idx])) output = {"label":labels, "image":images} return output raw_dataset = load_dataset('mnist') train_dataset = raw_dataset.map(prepare_features, batched=True, batch_size=10000) train_dataset.set_format("torch",columns=["image","label"]) ``` After this, I check the type of the following: ```python print(type(train_dataset["train"]["label"])) print(type(train_dataset["train"]["image"][0])) ``` This leads to the following output: ```python <class 'torch.Tensor'> <class 'list'> ``` I use `torch.utils.DataLoader` for batches, the type of `batch["train"]["image"]` is also `<class 'list'>`. I don't understand why only the `label` is converted to a torch tensor, why does the image not get converted? How can I fix this issue? Thanks, Gunjan EDIT: I just checked the shapes, and the types, `batch[image]` is a actually a list of list of tensors. Shape is (1,28,2,28), where `batch_size` is 2. I don't understand why this is happening. Ideally it should be a tensor of shape (2,1,28,28). EDIT 2: Inside `prepare_train_features`, the shape of `images[0]` is `torch.Size([1,28,28])`, the conversion is working. However, the output of the `map` is a list of list of list of list. Hi @lhoestq Raw feature types are like this: ``` Image: <class 'list'> 60000 #(type, len) <class 'list'> 28 <class 'list'> 28 <class 'int'> Label: <class 'list'> 60000 <class 'int'> ``` Inside the `prepare_feature` method with batch size 100000 , after processing, they are like this: Inside Prepare Train Features ``` Image: <class 'list'> 10000 <class 'torch.Tensor'> 1 <class 'torch.Tensor'> 28 <class 'torch.Tensor'> 28 <class 'torch.Tensor'> Label: <class 'list'> 10000 <class 'torch.Tensor'> ``` After map, the feature type are like this: ``` Image: <class 'list'> 60000 <class 'list'> 1 <class 'list'> 28 <class 'list'> 28 <class 'float'> Label: <class 'list'> 60000 <class 'int'> ``` After dataloader with batch size 2, the batch features are like this: ``` Image: <class 'list'> 1 <class 'list'> 28 <class 'list'> 28 <class 'torch.Tensor'> 2 <class 'torch.Tensor'> Label: <class 'torch.Tensor'> 2 <class 'torch.Tensor'> ``` <hr> When I was setting the format of `train_dataset` to 'torch' after mapping - ``` Image: <class 'list'> 60000 <class 'list'> 1 <class 'list'> 28 <class 'torch.Tensor'> 28 <class 'torch.Tensor'> Label: <class 'torch.Tensor'> 60000 <class 'torch.Tensor'> ``` Corresponding DataLoader batch: ``` From DataLoader batch features Image: <class 'list'> 1 <class 'list'> 28 <class 'torch.Tensor'> 2 <class 'torch.Tensor'> 28 <class 'torch.Tensor'> Label: <class 'torch.Tensor'> 2 <class 'torch.Tensor'> ``` I will check with features and get back.
[ -0.1273752749, -0.3511647582, -0.0179326795, 0.3536091447, 0.4760022461, 0.0887135565, 0.7330291867, 0.3804343939, 0.0655259714, -0.0380423442, -0.1111534908, 0.3819510043, -0.2329692245, -0.3339344263, 0.0351091474, -0.5614944696, 0.2225798666, -0.099827379, -0.2807980776, -0.0613474436, -0.2431336641, 0.0354891196, -0.2184971571, -0.1084964424, -0.5479354262, 0.0440962017, -0.0195558108, -0.0765686631, -0.0622993931, -0.139180094, 0.1223466694, -0.1744963974, 0.4444535673, 0.701292932, -0.0001277011, 0.070302099, 0.3642727733, -0.1737783253, 0.0499993004, -0.1610137224, 0.0400474221, -0.2573827505, 0.0727765039, -0.0946831703, -0.2234942913, -0.1708451807, 0.0959102586, -0.179029569, -0.0281418636, 0.4191685319, 0.0771300644, 0.2790111899, 0.2466611266, 0.138630569, 0.2278114408, 0.5182864666, -0.2734378874, -0.0561170802, 0.2261503488, 0.375477612, 0.1240047365, 0.5647346973, -0.2913346589, -0.0362335965, 0.2669449449, 0.1290051639, -0.1014551669, -0.3140054047, 0.0491569899, 0.0894629434, 0.4219439328, -0.149439171, -0.0807790309, -0.1436639577, -0.1439784318, -0.1273806691, 0.040591117, 0.2803192437, -0.0718411803, -0.1872383356, -0.5392426252, 0.3052918911, -0.1486238092, 0.2131594121, -0.2805242836, -0.0034205057, -0.1381632388, 0.2928087115, -0.0471188091, -0.1127128378, 0.1930810809, -0.1234146208, 0.1300752461, -0.0098258667, -0.1436316818, -0.0534910075, -0.3895993233, -0.3150123656, -0.200148046, -0.1602649093, 0.1664854437, 0.1392757893, -0.1163956225, 0.1280710995, 0.1826329976, 0.2680339515, 0.1057824045, 0.3207024932, -0.0858924091, -0.2895821333, -0.0469191186, 0.0877333283, -0.2962266207, -0.435752511, 0.1545345783, 0.3252967894, 0.2452210635, 0.0687425882, 0.129855454, -0.3239413798, -0.108922407, -0.0095864497, 0.0752250552, 0.2850381434, -0.1186792403, 0.2439045608, 0.4804830849, 0.3972029686, -0.1538182199, 0.0695627034, 0.0250724554, 0.0315209478, -0.4404954314, -0.2856986523, 0.1534098387, -0.1177730858, 0.1000700817, 0.0374315456, 0.0464156494, 0.1006964743, 0.0734964386, -0.1858696342, 0.6246293783, 0.1476476192, -0.1944742501, 0.2767928541, 0.2709068358, 0.5297795534, -0.3042984009, 0.2565314174, -0.509569943, 0.065252617, -0.0230914634, -0.0145438574, 0.2186551392, -0.0207219422, -0.2121626139, 0.0158291012, 0.5923119783, -0.0836779028, 0.2734875977, -0.5791625381, 0.0949642211, -0.1913350224, 0.0341523066, 0.0636691749, -0.2047153413, -0.0523586571, 0.3863436878, 0.0919495672, 0.315458715, 0.160281986, 0.0510831587, 0.0798701569, -0.2253530025, -0.2350504994, 0.3363233209, -0.3768562078, 0.0920384303, -0.017693229, 0.0938788056, -0.0638040304, 0.1120191738, 0.3361781538, 0.0326009206, -0.1280016899, 0.029448567, 0.1963145137, -0.1661820561, 0.1402871013, 0.0773597434, 0.1913032532, 0.1933747828, 0.0350064933, -0.0156835858, 0.2076536417, -0.2216713428, 0.1775762141, -0.0542803816, -0.0747133717, 0.0711773857, 0.0403781608, -0.3698906302, -0.0121968798, -0.0474697948, 0.186466679, -0.233100161, -0.0487212501, 0.0236349925, 0.0822170302, 0.0582789779, 0.0479249656, 0.0049781948, -0.1919565797, -0.1822057962, -0.1390272677, -0.0032420792, 0.0922107399, -0.209476456, -0.261723876, -0.0523434281, -0.1232488528, 0.1783037484, 0.0588376708, -0.3590369523, 0.0510258526, 0.0192735232, -0.3653306961, -0.2013598382, 0.1733923554, 0.2676689327, -0.0996210203, -0.0422347449, 0.1916032434, 0.063288942, 0.1146327555, -0.5482743382, 0.0834661424, 0.1778420508, -0.2469699681, 0.2043912709, 0.2162799537, 0.1485339105, -0.2755033076, -0.1960348189, 0.4387863874, 0.1604105085, 0.3159130216, -0.3300261199, 0.1161018834, -0.0726466402, -0.0394021273, -0.1906338036, -0.0408079922, -0.2772817612, 0.07302396, -0.1318596452, 0.0129822437, -0.4569185078, -0.044936087, 0.2962617576, 0.0887638777, 0.1758720577, -0.0012159873, -0.3998460472, 0.2133124024, 0.1771264523, -0.6013532877, 0.2978383601, -0.0043618418, 0.1892074049, -0.1050186455, 0.0955834612, -0.1625432372, 0.2484445572, 0.1140422225, 0.0907485932, -0.1994646788, 0.1418525875, -0.1079261974, 0.026846543, 0.0263703614, -0.1406289041, -0.2336928397, -0.3589505553, 0.2713828087, -0.1661833078, -0.1345183551, -0.4018547535, -0.26218611, 0.036056079, -0.074004896, -0.0823338926, 0.1507581919, 0.185567975, 0.1904346794, 0.263418138, -0.1818943173, 0.3743163645, -0.4130293727, -0.0353551954, -0.0750101507, -0.2867958844, -0.0991648883, 0.0896559358, -0.5234106779, 0.0914843455, -0.2289902121, -0.0931907073, -0.2501760125, 0.0135479569, 0.1418222338, -0.2678500712, -0.285002619, 0.3085913062, 0.1939284503, -0.1424820423, 0.0406624675, 0.2663514614, 0.0103069693, 0.0469011739, 0.1537837088, -0.0896201432, 0.1165603548, -0.0632983148, -0.1767407507, -0.0966183916, -0.0750616789, -0.0704163462, -0.0217595622, 0.0633769184, 0.3462583721, 0.3721840084, -0.0898905694, -0.0520421155, 0.0356089771, 0.0629647374, -0.397687614, 0.5225033164, -0.2261543274, -0.3608259261, 0.1192015857, 0.0238558576, 0.0651470274, 0.4862688482, 0.0605229586, 0.0497315228, 0.0117820259, -0.0789447725, 0.2525925934, 0.2211974561, 0.351020366, -0.0911251158, 0.0191657022, -0.1647070348, 0.015416719, -0.1018712372, -0.0632553771, 0.6088865399, 0.1850844324, 0.2399426997, 0.0992583334, 0.6996647716, -0.0611373074, -0.7380949259, 0.2168065608, -0.2425097823, 0.1921669692, -0.1181219816, -0.3539581597, 0.3988560438, -0.2094198465, 0.0643739402, -0.0859674141, -0.0249071717, -0.2391578257, -0.0902241915, 0.3573612273, -0.3172068, -0.1585737765, 0.4044301808, -0.1447022259, 0.276373148, -0.2313425094, 0.3245897889, -0.2609260082, -0.2137926072, 0.0600569621, 0.448772192, 0.1385136694, 0.0417248085, -0.3342841268, -0.2166968882, -0.1432268322, 0.3568274975, 0.119577229, 0.5672699213, -0.0980360731, -0.0744650736, 0.1015564278, 0.2413696051, 0.8307591677, 0.0455574095, -0.0904588774, 0.1514427066, -0.3478347063, -0.4549782574, -0.1022294387, -0.0514177941, 0.0906814858, 0.1716902852, 0.1203863025, -0.0910535455, -0.1833340377, -0.0058327634, 0.1955549121, -0.0551248007, 0.0347187556, -0.2269115746, 0.0587577075, -0.1296497881, -0.1552831382, 0.221182704, 0.0296753757, 0.0051618069, -0.3081279993, -0.3262302577, -0.1266998053, 0.1824818701, -0.1330119818, 0.411067158, 0.0992509723, -0.1780857891, 0.0769068673, 0.5561056137, 0.4184040427, -0.0389391743, -0.1187736243, 0.0806436464, 0.2931112051, 0.1064323708, 0.3002043366, 0.3208229244, -0.0618731268, -0.4396640956, -0.2268485874, -0.1938149631, -0.3305327892, 0.3972930908, 0.4080630243, 0.0989351422, -0.495355159, -0.4921703637, 0.3861902356, 0.2937195897, 0.1958302855, 0.2045914829, -0.5417589545, -0.4009674489, 0.0781785846, 0.4662418067, 0.8556221128, -0.0370787904, 0.3702828288, 0.0315654092, 0.0108071491, 0.1721021086, -0.001888819, 0.4117947817, -0.3542811275, 0.1392897964, -0.1648540199, -0.3125497699, 0.2525229454, -0.0602031313, -0.243969813, 0.0425363332, -0.3494715691, 0.1936194897, -0.1256935298, -0.0828533769, -0.0498264171, -0.4714176059, 0.1878737062, 0.015452154, -0.0825134218, 0.261738956, 0.1111609936, -0.1636207998, -0.37986058, 0.0616961569, -0.0762220845, -0.0150117278, -0.2459689379, -0.1632431597, -0.0243097618, -0.7298656702, 0.0586797595, 0.4961580634, 0.3345547616, -0.1605665386, -0.0478365757, 0.1396414042, 0.4438467324, 0.1629003286, -0.0990171283, -0.34018448, 0.285340488, 0.0973755419, 0.1843323559, 0.1086379066, 0.068148613, 0.2105205506, -0.5777891278, 0.0372511372, 0.3060286641, -0.3449504972, -0.3229842186, -0.1984501183, 0.0491852015, 0.0381636098, 0.0286185816, 0.1244890988, -0.038903255, 0.2072433978, -0.0415122993, -0.2264614105, 0.1328899413, 0.4523314238, 0.112983793, -0.3500463367, 0.3907566667, 0.3549588025, -0.044777751, -0.0437440015, 0.4166939259, 0.6353191733, -0.3456967175, 0.0994978324, -0.1027165204, -0.156986773, -0.0110737607, 0.5430940986, -0.2343174517, -0.1309779137, -0.2389574945, -0.0408176184, -0.4308937192, 0.0108133871, -0.316298455, 0.456630528, -0.0432225578, 0.3627103567, 0.2105056196, -0.1873493195, -0.1441360414, -0.2586486936, 0.1723506898, 0.3679332435, -0.2471823692, 0.2187609822, -0.1269585788, -0.122023046, -0.0362524018, 0.0260316655, -0.2497397512, -0.0333907977, -0.057677757, 0.1773061454, 0.0666143, -0.1135400012, -0.0735470206, -0.1736695617, -0.1385808587, -0.2681719363, -0.0377181172, 0.1109212637, -0.1159996986, 0.3531611562, -0.1783661991, 0.2312256545, 0.3186765909, -0.2700001597, -0.102622807, 0.0358715132, 0.2229628265, 0.0600506924, 0.0045315176, -0.0615565926, -0.2772367299, 0.1125917435, 0.1652030349, 0.2549746037, 0.2046176791, -0.0999964252, 0.1091780886, -0.0438068472, 0.2041843683, 0.1012552902, -0.1718704849, -0.0508286878, 0.0603731833, -0.0076233326, 0.1006218046, 0.1449988782, 0.0388690494, 0.1252815723, -0.0834641829, 0.2755779922, 0.066558972, 0.3113947511, -0.3705074787, 0.0451426804, 0.4178561866, -0.2410735786, 0.235085845, 0.4640145898, 0.0147998184, 0.1930493563, 0.2907045782, 0.1093435287, -0.1187016368, 0.3226964474, 0.3945166469, 0.8204311728, 0.5895957351, 0.0837696195, 0.2746028602, 0.0992571414, -0.1536075324, -0.2072514147, 0.2358238697, 0.3919682801, 0.018866688, 0.1856933236, -0.2407992482, -0.4871239364, 0.2258820236, 0.1217748523, -0.1946175396, -0.0822236091, -0.6648058295, 0.0118749738, 0.1358260363, -0.1866593063, -0.1797154844, -0.0501378737, 0.2205907255, 0.2597537935, -0.1032206565, -0.160912469, -0.1724744886, 0.0691012144, 0.0375293978, -0.0073297396, 0.1697572917, -0.1368461996, 0.1617608517, 0.2448242605, 0.1969081163, 0.2849534154, 0.4870798886, -0.1681717038, -0.1598938107, -0.0105535462, -0.1923658848, 0.0899017379, 0.0667121336, 0.0315336436, -0.1532075405, -0.0149565935, 0.0084626377, 0.0386277772, 0.0314603262, -0.0940810889, -0.2182594985, 0.1676249057, 0.3055746257, -0.3637771308, -0.1490927637, -0.0998983979, -0.2466560304, -0.3483099937, -0.2655349076, 0.532738626, 0.0278958529, 0.1280096769, 0.1421678513, -0.042159453, 0.0487859957, 0.1574120373, -0.1215567589, 0.0775769204, -0.1540937573, 0.1359659135, -0.0858048499, 0.0319102407, 0.118474707, -0.3834477663, -0.018849548, -0.0391643457, 0.2425418645, 0.0646753684, 0.2020900548, -0.0983474255, 0.4987448454, 0.6146565676, -0.1336154044, -0.1414808482, -0.1304193288, 0.3706512451, 0.0733085424, -0.0774657428, 0.0219212137, 0.1024274975, 0.0065070391, -0.3420651555, -0.255490303, -0.0199822746, 0.3041451573, 0.3512825668, 0.0932887495, 0.3203128576, -0.0192206055, 0.0484099612, -0.2411338985, 0.0504153408, -0.1276014149, 0.0096702836, -0.0228029191, 0.5810168982, -0.2244022489, -0.0593422018, -0.4136503935, 0.4290261567, 0.0905311108, -0.3388547599, -0.080519408, 0.358399868, -0.3173205256, -0.2010881901, 0.2261951864, 0.4100222588, 0.1513600647, 0.1943573505, -0.5254406333, -0.4069115222, 0.4472020864, -0.4417077601, -0.5069127083, 0.029074762, -0.3133940697, 0.0679037571, 0.4964233935, -0.471049726, -0.1491340101, 0.0015053898, -0.0808276385, -0.091604352, -0.0981936082, 0.2610402107, 0.0151107982, -0.2518461943, 0.1790074408, 0.1764502972, -0.0228160247, -0.4204157591, -0.2753599882 ]
https://github.com/huggingface/datasets/issues/2005
Setting to torch format not working with torchvision and MNIST
Hi @lhoestq # Using Array3D I tried this: ```python features = datasets.Features({ "image": datasets.Array3D(shape=(1,28,28),dtype="float32"), "label": datasets.features.ClassLabel(names=["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"]), }) train_dataset = raw_dataset.map(prepare_features, features = features,batched=True, batch_size=10000) ``` and it didn't fix the issue. During the `prepare_train_features: ``` Image: <class 'list'> 10000 <class 'torch.Tensor'> 1 <class 'torch.Tensor'> 28 <class 'torch.Tensor'> 28 <class 'torch.Tensor'> Label: <class 'list'> 10000 <class 'torch.Tensor'> ``` After the `map`: ``` Image: <class 'list'> 60000 <class 'list'> 1 <class 'list'> 28 <class 'list'> 28 <class 'float'> Label: <class 'list'> 60000 <class 'int'> ``` From the DataLoader batch: ``` Image: <class 'list'> 1 <class 'list'> 28 <class 'list'> 28 <class 'torch.Tensor'> 2 <class 'torch.Tensor'> Label: <class 'torch.Tensor'> 2 <class 'torch.Tensor'> ``` It is the same as before. --- Using `datasets.Sequence(datasets.Array2D(shape=(28,28),dtype="float32"))` gave an error during `map`: ```python ArrowNotImplementedError Traceback (most recent call last) <ipython-input-95-d28e69289084> in <module>() 3 "label": datasets.features.ClassLabel(names=["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"]), 4 }) ----> 5 train_dataset = raw_dataset.map(prepare_features, features = features,batched=True, batch_size=10000) 15 frames /usr/local/lib/python3.7/dist-packages/datasets/dataset_dict.py in map(self, function, with_indices, input_columns, batched, batch_size, remove_columns, keep_in_memory, load_from_cache_file, cache_file_names, writer_batch_size, features, disable_nullable, fn_kwargs, num_proc) 446 num_proc=num_proc, 447 ) --> 448 for k, dataset in self.items() 449 } 450 ) /usr/local/lib/python3.7/dist-packages/datasets/dataset_dict.py in <dictcomp>(.0) 446 num_proc=num_proc, 447 ) --> 448 for k, dataset in self.items() 449 } 450 ) /usr/local/lib/python3.7/dist-packages/datasets/arrow_dataset.py in map(self, function, with_indices, input_columns, batched, batch_size, drop_last_batch, remove_columns, keep_in_memory, load_from_cache_file, cache_file_name, writer_batch_size, features, disable_nullable, fn_kwargs, num_proc, suffix_template, new_fingerprint) 1307 fn_kwargs=fn_kwargs, 1308 new_fingerprint=new_fingerprint, -> 1309 update_data=update_data, 1310 ) 1311 else: /usr/local/lib/python3.7/dist-packages/datasets/arrow_dataset.py in wrapper(*args, **kwargs) 202 } 203 # apply actual function --> 204 out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs) 205 datasets: List["Dataset"] = list(out.values()) if isinstance(out, dict) else [out] 206 # re-apply format to the output /usr/local/lib/python3.7/dist-packages/datasets/fingerprint.py in wrapper(*args, **kwargs) 335 # Call actual function 336 --> 337 out = func(self, *args, **kwargs) 338 339 # Update fingerprint of in-place transforms + update in-place history of transforms /usr/local/lib/python3.7/dist-packages/datasets/arrow_dataset.py in _map_single(self, function, with_indices, input_columns, batched, batch_size, drop_last_batch, remove_columns, keep_in_memory, load_from_cache_file, cache_file_name, writer_batch_size, features, disable_nullable, fn_kwargs, new_fingerprint, rank, offset, update_data) 1580 if update_data: 1581 batch = cast_to_python_objects(batch) -> 1582 writer.write_batch(batch) 1583 if update_data: 1584 writer.finalize() # close_stream=bool(buf_writer is None)) # We only close if we are writing in a file /usr/local/lib/python3.7/dist-packages/datasets/arrow_writer.py in write_batch(self, batch_examples, writer_batch_size) 274 typed_sequence = TypedSequence(batch_examples[col], type=col_type, try_type=col_try_type) 275 typed_sequence_examples[col] = typed_sequence --> 276 pa_table = pa.Table.from_pydict(typed_sequence_examples) 277 self.write_table(pa_table, writer_batch_size) 278 /usr/local/lib/python3.7/dist-packages/pyarrow/table.pxi in pyarrow.lib.Table.from_pydict() /usr/local/lib/python3.7/dist-packages/pyarrow/array.pxi in pyarrow.lib.asarray() /usr/local/lib/python3.7/dist-packages/pyarrow/array.pxi in pyarrow.lib.array() /usr/local/lib/python3.7/dist-packages/pyarrow/array.pxi in pyarrow.lib._handle_arrow_array_protocol() /usr/local/lib/python3.7/dist-packages/datasets/arrow_writer.py in __arrow_array__(self, type) 95 out = pa.ExtensionArray.from_storage(type, pa.array(self.data, type.storage_dtype)) 96 else: ---> 97 out = pa.array(self.data, type=type) 98 if trying_type and out[0].as_py() != self.data[0]: 99 raise TypeError( /usr/local/lib/python3.7/dist-packages/pyarrow/array.pxi in pyarrow.lib.array() /usr/local/lib/python3.7/dist-packages/pyarrow/array.pxi in pyarrow.lib._sequence_to_array() /usr/local/lib/python3.7/dist-packages/pyarrow/error.pxi in pyarrow.lib.pyarrow_internal_check_status() /usr/local/lib/python3.7/dist-packages/pyarrow/error.pxi in pyarrow.lib.check_status() ArrowNotImplementedError: extension ```
Hi I am trying to use `torchvision.transforms` to handle the transformation of the image data in the `mnist` dataset. Assume I have a `transform` variable which contains the `torchvision.transforms` object. A snippet of what I am trying to do: ```python def prepare_features(examples): images = [] labels = [] for example_idx, example in enumerate(examples["image"]): if transform is not None: images.append(transform( np.array(examples["image"][example_idx], dtype=np.uint8) )) else: images.append(torch.tensor(np.array(examples["image"][example_idx], dtype=np.uint8))) labels.append(torch.tensor(examples["label"][example_idx])) output = {"label":labels, "image":images} return output raw_dataset = load_dataset('mnist') train_dataset = raw_dataset.map(prepare_features, batched=True, batch_size=10000) train_dataset.set_format("torch",columns=["image","label"]) ``` After this, I check the type of the following: ```python print(type(train_dataset["train"]["label"])) print(type(train_dataset["train"]["image"][0])) ``` This leads to the following output: ```python <class 'torch.Tensor'> <class 'list'> ``` I use `torch.utils.DataLoader` for batches, the type of `batch["train"]["image"]` is also `<class 'list'>`. I don't understand why only the `label` is converted to a torch tensor, why does the image not get converted? How can I fix this issue? Thanks, Gunjan EDIT: I just checked the shapes, and the types, `batch[image]` is a actually a list of list of tensors. Shape is (1,28,2,28), where `batch_size` is 2. I don't understand why this is happening. Ideally it should be a tensor of shape (2,1,28,28). EDIT 2: Inside `prepare_train_features`, the shape of `images[0]` is `torch.Size([1,28,28])`, the conversion is working. However, the output of the `map` is a list of list of list of list.
447
Setting to torch format not working with torchvision and MNIST Hi I am trying to use `torchvision.transforms` to handle the transformation of the image data in the `mnist` dataset. Assume I have a `transform` variable which contains the `torchvision.transforms` object. A snippet of what I am trying to do: ```python def prepare_features(examples): images = [] labels = [] for example_idx, example in enumerate(examples["image"]): if transform is not None: images.append(transform( np.array(examples["image"][example_idx], dtype=np.uint8) )) else: images.append(torch.tensor(np.array(examples["image"][example_idx], dtype=np.uint8))) labels.append(torch.tensor(examples["label"][example_idx])) output = {"label":labels, "image":images} return output raw_dataset = load_dataset('mnist') train_dataset = raw_dataset.map(prepare_features, batched=True, batch_size=10000) train_dataset.set_format("torch",columns=["image","label"]) ``` After this, I check the type of the following: ```python print(type(train_dataset["train"]["label"])) print(type(train_dataset["train"]["image"][0])) ``` This leads to the following output: ```python <class 'torch.Tensor'> <class 'list'> ``` I use `torch.utils.DataLoader` for batches, the type of `batch["train"]["image"]` is also `<class 'list'>`. I don't understand why only the `label` is converted to a torch tensor, why does the image not get converted? How can I fix this issue? Thanks, Gunjan EDIT: I just checked the shapes, and the types, `batch[image]` is a actually a list of list of tensors. Shape is (1,28,2,28), where `batch_size` is 2. I don't understand why this is happening. Ideally it should be a tensor of shape (2,1,28,28). EDIT 2: Inside `prepare_train_features`, the shape of `images[0]` is `torch.Size([1,28,28])`, the conversion is working. However, the output of the `map` is a list of list of list of list. Hi @lhoestq # Using Array3D I tried this: ```python features = datasets.Features({ "image": datasets.Array3D(shape=(1,28,28),dtype="float32"), "label": datasets.features.ClassLabel(names=["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"]), }) train_dataset = raw_dataset.map(prepare_features, features = features,batched=True, batch_size=10000) ``` and it didn't fix the issue. During the `prepare_train_features: ``` Image: <class 'list'> 10000 <class 'torch.Tensor'> 1 <class 'torch.Tensor'> 28 <class 'torch.Tensor'> 28 <class 'torch.Tensor'> Label: <class 'list'> 10000 <class 'torch.Tensor'> ``` After the `map`: ``` Image: <class 'list'> 60000 <class 'list'> 1 <class 'list'> 28 <class 'list'> 28 <class 'float'> Label: <class 'list'> 60000 <class 'int'> ``` From the DataLoader batch: ``` Image: <class 'list'> 1 <class 'list'> 28 <class 'list'> 28 <class 'torch.Tensor'> 2 <class 'torch.Tensor'> Label: <class 'torch.Tensor'> 2 <class 'torch.Tensor'> ``` It is the same as before. --- Using `datasets.Sequence(datasets.Array2D(shape=(28,28),dtype="float32"))` gave an error during `map`: ```python ArrowNotImplementedError Traceback (most recent call last) <ipython-input-95-d28e69289084> in <module>() 3 "label": datasets.features.ClassLabel(names=["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"]), 4 }) ----> 5 train_dataset = raw_dataset.map(prepare_features, features = features,batched=True, batch_size=10000) 15 frames /usr/local/lib/python3.7/dist-packages/datasets/dataset_dict.py in map(self, function, with_indices, input_columns, batched, batch_size, remove_columns, keep_in_memory, load_from_cache_file, cache_file_names, writer_batch_size, features, disable_nullable, fn_kwargs, num_proc) 446 num_proc=num_proc, 447 ) --> 448 for k, dataset in self.items() 449 } 450 ) /usr/local/lib/python3.7/dist-packages/datasets/dataset_dict.py in <dictcomp>(.0) 446 num_proc=num_proc, 447 ) --> 448 for k, dataset in self.items() 449 } 450 ) /usr/local/lib/python3.7/dist-packages/datasets/arrow_dataset.py in map(self, function, with_indices, input_columns, batched, batch_size, drop_last_batch, remove_columns, keep_in_memory, load_from_cache_file, cache_file_name, writer_batch_size, features, disable_nullable, fn_kwargs, num_proc, suffix_template, new_fingerprint) 1307 fn_kwargs=fn_kwargs, 1308 new_fingerprint=new_fingerprint, -> 1309 update_data=update_data, 1310 ) 1311 else: /usr/local/lib/python3.7/dist-packages/datasets/arrow_dataset.py in wrapper(*args, **kwargs) 202 } 203 # apply actual function --> 204 out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs) 205 datasets: List["Dataset"] = list(out.values()) if isinstance(out, dict) else [out] 206 # re-apply format to the output /usr/local/lib/python3.7/dist-packages/datasets/fingerprint.py in wrapper(*args, **kwargs) 335 # Call actual function 336 --> 337 out = func(self, *args, **kwargs) 338 339 # Update fingerprint of in-place transforms + update in-place history of transforms /usr/local/lib/python3.7/dist-packages/datasets/arrow_dataset.py in _map_single(self, function, with_indices, input_columns, batched, batch_size, drop_last_batch, remove_columns, keep_in_memory, load_from_cache_file, cache_file_name, writer_batch_size, features, disable_nullable, fn_kwargs, new_fingerprint, rank, offset, update_data) 1580 if update_data: 1581 batch = cast_to_python_objects(batch) -> 1582 writer.write_batch(batch) 1583 if update_data: 1584 writer.finalize() # close_stream=bool(buf_writer is None)) # We only close if we are writing in a file /usr/local/lib/python3.7/dist-packages/datasets/arrow_writer.py in write_batch(self, batch_examples, writer_batch_size) 274 typed_sequence = TypedSequence(batch_examples[col], type=col_type, try_type=col_try_type) 275 typed_sequence_examples[col] = typed_sequence --> 276 pa_table = pa.Table.from_pydict(typed_sequence_examples) 277 self.write_table(pa_table, writer_batch_size) 278 /usr/local/lib/python3.7/dist-packages/pyarrow/table.pxi in pyarrow.lib.Table.from_pydict() /usr/local/lib/python3.7/dist-packages/pyarrow/array.pxi in pyarrow.lib.asarray() /usr/local/lib/python3.7/dist-packages/pyarrow/array.pxi in pyarrow.lib.array() /usr/local/lib/python3.7/dist-packages/pyarrow/array.pxi in pyarrow.lib._handle_arrow_array_protocol() /usr/local/lib/python3.7/dist-packages/datasets/arrow_writer.py in __arrow_array__(self, type) 95 out = pa.ExtensionArray.from_storage(type, pa.array(self.data, type.storage_dtype)) 96 else: ---> 97 out = pa.array(self.data, type=type) 98 if trying_type and out[0].as_py() != self.data[0]: 99 raise TypeError( /usr/local/lib/python3.7/dist-packages/pyarrow/array.pxi in pyarrow.lib.array() /usr/local/lib/python3.7/dist-packages/pyarrow/array.pxi in pyarrow.lib._sequence_to_array() /usr/local/lib/python3.7/dist-packages/pyarrow/error.pxi in pyarrow.lib.pyarrow_internal_check_status() /usr/local/lib/python3.7/dist-packages/pyarrow/error.pxi in pyarrow.lib.check_status() ArrowNotImplementedError: extension ```
[ -0.1273752749, -0.3511647582, -0.0179326795, 0.3536091447, 0.4760022461, 0.0887135565, 0.7330291867, 0.3804343939, 0.0655259714, -0.0380423442, -0.1111534908, 0.3819510043, -0.2329692245, -0.3339344263, 0.0351091474, -0.5614944696, 0.2225798666, -0.099827379, -0.2807980776, -0.0613474436, -0.2431336641, 0.0354891196, -0.2184971571, -0.1084964424, -0.5479354262, 0.0440962017, -0.0195558108, -0.0765686631, -0.0622993931, -0.139180094, 0.1223466694, -0.1744963974, 0.4444535673, 0.701292932, -0.0001277011, 0.070302099, 0.3642727733, -0.1737783253, 0.0499993004, -0.1610137224, 0.0400474221, -0.2573827505, 0.0727765039, -0.0946831703, -0.2234942913, -0.1708451807, 0.0959102586, -0.179029569, -0.0281418636, 0.4191685319, 0.0771300644, 0.2790111899, 0.2466611266, 0.138630569, 0.2278114408, 0.5182864666, -0.2734378874, -0.0561170802, 0.2261503488, 0.375477612, 0.1240047365, 0.5647346973, -0.2913346589, -0.0362335965, 0.2669449449, 0.1290051639, -0.1014551669, -0.3140054047, 0.0491569899, 0.0894629434, 0.4219439328, -0.149439171, -0.0807790309, -0.1436639577, -0.1439784318, -0.1273806691, 0.040591117, 0.2803192437, -0.0718411803, -0.1872383356, -0.5392426252, 0.3052918911, -0.1486238092, 0.2131594121, -0.2805242836, -0.0034205057, -0.1381632388, 0.2928087115, -0.0471188091, -0.1127128378, 0.1930810809, -0.1234146208, 0.1300752461, -0.0098258667, -0.1436316818, -0.0534910075, -0.3895993233, -0.3150123656, -0.200148046, -0.1602649093, 0.1664854437, 0.1392757893, -0.1163956225, 0.1280710995, 0.1826329976, 0.2680339515, 0.1057824045, 0.3207024932, -0.0858924091, -0.2895821333, -0.0469191186, 0.0877333283, -0.2962266207, -0.435752511, 0.1545345783, 0.3252967894, 0.2452210635, 0.0687425882, 0.129855454, -0.3239413798, -0.108922407, -0.0095864497, 0.0752250552, 0.2850381434, -0.1186792403, 0.2439045608, 0.4804830849, 0.3972029686, -0.1538182199, 0.0695627034, 0.0250724554, 0.0315209478, -0.4404954314, -0.2856986523, 0.1534098387, -0.1177730858, 0.1000700817, 0.0374315456, 0.0464156494, 0.1006964743, 0.0734964386, -0.1858696342, 0.6246293783, 0.1476476192, -0.1944742501, 0.2767928541, 0.2709068358, 0.5297795534, -0.3042984009, 0.2565314174, -0.509569943, 0.065252617, -0.0230914634, -0.0145438574, 0.2186551392, -0.0207219422, -0.2121626139, 0.0158291012, 0.5923119783, -0.0836779028, 0.2734875977, -0.5791625381, 0.0949642211, -0.1913350224, 0.0341523066, 0.0636691749, -0.2047153413, -0.0523586571, 0.3863436878, 0.0919495672, 0.315458715, 0.160281986, 0.0510831587, 0.0798701569, -0.2253530025, -0.2350504994, 0.3363233209, -0.3768562078, 0.0920384303, -0.017693229, 0.0938788056, -0.0638040304, 0.1120191738, 0.3361781538, 0.0326009206, -0.1280016899, 0.029448567, 0.1963145137, -0.1661820561, 0.1402871013, 0.0773597434, 0.1913032532, 0.1933747828, 0.0350064933, -0.0156835858, 0.2076536417, -0.2216713428, 0.1775762141, -0.0542803816, -0.0747133717, 0.0711773857, 0.0403781608, -0.3698906302, -0.0121968798, -0.0474697948, 0.186466679, -0.233100161, -0.0487212501, 0.0236349925, 0.0822170302, 0.0582789779, 0.0479249656, 0.0049781948, -0.1919565797, -0.1822057962, -0.1390272677, -0.0032420792, 0.0922107399, -0.209476456, -0.261723876, -0.0523434281, -0.1232488528, 0.1783037484, 0.0588376708, -0.3590369523, 0.0510258526, 0.0192735232, -0.3653306961, -0.2013598382, 0.1733923554, 0.2676689327, -0.0996210203, -0.0422347449, 0.1916032434, 0.063288942, 0.1146327555, -0.5482743382, 0.0834661424, 0.1778420508, -0.2469699681, 0.2043912709, 0.2162799537, 0.1485339105, -0.2755033076, -0.1960348189, 0.4387863874, 0.1604105085, 0.3159130216, -0.3300261199, 0.1161018834, -0.0726466402, -0.0394021273, -0.1906338036, -0.0408079922, -0.2772817612, 0.07302396, -0.1318596452, 0.0129822437, -0.4569185078, -0.044936087, 0.2962617576, 0.0887638777, 0.1758720577, -0.0012159873, -0.3998460472, 0.2133124024, 0.1771264523, -0.6013532877, 0.2978383601, -0.0043618418, 0.1892074049, -0.1050186455, 0.0955834612, -0.1625432372, 0.2484445572, 0.1140422225, 0.0907485932, -0.1994646788, 0.1418525875, -0.1079261974, 0.026846543, 0.0263703614, -0.1406289041, -0.2336928397, -0.3589505553, 0.2713828087, -0.1661833078, -0.1345183551, -0.4018547535, -0.26218611, 0.036056079, -0.074004896, -0.0823338926, 0.1507581919, 0.185567975, 0.1904346794, 0.263418138, -0.1818943173, 0.3743163645, -0.4130293727, -0.0353551954, -0.0750101507, -0.2867958844, -0.0991648883, 0.0896559358, -0.5234106779, 0.0914843455, -0.2289902121, -0.0931907073, -0.2501760125, 0.0135479569, 0.1418222338, -0.2678500712, -0.285002619, 0.3085913062, 0.1939284503, -0.1424820423, 0.0406624675, 0.2663514614, 0.0103069693, 0.0469011739, 0.1537837088, -0.0896201432, 0.1165603548, -0.0632983148, -0.1767407507, -0.0966183916, -0.0750616789, -0.0704163462, -0.0217595622, 0.0633769184, 0.3462583721, 0.3721840084, -0.0898905694, -0.0520421155, 0.0356089771, 0.0629647374, -0.397687614, 0.5225033164, -0.2261543274, -0.3608259261, 0.1192015857, 0.0238558576, 0.0651470274, 0.4862688482, 0.0605229586, 0.0497315228, 0.0117820259, -0.0789447725, 0.2525925934, 0.2211974561, 0.351020366, -0.0911251158, 0.0191657022, -0.1647070348, 0.015416719, -0.1018712372, -0.0632553771, 0.6088865399, 0.1850844324, 0.2399426997, 0.0992583334, 0.6996647716, -0.0611373074, -0.7380949259, 0.2168065608, -0.2425097823, 0.1921669692, -0.1181219816, -0.3539581597, 0.3988560438, -0.2094198465, 0.0643739402, -0.0859674141, -0.0249071717, -0.2391578257, -0.0902241915, 0.3573612273, -0.3172068, -0.1585737765, 0.4044301808, -0.1447022259, 0.276373148, -0.2313425094, 0.3245897889, -0.2609260082, -0.2137926072, 0.0600569621, 0.448772192, 0.1385136694, 0.0417248085, -0.3342841268, -0.2166968882, -0.1432268322, 0.3568274975, 0.119577229, 0.5672699213, -0.0980360731, -0.0744650736, 0.1015564278, 0.2413696051, 0.8307591677, 0.0455574095, -0.0904588774, 0.1514427066, -0.3478347063, -0.4549782574, -0.1022294387, -0.0514177941, 0.0906814858, 0.1716902852, 0.1203863025, -0.0910535455, -0.1833340377, -0.0058327634, 0.1955549121, -0.0551248007, 0.0347187556, -0.2269115746, 0.0587577075, -0.1296497881, -0.1552831382, 0.221182704, 0.0296753757, 0.0051618069, -0.3081279993, -0.3262302577, -0.1266998053, 0.1824818701, -0.1330119818, 0.411067158, 0.0992509723, -0.1780857891, 0.0769068673, 0.5561056137, 0.4184040427, -0.0389391743, -0.1187736243, 0.0806436464, 0.2931112051, 0.1064323708, 0.3002043366, 0.3208229244, -0.0618731268, -0.4396640956, -0.2268485874, -0.1938149631, -0.3305327892, 0.3972930908, 0.4080630243, 0.0989351422, -0.495355159, -0.4921703637, 0.3861902356, 0.2937195897, 0.1958302855, 0.2045914829, -0.5417589545, -0.4009674489, 0.0781785846, 0.4662418067, 0.8556221128, -0.0370787904, 0.3702828288, 0.0315654092, 0.0108071491, 0.1721021086, -0.001888819, 0.4117947817, -0.3542811275, 0.1392897964, -0.1648540199, -0.3125497699, 0.2525229454, -0.0602031313, -0.243969813, 0.0425363332, -0.3494715691, 0.1936194897, -0.1256935298, -0.0828533769, -0.0498264171, -0.4714176059, 0.1878737062, 0.015452154, -0.0825134218, 0.261738956, 0.1111609936, -0.1636207998, -0.37986058, 0.0616961569, -0.0762220845, -0.0150117278, -0.2459689379, -0.1632431597, -0.0243097618, -0.7298656702, 0.0586797595, 0.4961580634, 0.3345547616, -0.1605665386, -0.0478365757, 0.1396414042, 0.4438467324, 0.1629003286, -0.0990171283, -0.34018448, 0.285340488, 0.0973755419, 0.1843323559, 0.1086379066, 0.068148613, 0.2105205506, -0.5777891278, 0.0372511372, 0.3060286641, -0.3449504972, -0.3229842186, -0.1984501183, 0.0491852015, 0.0381636098, 0.0286185816, 0.1244890988, -0.038903255, 0.2072433978, -0.0415122993, -0.2264614105, 0.1328899413, 0.4523314238, 0.112983793, -0.3500463367, 0.3907566667, 0.3549588025, -0.044777751, -0.0437440015, 0.4166939259, 0.6353191733, -0.3456967175, 0.0994978324, -0.1027165204, -0.156986773, -0.0110737607, 0.5430940986, -0.2343174517, -0.1309779137, -0.2389574945, -0.0408176184, -0.4308937192, 0.0108133871, -0.316298455, 0.456630528, -0.0432225578, 0.3627103567, 0.2105056196, -0.1873493195, -0.1441360414, -0.2586486936, 0.1723506898, 0.3679332435, -0.2471823692, 0.2187609822, -0.1269585788, -0.122023046, -0.0362524018, 0.0260316655, -0.2497397512, -0.0333907977, -0.057677757, 0.1773061454, 0.0666143, -0.1135400012, -0.0735470206, -0.1736695617, -0.1385808587, -0.2681719363, -0.0377181172, 0.1109212637, -0.1159996986, 0.3531611562, -0.1783661991, 0.2312256545, 0.3186765909, -0.2700001597, -0.102622807, 0.0358715132, 0.2229628265, 0.0600506924, 0.0045315176, -0.0615565926, -0.2772367299, 0.1125917435, 0.1652030349, 0.2549746037, 0.2046176791, -0.0999964252, 0.1091780886, -0.0438068472, 0.2041843683, 0.1012552902, -0.1718704849, -0.0508286878, 0.0603731833, -0.0076233326, 0.1006218046, 0.1449988782, 0.0388690494, 0.1252815723, -0.0834641829, 0.2755779922, 0.066558972, 0.3113947511, -0.3705074787, 0.0451426804, 0.4178561866, -0.2410735786, 0.235085845, 0.4640145898, 0.0147998184, 0.1930493563, 0.2907045782, 0.1093435287, -0.1187016368, 0.3226964474, 0.3945166469, 0.8204311728, 0.5895957351, 0.0837696195, 0.2746028602, 0.0992571414, -0.1536075324, -0.2072514147, 0.2358238697, 0.3919682801, 0.018866688, 0.1856933236, -0.2407992482, -0.4871239364, 0.2258820236, 0.1217748523, -0.1946175396, -0.0822236091, -0.6648058295, 0.0118749738, 0.1358260363, -0.1866593063, -0.1797154844, -0.0501378737, 0.2205907255, 0.2597537935, -0.1032206565, -0.160912469, -0.1724744886, 0.0691012144, 0.0375293978, -0.0073297396, 0.1697572917, -0.1368461996, 0.1617608517, 0.2448242605, 0.1969081163, 0.2849534154, 0.4870798886, -0.1681717038, -0.1598938107, -0.0105535462, -0.1923658848, 0.0899017379, 0.0667121336, 0.0315336436, -0.1532075405, -0.0149565935, 0.0084626377, 0.0386277772, 0.0314603262, -0.0940810889, -0.2182594985, 0.1676249057, 0.3055746257, -0.3637771308, -0.1490927637, -0.0998983979, -0.2466560304, -0.3483099937, -0.2655349076, 0.532738626, 0.0278958529, 0.1280096769, 0.1421678513, -0.042159453, 0.0487859957, 0.1574120373, -0.1215567589, 0.0775769204, -0.1540937573, 0.1359659135, -0.0858048499, 0.0319102407, 0.118474707, -0.3834477663, -0.018849548, -0.0391643457, 0.2425418645, 0.0646753684, 0.2020900548, -0.0983474255, 0.4987448454, 0.6146565676, -0.1336154044, -0.1414808482, -0.1304193288, 0.3706512451, 0.0733085424, -0.0774657428, 0.0219212137, 0.1024274975, 0.0065070391, -0.3420651555, -0.255490303, -0.0199822746, 0.3041451573, 0.3512825668, 0.0932887495, 0.3203128576, -0.0192206055, 0.0484099612, -0.2411338985, 0.0504153408, -0.1276014149, 0.0096702836, -0.0228029191, 0.5810168982, -0.2244022489, -0.0593422018, -0.4136503935, 0.4290261567, 0.0905311108, -0.3388547599, -0.080519408, 0.358399868, -0.3173205256, -0.2010881901, 0.2261951864, 0.4100222588, 0.1513600647, 0.1943573505, -0.5254406333, -0.4069115222, 0.4472020864, -0.4417077601, -0.5069127083, 0.029074762, -0.3133940697, 0.0679037571, 0.4964233935, -0.471049726, -0.1491340101, 0.0015053898, -0.0808276385, -0.091604352, -0.0981936082, 0.2610402107, 0.0151107982, -0.2518461943, 0.1790074408, 0.1764502972, -0.0228160247, -0.4204157591, -0.2753599882 ]
https://github.com/huggingface/datasets/issues/2005
Setting to torch format not working with torchvision and MNIST
# Convert raw tensors to torch format Strangely, converting to torch tensors works perfectly on `raw_dataset`: ```python raw_dataset.set_format('torch',columns=['image','label']) ``` Types: ``` Image: <class 'torch.Tensor'> 60000 <class 'torch.Tensor'> 28 <class 'torch.Tensor'> 28 <class 'torch.Tensor'> Label: <class 'torch.Tensor'> 60000 <class 'torch.Tensor'> ``` Using this for transforms: ```python def prepare_features(examples): images = [] labels = [] for example_idx, example in enumerate(examples["image"]): if transform is not None: images.append(transform( examples["image"][example_idx].numpy() )) else: images.append(examples["image"][example_idx].numpy()) labels.append(examples["label"][example_idx]) output = {"label":labels, "image":images} return output ``` Inside `prepare_train_features`: ``` Image: <class 'list'> 10000 <class 'torch.Tensor'> 1 <class 'torch.Tensor'> 28 <class 'torch.Tensor'> 28 <class 'torch.Tensor'> Label: <class 'list'> 10000 <class 'torch.Tensor'> ``` After `map`: ``` Image: <class 'list'> 60000 <class 'list'> 1 <class 'list'> 28 <class 'torch.Tensor'> 28 <class 'torch.Tensor'> Label: <class 'torch.Tensor'> 60000 <class 'torch.Tensor'> ``` DataLoader batch: ``` Image: <class 'list'> 1 <class 'list'> 28 <class 'torch.Tensor'> 2 <class 'torch.Tensor'> 28 <class 'torch.Tensor'> Label: <class 'torch.Tensor'> 2 <class 'torch.Tensor'> ``` --- ## Using `torch` format: ``` Image: <class 'list'> 60000 <class 'list'> 1 <class 'list'> 28 <class 'torch.Tensor'> 28 <class 'torch.Tensor'> Label: <class 'torch.Tensor'> 60000 <class 'torch.Tensor'> ``` DataLoader batches: ``` Image: <class 'list'> 1 <class 'list'> 28 <class 'torch.Tensor'> 2 <class 'torch.Tensor'> 28 <class 'torch.Tensor'> Label: <class 'torch.Tensor'> 2 <class 'torch.Tensor'> ``` --- ## Using the features - `Array3D`: ``` Image: <class 'list'> 10000 <class 'torch.Tensor'> 1 <class 'torch.Tensor'> 28 <class 'torch.Tensor'> 28 <class 'torch.Tensor'> Label: <class 'list'> 10000 <class 'torch.Tensor'> ``` After `map`: ``` Image: <class 'torch.Tensor'> 60000 <class 'torch.Tensor'> 1 <class 'torch.Tensor'> 28 <class 'torch.Tensor'> 28 <class 'torch.Tensor'> Label: <class 'torch.Tensor'> 60000 <class 'torch.Tensor'> ``` After DataLoader `batch`: ``` Image: <class 'torch.Tensor'> 2 <class 'torch.Tensor'> 1 <class 'torch.Tensor'> 28 <class 'torch.Tensor'> 28 <class 'torch.Tensor'> Label: <class 'torch.Tensor'> 2 <class 'torch.Tensor'> ``` The last one works perfectly. ![image](https://user-images.githubusercontent.com/29076344/110491452-4cf09c00-8117-11eb-8a47-73bf3fc0c3dc.png) I wonder why this worked, and others didn't.
Hi I am trying to use `torchvision.transforms` to handle the transformation of the image data in the `mnist` dataset. Assume I have a `transform` variable which contains the `torchvision.transforms` object. A snippet of what I am trying to do: ```python def prepare_features(examples): images = [] labels = [] for example_idx, example in enumerate(examples["image"]): if transform is not None: images.append(transform( np.array(examples["image"][example_idx], dtype=np.uint8) )) else: images.append(torch.tensor(np.array(examples["image"][example_idx], dtype=np.uint8))) labels.append(torch.tensor(examples["label"][example_idx])) output = {"label":labels, "image":images} return output raw_dataset = load_dataset('mnist') train_dataset = raw_dataset.map(prepare_features, batched=True, batch_size=10000) train_dataset.set_format("torch",columns=["image","label"]) ``` After this, I check the type of the following: ```python print(type(train_dataset["train"]["label"])) print(type(train_dataset["train"]["image"][0])) ``` This leads to the following output: ```python <class 'torch.Tensor'> <class 'list'> ``` I use `torch.utils.DataLoader` for batches, the type of `batch["train"]["image"]` is also `<class 'list'>`. I don't understand why only the `label` is converted to a torch tensor, why does the image not get converted? How can I fix this issue? Thanks, Gunjan EDIT: I just checked the shapes, and the types, `batch[image]` is a actually a list of list of tensors. Shape is (1,28,2,28), where `batch_size` is 2. I don't understand why this is happening. Ideally it should be a tensor of shape (2,1,28,28). EDIT 2: Inside `prepare_train_features`, the shape of `images[0]` is `torch.Size([1,28,28])`, the conversion is working. However, the output of the `map` is a list of list of list of list.
299
Setting to torch format not working with torchvision and MNIST Hi I am trying to use `torchvision.transforms` to handle the transformation of the image data in the `mnist` dataset. Assume I have a `transform` variable which contains the `torchvision.transforms` object. A snippet of what I am trying to do: ```python def prepare_features(examples): images = [] labels = [] for example_idx, example in enumerate(examples["image"]): if transform is not None: images.append(transform( np.array(examples["image"][example_idx], dtype=np.uint8) )) else: images.append(torch.tensor(np.array(examples["image"][example_idx], dtype=np.uint8))) labels.append(torch.tensor(examples["label"][example_idx])) output = {"label":labels, "image":images} return output raw_dataset = load_dataset('mnist') train_dataset = raw_dataset.map(prepare_features, batched=True, batch_size=10000) train_dataset.set_format("torch",columns=["image","label"]) ``` After this, I check the type of the following: ```python print(type(train_dataset["train"]["label"])) print(type(train_dataset["train"]["image"][0])) ``` This leads to the following output: ```python <class 'torch.Tensor'> <class 'list'> ``` I use `torch.utils.DataLoader` for batches, the type of `batch["train"]["image"]` is also `<class 'list'>`. I don't understand why only the `label` is converted to a torch tensor, why does the image not get converted? How can I fix this issue? Thanks, Gunjan EDIT: I just checked the shapes, and the types, `batch[image]` is a actually a list of list of tensors. Shape is (1,28,2,28), where `batch_size` is 2. I don't understand why this is happening. Ideally it should be a tensor of shape (2,1,28,28). EDIT 2: Inside `prepare_train_features`, the shape of `images[0]` is `torch.Size([1,28,28])`, the conversion is working. However, the output of the `map` is a list of list of list of list. # Convert raw tensors to torch format Strangely, converting to torch tensors works perfectly on `raw_dataset`: ```python raw_dataset.set_format('torch',columns=['image','label']) ``` Types: ``` Image: <class 'torch.Tensor'> 60000 <class 'torch.Tensor'> 28 <class 'torch.Tensor'> 28 <class 'torch.Tensor'> Label: <class 'torch.Tensor'> 60000 <class 'torch.Tensor'> ``` Using this for transforms: ```python def prepare_features(examples): images = [] labels = [] for example_idx, example in enumerate(examples["image"]): if transform is not None: images.append(transform( examples["image"][example_idx].numpy() )) else: images.append(examples["image"][example_idx].numpy()) labels.append(examples["label"][example_idx]) output = {"label":labels, "image":images} return output ``` Inside `prepare_train_features`: ``` Image: <class 'list'> 10000 <class 'torch.Tensor'> 1 <class 'torch.Tensor'> 28 <class 'torch.Tensor'> 28 <class 'torch.Tensor'> Label: <class 'list'> 10000 <class 'torch.Tensor'> ``` After `map`: ``` Image: <class 'list'> 60000 <class 'list'> 1 <class 'list'> 28 <class 'torch.Tensor'> 28 <class 'torch.Tensor'> Label: <class 'torch.Tensor'> 60000 <class 'torch.Tensor'> ``` DataLoader batch: ``` Image: <class 'list'> 1 <class 'list'> 28 <class 'torch.Tensor'> 2 <class 'torch.Tensor'> 28 <class 'torch.Tensor'> Label: <class 'torch.Tensor'> 2 <class 'torch.Tensor'> ``` --- ## Using `torch` format: ``` Image: <class 'list'> 60000 <class 'list'> 1 <class 'list'> 28 <class 'torch.Tensor'> 28 <class 'torch.Tensor'> Label: <class 'torch.Tensor'> 60000 <class 'torch.Tensor'> ``` DataLoader batches: ``` Image: <class 'list'> 1 <class 'list'> 28 <class 'torch.Tensor'> 2 <class 'torch.Tensor'> 28 <class 'torch.Tensor'> Label: <class 'torch.Tensor'> 2 <class 'torch.Tensor'> ``` --- ## Using the features - `Array3D`: ``` Image: <class 'list'> 10000 <class 'torch.Tensor'> 1 <class 'torch.Tensor'> 28 <class 'torch.Tensor'> 28 <class 'torch.Tensor'> Label: <class 'list'> 10000 <class 'torch.Tensor'> ``` After `map`: ``` Image: <class 'torch.Tensor'> 60000 <class 'torch.Tensor'> 1 <class 'torch.Tensor'> 28 <class 'torch.Tensor'> 28 <class 'torch.Tensor'> Label: <class 'torch.Tensor'> 60000 <class 'torch.Tensor'> ``` After DataLoader `batch`: ``` Image: <class 'torch.Tensor'> 2 <class 'torch.Tensor'> 1 <class 'torch.Tensor'> 28 <class 'torch.Tensor'> 28 <class 'torch.Tensor'> Label: <class 'torch.Tensor'> 2 <class 'torch.Tensor'> ``` The last one works perfectly. ![image](https://user-images.githubusercontent.com/29076344/110491452-4cf09c00-8117-11eb-8a47-73bf3fc0c3dc.png) I wonder why this worked, and others didn't.
[ -0.1273752749, -0.3511647582, -0.0179326795, 0.3536091447, 0.4760022461, 0.0887135565, 0.7330291867, 0.3804343939, 0.0655259714, -0.0380423442, -0.1111534908, 0.3819510043, -0.2329692245, -0.3339344263, 0.0351091474, -0.5614944696, 0.2225798666, -0.099827379, -0.2807980776, -0.0613474436, -0.2431336641, 0.0354891196, -0.2184971571, -0.1084964424, -0.5479354262, 0.0440962017, -0.0195558108, -0.0765686631, -0.0622993931, -0.139180094, 0.1223466694, -0.1744963974, 0.4444535673, 0.701292932, -0.0001277011, 0.070302099, 0.3642727733, -0.1737783253, 0.0499993004, -0.1610137224, 0.0400474221, -0.2573827505, 0.0727765039, -0.0946831703, -0.2234942913, -0.1708451807, 0.0959102586, -0.179029569, -0.0281418636, 0.4191685319, 0.0771300644, 0.2790111899, 0.2466611266, 0.138630569, 0.2278114408, 0.5182864666, -0.2734378874, -0.0561170802, 0.2261503488, 0.375477612, 0.1240047365, 0.5647346973, -0.2913346589, -0.0362335965, 0.2669449449, 0.1290051639, -0.1014551669, -0.3140054047, 0.0491569899, 0.0894629434, 0.4219439328, -0.149439171, -0.0807790309, -0.1436639577, -0.1439784318, -0.1273806691, 0.040591117, 0.2803192437, -0.0718411803, -0.1872383356, -0.5392426252, 0.3052918911, -0.1486238092, 0.2131594121, -0.2805242836, -0.0034205057, -0.1381632388, 0.2928087115, -0.0471188091, -0.1127128378, 0.1930810809, -0.1234146208, 0.1300752461, -0.0098258667, -0.1436316818, -0.0534910075, -0.3895993233, -0.3150123656, -0.200148046, -0.1602649093, 0.1664854437, 0.1392757893, -0.1163956225, 0.1280710995, 0.1826329976, 0.2680339515, 0.1057824045, 0.3207024932, -0.0858924091, -0.2895821333, -0.0469191186, 0.0877333283, -0.2962266207, -0.435752511, 0.1545345783, 0.3252967894, 0.2452210635, 0.0687425882, 0.129855454, -0.3239413798, -0.108922407, -0.0095864497, 0.0752250552, 0.2850381434, -0.1186792403, 0.2439045608, 0.4804830849, 0.3972029686, -0.1538182199, 0.0695627034, 0.0250724554, 0.0315209478, -0.4404954314, -0.2856986523, 0.1534098387, -0.1177730858, 0.1000700817, 0.0374315456, 0.0464156494, 0.1006964743, 0.0734964386, -0.1858696342, 0.6246293783, 0.1476476192, -0.1944742501, 0.2767928541, 0.2709068358, 0.5297795534, -0.3042984009, 0.2565314174, -0.509569943, 0.065252617, -0.0230914634, -0.0145438574, 0.2186551392, -0.0207219422, -0.2121626139, 0.0158291012, 0.5923119783, -0.0836779028, 0.2734875977, -0.5791625381, 0.0949642211, -0.1913350224, 0.0341523066, 0.0636691749, -0.2047153413, -0.0523586571, 0.3863436878, 0.0919495672, 0.315458715, 0.160281986, 0.0510831587, 0.0798701569, -0.2253530025, -0.2350504994, 0.3363233209, -0.3768562078, 0.0920384303, -0.017693229, 0.0938788056, -0.0638040304, 0.1120191738, 0.3361781538, 0.0326009206, -0.1280016899, 0.029448567, 0.1963145137, -0.1661820561, 0.1402871013, 0.0773597434, 0.1913032532, 0.1933747828, 0.0350064933, -0.0156835858, 0.2076536417, -0.2216713428, 0.1775762141, -0.0542803816, -0.0747133717, 0.0711773857, 0.0403781608, -0.3698906302, -0.0121968798, -0.0474697948, 0.186466679, -0.233100161, -0.0487212501, 0.0236349925, 0.0822170302, 0.0582789779, 0.0479249656, 0.0049781948, -0.1919565797, -0.1822057962, -0.1390272677, -0.0032420792, 0.0922107399, -0.209476456, -0.261723876, -0.0523434281, -0.1232488528, 0.1783037484, 0.0588376708, -0.3590369523, 0.0510258526, 0.0192735232, -0.3653306961, -0.2013598382, 0.1733923554, 0.2676689327, -0.0996210203, -0.0422347449, 0.1916032434, 0.063288942, 0.1146327555, -0.5482743382, 0.0834661424, 0.1778420508, -0.2469699681, 0.2043912709, 0.2162799537, 0.1485339105, -0.2755033076, -0.1960348189, 0.4387863874, 0.1604105085, 0.3159130216, -0.3300261199, 0.1161018834, -0.0726466402, -0.0394021273, -0.1906338036, -0.0408079922, -0.2772817612, 0.07302396, -0.1318596452, 0.0129822437, -0.4569185078, -0.044936087, 0.2962617576, 0.0887638777, 0.1758720577, -0.0012159873, -0.3998460472, 0.2133124024, 0.1771264523, -0.6013532877, 0.2978383601, -0.0043618418, 0.1892074049, -0.1050186455, 0.0955834612, -0.1625432372, 0.2484445572, 0.1140422225, 0.0907485932, -0.1994646788, 0.1418525875, -0.1079261974, 0.026846543, 0.0263703614, -0.1406289041, -0.2336928397, -0.3589505553, 0.2713828087, -0.1661833078, -0.1345183551, -0.4018547535, -0.26218611, 0.036056079, -0.074004896, -0.0823338926, 0.1507581919, 0.185567975, 0.1904346794, 0.263418138, -0.1818943173, 0.3743163645, -0.4130293727, -0.0353551954, -0.0750101507, -0.2867958844, -0.0991648883, 0.0896559358, -0.5234106779, 0.0914843455, -0.2289902121, -0.0931907073, -0.2501760125, 0.0135479569, 0.1418222338, -0.2678500712, -0.285002619, 0.3085913062, 0.1939284503, -0.1424820423, 0.0406624675, 0.2663514614, 0.0103069693, 0.0469011739, 0.1537837088, -0.0896201432, 0.1165603548, -0.0632983148, -0.1767407507, -0.0966183916, -0.0750616789, -0.0704163462, -0.0217595622, 0.0633769184, 0.3462583721, 0.3721840084, -0.0898905694, -0.0520421155, 0.0356089771, 0.0629647374, -0.397687614, 0.5225033164, -0.2261543274, -0.3608259261, 0.1192015857, 0.0238558576, 0.0651470274, 0.4862688482, 0.0605229586, 0.0497315228, 0.0117820259, -0.0789447725, 0.2525925934, 0.2211974561, 0.351020366, -0.0911251158, 0.0191657022, -0.1647070348, 0.015416719, -0.1018712372, -0.0632553771, 0.6088865399, 0.1850844324, 0.2399426997, 0.0992583334, 0.6996647716, -0.0611373074, -0.7380949259, 0.2168065608, -0.2425097823, 0.1921669692, -0.1181219816, -0.3539581597, 0.3988560438, -0.2094198465, 0.0643739402, -0.0859674141, -0.0249071717, -0.2391578257, -0.0902241915, 0.3573612273, -0.3172068, -0.1585737765, 0.4044301808, -0.1447022259, 0.276373148, -0.2313425094, 0.3245897889, -0.2609260082, -0.2137926072, 0.0600569621, 0.448772192, 0.1385136694, 0.0417248085, -0.3342841268, -0.2166968882, -0.1432268322, 0.3568274975, 0.119577229, 0.5672699213, -0.0980360731, -0.0744650736, 0.1015564278, 0.2413696051, 0.8307591677, 0.0455574095, -0.0904588774, 0.1514427066, -0.3478347063, -0.4549782574, -0.1022294387, -0.0514177941, 0.0906814858, 0.1716902852, 0.1203863025, -0.0910535455, -0.1833340377, -0.0058327634, 0.1955549121, -0.0551248007, 0.0347187556, -0.2269115746, 0.0587577075, -0.1296497881, -0.1552831382, 0.221182704, 0.0296753757, 0.0051618069, -0.3081279993, -0.3262302577, -0.1266998053, 0.1824818701, -0.1330119818, 0.411067158, 0.0992509723, -0.1780857891, 0.0769068673, 0.5561056137, 0.4184040427, -0.0389391743, -0.1187736243, 0.0806436464, 0.2931112051, 0.1064323708, 0.3002043366, 0.3208229244, -0.0618731268, -0.4396640956, -0.2268485874, -0.1938149631, -0.3305327892, 0.3972930908, 0.4080630243, 0.0989351422, -0.495355159, -0.4921703637, 0.3861902356, 0.2937195897, 0.1958302855, 0.2045914829, -0.5417589545, -0.4009674489, 0.0781785846, 0.4662418067, 0.8556221128, -0.0370787904, 0.3702828288, 0.0315654092, 0.0108071491, 0.1721021086, -0.001888819, 0.4117947817, -0.3542811275, 0.1392897964, -0.1648540199, -0.3125497699, 0.2525229454, -0.0602031313, -0.243969813, 0.0425363332, -0.3494715691, 0.1936194897, -0.1256935298, -0.0828533769, -0.0498264171, -0.4714176059, 0.1878737062, 0.015452154, -0.0825134218, 0.261738956, 0.1111609936, -0.1636207998, -0.37986058, 0.0616961569, -0.0762220845, -0.0150117278, -0.2459689379, -0.1632431597, -0.0243097618, -0.7298656702, 0.0586797595, 0.4961580634, 0.3345547616, -0.1605665386, -0.0478365757, 0.1396414042, 0.4438467324, 0.1629003286, -0.0990171283, -0.34018448, 0.285340488, 0.0973755419, 0.1843323559, 0.1086379066, 0.068148613, 0.2105205506, -0.5777891278, 0.0372511372, 0.3060286641, -0.3449504972, -0.3229842186, -0.1984501183, 0.0491852015, 0.0381636098, 0.0286185816, 0.1244890988, -0.038903255, 0.2072433978, -0.0415122993, -0.2264614105, 0.1328899413, 0.4523314238, 0.112983793, -0.3500463367, 0.3907566667, 0.3549588025, -0.044777751, -0.0437440015, 0.4166939259, 0.6353191733, -0.3456967175, 0.0994978324, -0.1027165204, -0.156986773, -0.0110737607, 0.5430940986, -0.2343174517, -0.1309779137, -0.2389574945, -0.0408176184, -0.4308937192, 0.0108133871, -0.316298455, 0.456630528, -0.0432225578, 0.3627103567, 0.2105056196, -0.1873493195, -0.1441360414, -0.2586486936, 0.1723506898, 0.3679332435, -0.2471823692, 0.2187609822, -0.1269585788, -0.122023046, -0.0362524018, 0.0260316655, -0.2497397512, -0.0333907977, -0.057677757, 0.1773061454, 0.0666143, -0.1135400012, -0.0735470206, -0.1736695617, -0.1385808587, -0.2681719363, -0.0377181172, 0.1109212637, -0.1159996986, 0.3531611562, -0.1783661991, 0.2312256545, 0.3186765909, -0.2700001597, -0.102622807, 0.0358715132, 0.2229628265, 0.0600506924, 0.0045315176, -0.0615565926, -0.2772367299, 0.1125917435, 0.1652030349, 0.2549746037, 0.2046176791, -0.0999964252, 0.1091780886, -0.0438068472, 0.2041843683, 0.1012552902, -0.1718704849, -0.0508286878, 0.0603731833, -0.0076233326, 0.1006218046, 0.1449988782, 0.0388690494, 0.1252815723, -0.0834641829, 0.2755779922, 0.066558972, 0.3113947511, -0.3705074787, 0.0451426804, 0.4178561866, -0.2410735786, 0.235085845, 0.4640145898, 0.0147998184, 0.1930493563, 0.2907045782, 0.1093435287, -0.1187016368, 0.3226964474, 0.3945166469, 0.8204311728, 0.5895957351, 0.0837696195, 0.2746028602, 0.0992571414, -0.1536075324, -0.2072514147, 0.2358238697, 0.3919682801, 0.018866688, 0.1856933236, -0.2407992482, -0.4871239364, 0.2258820236, 0.1217748523, -0.1946175396, -0.0822236091, -0.6648058295, 0.0118749738, 0.1358260363, -0.1866593063, -0.1797154844, -0.0501378737, 0.2205907255, 0.2597537935, -0.1032206565, -0.160912469, -0.1724744886, 0.0691012144, 0.0375293978, -0.0073297396, 0.1697572917, -0.1368461996, 0.1617608517, 0.2448242605, 0.1969081163, 0.2849534154, 0.4870798886, -0.1681717038, -0.1598938107, -0.0105535462, -0.1923658848, 0.0899017379, 0.0667121336, 0.0315336436, -0.1532075405, -0.0149565935, 0.0084626377, 0.0386277772, 0.0314603262, -0.0940810889, -0.2182594985, 0.1676249057, 0.3055746257, -0.3637771308, -0.1490927637, -0.0998983979, -0.2466560304, -0.3483099937, -0.2655349076, 0.532738626, 0.0278958529, 0.1280096769, 0.1421678513, -0.042159453, 0.0487859957, 0.1574120373, -0.1215567589, 0.0775769204, -0.1540937573, 0.1359659135, -0.0858048499, 0.0319102407, 0.118474707, -0.3834477663, -0.018849548, -0.0391643457, 0.2425418645, 0.0646753684, 0.2020900548, -0.0983474255, 0.4987448454, 0.6146565676, -0.1336154044, -0.1414808482, -0.1304193288, 0.3706512451, 0.0733085424, -0.0774657428, 0.0219212137, 0.1024274975, 0.0065070391, -0.3420651555, -0.255490303, -0.0199822746, 0.3041451573, 0.3512825668, 0.0932887495, 0.3203128576, -0.0192206055, 0.0484099612, -0.2411338985, 0.0504153408, -0.1276014149, 0.0096702836, -0.0228029191, 0.5810168982, -0.2244022489, -0.0593422018, -0.4136503935, 0.4290261567, 0.0905311108, -0.3388547599, -0.080519408, 0.358399868, -0.3173205256, -0.2010881901, 0.2261951864, 0.4100222588, 0.1513600647, 0.1943573505, -0.5254406333, -0.4069115222, 0.4472020864, -0.4417077601, -0.5069127083, 0.029074762, -0.3133940697, 0.0679037571, 0.4964233935, -0.471049726, -0.1491340101, 0.0015053898, -0.0808276385, -0.091604352, -0.0981936082, 0.2610402107, 0.0151107982, -0.2518461943, 0.1790074408, 0.1764502972, -0.0228160247, -0.4204157591, -0.2753599882 ]
https://github.com/huggingface/datasets/issues/2005
Setting to torch format not working with torchvision and MNIST
Concluding, the way it works right now is: 1. Converting raw dataset to `torch` format. 2. Use the transform and apply using `map`, ensure the returned values are tensors. 3. When mapping, use `features` with `image` being `Array3D` type.
Hi I am trying to use `torchvision.transforms` to handle the transformation of the image data in the `mnist` dataset. Assume I have a `transform` variable which contains the `torchvision.transforms` object. A snippet of what I am trying to do: ```python def prepare_features(examples): images = [] labels = [] for example_idx, example in enumerate(examples["image"]): if transform is not None: images.append(transform( np.array(examples["image"][example_idx], dtype=np.uint8) )) else: images.append(torch.tensor(np.array(examples["image"][example_idx], dtype=np.uint8))) labels.append(torch.tensor(examples["label"][example_idx])) output = {"label":labels, "image":images} return output raw_dataset = load_dataset('mnist') train_dataset = raw_dataset.map(prepare_features, batched=True, batch_size=10000) train_dataset.set_format("torch",columns=["image","label"]) ``` After this, I check the type of the following: ```python print(type(train_dataset["train"]["label"])) print(type(train_dataset["train"]["image"][0])) ``` This leads to the following output: ```python <class 'torch.Tensor'> <class 'list'> ``` I use `torch.utils.DataLoader` for batches, the type of `batch["train"]["image"]` is also `<class 'list'>`. I don't understand why only the `label` is converted to a torch tensor, why does the image not get converted? How can I fix this issue? Thanks, Gunjan EDIT: I just checked the shapes, and the types, `batch[image]` is a actually a list of list of tensors. Shape is (1,28,2,28), where `batch_size` is 2. I don't understand why this is happening. Ideally it should be a tensor of shape (2,1,28,28). EDIT 2: Inside `prepare_train_features`, the shape of `images[0]` is `torch.Size([1,28,28])`, the conversion is working. However, the output of the `map` is a list of list of list of list.
39
Setting to torch format not working with torchvision and MNIST Hi I am trying to use `torchvision.transforms` to handle the transformation of the image data in the `mnist` dataset. Assume I have a `transform` variable which contains the `torchvision.transforms` object. A snippet of what I am trying to do: ```python def prepare_features(examples): images = [] labels = [] for example_idx, example in enumerate(examples["image"]): if transform is not None: images.append(transform( np.array(examples["image"][example_idx], dtype=np.uint8) )) else: images.append(torch.tensor(np.array(examples["image"][example_idx], dtype=np.uint8))) labels.append(torch.tensor(examples["label"][example_idx])) output = {"label":labels, "image":images} return output raw_dataset = load_dataset('mnist') train_dataset = raw_dataset.map(prepare_features, batched=True, batch_size=10000) train_dataset.set_format("torch",columns=["image","label"]) ``` After this, I check the type of the following: ```python print(type(train_dataset["train"]["label"])) print(type(train_dataset["train"]["image"][0])) ``` This leads to the following output: ```python <class 'torch.Tensor'> <class 'list'> ``` I use `torch.utils.DataLoader` for batches, the type of `batch["train"]["image"]` is also `<class 'list'>`. I don't understand why only the `label` is converted to a torch tensor, why does the image not get converted? How can I fix this issue? Thanks, Gunjan EDIT: I just checked the shapes, and the types, `batch[image]` is a actually a list of list of tensors. Shape is (1,28,2,28), where `batch_size` is 2. I don't understand why this is happening. Ideally it should be a tensor of shape (2,1,28,28). EDIT 2: Inside `prepare_train_features`, the shape of `images[0]` is `torch.Size([1,28,28])`, the conversion is working. However, the output of the `map` is a list of list of list of list. Concluding, the way it works right now is: 1. Converting raw dataset to `torch` format. 2. Use the transform and apply using `map`, ensure the returned values are tensors. 3. When mapping, use `features` with `image` being `Array3D` type.
[ -0.1273752749, -0.3511647582, -0.0179326795, 0.3536091447, 0.4760022461, 0.0887135565, 0.7330291867, 0.3804343939, 0.0655259714, -0.0380423442, -0.1111534908, 0.3819510043, -0.2329692245, -0.3339344263, 0.0351091474, -0.5614944696, 0.2225798666, -0.099827379, -0.2807980776, -0.0613474436, -0.2431336641, 0.0354891196, -0.2184971571, -0.1084964424, -0.5479354262, 0.0440962017, -0.0195558108, -0.0765686631, -0.0622993931, -0.139180094, 0.1223466694, -0.1744963974, 0.4444535673, 0.701292932, -0.0001277011, 0.070302099, 0.3642727733, -0.1737783253, 0.0499993004, -0.1610137224, 0.0400474221, -0.2573827505, 0.0727765039, -0.0946831703, -0.2234942913, -0.1708451807, 0.0959102586, -0.179029569, -0.0281418636, 0.4191685319, 0.0771300644, 0.2790111899, 0.2466611266, 0.138630569, 0.2278114408, 0.5182864666, -0.2734378874, -0.0561170802, 0.2261503488, 0.375477612, 0.1240047365, 0.5647346973, -0.2913346589, -0.0362335965, 0.2669449449, 0.1290051639, -0.1014551669, -0.3140054047, 0.0491569899, 0.0894629434, 0.4219439328, -0.149439171, -0.0807790309, -0.1436639577, -0.1439784318, -0.1273806691, 0.040591117, 0.2803192437, -0.0718411803, -0.1872383356, -0.5392426252, 0.3052918911, -0.1486238092, 0.2131594121, -0.2805242836, -0.0034205057, -0.1381632388, 0.2928087115, -0.0471188091, -0.1127128378, 0.1930810809, -0.1234146208, 0.1300752461, -0.0098258667, -0.1436316818, -0.0534910075, -0.3895993233, -0.3150123656, -0.200148046, -0.1602649093, 0.1664854437, 0.1392757893, -0.1163956225, 0.1280710995, 0.1826329976, 0.2680339515, 0.1057824045, 0.3207024932, -0.0858924091, -0.2895821333, -0.0469191186, 0.0877333283, -0.2962266207, -0.435752511, 0.1545345783, 0.3252967894, 0.2452210635, 0.0687425882, 0.129855454, -0.3239413798, -0.108922407, -0.0095864497, 0.0752250552, 0.2850381434, -0.1186792403, 0.2439045608, 0.4804830849, 0.3972029686, -0.1538182199, 0.0695627034, 0.0250724554, 0.0315209478, -0.4404954314, -0.2856986523, 0.1534098387, -0.1177730858, 0.1000700817, 0.0374315456, 0.0464156494, 0.1006964743, 0.0734964386, -0.1858696342, 0.6246293783, 0.1476476192, -0.1944742501, 0.2767928541, 0.2709068358, 0.5297795534, -0.3042984009, 0.2565314174, -0.509569943, 0.065252617, -0.0230914634, -0.0145438574, 0.2186551392, -0.0207219422, -0.2121626139, 0.0158291012, 0.5923119783, -0.0836779028, 0.2734875977, -0.5791625381, 0.0949642211, -0.1913350224, 0.0341523066, 0.0636691749, -0.2047153413, -0.0523586571, 0.3863436878, 0.0919495672, 0.315458715, 0.160281986, 0.0510831587, 0.0798701569, -0.2253530025, -0.2350504994, 0.3363233209, -0.3768562078, 0.0920384303, -0.017693229, 0.0938788056, -0.0638040304, 0.1120191738, 0.3361781538, 0.0326009206, -0.1280016899, 0.029448567, 0.1963145137, -0.1661820561, 0.1402871013, 0.0773597434, 0.1913032532, 0.1933747828, 0.0350064933, -0.0156835858, 0.2076536417, -0.2216713428, 0.1775762141, -0.0542803816, -0.0747133717, 0.0711773857, 0.0403781608, -0.3698906302, -0.0121968798, -0.0474697948, 0.186466679, -0.233100161, -0.0487212501, 0.0236349925, 0.0822170302, 0.0582789779, 0.0479249656, 0.0049781948, -0.1919565797, -0.1822057962, -0.1390272677, -0.0032420792, 0.0922107399, -0.209476456, -0.261723876, -0.0523434281, -0.1232488528, 0.1783037484, 0.0588376708, -0.3590369523, 0.0510258526, 0.0192735232, -0.3653306961, -0.2013598382, 0.1733923554, 0.2676689327, -0.0996210203, -0.0422347449, 0.1916032434, 0.063288942, 0.1146327555, -0.5482743382, 0.0834661424, 0.1778420508, -0.2469699681, 0.2043912709, 0.2162799537, 0.1485339105, -0.2755033076, -0.1960348189, 0.4387863874, 0.1604105085, 0.3159130216, -0.3300261199, 0.1161018834, -0.0726466402, -0.0394021273, -0.1906338036, -0.0408079922, -0.2772817612, 0.07302396, -0.1318596452, 0.0129822437, -0.4569185078, -0.044936087, 0.2962617576, 0.0887638777, 0.1758720577, -0.0012159873, -0.3998460472, 0.2133124024, 0.1771264523, -0.6013532877, 0.2978383601, -0.0043618418, 0.1892074049, -0.1050186455, 0.0955834612, -0.1625432372, 0.2484445572, 0.1140422225, 0.0907485932, -0.1994646788, 0.1418525875, -0.1079261974, 0.026846543, 0.0263703614, -0.1406289041, -0.2336928397, -0.3589505553, 0.2713828087, -0.1661833078, -0.1345183551, -0.4018547535, -0.26218611, 0.036056079, -0.074004896, -0.0823338926, 0.1507581919, 0.185567975, 0.1904346794, 0.263418138, -0.1818943173, 0.3743163645, -0.4130293727, -0.0353551954, -0.0750101507, -0.2867958844, -0.0991648883, 0.0896559358, -0.5234106779, 0.0914843455, -0.2289902121, -0.0931907073, -0.2501760125, 0.0135479569, 0.1418222338, -0.2678500712, -0.285002619, 0.3085913062, 0.1939284503, -0.1424820423, 0.0406624675, 0.2663514614, 0.0103069693, 0.0469011739, 0.1537837088, -0.0896201432, 0.1165603548, -0.0632983148, -0.1767407507, -0.0966183916, -0.0750616789, -0.0704163462, -0.0217595622, 0.0633769184, 0.3462583721, 0.3721840084, -0.0898905694, -0.0520421155, 0.0356089771, 0.0629647374, -0.397687614, 0.5225033164, -0.2261543274, -0.3608259261, 0.1192015857, 0.0238558576, 0.0651470274, 0.4862688482, 0.0605229586, 0.0497315228, 0.0117820259, -0.0789447725, 0.2525925934, 0.2211974561, 0.351020366, -0.0911251158, 0.0191657022, -0.1647070348, 0.015416719, -0.1018712372, -0.0632553771, 0.6088865399, 0.1850844324, 0.2399426997, 0.0992583334, 0.6996647716, -0.0611373074, -0.7380949259, 0.2168065608, -0.2425097823, 0.1921669692, -0.1181219816, -0.3539581597, 0.3988560438, -0.2094198465, 0.0643739402, -0.0859674141, -0.0249071717, -0.2391578257, -0.0902241915, 0.3573612273, -0.3172068, -0.1585737765, 0.4044301808, -0.1447022259, 0.276373148, -0.2313425094, 0.3245897889, -0.2609260082, -0.2137926072, 0.0600569621, 0.448772192, 0.1385136694, 0.0417248085, -0.3342841268, -0.2166968882, -0.1432268322, 0.3568274975, 0.119577229, 0.5672699213, -0.0980360731, -0.0744650736, 0.1015564278, 0.2413696051, 0.8307591677, 0.0455574095, -0.0904588774, 0.1514427066, -0.3478347063, -0.4549782574, -0.1022294387, -0.0514177941, 0.0906814858, 0.1716902852, 0.1203863025, -0.0910535455, -0.1833340377, -0.0058327634, 0.1955549121, -0.0551248007, 0.0347187556, -0.2269115746, 0.0587577075, -0.1296497881, -0.1552831382, 0.221182704, 0.0296753757, 0.0051618069, -0.3081279993, -0.3262302577, -0.1266998053, 0.1824818701, -0.1330119818, 0.411067158, 0.0992509723, -0.1780857891, 0.0769068673, 0.5561056137, 0.4184040427, -0.0389391743, -0.1187736243, 0.0806436464, 0.2931112051, 0.1064323708, 0.3002043366, 0.3208229244, -0.0618731268, -0.4396640956, -0.2268485874, -0.1938149631, -0.3305327892, 0.3972930908, 0.4080630243, 0.0989351422, -0.495355159, -0.4921703637, 0.3861902356, 0.2937195897, 0.1958302855, 0.2045914829, -0.5417589545, -0.4009674489, 0.0781785846, 0.4662418067, 0.8556221128, -0.0370787904, 0.3702828288, 0.0315654092, 0.0108071491, 0.1721021086, -0.001888819, 0.4117947817, -0.3542811275, 0.1392897964, -0.1648540199, -0.3125497699, 0.2525229454, -0.0602031313, -0.243969813, 0.0425363332, -0.3494715691, 0.1936194897, -0.1256935298, -0.0828533769, -0.0498264171, -0.4714176059, 0.1878737062, 0.015452154, -0.0825134218, 0.261738956, 0.1111609936, -0.1636207998, -0.37986058, 0.0616961569, -0.0762220845, -0.0150117278, -0.2459689379, -0.1632431597, -0.0243097618, -0.7298656702, 0.0586797595, 0.4961580634, 0.3345547616, -0.1605665386, -0.0478365757, 0.1396414042, 0.4438467324, 0.1629003286, -0.0990171283, -0.34018448, 0.285340488, 0.0973755419, 0.1843323559, 0.1086379066, 0.068148613, 0.2105205506, -0.5777891278, 0.0372511372, 0.3060286641, -0.3449504972, -0.3229842186, -0.1984501183, 0.0491852015, 0.0381636098, 0.0286185816, 0.1244890988, -0.038903255, 0.2072433978, -0.0415122993, -0.2264614105, 0.1328899413, 0.4523314238, 0.112983793, -0.3500463367, 0.3907566667, 0.3549588025, -0.044777751, -0.0437440015, 0.4166939259, 0.6353191733, -0.3456967175, 0.0994978324, -0.1027165204, -0.156986773, -0.0110737607, 0.5430940986, -0.2343174517, -0.1309779137, -0.2389574945, -0.0408176184, -0.4308937192, 0.0108133871, -0.316298455, 0.456630528, -0.0432225578, 0.3627103567, 0.2105056196, -0.1873493195, -0.1441360414, -0.2586486936, 0.1723506898, 0.3679332435, -0.2471823692, 0.2187609822, -0.1269585788, -0.122023046, -0.0362524018, 0.0260316655, -0.2497397512, -0.0333907977, -0.057677757, 0.1773061454, 0.0666143, -0.1135400012, -0.0735470206, -0.1736695617, -0.1385808587, -0.2681719363, -0.0377181172, 0.1109212637, -0.1159996986, 0.3531611562, -0.1783661991, 0.2312256545, 0.3186765909, -0.2700001597, -0.102622807, 0.0358715132, 0.2229628265, 0.0600506924, 0.0045315176, -0.0615565926, -0.2772367299, 0.1125917435, 0.1652030349, 0.2549746037, 0.2046176791, -0.0999964252, 0.1091780886, -0.0438068472, 0.2041843683, 0.1012552902, -0.1718704849, -0.0508286878, 0.0603731833, -0.0076233326, 0.1006218046, 0.1449988782, 0.0388690494, 0.1252815723, -0.0834641829, 0.2755779922, 0.066558972, 0.3113947511, -0.3705074787, 0.0451426804, 0.4178561866, -0.2410735786, 0.235085845, 0.4640145898, 0.0147998184, 0.1930493563, 0.2907045782, 0.1093435287, -0.1187016368, 0.3226964474, 0.3945166469, 0.8204311728, 0.5895957351, 0.0837696195, 0.2746028602, 0.0992571414, -0.1536075324, -0.2072514147, 0.2358238697, 0.3919682801, 0.018866688, 0.1856933236, -0.2407992482, -0.4871239364, 0.2258820236, 0.1217748523, -0.1946175396, -0.0822236091, -0.6648058295, 0.0118749738, 0.1358260363, -0.1866593063, -0.1797154844, -0.0501378737, 0.2205907255, 0.2597537935, -0.1032206565, -0.160912469, -0.1724744886, 0.0691012144, 0.0375293978, -0.0073297396, 0.1697572917, -0.1368461996, 0.1617608517, 0.2448242605, 0.1969081163, 0.2849534154, 0.4870798886, -0.1681717038, -0.1598938107, -0.0105535462, -0.1923658848, 0.0899017379, 0.0667121336, 0.0315336436, -0.1532075405, -0.0149565935, 0.0084626377, 0.0386277772, 0.0314603262, -0.0940810889, -0.2182594985, 0.1676249057, 0.3055746257, -0.3637771308, -0.1490927637, -0.0998983979, -0.2466560304, -0.3483099937, -0.2655349076, 0.532738626, 0.0278958529, 0.1280096769, 0.1421678513, -0.042159453, 0.0487859957, 0.1574120373, -0.1215567589, 0.0775769204, -0.1540937573, 0.1359659135, -0.0858048499, 0.0319102407, 0.118474707, -0.3834477663, -0.018849548, -0.0391643457, 0.2425418645, 0.0646753684, 0.2020900548, -0.0983474255, 0.4987448454, 0.6146565676, -0.1336154044, -0.1414808482, -0.1304193288, 0.3706512451, 0.0733085424, -0.0774657428, 0.0219212137, 0.1024274975, 0.0065070391, -0.3420651555, -0.255490303, -0.0199822746, 0.3041451573, 0.3512825668, 0.0932887495, 0.3203128576, -0.0192206055, 0.0484099612, -0.2411338985, 0.0504153408, -0.1276014149, 0.0096702836, -0.0228029191, 0.5810168982, -0.2244022489, -0.0593422018, -0.4136503935, 0.4290261567, 0.0905311108, -0.3388547599, -0.080519408, 0.358399868, -0.3173205256, -0.2010881901, 0.2261951864, 0.4100222588, 0.1513600647, 0.1943573505, -0.5254406333, -0.4069115222, 0.4472020864, -0.4417077601, -0.5069127083, 0.029074762, -0.3133940697, 0.0679037571, 0.4964233935, -0.471049726, -0.1491340101, 0.0015053898, -0.0808276385, -0.091604352, -0.0981936082, 0.2610402107, 0.0151107982, -0.2518461943, 0.1790074408, 0.1764502972, -0.0228160247, -0.4204157591, -0.2753599882 ]
https://github.com/huggingface/datasets/issues/2005
Setting to torch format not working with torchvision and MNIST
What the dataset returns depends on the feature type. For a feature type that is Sequence(Sequence(Sequence(Value("uint8")))), a dataset formatted as "torch" return lists of lists of tensors. This is because the lists lengths may vary. For a feature type that is Array3D on the other hand it returns one tensor. This is because the size of the tensor is fixed and defined bu the Array3D type.
Hi I am trying to use `torchvision.transforms` to handle the transformation of the image data in the `mnist` dataset. Assume I have a `transform` variable which contains the `torchvision.transforms` object. A snippet of what I am trying to do: ```python def prepare_features(examples): images = [] labels = [] for example_idx, example in enumerate(examples["image"]): if transform is not None: images.append(transform( np.array(examples["image"][example_idx], dtype=np.uint8) )) else: images.append(torch.tensor(np.array(examples["image"][example_idx], dtype=np.uint8))) labels.append(torch.tensor(examples["label"][example_idx])) output = {"label":labels, "image":images} return output raw_dataset = load_dataset('mnist') train_dataset = raw_dataset.map(prepare_features, batched=True, batch_size=10000) train_dataset.set_format("torch",columns=["image","label"]) ``` After this, I check the type of the following: ```python print(type(train_dataset["train"]["label"])) print(type(train_dataset["train"]["image"][0])) ``` This leads to the following output: ```python <class 'torch.Tensor'> <class 'list'> ``` I use `torch.utils.DataLoader` for batches, the type of `batch["train"]["image"]` is also `<class 'list'>`. I don't understand why only the `label` is converted to a torch tensor, why does the image not get converted? How can I fix this issue? Thanks, Gunjan EDIT: I just checked the shapes, and the types, `batch[image]` is a actually a list of list of tensors. Shape is (1,28,2,28), where `batch_size` is 2. I don't understand why this is happening. Ideally it should be a tensor of shape (2,1,28,28). EDIT 2: Inside `prepare_train_features`, the shape of `images[0]` is `torch.Size([1,28,28])`, the conversion is working. However, the output of the `map` is a list of list of list of list.
66
Setting to torch format not working with torchvision and MNIST Hi I am trying to use `torchvision.transforms` to handle the transformation of the image data in the `mnist` dataset. Assume I have a `transform` variable which contains the `torchvision.transforms` object. A snippet of what I am trying to do: ```python def prepare_features(examples): images = [] labels = [] for example_idx, example in enumerate(examples["image"]): if transform is not None: images.append(transform( np.array(examples["image"][example_idx], dtype=np.uint8) )) else: images.append(torch.tensor(np.array(examples["image"][example_idx], dtype=np.uint8))) labels.append(torch.tensor(examples["label"][example_idx])) output = {"label":labels, "image":images} return output raw_dataset = load_dataset('mnist') train_dataset = raw_dataset.map(prepare_features, batched=True, batch_size=10000) train_dataset.set_format("torch",columns=["image","label"]) ``` After this, I check the type of the following: ```python print(type(train_dataset["train"]["label"])) print(type(train_dataset["train"]["image"][0])) ``` This leads to the following output: ```python <class 'torch.Tensor'> <class 'list'> ``` I use `torch.utils.DataLoader` for batches, the type of `batch["train"]["image"]` is also `<class 'list'>`. I don't understand why only the `label` is converted to a torch tensor, why does the image not get converted? How can I fix this issue? Thanks, Gunjan EDIT: I just checked the shapes, and the types, `batch[image]` is a actually a list of list of tensors. Shape is (1,28,2,28), where `batch_size` is 2. I don't understand why this is happening. Ideally it should be a tensor of shape (2,1,28,28). EDIT 2: Inside `prepare_train_features`, the shape of `images[0]` is `torch.Size([1,28,28])`, the conversion is working. However, the output of the `map` is a list of list of list of list. What the dataset returns depends on the feature type. For a feature type that is Sequence(Sequence(Sequence(Value("uint8")))), a dataset formatted as "torch" return lists of lists of tensors. This is because the lists lengths may vary. For a feature type that is Array3D on the other hand it returns one tensor. This is because the size of the tensor is fixed and defined bu the Array3D type.
[ -0.1273752749, -0.3511647582, -0.0179326795, 0.3536091447, 0.4760022461, 0.0887135565, 0.7330291867, 0.3804343939, 0.0655259714, -0.0380423442, -0.1111534908, 0.3819510043, -0.2329692245, -0.3339344263, 0.0351091474, -0.5614944696, 0.2225798666, -0.099827379, -0.2807980776, -0.0613474436, -0.2431336641, 0.0354891196, -0.2184971571, -0.1084964424, -0.5479354262, 0.0440962017, -0.0195558108, -0.0765686631, -0.0622993931, -0.139180094, 0.1223466694, -0.1744963974, 0.4444535673, 0.701292932, -0.0001277011, 0.070302099, 0.3642727733, -0.1737783253, 0.0499993004, -0.1610137224, 0.0400474221, -0.2573827505, 0.0727765039, -0.0946831703, -0.2234942913, -0.1708451807, 0.0959102586, -0.179029569, -0.0281418636, 0.4191685319, 0.0771300644, 0.2790111899, 0.2466611266, 0.138630569, 0.2278114408, 0.5182864666, -0.2734378874, -0.0561170802, 0.2261503488, 0.375477612, 0.1240047365, 0.5647346973, -0.2913346589, -0.0362335965, 0.2669449449, 0.1290051639, -0.1014551669, -0.3140054047, 0.0491569899, 0.0894629434, 0.4219439328, -0.149439171, -0.0807790309, -0.1436639577, -0.1439784318, -0.1273806691, 0.040591117, 0.2803192437, -0.0718411803, -0.1872383356, -0.5392426252, 0.3052918911, -0.1486238092, 0.2131594121, -0.2805242836, -0.0034205057, -0.1381632388, 0.2928087115, -0.0471188091, -0.1127128378, 0.1930810809, -0.1234146208, 0.1300752461, -0.0098258667, -0.1436316818, -0.0534910075, -0.3895993233, -0.3150123656, -0.200148046, -0.1602649093, 0.1664854437, 0.1392757893, -0.1163956225, 0.1280710995, 0.1826329976, 0.2680339515, 0.1057824045, 0.3207024932, -0.0858924091, -0.2895821333, -0.0469191186, 0.0877333283, -0.2962266207, -0.435752511, 0.1545345783, 0.3252967894, 0.2452210635, 0.0687425882, 0.129855454, -0.3239413798, -0.108922407, -0.0095864497, 0.0752250552, 0.2850381434, -0.1186792403, 0.2439045608, 0.4804830849, 0.3972029686, -0.1538182199, 0.0695627034, 0.0250724554, 0.0315209478, -0.4404954314, -0.2856986523, 0.1534098387, -0.1177730858, 0.1000700817, 0.0374315456, 0.0464156494, 0.1006964743, 0.0734964386, -0.1858696342, 0.6246293783, 0.1476476192, -0.1944742501, 0.2767928541, 0.2709068358, 0.5297795534, -0.3042984009, 0.2565314174, -0.509569943, 0.065252617, -0.0230914634, -0.0145438574, 0.2186551392, -0.0207219422, -0.2121626139, 0.0158291012, 0.5923119783, -0.0836779028, 0.2734875977, -0.5791625381, 0.0949642211, -0.1913350224, 0.0341523066, 0.0636691749, -0.2047153413, -0.0523586571, 0.3863436878, 0.0919495672, 0.315458715, 0.160281986, 0.0510831587, 0.0798701569, -0.2253530025, -0.2350504994, 0.3363233209, -0.3768562078, 0.0920384303, -0.017693229, 0.0938788056, -0.0638040304, 0.1120191738, 0.3361781538, 0.0326009206, -0.1280016899, 0.029448567, 0.1963145137, -0.1661820561, 0.1402871013, 0.0773597434, 0.1913032532, 0.1933747828, 0.0350064933, -0.0156835858, 0.2076536417, -0.2216713428, 0.1775762141, -0.0542803816, -0.0747133717, 0.0711773857, 0.0403781608, -0.3698906302, -0.0121968798, -0.0474697948, 0.186466679, -0.233100161, -0.0487212501, 0.0236349925, 0.0822170302, 0.0582789779, 0.0479249656, 0.0049781948, -0.1919565797, -0.1822057962, -0.1390272677, -0.0032420792, 0.0922107399, -0.209476456, -0.261723876, -0.0523434281, -0.1232488528, 0.1783037484, 0.0588376708, -0.3590369523, 0.0510258526, 0.0192735232, -0.3653306961, -0.2013598382, 0.1733923554, 0.2676689327, -0.0996210203, -0.0422347449, 0.1916032434, 0.063288942, 0.1146327555, -0.5482743382, 0.0834661424, 0.1778420508, -0.2469699681, 0.2043912709, 0.2162799537, 0.1485339105, -0.2755033076, -0.1960348189, 0.4387863874, 0.1604105085, 0.3159130216, -0.3300261199, 0.1161018834, -0.0726466402, -0.0394021273, -0.1906338036, -0.0408079922, -0.2772817612, 0.07302396, -0.1318596452, 0.0129822437, -0.4569185078, -0.044936087, 0.2962617576, 0.0887638777, 0.1758720577, -0.0012159873, -0.3998460472, 0.2133124024, 0.1771264523, -0.6013532877, 0.2978383601, -0.0043618418, 0.1892074049, -0.1050186455, 0.0955834612, -0.1625432372, 0.2484445572, 0.1140422225, 0.0907485932, -0.1994646788, 0.1418525875, -0.1079261974, 0.026846543, 0.0263703614, -0.1406289041, -0.2336928397, -0.3589505553, 0.2713828087, -0.1661833078, -0.1345183551, -0.4018547535, -0.26218611, 0.036056079, -0.074004896, -0.0823338926, 0.1507581919, 0.185567975, 0.1904346794, 0.263418138, -0.1818943173, 0.3743163645, -0.4130293727, -0.0353551954, -0.0750101507, -0.2867958844, -0.0991648883, 0.0896559358, -0.5234106779, 0.0914843455, -0.2289902121, -0.0931907073, -0.2501760125, 0.0135479569, 0.1418222338, -0.2678500712, -0.285002619, 0.3085913062, 0.1939284503, -0.1424820423, 0.0406624675, 0.2663514614, 0.0103069693, 0.0469011739, 0.1537837088, -0.0896201432, 0.1165603548, -0.0632983148, -0.1767407507, -0.0966183916, -0.0750616789, -0.0704163462, -0.0217595622, 0.0633769184, 0.3462583721, 0.3721840084, -0.0898905694, -0.0520421155, 0.0356089771, 0.0629647374, -0.397687614, 0.5225033164, -0.2261543274, -0.3608259261, 0.1192015857, 0.0238558576, 0.0651470274, 0.4862688482, 0.0605229586, 0.0497315228, 0.0117820259, -0.0789447725, 0.2525925934, 0.2211974561, 0.351020366, -0.0911251158, 0.0191657022, -0.1647070348, 0.015416719, -0.1018712372, -0.0632553771, 0.6088865399, 0.1850844324, 0.2399426997, 0.0992583334, 0.6996647716, -0.0611373074, -0.7380949259, 0.2168065608, -0.2425097823, 0.1921669692, -0.1181219816, -0.3539581597, 0.3988560438, -0.2094198465, 0.0643739402, -0.0859674141, -0.0249071717, -0.2391578257, -0.0902241915, 0.3573612273, -0.3172068, -0.1585737765, 0.4044301808, -0.1447022259, 0.276373148, -0.2313425094, 0.3245897889, -0.2609260082, -0.2137926072, 0.0600569621, 0.448772192, 0.1385136694, 0.0417248085, -0.3342841268, -0.2166968882, -0.1432268322, 0.3568274975, 0.119577229, 0.5672699213, -0.0980360731, -0.0744650736, 0.1015564278, 0.2413696051, 0.8307591677, 0.0455574095, -0.0904588774, 0.1514427066, -0.3478347063, -0.4549782574, -0.1022294387, -0.0514177941, 0.0906814858, 0.1716902852, 0.1203863025, -0.0910535455, -0.1833340377, -0.0058327634, 0.1955549121, -0.0551248007, 0.0347187556, -0.2269115746, 0.0587577075, -0.1296497881, -0.1552831382, 0.221182704, 0.0296753757, 0.0051618069, -0.3081279993, -0.3262302577, -0.1266998053, 0.1824818701, -0.1330119818, 0.411067158, 0.0992509723, -0.1780857891, 0.0769068673, 0.5561056137, 0.4184040427, -0.0389391743, -0.1187736243, 0.0806436464, 0.2931112051, 0.1064323708, 0.3002043366, 0.3208229244, -0.0618731268, -0.4396640956, -0.2268485874, -0.1938149631, -0.3305327892, 0.3972930908, 0.4080630243, 0.0989351422, -0.495355159, -0.4921703637, 0.3861902356, 0.2937195897, 0.1958302855, 0.2045914829, -0.5417589545, -0.4009674489, 0.0781785846, 0.4662418067, 0.8556221128, -0.0370787904, 0.3702828288, 0.0315654092, 0.0108071491, 0.1721021086, -0.001888819, 0.4117947817, -0.3542811275, 0.1392897964, -0.1648540199, -0.3125497699, 0.2525229454, -0.0602031313, -0.243969813, 0.0425363332, -0.3494715691, 0.1936194897, -0.1256935298, -0.0828533769, -0.0498264171, -0.4714176059, 0.1878737062, 0.015452154, -0.0825134218, 0.261738956, 0.1111609936, -0.1636207998, -0.37986058, 0.0616961569, -0.0762220845, -0.0150117278, -0.2459689379, -0.1632431597, -0.0243097618, -0.7298656702, 0.0586797595, 0.4961580634, 0.3345547616, -0.1605665386, -0.0478365757, 0.1396414042, 0.4438467324, 0.1629003286, -0.0990171283, -0.34018448, 0.285340488, 0.0973755419, 0.1843323559, 0.1086379066, 0.068148613, 0.2105205506, -0.5777891278, 0.0372511372, 0.3060286641, -0.3449504972, -0.3229842186, -0.1984501183, 0.0491852015, 0.0381636098, 0.0286185816, 0.1244890988, -0.038903255, 0.2072433978, -0.0415122993, -0.2264614105, 0.1328899413, 0.4523314238, 0.112983793, -0.3500463367, 0.3907566667, 0.3549588025, -0.044777751, -0.0437440015, 0.4166939259, 0.6353191733, -0.3456967175, 0.0994978324, -0.1027165204, -0.156986773, -0.0110737607, 0.5430940986, -0.2343174517, -0.1309779137, -0.2389574945, -0.0408176184, -0.4308937192, 0.0108133871, -0.316298455, 0.456630528, -0.0432225578, 0.3627103567, 0.2105056196, -0.1873493195, -0.1441360414, -0.2586486936, 0.1723506898, 0.3679332435, -0.2471823692, 0.2187609822, -0.1269585788, -0.122023046, -0.0362524018, 0.0260316655, -0.2497397512, -0.0333907977, -0.057677757, 0.1773061454, 0.0666143, -0.1135400012, -0.0735470206, -0.1736695617, -0.1385808587, -0.2681719363, -0.0377181172, 0.1109212637, -0.1159996986, 0.3531611562, -0.1783661991, 0.2312256545, 0.3186765909, -0.2700001597, -0.102622807, 0.0358715132, 0.2229628265, 0.0600506924, 0.0045315176, -0.0615565926, -0.2772367299, 0.1125917435, 0.1652030349, 0.2549746037, 0.2046176791, -0.0999964252, 0.1091780886, -0.0438068472, 0.2041843683, 0.1012552902, -0.1718704849, -0.0508286878, 0.0603731833, -0.0076233326, 0.1006218046, 0.1449988782, 0.0388690494, 0.1252815723, -0.0834641829, 0.2755779922, 0.066558972, 0.3113947511, -0.3705074787, 0.0451426804, 0.4178561866, -0.2410735786, 0.235085845, 0.4640145898, 0.0147998184, 0.1930493563, 0.2907045782, 0.1093435287, -0.1187016368, 0.3226964474, 0.3945166469, 0.8204311728, 0.5895957351, 0.0837696195, 0.2746028602, 0.0992571414, -0.1536075324, -0.2072514147, 0.2358238697, 0.3919682801, 0.018866688, 0.1856933236, -0.2407992482, -0.4871239364, 0.2258820236, 0.1217748523, -0.1946175396, -0.0822236091, -0.6648058295, 0.0118749738, 0.1358260363, -0.1866593063, -0.1797154844, -0.0501378737, 0.2205907255, 0.2597537935, -0.1032206565, -0.160912469, -0.1724744886, 0.0691012144, 0.0375293978, -0.0073297396, 0.1697572917, -0.1368461996, 0.1617608517, 0.2448242605, 0.1969081163, 0.2849534154, 0.4870798886, -0.1681717038, -0.1598938107, -0.0105535462, -0.1923658848, 0.0899017379, 0.0667121336, 0.0315336436, -0.1532075405, -0.0149565935, 0.0084626377, 0.0386277772, 0.0314603262, -0.0940810889, -0.2182594985, 0.1676249057, 0.3055746257, -0.3637771308, -0.1490927637, -0.0998983979, -0.2466560304, -0.3483099937, -0.2655349076, 0.532738626, 0.0278958529, 0.1280096769, 0.1421678513, -0.042159453, 0.0487859957, 0.1574120373, -0.1215567589, 0.0775769204, -0.1540937573, 0.1359659135, -0.0858048499, 0.0319102407, 0.118474707, -0.3834477663, -0.018849548, -0.0391643457, 0.2425418645, 0.0646753684, 0.2020900548, -0.0983474255, 0.4987448454, 0.6146565676, -0.1336154044, -0.1414808482, -0.1304193288, 0.3706512451, 0.0733085424, -0.0774657428, 0.0219212137, 0.1024274975, 0.0065070391, -0.3420651555, -0.255490303, -0.0199822746, 0.3041451573, 0.3512825668, 0.0932887495, 0.3203128576, -0.0192206055, 0.0484099612, -0.2411338985, 0.0504153408, -0.1276014149, 0.0096702836, -0.0228029191, 0.5810168982, -0.2244022489, -0.0593422018, -0.4136503935, 0.4290261567, 0.0905311108, -0.3388547599, -0.080519408, 0.358399868, -0.3173205256, -0.2010881901, 0.2261951864, 0.4100222588, 0.1513600647, 0.1943573505, -0.5254406333, -0.4069115222, 0.4472020864, -0.4417077601, -0.5069127083, 0.029074762, -0.3133940697, 0.0679037571, 0.4964233935, -0.471049726, -0.1491340101, 0.0015053898, -0.0808276385, -0.091604352, -0.0981936082, 0.2610402107, 0.0151107982, -0.2518461943, 0.1790074408, 0.1764502972, -0.0228160247, -0.4204157591, -0.2753599882 ]
https://github.com/huggingface/datasets/issues/2005
Setting to torch format not working with torchvision and MNIST
Okay, that makes sense. Raw images are list of Array2D, hence we get a single tensor when `set_format` is used. But, why should I need to convert the raw images to `torch` format when `map` does this internally? Using `Array3D` did not work with `map` when raw images weren't `set_format`ted to torch type.
Hi I am trying to use `torchvision.transforms` to handle the transformation of the image data in the `mnist` dataset. Assume I have a `transform` variable which contains the `torchvision.transforms` object. A snippet of what I am trying to do: ```python def prepare_features(examples): images = [] labels = [] for example_idx, example in enumerate(examples["image"]): if transform is not None: images.append(transform( np.array(examples["image"][example_idx], dtype=np.uint8) )) else: images.append(torch.tensor(np.array(examples["image"][example_idx], dtype=np.uint8))) labels.append(torch.tensor(examples["label"][example_idx])) output = {"label":labels, "image":images} return output raw_dataset = load_dataset('mnist') train_dataset = raw_dataset.map(prepare_features, batched=True, batch_size=10000) train_dataset.set_format("torch",columns=["image","label"]) ``` After this, I check the type of the following: ```python print(type(train_dataset["train"]["label"])) print(type(train_dataset["train"]["image"][0])) ``` This leads to the following output: ```python <class 'torch.Tensor'> <class 'list'> ``` I use `torch.utils.DataLoader` for batches, the type of `batch["train"]["image"]` is also `<class 'list'>`. I don't understand why only the `label` is converted to a torch tensor, why does the image not get converted? How can I fix this issue? Thanks, Gunjan EDIT: I just checked the shapes, and the types, `batch[image]` is a actually a list of list of tensors. Shape is (1,28,2,28), where `batch_size` is 2. I don't understand why this is happening. Ideally it should be a tensor of shape (2,1,28,28). EDIT 2: Inside `prepare_train_features`, the shape of `images[0]` is `torch.Size([1,28,28])`, the conversion is working. However, the output of the `map` is a list of list of list of list.
53
Setting to torch format not working with torchvision and MNIST Hi I am trying to use `torchvision.transforms` to handle the transformation of the image data in the `mnist` dataset. Assume I have a `transform` variable which contains the `torchvision.transforms` object. A snippet of what I am trying to do: ```python def prepare_features(examples): images = [] labels = [] for example_idx, example in enumerate(examples["image"]): if transform is not None: images.append(transform( np.array(examples["image"][example_idx], dtype=np.uint8) )) else: images.append(torch.tensor(np.array(examples["image"][example_idx], dtype=np.uint8))) labels.append(torch.tensor(examples["label"][example_idx])) output = {"label":labels, "image":images} return output raw_dataset = load_dataset('mnist') train_dataset = raw_dataset.map(prepare_features, batched=True, batch_size=10000) train_dataset.set_format("torch",columns=["image","label"]) ``` After this, I check the type of the following: ```python print(type(train_dataset["train"]["label"])) print(type(train_dataset["train"]["image"][0])) ``` This leads to the following output: ```python <class 'torch.Tensor'> <class 'list'> ``` I use `torch.utils.DataLoader` for batches, the type of `batch["train"]["image"]` is also `<class 'list'>`. I don't understand why only the `label` is converted to a torch tensor, why does the image not get converted? How can I fix this issue? Thanks, Gunjan EDIT: I just checked the shapes, and the types, `batch[image]` is a actually a list of list of tensors. Shape is (1,28,2,28), where `batch_size` is 2. I don't understand why this is happening. Ideally it should be a tensor of shape (2,1,28,28). EDIT 2: Inside `prepare_train_features`, the shape of `images[0]` is `torch.Size([1,28,28])`, the conversion is working. However, the output of the `map` is a list of list of list of list. Okay, that makes sense. Raw images are list of Array2D, hence we get a single tensor when `set_format` is used. But, why should I need to convert the raw images to `torch` format when `map` does this internally? Using `Array3D` did not work with `map` when raw images weren't `set_format`ted to torch type.
[ -0.1273752749, -0.3511647582, -0.0179326795, 0.3536091447, 0.4760022461, 0.0887135565, 0.7330291867, 0.3804343939, 0.0655259714, -0.0380423442, -0.1111534908, 0.3819510043, -0.2329692245, -0.3339344263, 0.0351091474, -0.5614944696, 0.2225798666, -0.099827379, -0.2807980776, -0.0613474436, -0.2431336641, 0.0354891196, -0.2184971571, -0.1084964424, -0.5479354262, 0.0440962017, -0.0195558108, -0.0765686631, -0.0622993931, -0.139180094, 0.1223466694, -0.1744963974, 0.4444535673, 0.701292932, -0.0001277011, 0.070302099, 0.3642727733, -0.1737783253, 0.0499993004, -0.1610137224, 0.0400474221, -0.2573827505, 0.0727765039, -0.0946831703, -0.2234942913, -0.1708451807, 0.0959102586, -0.179029569, -0.0281418636, 0.4191685319, 0.0771300644, 0.2790111899, 0.2466611266, 0.138630569, 0.2278114408, 0.5182864666, -0.2734378874, -0.0561170802, 0.2261503488, 0.375477612, 0.1240047365, 0.5647346973, -0.2913346589, -0.0362335965, 0.2669449449, 0.1290051639, -0.1014551669, -0.3140054047, 0.0491569899, 0.0894629434, 0.4219439328, -0.149439171, -0.0807790309, -0.1436639577, -0.1439784318, -0.1273806691, 0.040591117, 0.2803192437, -0.0718411803, -0.1872383356, -0.5392426252, 0.3052918911, -0.1486238092, 0.2131594121, -0.2805242836, -0.0034205057, -0.1381632388, 0.2928087115, -0.0471188091, -0.1127128378, 0.1930810809, -0.1234146208, 0.1300752461, -0.0098258667, -0.1436316818, -0.0534910075, -0.3895993233, -0.3150123656, -0.200148046, -0.1602649093, 0.1664854437, 0.1392757893, -0.1163956225, 0.1280710995, 0.1826329976, 0.2680339515, 0.1057824045, 0.3207024932, -0.0858924091, -0.2895821333, -0.0469191186, 0.0877333283, -0.2962266207, -0.435752511, 0.1545345783, 0.3252967894, 0.2452210635, 0.0687425882, 0.129855454, -0.3239413798, -0.108922407, -0.0095864497, 0.0752250552, 0.2850381434, -0.1186792403, 0.2439045608, 0.4804830849, 0.3972029686, -0.1538182199, 0.0695627034, 0.0250724554, 0.0315209478, -0.4404954314, -0.2856986523, 0.1534098387, -0.1177730858, 0.1000700817, 0.0374315456, 0.0464156494, 0.1006964743, 0.0734964386, -0.1858696342, 0.6246293783, 0.1476476192, -0.1944742501, 0.2767928541, 0.2709068358, 0.5297795534, -0.3042984009, 0.2565314174, -0.509569943, 0.065252617, -0.0230914634, -0.0145438574, 0.2186551392, -0.0207219422, -0.2121626139, 0.0158291012, 0.5923119783, -0.0836779028, 0.2734875977, -0.5791625381, 0.0949642211, -0.1913350224, 0.0341523066, 0.0636691749, -0.2047153413, -0.0523586571, 0.3863436878, 0.0919495672, 0.315458715, 0.160281986, 0.0510831587, 0.0798701569, -0.2253530025, -0.2350504994, 0.3363233209, -0.3768562078, 0.0920384303, -0.017693229, 0.0938788056, -0.0638040304, 0.1120191738, 0.3361781538, 0.0326009206, -0.1280016899, 0.029448567, 0.1963145137, -0.1661820561, 0.1402871013, 0.0773597434, 0.1913032532, 0.1933747828, 0.0350064933, -0.0156835858, 0.2076536417, -0.2216713428, 0.1775762141, -0.0542803816, -0.0747133717, 0.0711773857, 0.0403781608, -0.3698906302, -0.0121968798, -0.0474697948, 0.186466679, -0.233100161, -0.0487212501, 0.0236349925, 0.0822170302, 0.0582789779, 0.0479249656, 0.0049781948, -0.1919565797, -0.1822057962, -0.1390272677, -0.0032420792, 0.0922107399, -0.209476456, -0.261723876, -0.0523434281, -0.1232488528, 0.1783037484, 0.0588376708, -0.3590369523, 0.0510258526, 0.0192735232, -0.3653306961, -0.2013598382, 0.1733923554, 0.2676689327, -0.0996210203, -0.0422347449, 0.1916032434, 0.063288942, 0.1146327555, -0.5482743382, 0.0834661424, 0.1778420508, -0.2469699681, 0.2043912709, 0.2162799537, 0.1485339105, -0.2755033076, -0.1960348189, 0.4387863874, 0.1604105085, 0.3159130216, -0.3300261199, 0.1161018834, -0.0726466402, -0.0394021273, -0.1906338036, -0.0408079922, -0.2772817612, 0.07302396, -0.1318596452, 0.0129822437, -0.4569185078, -0.044936087, 0.2962617576, 0.0887638777, 0.1758720577, -0.0012159873, -0.3998460472, 0.2133124024, 0.1771264523, -0.6013532877, 0.2978383601, -0.0043618418, 0.1892074049, -0.1050186455, 0.0955834612, -0.1625432372, 0.2484445572, 0.1140422225, 0.0907485932, -0.1994646788, 0.1418525875, -0.1079261974, 0.026846543, 0.0263703614, -0.1406289041, -0.2336928397, -0.3589505553, 0.2713828087, -0.1661833078, -0.1345183551, -0.4018547535, -0.26218611, 0.036056079, -0.074004896, -0.0823338926, 0.1507581919, 0.185567975, 0.1904346794, 0.263418138, -0.1818943173, 0.3743163645, -0.4130293727, -0.0353551954, -0.0750101507, -0.2867958844, -0.0991648883, 0.0896559358, -0.5234106779, 0.0914843455, -0.2289902121, -0.0931907073, -0.2501760125, 0.0135479569, 0.1418222338, -0.2678500712, -0.285002619, 0.3085913062, 0.1939284503, -0.1424820423, 0.0406624675, 0.2663514614, 0.0103069693, 0.0469011739, 0.1537837088, -0.0896201432, 0.1165603548, -0.0632983148, -0.1767407507, -0.0966183916, -0.0750616789, -0.0704163462, -0.0217595622, 0.0633769184, 0.3462583721, 0.3721840084, -0.0898905694, -0.0520421155, 0.0356089771, 0.0629647374, -0.397687614, 0.5225033164, -0.2261543274, -0.3608259261, 0.1192015857, 0.0238558576, 0.0651470274, 0.4862688482, 0.0605229586, 0.0497315228, 0.0117820259, -0.0789447725, 0.2525925934, 0.2211974561, 0.351020366, -0.0911251158, 0.0191657022, -0.1647070348, 0.015416719, -0.1018712372, -0.0632553771, 0.6088865399, 0.1850844324, 0.2399426997, 0.0992583334, 0.6996647716, -0.0611373074, -0.7380949259, 0.2168065608, -0.2425097823, 0.1921669692, -0.1181219816, -0.3539581597, 0.3988560438, -0.2094198465, 0.0643739402, -0.0859674141, -0.0249071717, -0.2391578257, -0.0902241915, 0.3573612273, -0.3172068, -0.1585737765, 0.4044301808, -0.1447022259, 0.276373148, -0.2313425094, 0.3245897889, -0.2609260082, -0.2137926072, 0.0600569621, 0.448772192, 0.1385136694, 0.0417248085, -0.3342841268, -0.2166968882, -0.1432268322, 0.3568274975, 0.119577229, 0.5672699213, -0.0980360731, -0.0744650736, 0.1015564278, 0.2413696051, 0.8307591677, 0.0455574095, -0.0904588774, 0.1514427066, -0.3478347063, -0.4549782574, -0.1022294387, -0.0514177941, 0.0906814858, 0.1716902852, 0.1203863025, -0.0910535455, -0.1833340377, -0.0058327634, 0.1955549121, -0.0551248007, 0.0347187556, -0.2269115746, 0.0587577075, -0.1296497881, -0.1552831382, 0.221182704, 0.0296753757, 0.0051618069, -0.3081279993, -0.3262302577, -0.1266998053, 0.1824818701, -0.1330119818, 0.411067158, 0.0992509723, -0.1780857891, 0.0769068673, 0.5561056137, 0.4184040427, -0.0389391743, -0.1187736243, 0.0806436464, 0.2931112051, 0.1064323708, 0.3002043366, 0.3208229244, -0.0618731268, -0.4396640956, -0.2268485874, -0.1938149631, -0.3305327892, 0.3972930908, 0.4080630243, 0.0989351422, -0.495355159, -0.4921703637, 0.3861902356, 0.2937195897, 0.1958302855, 0.2045914829, -0.5417589545, -0.4009674489, 0.0781785846, 0.4662418067, 0.8556221128, -0.0370787904, 0.3702828288, 0.0315654092, 0.0108071491, 0.1721021086, -0.001888819, 0.4117947817, -0.3542811275, 0.1392897964, -0.1648540199, -0.3125497699, 0.2525229454, -0.0602031313, -0.243969813, 0.0425363332, -0.3494715691, 0.1936194897, -0.1256935298, -0.0828533769, -0.0498264171, -0.4714176059, 0.1878737062, 0.015452154, -0.0825134218, 0.261738956, 0.1111609936, -0.1636207998, -0.37986058, 0.0616961569, -0.0762220845, -0.0150117278, -0.2459689379, -0.1632431597, -0.0243097618, -0.7298656702, 0.0586797595, 0.4961580634, 0.3345547616, -0.1605665386, -0.0478365757, 0.1396414042, 0.4438467324, 0.1629003286, -0.0990171283, -0.34018448, 0.285340488, 0.0973755419, 0.1843323559, 0.1086379066, 0.068148613, 0.2105205506, -0.5777891278, 0.0372511372, 0.3060286641, -0.3449504972, -0.3229842186, -0.1984501183, 0.0491852015, 0.0381636098, 0.0286185816, 0.1244890988, -0.038903255, 0.2072433978, -0.0415122993, -0.2264614105, 0.1328899413, 0.4523314238, 0.112983793, -0.3500463367, 0.3907566667, 0.3549588025, -0.044777751, -0.0437440015, 0.4166939259, 0.6353191733, -0.3456967175, 0.0994978324, -0.1027165204, -0.156986773, -0.0110737607, 0.5430940986, -0.2343174517, -0.1309779137, -0.2389574945, -0.0408176184, -0.4308937192, 0.0108133871, -0.316298455, 0.456630528, -0.0432225578, 0.3627103567, 0.2105056196, -0.1873493195, -0.1441360414, -0.2586486936, 0.1723506898, 0.3679332435, -0.2471823692, 0.2187609822, -0.1269585788, -0.122023046, -0.0362524018, 0.0260316655, -0.2497397512, -0.0333907977, -0.057677757, 0.1773061454, 0.0666143, -0.1135400012, -0.0735470206, -0.1736695617, -0.1385808587, -0.2681719363, -0.0377181172, 0.1109212637, -0.1159996986, 0.3531611562, -0.1783661991, 0.2312256545, 0.3186765909, -0.2700001597, -0.102622807, 0.0358715132, 0.2229628265, 0.0600506924, 0.0045315176, -0.0615565926, -0.2772367299, 0.1125917435, 0.1652030349, 0.2549746037, 0.2046176791, -0.0999964252, 0.1091780886, -0.0438068472, 0.2041843683, 0.1012552902, -0.1718704849, -0.0508286878, 0.0603731833, -0.0076233326, 0.1006218046, 0.1449988782, 0.0388690494, 0.1252815723, -0.0834641829, 0.2755779922, 0.066558972, 0.3113947511, -0.3705074787, 0.0451426804, 0.4178561866, -0.2410735786, 0.235085845, 0.4640145898, 0.0147998184, 0.1930493563, 0.2907045782, 0.1093435287, -0.1187016368, 0.3226964474, 0.3945166469, 0.8204311728, 0.5895957351, 0.0837696195, 0.2746028602, 0.0992571414, -0.1536075324, -0.2072514147, 0.2358238697, 0.3919682801, 0.018866688, 0.1856933236, -0.2407992482, -0.4871239364, 0.2258820236, 0.1217748523, -0.1946175396, -0.0822236091, -0.6648058295, 0.0118749738, 0.1358260363, -0.1866593063, -0.1797154844, -0.0501378737, 0.2205907255, 0.2597537935, -0.1032206565, -0.160912469, -0.1724744886, 0.0691012144, 0.0375293978, -0.0073297396, 0.1697572917, -0.1368461996, 0.1617608517, 0.2448242605, 0.1969081163, 0.2849534154, 0.4870798886, -0.1681717038, -0.1598938107, -0.0105535462, -0.1923658848, 0.0899017379, 0.0667121336, 0.0315336436, -0.1532075405, -0.0149565935, 0.0084626377, 0.0386277772, 0.0314603262, -0.0940810889, -0.2182594985, 0.1676249057, 0.3055746257, -0.3637771308, -0.1490927637, -0.0998983979, -0.2466560304, -0.3483099937, -0.2655349076, 0.532738626, 0.0278958529, 0.1280096769, 0.1421678513, -0.042159453, 0.0487859957, 0.1574120373, -0.1215567589, 0.0775769204, -0.1540937573, 0.1359659135, -0.0858048499, 0.0319102407, 0.118474707, -0.3834477663, -0.018849548, -0.0391643457, 0.2425418645, 0.0646753684, 0.2020900548, -0.0983474255, 0.4987448454, 0.6146565676, -0.1336154044, -0.1414808482, -0.1304193288, 0.3706512451, 0.0733085424, -0.0774657428, 0.0219212137, 0.1024274975, 0.0065070391, -0.3420651555, -0.255490303, -0.0199822746, 0.3041451573, 0.3512825668, 0.0932887495, 0.3203128576, -0.0192206055, 0.0484099612, -0.2411338985, 0.0504153408, -0.1276014149, 0.0096702836, -0.0228029191, 0.5810168982, -0.2244022489, -0.0593422018, -0.4136503935, 0.4290261567, 0.0905311108, -0.3388547599, -0.080519408, 0.358399868, -0.3173205256, -0.2010881901, 0.2261951864, 0.4100222588, 0.1513600647, 0.1943573505, -0.5254406333, -0.4069115222, 0.4472020864, -0.4417077601, -0.5069127083, 0.029074762, -0.3133940697, 0.0679037571, 0.4964233935, -0.471049726, -0.1491340101, 0.0015053898, -0.0808276385, -0.091604352, -0.0981936082, 0.2610402107, 0.0151107982, -0.2518461943, 0.1790074408, 0.1764502972, -0.0228160247, -0.4204157591, -0.2753599882 ]
https://github.com/huggingface/datasets/issues/2005
Setting to torch format not working with torchvision and MNIST
I understand that `map` needs to know what kind of output tensors are expected, and thus converting the raw dataset to `torch` format is necessary. Closing the issue since it is resolved.
Hi I am trying to use `torchvision.transforms` to handle the transformation of the image data in the `mnist` dataset. Assume I have a `transform` variable which contains the `torchvision.transforms` object. A snippet of what I am trying to do: ```python def prepare_features(examples): images = [] labels = [] for example_idx, example in enumerate(examples["image"]): if transform is not None: images.append(transform( np.array(examples["image"][example_idx], dtype=np.uint8) )) else: images.append(torch.tensor(np.array(examples["image"][example_idx], dtype=np.uint8))) labels.append(torch.tensor(examples["label"][example_idx])) output = {"label":labels, "image":images} return output raw_dataset = load_dataset('mnist') train_dataset = raw_dataset.map(prepare_features, batched=True, batch_size=10000) train_dataset.set_format("torch",columns=["image","label"]) ``` After this, I check the type of the following: ```python print(type(train_dataset["train"]["label"])) print(type(train_dataset["train"]["image"][0])) ``` This leads to the following output: ```python <class 'torch.Tensor'> <class 'list'> ``` I use `torch.utils.DataLoader` for batches, the type of `batch["train"]["image"]` is also `<class 'list'>`. I don't understand why only the `label` is converted to a torch tensor, why does the image not get converted? How can I fix this issue? Thanks, Gunjan EDIT: I just checked the shapes, and the types, `batch[image]` is a actually a list of list of tensors. Shape is (1,28,2,28), where `batch_size` is 2. I don't understand why this is happening. Ideally it should be a tensor of shape (2,1,28,28). EDIT 2: Inside `prepare_train_features`, the shape of `images[0]` is `torch.Size([1,28,28])`, the conversion is working. However, the output of the `map` is a list of list of list of list.
32
Setting to torch format not working with torchvision and MNIST Hi I am trying to use `torchvision.transforms` to handle the transformation of the image data in the `mnist` dataset. Assume I have a `transform` variable which contains the `torchvision.transforms` object. A snippet of what I am trying to do: ```python def prepare_features(examples): images = [] labels = [] for example_idx, example in enumerate(examples["image"]): if transform is not None: images.append(transform( np.array(examples["image"][example_idx], dtype=np.uint8) )) else: images.append(torch.tensor(np.array(examples["image"][example_idx], dtype=np.uint8))) labels.append(torch.tensor(examples["label"][example_idx])) output = {"label":labels, "image":images} return output raw_dataset = load_dataset('mnist') train_dataset = raw_dataset.map(prepare_features, batched=True, batch_size=10000) train_dataset.set_format("torch",columns=["image","label"]) ``` After this, I check the type of the following: ```python print(type(train_dataset["train"]["label"])) print(type(train_dataset["train"]["image"][0])) ``` This leads to the following output: ```python <class 'torch.Tensor'> <class 'list'> ``` I use `torch.utils.DataLoader` for batches, the type of `batch["train"]["image"]` is also `<class 'list'>`. I don't understand why only the `label` is converted to a torch tensor, why does the image not get converted? How can I fix this issue? Thanks, Gunjan EDIT: I just checked the shapes, and the types, `batch[image]` is a actually a list of list of tensors. Shape is (1,28,2,28), where `batch_size` is 2. I don't understand why this is happening. Ideally it should be a tensor of shape (2,1,28,28). EDIT 2: Inside `prepare_train_features`, the shape of `images[0]` is `torch.Size([1,28,28])`, the conversion is working. However, the output of the `map` is a list of list of list of list. I understand that `map` needs to know what kind of output tensors are expected, and thus converting the raw dataset to `torch` format is necessary. Closing the issue since it is resolved.
[ -0.1273752749, -0.3511647582, -0.0179326795, 0.3536091447, 0.4760022461, 0.0887135565, 0.7330291867, 0.3804343939, 0.0655259714, -0.0380423442, -0.1111534908, 0.3819510043, -0.2329692245, -0.3339344263, 0.0351091474, -0.5614944696, 0.2225798666, -0.099827379, -0.2807980776, -0.0613474436, -0.2431336641, 0.0354891196, -0.2184971571, -0.1084964424, -0.5479354262, 0.0440962017, -0.0195558108, -0.0765686631, -0.0622993931, -0.139180094, 0.1223466694, -0.1744963974, 0.4444535673, 0.701292932, -0.0001277011, 0.070302099, 0.3642727733, -0.1737783253, 0.0499993004, -0.1610137224, 0.0400474221, -0.2573827505, 0.0727765039, -0.0946831703, -0.2234942913, -0.1708451807, 0.0959102586, -0.179029569, -0.0281418636, 0.4191685319, 0.0771300644, 0.2790111899, 0.2466611266, 0.138630569, 0.2278114408, 0.5182864666, -0.2734378874, -0.0561170802, 0.2261503488, 0.375477612, 0.1240047365, 0.5647346973, -0.2913346589, -0.0362335965, 0.2669449449, 0.1290051639, -0.1014551669, -0.3140054047, 0.0491569899, 0.0894629434, 0.4219439328, -0.149439171, -0.0807790309, -0.1436639577, -0.1439784318, -0.1273806691, 0.040591117, 0.2803192437, -0.0718411803, -0.1872383356, -0.5392426252, 0.3052918911, -0.1486238092, 0.2131594121, -0.2805242836, -0.0034205057, -0.1381632388, 0.2928087115, -0.0471188091, -0.1127128378, 0.1930810809, -0.1234146208, 0.1300752461, -0.0098258667, -0.1436316818, -0.0534910075, -0.3895993233, -0.3150123656, -0.200148046, -0.1602649093, 0.1664854437, 0.1392757893, -0.1163956225, 0.1280710995, 0.1826329976, 0.2680339515, 0.1057824045, 0.3207024932, -0.0858924091, -0.2895821333, -0.0469191186, 0.0877333283, -0.2962266207, -0.435752511, 0.1545345783, 0.3252967894, 0.2452210635, 0.0687425882, 0.129855454, -0.3239413798, -0.108922407, -0.0095864497, 0.0752250552, 0.2850381434, -0.1186792403, 0.2439045608, 0.4804830849, 0.3972029686, -0.1538182199, 0.0695627034, 0.0250724554, 0.0315209478, -0.4404954314, -0.2856986523, 0.1534098387, -0.1177730858, 0.1000700817, 0.0374315456, 0.0464156494, 0.1006964743, 0.0734964386, -0.1858696342, 0.6246293783, 0.1476476192, -0.1944742501, 0.2767928541, 0.2709068358, 0.5297795534, -0.3042984009, 0.2565314174, -0.509569943, 0.065252617, -0.0230914634, -0.0145438574, 0.2186551392, -0.0207219422, -0.2121626139, 0.0158291012, 0.5923119783, -0.0836779028, 0.2734875977, -0.5791625381, 0.0949642211, -0.1913350224, 0.0341523066, 0.0636691749, -0.2047153413, -0.0523586571, 0.3863436878, 0.0919495672, 0.315458715, 0.160281986, 0.0510831587, 0.0798701569, -0.2253530025, -0.2350504994, 0.3363233209, -0.3768562078, 0.0920384303, -0.017693229, 0.0938788056, -0.0638040304, 0.1120191738, 0.3361781538, 0.0326009206, -0.1280016899, 0.029448567, 0.1963145137, -0.1661820561, 0.1402871013, 0.0773597434, 0.1913032532, 0.1933747828, 0.0350064933, -0.0156835858, 0.2076536417, -0.2216713428, 0.1775762141, -0.0542803816, -0.0747133717, 0.0711773857, 0.0403781608, -0.3698906302, -0.0121968798, -0.0474697948, 0.186466679, -0.233100161, -0.0487212501, 0.0236349925, 0.0822170302, 0.0582789779, 0.0479249656, 0.0049781948, -0.1919565797, -0.1822057962, -0.1390272677, -0.0032420792, 0.0922107399, -0.209476456, -0.261723876, -0.0523434281, -0.1232488528, 0.1783037484, 0.0588376708, -0.3590369523, 0.0510258526, 0.0192735232, -0.3653306961, -0.2013598382, 0.1733923554, 0.2676689327, -0.0996210203, -0.0422347449, 0.1916032434, 0.063288942, 0.1146327555, -0.5482743382, 0.0834661424, 0.1778420508, -0.2469699681, 0.2043912709, 0.2162799537, 0.1485339105, -0.2755033076, -0.1960348189, 0.4387863874, 0.1604105085, 0.3159130216, -0.3300261199, 0.1161018834, -0.0726466402, -0.0394021273, -0.1906338036, -0.0408079922, -0.2772817612, 0.07302396, -0.1318596452, 0.0129822437, -0.4569185078, -0.044936087, 0.2962617576, 0.0887638777, 0.1758720577, -0.0012159873, -0.3998460472, 0.2133124024, 0.1771264523, -0.6013532877, 0.2978383601, -0.0043618418, 0.1892074049, -0.1050186455, 0.0955834612, -0.1625432372, 0.2484445572, 0.1140422225, 0.0907485932, -0.1994646788, 0.1418525875, -0.1079261974, 0.026846543, 0.0263703614, -0.1406289041, -0.2336928397, -0.3589505553, 0.2713828087, -0.1661833078, -0.1345183551, -0.4018547535, -0.26218611, 0.036056079, -0.074004896, -0.0823338926, 0.1507581919, 0.185567975, 0.1904346794, 0.263418138, -0.1818943173, 0.3743163645, -0.4130293727, -0.0353551954, -0.0750101507, -0.2867958844, -0.0991648883, 0.0896559358, -0.5234106779, 0.0914843455, -0.2289902121, -0.0931907073, -0.2501760125, 0.0135479569, 0.1418222338, -0.2678500712, -0.285002619, 0.3085913062, 0.1939284503, -0.1424820423, 0.0406624675, 0.2663514614, 0.0103069693, 0.0469011739, 0.1537837088, -0.0896201432, 0.1165603548, -0.0632983148, -0.1767407507, -0.0966183916, -0.0750616789, -0.0704163462, -0.0217595622, 0.0633769184, 0.3462583721, 0.3721840084, -0.0898905694, -0.0520421155, 0.0356089771, 0.0629647374, -0.397687614, 0.5225033164, -0.2261543274, -0.3608259261, 0.1192015857, 0.0238558576, 0.0651470274, 0.4862688482, 0.0605229586, 0.0497315228, 0.0117820259, -0.0789447725, 0.2525925934, 0.2211974561, 0.351020366, -0.0911251158, 0.0191657022, -0.1647070348, 0.015416719, -0.1018712372, -0.0632553771, 0.6088865399, 0.1850844324, 0.2399426997, 0.0992583334, 0.6996647716, -0.0611373074, -0.7380949259, 0.2168065608, -0.2425097823, 0.1921669692, -0.1181219816, -0.3539581597, 0.3988560438, -0.2094198465, 0.0643739402, -0.0859674141, -0.0249071717, -0.2391578257, -0.0902241915, 0.3573612273, -0.3172068, -0.1585737765, 0.4044301808, -0.1447022259, 0.276373148, -0.2313425094, 0.3245897889, -0.2609260082, -0.2137926072, 0.0600569621, 0.448772192, 0.1385136694, 0.0417248085, -0.3342841268, -0.2166968882, -0.1432268322, 0.3568274975, 0.119577229, 0.5672699213, -0.0980360731, -0.0744650736, 0.1015564278, 0.2413696051, 0.8307591677, 0.0455574095, -0.0904588774, 0.1514427066, -0.3478347063, -0.4549782574, -0.1022294387, -0.0514177941, 0.0906814858, 0.1716902852, 0.1203863025, -0.0910535455, -0.1833340377, -0.0058327634, 0.1955549121, -0.0551248007, 0.0347187556, -0.2269115746, 0.0587577075, -0.1296497881, -0.1552831382, 0.221182704, 0.0296753757, 0.0051618069, -0.3081279993, -0.3262302577, -0.1266998053, 0.1824818701, -0.1330119818, 0.411067158, 0.0992509723, -0.1780857891, 0.0769068673, 0.5561056137, 0.4184040427, -0.0389391743, -0.1187736243, 0.0806436464, 0.2931112051, 0.1064323708, 0.3002043366, 0.3208229244, -0.0618731268, -0.4396640956, -0.2268485874, -0.1938149631, -0.3305327892, 0.3972930908, 0.4080630243, 0.0989351422, -0.495355159, -0.4921703637, 0.3861902356, 0.2937195897, 0.1958302855, 0.2045914829, -0.5417589545, -0.4009674489, 0.0781785846, 0.4662418067, 0.8556221128, -0.0370787904, 0.3702828288, 0.0315654092, 0.0108071491, 0.1721021086, -0.001888819, 0.4117947817, -0.3542811275, 0.1392897964, -0.1648540199, -0.3125497699, 0.2525229454, -0.0602031313, -0.243969813, 0.0425363332, -0.3494715691, 0.1936194897, -0.1256935298, -0.0828533769, -0.0498264171, -0.4714176059, 0.1878737062, 0.015452154, -0.0825134218, 0.261738956, 0.1111609936, -0.1636207998, -0.37986058, 0.0616961569, -0.0762220845, -0.0150117278, -0.2459689379, -0.1632431597, -0.0243097618, -0.7298656702, 0.0586797595, 0.4961580634, 0.3345547616, -0.1605665386, -0.0478365757, 0.1396414042, 0.4438467324, 0.1629003286, -0.0990171283, -0.34018448, 0.285340488, 0.0973755419, 0.1843323559, 0.1086379066, 0.068148613, 0.2105205506, -0.5777891278, 0.0372511372, 0.3060286641, -0.3449504972, -0.3229842186, -0.1984501183, 0.0491852015, 0.0381636098, 0.0286185816, 0.1244890988, -0.038903255, 0.2072433978, -0.0415122993, -0.2264614105, 0.1328899413, 0.4523314238, 0.112983793, -0.3500463367, 0.3907566667, 0.3549588025, -0.044777751, -0.0437440015, 0.4166939259, 0.6353191733, -0.3456967175, 0.0994978324, -0.1027165204, -0.156986773, -0.0110737607, 0.5430940986, -0.2343174517, -0.1309779137, -0.2389574945, -0.0408176184, -0.4308937192, 0.0108133871, -0.316298455, 0.456630528, -0.0432225578, 0.3627103567, 0.2105056196, -0.1873493195, -0.1441360414, -0.2586486936, 0.1723506898, 0.3679332435, -0.2471823692, 0.2187609822, -0.1269585788, -0.122023046, -0.0362524018, 0.0260316655, -0.2497397512, -0.0333907977, -0.057677757, 0.1773061454, 0.0666143, -0.1135400012, -0.0735470206, -0.1736695617, -0.1385808587, -0.2681719363, -0.0377181172, 0.1109212637, -0.1159996986, 0.3531611562, -0.1783661991, 0.2312256545, 0.3186765909, -0.2700001597, -0.102622807, 0.0358715132, 0.2229628265, 0.0600506924, 0.0045315176, -0.0615565926, -0.2772367299, 0.1125917435, 0.1652030349, 0.2549746037, 0.2046176791, -0.0999964252, 0.1091780886, -0.0438068472, 0.2041843683, 0.1012552902, -0.1718704849, -0.0508286878, 0.0603731833, -0.0076233326, 0.1006218046, 0.1449988782, 0.0388690494, 0.1252815723, -0.0834641829, 0.2755779922, 0.066558972, 0.3113947511, -0.3705074787, 0.0451426804, 0.4178561866, -0.2410735786, 0.235085845, 0.4640145898, 0.0147998184, 0.1930493563, 0.2907045782, 0.1093435287, -0.1187016368, 0.3226964474, 0.3945166469, 0.8204311728, 0.5895957351, 0.0837696195, 0.2746028602, 0.0992571414, -0.1536075324, -0.2072514147, 0.2358238697, 0.3919682801, 0.018866688, 0.1856933236, -0.2407992482, -0.4871239364, 0.2258820236, 0.1217748523, -0.1946175396, -0.0822236091, -0.6648058295, 0.0118749738, 0.1358260363, -0.1866593063, -0.1797154844, -0.0501378737, 0.2205907255, 0.2597537935, -0.1032206565, -0.160912469, -0.1724744886, 0.0691012144, 0.0375293978, -0.0073297396, 0.1697572917, -0.1368461996, 0.1617608517, 0.2448242605, 0.1969081163, 0.2849534154, 0.4870798886, -0.1681717038, -0.1598938107, -0.0105535462, -0.1923658848, 0.0899017379, 0.0667121336, 0.0315336436, -0.1532075405, -0.0149565935, 0.0084626377, 0.0386277772, 0.0314603262, -0.0940810889, -0.2182594985, 0.1676249057, 0.3055746257, -0.3637771308, -0.1490927637, -0.0998983979, -0.2466560304, -0.3483099937, -0.2655349076, 0.532738626, 0.0278958529, 0.1280096769, 0.1421678513, -0.042159453, 0.0487859957, 0.1574120373, -0.1215567589, 0.0775769204, -0.1540937573, 0.1359659135, -0.0858048499, 0.0319102407, 0.118474707, -0.3834477663, -0.018849548, -0.0391643457, 0.2425418645, 0.0646753684, 0.2020900548, -0.0983474255, 0.4987448454, 0.6146565676, -0.1336154044, -0.1414808482, -0.1304193288, 0.3706512451, 0.0733085424, -0.0774657428, 0.0219212137, 0.1024274975, 0.0065070391, -0.3420651555, -0.255490303, -0.0199822746, 0.3041451573, 0.3512825668, 0.0932887495, 0.3203128576, -0.0192206055, 0.0484099612, -0.2411338985, 0.0504153408, -0.1276014149, 0.0096702836, -0.0228029191, 0.5810168982, -0.2244022489, -0.0593422018, -0.4136503935, 0.4290261567, 0.0905311108, -0.3388547599, -0.080519408, 0.358399868, -0.3173205256, -0.2010881901, 0.2261951864, 0.4100222588, 0.1513600647, 0.1943573505, -0.5254406333, -0.4069115222, 0.4472020864, -0.4417077601, -0.5069127083, 0.029074762, -0.3133940697, 0.0679037571, 0.4964233935, -0.471049726, -0.1491340101, 0.0015053898, -0.0808276385, -0.091604352, -0.0981936082, 0.2610402107, 0.0151107982, -0.2518461943, 0.1790074408, 0.1764502972, -0.0228160247, -0.4204157591, -0.2753599882 ]
https://github.com/huggingface/datasets/issues/2003
Messages are being printed to the `stdout`
This is expected to show this message to the user via stdout. This way the users see it directly and can cancel the downloading if they want to. Could you elaborate why it would be better to have it in stderr instead of stdout ?
In this code segment, we can see some messages are being printed to the `stdout`. https://github.com/huggingface/datasets/blob/7e60bb509b595e8edc60a87f32b2bacfc065d607/src/datasets/builder.py#L545-L554 According to the comment, it is done intentionally, but I don't really understand why don't we log it with a higher level or print it directly to the `stderr`. In my opinion, this kind of messages should never printed to the stdout. At least some configuration/flag should make it possible to provide in order to explicitly prevent the package to contaminate the stdout.
45
Messages are being printed to the `stdout` In this code segment, we can see some messages are being printed to the `stdout`. https://github.com/huggingface/datasets/blob/7e60bb509b595e8edc60a87f32b2bacfc065d607/src/datasets/builder.py#L545-L554 According to the comment, it is done intentionally, but I don't really understand why don't we log it with a higher level or print it directly to the `stderr`. In my opinion, this kind of messages should never printed to the stdout. At least some configuration/flag should make it possible to provide in order to explicitly prevent the package to contaminate the stdout. This is expected to show this message to the user via stdout. This way the users see it directly and can cancel the downloading if they want to. Could you elaborate why it would be better to have it in stderr instead of stdout ?
[ -0.0470960103, -0.3709272444, -0.0396359004, 0.2706119716, 0.2318518609, -0.0572965443, 0.2466088235, 0.1149496287, -0.0417820476, 0.1984182149, 0.1732619405, 0.1642702669, -0.1199178994, 0.368881911, 0.1807006896, 0.1382277608, -0.0852120891, -0.1296655238, -0.3972429037, 0.2983496189, 0.1317115426, 0.1694650203, 0.3729336858, 0.4860752225, -0.5674233437, -0.0275847465, 0.2408995777, -0.0820059255, -0.2319760621, -0.5787138343, 0.0741452426, 0.1343485713, 0.1837681234, 0.1799412817, -0.0001180599, 0.1449528784, 0.4684006274, 0.2060816437, -0.6819633245, -0.0856231898, -0.1658631563, -0.1279903054, 0.3208133578, -0.0690777227, 0.1317872256, -0.2993811965, 0.2840439975, -0.3241883516, 0.1400140822, 0.4661123455, 0.1768935025, 0.2232485414, 0.0355276242, 0.2963495553, 0.2246191502, 0.3057032824, -0.0642742068, 0.0225168318, 0.2490639687, 0.5164731741, -0.0466829129, 0.3044884503, -0.1097128317, -0.3461031616, 0.151293695, 0.1833878011, 0.1994549632, -0.2152294815, 0.1340061575, 0.0134584187, 0.559718132, -0.4376443624, -0.1601392627, -0.239980638, -0.1339335144, -0.1432038546, 0.2294409573, 0.1206059456, -0.2808731198, 0.4999404252, -0.3562497795, -0.3182739913, -0.2685393393, -0.0708176196, -0.010250628, -0.152887851, -0.2506071925, 0.1657451838, -0.1827573627, 0.2157795876, -0.0832351893, -0.2934996188, -0.0698480457, -0.1787752211, 0.0691013634, -0.0906247646, -0.0050330125, -0.1460139751, -0.0950104818, -0.0288153049, -0.00238459, -0.0100429617, 0.3453403413, 0.0766510814, 0.4637840092, 0.0726140141, 0.3933341801, 0.170956865, -0.0247004703, 0.1267793775, 0.331687808, -0.3063759506, 0.3164299726, 0.2413715273, 0.1670804471, -0.300585568, 0.1296255887, -0.3068226576, -0.0729348958, 0.0900440812, -0.0182394683, 0.0932418182, 0.0036977604, 0.1688583195, 0.1365751624, -0.0851950645, 0.1672448516, 0.027933754, 0.2186058164, 0.0639151633, -0.1007550955, 0.0687319785, -0.1920706332, -0.0202610418, -0.0244909972, -0.1460306346, 0.1155524924, 0.0659440458, 0.2069481462, -0.1051698998, -0.1531258523, -0.0523854755, 0.1600600034, 0.5171223879, -0.4261569381, 0.263912797, 0.0571803302, -0.0798494816, -0.1211641282, 0.3827717006, -0.0130478144, -0.4193394184, 0.1440355927, 0.0797206387, -0.1925652623, 0.1210363954, -0.3839591444, -0.1830465049, 0.0228526443, -0.1718218923, 0.2358083874, -0.2428782582, 0.0101263747, -0.2272457033, -0.0457868353, 0.1608250141, -0.1947690994, -0.1069454849, -0.1489478052, -0.4786725044, 0.7286792397, -0.1285429001, 0.0494995788, 0.4333667159, -0.21604985, -0.3962884545, 0.4247332811, -0.2746762633, -0.2605843544, 0.3615233898, -0.4956051111, 0.4633187652, 0.3245588243, 0.1980673522, 0.0893632993, -0.0297741108, 0.1201323569, -0.3002181351, 0.2200370431, 0.207102716, -0.23946473, -0.1902951896, -0.084035784, 0.1256891638, -0.0978197977, 0.0546352938, -0.0002776533, 0.0439176708, 0.3048695624, 0.1535115093, 0.028401792, -0.2191172689, 0.136113137, 0.2374195158, -0.19281739, -0.0950850993, -0.1431471407, -0.0327363312, -0.2658728361, -0.0368484408, -0.4485419393, -0.2092805058, 0.0502898246, 0.2111273259, 0.0256069936, -0.2873525023, 0.0026616976, 0.2300603688, 0.1467436254, 0.2893286049, -0.2135193348, 0.4315737188, -0.49243626, 0.1644489765, 0.1382876039, -0.1706265509, 0.1656694561, -0.0245367102, -0.0424520932, 0.0380516797, -0.2710112035, 0.1686793119, -0.0360042714, 0.2886778712, -0.0269570537, 0.1526561677, -0.2425820231, 0.2272117585, 0.0727078617, 0.0035589635, -0.0096560037, 0.162001729, -0.0982813984, 0.1219335347, 0.0100626778, -0.0682203248, 0.0612160228, 0.1239873916, -0.0029772595, -0.0025336295, -0.245842278, 0.3253136575, -0.2929027379, -0.2020265758, -0.0993835479, -0.2407430261, 0.1680091918, 0.2397517711, -0.2445982546, 0.1981150657, 0.5945556164, -0.1142944321, -0.067398876, 0.3340903819, 0.1119408533, -0.0784528181, 0.1370967925, 0.0903343856, 0.1073058099, 0.1641958207, 0.1526742131, 0.0173448268, 0.12431027, -0.0069750845, 0.2460539043, 0.1179321781, -0.3268172443, 0.0067925062, -0.2291563898, -0.167750597, -0.1305984557, 0.1232901737, -0.4932426512, -0.021622166, -0.326292634, 0.0318342671, -0.2363893241, -0.3483006656, -0.6054054499, -0.062922731, -0.1207659245, -0.3933291137, 0.2839479446, 0.0013737504, -0.2738997936, -0.1414476931, 0.1626861095, 0.398584187, -0.0244088434, 0.1813145727, -0.5563156605, 0.3898975849, -0.3940708041, 0.0558722094, -0.1074174494, 0.1637451947, 0.3210858405, -0.3589544594, -0.0686535314, -0.2984555364, -0.03290499, 0.1503033042, -0.124384746, 0.3846013844, 0.1836292595, 0.1446366161, 0.1930284649, -0.1698113829, -0.1140003204, -0.2072124481, -0.0516152047, -0.2044171095, 0.2338190079, 0.1644959748, -0.3444998264, -0.3177578151, -0.2811039686, -0.2852051258, 0.1395975649, -0.2266305983, 0.3257313669, -0.3604025245, -0.0258165114, 0.2454820722, -0.3515592515, 0.5465457439, 0.1042623296, -0.7475800514, -0.2174994498, 0.0302952304, -0.0597591959, -0.2551205754, 0.4536774457, -0.2607750595, -0.0767368972, -0.7462230921, 0.0660566539, -0.2379437685, -0.1159114689, 0.305966258, -0.0538373068, 0.1463968903, 0.1931364834, -0.061252553, 0.053965345, 0.124483943, 0.027982384, -0.4099285603, 0.3065111637, 0.2965651453, 0.1893909872, 0.082221128, 0.2465164214, 0.2810040712, 0.0852203369, -0.2378202379, -0.0867361724, 0.7142136097, -0.3417418003, -0.1789515018, 0.1240453273, 0.0556169078, -0.3776140511, 0.1220380366, -0.100181058, 0.398961544, 0.1636795402, 0.1444739848, 0.0491138101, -0.369281441, 0.0547099262, 0.0996537209, -0.0200874545, -0.0651737601, 0.0506220907, 0.2321876734, 0.0743866861, 0.0726087317, 0.6089344025, 0.2598010302, 0.359244585, -0.3870889544, -0.3552198112, -0.5714658499, -0.1087386236, 0.1692546904, 0.043636322, -0.4236885309, -0.0780557021, 0.3002099395, 0.0457752384, 0.4229606092, 0.10642232, -0.0676102564, -0.2087321281, 0.0002407208, 0.1899526566, 0.0841220394, -0.2580264807, 0.2130457759, 0.44006446, -0.238507852, -0.342969656, -0.2365407944, 0.3087860644, -0.2244273722, -0.089173764, -0.2934216261, -0.3690195978, -0.0788289234, -0.2005898952, -0.0087904409, 0.1715463996, 0.1133401468, -0.5838227272, -0.3357169032, 0.3812632263, 0.3573180437, 0.0346926861, -0.2963630557, 0.0773243383, -0.2547170818, -0.2744424343, 0.15039891, 0.6171965599, 0.4491699934, 0.2272641957, 0.322555244, -0.0342022181, 0.0128656067, -0.2113779336, 0.2160159647, 0.2802972794, -0.2634662986, 0.0105416998, -0.0466081724, 0.2632804811, -0.1785396188, 0.1241729781, 0.4459398985, 0.1868677884, -0.2318390012, -0.309520781, 0.0230618529, 0.0784420371, 0.0268969685, 0.3604997993, 0.1483636647, -0.1881166101, -0.0462065935, 0.0034313016, 1.1015577316, -0.1373367459, 0.260990262, 0.2877703905, -0.3302659988, 0.3510971367, 0.1281824857, 0.0136732049, -0.1311531663, -0.0354514718, 0.0643991753, -0.2890270054, 0.1884384006, -0.0490272157, -0.1270770133, -0.042887114, 0.0215856284, -0.04151107, 0.0800619423, 0.1023902521, -0.2160449028, 0.106084533, -0.2881341875, 0.0192073546, -0.0265413709, -0.013920919, -0.1174459681, 0.0361348018, 0.1522871107, -0.320829004, -0.1644945741, -0.3527442217, 0.5632612705, -0.1109794527, 0.026469864, 0.1226060539, -0.0527876616, 0.3851516843, 0.0218640547, 0.2955078781, 0.0929024667, -0.4084982574, -0.0887896195, 0.100025095, 0.1308554113, 0.0152941421, 0.174143523, -0.0800393522, -0.3821744919, 0.1858171076, -0.0296148378, -0.380140543, 0.2591862082, -0.2220318913, 0.194829762, -0.3954451382, 0.0477760434, 0.0720045269, -0.1736709476, 0.0508773476, 0.0975691676, 0.3021851778, -0.2064764202, 0.2860212326, -0.3368217349, -0.6666278243, -0.2260285765, 0.1795534641, 0.1741957515, -0.0506713577, 0.2291258723, -0.0015556216, -0.4376494586, -0.1027030721, 0.1720988154, -0.0048593469, -0.117188327, 0.1323745698, 0.2386431098, -0.0581314415, -0.300134629, 0.3246010244, -0.0627129748, 0.0210991837, -0.4857231081, -0.0362964347, -0.4227105975, 0.2273529321, -0.1513473392, 0.4059918523, 0.1191438809, -0.0322222263, 0.0361277983, -0.2973764241, -0.2570328116, -0.3470445275, -0.2968784571, -0.0136985946, 0.1911918968, 0.0763876289, 0.3403454125, 0.1696933508, 0.0262364447, 0.037167944, -0.2174253762, -0.1059134901, 0.1565166265, 0.1749452353, -0.1161087155, 0.3147472739, -0.0786360279, -0.0577071905, 0.1212154925, 0.1780866534, 0.6493929029, 0.3984886408, 0.0585937761, 0.0507429577, 0.1323216856, 0.1496217102, -0.0532163866, 0.1916857362, 0.0050909985, 0.0918294787, -0.1048524529, -0.0315282531, -0.3787104487, -0.1021005735, 0.402752459, 0.2205819637, 0.3114811778, 0.431188643, 0.4334315956, -0.0558763258, 0.0868912637, -0.0006715991, 0.216383189, 0.1681905687, -0.0863659382, -0.3955235779, -0.1428178549, 0.0818756372, 0.2249927223, 0.010132134, -0.3440757394, -0.2673564553, -0.2052143663, 0.3394453228, -0.0800554901, -0.0660982728, 0.5081415772, 0.0618031397, 0.2550146878, -0.1932759881, -0.1969996542, 0.0877112076, -0.346974194, 0.246604383, 0.3824839294, 0.297450006, -0.1563683301, -0.1022447273, -0.0636556149, 0.12384855, 0.1860051751, -0.0362978056, -0.1381463557, 0.0802372843, 0.0349013433, 0.4141361415, -0.1623231024, -0.0629571527, 0.1144634485, -0.2482878864, -0.0862404406, 0.1089327633, 0.0779775381, -0.1425807327, -0.2707242966, 0.1697161645, -0.1490852535, -0.0106327087, -0.0939106941, -0.0192939341, 0.0304034259, 0.0467407256, -0.1583869308, -0.0355546996, 0.0707539469, -0.234691143, -0.2739597261, -0.2087144852, 0.0998001546, -0.0873744637, -0.0136819649, -0.0403724201, 0.4138677716, 0.4520377815, 0.3165358305, 0.4676984251, 0.2450832129, 0.5179719925, 0.0220564343, -0.1365851611, 0.0280262753, -0.24763152, 0.433234781, -0.0208042935, -0.1089087427, 0.3140864074, 0.0920556262, -0.0360753536, 0.1127451882, -0.0555475466, 0.2130405605, -0.3242703974, 0.7055281401, 0.0282984078, -0.2022131383, -0.2135062069, 0.0174818933, -0.5186848044, -0.0205284785, 0.1742925942, -0.1370123774, 0.03331507, -0.4020622373, 0.0729154348, 0.1446977854, 0.4893354177, 0.6453390718, 0.3660603166, -0.1532874852, -0.0984083787, -0.1929563135, 0.2629056871, 0.157194227, 0.0401859134, -0.0300218798, -0.1838278323, -0.0041461512, 0.3262837529, 0.1542158127, -0.2445580661, -0.5066196322, -0.0445621796, 0.0106717795, 0.0687694028, 0.397664398, 0.2572368681, -0.1642969698, -0.003292881, 0.5116845369, -0.2611891925, -0.0154581554, 0.1191214472, 0.3817167282, -0.1467202008, -0.2076236755, 0.0127188973, 0.2066598386, -0.0640815794, 0.0247611031, -0.3828260899, -0.0304995291, 0.0328764431, -0.1318736374, -0.0021377727, -0.2604812682, 0.4260800183, -0.0194153525, -0.0970737934, -0.3136410713, 0.1424212009, 0.15749982, 0.1751761734, 0.230217427, -0.1871322095, -0.2503663003, -0.0390239246, 0.2734517455, 0.270313412, 0.35041067, -0.0574520417, -0.1396737993, -0.1904396713, 0.3595770299, -0.1550257206, -0.2110393047, -0.1184632033, 0.2866291404, 0.1683882773, -0.1935354322, -0.5391811132, -0.0296887308, 0.2199973017, -0.2367366403, 0.1419857144, 0.0874833912, -0.3980548978, 0.2825976014, -0.0191191062, 0.4385913312, -0.2042132616, 0.3405646682, -0.1298887432, -0.5378353596 ]
https://github.com/huggingface/datasets/issues/2003
Messages are being printed to the `stdout`
@lhoestq, sorry for the late reply I completely understand why you decided to output a message that is always shown. The only problem is that the message is printed to the `stdout`. For example, if the user runs `python run_glue.py > log_file`, it will redirect `stdout` to the file named `log_file`, and the message will not be shown to the user. Instead, we should print this message to `stderr`. Even in the case of `python run_glue.py > log_file` only `stdout` is being redirected and so the message is always shown.
In this code segment, we can see some messages are being printed to the `stdout`. https://github.com/huggingface/datasets/blob/7e60bb509b595e8edc60a87f32b2bacfc065d607/src/datasets/builder.py#L545-L554 According to the comment, it is done intentionally, but I don't really understand why don't we log it with a higher level or print it directly to the `stderr`. In my opinion, this kind of messages should never printed to the stdout. At least some configuration/flag should make it possible to provide in order to explicitly prevent the package to contaminate the stdout.
90
Messages are being printed to the `stdout` In this code segment, we can see some messages are being printed to the `stdout`. https://github.com/huggingface/datasets/blob/7e60bb509b595e8edc60a87f32b2bacfc065d607/src/datasets/builder.py#L545-L554 According to the comment, it is done intentionally, but I don't really understand why don't we log it with a higher level or print it directly to the `stderr`. In my opinion, this kind of messages should never printed to the stdout. At least some configuration/flag should make it possible to provide in order to explicitly prevent the package to contaminate the stdout. @lhoestq, sorry for the late reply I completely understand why you decided to output a message that is always shown. The only problem is that the message is printed to the `stdout`. For example, if the user runs `python run_glue.py > log_file`, it will redirect `stdout` to the file named `log_file`, and the message will not be shown to the user. Instead, we should print this message to `stderr`. Even in the case of `python run_glue.py > log_file` only `stdout` is being redirected and so the message is always shown.
[ 0.054125011, -0.4283028245, -0.0178410672, 0.1863198578, 0.1776288152, -0.1547814161, 0.3838966191, 0.1616000831, 0.0672426671, 0.244425565, 0.1907831728, 0.3053059876, -0.1425594091, 0.2849759459, 0.2610243559, 0.141788438, -0.0724065602, 0.0228823088, -0.4255488813, 0.107640855, -0.0089993551, 0.1110259369, 0.1996387392, 0.4757938683, -0.6451060176, -0.0969338492, 0.219925195, 0.0682548359, -0.1504667699, -0.5180290937, -0.003876783, 0.1959687322, -0.0711478293, 0.218725577, -0.0001107846, 0.111444816, 0.5583914518, 0.1802081466, -0.5341900587, -0.1494894177, -0.0687196031, -0.2411949933, 0.3232272565, -0.1385635883, -0.1318152994, -0.2632324696, 0.2714946866, -0.3419896364, 0.3885948658, 0.2979873717, 0.2185656428, 0.2383880615, 0.0107338876, 0.2430756539, 0.1254062057, 0.2416488379, 0.0376768932, -0.0428687297, -0.0429108031, 0.3080662191, -0.2036431134, 0.4286542535, -0.0826229081, -0.2804136574, 0.0262908079, 0.1417253911, 0.1627257466, -0.3487529755, 0.0097640585, 0.099357307, 0.2654749453, -0.4483454227, -0.1097153351, -0.3162622154, -0.0963752866, -0.1171586961, 0.1848399192, 0.1446035951, -0.1712843329, 0.3809219897, -0.190245524, -0.2524471283, -0.2295149714, -0.0734090433, -0.1247817129, 0.0199616682, -0.3208538294, 0.2482614666, -0.2218213081, 0.2160467505, -0.1857298613, -0.2165316641, -0.1245652661, -0.0516972393, -0.0614771806, 0.005703494, 0.1151545346, -0.0911648273, -0.0116030723, -0.1248356402, -0.2013797611, 0.0620358959, 0.2232738137, 0.1918915957, 0.4884250164, 0.0879194587, 0.5125945807, 0.281455636, 0.1908004284, -0.0421318188, 0.0905307382, -0.2021927387, 0.3088912666, 0.1708643436, 0.2888864279, -0.2328934669, 0.2866509557, -0.0900234878, -0.0649683475, 0.1431061327, -0.0611834377, 0.0710893422, -0.0234852191, 0.2419446707, 0.0153703466, -0.1141117066, 0.3781524897, -0.0502083562, 0.0626935959, -0.0070137009, -0.1976066977, 0.0261097476, -0.3317316771, 0.0355130732, -0.102464743, -0.0499898121, 0.0674199685, 0.0976910293, 0.153589353, -0.1075142398, -0.1262117028, -0.0576670282, 0.4185283184, 0.4810253084, -0.2644609511, 0.2954937816, 0.1943540573, -0.2578790486, -0.1323115826, 0.195291698, 0.0771414116, -0.2959941328, 0.1112998053, 0.183035776, -0.3067577183, 0.3234336674, -0.2131379694, 0.0265496355, -0.0012508929, -0.1195104867, 0.235718742, -0.1698851138, -0.0174303576, -0.2179440856, 0.1805112958, 0.3643777966, -0.2229034603, -0.1052754223, -0.0771991089, -0.4211501479, 0.3274553418, -0.2325007021, 0.1644016504, 0.3366906643, -0.3936917782, -0.3250601888, 0.4573612213, -0.3337568641, -0.1708880365, 0.2364999354, -0.40482077, 0.4652933478, 0.2076697052, 0.0043008551, -0.0059945025, 0.0376351029, 0.1742016524, -0.1800450981, 0.3051738739, 0.1302232891, -0.2291006595, -0.0451011099, -0.1515158713, -0.0034160465, -0.0958901495, -0.0259336419, -0.0169939063, -0.1171621084, 0.4299752712, 0.2623738647, 0.0772479549, -0.236166358, 0.2408172041, 0.2613837421, -0.0685643107, -0.0481192693, -0.0634816289, 0.006226778, -0.1658303738, 0.0544401407, -0.3115944862, -0.2219983786, 0.1507138014, 0.1317087114, -0.1692023873, -0.3026208282, 0.1607027352, 0.2380982339, 0.1132998317, 0.3026779294, -0.1198462471, 0.5206788182, -0.3534440398, 0.0884946883, -0.1319673657, -0.0621947795, 0.2574375272, -0.1281384975, -0.0756494179, 0.2081561983, -0.0934104696, 0.1671346128, 0.0381669812, 0.42329216, -0.0043451823, 0.1183205172, -0.3124952614, 0.0500709042, 0.0097989943, -0.0047037229, 0.0895716697, 0.1420450062, -0.1465665996, 0.1471800804, 0.0384489074, -0.0887249038, 0.1721269339, 0.150696665, -0.0438552983, 0.0488441139, -0.1227514222, 0.1988382936, -0.4711335003, -0.3036490679, -0.278558284, -0.1713646501, 0.3033117652, 0.1184074134, -0.3035775125, 0.237968415, 0.7682508826, -0.030136954, 0.0205505956, 0.0657914281, -0.2529129088, 0.0181569979, 0.110272795, 0.2093631923, 0.1760622859, 0.2615461349, 0.2001331747, 0.0508064851, 0.0062753819, 0.0126906224, 0.224154219, 0.0651091263, -0.2292538285, 0.0869500041, -0.0851278901, -0.2262381464, -0.233164981, 0.2796401381, -0.514092207, -0.1945187598, -0.3919095099, 0.0182173103, -0.2353744507, -0.4033132792, -0.5682980418, -0.0971947387, -0.093899861, -0.3950073123, 0.354493916, -0.049344901, -0.2513549924, 0.0566960275, 0.3190594912, 0.2767202258, 0.0284165815, 0.1718170643, -0.4514873624, 0.2630799711, -0.404206425, 0.0542787947, -0.2848892808, 0.1247040182, 0.3621218503, -0.2116228491, -0.0718003958, -0.2785492241, -0.0587097667, 0.2219147086, -0.2349594831, 0.5601469874, 0.3041004241, 0.0496967435, 0.2447496653, -0.1081945151, 0.0988119245, -0.3349269032, -0.0422325172, -0.230694592, 0.1663374454, 0.188520804, -0.3057374656, -0.2492797673, -0.3592655659, -0.3399183154, 0.2599511743, -0.2132181227, 0.2335208356, -0.1511968672, -0.112375237, 0.1376271695, -0.3935934007, 0.4972851872, -0.0881851465, -0.6302129626, -0.1551143378, -0.1244045943, -0.0908231661, -0.1654585302, 0.1136175394, -0.2327754647, -0.2250757962, -0.560444057, -0.2937104404, -0.2211569846, -0.1356341392, 0.264737159, 0.3401816487, 0.1737588793, 0.1155197322, -0.1217628717, -0.077553615, -0.0946769193, 0.0891969949, -0.3017316461, 0.2018405646, 0.231445685, 0.1525158882, 0.0308498442, 0.1316175014, 0.3769790232, 0.1231824756, -0.2599916458, -0.1977272034, 0.934484005, -0.3076800704, -0.1384757757, -0.014909368, 0.1217964143, -0.3135747313, 0.137177214, -0.0295713544, 0.4288762808, 0.1746637821, 0.0135243237, -0.140327394, -0.4702349603, -0.0877082348, 0.0079164999, -0.1061838642, -0.0382949486, 0.0241900384, 0.2270083427, 0.1013317555, -0.0078089759, 0.4861997366, 0.3321849108, 0.3255203962, -0.257286936, -0.3790226579, -0.4488614202, -0.1084594205, -0.1151634306, -0.0170601495, -0.284850955, -0.3079063296, 0.3015508056, 0.1109930575, 0.4875510037, -0.0799731389, 0.073655352, -0.0477080792, 0.0399409533, -0.0594902784, -0.0044629201, -0.2306835055, 0.223995626, 0.3898355961, -0.0665592849, -0.2347533256, -0.2896492481, 0.332334727, -0.1647359282, -0.2118754834, -0.3469474614, -0.4939075112, 0.0554594919, -0.0708002746, 0.1633120179, 0.1989542097, -0.02985375, -0.4865507483, -0.463732183, 0.2801907063, 0.1129296347, 0.0338784009, -0.0750612319, 0.212946102, -0.2921413183, -0.2156690657, 0.3172504008, 0.5881595016, 0.0688562989, 0.2073205411, 0.07943964, 0.0881096125, 0.0209727027, -0.2785409093, 0.3618937135, 0.2727496624, -0.2944973409, 0.0256185383, -0.203667447, 0.2632231712, -0.2290896475, 0.0429351106, 0.3444985151, 0.2117919773, -0.1790153384, -0.3018656373, 0.0961392447, -0.0411255807, -0.1296865493, 0.3108430803, 0.2002137452, -0.3194749355, 0.045675505, -0.1375168413, 0.9276248813, -0.049197834, 0.2219362408, 0.2238160968, -0.2233253419, 0.3959758282, 0.0447032899, 0.1350616813, -0.26584059, -0.157831803, 0.1012429222, -0.2373302132, -0.0095096808, 0.0341935605, -0.1483630836, 0.039288424, 0.0145299286, -0.0474168435, -0.0873329192, 0.1859939843, -0.1557830423, 0.0478832088, -0.4868290126, 0.081060037, 0.1670161784, -0.0533472449, -0.0447650515, 0.0376884826, 0.4169225991, -0.3255187571, -0.0336936265, -0.2197089344, 0.2313962877, -0.1718175709, 0.1313593388, 0.0232820213, -0.1901387274, 0.2200405002, -0.0098538212, 0.5312999487, 0.227298528, -0.3040037155, 0.2454186976, 0.146080032, -0.0669892505, 0.1092392355, 0.3509555459, 0.082515046, -0.428255558, 0.2340438068, -0.0461787395, -0.2830714583, 0.0751057565, -0.0555658229, 0.1881592423, -0.3063423038, 0.1682015061, 0.1003823876, -0.0473901965, 0.0465489551, 0.1458730847, 0.3736647964, -0.3556675613, 0.3597011864, -0.2477940917, -0.6420055628, -0.0725753307, -0.0022321604, 0.1410233676, 0.1321803331, 0.1211477071, 0.0531029105, -0.3038240671, -0.1832687557, 0.0849185809, 0.2430808544, 0.0785034746, 0.1308675408, 0.3694795072, -0.023278594, -0.0923414081, 0.1055511162, -0.117514953, -0.0438431017, -0.5810171962, -0.1720309258, -0.2917283475, 0.2343805283, -0.1726212204, 0.392842561, 0.3371571302, -0.0697135925, 0.1000313163, -0.0485726483, -0.3665169775, -0.3736621439, -0.1796023101, 0.1179322153, 0.282240808, 0.0690287948, 0.3685359657, 0.0198376551, 0.1314407289, -0.0938633382, -0.2340658307, -0.2157687247, 0.1162946224, 0.1149278209, -0.1505062729, 0.3382868767, -0.1192695126, -0.1658314317, 0.2831535339, 0.0107907653, 0.830278039, 0.380509913, -0.0503564104, 0.0797237605, 0.0365440249, 0.0940264165, -0.0143630952, 0.1291985959, 0.039477054, -0.1125790626, -0.002794683, -0.0728808939, -0.4296862185, -0.0618371256, 0.4453522563, 0.2021916062, 0.1739313304, 0.5326749086, 0.1915156841, -0.0546603724, -0.1256485432, -0.2378996313, 0.4046913981, 0.0986344442, -0.0769898295, -0.4025778472, -0.1153153181, 0.195255667, 0.0609418005, 0.0851306766, -0.1067548543, -0.3498919904, 0.0727884695, 0.3925573826, 0.0188668966, -0.0715334713, 0.4490740895, 0.1405652612, 0.1830879152, -0.3522501588, -0.1274859607, 0.0602807067, -0.3531312943, 0.1583716869, 0.4669975936, 0.1810622513, -0.1216164231, 0.0250405129, 0.1749842465, 0.1975757927, 0.2322558761, -0.1198532283, -0.0334317535, 0.1030743122, 0.0993200541, 0.2516612411, -0.2458590269, -0.0670950934, -0.0377260149, 0.0330493189, -0.2389988899, 0.1359069198, 0.0128854215, -0.1712243408, -0.1869761646, 0.1009695679, 0.0068518817, 0.0185961723, -0.1414891034, -0.1694045365, 0.2064242363, -0.0798676983, -0.0593568236, -0.033769656, 0.1082221195, -0.1675758362, -0.2668060958, -0.1747728288, 0.0726372451, -0.0165565684, 0.1455658078, -0.1115006357, 0.4508193135, 0.35212183, 0.286558032, 0.3099735677, 0.1852803379, 0.3356392086, 0.013408877, -0.120337218, -0.0764831156, -0.3353629708, 0.3160898685, -0.012912482, -0.2447960973, 0.1927162558, 0.2330977321, -0.1097831726, 0.07183671, -0.0239260308, 0.0817841738, -0.2276335657, 0.6042565107, 0.1579874903, -0.2104890049, -0.2526174784, -0.0216337293, -0.6160032153, -0.1130652577, 0.4817125797, -0.0899934024, -0.0288037602, -0.5377421379, 0.1322620511, 0.1168788821, 0.2316971719, 0.4534966052, 0.3030887842, 0.0223232992, 0.0053225607, -0.2670533657, 0.3397334218, 0.0974478051, -0.1241299585, -0.1588825732, -0.1152590215, 0.0200449787, 0.1332342923, 0.2141842842, -0.0767306536, -0.4619906247, -0.205126524, -0.0448316559, 0.036786478, 0.3576842248, 0.1559446454, -0.0222839527, -0.0010505095, 0.2269450128, -0.2366587073, 0.0921263695, 0.3040313721, 0.3641933203, -0.0291608535, -0.187309742, 0.2222925127, 0.2810080647, 0.0603166334, -0.093568489, -0.1979129612, -0.158364296, 0.0454438552, -0.3171055913, 0.0281598363, -0.1240469739, 0.433673203, -0.0226712003, -0.2668977082, -0.2442460209, 0.0407405794, 0.2229071259, 0.0435877778, 0.3966625631, -0.0439388305, -0.1420144439, -0.0084752589, 0.153993547, 0.3463276327, 0.2588291168, -0.075805977, -0.0459535196, -0.2183856666, 0.2991539836, -0.3736027777, -0.3177957237, -0.1893787682, 0.3814634383, 0.0958502442, -0.1871169508, -0.5491603613, -0.1038086489, 0.245692417, -0.1885931641, 0.1300996244, 0.1423918605, -0.3548879623, 0.2615867257, -0.0409368239, 0.2532683909, -0.0565303378, 0.2077296972, -0.0719633773, -0.5686920285 ]
https://github.com/huggingface/datasets/issues/2000
Windows Permission Error (most recent version of datasets)
Hi @itsLuisa ! Could you give us more information about the error you're getting, please? A copy-paste of the Traceback would be nice to get a better understanding of what is wrong :)
Hi everyone, Can anyone help me with why the dataset loading script below raises a Windows Permission Error? I stuck quite closely to https://github.com/huggingface/datasets/blob/master/datasets/conll2003/conll2003.py , only I want to load the data from three local three-column tsv-files (id\ttokens\tpos_tags\n). I am using the most recent version of datasets. Thank you in advance! Luisa My script: ``` import datasets import csv logger = datasets.logging.get_logger(__name__) class SampleConfig(datasets.BuilderConfig): def __init__(self, **kwargs): super(SampleConfig, self).__init__(**kwargs) class Sample(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [ SampleConfig(name="conll2003", version=datasets.Version("1.0.0"), description="Conll2003 dataset"), ] def _info(self): return datasets.DatasetInfo( description="Dataset with words and their POS-Tags", features=datasets.Features( { "id": datasets.Value("string"), "tokens": datasets.Sequence(datasets.Value("string")), "pos_tags": datasets.Sequence( datasets.features.ClassLabel( names=[ "''", ",", "-LRB-", "-RRB-", ".", ":", "CC", "CD", "DT", "EX", "FW", "HYPH", "IN", "JJ", "JJR", "JJS", "MD", "NN", "NNP", "NNPS", "NNS", "PDT", "POS", "PRP", "PRP$", "RB", "RBR", "RBS", "RP", "TO", "UH", "VB", "VBD", "VBG", "VBN", "VBP", "VBZ", "WDT", "WP", "WRB", "``" ] ) ), } ), supervised_keys=None, homepage="https://catalog.ldc.upenn.edu/LDC2011T03", citation="Weischedel, Ralph, et al. OntoNotes Release 4.0 LDC2011T03. Web Download. Philadelphia: Linguistic Data Consortium, 2011.", ) def _split_generators(self, dl_manager): loaded_files = dl_manager.download_and_extract(self.config.data_files) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": loaded_files["train"]}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": loaded_files["test"]}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": loaded_files["val"]}) ] def _generate_examples(self, filepath): logger.info("generating examples from = %s", filepath) with open(filepath, encoding="cp1252") as f: data = csv.reader(f, delimiter="\t") ids = list() tokens = list() pos_tags = list() for id_, line in enumerate(data): #print(line) if len(line) == 1: if tokens: yield id_, {"id": ids, "tokens": tokens, "pos_tags": pos_tags} ids = list() tokens = list() pos_tags = list() else: ids.append(line[0]) tokens.append(line[1]) pos_tags.append(line[2]) # last example yield id_, {"id": ids, "tokens": tokens, "pos_tags": pos_tags} def main(): dataset = datasets.load_dataset( "data_loading.py", data_files={ "train": "train.tsv", "test": "test.tsv", "val": "val.tsv" } ) #print(dataset) if __name__=="__main__": main() ```
33
Windows Permission Error (most recent version of datasets) Hi everyone, Can anyone help me with why the dataset loading script below raises a Windows Permission Error? I stuck quite closely to https://github.com/huggingface/datasets/blob/master/datasets/conll2003/conll2003.py , only I want to load the data from three local three-column tsv-files (id\ttokens\tpos_tags\n). I am using the most recent version of datasets. Thank you in advance! Luisa My script: ``` import datasets import csv logger = datasets.logging.get_logger(__name__) class SampleConfig(datasets.BuilderConfig): def __init__(self, **kwargs): super(SampleConfig, self).__init__(**kwargs) class Sample(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [ SampleConfig(name="conll2003", version=datasets.Version("1.0.0"), description="Conll2003 dataset"), ] def _info(self): return datasets.DatasetInfo( description="Dataset with words and their POS-Tags", features=datasets.Features( { "id": datasets.Value("string"), "tokens": datasets.Sequence(datasets.Value("string")), "pos_tags": datasets.Sequence( datasets.features.ClassLabel( names=[ "''", ",", "-LRB-", "-RRB-", ".", ":", "CC", "CD", "DT", "EX", "FW", "HYPH", "IN", "JJ", "JJR", "JJS", "MD", "NN", "NNP", "NNPS", "NNS", "PDT", "POS", "PRP", "PRP$", "RB", "RBR", "RBS", "RP", "TO", "UH", "VB", "VBD", "VBG", "VBN", "VBP", "VBZ", "WDT", "WP", "WRB", "``" ] ) ), } ), supervised_keys=None, homepage="https://catalog.ldc.upenn.edu/LDC2011T03", citation="Weischedel, Ralph, et al. OntoNotes Release 4.0 LDC2011T03. Web Download. Philadelphia: Linguistic Data Consortium, 2011.", ) def _split_generators(self, dl_manager): loaded_files = dl_manager.download_and_extract(self.config.data_files) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": loaded_files["train"]}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": loaded_files["test"]}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": loaded_files["val"]}) ] def _generate_examples(self, filepath): logger.info("generating examples from = %s", filepath) with open(filepath, encoding="cp1252") as f: data = csv.reader(f, delimiter="\t") ids = list() tokens = list() pos_tags = list() for id_, line in enumerate(data): #print(line) if len(line) == 1: if tokens: yield id_, {"id": ids, "tokens": tokens, "pos_tags": pos_tags} ids = list() tokens = list() pos_tags = list() else: ids.append(line[0]) tokens.append(line[1]) pos_tags.append(line[2]) # last example yield id_, {"id": ids, "tokens": tokens, "pos_tags": pos_tags} def main(): dataset = datasets.load_dataset( "data_loading.py", data_files={ "train": "train.tsv", "test": "test.tsv", "val": "val.tsv" } ) #print(dataset) if __name__=="__main__": main() ``` Hi @itsLuisa ! Could you give us more information about the error you're getting, please? A copy-paste of the Traceback would be nice to get a better understanding of what is wrong :)
[ -0.1825570166, 0.1823854893, -0.0400313139, 0.2590481639, 0.0813783184, 0.1336375475, 0.4580339789, 0.0122547783, 0.1864634156, 0.0741283819, -0.0634555146, -0.0112268105, -0.1087958217, 0.1572922766, -0.0323621444, -0.0282510258, 0.1453508586, 0.0480686054, 0.0319976211, 0.1396460235, -0.405230999, -0.0071212566, -0.2379359305, 0.1073664874, -0.2231616974, 0.2783436477, -0.0157263093, 0.3908288777, -0.0338034034, -0.2350182384, 0.2101648748, 0.3624858558, 0.6620943546, 0.245353058, -0.0001126285, -0.0484501496, 0.0420433059, -0.0201318711, 0.2068192363, 0.2423871607, 0.1341382712, -0.0451872125, 0.0041252375, -0.1066694111, -0.1698371768, 0.2000021785, -0.0654302612, -0.3538348377, 0.1139983088, 0.4263343811, 0.187195912, 0.2474630475, -0.1806876957, -0.0106541142, 0.5910394192, 0.0475982949, -0.1261595488, 0.1927931309, 0.29002437, -0.44280532, 0.2141414285, 0.1609823406, -0.2268587351, 0.0855399966, 0.381826371, -0.1632638276, -0.1299570054, -0.2830390334, 0.158406049, 0.0000530491, 0.7270633578, -0.1692434102, -0.3009925783, -0.0341042504, 0.1393088996, -0.2671690881, 0.2275047898, 0.3365986049, -0.0505271032, 0.0753582716, -0.2347001731, -0.1671504527, -0.4434005022, 0.135895893, 0.1775051355, -0.2292980254, -0.0849332213, 0.2297087312, 0.0906638503, -0.1301718354, 0.3544329107, 0.1294438839, 0.0419613868, 0.2517596483, -0.4671477079, 0.3360510767, 0.2092743963, 0.2980219424, -0.0320271403, 0.2779501081, -0.1361711919, -0.2106278092, 0.2018985748, 0.125019908, 0.1772746891, -0.0542739928, 0.15196006, 0.2411273718, 0.137509495, -0.0225111581, 0.0402431935, -0.1174408942, -0.4900484979, -0.6061118841, 0.1152088046, 0.245481655, 0.3073367476, -0.089267157, -0.3613362014, 0.1164759994, 0.118135877, 0.0680990219, 0.2068187147, 0.409733057, 0.2663402259, 0.0119449068, 0.3739326, 0.2714996636, -0.0628644079, -0.0258000623, -0.0862125456, 0.004246261, -0.2458983511, -0.0498457327, 0.425786674, -0.3442580104, -0.1134993136, 0.117363438, 0.0353440829, -0.1213495135, 0.0494542271, -0.0187719576, 0.1164595708, 0.4388583899, 0.2584180832, 0.0349972993, 0.1450432986, -0.1851192117, -0.0282775536, 0.2364418954, -0.1324140728, -0.3404766917, -0.1883570701, 0.1011297256, 0.017074056, 0.0499142669, -0.2183056772, -0.1330369264, 0.1228498518, -0.0184607655, 0.1442885101, -0.100702554, -0.2660650313, -0.339794755, -0.1015142351, 0.8314391971, -0.5272636414, 0.1402402371, -0.1147453487, -0.3047670126, 0.1072497889, 0.3311965466, -0.0764997229, 0.1113564223, -0.2144826651, 0.1516456306, -0.1357121617, -0.3680853844, -0.1788970232, 0.3780057728, -0.0177539214, -0.103679806, 0.2437344193, -0.0390078425, 0.0444858968, -0.203356266, -0.0898013562, 0.1341281682, 0.1384611279, 0.2605624795, 0.2249746919, 0.0075679123, 0.2322093844, 0.312423259, 0.0553447455, -0.0627510399, 0.2918673158, -0.2186993957, 0.1895524114, -0.3010883629, 0.224545598, 0.416668117, 0.115819633, 0.3091974556, 0.0332213528, -0.2322228849, -0.4455737472, 0.2652015686, 0.3054819703, -0.1239579991, 0.0469026081, -0.2565838397, -0.1502390206, 0.2109270394, -0.3883989751, 0.1167709827, 0.089911513, 0.297970742, -0.1774018705, -0.3208982348, 0.034541361, 0.0563447028, -0.2444296181, -0.1111345515, -0.1534327865, 0.0384583548, -0.3066702485, 0.018042475, 0.2049438655, -0.0148222037, 0.415769726, -0.0743799061, 0.0026424751, 0.3591324091, 0.2803246081, -0.036778044, 0.0367962196, 0.0983092636, -0.2261276692, 0.0771443993, 0.1272580177, -0.0095816106, 0.0916863829, -0.1025228798, -0.0255540051, 0.1265100241, -0.2259501368, 0.0041119941, -0.287907958, 0.1314648837, -0.0096176863, 0.0248835981, -0.0246060789, -0.2199264467, 0.359380573, 0.509636879, -0.3285354078, -0.0453584269, -0.1026293486, -0.0515070707, 0.2793928087, -0.1505598724, -0.1328613907, 0.0687068775, 0.0991908833, 0.2852436304, 0.1979030371, 0.2263828367, 0.4385741949, 0.0644593611, -0.1653024107, 0.0529508963, 0.2032761872, -0.0528066345, 0.1483862996, -0.3353100717, 0.0793050528, 0.2603348792, -0.2992098927, 0.1275259256, -0.3775516748, -0.1403334737, 0.1440865546, 0.3369526863, -0.5138475299, -0.1326299161, -0.0149590448, -0.1334603727, 0.1105089858, -0.3155806661, -0.2831481099, 0.0130273104, -0.201353699, 0.1626413465, -0.2732630372, -0.1256409883, -0.4015876055, 0.0573597923, 0.2376945913, -0.003172867, -0.0217248276, 0.0865617096, -0.0238453988, 0.014601782, 0.493295908, -0.2829747498, 0.4370732605, -0.1266706437, 0.3814791143, -0.289830476, 0.1060906798, -0.247593686, -0.3344736397, 0.3203750849, 0.2462343276, 0.0983885303, -0.0262447372, -0.2058809698, 0.1195862144, -0.1224584132, -0.0811634883, 0.1755104363, 0.3042165041, -0.5918183327, -0.2506391406, -0.1534153521, -0.204292804, -0.3533949554, 0.2209896147, 0.135535419, 0.3110541105, 0.2072856724, -0.1218604743, 0.0530254096, 0.0434565432, 0.311153084, -0.3197954893, -0.0964619294, 0.013731447, -0.1502657533, -0.5285492539, 0.2205063403, 0.3835147023, -0.1217221692, 0.1091843694, -0.1158388853, 0.1251098514, -0.2140981108, 0.2546710372, -0.2282876372, 0.1662583202, 0.1928662062, 0.0734917745, 0.0805564597, -0.1694658995, -0.0990943834, -0.3450900912, -0.2438756526, -0.2646099329, 0.1542904824, 0.333039403, -0.1315142661, 0.2149935216, 0.342620939, 0.2264260054, 0.4461935759, -0.1276844591, 0.4316772819, 0.2818519473, -0.6437911987, 0.1521577239, -0.1861305684, -0.0530727506, 0.3601595461, -0.0777110904, 0.0294724908, -0.1574552059, 0.0583060533, -0.3378961682, -0.2107929289, -0.0072614867, -0.2567557395, 0.2782017887, -0.1479892135, 0.0072970763, -0.2808842659, -0.0628952459, 0.0054720156, 0.5689313412, 0.1167743951, -0.0616013855, -0.3760632873, 0.0078708008, -0.4856024683, 0.2696466744, 0.0624522641, 0.6091943979, -0.1555262655, 0.0315029249, 0.1437778622, 0.108525537, 0.9010460377, -0.439102143, 0.2763887346, 0.2481006384, 0.1166940331, -0.2631773353, -0.2115413696, -0.268221885, 0.0674351901, -0.0131371403, 0.3030072451, 0.0118964165, -0.3937037587, 0.0339971632, -0.1530510485, -0.0794089064, -0.4198117852, -0.253552109, -0.1815235764, -0.3771488667, -0.104181312, 0.2397939563, 0.1634426713, -0.256331861, 0.2497170717, -0.0224108174, 0.2882218957, 0.1148122028, -0.04067453, 0.1016071588, 0.3072128892, 0.078627117, -0.080945909, 0.123632744, 0.2123338431, 0.5588172674, -0.0261243153, -0.3647985756, -0.11076729, -0.0270072855, 0.4848943353, 0.084598355, -0.153303802, 0.1014048904, -0.2211101949, -0.0586444736, -0.3480156958, 0.073952809, 0.2731056809, -0.051542826, 0.0595359616, -0.2157609463, 0.3164067566, 0.1723265648, -0.1943373978, -0.0005692779, 0.142298907, -0.2947748005, -0.0935065821, 0.0510760657, 0.5023059845, -0.2940065861, 0.2797781527, 0.1955997944, -0.1659103334, -0.0711430833, 0.2135718912, -0.0846963227, -0.4017238915, -0.3005034924, -0.0134301037, -0.1052669138, -0.005474396, 0.1585411429, 0.084955059, 0.0400237814, -0.0924143493, 0.3835966289, 0.0317607373, 0.0596927106, -0.2020756602, -0.2441049516, 0.1019101292, 0.1519687772, -0.1361000538, -0.0235723667, -0.1311586946, 0.0135434829, 0.1534247547, 0.0239184052, -0.3978714645, 0.2855560184, -0.3279960454, 0.0107297897, -0.1360233873, 0.0947399586, 0.5240970254, 0.4402703643, -0.0064932741, 0.145454824, -0.2531165481, -0.2666567564, 0.1540937275, -0.2917832434, -0.2915799022, -0.0236649569, 0.2547364235, 0.021281302, -0.3019714355, -0.1922040135, -0.0331776105, -0.2432687879, -0.0630601197, 0.4675465524, 0.118787162, -0.5070379376, -0.168294102, -0.2320502996, -0.0584003963, 0.0715502053, 0.1030868143, 0.1528619081, -0.1085436195, 0.0619828254, -0.2745190263, -0.2699644566, 0.0699820966, 0.4720027149, -0.2750080526, 0.102183871, 0.5445801616, 0.402954787, -0.1602606177, -0.2423876971, 0.0846467912, 0.0800293684, -0.2135884762, 0.0007553659, 0.312019676, 0.0452673435, 0.4206764102, 0.0679823086, 0.2228616029, -0.4020853937, 0.1897778213, -0.4625520706, -0.1102990061, -0.0878791064, -0.1858237982, 0.3120948672, 0.0934095383, -0.1442581713, 0.0303125009, -0.2334228903, -0.2932748795, 0.1127858609, -0.0025984347, 0.1187578365, 0.4522461295, -0.229709059, -0.0856508017, -0.0219584405, 0.0636572391, -0.1481772661, -0.1781422645, -0.205838874, 0.0039550737, 0.1113950312, 0.1878644824, -0.3387503028, 0.085841082, -0.5403542519, -0.2182604074, -0.162023142, 0.2066287696, 0.2949583828, -0.1138813645, 0.4738370478, 0.0064514359, -0.0148760825, 0.021234028, 0.1910279095, -0.1915095001, 0.0859471783, -0.3789149821, 0.4132499695, 0.0258933529, -0.0854485184, -0.3049197495, 0.2492912263, 0.2421409637, 0.1775055528, 0.1364679486, -0.2938652635, 0.0452841669, 0.125775069, 0.5298550725, 0.0940538272, -0.3113821745, 0.0305276811, 0.1404469311, 0.2037546933, -0.325711906, -0.157135278, -0.2650843263, -0.1184608191, -0.0624470375, 0.1154168025, 0.0112671778, -0.3411978185, -0.08927726, -0.1154888719, 0.2970600724, 0.2271777242, -0.0939650238, 0.5441297889, 0.0009058267, -0.0297026262, 0.37088117, 0.549860239, 0.0500368625, 0.4243817031, 0.1949297488, -0.1030110642, -0.1730051488, 0.0265194718, -0.0050951466, -0.7224720716, 0.1903757006, -0.0895253271, -0.0153277107, 0.0070983507, -0.1846191883, 0.4962286353, -0.1142303348, -0.0175313298, -0.3881720603, 0.1512205154, -0.2028816044, -0.1655407548, -0.4238614142, 0.0989476293, -0.0877483636, -0.0205384158, -0.1252160668, -0.2460022867, 0.0037856251, 0.2284577489, -0.0325794034, -0.2135652453, 0.3492713869, 0.2529509366, -0.1378228366, -0.3874365687, -0.0780467913, -0.0577866137, 0.1203666329, 0.1329322755, 0.0222339239, 0.6245728135, 0.3318482637, -0.0558947176, -0.0126739889, 0.012963023, -0.0314593427, -0.0356337018, 0.3866262436, -0.2138805687, 0.3700495958, 0.3404140472, 0.0974965543, -0.058864519, -0.0613860376, 0.0397349, -0.1048277915, -0.0849884152, -0.0384136774, -0.3763241768, -0.2585602403, -0.1624861062, 0.1023466513, -0.0869155526, -0.022329241, 0.6900106668, 0.1503066868, 0.341989547, -0.3378277123, 0.0661961511, 0.029575102, 0.4036602974, 0.4701581895, 0.076012969, -0.4037766457, -0.079994902, -0.4968740344, 0.0621394739, 0.121179238, -0.1317169815, 0.1792275459, -0.1361560524, -0.0133231208, -0.1985214949, -0.0573429912, 0.0297254845, 0.0242389143, 0.3217080832, -0.0086837038, -0.107724905, 0.2655579448, -0.0672237501, 0.1426306367, -0.5638714433, 0.0671394095, -0.2215019464, 0.0575663894, -0.471940577, 0.0898200572, 0.1238537282, 0.1396855712, 0.2431279719, 0.0155659672, 0.3771497905, -0.0043463483, 0.1913799047, -0.5739654899, 0.06780871, -0.1726516187, 0.1434069574, -0.1353251338, -0.0251372457, -0.2696662545, 0.072801128, -0.0983976424, 0.1188254207, -0.0468874834, 0.1527617276, -0.0512724556, 0.1282426715, -0.1833431721, -0.0416471586, 0.2216357142, -0.1437096, -0.1895446628, 0.3802648187, -0.3233774304, -0.3723746836, 0.4683178663, -0.2650414109, -0.2512886524, 0.0131052881, 0.3566477001, -0.1201092824, -0.1665671468, -0.1439182311, 0.362541765, 0.1724918783, -0.004815042, -0.3380492926, 0.4713964462, -0.2036842853, -0.1848140955, 0.0364145413, 0.423489362, -0.0084361508, -0.2079800367, 0.0341635048, -0.1151268929 ]
https://github.com/huggingface/datasets/issues/2000
Windows Permission Error (most recent version of datasets)
Hello @SBrandeis , this is it: ``` Traceback (most recent call last): File "C:\Users\Luisa\AppData\Local\Programs\Python\Python38\lib\site-packages\datasets\builder.py", line 537, in incomplete_dir yield tmp_dir File "C:\Users\Luisa\AppData\Local\Programs\Python\Python38\lib\site-packages\datasets\builder.py", line 578, in download_and_prepare self._download_and_prepare( File "C:\Users\Luisa\AppData\Local\Programs\Python\Python38\lib\site-packages\datasets\builder.py", line 656, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "C:\Users\Luisa\AppData\Local\Programs\Python\Python38\lib\site-packages\datasets\builder.py", line 982, in _prepare_split num_examples, num_bytes = writer.finalize() File "C:\Users\Luisa\AppData\Local\Programs\Python\Python38\lib\site-packages\datasets\arrow_writer.py", line 297, in finalize self.write_on_file() File "C:\Users\Luisa\AppData\Local\Programs\Python\Python38\lib\site-packages\datasets\arrow_writer.py", line 230, in write_on_file pa_array = pa.array(typed_sequence) File "pyarrow\array.pxi", line 222, in pyarrow.lib.array File "pyarrow\array.pxi", line 110, in pyarrow.lib._handle_arrow_array_protocol File "C:\Users\Luisa\AppData\Local\Programs\Python\Python38\lib\site-packages\datasets\arrow_writer.py", line 97, in __arrow_array__ out = pa.array(self.data, type=type) File "pyarrow\array.pxi", line 305, in pyarrow.lib.array File "pyarrow\array.pxi", line 39, in pyarrow.lib._sequence_to_array File "pyarrow\error.pxi", line 122, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow\error.pxi", line 107, in pyarrow.lib.check_status pyarrow.lib.ArrowTypeError: Expected bytes, got a 'list' object During handling of the above exception, another exception occurred: Traceback (most recent call last): File "C:/Users/Luisa/Documents/Uni/WS 2020,21/Neural Networks/Final_Project/NN_Project/data_loading.py", line 122, in <module> main() File "C:/Users/Luisa/Documents/Uni/WS 2020,21/Neural Networks/Final_Project/NN_Project/data_loading.py", line 111, in main dataset = datasets.load_dataset( File "C:\Users\Luisa\AppData\Local\Programs\Python\Python38\lib\site-packages\datasets\load.py", line 740, in load_dataset builder_instance.download_and_prepare( File "C:\Users\Luisa\AppData\Local\Programs\Python\Python38\lib\site-packages\datasets\builder.py", line 586, in download_and_prepare self._save_info() File "C:\Users\Luisa\AppData\Local\Programs\Python\Python38\lib\contextlib.py", line 131, in __exit__ self.gen.throw(type, value, traceback) File "C:\Users\Luisa\AppData\Local\Programs\Python\Python38\lib\site-packages\datasets\builder.py", line 543, in incomplete_dir shutil.rmtree(tmp_dir) File "C:\Users\Luisa\AppData\Local\Programs\Python\Python38\lib\shutil.py", line 740, in rmtree return _rmtree_unsafe(path, onerror) File "C:\Users\Luisa\AppData\Local\Programs\Python\Python38\lib\shutil.py", line 618, in _rmtree_unsafe onerror(os.unlink, fullname, sys.exc_info()) File "C:\Users\Luisa\AppData\Local\Programs\Python\Python38\lib\shutil.py", line 616, in _rmtree_unsafe os.unlink(fullname) PermissionError: [WinError 32] Der Prozess kann nicht auf die Datei zugreifen, da sie von einem anderen Prozess verwendet wird: 'C:\\Users\\Luisa\\.cache\\huggingface\\datasets\\sample\\default-20ee7d51a6a9454f\\0.0.0\\5fc4c3a355ea77ab446bd31fca5082437600b8364d29b2b95264048bd1f398b1.incomplete\\sample-train.arrow' Process finished with exit code 1 ```
Hi everyone, Can anyone help me with why the dataset loading script below raises a Windows Permission Error? I stuck quite closely to https://github.com/huggingface/datasets/blob/master/datasets/conll2003/conll2003.py , only I want to load the data from three local three-column tsv-files (id\ttokens\tpos_tags\n). I am using the most recent version of datasets. Thank you in advance! Luisa My script: ``` import datasets import csv logger = datasets.logging.get_logger(__name__) class SampleConfig(datasets.BuilderConfig): def __init__(self, **kwargs): super(SampleConfig, self).__init__(**kwargs) class Sample(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [ SampleConfig(name="conll2003", version=datasets.Version("1.0.0"), description="Conll2003 dataset"), ] def _info(self): return datasets.DatasetInfo( description="Dataset with words and their POS-Tags", features=datasets.Features( { "id": datasets.Value("string"), "tokens": datasets.Sequence(datasets.Value("string")), "pos_tags": datasets.Sequence( datasets.features.ClassLabel( names=[ "''", ",", "-LRB-", "-RRB-", ".", ":", "CC", "CD", "DT", "EX", "FW", "HYPH", "IN", "JJ", "JJR", "JJS", "MD", "NN", "NNP", "NNPS", "NNS", "PDT", "POS", "PRP", "PRP$", "RB", "RBR", "RBS", "RP", "TO", "UH", "VB", "VBD", "VBG", "VBN", "VBP", "VBZ", "WDT", "WP", "WRB", "``" ] ) ), } ), supervised_keys=None, homepage="https://catalog.ldc.upenn.edu/LDC2011T03", citation="Weischedel, Ralph, et al. OntoNotes Release 4.0 LDC2011T03. Web Download. Philadelphia: Linguistic Data Consortium, 2011.", ) def _split_generators(self, dl_manager): loaded_files = dl_manager.download_and_extract(self.config.data_files) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": loaded_files["train"]}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": loaded_files["test"]}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": loaded_files["val"]}) ] def _generate_examples(self, filepath): logger.info("generating examples from = %s", filepath) with open(filepath, encoding="cp1252") as f: data = csv.reader(f, delimiter="\t") ids = list() tokens = list() pos_tags = list() for id_, line in enumerate(data): #print(line) if len(line) == 1: if tokens: yield id_, {"id": ids, "tokens": tokens, "pos_tags": pos_tags} ids = list() tokens = list() pos_tags = list() else: ids.append(line[0]) tokens.append(line[1]) pos_tags.append(line[2]) # last example yield id_, {"id": ids, "tokens": tokens, "pos_tags": pos_tags} def main(): dataset = datasets.load_dataset( "data_loading.py", data_files={ "train": "train.tsv", "test": "test.tsv", "val": "val.tsv" } ) #print(dataset) if __name__=="__main__": main() ```
230
Windows Permission Error (most recent version of datasets) Hi everyone, Can anyone help me with why the dataset loading script below raises a Windows Permission Error? I stuck quite closely to https://github.com/huggingface/datasets/blob/master/datasets/conll2003/conll2003.py , only I want to load the data from three local three-column tsv-files (id\ttokens\tpos_tags\n). I am using the most recent version of datasets. Thank you in advance! Luisa My script: ``` import datasets import csv logger = datasets.logging.get_logger(__name__) class SampleConfig(datasets.BuilderConfig): def __init__(self, **kwargs): super(SampleConfig, self).__init__(**kwargs) class Sample(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [ SampleConfig(name="conll2003", version=datasets.Version("1.0.0"), description="Conll2003 dataset"), ] def _info(self): return datasets.DatasetInfo( description="Dataset with words and their POS-Tags", features=datasets.Features( { "id": datasets.Value("string"), "tokens": datasets.Sequence(datasets.Value("string")), "pos_tags": datasets.Sequence( datasets.features.ClassLabel( names=[ "''", ",", "-LRB-", "-RRB-", ".", ":", "CC", "CD", "DT", "EX", "FW", "HYPH", "IN", "JJ", "JJR", "JJS", "MD", "NN", "NNP", "NNPS", "NNS", "PDT", "POS", "PRP", "PRP$", "RB", "RBR", "RBS", "RP", "TO", "UH", "VB", "VBD", "VBG", "VBN", "VBP", "VBZ", "WDT", "WP", "WRB", "``" ] ) ), } ), supervised_keys=None, homepage="https://catalog.ldc.upenn.edu/LDC2011T03", citation="Weischedel, Ralph, et al. OntoNotes Release 4.0 LDC2011T03. Web Download. Philadelphia: Linguistic Data Consortium, 2011.", ) def _split_generators(self, dl_manager): loaded_files = dl_manager.download_and_extract(self.config.data_files) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": loaded_files["train"]}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": loaded_files["test"]}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": loaded_files["val"]}) ] def _generate_examples(self, filepath): logger.info("generating examples from = %s", filepath) with open(filepath, encoding="cp1252") as f: data = csv.reader(f, delimiter="\t") ids = list() tokens = list() pos_tags = list() for id_, line in enumerate(data): #print(line) if len(line) == 1: if tokens: yield id_, {"id": ids, "tokens": tokens, "pos_tags": pos_tags} ids = list() tokens = list() pos_tags = list() else: ids.append(line[0]) tokens.append(line[1]) pos_tags.append(line[2]) # last example yield id_, {"id": ids, "tokens": tokens, "pos_tags": pos_tags} def main(): dataset = datasets.load_dataset( "data_loading.py", data_files={ "train": "train.tsv", "test": "test.tsv", "val": "val.tsv" } ) #print(dataset) if __name__=="__main__": main() ``` Hello @SBrandeis , this is it: ``` Traceback (most recent call last): File "C:\Users\Luisa\AppData\Local\Programs\Python\Python38\lib\site-packages\datasets\builder.py", line 537, in incomplete_dir yield tmp_dir File "C:\Users\Luisa\AppData\Local\Programs\Python\Python38\lib\site-packages\datasets\builder.py", line 578, in download_and_prepare self._download_and_prepare( File "C:\Users\Luisa\AppData\Local\Programs\Python\Python38\lib\site-packages\datasets\builder.py", line 656, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "C:\Users\Luisa\AppData\Local\Programs\Python\Python38\lib\site-packages\datasets\builder.py", line 982, in _prepare_split num_examples, num_bytes = writer.finalize() File "C:\Users\Luisa\AppData\Local\Programs\Python\Python38\lib\site-packages\datasets\arrow_writer.py", line 297, in finalize self.write_on_file() File "C:\Users\Luisa\AppData\Local\Programs\Python\Python38\lib\site-packages\datasets\arrow_writer.py", line 230, in write_on_file pa_array = pa.array(typed_sequence) File "pyarrow\array.pxi", line 222, in pyarrow.lib.array File "pyarrow\array.pxi", line 110, in pyarrow.lib._handle_arrow_array_protocol File "C:\Users\Luisa\AppData\Local\Programs\Python\Python38\lib\site-packages\datasets\arrow_writer.py", line 97, in __arrow_array__ out = pa.array(self.data, type=type) File "pyarrow\array.pxi", line 305, in pyarrow.lib.array File "pyarrow\array.pxi", line 39, in pyarrow.lib._sequence_to_array File "pyarrow\error.pxi", line 122, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow\error.pxi", line 107, in pyarrow.lib.check_status pyarrow.lib.ArrowTypeError: Expected bytes, got a 'list' object During handling of the above exception, another exception occurred: Traceback (most recent call last): File "C:/Users/Luisa/Documents/Uni/WS 2020,21/Neural Networks/Final_Project/NN_Project/data_loading.py", line 122, in <module> main() File "C:/Users/Luisa/Documents/Uni/WS 2020,21/Neural Networks/Final_Project/NN_Project/data_loading.py", line 111, in main dataset = datasets.load_dataset( File "C:\Users\Luisa\AppData\Local\Programs\Python\Python38\lib\site-packages\datasets\load.py", line 740, in load_dataset builder_instance.download_and_prepare( File "C:\Users\Luisa\AppData\Local\Programs\Python\Python38\lib\site-packages\datasets\builder.py", line 586, in download_and_prepare self._save_info() File "C:\Users\Luisa\AppData\Local\Programs\Python\Python38\lib\contextlib.py", line 131, in __exit__ self.gen.throw(type, value, traceback) File "C:\Users\Luisa\AppData\Local\Programs\Python\Python38\lib\site-packages\datasets\builder.py", line 543, in incomplete_dir shutil.rmtree(tmp_dir) File "C:\Users\Luisa\AppData\Local\Programs\Python\Python38\lib\shutil.py", line 740, in rmtree return _rmtree_unsafe(path, onerror) File "C:\Users\Luisa\AppData\Local\Programs\Python\Python38\lib\shutil.py", line 618, in _rmtree_unsafe onerror(os.unlink, fullname, sys.exc_info()) File "C:\Users\Luisa\AppData\Local\Programs\Python\Python38\lib\shutil.py", line 616, in _rmtree_unsafe os.unlink(fullname) PermissionError: [WinError 32] Der Prozess kann nicht auf die Datei zugreifen, da sie von einem anderen Prozess verwendet wird: 'C:\\Users\\Luisa\\.cache\\huggingface\\datasets\\sample\\default-20ee7d51a6a9454f\\0.0.0\\5fc4c3a355ea77ab446bd31fca5082437600b8364d29b2b95264048bd1f398b1.incomplete\\sample-train.arrow' Process finished with exit code 1 ```
[ -0.1825570166, 0.1823854893, -0.0400313139, 0.2590481639, 0.0813783184, 0.1336375475, 0.4580339789, 0.0122547783, 0.1864634156, 0.0741283819, -0.0634555146, -0.0112268105, -0.1087958217, 0.1572922766, -0.0323621444, -0.0282510258, 0.1453508586, 0.0480686054, 0.0319976211, 0.1396460235, -0.405230999, -0.0071212566, -0.2379359305, 0.1073664874, -0.2231616974, 0.2783436477, -0.0157263093, 0.3908288777, -0.0338034034, -0.2350182384, 0.2101648748, 0.3624858558, 0.6620943546, 0.245353058, -0.0001126285, -0.0484501496, 0.0420433059, -0.0201318711, 0.2068192363, 0.2423871607, 0.1341382712, -0.0451872125, 0.0041252375, -0.1066694111, -0.1698371768, 0.2000021785, -0.0654302612, -0.3538348377, 0.1139983088, 0.4263343811, 0.187195912, 0.2474630475, -0.1806876957, -0.0106541142, 0.5910394192, 0.0475982949, -0.1261595488, 0.1927931309, 0.29002437, -0.44280532, 0.2141414285, 0.1609823406, -0.2268587351, 0.0855399966, 0.381826371, -0.1632638276, -0.1299570054, -0.2830390334, 0.158406049, 0.0000530491, 0.7270633578, -0.1692434102, -0.3009925783, -0.0341042504, 0.1393088996, -0.2671690881, 0.2275047898, 0.3365986049, -0.0505271032, 0.0753582716, -0.2347001731, -0.1671504527, -0.4434005022, 0.135895893, 0.1775051355, -0.2292980254, -0.0849332213, 0.2297087312, 0.0906638503, -0.1301718354, 0.3544329107, 0.1294438839, 0.0419613868, 0.2517596483, -0.4671477079, 0.3360510767, 0.2092743963, 0.2980219424, -0.0320271403, 0.2779501081, -0.1361711919, -0.2106278092, 0.2018985748, 0.125019908, 0.1772746891, -0.0542739928, 0.15196006, 0.2411273718, 0.137509495, -0.0225111581, 0.0402431935, -0.1174408942, -0.4900484979, -0.6061118841, 0.1152088046, 0.245481655, 0.3073367476, -0.089267157, -0.3613362014, 0.1164759994, 0.118135877, 0.0680990219, 0.2068187147, 0.409733057, 0.2663402259, 0.0119449068, 0.3739326, 0.2714996636, -0.0628644079, -0.0258000623, -0.0862125456, 0.004246261, -0.2458983511, -0.0498457327, 0.425786674, -0.3442580104, -0.1134993136, 0.117363438, 0.0353440829, -0.1213495135, 0.0494542271, -0.0187719576, 0.1164595708, 0.4388583899, 0.2584180832, 0.0349972993, 0.1450432986, -0.1851192117, -0.0282775536, 0.2364418954, -0.1324140728, -0.3404766917, -0.1883570701, 0.1011297256, 0.017074056, 0.0499142669, -0.2183056772, -0.1330369264, 0.1228498518, -0.0184607655, 0.1442885101, -0.100702554, -0.2660650313, -0.339794755, -0.1015142351, 0.8314391971, -0.5272636414, 0.1402402371, -0.1147453487, -0.3047670126, 0.1072497889, 0.3311965466, -0.0764997229, 0.1113564223, -0.2144826651, 0.1516456306, -0.1357121617, -0.3680853844, -0.1788970232, 0.3780057728, -0.0177539214, -0.103679806, 0.2437344193, -0.0390078425, 0.0444858968, -0.203356266, -0.0898013562, 0.1341281682, 0.1384611279, 0.2605624795, 0.2249746919, 0.0075679123, 0.2322093844, 0.312423259, 0.0553447455, -0.0627510399, 0.2918673158, -0.2186993957, 0.1895524114, -0.3010883629, 0.224545598, 0.416668117, 0.115819633, 0.3091974556, 0.0332213528, -0.2322228849, -0.4455737472, 0.2652015686, 0.3054819703, -0.1239579991, 0.0469026081, -0.2565838397, -0.1502390206, 0.2109270394, -0.3883989751, 0.1167709827, 0.089911513, 0.297970742, -0.1774018705, -0.3208982348, 0.034541361, 0.0563447028, -0.2444296181, -0.1111345515, -0.1534327865, 0.0384583548, -0.3066702485, 0.018042475, 0.2049438655, -0.0148222037, 0.415769726, -0.0743799061, 0.0026424751, 0.3591324091, 0.2803246081, -0.036778044, 0.0367962196, 0.0983092636, -0.2261276692, 0.0771443993, 0.1272580177, -0.0095816106, 0.0916863829, -0.1025228798, -0.0255540051, 0.1265100241, -0.2259501368, 0.0041119941, -0.287907958, 0.1314648837, -0.0096176863, 0.0248835981, -0.0246060789, -0.2199264467, 0.359380573, 0.509636879, -0.3285354078, -0.0453584269, -0.1026293486, -0.0515070707, 0.2793928087, -0.1505598724, -0.1328613907, 0.0687068775, 0.0991908833, 0.2852436304, 0.1979030371, 0.2263828367, 0.4385741949, 0.0644593611, -0.1653024107, 0.0529508963, 0.2032761872, -0.0528066345, 0.1483862996, -0.3353100717, 0.0793050528, 0.2603348792, -0.2992098927, 0.1275259256, -0.3775516748, -0.1403334737, 0.1440865546, 0.3369526863, -0.5138475299, -0.1326299161, -0.0149590448, -0.1334603727, 0.1105089858, -0.3155806661, -0.2831481099, 0.0130273104, -0.201353699, 0.1626413465, -0.2732630372, -0.1256409883, -0.4015876055, 0.0573597923, 0.2376945913, -0.003172867, -0.0217248276, 0.0865617096, -0.0238453988, 0.014601782, 0.493295908, -0.2829747498, 0.4370732605, -0.1266706437, 0.3814791143, -0.289830476, 0.1060906798, -0.247593686, -0.3344736397, 0.3203750849, 0.2462343276, 0.0983885303, -0.0262447372, -0.2058809698, 0.1195862144, -0.1224584132, -0.0811634883, 0.1755104363, 0.3042165041, -0.5918183327, -0.2506391406, -0.1534153521, -0.204292804, -0.3533949554, 0.2209896147, 0.135535419, 0.3110541105, 0.2072856724, -0.1218604743, 0.0530254096, 0.0434565432, 0.311153084, -0.3197954893, -0.0964619294, 0.013731447, -0.1502657533, -0.5285492539, 0.2205063403, 0.3835147023, -0.1217221692, 0.1091843694, -0.1158388853, 0.1251098514, -0.2140981108, 0.2546710372, -0.2282876372, 0.1662583202, 0.1928662062, 0.0734917745, 0.0805564597, -0.1694658995, -0.0990943834, -0.3450900912, -0.2438756526, -0.2646099329, 0.1542904824, 0.333039403, -0.1315142661, 0.2149935216, 0.342620939, 0.2264260054, 0.4461935759, -0.1276844591, 0.4316772819, 0.2818519473, -0.6437911987, 0.1521577239, -0.1861305684, -0.0530727506, 0.3601595461, -0.0777110904, 0.0294724908, -0.1574552059, 0.0583060533, -0.3378961682, -0.2107929289, -0.0072614867, -0.2567557395, 0.2782017887, -0.1479892135, 0.0072970763, -0.2808842659, -0.0628952459, 0.0054720156, 0.5689313412, 0.1167743951, -0.0616013855, -0.3760632873, 0.0078708008, -0.4856024683, 0.2696466744, 0.0624522641, 0.6091943979, -0.1555262655, 0.0315029249, 0.1437778622, 0.108525537, 0.9010460377, -0.439102143, 0.2763887346, 0.2481006384, 0.1166940331, -0.2631773353, -0.2115413696, -0.268221885, 0.0674351901, -0.0131371403, 0.3030072451, 0.0118964165, -0.3937037587, 0.0339971632, -0.1530510485, -0.0794089064, -0.4198117852, -0.253552109, -0.1815235764, -0.3771488667, -0.104181312, 0.2397939563, 0.1634426713, -0.256331861, 0.2497170717, -0.0224108174, 0.2882218957, 0.1148122028, -0.04067453, 0.1016071588, 0.3072128892, 0.078627117, -0.080945909, 0.123632744, 0.2123338431, 0.5588172674, -0.0261243153, -0.3647985756, -0.11076729, -0.0270072855, 0.4848943353, 0.084598355, -0.153303802, 0.1014048904, -0.2211101949, -0.0586444736, -0.3480156958, 0.073952809, 0.2731056809, -0.051542826, 0.0595359616, -0.2157609463, 0.3164067566, 0.1723265648, -0.1943373978, -0.0005692779, 0.142298907, -0.2947748005, -0.0935065821, 0.0510760657, 0.5023059845, -0.2940065861, 0.2797781527, 0.1955997944, -0.1659103334, -0.0711430833, 0.2135718912, -0.0846963227, -0.4017238915, -0.3005034924, -0.0134301037, -0.1052669138, -0.005474396, 0.1585411429, 0.084955059, 0.0400237814, -0.0924143493, 0.3835966289, 0.0317607373, 0.0596927106, -0.2020756602, -0.2441049516, 0.1019101292, 0.1519687772, -0.1361000538, -0.0235723667, -0.1311586946, 0.0135434829, 0.1534247547, 0.0239184052, -0.3978714645, 0.2855560184, -0.3279960454, 0.0107297897, -0.1360233873, 0.0947399586, 0.5240970254, 0.4402703643, -0.0064932741, 0.145454824, -0.2531165481, -0.2666567564, 0.1540937275, -0.2917832434, -0.2915799022, -0.0236649569, 0.2547364235, 0.021281302, -0.3019714355, -0.1922040135, -0.0331776105, -0.2432687879, -0.0630601197, 0.4675465524, 0.118787162, -0.5070379376, -0.168294102, -0.2320502996, -0.0584003963, 0.0715502053, 0.1030868143, 0.1528619081, -0.1085436195, 0.0619828254, -0.2745190263, -0.2699644566, 0.0699820966, 0.4720027149, -0.2750080526, 0.102183871, 0.5445801616, 0.402954787, -0.1602606177, -0.2423876971, 0.0846467912, 0.0800293684, -0.2135884762, 0.0007553659, 0.312019676, 0.0452673435, 0.4206764102, 0.0679823086, 0.2228616029, -0.4020853937, 0.1897778213, -0.4625520706, -0.1102990061, -0.0878791064, -0.1858237982, 0.3120948672, 0.0934095383, -0.1442581713, 0.0303125009, -0.2334228903, -0.2932748795, 0.1127858609, -0.0025984347, 0.1187578365, 0.4522461295, -0.229709059, -0.0856508017, -0.0219584405, 0.0636572391, -0.1481772661, -0.1781422645, -0.205838874, 0.0039550737, 0.1113950312, 0.1878644824, -0.3387503028, 0.085841082, -0.5403542519, -0.2182604074, -0.162023142, 0.2066287696, 0.2949583828, -0.1138813645, 0.4738370478, 0.0064514359, -0.0148760825, 0.021234028, 0.1910279095, -0.1915095001, 0.0859471783, -0.3789149821, 0.4132499695, 0.0258933529, -0.0854485184, -0.3049197495, 0.2492912263, 0.2421409637, 0.1775055528, 0.1364679486, -0.2938652635, 0.0452841669, 0.125775069, 0.5298550725, 0.0940538272, -0.3113821745, 0.0305276811, 0.1404469311, 0.2037546933, -0.325711906, -0.157135278, -0.2650843263, -0.1184608191, -0.0624470375, 0.1154168025, 0.0112671778, -0.3411978185, -0.08927726, -0.1154888719, 0.2970600724, 0.2271777242, -0.0939650238, 0.5441297889, 0.0009058267, -0.0297026262, 0.37088117, 0.549860239, 0.0500368625, 0.4243817031, 0.1949297488, -0.1030110642, -0.1730051488, 0.0265194718, -0.0050951466, -0.7224720716, 0.1903757006, -0.0895253271, -0.0153277107, 0.0070983507, -0.1846191883, 0.4962286353, -0.1142303348, -0.0175313298, -0.3881720603, 0.1512205154, -0.2028816044, -0.1655407548, -0.4238614142, 0.0989476293, -0.0877483636, -0.0205384158, -0.1252160668, -0.2460022867, 0.0037856251, 0.2284577489, -0.0325794034, -0.2135652453, 0.3492713869, 0.2529509366, -0.1378228366, -0.3874365687, -0.0780467913, -0.0577866137, 0.1203666329, 0.1329322755, 0.0222339239, 0.6245728135, 0.3318482637, -0.0558947176, -0.0126739889, 0.012963023, -0.0314593427, -0.0356337018, 0.3866262436, -0.2138805687, 0.3700495958, 0.3404140472, 0.0974965543, -0.058864519, -0.0613860376, 0.0397349, -0.1048277915, -0.0849884152, -0.0384136774, -0.3763241768, -0.2585602403, -0.1624861062, 0.1023466513, -0.0869155526, -0.022329241, 0.6900106668, 0.1503066868, 0.341989547, -0.3378277123, 0.0661961511, 0.029575102, 0.4036602974, 0.4701581895, 0.076012969, -0.4037766457, -0.079994902, -0.4968740344, 0.0621394739, 0.121179238, -0.1317169815, 0.1792275459, -0.1361560524, -0.0133231208, -0.1985214949, -0.0573429912, 0.0297254845, 0.0242389143, 0.3217080832, -0.0086837038, -0.107724905, 0.2655579448, -0.0672237501, 0.1426306367, -0.5638714433, 0.0671394095, -0.2215019464, 0.0575663894, -0.471940577, 0.0898200572, 0.1238537282, 0.1396855712, 0.2431279719, 0.0155659672, 0.3771497905, -0.0043463483, 0.1913799047, -0.5739654899, 0.06780871, -0.1726516187, 0.1434069574, -0.1353251338, -0.0251372457, -0.2696662545, 0.072801128, -0.0983976424, 0.1188254207, -0.0468874834, 0.1527617276, -0.0512724556, 0.1282426715, -0.1833431721, -0.0416471586, 0.2216357142, -0.1437096, -0.1895446628, 0.3802648187, -0.3233774304, -0.3723746836, 0.4683178663, -0.2650414109, -0.2512886524, 0.0131052881, 0.3566477001, -0.1201092824, -0.1665671468, -0.1439182311, 0.362541765, 0.1724918783, -0.004815042, -0.3380492926, 0.4713964462, -0.2036842853, -0.1848140955, 0.0364145413, 0.423489362, -0.0084361508, -0.2079800367, 0.0341635048, -0.1151268929 ]
https://github.com/huggingface/datasets/issues/2000
Windows Permission Error (most recent version of datasets)
Hi @itsLuisa, thanks for sharing the Traceback. You are defining the "id" field as a `string` feature: ```python class Sample(datasets.GeneratorBasedBuilder): ... def _info(self): return datasets.DatasetInfo( features=datasets.Features( { "id": datasets.Value("string"), # ^^ here "tokens": datasets.Sequence(datasets.Value("string")), "pos_tags": datasets.Sequence(datasets.features.ClassLabel(names=[...])), [...] ``` But in the `_generate_examples`, the "id" field is a list: ```python ids = list() ``` Changing: ```python "id": datasets.Value("string"), ``` Into: ```python "id": datasets.Sequence(datasets.Value("string")), ``` Should fix your issue. Let me know if this helps!
Hi everyone, Can anyone help me with why the dataset loading script below raises a Windows Permission Error? I stuck quite closely to https://github.com/huggingface/datasets/blob/master/datasets/conll2003/conll2003.py , only I want to load the data from three local three-column tsv-files (id\ttokens\tpos_tags\n). I am using the most recent version of datasets. Thank you in advance! Luisa My script: ``` import datasets import csv logger = datasets.logging.get_logger(__name__) class SampleConfig(datasets.BuilderConfig): def __init__(self, **kwargs): super(SampleConfig, self).__init__(**kwargs) class Sample(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [ SampleConfig(name="conll2003", version=datasets.Version("1.0.0"), description="Conll2003 dataset"), ] def _info(self): return datasets.DatasetInfo( description="Dataset with words and their POS-Tags", features=datasets.Features( { "id": datasets.Value("string"), "tokens": datasets.Sequence(datasets.Value("string")), "pos_tags": datasets.Sequence( datasets.features.ClassLabel( names=[ "''", ",", "-LRB-", "-RRB-", ".", ":", "CC", "CD", "DT", "EX", "FW", "HYPH", "IN", "JJ", "JJR", "JJS", "MD", "NN", "NNP", "NNPS", "NNS", "PDT", "POS", "PRP", "PRP$", "RB", "RBR", "RBS", "RP", "TO", "UH", "VB", "VBD", "VBG", "VBN", "VBP", "VBZ", "WDT", "WP", "WRB", "``" ] ) ), } ), supervised_keys=None, homepage="https://catalog.ldc.upenn.edu/LDC2011T03", citation="Weischedel, Ralph, et al. OntoNotes Release 4.0 LDC2011T03. Web Download. Philadelphia: Linguistic Data Consortium, 2011.", ) def _split_generators(self, dl_manager): loaded_files = dl_manager.download_and_extract(self.config.data_files) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": loaded_files["train"]}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": loaded_files["test"]}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": loaded_files["val"]}) ] def _generate_examples(self, filepath): logger.info("generating examples from = %s", filepath) with open(filepath, encoding="cp1252") as f: data = csv.reader(f, delimiter="\t") ids = list() tokens = list() pos_tags = list() for id_, line in enumerate(data): #print(line) if len(line) == 1: if tokens: yield id_, {"id": ids, "tokens": tokens, "pos_tags": pos_tags} ids = list() tokens = list() pos_tags = list() else: ids.append(line[0]) tokens.append(line[1]) pos_tags.append(line[2]) # last example yield id_, {"id": ids, "tokens": tokens, "pos_tags": pos_tags} def main(): dataset = datasets.load_dataset( "data_loading.py", data_files={ "train": "train.tsv", "test": "test.tsv", "val": "val.tsv" } ) #print(dataset) if __name__=="__main__": main() ```
73
Windows Permission Error (most recent version of datasets) Hi everyone, Can anyone help me with why the dataset loading script below raises a Windows Permission Error? I stuck quite closely to https://github.com/huggingface/datasets/blob/master/datasets/conll2003/conll2003.py , only I want to load the data from three local three-column tsv-files (id\ttokens\tpos_tags\n). I am using the most recent version of datasets. Thank you in advance! Luisa My script: ``` import datasets import csv logger = datasets.logging.get_logger(__name__) class SampleConfig(datasets.BuilderConfig): def __init__(self, **kwargs): super(SampleConfig, self).__init__(**kwargs) class Sample(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [ SampleConfig(name="conll2003", version=datasets.Version("1.0.0"), description="Conll2003 dataset"), ] def _info(self): return datasets.DatasetInfo( description="Dataset with words and their POS-Tags", features=datasets.Features( { "id": datasets.Value("string"), "tokens": datasets.Sequence(datasets.Value("string")), "pos_tags": datasets.Sequence( datasets.features.ClassLabel( names=[ "''", ",", "-LRB-", "-RRB-", ".", ":", "CC", "CD", "DT", "EX", "FW", "HYPH", "IN", "JJ", "JJR", "JJS", "MD", "NN", "NNP", "NNPS", "NNS", "PDT", "POS", "PRP", "PRP$", "RB", "RBR", "RBS", "RP", "TO", "UH", "VB", "VBD", "VBG", "VBN", "VBP", "VBZ", "WDT", "WP", "WRB", "``" ] ) ), } ), supervised_keys=None, homepage="https://catalog.ldc.upenn.edu/LDC2011T03", citation="Weischedel, Ralph, et al. OntoNotes Release 4.0 LDC2011T03. Web Download. Philadelphia: Linguistic Data Consortium, 2011.", ) def _split_generators(self, dl_manager): loaded_files = dl_manager.download_and_extract(self.config.data_files) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": loaded_files["train"]}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": loaded_files["test"]}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": loaded_files["val"]}) ] def _generate_examples(self, filepath): logger.info("generating examples from = %s", filepath) with open(filepath, encoding="cp1252") as f: data = csv.reader(f, delimiter="\t") ids = list() tokens = list() pos_tags = list() for id_, line in enumerate(data): #print(line) if len(line) == 1: if tokens: yield id_, {"id": ids, "tokens": tokens, "pos_tags": pos_tags} ids = list() tokens = list() pos_tags = list() else: ids.append(line[0]) tokens.append(line[1]) pos_tags.append(line[2]) # last example yield id_, {"id": ids, "tokens": tokens, "pos_tags": pos_tags} def main(): dataset = datasets.load_dataset( "data_loading.py", data_files={ "train": "train.tsv", "test": "test.tsv", "val": "val.tsv" } ) #print(dataset) if __name__=="__main__": main() ``` Hi @itsLuisa, thanks for sharing the Traceback. You are defining the "id" field as a `string` feature: ```python class Sample(datasets.GeneratorBasedBuilder): ... def _info(self): return datasets.DatasetInfo( features=datasets.Features( { "id": datasets.Value("string"), # ^^ here "tokens": datasets.Sequence(datasets.Value("string")), "pos_tags": datasets.Sequence(datasets.features.ClassLabel(names=[...])), [...] ``` But in the `_generate_examples`, the "id" field is a list: ```python ids = list() ``` Changing: ```python "id": datasets.Value("string"), ``` Into: ```python "id": datasets.Sequence(datasets.Value("string")), ``` Should fix your issue. Let me know if this helps!
[ -0.1825570166, 0.1823854893, -0.0400313139, 0.2590481639, 0.0813783184, 0.1336375475, 0.4580339789, 0.0122547783, 0.1864634156, 0.0741283819, -0.0634555146, -0.0112268105, -0.1087958217, 0.1572922766, -0.0323621444, -0.0282510258, 0.1453508586, 0.0480686054, 0.0319976211, 0.1396460235, -0.405230999, -0.0071212566, -0.2379359305, 0.1073664874, -0.2231616974, 0.2783436477, -0.0157263093, 0.3908288777, -0.0338034034, -0.2350182384, 0.2101648748, 0.3624858558, 0.6620943546, 0.245353058, -0.0001126285, -0.0484501496, 0.0420433059, -0.0201318711, 0.2068192363, 0.2423871607, 0.1341382712, -0.0451872125, 0.0041252375, -0.1066694111, -0.1698371768, 0.2000021785, -0.0654302612, -0.3538348377, 0.1139983088, 0.4263343811, 0.187195912, 0.2474630475, -0.1806876957, -0.0106541142, 0.5910394192, 0.0475982949, -0.1261595488, 0.1927931309, 0.29002437, -0.44280532, 0.2141414285, 0.1609823406, -0.2268587351, 0.0855399966, 0.381826371, -0.1632638276, -0.1299570054, -0.2830390334, 0.158406049, 0.0000530491, 0.7270633578, -0.1692434102, -0.3009925783, -0.0341042504, 0.1393088996, -0.2671690881, 0.2275047898, 0.3365986049, -0.0505271032, 0.0753582716, -0.2347001731, -0.1671504527, -0.4434005022, 0.135895893, 0.1775051355, -0.2292980254, -0.0849332213, 0.2297087312, 0.0906638503, -0.1301718354, 0.3544329107, 0.1294438839, 0.0419613868, 0.2517596483, -0.4671477079, 0.3360510767, 0.2092743963, 0.2980219424, -0.0320271403, 0.2779501081, -0.1361711919, -0.2106278092, 0.2018985748, 0.125019908, 0.1772746891, -0.0542739928, 0.15196006, 0.2411273718, 0.137509495, -0.0225111581, 0.0402431935, -0.1174408942, -0.4900484979, -0.6061118841, 0.1152088046, 0.245481655, 0.3073367476, -0.089267157, -0.3613362014, 0.1164759994, 0.118135877, 0.0680990219, 0.2068187147, 0.409733057, 0.2663402259, 0.0119449068, 0.3739326, 0.2714996636, -0.0628644079, -0.0258000623, -0.0862125456, 0.004246261, -0.2458983511, -0.0498457327, 0.425786674, -0.3442580104, -0.1134993136, 0.117363438, 0.0353440829, -0.1213495135, 0.0494542271, -0.0187719576, 0.1164595708, 0.4388583899, 0.2584180832, 0.0349972993, 0.1450432986, -0.1851192117, -0.0282775536, 0.2364418954, -0.1324140728, -0.3404766917, -0.1883570701, 0.1011297256, 0.017074056, 0.0499142669, -0.2183056772, -0.1330369264, 0.1228498518, -0.0184607655, 0.1442885101, -0.100702554, -0.2660650313, -0.339794755, -0.1015142351, 0.8314391971, -0.5272636414, 0.1402402371, -0.1147453487, -0.3047670126, 0.1072497889, 0.3311965466, -0.0764997229, 0.1113564223, -0.2144826651, 0.1516456306, -0.1357121617, -0.3680853844, -0.1788970232, 0.3780057728, -0.0177539214, -0.103679806, 0.2437344193, -0.0390078425, 0.0444858968, -0.203356266, -0.0898013562, 0.1341281682, 0.1384611279, 0.2605624795, 0.2249746919, 0.0075679123, 0.2322093844, 0.312423259, 0.0553447455, -0.0627510399, 0.2918673158, -0.2186993957, 0.1895524114, -0.3010883629, 0.224545598, 0.416668117, 0.115819633, 0.3091974556, 0.0332213528, -0.2322228849, -0.4455737472, 0.2652015686, 0.3054819703, -0.1239579991, 0.0469026081, -0.2565838397, -0.1502390206, 0.2109270394, -0.3883989751, 0.1167709827, 0.089911513, 0.297970742, -0.1774018705, -0.3208982348, 0.034541361, 0.0563447028, -0.2444296181, -0.1111345515, -0.1534327865, 0.0384583548, -0.3066702485, 0.018042475, 0.2049438655, -0.0148222037, 0.415769726, -0.0743799061, 0.0026424751, 0.3591324091, 0.2803246081, -0.036778044, 0.0367962196, 0.0983092636, -0.2261276692, 0.0771443993, 0.1272580177, -0.0095816106, 0.0916863829, -0.1025228798, -0.0255540051, 0.1265100241, -0.2259501368, 0.0041119941, -0.287907958, 0.1314648837, -0.0096176863, 0.0248835981, -0.0246060789, -0.2199264467, 0.359380573, 0.509636879, -0.3285354078, -0.0453584269, -0.1026293486, -0.0515070707, 0.2793928087, -0.1505598724, -0.1328613907, 0.0687068775, 0.0991908833, 0.2852436304, 0.1979030371, 0.2263828367, 0.4385741949, 0.0644593611, -0.1653024107, 0.0529508963, 0.2032761872, -0.0528066345, 0.1483862996, -0.3353100717, 0.0793050528, 0.2603348792, -0.2992098927, 0.1275259256, -0.3775516748, -0.1403334737, 0.1440865546, 0.3369526863, -0.5138475299, -0.1326299161, -0.0149590448, -0.1334603727, 0.1105089858, -0.3155806661, -0.2831481099, 0.0130273104, -0.201353699, 0.1626413465, -0.2732630372, -0.1256409883, -0.4015876055, 0.0573597923, 0.2376945913, -0.003172867, -0.0217248276, 0.0865617096, -0.0238453988, 0.014601782, 0.493295908, -0.2829747498, 0.4370732605, -0.1266706437, 0.3814791143, -0.289830476, 0.1060906798, -0.247593686, -0.3344736397, 0.3203750849, 0.2462343276, 0.0983885303, -0.0262447372, -0.2058809698, 0.1195862144, -0.1224584132, -0.0811634883, 0.1755104363, 0.3042165041, -0.5918183327, -0.2506391406, -0.1534153521, -0.204292804, -0.3533949554, 0.2209896147, 0.135535419, 0.3110541105, 0.2072856724, -0.1218604743, 0.0530254096, 0.0434565432, 0.311153084, -0.3197954893, -0.0964619294, 0.013731447, -0.1502657533, -0.5285492539, 0.2205063403, 0.3835147023, -0.1217221692, 0.1091843694, -0.1158388853, 0.1251098514, -0.2140981108, 0.2546710372, -0.2282876372, 0.1662583202, 0.1928662062, 0.0734917745, 0.0805564597, -0.1694658995, -0.0990943834, -0.3450900912, -0.2438756526, -0.2646099329, 0.1542904824, 0.333039403, -0.1315142661, 0.2149935216, 0.342620939, 0.2264260054, 0.4461935759, -0.1276844591, 0.4316772819, 0.2818519473, -0.6437911987, 0.1521577239, -0.1861305684, -0.0530727506, 0.3601595461, -0.0777110904, 0.0294724908, -0.1574552059, 0.0583060533, -0.3378961682, -0.2107929289, -0.0072614867, -0.2567557395, 0.2782017887, -0.1479892135, 0.0072970763, -0.2808842659, -0.0628952459, 0.0054720156, 0.5689313412, 0.1167743951, -0.0616013855, -0.3760632873, 0.0078708008, -0.4856024683, 0.2696466744, 0.0624522641, 0.6091943979, -0.1555262655, 0.0315029249, 0.1437778622, 0.108525537, 0.9010460377, -0.439102143, 0.2763887346, 0.2481006384, 0.1166940331, -0.2631773353, -0.2115413696, -0.268221885, 0.0674351901, -0.0131371403, 0.3030072451, 0.0118964165, -0.3937037587, 0.0339971632, -0.1530510485, -0.0794089064, -0.4198117852, -0.253552109, -0.1815235764, -0.3771488667, -0.104181312, 0.2397939563, 0.1634426713, -0.256331861, 0.2497170717, -0.0224108174, 0.2882218957, 0.1148122028, -0.04067453, 0.1016071588, 0.3072128892, 0.078627117, -0.080945909, 0.123632744, 0.2123338431, 0.5588172674, -0.0261243153, -0.3647985756, -0.11076729, -0.0270072855, 0.4848943353, 0.084598355, -0.153303802, 0.1014048904, -0.2211101949, -0.0586444736, -0.3480156958, 0.073952809, 0.2731056809, -0.051542826, 0.0595359616, -0.2157609463, 0.3164067566, 0.1723265648, -0.1943373978, -0.0005692779, 0.142298907, -0.2947748005, -0.0935065821, 0.0510760657, 0.5023059845, -0.2940065861, 0.2797781527, 0.1955997944, -0.1659103334, -0.0711430833, 0.2135718912, -0.0846963227, -0.4017238915, -0.3005034924, -0.0134301037, -0.1052669138, -0.005474396, 0.1585411429, 0.084955059, 0.0400237814, -0.0924143493, 0.3835966289, 0.0317607373, 0.0596927106, -0.2020756602, -0.2441049516, 0.1019101292, 0.1519687772, -0.1361000538, -0.0235723667, -0.1311586946, 0.0135434829, 0.1534247547, 0.0239184052, -0.3978714645, 0.2855560184, -0.3279960454, 0.0107297897, -0.1360233873, 0.0947399586, 0.5240970254, 0.4402703643, -0.0064932741, 0.145454824, -0.2531165481, -0.2666567564, 0.1540937275, -0.2917832434, -0.2915799022, -0.0236649569, 0.2547364235, 0.021281302, -0.3019714355, -0.1922040135, -0.0331776105, -0.2432687879, -0.0630601197, 0.4675465524, 0.118787162, -0.5070379376, -0.168294102, -0.2320502996, -0.0584003963, 0.0715502053, 0.1030868143, 0.1528619081, -0.1085436195, 0.0619828254, -0.2745190263, -0.2699644566, 0.0699820966, 0.4720027149, -0.2750080526, 0.102183871, 0.5445801616, 0.402954787, -0.1602606177, -0.2423876971, 0.0846467912, 0.0800293684, -0.2135884762, 0.0007553659, 0.312019676, 0.0452673435, 0.4206764102, 0.0679823086, 0.2228616029, -0.4020853937, 0.1897778213, -0.4625520706, -0.1102990061, -0.0878791064, -0.1858237982, 0.3120948672, 0.0934095383, -0.1442581713, 0.0303125009, -0.2334228903, -0.2932748795, 0.1127858609, -0.0025984347, 0.1187578365, 0.4522461295, -0.229709059, -0.0856508017, -0.0219584405, 0.0636572391, -0.1481772661, -0.1781422645, -0.205838874, 0.0039550737, 0.1113950312, 0.1878644824, -0.3387503028, 0.085841082, -0.5403542519, -0.2182604074, -0.162023142, 0.2066287696, 0.2949583828, -0.1138813645, 0.4738370478, 0.0064514359, -0.0148760825, 0.021234028, 0.1910279095, -0.1915095001, 0.0859471783, -0.3789149821, 0.4132499695, 0.0258933529, -0.0854485184, -0.3049197495, 0.2492912263, 0.2421409637, 0.1775055528, 0.1364679486, -0.2938652635, 0.0452841669, 0.125775069, 0.5298550725, 0.0940538272, -0.3113821745, 0.0305276811, 0.1404469311, 0.2037546933, -0.325711906, -0.157135278, -0.2650843263, -0.1184608191, -0.0624470375, 0.1154168025, 0.0112671778, -0.3411978185, -0.08927726, -0.1154888719, 0.2970600724, 0.2271777242, -0.0939650238, 0.5441297889, 0.0009058267, -0.0297026262, 0.37088117, 0.549860239, 0.0500368625, 0.4243817031, 0.1949297488, -0.1030110642, -0.1730051488, 0.0265194718, -0.0050951466, -0.7224720716, 0.1903757006, -0.0895253271, -0.0153277107, 0.0070983507, -0.1846191883, 0.4962286353, -0.1142303348, -0.0175313298, -0.3881720603, 0.1512205154, -0.2028816044, -0.1655407548, -0.4238614142, 0.0989476293, -0.0877483636, -0.0205384158, -0.1252160668, -0.2460022867, 0.0037856251, 0.2284577489, -0.0325794034, -0.2135652453, 0.3492713869, 0.2529509366, -0.1378228366, -0.3874365687, -0.0780467913, -0.0577866137, 0.1203666329, 0.1329322755, 0.0222339239, 0.6245728135, 0.3318482637, -0.0558947176, -0.0126739889, 0.012963023, -0.0314593427, -0.0356337018, 0.3866262436, -0.2138805687, 0.3700495958, 0.3404140472, 0.0974965543, -0.058864519, -0.0613860376, 0.0397349, -0.1048277915, -0.0849884152, -0.0384136774, -0.3763241768, -0.2585602403, -0.1624861062, 0.1023466513, -0.0869155526, -0.022329241, 0.6900106668, 0.1503066868, 0.341989547, -0.3378277123, 0.0661961511, 0.029575102, 0.4036602974, 0.4701581895, 0.076012969, -0.4037766457, -0.079994902, -0.4968740344, 0.0621394739, 0.121179238, -0.1317169815, 0.1792275459, -0.1361560524, -0.0133231208, -0.1985214949, -0.0573429912, 0.0297254845, 0.0242389143, 0.3217080832, -0.0086837038, -0.107724905, 0.2655579448, -0.0672237501, 0.1426306367, -0.5638714433, 0.0671394095, -0.2215019464, 0.0575663894, -0.471940577, 0.0898200572, 0.1238537282, 0.1396855712, 0.2431279719, 0.0155659672, 0.3771497905, -0.0043463483, 0.1913799047, -0.5739654899, 0.06780871, -0.1726516187, 0.1434069574, -0.1353251338, -0.0251372457, -0.2696662545, 0.072801128, -0.0983976424, 0.1188254207, -0.0468874834, 0.1527617276, -0.0512724556, 0.1282426715, -0.1833431721, -0.0416471586, 0.2216357142, -0.1437096, -0.1895446628, 0.3802648187, -0.3233774304, -0.3723746836, 0.4683178663, -0.2650414109, -0.2512886524, 0.0131052881, 0.3566477001, -0.1201092824, -0.1665671468, -0.1439182311, 0.362541765, 0.1724918783, -0.004815042, -0.3380492926, 0.4713964462, -0.2036842853, -0.1848140955, 0.0364145413, 0.423489362, -0.0084361508, -0.2079800367, 0.0341635048, -0.1151268929 ]
https://github.com/huggingface/datasets/issues/1996
Error when exploring `arabic_speech_corpus`
Actually soundfile is not a dependency of this dataset. The error comes from a bug that was fixed in this commit: https://github.com/huggingface/datasets/pull/1767/commits/c304e63629f4453367de2fd42883a78768055532 Basically the library used to consider the `import soundfile` in the docstring as a dependency, while it's just here as a code example. Updating the viewer to the latest version of `datasets` should fix this issue
Navigate to https://huggingface.co/datasets/viewer/?dataset=arabic_speech_corpus Error: ``` ImportError: To be able to use this dataset, you need to install the following dependencies['soundfile'] using 'pip install soundfile' for instance' Traceback: File "/home/sasha/.local/share/virtualenvs/lib-ogGKnCK_/lib/python3.7/site-packages/streamlit/script_runner.py", line 332, in _run_script exec(code, module.__dict__) File "/home/sasha/nlp-viewer/run.py", line 233, in <module> configs = get_confs(option) File "/home/sasha/.local/share/virtualenvs/lib-ogGKnCK_/lib/python3.7/site-packages/streamlit/caching.py", line 604, in wrapped_func return get_or_create_cached_value() File "/home/sasha/.local/share/virtualenvs/lib-ogGKnCK_/lib/python3.7/site-packages/streamlit/caching.py", line 588, in get_or_create_cached_value return_value = func(*args, **kwargs) File "/home/sasha/nlp-viewer/run.py", line 145, in get_confs module_path = nlp.load.prepare_module(path, dataset=True File "/home/sasha/.local/share/virtualenvs/lib-ogGKnCK_/lib/python3.7/site-packages/datasets/load.py", line 342, in prepare_module f"To be able to use this {module_type}, you need to install the following dependencies" ```
58
Error when exploring `arabic_speech_corpus` Navigate to https://huggingface.co/datasets/viewer/?dataset=arabic_speech_corpus Error: ``` ImportError: To be able to use this dataset, you need to install the following dependencies['soundfile'] using 'pip install soundfile' for instance' Traceback: File "/home/sasha/.local/share/virtualenvs/lib-ogGKnCK_/lib/python3.7/site-packages/streamlit/script_runner.py", line 332, in _run_script exec(code, module.__dict__) File "/home/sasha/nlp-viewer/run.py", line 233, in <module> configs = get_confs(option) File "/home/sasha/.local/share/virtualenvs/lib-ogGKnCK_/lib/python3.7/site-packages/streamlit/caching.py", line 604, in wrapped_func return get_or_create_cached_value() File "/home/sasha/.local/share/virtualenvs/lib-ogGKnCK_/lib/python3.7/site-packages/streamlit/caching.py", line 588, in get_or_create_cached_value return_value = func(*args, **kwargs) File "/home/sasha/nlp-viewer/run.py", line 145, in get_confs module_path = nlp.load.prepare_module(path, dataset=True File "/home/sasha/.local/share/virtualenvs/lib-ogGKnCK_/lib/python3.7/site-packages/datasets/load.py", line 342, in prepare_module f"To be able to use this {module_type}, you need to install the following dependencies" ``` Actually soundfile is not a dependency of this dataset. The error comes from a bug that was fixed in this commit: https://github.com/huggingface/datasets/pull/1767/commits/c304e63629f4453367de2fd42883a78768055532 Basically the library used to consider the `import soundfile` in the docstring as a dependency, while it's just here as a code example. Updating the viewer to the latest version of `datasets` should fix this issue
[ -0.259124577, -0.1135886982, -0.0363893509, 0.2228232026, 0.0417900234, 0.0414844155, 0.0535818078, 0.3140556812, -0.1731435508, 0.0504593626, -0.2981739938, 0.0969085246, -0.111282438, -0.0406436622, 0.106540978, -0.3713720441, 0.0633599386, 0.2032412589, 0.0054922942, -0.0132907107, -0.0697458312, 0.4542388916, -0.3286393881, -0.0139066353, -0.0968819708, -0.2608729303, -0.0601527169, -0.1154940128, -0.2918642759, -0.4660022259, 0.1471931636, -0.076423794, 0.0929138511, 0.3895765543, -0.0001143709, -0.0865350515, 0.3681042194, -0.1396296918, -0.2088980973, -0.4318641126, 0.1541049778, -0.1369881481, -0.0995632261, -0.1122163385, -0.066224426, -0.1979065388, 0.0398827344, -0.3098417521, 0.291513145, 0.3186619282, 0.2341216505, 0.1870319396, 0.2347777784, -0.0418161526, 0.2049753219, -0.001658259, -0.1434953362, 0.2094645649, 0.185029611, 0.0741268769, -0.177294746, 0.5136581659, -0.3165770173, -0.0839223713, 0.0919756517, -0.1553820223, -0.0313264467, -0.4021748006, 0.1798987836, -0.0613106973, 0.4357355237, -0.361638695, -0.2422317564, -0.2717442214, 0.1527154893, -0.2331832349, 0.2647299469, 0.3108145893, -0.2944637239, 0.1316216141, 0.0926428586, -0.2117516845, -0.014171347, 0.1655195057, 0.0573515818, 0.2916790247, -0.299402684, -0.1460859776, 0.3502131402, -0.1967081875, -0.2485628128, 0.0474216826, -0.0852021426, 0.2425548434, -0.0651772171, -0.0221831277, 0.1632065475, 0.1580074728, -0.0387691967, 0.0165193453, -0.1195856333, 0.2261198312, -0.1795150638, 0.2216258645, -0.0141472192, 0.1789913028, 0.2417356819, -0.0200956725, 0.2245754302, 0.4123171568, 0.012038596, 0.000034024, -0.0760706738, -0.1948831379, -0.4148889184, -0.0548379086, 0.513528347, -0.273971945, -0.1555498987, 0.055430416, -0.0786813423, -0.2209299803, 0.096221216, 0.4137220681, -0.1246658191, -0.010580278, 0.1273993701, 0.324403733, -0.2293330133, -0.2025601715, 0.0115854479, 0.2179547399, -0.0469132029, 0.1443846524, 0.2509664297, -0.4630836248, 0.507471025, 0.0049601682, 0.1702278554, 0.1916877329, -0.0764007866, -0.0905364603, -0.0938393027, 0.3047250509, -0.0437417515, 0.1594016999, 0.2130080163, -0.0378162488, -0.2543688715, 0.0117809046, 0.0311254263, -0.2173603326, -0.0682517067, 0.1823176742, -0.3190977871, -0.0554402247, -0.1916361302, 0.2330010235, 0.1791095436, -0.4966382682, -0.0456907414, 0.0339267217, -0.5319356918, -0.0135487076, 0.0597188771, 0.406755954, -0.0727344304, -0.2927673459, -0.0841919929, 0.0253013894, 0.1555549353, 0.1164547727, -0.0388878509, 0.0291495025, -0.2782107294, 0.3276976347, 0.3454294801, -0.5265833139, -0.4309076965, 0.1337176561, 0.1185406446, 0.2625015974, 0.331253171, -0.2331045717, 0.2469701767, -0.2004736662, 0.1713263988, 0.3000825047, 0.1903237104, -0.1005733907, -0.1891233623, -0.1464093029, -0.0314408801, 0.0946113467, -0.1408829391, 0.1675127745, -0.0015274435, -0.0004480481, 0.1974840611, 0.0762268454, 0.067953065, 0.2516245246, 0.2334305793, 0.0558913499, 0.0565039739, -0.4098462164, 0.0838468671, 0.0377534926, -0.3253619671, 0.4253623784, -0.4172179997, -0.1359892488, -0.2352313846, -0.0995790139, -0.2411772907, -0.1433664858, 0.1581528783, 0.2674128115, 0.1796349883, 0.3149423599, -0.2450623512, -0.001846781, 0.1778330952, -0.0270123929, -0.6278403401, 0.0861305967, -0.2138069719, -0.1113750115, 0.3707224727, 0.2790822089, 0.1563705355, -0.1181208044, -0.0805429816, 0.2213093042, -0.0635784045, 0.3369647563, -0.4050096273, 0.118429482, 0.122503452, -0.3153543472, 0.38484326, 0.1509906352, 0.1245342493, -0.0551245622, 0.3454686999, 0.190918982, 0.2136061788, 0.1452516466, 0.1701562107, 0.0841467753, 0.4480586648, 0.1295616925, -0.2246261537, -0.3109561205, 0.4079637527, -0.2685557306, 0.5072848797, 0.0207662974, -0.3180301189, 0.0073705353, 0.520994246, -0.0545143187, 0.184432596, 0.1243082955, -0.3222739697, -0.1683203876, 0.2562188506, 0.1419637501, 0.4471819997, 0.1286049038, 0.0779225156, 0.1960661858, 0.0627729297, -0.3435523212, 0.2704867423, 0.0305355974, 0.0706949085, 0.2770346105, 0.0956617072, 0.0486453176, -0.5301122665, -0.0327142105, -0.1379946321, 0.1653427035, -0.1218279153, 0.0161711052, -0.3099749386, -0.5472095013, -0.1764025688, -0.2263454646, -0.3613775969, -0.1843630522, 0.0760281906, 0.258405596, 0.0806570947, 0.3466957211, 0.1766170859, 0.065123409, -0.1550278068, -0.1836977154, -0.2633355558, -0.0257068854, -0.1293579638, 0.0739426017, 0.3326383233, 0.2319950759, 0.2194443941, -0.1248031259, -0.0389510244, -0.2586820722, -0.1783269048, 0.2145287395, -0.2075853348, 0.1726352423, 0.1471444368, 0.1403462291, -0.02512189, -0.3683169782, 0.2150207907, 0.0055190548, -0.0820423961, 0.1785068661, -0.1032173485, 0.0165979937, -0.1582725048, -0.2487443835, -0.2342049628, -0.5632390976, 0.0237043221, 0.0359940678, 0.1542959958, 0.640521884, -0.0233092271, 0.2233796418, -0.1866191328, 0.4464222193, -0.1898088902, -0.2654587924, 0.3701422513, -0.3133110106, -0.38511917, 0.083238475, 0.074117288, 0.5423160791, -0.1641801894, -0.4779160619, -0.0479014963, -0.2519607842, -0.0908004567, -0.027399784, 0.1235231608, 0.3727433085, 0.124420315, -0.0558642037, -0.1544631869, -0.1127557755, -0.2120384872, 0.0303631648, 0.1103437245, 0.1173392981, 0.3938212693, 0.0364327133, 0.5581880808, 0.1893628687, 0.0786093324, 0.5083715916, 0.2056814134, 0.4620289803, -0.1761783957, -0.5006486177, -0.0645544454, -0.0106142908, 0.078223139, 0.3012276888, 0.0582544915, -0.2225739956, -0.4180656075, -0.3451643586, -0.1373448223, -0.2126169056, -0.0264407527, -0.2075887173, 0.3192278743, 0.1626678705, 0.0413441584, 0.0573914051, -0.0178874061, 0.204273805, 0.0971606672, 0.0731192678, -0.0063094497, -0.3482370377, -0.2147999406, -0.6190567017, 0.3982366323, 0.0591073558, 0.2502109706, -0.1125882268, 0.026482448, 0.0450299606, -0.0094933473, 0.3792364895, -0.0885426998, 0.0296730362, 0.271998316, 0.0443008393, -0.4352826774, 0.0519294441, -0.2449258864, 0.1143581867, -0.0659609437, 0.2073740363, -0.1998902708, -0.0538149662, 0.1953683496, 0.2936965823, 0.1380236, -0.093145363, -0.4292461872, -0.4469646513, -0.4218347967, -0.0641521588, 0.0973074734, 0.2505412102, 0.2945303917, 0.2912119925, 0.2619183064, -0.0290740617, 0.1567692161, -0.0027869418, 0.0268263258, 0.2493476719, 0.0158032477, 0.1950426102, -0.0052006328, -0.1470478922, 0.5904425979, 0.0382177979, -0.3190021813, -0.1221300513, 0.1556510627, 0.0909773409, 0.351074785, -0.1618376374, 0.2359801978, 0.1832562834, -0.0882861018, -0.1249310449, -0.1221575439, 0.3541416824, 0.2038031518, -0.1567082405, -0.4649759531, 0.224064067, -0.0867288411, 0.0144096911, 0.2086192667, 0.1458698958, -0.2154884189, 0.5865088701, -0.3359626234, 0.9864438176, 0.1900928617, 0.1509925723, 0.5796772242, 0.285243392, 0.2736801505, -0.0253483653, 0.2704004049, 0.1270614862, -0.2383606136, -0.0637591481, -0.0524394512, 0.4439460039, -0.1628190279, -0.4471862316, 0.1975349933, 0.1380907148, -0.1930742264, -0.0888216197, 0.1502462476, -0.3072444499, -0.3726422787, -0.7613900304, 0.162941739, -0.0892554894, 0.4359189868, -0.0329364762, -0.0648278147, 0.0107071325, -0.4352571964, -0.3513126969, 0.1951481104, -0.2214559913, 0.0813252851, -0.2043264806, 0.0401033908, 0.3659396768, 0.2889261246, 0.1460968256, 0.2889966965, -0.2387261838, 0.1064590886, -0.1322715133, -0.3824174404, 0.1719483286, 0.1419318765, 0.2849146128, -0.2990047932, -0.1611959636, 0.2049420625, -0.0569148436, 0.0150963143, 0.0441521108, 0.0061553698, -0.0307208002, -0.1124585345, -0.5855567455, 0.0706819594, -0.0553048402, -0.1381874084, 0.1358394772, 0.024308281, -0.4325529337, 0.0252658911, -0.1699222028, -0.1066302806, -0.0793186724, 0.560701251, 0.1880016476, -0.169870615, 0.3974304497, 0.316239953, -0.239410311, -0.177164942, -0.0958880037, -0.3306087255, -0.4093737006, -0.0427021198, 0.3858553767, -0.117235817, -0.252581507, 0.3071600199, -0.0619059615, -0.0096784122, -0.083888866, -0.2928613126, -0.1446080804, 0.4782178402, 0.0091463579, -0.1794579923, 0.1440698355, -0.068688646, 0.0756364316, 0.2157726437, -0.3266898394, 0.1565906405, -0.0723542646, 0.2035766095, 0.3105823398, 0.0021455302, 0.2390643209, 0.0502427109, 0.1470932811, 0.1637431681, -0.2215703279, -0.2032015175, 0.0223941505, 0.1006707475, 0.1046750247, -0.0168408714, 0.1903945208, -0.0843021423, -0.209707886, -0.1461957693, -0.0074349269, 0.3898076415, -0.0087415837, 0.0350727737, -0.17861031, 0.0307355057, 0.1790192425, 0.0001559472, -0.1717806458, -0.1406944394, 0.1362287998, 0.0179866776, -0.1118771285, -0.0856126696, -0.0397431478, 0.1052897573, 0.0032105222, -0.0333006121, 0.2414389104, -0.1479866803, 0.1153253913, 0.2241197675, 0.2735121846, 0.2041808069, -0.1730300784, -0.0259728134, 0.3789480627, 0.1346419752, -0.5750598907, -0.1294363737, 0.2236945331, -0.1634569466, 0.1694573164, 0.181238085, 0.2479254156, 0.0049997568, 0.2487308383, 0.0701474547, 0.4369535446, -0.098213464, 0.3608632386, 0.0550131015, 0.1738197207, -0.0835210532, 0.1091651767, 0.1809803545, 0.2475743592, 0.3581094742, -0.5064562559, 0.2399813831, 0.1221563667, -0.0312167592, 0.1307130158, -0.2954684198, 0.1178454459, 0.5222584009, 0.0929436013, 0.083317861, -0.1304381192, 0.2733750641, -0.1937642246, -0.0702189431, 0.0682208315, 0.2420199215, 0.0126391426, 0.1243280023, 0.0829734057, -0.1413500309, -0.0892262459, -0.1605893672, 0.1149320304, -0.1106440574, 0.0178377144, -0.0927027538, -0.1388923228, -0.1294721961, 0.0077091698, -0.0036959089, 0.0070393384, -0.1362717301, 0.3819723427, 0.0402797014, 0.013498717, 0.0545714386, 0.5289001465, 0.6157765985, 0.2225265801, 0.153978169, 0.229183808, -0.3454718292, -0.0407248065, -0.0221723989, 0.2495703995, 0.2581289113, 0.317458421, 0.1913503408, 0.1021733284, -0.1908327788, -0.1247799844, 0.3226774931, 0.1148627102, -0.2692886889, 0.1078659594, -0.6182483435, -0.0192069635, -0.2506209612, 0.0213128664, -0.7599906921, 0.0891000479, 0.4706354141, -0.0887845159, 0.0327544138, -0.2252697945, 0.0818886459, -0.0447078757, 0.3434868157, 0.3529573381, 0.2142371684, 0.0181447938, -0.3278155923, -0.7539104819, 0.1326276362, 0.0954452157, 0.1085138842, -0.1816554368, -0.0798446611, 0.3282209933, 0.3236335814, -0.14855887, 0.0536658876, -0.2219114602, -0.3084180355, -0.1348040104, 0.0154726747, -0.0775047541, 0.2150858045, -0.1514212191, -0.3206718862, -0.1670664251, -0.3572376072, 0.0848186761, -0.0512856469, -0.0297920033, -0.3333076239, -0.0977579802, 0.0851005614, 0.2058520764, 0.3144368529, -0.255230844, -0.1501886249, -0.1613139957, -0.2632246912, -0.0887675881, 0.303211987, 0.0355336443, 0.5683214664, -0.282861352, 0.0654948652, -0.3003046811, 0.535661459, 0.0982848182, 0.0040897019, -0.2274107635, 0.345928371, -0.1644188315, 0.18819502, -0.0067115426, 0.0318457261, -0.0616732873, 0.1145702302, -0.481327951, -0.3261035383, 0.6847341061, -0.5025780797, -0.2505763769, 0.1268019676, 0.3253100812, 0.1369986534, -0.3709216714, -0.6134667397, 0.1257465184, 0.1614839137, 0.1585966498, -0.1042660177, 0.1900280267, -0.3713203669, -0.2188590169, -0.0757652074, 0.2658399045, 0.2960600853, -0.1947958916, 0.201163277, -0.2912432551 ]
https://github.com/huggingface/datasets/issues/1994
not being able to get wikipedia es language
@lhoestq I really appreciate if you could help me providiing processed datasets, I do not really have access to enough resources to run the apache-beam and need to run the codes on these datasets. Only en/de/fr currently works, but I need all the languages more or less. thanks
Hi I am trying to run a code with wikipedia of config 20200501.es, getting: Traceback (most recent call last): File "run_mlm_t5.py", line 608, in <module> main() File "run_mlm_t5.py", line 359, in main datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name) File "/dara/libs/anaconda3/envs/success432/lib/python3.7/site-packages/datasets-1.2.1-py3.7.egg/datasets/load.py", line 612, in load_dataset ignore_verifications=ignore_verifications, File "/dara/libs/anaconda3/envs/success432/lib/python3.7/site-packages/datasets-1.2.1-py3.7.egg/datasets/builder.py", line 527, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "/dara/libs/anaconda3/envs/success432/lib/python3.7/site-packages/datasets-1.2.1-py3.7.egg/datasets/builder.py", line 1050, in _download_and_prepare "\n\t`{}`".format(usage_example) datasets.builder.MissingBeamOptions: Trying to generate a dataset using Apache Beam, yet no Beam Runner or PipelineOptions() has been provided in `load_dataset` or in the builder arguments. For big datasets it has to run on large-scale data processing tools like Dataflow, Spark, etc. More information about Apache Beam runners at https://beam.apache.org/documentation/runners/capability-matrix/ If you really want to run it locally because you feel like the Dataset is small enough, you can use the local beam runner called `DirectRunner` (you may run out of memory). Example of usage: `load_dataset('wikipedia', '20200501.es', beam_runner='DirectRunner')` thanks @lhoestq for any suggestion/help
48
not being able to get wikipedia es language Hi I am trying to run a code with wikipedia of config 20200501.es, getting: Traceback (most recent call last): File "run_mlm_t5.py", line 608, in <module> main() File "run_mlm_t5.py", line 359, in main datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name) File "/dara/libs/anaconda3/envs/success432/lib/python3.7/site-packages/datasets-1.2.1-py3.7.egg/datasets/load.py", line 612, in load_dataset ignore_verifications=ignore_verifications, File "/dara/libs/anaconda3/envs/success432/lib/python3.7/site-packages/datasets-1.2.1-py3.7.egg/datasets/builder.py", line 527, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "/dara/libs/anaconda3/envs/success432/lib/python3.7/site-packages/datasets-1.2.1-py3.7.egg/datasets/builder.py", line 1050, in _download_and_prepare "\n\t`{}`".format(usage_example) datasets.builder.MissingBeamOptions: Trying to generate a dataset using Apache Beam, yet no Beam Runner or PipelineOptions() has been provided in `load_dataset` or in the builder arguments. For big datasets it has to run on large-scale data processing tools like Dataflow, Spark, etc. More information about Apache Beam runners at https://beam.apache.org/documentation/runners/capability-matrix/ If you really want to run it locally because you feel like the Dataset is small enough, you can use the local beam runner called `DirectRunner` (you may run out of memory). Example of usage: `load_dataset('wikipedia', '20200501.es', beam_runner='DirectRunner')` thanks @lhoestq for any suggestion/help @lhoestq I really appreciate if you could help me providiing processed datasets, I do not really have access to enough resources to run the apache-beam and need to run the codes on these datasets. Only en/de/fr currently works, but I need all the languages more or less. thanks
[ -0.342106998, 0.0471930355, -0.1062646955, 0.0620169379, 0.2004550099, 0.1777444929, 0.1768746972, 0.3401961923, 0.1373332739, 0.092118144, 0.4105238616, 0.3346936703, 0.0160006285, 0.3076459467, 0.1113206893, -0.3370866179, 0.0556504615, 0.0752221197, -0.1947188824, -0.2001763731, -0.1320843697, 0.1037430167, -0.272518456, -0.0701155216, -0.1488358974, 0.1070384458, 0.1227777824, -0.0196698997, -0.1926016062, -0.1862006783, 0.0680221319, -0.0362134874, 0.2280332297, 0.1079431623, -0.0001084146, 0.0806313455, 0.5717443228, -0.1583802849, -0.4590223432, -0.1303219795, -0.0813638344, -0.3462578654, 0.2564505935, -0.3715741038, -0.3347843289, -0.0256401207, 0.318754971, -0.5857157707, 0.2412882745, 0.1479619443, 0.2182684839, -0.074211061, 0.3515353203, -0.0048846975, 0.4105972052, 0.218606621, -0.0360496975, -0.1243074909, 0.0106627941, 0.0249650925, 0.0606177002, 0.4618475437, 0.0472857058, -0.1142472178, 0.3039733768, -0.3094905615, 0.2656842172, -0.3731161952, 0.4229688048, 0.254131496, 1.0161629915, -0.119702071, 0.0995207354, 0.1050663292, 0.0040745772, 0.1287816912, 0.2428364605, 0.2005355954, -0.3642729223, -0.0796794295, 0.1134930998, -0.2830435038, -0.3356786072, 0.3455580473, -0.1017289236, 0.5368951559, 0.1090376526, 0.1416433007, -0.150975883, -0.1852885038, 0.077301845, -0.0707804114, 0.1030775905, 0.3541409969, -0.0930455402, 0.1351344287, 0.2457793355, 0.1751322001, 0.0443398058, -0.0947962031, -0.2797641158, 0.1917007565, 0.3685204089, 0.0461874716, 0.0220659226, 0.0323533826, 0.3556629121, -0.1849303991, 0.2050385475, -0.0305734221, 0.0079398304, 0.0666475371, -0.0586211532, -0.3365760744, -0.6453831196, 0.2325167954, -0.0009588003, -0.1367515028, 0.1923416853, 0.1587264538, -0.3540837765, -0.2998664975, -0.0057486519, 0.2017253339, 0.1522040963, 0.2051187009, 0.2833249867, -0.0867262259, -0.3417101502, -0.3844319582, -0.0466405228, 0.2829634249, -0.4593486786, 0.0780525208, 0.2093624324, 0.1067862362, 0.3750689924, -0.035515219, -0.0439993925, 0.0425271392, 0.1307715923, 0.0788350701, -0.1385990381, 0.1594758928, 0.1490189433, 0.2470005602, 0.199904114, -0.2224667817, -0.0522187874, 0.0016836133, -0.0903742462, -0.1905190945, -0.1856555045, 0.1717608124, 0.1227799952, 0.1018855721, 0.0458259359, 0.3413793743, 0.171399951, -0.2258880436, 0.1436650306, -0.0075099263, -0.1345750242, -0.0918876901, 0.3624590039, 0.3725726902, -0.6563612223, 0.1040467173, -0.0495636165, 0.1877679974, 0.1437000185, -0.2795009911, -0.2813878059, 0.4237989187, -0.0935202762, -0.1007724851, 0.3089182973, -0.2708931565, 0.081591405, 0.1968427747, 0.0673343688, -0.282261163, 0.237101227, -0.1123532653, 0.0422959253, 0.1624546647, 0.1141088232, 0.1663444042, 0.1164604202, -0.0702250004, -0.2196754515, -0.1222946569, -0.0431550592, 0.1172711104, 0.2665440738, -0.1195795983, 0.1249018013, 0.5266054869, 0.3261623085, -0.2632549703, 0.0764252096, 0.543215692, -0.3122921586, 0.080658935, 0.1918923855, -0.0554748774, -0.0499001071, 0.1809133589, -0.2391944975, 0.4039111137, 0.0790579692, -0.0053860694, -0.2668074667, -0.0530284941, -0.2360290587, -0.4283646047, 0.2114923149, 0.0466560945, -0.0355188549, 0.2530859113, 0.0529347956, -0.0900342315, -0.2782238126, -0.1389370114, -0.812212646, 0.2934661508, -0.2860758901, -0.0800814331, -0.0875595286, 0.0202555209, 0.0639515072, -0.1236339211, -0.2867788374, 0.1009157822, 0.18732737, 0.0372004472, -0.0119494284, 0.1644943506, 0.1220300347, -0.2648275495, 0.3166705966, 0.3054233193, 0.1199401766, 0.0179687589, -0.2019149065, 0.1108083352, 0.0477328151, 0.3355244994, 0.0727868006, 0.268589437, 0.185182482, 0.1680478305, -0.1562814713, -0.1591637582, 0.3021562994, 0.4226678014, 0.181898281, -0.1457033753, 0.0370390266, 0.0772160515, 0.4515739977, 0.1048435122, -0.0922240764, -0.1263716072, -0.3054103851, -0.059478581, 0.4833450615, -0.1791241169, -0.0160227492, 0.2791061401, -0.0161975361, 0.0771191493, -0.1511853635, -0.1175534129, 0.4446227849, 0.0723266453, 0.5178593397, -0.0257203169, -0.1244163141, -0.1868183315, -0.1908414662, -0.2879431546, -0.1234146655, 0.284740746, -0.3124693632, 0.2768904865, -0.4178831875, -0.5642527342, -0.2084295154, 0.4299705625, -0.3480248451, -0.343069315, -0.0680081025, 0.0778866485, -0.0229115039, 0.2500191927, 0.1072104126, -0.0355425328, 0.2320448309, 0.0074739102, -0.2216772735, -0.5956383944, -0.4356402755, 0.0326633379, 0.2823257744, 0.0373752564, 0.127229467, -0.1569058299, -0.0672412887, -0.1452949792, -0.4021955132, 0.3414442539, -0.086984396, -0.0084639192, 0.1166533232, 0.4272182286, -0.1959809959, -0.0950586945, 0.3098008633, 0.1152016968, -0.1476499885, -0.0692659691, -0.084672302, -0.0623620898, -0.0308235921, -0.4383018613, -0.1505848467, -0.3273385763, -0.18200019, 0.1689834595, 0.1332359165, 0.3523074687, 0.2645773888, 0.2091480792, 0.3283592761, 0.0954611376, -0.0965571851, -0.159337163, 0.2170189917, -0.3185726702, -0.3167466223, 0.1040418744, -0.1413134336, 0.2305061221, 0.1135407761, -0.1463302672, 0.0680317357, 0.1159728989, 0.0200539455, -0.1013206616, 0.3257167637, 0.7469018698, -0.0126238726, -0.0016666912, -0.0988116637, 0.0478257984, 0.0307379421, -0.4368043542, 0.3473179638, 0.1777922213, 0.5277687311, -0.0701482594, 0.7515986562, 0.1148357391, 0.1166793332, 0.1321654916, -0.0752612948, 0.066186443, -0.2724730372, -0.188459456, 0.2927806675, 0.0403267741, -0.3030903637, 0.3898433447, -0.127701357, -0.259891063, -0.4387772083, 0.0750475526, 0.0016001388, -0.2447390705, -0.0376061797, -0.3750053048, 0.3839117885, -0.0953027904, 0.3992145061, -0.0802457482, -0.0731420591, 0.0592001975, 0.2196859717, -0.098245427, 0.1342238337, -0.1730972528, -0.2497491091, -0.3993259966, 0.2461432517, 0.0012101755, 0.1436173022, -0.2927531302, 0.0079167038, 0.2831736803, 0.0087452494, 0.5200994015, -0.647043407, -0.0973824859, 0.3353388906, 0.1921804994, -0.6571787596, -0.1413872242, -0.187676996, 0.2771171331, 0.3285015225, -0.0478473566, -0.3322195709, -0.1513583362, 0.2680896521, 0.0485687181, -0.099098891, 0.0515202284, -0.2417584062, -0.1433175057, -0.3353154659, -0.0657826364, -0.0996941552, 0.1351074576, 0.1002395377, 0.2149956673, 0.0813034549, 0.0262182131, -0.1448778659, 0.2050134391, 0.1226052865, 0.1383645833, -0.2560665309, 0.1037121117, 0.4806480408, -0.0265886039, -0.1080245748, 0.1851129979, -0.2079534829, 0.1726381928, -0.2150921375, 0.1455085874, 0.160410583, -0.1206460148, -0.239364028, 0.0364792645, -0.2542996109, -0.0464656241, 0.0528433025, 0.2087157667, 0.0810017139, -0.1274004132, -0.4575786591, 0.5609189868, 0.1885296255, -0.0729710311, 0.2990118265, -0.0156657286, -0.4306365252, 0.4052889049, 0.4329439104, 0.863566637, 0.0299162772, 0.0139990831, 0.1714197397, 0.1671355665, 0.6254858971, -0.546677649, 0.2091644406, -0.2812896967, 0.3198877275, -0.0952551737, 0.0653769672, 0.3957328796, 0.1431853026, -0.2221699357, 0.3536064625, -0.0173850358, 0.0741588175, 0.0565965325, 0.3767169714, 0.1265326738, -0.3078528345, -0.1175288707, 0.1213966459, -0.1823623031, 0.2824689746, -0.249821797, -0.0125391986, -0.0145078152, -0.2449237704, -0.4106995165, 0.0911928341, -0.2241829932, 0.4608555734, -0.3423031569, -0.4593053162, 0.2506961226, 0.2268087268, 0.2354614288, 0.3696656525, -0.3735500872, 0.2001677752, 0.0150045706, -0.2361065596, -0.0761884451, 0.0410972536, 0.3866562545, -0.1922807395, -0.392267704, 0.2118110955, -0.1738401949, -0.0978841856, -0.2912861705, -0.3177188635, 0.3188327849, 0.2502014935, 0.1240343899, 0.1725910157, -0.0860563293, -0.1338625252, 0.1198046133, -0.284142375, 0.0101041943, 0.0086889528, 0.0882757753, -0.0868180171, 0.030908484, 0.2571512461, 0.1876179427, 0.0172612518, 0.5952087641, 0.3785046935, -0.2194746584, -0.2659060657, 0.178608492, -0.2292426229, -0.0606898479, -0.2634160519, 0.1508060098, 0.0923175961, -0.0571265519, 0.1029211059, -0.0157442763, -0.1409100294, -0.0071757734, -0.268037498, -0.0209584422, 0.0222999901, -0.1638099253, -0.0015578466, 0.1883047372, 0.1332467198, 0.2853648663, -0.2360228747, -0.279116869, -0.2388354838, -0.0223193243, 0.045320794, 0.4137128592, -0.0166399982, -0.2360474765, -0.0387385488, 0.1452316642, -0.2301059514, -0.2452724278, -0.1725503057, -0.0468343943, 0.1290073991, -0.0397849306, -0.1874576509, 0.1358539164, -0.3403597474, -0.2925053835, -0.2041293383, -0.1316379905, -0.1293066144, -0.0242856815, 0.2222883105, -0.1042089462, 0.3449909687, -0.2878000736, 0.0879828781, 0.034875717, 0.2938311696, 0.0511715002, 0.2495483309, 0.41686064, -0.1764675379, -0.5602069497, 0.1830453873, -0.221145913, 0.1743836701, 0.1633219123, -0.0828018486, -0.0480112657, 0.0299650989, -0.0214732029, 0.0264018588, -0.0819887146, -0.0302334651, 0.1355876029, 0.2045514733, -0.2827223539, 0.1239572018, 0.42209813, -0.0330972001, 0.0961895287, 0.0262788273, 0.2615513206, -0.0534218326, 0.1746625155, 0.0410571396, 0.0168638192, -0.0434479564, 0.2639890015, 0.094607465, 0.0811473131, 0.1160610765, -0.1200714335, 0.0464198925, 0.1310728192, 0.3746132553, 0.1071263105, 0.0660359412, 0.1008161604, 0.2165687382, -0.2253762037, -0.1409871876, 0.3062997162, -0.1027754545, -0.0209076181, 0.022877207, -0.0645727441, 0.0748563558, 0.148017332, -0.0637499765, -0.3180228472, 0.1386723369, -0.0777267665, -0.1830138564, -0.6274292469, -0.2322815359, 0.0546509475, -0.0176587775, 0.0890895426, -0.083697319, -0.1092471033, 0.2026977837, -0.0350255333, -0.2306361496, 0.6797720194, -0.0616485365, 0.0446975715, -0.0551759675, 0.2520868778, -0.2132345289, -0.0712454692, -0.1705530137, -0.0018401407, 0.1578254402, 0.2109286636, -0.4701039195, -0.1439928114, -0.0009010807, 0.0189442262, -0.0591774397, 0.0006444044, 0.0630014166, -0.0377971865, 0.2940510511, 0.1096708104, -0.0898017138, -0.198442772, 0.2169164121, -0.0071819276, -0.02003837, -0.2484543771, 0.0045180507, 0.1042116433, -0.10660851, 0.1146246195, -0.5152722597, 0.0413266681, 0.2593999505, 0.3884593248, -0.1085287929, -0.2229960114, 0.0836436749, -0.3275438249, 0.5394180417, 0.0841736719, 0.1905830353, -0.1180474758, -0.2930147648, -0.295096606, 0.0054535158, -0.169594124, -0.36802423, -0.1203950047, 0.3059184849, 0.392803967, 0.244593814, 0.1168802083, -0.2535528243, -0.1298051924, 0.2650590837, -0.1438631266, -0.1589303762, -0.0732823759, 0.0492415652, -0.2251881659, -0.1773682684, 0.0832061097, -0.0194314569, 0.0752258524, -0.2276206911, -0.1473575383, 0.3186531067, -0.4347780645, 0.2595768869, 0.0258949418, 0.5472239256, 0.0291320384, -0.0422725901, -0.1655566692, 0.2228383422, -0.0450003929, 0.4914212227, 0.0616206713, 0.228508383, -0.2155004442, -0.3188500404, -0.3452578187, 0.6317014098, 0.0320964009, -0.05509964, -0.2490800023, -0.0586699843, -0.2294991314, 0.2923286557, -0.1192454696, 0.066292733, -0.0366522931, 0.1867339909, -0.3581701815, -0.2367312908, 0.3384192586, -0.4211322665, -0.3356796503, -0.189714551, 0.0682094321, -0.1494335234, 0.292988956, -0.1057342887, -0.0153542757, 0.2634702325, -0.1352271736, -0.0167237595, 0.0001434274, 0.0598571301, 0.1573978215, -0.2458986491, -0.4044715166, -0.1943297386, -0.0603253655, -0.3799313307, -0.2492929399 ]
https://github.com/huggingface/datasets/issues/1994
not being able to get wikipedia es language
Hi @dorost1234, I think I can help you a little. I’ve processed some Wikipedia datasets (Spanish inclusive) using the HF/datasets library during recent research. @lhoestq Could you help me to upload these preprocessed datasets to Huggingface's repositories? To be more precise, I've built datasets from the following languages using the 20201201 dumps: Spanish, Portuguese, Russian, French, Japanese, Chinese, and Turkish. Process these datasets have high costs that most of the community can't afford. I think these preprocessed datasets I have could be helpful for someone without access to high-resource machines to process Wikipedia's dumps like @dorost1234
Hi I am trying to run a code with wikipedia of config 20200501.es, getting: Traceback (most recent call last): File "run_mlm_t5.py", line 608, in <module> main() File "run_mlm_t5.py", line 359, in main datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name) File "/dara/libs/anaconda3/envs/success432/lib/python3.7/site-packages/datasets-1.2.1-py3.7.egg/datasets/load.py", line 612, in load_dataset ignore_verifications=ignore_verifications, File "/dara/libs/anaconda3/envs/success432/lib/python3.7/site-packages/datasets-1.2.1-py3.7.egg/datasets/builder.py", line 527, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "/dara/libs/anaconda3/envs/success432/lib/python3.7/site-packages/datasets-1.2.1-py3.7.egg/datasets/builder.py", line 1050, in _download_and_prepare "\n\t`{}`".format(usage_example) datasets.builder.MissingBeamOptions: Trying to generate a dataset using Apache Beam, yet no Beam Runner or PipelineOptions() has been provided in `load_dataset` or in the builder arguments. For big datasets it has to run on large-scale data processing tools like Dataflow, Spark, etc. More information about Apache Beam runners at https://beam.apache.org/documentation/runners/capability-matrix/ If you really want to run it locally because you feel like the Dataset is small enough, you can use the local beam runner called `DirectRunner` (you may run out of memory). Example of usage: `load_dataset('wikipedia', '20200501.es', beam_runner='DirectRunner')` thanks @lhoestq for any suggestion/help
96
not being able to get wikipedia es language Hi I am trying to run a code with wikipedia of config 20200501.es, getting: Traceback (most recent call last): File "run_mlm_t5.py", line 608, in <module> main() File "run_mlm_t5.py", line 359, in main datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name) File "/dara/libs/anaconda3/envs/success432/lib/python3.7/site-packages/datasets-1.2.1-py3.7.egg/datasets/load.py", line 612, in load_dataset ignore_verifications=ignore_verifications, File "/dara/libs/anaconda3/envs/success432/lib/python3.7/site-packages/datasets-1.2.1-py3.7.egg/datasets/builder.py", line 527, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "/dara/libs/anaconda3/envs/success432/lib/python3.7/site-packages/datasets-1.2.1-py3.7.egg/datasets/builder.py", line 1050, in _download_and_prepare "\n\t`{}`".format(usage_example) datasets.builder.MissingBeamOptions: Trying to generate a dataset using Apache Beam, yet no Beam Runner or PipelineOptions() has been provided in `load_dataset` or in the builder arguments. For big datasets it has to run on large-scale data processing tools like Dataflow, Spark, etc. More information about Apache Beam runners at https://beam.apache.org/documentation/runners/capability-matrix/ If you really want to run it locally because you feel like the Dataset is small enough, you can use the local beam runner called `DirectRunner` (you may run out of memory). Example of usage: `load_dataset('wikipedia', '20200501.es', beam_runner='DirectRunner')` thanks @lhoestq for any suggestion/help Hi @dorost1234, I think I can help you a little. I’ve processed some Wikipedia datasets (Spanish inclusive) using the HF/datasets library during recent research. @lhoestq Could you help me to upload these preprocessed datasets to Huggingface's repositories? To be more precise, I've built datasets from the following languages using the 20201201 dumps: Spanish, Portuguese, Russian, French, Japanese, Chinese, and Turkish. Process these datasets have high costs that most of the community can't afford. I think these preprocessed datasets I have could be helpful for someone without access to high-resource machines to process Wikipedia's dumps like @dorost1234
[ -0.342106998, 0.0471930355, -0.1062646955, 0.0620169379, 0.2004550099, 0.1777444929, 0.1768746972, 0.3401961923, 0.1373332739, 0.092118144, 0.4105238616, 0.3346936703, 0.0160006285, 0.3076459467, 0.1113206893, -0.3370866179, 0.0556504615, 0.0752221197, -0.1947188824, -0.2001763731, -0.1320843697, 0.1037430167, -0.272518456, -0.0701155216, -0.1488358974, 0.1070384458, 0.1227777824, -0.0196698997, -0.1926016062, -0.1862006783, 0.0680221319, -0.0362134874, 0.2280332297, 0.1079431623, -0.0001084146, 0.0806313455, 0.5717443228, -0.1583802849, -0.4590223432, -0.1303219795, -0.0813638344, -0.3462578654, 0.2564505935, -0.3715741038, -0.3347843289, -0.0256401207, 0.318754971, -0.5857157707, 0.2412882745, 0.1479619443, 0.2182684839, -0.074211061, 0.3515353203, -0.0048846975, 0.4105972052, 0.218606621, -0.0360496975, -0.1243074909, 0.0106627941, 0.0249650925, 0.0606177002, 0.4618475437, 0.0472857058, -0.1142472178, 0.3039733768, -0.3094905615, 0.2656842172, -0.3731161952, 0.4229688048, 0.254131496, 1.0161629915, -0.119702071, 0.0995207354, 0.1050663292, 0.0040745772, 0.1287816912, 0.2428364605, 0.2005355954, -0.3642729223, -0.0796794295, 0.1134930998, -0.2830435038, -0.3356786072, 0.3455580473, -0.1017289236, 0.5368951559, 0.1090376526, 0.1416433007, -0.150975883, -0.1852885038, 0.077301845, -0.0707804114, 0.1030775905, 0.3541409969, -0.0930455402, 0.1351344287, 0.2457793355, 0.1751322001, 0.0443398058, -0.0947962031, -0.2797641158, 0.1917007565, 0.3685204089, 0.0461874716, 0.0220659226, 0.0323533826, 0.3556629121, -0.1849303991, 0.2050385475, -0.0305734221, 0.0079398304, 0.0666475371, -0.0586211532, -0.3365760744, -0.6453831196, 0.2325167954, -0.0009588003, -0.1367515028, 0.1923416853, 0.1587264538, -0.3540837765, -0.2998664975, -0.0057486519, 0.2017253339, 0.1522040963, 0.2051187009, 0.2833249867, -0.0867262259, -0.3417101502, -0.3844319582, -0.0466405228, 0.2829634249, -0.4593486786, 0.0780525208, 0.2093624324, 0.1067862362, 0.3750689924, -0.035515219, -0.0439993925, 0.0425271392, 0.1307715923, 0.0788350701, -0.1385990381, 0.1594758928, 0.1490189433, 0.2470005602, 0.199904114, -0.2224667817, -0.0522187874, 0.0016836133, -0.0903742462, -0.1905190945, -0.1856555045, 0.1717608124, 0.1227799952, 0.1018855721, 0.0458259359, 0.3413793743, 0.171399951, -0.2258880436, 0.1436650306, -0.0075099263, -0.1345750242, -0.0918876901, 0.3624590039, 0.3725726902, -0.6563612223, 0.1040467173, -0.0495636165, 0.1877679974, 0.1437000185, -0.2795009911, -0.2813878059, 0.4237989187, -0.0935202762, -0.1007724851, 0.3089182973, -0.2708931565, 0.081591405, 0.1968427747, 0.0673343688, -0.282261163, 0.237101227, -0.1123532653, 0.0422959253, 0.1624546647, 0.1141088232, 0.1663444042, 0.1164604202, -0.0702250004, -0.2196754515, -0.1222946569, -0.0431550592, 0.1172711104, 0.2665440738, -0.1195795983, 0.1249018013, 0.5266054869, 0.3261623085, -0.2632549703, 0.0764252096, 0.543215692, -0.3122921586, 0.080658935, 0.1918923855, -0.0554748774, -0.0499001071, 0.1809133589, -0.2391944975, 0.4039111137, 0.0790579692, -0.0053860694, -0.2668074667, -0.0530284941, -0.2360290587, -0.4283646047, 0.2114923149, 0.0466560945, -0.0355188549, 0.2530859113, 0.0529347956, -0.0900342315, -0.2782238126, -0.1389370114, -0.812212646, 0.2934661508, -0.2860758901, -0.0800814331, -0.0875595286, 0.0202555209, 0.0639515072, -0.1236339211, -0.2867788374, 0.1009157822, 0.18732737, 0.0372004472, -0.0119494284, 0.1644943506, 0.1220300347, -0.2648275495, 0.3166705966, 0.3054233193, 0.1199401766, 0.0179687589, -0.2019149065, 0.1108083352, 0.0477328151, 0.3355244994, 0.0727868006, 0.268589437, 0.185182482, 0.1680478305, -0.1562814713, -0.1591637582, 0.3021562994, 0.4226678014, 0.181898281, -0.1457033753, 0.0370390266, 0.0772160515, 0.4515739977, 0.1048435122, -0.0922240764, -0.1263716072, -0.3054103851, -0.059478581, 0.4833450615, -0.1791241169, -0.0160227492, 0.2791061401, -0.0161975361, 0.0771191493, -0.1511853635, -0.1175534129, 0.4446227849, 0.0723266453, 0.5178593397, -0.0257203169, -0.1244163141, -0.1868183315, -0.1908414662, -0.2879431546, -0.1234146655, 0.284740746, -0.3124693632, 0.2768904865, -0.4178831875, -0.5642527342, -0.2084295154, 0.4299705625, -0.3480248451, -0.343069315, -0.0680081025, 0.0778866485, -0.0229115039, 0.2500191927, 0.1072104126, -0.0355425328, 0.2320448309, 0.0074739102, -0.2216772735, -0.5956383944, -0.4356402755, 0.0326633379, 0.2823257744, 0.0373752564, 0.127229467, -0.1569058299, -0.0672412887, -0.1452949792, -0.4021955132, 0.3414442539, -0.086984396, -0.0084639192, 0.1166533232, 0.4272182286, -0.1959809959, -0.0950586945, 0.3098008633, 0.1152016968, -0.1476499885, -0.0692659691, -0.084672302, -0.0623620898, -0.0308235921, -0.4383018613, -0.1505848467, -0.3273385763, -0.18200019, 0.1689834595, 0.1332359165, 0.3523074687, 0.2645773888, 0.2091480792, 0.3283592761, 0.0954611376, -0.0965571851, -0.159337163, 0.2170189917, -0.3185726702, -0.3167466223, 0.1040418744, -0.1413134336, 0.2305061221, 0.1135407761, -0.1463302672, 0.0680317357, 0.1159728989, 0.0200539455, -0.1013206616, 0.3257167637, 0.7469018698, -0.0126238726, -0.0016666912, -0.0988116637, 0.0478257984, 0.0307379421, -0.4368043542, 0.3473179638, 0.1777922213, 0.5277687311, -0.0701482594, 0.7515986562, 0.1148357391, 0.1166793332, 0.1321654916, -0.0752612948, 0.066186443, -0.2724730372, -0.188459456, 0.2927806675, 0.0403267741, -0.3030903637, 0.3898433447, -0.127701357, -0.259891063, -0.4387772083, 0.0750475526, 0.0016001388, -0.2447390705, -0.0376061797, -0.3750053048, 0.3839117885, -0.0953027904, 0.3992145061, -0.0802457482, -0.0731420591, 0.0592001975, 0.2196859717, -0.098245427, 0.1342238337, -0.1730972528, -0.2497491091, -0.3993259966, 0.2461432517, 0.0012101755, 0.1436173022, -0.2927531302, 0.0079167038, 0.2831736803, 0.0087452494, 0.5200994015, -0.647043407, -0.0973824859, 0.3353388906, 0.1921804994, -0.6571787596, -0.1413872242, -0.187676996, 0.2771171331, 0.3285015225, -0.0478473566, -0.3322195709, -0.1513583362, 0.2680896521, 0.0485687181, -0.099098891, 0.0515202284, -0.2417584062, -0.1433175057, -0.3353154659, -0.0657826364, -0.0996941552, 0.1351074576, 0.1002395377, 0.2149956673, 0.0813034549, 0.0262182131, -0.1448778659, 0.2050134391, 0.1226052865, 0.1383645833, -0.2560665309, 0.1037121117, 0.4806480408, -0.0265886039, -0.1080245748, 0.1851129979, -0.2079534829, 0.1726381928, -0.2150921375, 0.1455085874, 0.160410583, -0.1206460148, -0.239364028, 0.0364792645, -0.2542996109, -0.0464656241, 0.0528433025, 0.2087157667, 0.0810017139, -0.1274004132, -0.4575786591, 0.5609189868, 0.1885296255, -0.0729710311, 0.2990118265, -0.0156657286, -0.4306365252, 0.4052889049, 0.4329439104, 0.863566637, 0.0299162772, 0.0139990831, 0.1714197397, 0.1671355665, 0.6254858971, -0.546677649, 0.2091644406, -0.2812896967, 0.3198877275, -0.0952551737, 0.0653769672, 0.3957328796, 0.1431853026, -0.2221699357, 0.3536064625, -0.0173850358, 0.0741588175, 0.0565965325, 0.3767169714, 0.1265326738, -0.3078528345, -0.1175288707, 0.1213966459, -0.1823623031, 0.2824689746, -0.249821797, -0.0125391986, -0.0145078152, -0.2449237704, -0.4106995165, 0.0911928341, -0.2241829932, 0.4608555734, -0.3423031569, -0.4593053162, 0.2506961226, 0.2268087268, 0.2354614288, 0.3696656525, -0.3735500872, 0.2001677752, 0.0150045706, -0.2361065596, -0.0761884451, 0.0410972536, 0.3866562545, -0.1922807395, -0.392267704, 0.2118110955, -0.1738401949, -0.0978841856, -0.2912861705, -0.3177188635, 0.3188327849, 0.2502014935, 0.1240343899, 0.1725910157, -0.0860563293, -0.1338625252, 0.1198046133, -0.284142375, 0.0101041943, 0.0086889528, 0.0882757753, -0.0868180171, 0.030908484, 0.2571512461, 0.1876179427, 0.0172612518, 0.5952087641, 0.3785046935, -0.2194746584, -0.2659060657, 0.178608492, -0.2292426229, -0.0606898479, -0.2634160519, 0.1508060098, 0.0923175961, -0.0571265519, 0.1029211059, -0.0157442763, -0.1409100294, -0.0071757734, -0.268037498, -0.0209584422, 0.0222999901, -0.1638099253, -0.0015578466, 0.1883047372, 0.1332467198, 0.2853648663, -0.2360228747, -0.279116869, -0.2388354838, -0.0223193243, 0.045320794, 0.4137128592, -0.0166399982, -0.2360474765, -0.0387385488, 0.1452316642, -0.2301059514, -0.2452724278, -0.1725503057, -0.0468343943, 0.1290073991, -0.0397849306, -0.1874576509, 0.1358539164, -0.3403597474, -0.2925053835, -0.2041293383, -0.1316379905, -0.1293066144, -0.0242856815, 0.2222883105, -0.1042089462, 0.3449909687, -0.2878000736, 0.0879828781, 0.034875717, 0.2938311696, 0.0511715002, 0.2495483309, 0.41686064, -0.1764675379, -0.5602069497, 0.1830453873, -0.221145913, 0.1743836701, 0.1633219123, -0.0828018486, -0.0480112657, 0.0299650989, -0.0214732029, 0.0264018588, -0.0819887146, -0.0302334651, 0.1355876029, 0.2045514733, -0.2827223539, 0.1239572018, 0.42209813, -0.0330972001, 0.0961895287, 0.0262788273, 0.2615513206, -0.0534218326, 0.1746625155, 0.0410571396, 0.0168638192, -0.0434479564, 0.2639890015, 0.094607465, 0.0811473131, 0.1160610765, -0.1200714335, 0.0464198925, 0.1310728192, 0.3746132553, 0.1071263105, 0.0660359412, 0.1008161604, 0.2165687382, -0.2253762037, -0.1409871876, 0.3062997162, -0.1027754545, -0.0209076181, 0.022877207, -0.0645727441, 0.0748563558, 0.148017332, -0.0637499765, -0.3180228472, 0.1386723369, -0.0777267665, -0.1830138564, -0.6274292469, -0.2322815359, 0.0546509475, -0.0176587775, 0.0890895426, -0.083697319, -0.1092471033, 0.2026977837, -0.0350255333, -0.2306361496, 0.6797720194, -0.0616485365, 0.0446975715, -0.0551759675, 0.2520868778, -0.2132345289, -0.0712454692, -0.1705530137, -0.0018401407, 0.1578254402, 0.2109286636, -0.4701039195, -0.1439928114, -0.0009010807, 0.0189442262, -0.0591774397, 0.0006444044, 0.0630014166, -0.0377971865, 0.2940510511, 0.1096708104, -0.0898017138, -0.198442772, 0.2169164121, -0.0071819276, -0.02003837, -0.2484543771, 0.0045180507, 0.1042116433, -0.10660851, 0.1146246195, -0.5152722597, 0.0413266681, 0.2593999505, 0.3884593248, -0.1085287929, -0.2229960114, 0.0836436749, -0.3275438249, 0.5394180417, 0.0841736719, 0.1905830353, -0.1180474758, -0.2930147648, -0.295096606, 0.0054535158, -0.169594124, -0.36802423, -0.1203950047, 0.3059184849, 0.392803967, 0.244593814, 0.1168802083, -0.2535528243, -0.1298051924, 0.2650590837, -0.1438631266, -0.1589303762, -0.0732823759, 0.0492415652, -0.2251881659, -0.1773682684, 0.0832061097, -0.0194314569, 0.0752258524, -0.2276206911, -0.1473575383, 0.3186531067, -0.4347780645, 0.2595768869, 0.0258949418, 0.5472239256, 0.0291320384, -0.0422725901, -0.1655566692, 0.2228383422, -0.0450003929, 0.4914212227, 0.0616206713, 0.228508383, -0.2155004442, -0.3188500404, -0.3452578187, 0.6317014098, 0.0320964009, -0.05509964, -0.2490800023, -0.0586699843, -0.2294991314, 0.2923286557, -0.1192454696, 0.066292733, -0.0366522931, 0.1867339909, -0.3581701815, -0.2367312908, 0.3384192586, -0.4211322665, -0.3356796503, -0.189714551, 0.0682094321, -0.1494335234, 0.292988956, -0.1057342887, -0.0153542757, 0.2634702325, -0.1352271736, -0.0167237595, 0.0001434274, 0.0598571301, 0.1573978215, -0.2458986491, -0.4044715166, -0.1943297386, -0.0603253655, -0.3799313307, -0.2492929399 ]
https://github.com/huggingface/datasets/issues/1994
not being able to get wikipedia es language
Thank you so much @jonatasgrosman , I greatly appreciate your help with them. Yes, I unfortunately does not have access to a good resource and need it for my research. I greatly appreciate @lhoestq your help with uploading the processed datasets in huggingface datasets. This would be really helpful for some users like me with not access to high-memory GPU resources. thank you both so much again. On Sat, Mar 6, 2021 at 12:55 AM Jonatas Grosman <[email protected]> wrote: > Hi @dorost1234 <https://github.com/dorost1234>, I think I can help you a > little. I’ve processed some Wikipedia datasets (Spanish inclusive) using > the HF/datasets library during recent research. > > @lhoestq <https://github.com/lhoestq> Could you help me to upload these > preprocessed datasets to Huggingface's repositories? To be more precise, > I've built datasets from the following languages using the 20201201 dumps: > Spanish, Portuguese, Russian, French, Japanese, Chinese, and Turkish. > Process these datasets have high costs that most of the community can't > afford. I think these preprocessed datasets I have could be helpful for > someone without access to high-resource machines to process Wikipedia's > dumps like @dorost1234 <https://github.com/dorost1234> > > — > You are receiving this because you were mentioned. > Reply to this email directly, view it on GitHub > <https://github.com/huggingface/datasets/issues/1994#issuecomment-791798195>, > or unsubscribe > <https://github.com/notifications/unsubscribe-auth/AS37NMWMK5GFJFU3ACCJFUDTCFVNZANCNFSM4YUZIF4A> > . >
Hi I am trying to run a code with wikipedia of config 20200501.es, getting: Traceback (most recent call last): File "run_mlm_t5.py", line 608, in <module> main() File "run_mlm_t5.py", line 359, in main datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name) File "/dara/libs/anaconda3/envs/success432/lib/python3.7/site-packages/datasets-1.2.1-py3.7.egg/datasets/load.py", line 612, in load_dataset ignore_verifications=ignore_verifications, File "/dara/libs/anaconda3/envs/success432/lib/python3.7/site-packages/datasets-1.2.1-py3.7.egg/datasets/builder.py", line 527, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "/dara/libs/anaconda3/envs/success432/lib/python3.7/site-packages/datasets-1.2.1-py3.7.egg/datasets/builder.py", line 1050, in _download_and_prepare "\n\t`{}`".format(usage_example) datasets.builder.MissingBeamOptions: Trying to generate a dataset using Apache Beam, yet no Beam Runner or PipelineOptions() has been provided in `load_dataset` or in the builder arguments. For big datasets it has to run on large-scale data processing tools like Dataflow, Spark, etc. More information about Apache Beam runners at https://beam.apache.org/documentation/runners/capability-matrix/ If you really want to run it locally because you feel like the Dataset is small enough, you can use the local beam runner called `DirectRunner` (you may run out of memory). Example of usage: `load_dataset('wikipedia', '20200501.es', beam_runner='DirectRunner')` thanks @lhoestq for any suggestion/help
222
not being able to get wikipedia es language Hi I am trying to run a code with wikipedia of config 20200501.es, getting: Traceback (most recent call last): File "run_mlm_t5.py", line 608, in <module> main() File "run_mlm_t5.py", line 359, in main datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name) File "/dara/libs/anaconda3/envs/success432/lib/python3.7/site-packages/datasets-1.2.1-py3.7.egg/datasets/load.py", line 612, in load_dataset ignore_verifications=ignore_verifications, File "/dara/libs/anaconda3/envs/success432/lib/python3.7/site-packages/datasets-1.2.1-py3.7.egg/datasets/builder.py", line 527, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "/dara/libs/anaconda3/envs/success432/lib/python3.7/site-packages/datasets-1.2.1-py3.7.egg/datasets/builder.py", line 1050, in _download_and_prepare "\n\t`{}`".format(usage_example) datasets.builder.MissingBeamOptions: Trying to generate a dataset using Apache Beam, yet no Beam Runner or PipelineOptions() has been provided in `load_dataset` or in the builder arguments. For big datasets it has to run on large-scale data processing tools like Dataflow, Spark, etc. More information about Apache Beam runners at https://beam.apache.org/documentation/runners/capability-matrix/ If you really want to run it locally because you feel like the Dataset is small enough, you can use the local beam runner called `DirectRunner` (you may run out of memory). Example of usage: `load_dataset('wikipedia', '20200501.es', beam_runner='DirectRunner')` thanks @lhoestq for any suggestion/help Thank you so much @jonatasgrosman , I greatly appreciate your help with them. Yes, I unfortunately does not have access to a good resource and need it for my research. I greatly appreciate @lhoestq your help with uploading the processed datasets in huggingface datasets. This would be really helpful for some users like me with not access to high-memory GPU resources. thank you both so much again. On Sat, Mar 6, 2021 at 12:55 AM Jonatas Grosman <[email protected]> wrote: > Hi @dorost1234 <https://github.com/dorost1234>, I think I can help you a > little. I’ve processed some Wikipedia datasets (Spanish inclusive) using > the HF/datasets library during recent research. > > @lhoestq <https://github.com/lhoestq> Could you help me to upload these > preprocessed datasets to Huggingface's repositories? To be more precise, > I've built datasets from the following languages using the 20201201 dumps: > Spanish, Portuguese, Russian, French, Japanese, Chinese, and Turkish. > Process these datasets have high costs that most of the community can't > afford. I think these preprocessed datasets I have could be helpful for > someone without access to high-resource machines to process Wikipedia's > dumps like @dorost1234 <https://github.com/dorost1234> > > — > You are receiving this because you were mentioned. > Reply to this email directly, view it on GitHub > <https://github.com/huggingface/datasets/issues/1994#issuecomment-791798195>, > or unsubscribe > <https://github.com/notifications/unsubscribe-auth/AS37NMWMK5GFJFU3ACCJFUDTCFVNZANCNFSM4YUZIF4A> > . >
[ -0.342106998, 0.0471930355, -0.1062646955, 0.0620169379, 0.2004550099, 0.1777444929, 0.1768746972, 0.3401961923, 0.1373332739, 0.092118144, 0.4105238616, 0.3346936703, 0.0160006285, 0.3076459467, 0.1113206893, -0.3370866179, 0.0556504615, 0.0752221197, -0.1947188824, -0.2001763731, -0.1320843697, 0.1037430167, -0.272518456, -0.0701155216, -0.1488358974, 0.1070384458, 0.1227777824, -0.0196698997, -0.1926016062, -0.1862006783, 0.0680221319, -0.0362134874, 0.2280332297, 0.1079431623, -0.0001084146, 0.0806313455, 0.5717443228, -0.1583802849, -0.4590223432, -0.1303219795, -0.0813638344, -0.3462578654, 0.2564505935, -0.3715741038, -0.3347843289, -0.0256401207, 0.318754971, -0.5857157707, 0.2412882745, 0.1479619443, 0.2182684839, -0.074211061, 0.3515353203, -0.0048846975, 0.4105972052, 0.218606621, -0.0360496975, -0.1243074909, 0.0106627941, 0.0249650925, 0.0606177002, 0.4618475437, 0.0472857058, -0.1142472178, 0.3039733768, -0.3094905615, 0.2656842172, -0.3731161952, 0.4229688048, 0.254131496, 1.0161629915, -0.119702071, 0.0995207354, 0.1050663292, 0.0040745772, 0.1287816912, 0.2428364605, 0.2005355954, -0.3642729223, -0.0796794295, 0.1134930998, -0.2830435038, -0.3356786072, 0.3455580473, -0.1017289236, 0.5368951559, 0.1090376526, 0.1416433007, -0.150975883, -0.1852885038, 0.077301845, -0.0707804114, 0.1030775905, 0.3541409969, -0.0930455402, 0.1351344287, 0.2457793355, 0.1751322001, 0.0443398058, -0.0947962031, -0.2797641158, 0.1917007565, 0.3685204089, 0.0461874716, 0.0220659226, 0.0323533826, 0.3556629121, -0.1849303991, 0.2050385475, -0.0305734221, 0.0079398304, 0.0666475371, -0.0586211532, -0.3365760744, -0.6453831196, 0.2325167954, -0.0009588003, -0.1367515028, 0.1923416853, 0.1587264538, -0.3540837765, -0.2998664975, -0.0057486519, 0.2017253339, 0.1522040963, 0.2051187009, 0.2833249867, -0.0867262259, -0.3417101502, -0.3844319582, -0.0466405228, 0.2829634249, -0.4593486786, 0.0780525208, 0.2093624324, 0.1067862362, 0.3750689924, -0.035515219, -0.0439993925, 0.0425271392, 0.1307715923, 0.0788350701, -0.1385990381, 0.1594758928, 0.1490189433, 0.2470005602, 0.199904114, -0.2224667817, -0.0522187874, 0.0016836133, -0.0903742462, -0.1905190945, -0.1856555045, 0.1717608124, 0.1227799952, 0.1018855721, 0.0458259359, 0.3413793743, 0.171399951, -0.2258880436, 0.1436650306, -0.0075099263, -0.1345750242, -0.0918876901, 0.3624590039, 0.3725726902, -0.6563612223, 0.1040467173, -0.0495636165, 0.1877679974, 0.1437000185, -0.2795009911, -0.2813878059, 0.4237989187, -0.0935202762, -0.1007724851, 0.3089182973, -0.2708931565, 0.081591405, 0.1968427747, 0.0673343688, -0.282261163, 0.237101227, -0.1123532653, 0.0422959253, 0.1624546647, 0.1141088232, 0.1663444042, 0.1164604202, -0.0702250004, -0.2196754515, -0.1222946569, -0.0431550592, 0.1172711104, 0.2665440738, -0.1195795983, 0.1249018013, 0.5266054869, 0.3261623085, -0.2632549703, 0.0764252096, 0.543215692, -0.3122921586, 0.080658935, 0.1918923855, -0.0554748774, -0.0499001071, 0.1809133589, -0.2391944975, 0.4039111137, 0.0790579692, -0.0053860694, -0.2668074667, -0.0530284941, -0.2360290587, -0.4283646047, 0.2114923149, 0.0466560945, -0.0355188549, 0.2530859113, 0.0529347956, -0.0900342315, -0.2782238126, -0.1389370114, -0.812212646, 0.2934661508, -0.2860758901, -0.0800814331, -0.0875595286, 0.0202555209, 0.0639515072, -0.1236339211, -0.2867788374, 0.1009157822, 0.18732737, 0.0372004472, -0.0119494284, 0.1644943506, 0.1220300347, -0.2648275495, 0.3166705966, 0.3054233193, 0.1199401766, 0.0179687589, -0.2019149065, 0.1108083352, 0.0477328151, 0.3355244994, 0.0727868006, 0.268589437, 0.185182482, 0.1680478305, -0.1562814713, -0.1591637582, 0.3021562994, 0.4226678014, 0.181898281, -0.1457033753, 0.0370390266, 0.0772160515, 0.4515739977, 0.1048435122, -0.0922240764, -0.1263716072, -0.3054103851, -0.059478581, 0.4833450615, -0.1791241169, -0.0160227492, 0.2791061401, -0.0161975361, 0.0771191493, -0.1511853635, -0.1175534129, 0.4446227849, 0.0723266453, 0.5178593397, -0.0257203169, -0.1244163141, -0.1868183315, -0.1908414662, -0.2879431546, -0.1234146655, 0.284740746, -0.3124693632, 0.2768904865, -0.4178831875, -0.5642527342, -0.2084295154, 0.4299705625, -0.3480248451, -0.343069315, -0.0680081025, 0.0778866485, -0.0229115039, 0.2500191927, 0.1072104126, -0.0355425328, 0.2320448309, 0.0074739102, -0.2216772735, -0.5956383944, -0.4356402755, 0.0326633379, 0.2823257744, 0.0373752564, 0.127229467, -0.1569058299, -0.0672412887, -0.1452949792, -0.4021955132, 0.3414442539, -0.086984396, -0.0084639192, 0.1166533232, 0.4272182286, -0.1959809959, -0.0950586945, 0.3098008633, 0.1152016968, -0.1476499885, -0.0692659691, -0.084672302, -0.0623620898, -0.0308235921, -0.4383018613, -0.1505848467, -0.3273385763, -0.18200019, 0.1689834595, 0.1332359165, 0.3523074687, 0.2645773888, 0.2091480792, 0.3283592761, 0.0954611376, -0.0965571851, -0.159337163, 0.2170189917, -0.3185726702, -0.3167466223, 0.1040418744, -0.1413134336, 0.2305061221, 0.1135407761, -0.1463302672, 0.0680317357, 0.1159728989, 0.0200539455, -0.1013206616, 0.3257167637, 0.7469018698, -0.0126238726, -0.0016666912, -0.0988116637, 0.0478257984, 0.0307379421, -0.4368043542, 0.3473179638, 0.1777922213, 0.5277687311, -0.0701482594, 0.7515986562, 0.1148357391, 0.1166793332, 0.1321654916, -0.0752612948, 0.066186443, -0.2724730372, -0.188459456, 0.2927806675, 0.0403267741, -0.3030903637, 0.3898433447, -0.127701357, -0.259891063, -0.4387772083, 0.0750475526, 0.0016001388, -0.2447390705, -0.0376061797, -0.3750053048, 0.3839117885, -0.0953027904, 0.3992145061, -0.0802457482, -0.0731420591, 0.0592001975, 0.2196859717, -0.098245427, 0.1342238337, -0.1730972528, -0.2497491091, -0.3993259966, 0.2461432517, 0.0012101755, 0.1436173022, -0.2927531302, 0.0079167038, 0.2831736803, 0.0087452494, 0.5200994015, -0.647043407, -0.0973824859, 0.3353388906, 0.1921804994, -0.6571787596, -0.1413872242, -0.187676996, 0.2771171331, 0.3285015225, -0.0478473566, -0.3322195709, -0.1513583362, 0.2680896521, 0.0485687181, -0.099098891, 0.0515202284, -0.2417584062, -0.1433175057, -0.3353154659, -0.0657826364, -0.0996941552, 0.1351074576, 0.1002395377, 0.2149956673, 0.0813034549, 0.0262182131, -0.1448778659, 0.2050134391, 0.1226052865, 0.1383645833, -0.2560665309, 0.1037121117, 0.4806480408, -0.0265886039, -0.1080245748, 0.1851129979, -0.2079534829, 0.1726381928, -0.2150921375, 0.1455085874, 0.160410583, -0.1206460148, -0.239364028, 0.0364792645, -0.2542996109, -0.0464656241, 0.0528433025, 0.2087157667, 0.0810017139, -0.1274004132, -0.4575786591, 0.5609189868, 0.1885296255, -0.0729710311, 0.2990118265, -0.0156657286, -0.4306365252, 0.4052889049, 0.4329439104, 0.863566637, 0.0299162772, 0.0139990831, 0.1714197397, 0.1671355665, 0.6254858971, -0.546677649, 0.2091644406, -0.2812896967, 0.3198877275, -0.0952551737, 0.0653769672, 0.3957328796, 0.1431853026, -0.2221699357, 0.3536064625, -0.0173850358, 0.0741588175, 0.0565965325, 0.3767169714, 0.1265326738, -0.3078528345, -0.1175288707, 0.1213966459, -0.1823623031, 0.2824689746, -0.249821797, -0.0125391986, -0.0145078152, -0.2449237704, -0.4106995165, 0.0911928341, -0.2241829932, 0.4608555734, -0.3423031569, -0.4593053162, 0.2506961226, 0.2268087268, 0.2354614288, 0.3696656525, -0.3735500872, 0.2001677752, 0.0150045706, -0.2361065596, -0.0761884451, 0.0410972536, 0.3866562545, -0.1922807395, -0.392267704, 0.2118110955, -0.1738401949, -0.0978841856, -0.2912861705, -0.3177188635, 0.3188327849, 0.2502014935, 0.1240343899, 0.1725910157, -0.0860563293, -0.1338625252, 0.1198046133, -0.284142375, 0.0101041943, 0.0086889528, 0.0882757753, -0.0868180171, 0.030908484, 0.2571512461, 0.1876179427, 0.0172612518, 0.5952087641, 0.3785046935, -0.2194746584, -0.2659060657, 0.178608492, -0.2292426229, -0.0606898479, -0.2634160519, 0.1508060098, 0.0923175961, -0.0571265519, 0.1029211059, -0.0157442763, -0.1409100294, -0.0071757734, -0.268037498, -0.0209584422, 0.0222999901, -0.1638099253, -0.0015578466, 0.1883047372, 0.1332467198, 0.2853648663, -0.2360228747, -0.279116869, -0.2388354838, -0.0223193243, 0.045320794, 0.4137128592, -0.0166399982, -0.2360474765, -0.0387385488, 0.1452316642, -0.2301059514, -0.2452724278, -0.1725503057, -0.0468343943, 0.1290073991, -0.0397849306, -0.1874576509, 0.1358539164, -0.3403597474, -0.2925053835, -0.2041293383, -0.1316379905, -0.1293066144, -0.0242856815, 0.2222883105, -0.1042089462, 0.3449909687, -0.2878000736, 0.0879828781, 0.034875717, 0.2938311696, 0.0511715002, 0.2495483309, 0.41686064, -0.1764675379, -0.5602069497, 0.1830453873, -0.221145913, 0.1743836701, 0.1633219123, -0.0828018486, -0.0480112657, 0.0299650989, -0.0214732029, 0.0264018588, -0.0819887146, -0.0302334651, 0.1355876029, 0.2045514733, -0.2827223539, 0.1239572018, 0.42209813, -0.0330972001, 0.0961895287, 0.0262788273, 0.2615513206, -0.0534218326, 0.1746625155, 0.0410571396, 0.0168638192, -0.0434479564, 0.2639890015, 0.094607465, 0.0811473131, 0.1160610765, -0.1200714335, 0.0464198925, 0.1310728192, 0.3746132553, 0.1071263105, 0.0660359412, 0.1008161604, 0.2165687382, -0.2253762037, -0.1409871876, 0.3062997162, -0.1027754545, -0.0209076181, 0.022877207, -0.0645727441, 0.0748563558, 0.148017332, -0.0637499765, -0.3180228472, 0.1386723369, -0.0777267665, -0.1830138564, -0.6274292469, -0.2322815359, 0.0546509475, -0.0176587775, 0.0890895426, -0.083697319, -0.1092471033, 0.2026977837, -0.0350255333, -0.2306361496, 0.6797720194, -0.0616485365, 0.0446975715, -0.0551759675, 0.2520868778, -0.2132345289, -0.0712454692, -0.1705530137, -0.0018401407, 0.1578254402, 0.2109286636, -0.4701039195, -0.1439928114, -0.0009010807, 0.0189442262, -0.0591774397, 0.0006444044, 0.0630014166, -0.0377971865, 0.2940510511, 0.1096708104, -0.0898017138, -0.198442772, 0.2169164121, -0.0071819276, -0.02003837, -0.2484543771, 0.0045180507, 0.1042116433, -0.10660851, 0.1146246195, -0.5152722597, 0.0413266681, 0.2593999505, 0.3884593248, -0.1085287929, -0.2229960114, 0.0836436749, -0.3275438249, 0.5394180417, 0.0841736719, 0.1905830353, -0.1180474758, -0.2930147648, -0.295096606, 0.0054535158, -0.169594124, -0.36802423, -0.1203950047, 0.3059184849, 0.392803967, 0.244593814, 0.1168802083, -0.2535528243, -0.1298051924, 0.2650590837, -0.1438631266, -0.1589303762, -0.0732823759, 0.0492415652, -0.2251881659, -0.1773682684, 0.0832061097, -0.0194314569, 0.0752258524, -0.2276206911, -0.1473575383, 0.3186531067, -0.4347780645, 0.2595768869, 0.0258949418, 0.5472239256, 0.0291320384, -0.0422725901, -0.1655566692, 0.2228383422, -0.0450003929, 0.4914212227, 0.0616206713, 0.228508383, -0.2155004442, -0.3188500404, -0.3452578187, 0.6317014098, 0.0320964009, -0.05509964, -0.2490800023, -0.0586699843, -0.2294991314, 0.2923286557, -0.1192454696, 0.066292733, -0.0366522931, 0.1867339909, -0.3581701815, -0.2367312908, 0.3384192586, -0.4211322665, -0.3356796503, -0.189714551, 0.0682094321, -0.1494335234, 0.292988956, -0.1057342887, -0.0153542757, 0.2634702325, -0.1352271736, -0.0167237595, 0.0001434274, 0.0598571301, 0.1573978215, -0.2458986491, -0.4044715166, -0.1943297386, -0.0603253655, -0.3799313307, -0.2492929399 ]
https://github.com/huggingface/datasets/issues/1994
not being able to get wikipedia es language
Hi @dorost1234, so sorry, but looking at my files here, I figure out that I've preprocessed files using the HF/datasets for all the languages previously listed by me (Portuguese, Russian, French, Japanese, Chinese, and Turkish) except the Spanish (on my tests I've used the [wikicorpus](https://www.cs.upc.edu/~nlp/wikicorpus/) instead). Only with the Spanish Wikipedia's dump, I had the same `KeyError: '000nbsp'` problem already reported here https://github.com/huggingface/datasets/issues/577 So nowadays, even with access to a high resource machine, you couldn't be able to get Wikipedia's Spanish data using the HF/datasets :(
Hi I am trying to run a code with wikipedia of config 20200501.es, getting: Traceback (most recent call last): File "run_mlm_t5.py", line 608, in <module> main() File "run_mlm_t5.py", line 359, in main datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name) File "/dara/libs/anaconda3/envs/success432/lib/python3.7/site-packages/datasets-1.2.1-py3.7.egg/datasets/load.py", line 612, in load_dataset ignore_verifications=ignore_verifications, File "/dara/libs/anaconda3/envs/success432/lib/python3.7/site-packages/datasets-1.2.1-py3.7.egg/datasets/builder.py", line 527, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "/dara/libs/anaconda3/envs/success432/lib/python3.7/site-packages/datasets-1.2.1-py3.7.egg/datasets/builder.py", line 1050, in _download_and_prepare "\n\t`{}`".format(usage_example) datasets.builder.MissingBeamOptions: Trying to generate a dataset using Apache Beam, yet no Beam Runner or PipelineOptions() has been provided in `load_dataset` or in the builder arguments. For big datasets it has to run on large-scale data processing tools like Dataflow, Spark, etc. More information about Apache Beam runners at https://beam.apache.org/documentation/runners/capability-matrix/ If you really want to run it locally because you feel like the Dataset is small enough, you can use the local beam runner called `DirectRunner` (you may run out of memory). Example of usage: `load_dataset('wikipedia', '20200501.es', beam_runner='DirectRunner')` thanks @lhoestq for any suggestion/help
86
not being able to get wikipedia es language Hi I am trying to run a code with wikipedia of config 20200501.es, getting: Traceback (most recent call last): File "run_mlm_t5.py", line 608, in <module> main() File "run_mlm_t5.py", line 359, in main datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name) File "/dara/libs/anaconda3/envs/success432/lib/python3.7/site-packages/datasets-1.2.1-py3.7.egg/datasets/load.py", line 612, in load_dataset ignore_verifications=ignore_verifications, File "/dara/libs/anaconda3/envs/success432/lib/python3.7/site-packages/datasets-1.2.1-py3.7.egg/datasets/builder.py", line 527, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "/dara/libs/anaconda3/envs/success432/lib/python3.7/site-packages/datasets-1.2.1-py3.7.egg/datasets/builder.py", line 1050, in _download_and_prepare "\n\t`{}`".format(usage_example) datasets.builder.MissingBeamOptions: Trying to generate a dataset using Apache Beam, yet no Beam Runner or PipelineOptions() has been provided in `load_dataset` or in the builder arguments. For big datasets it has to run on large-scale data processing tools like Dataflow, Spark, etc. More information about Apache Beam runners at https://beam.apache.org/documentation/runners/capability-matrix/ If you really want to run it locally because you feel like the Dataset is small enough, you can use the local beam runner called `DirectRunner` (you may run out of memory). Example of usage: `load_dataset('wikipedia', '20200501.es', beam_runner='DirectRunner')` thanks @lhoestq for any suggestion/help Hi @dorost1234, so sorry, but looking at my files here, I figure out that I've preprocessed files using the HF/datasets for all the languages previously listed by me (Portuguese, Russian, French, Japanese, Chinese, and Turkish) except the Spanish (on my tests I've used the [wikicorpus](https://www.cs.upc.edu/~nlp/wikicorpus/) instead). Only with the Spanish Wikipedia's dump, I had the same `KeyError: '000nbsp'` problem already reported here https://github.com/huggingface/datasets/issues/577 So nowadays, even with access to a high resource machine, you couldn't be able to get Wikipedia's Spanish data using the HF/datasets :(
[ -0.342106998, 0.0471930355, -0.1062646955, 0.0620169379, 0.2004550099, 0.1777444929, 0.1768746972, 0.3401961923, 0.1373332739, 0.092118144, 0.4105238616, 0.3346936703, 0.0160006285, 0.3076459467, 0.1113206893, -0.3370866179, 0.0556504615, 0.0752221197, -0.1947188824, -0.2001763731, -0.1320843697, 0.1037430167, -0.272518456, -0.0701155216, -0.1488358974, 0.1070384458, 0.1227777824, -0.0196698997, -0.1926016062, -0.1862006783, 0.0680221319, -0.0362134874, 0.2280332297, 0.1079431623, -0.0001084146, 0.0806313455, 0.5717443228, -0.1583802849, -0.4590223432, -0.1303219795, -0.0813638344, -0.3462578654, 0.2564505935, -0.3715741038, -0.3347843289, -0.0256401207, 0.318754971, -0.5857157707, 0.2412882745, 0.1479619443, 0.2182684839, -0.074211061, 0.3515353203, -0.0048846975, 0.4105972052, 0.218606621, -0.0360496975, -0.1243074909, 0.0106627941, 0.0249650925, 0.0606177002, 0.4618475437, 0.0472857058, -0.1142472178, 0.3039733768, -0.3094905615, 0.2656842172, -0.3731161952, 0.4229688048, 0.254131496, 1.0161629915, -0.119702071, 0.0995207354, 0.1050663292, 0.0040745772, 0.1287816912, 0.2428364605, 0.2005355954, -0.3642729223, -0.0796794295, 0.1134930998, -0.2830435038, -0.3356786072, 0.3455580473, -0.1017289236, 0.5368951559, 0.1090376526, 0.1416433007, -0.150975883, -0.1852885038, 0.077301845, -0.0707804114, 0.1030775905, 0.3541409969, -0.0930455402, 0.1351344287, 0.2457793355, 0.1751322001, 0.0443398058, -0.0947962031, -0.2797641158, 0.1917007565, 0.3685204089, 0.0461874716, 0.0220659226, 0.0323533826, 0.3556629121, -0.1849303991, 0.2050385475, -0.0305734221, 0.0079398304, 0.0666475371, -0.0586211532, -0.3365760744, -0.6453831196, 0.2325167954, -0.0009588003, -0.1367515028, 0.1923416853, 0.1587264538, -0.3540837765, -0.2998664975, -0.0057486519, 0.2017253339, 0.1522040963, 0.2051187009, 0.2833249867, -0.0867262259, -0.3417101502, -0.3844319582, -0.0466405228, 0.2829634249, -0.4593486786, 0.0780525208, 0.2093624324, 0.1067862362, 0.3750689924, -0.035515219, -0.0439993925, 0.0425271392, 0.1307715923, 0.0788350701, -0.1385990381, 0.1594758928, 0.1490189433, 0.2470005602, 0.199904114, -0.2224667817, -0.0522187874, 0.0016836133, -0.0903742462, -0.1905190945, -0.1856555045, 0.1717608124, 0.1227799952, 0.1018855721, 0.0458259359, 0.3413793743, 0.171399951, -0.2258880436, 0.1436650306, -0.0075099263, -0.1345750242, -0.0918876901, 0.3624590039, 0.3725726902, -0.6563612223, 0.1040467173, -0.0495636165, 0.1877679974, 0.1437000185, -0.2795009911, -0.2813878059, 0.4237989187, -0.0935202762, -0.1007724851, 0.3089182973, -0.2708931565, 0.081591405, 0.1968427747, 0.0673343688, -0.282261163, 0.237101227, -0.1123532653, 0.0422959253, 0.1624546647, 0.1141088232, 0.1663444042, 0.1164604202, -0.0702250004, -0.2196754515, -0.1222946569, -0.0431550592, 0.1172711104, 0.2665440738, -0.1195795983, 0.1249018013, 0.5266054869, 0.3261623085, -0.2632549703, 0.0764252096, 0.543215692, -0.3122921586, 0.080658935, 0.1918923855, -0.0554748774, -0.0499001071, 0.1809133589, -0.2391944975, 0.4039111137, 0.0790579692, -0.0053860694, -0.2668074667, -0.0530284941, -0.2360290587, -0.4283646047, 0.2114923149, 0.0466560945, -0.0355188549, 0.2530859113, 0.0529347956, -0.0900342315, -0.2782238126, -0.1389370114, -0.812212646, 0.2934661508, -0.2860758901, -0.0800814331, -0.0875595286, 0.0202555209, 0.0639515072, -0.1236339211, -0.2867788374, 0.1009157822, 0.18732737, 0.0372004472, -0.0119494284, 0.1644943506, 0.1220300347, -0.2648275495, 0.3166705966, 0.3054233193, 0.1199401766, 0.0179687589, -0.2019149065, 0.1108083352, 0.0477328151, 0.3355244994, 0.0727868006, 0.268589437, 0.185182482, 0.1680478305, -0.1562814713, -0.1591637582, 0.3021562994, 0.4226678014, 0.181898281, -0.1457033753, 0.0370390266, 0.0772160515, 0.4515739977, 0.1048435122, -0.0922240764, -0.1263716072, -0.3054103851, -0.059478581, 0.4833450615, -0.1791241169, -0.0160227492, 0.2791061401, -0.0161975361, 0.0771191493, -0.1511853635, -0.1175534129, 0.4446227849, 0.0723266453, 0.5178593397, -0.0257203169, -0.1244163141, -0.1868183315, -0.1908414662, -0.2879431546, -0.1234146655, 0.284740746, -0.3124693632, 0.2768904865, -0.4178831875, -0.5642527342, -0.2084295154, 0.4299705625, -0.3480248451, -0.343069315, -0.0680081025, 0.0778866485, -0.0229115039, 0.2500191927, 0.1072104126, -0.0355425328, 0.2320448309, 0.0074739102, -0.2216772735, -0.5956383944, -0.4356402755, 0.0326633379, 0.2823257744, 0.0373752564, 0.127229467, -0.1569058299, -0.0672412887, -0.1452949792, -0.4021955132, 0.3414442539, -0.086984396, -0.0084639192, 0.1166533232, 0.4272182286, -0.1959809959, -0.0950586945, 0.3098008633, 0.1152016968, -0.1476499885, -0.0692659691, -0.084672302, -0.0623620898, -0.0308235921, -0.4383018613, -0.1505848467, -0.3273385763, -0.18200019, 0.1689834595, 0.1332359165, 0.3523074687, 0.2645773888, 0.2091480792, 0.3283592761, 0.0954611376, -0.0965571851, -0.159337163, 0.2170189917, -0.3185726702, -0.3167466223, 0.1040418744, -0.1413134336, 0.2305061221, 0.1135407761, -0.1463302672, 0.0680317357, 0.1159728989, 0.0200539455, -0.1013206616, 0.3257167637, 0.7469018698, -0.0126238726, -0.0016666912, -0.0988116637, 0.0478257984, 0.0307379421, -0.4368043542, 0.3473179638, 0.1777922213, 0.5277687311, -0.0701482594, 0.7515986562, 0.1148357391, 0.1166793332, 0.1321654916, -0.0752612948, 0.066186443, -0.2724730372, -0.188459456, 0.2927806675, 0.0403267741, -0.3030903637, 0.3898433447, -0.127701357, -0.259891063, -0.4387772083, 0.0750475526, 0.0016001388, -0.2447390705, -0.0376061797, -0.3750053048, 0.3839117885, -0.0953027904, 0.3992145061, -0.0802457482, -0.0731420591, 0.0592001975, 0.2196859717, -0.098245427, 0.1342238337, -0.1730972528, -0.2497491091, -0.3993259966, 0.2461432517, 0.0012101755, 0.1436173022, -0.2927531302, 0.0079167038, 0.2831736803, 0.0087452494, 0.5200994015, -0.647043407, -0.0973824859, 0.3353388906, 0.1921804994, -0.6571787596, -0.1413872242, -0.187676996, 0.2771171331, 0.3285015225, -0.0478473566, -0.3322195709, -0.1513583362, 0.2680896521, 0.0485687181, -0.099098891, 0.0515202284, -0.2417584062, -0.1433175057, -0.3353154659, -0.0657826364, -0.0996941552, 0.1351074576, 0.1002395377, 0.2149956673, 0.0813034549, 0.0262182131, -0.1448778659, 0.2050134391, 0.1226052865, 0.1383645833, -0.2560665309, 0.1037121117, 0.4806480408, -0.0265886039, -0.1080245748, 0.1851129979, -0.2079534829, 0.1726381928, -0.2150921375, 0.1455085874, 0.160410583, -0.1206460148, -0.239364028, 0.0364792645, -0.2542996109, -0.0464656241, 0.0528433025, 0.2087157667, 0.0810017139, -0.1274004132, -0.4575786591, 0.5609189868, 0.1885296255, -0.0729710311, 0.2990118265, -0.0156657286, -0.4306365252, 0.4052889049, 0.4329439104, 0.863566637, 0.0299162772, 0.0139990831, 0.1714197397, 0.1671355665, 0.6254858971, -0.546677649, 0.2091644406, -0.2812896967, 0.3198877275, -0.0952551737, 0.0653769672, 0.3957328796, 0.1431853026, -0.2221699357, 0.3536064625, -0.0173850358, 0.0741588175, 0.0565965325, 0.3767169714, 0.1265326738, -0.3078528345, -0.1175288707, 0.1213966459, -0.1823623031, 0.2824689746, -0.249821797, -0.0125391986, -0.0145078152, -0.2449237704, -0.4106995165, 0.0911928341, -0.2241829932, 0.4608555734, -0.3423031569, -0.4593053162, 0.2506961226, 0.2268087268, 0.2354614288, 0.3696656525, -0.3735500872, 0.2001677752, 0.0150045706, -0.2361065596, -0.0761884451, 0.0410972536, 0.3866562545, -0.1922807395, -0.392267704, 0.2118110955, -0.1738401949, -0.0978841856, -0.2912861705, -0.3177188635, 0.3188327849, 0.2502014935, 0.1240343899, 0.1725910157, -0.0860563293, -0.1338625252, 0.1198046133, -0.284142375, 0.0101041943, 0.0086889528, 0.0882757753, -0.0868180171, 0.030908484, 0.2571512461, 0.1876179427, 0.0172612518, 0.5952087641, 0.3785046935, -0.2194746584, -0.2659060657, 0.178608492, -0.2292426229, -0.0606898479, -0.2634160519, 0.1508060098, 0.0923175961, -0.0571265519, 0.1029211059, -0.0157442763, -0.1409100294, -0.0071757734, -0.268037498, -0.0209584422, 0.0222999901, -0.1638099253, -0.0015578466, 0.1883047372, 0.1332467198, 0.2853648663, -0.2360228747, -0.279116869, -0.2388354838, -0.0223193243, 0.045320794, 0.4137128592, -0.0166399982, -0.2360474765, -0.0387385488, 0.1452316642, -0.2301059514, -0.2452724278, -0.1725503057, -0.0468343943, 0.1290073991, -0.0397849306, -0.1874576509, 0.1358539164, -0.3403597474, -0.2925053835, -0.2041293383, -0.1316379905, -0.1293066144, -0.0242856815, 0.2222883105, -0.1042089462, 0.3449909687, -0.2878000736, 0.0879828781, 0.034875717, 0.2938311696, 0.0511715002, 0.2495483309, 0.41686064, -0.1764675379, -0.5602069497, 0.1830453873, -0.221145913, 0.1743836701, 0.1633219123, -0.0828018486, -0.0480112657, 0.0299650989, -0.0214732029, 0.0264018588, -0.0819887146, -0.0302334651, 0.1355876029, 0.2045514733, -0.2827223539, 0.1239572018, 0.42209813, -0.0330972001, 0.0961895287, 0.0262788273, 0.2615513206, -0.0534218326, 0.1746625155, 0.0410571396, 0.0168638192, -0.0434479564, 0.2639890015, 0.094607465, 0.0811473131, 0.1160610765, -0.1200714335, 0.0464198925, 0.1310728192, 0.3746132553, 0.1071263105, 0.0660359412, 0.1008161604, 0.2165687382, -0.2253762037, -0.1409871876, 0.3062997162, -0.1027754545, -0.0209076181, 0.022877207, -0.0645727441, 0.0748563558, 0.148017332, -0.0637499765, -0.3180228472, 0.1386723369, -0.0777267665, -0.1830138564, -0.6274292469, -0.2322815359, 0.0546509475, -0.0176587775, 0.0890895426, -0.083697319, -0.1092471033, 0.2026977837, -0.0350255333, -0.2306361496, 0.6797720194, -0.0616485365, 0.0446975715, -0.0551759675, 0.2520868778, -0.2132345289, -0.0712454692, -0.1705530137, -0.0018401407, 0.1578254402, 0.2109286636, -0.4701039195, -0.1439928114, -0.0009010807, 0.0189442262, -0.0591774397, 0.0006444044, 0.0630014166, -0.0377971865, 0.2940510511, 0.1096708104, -0.0898017138, -0.198442772, 0.2169164121, -0.0071819276, -0.02003837, -0.2484543771, 0.0045180507, 0.1042116433, -0.10660851, 0.1146246195, -0.5152722597, 0.0413266681, 0.2593999505, 0.3884593248, -0.1085287929, -0.2229960114, 0.0836436749, -0.3275438249, 0.5394180417, 0.0841736719, 0.1905830353, -0.1180474758, -0.2930147648, -0.295096606, 0.0054535158, -0.169594124, -0.36802423, -0.1203950047, 0.3059184849, 0.392803967, 0.244593814, 0.1168802083, -0.2535528243, -0.1298051924, 0.2650590837, -0.1438631266, -0.1589303762, -0.0732823759, 0.0492415652, -0.2251881659, -0.1773682684, 0.0832061097, -0.0194314569, 0.0752258524, -0.2276206911, -0.1473575383, 0.3186531067, -0.4347780645, 0.2595768869, 0.0258949418, 0.5472239256, 0.0291320384, -0.0422725901, -0.1655566692, 0.2228383422, -0.0450003929, 0.4914212227, 0.0616206713, 0.228508383, -0.2155004442, -0.3188500404, -0.3452578187, 0.6317014098, 0.0320964009, -0.05509964, -0.2490800023, -0.0586699843, -0.2294991314, 0.2923286557, -0.1192454696, 0.066292733, -0.0366522931, 0.1867339909, -0.3581701815, -0.2367312908, 0.3384192586, -0.4211322665, -0.3356796503, -0.189714551, 0.0682094321, -0.1494335234, 0.292988956, -0.1057342887, -0.0153542757, 0.2634702325, -0.1352271736, -0.0167237595, 0.0001434274, 0.0598571301, 0.1573978215, -0.2458986491, -0.4044715166, -0.1943297386, -0.0603253655, -0.3799313307, -0.2492929399 ]
https://github.com/huggingface/datasets/issues/1994
not being able to get wikipedia es language
Thanks a lot for the information and help. This would be great to have these datasets. @lhoestq <https://github.com/lhoestq> Do you know a way I could get smaller amount of these data like 1 GBtype of each language to deal with computatioanl requirements? thanks On Sat, Mar 6, 2021 at 5:36 PM Jonatas Grosman <[email protected]> wrote: > Hi @dorost1234 <https://github.com/dorost1234>, so sorry, but looking at > my files here, I figure out that I've preprocessed files using the > HF/datasets for all the languages previously listed by me (Portuguese, > Russian, French, Japanese, Chinese, and Turkish) except the Spanish (on my > tests I've used the wikicorpus <https://www.cs.upc.edu/~nlp/wikicorpus/> > instead). > > Only with the Spanish Wikipedia's dump, I had the same KeyError: '000nbsp' > problem already reported here #577 > <https://github.com/huggingface/datasets/issues/577> > > So nowadays, even with access to a high resource machine, you couldn't be > able to get Wikipedia's Spanish data using the HF/datasets :( > > — > You are receiving this because you were mentioned. > Reply to this email directly, view it on GitHub > <https://github.com/huggingface/datasets/issues/1994#issuecomment-791985546>, > or unsubscribe > <https://github.com/notifications/unsubscribe-auth/AS37NMWMO7WOHWLOROPD6Q3TCJKXPANCNFSM4YUZIF4A> > . >
Hi I am trying to run a code with wikipedia of config 20200501.es, getting: Traceback (most recent call last): File "run_mlm_t5.py", line 608, in <module> main() File "run_mlm_t5.py", line 359, in main datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name) File "/dara/libs/anaconda3/envs/success432/lib/python3.7/site-packages/datasets-1.2.1-py3.7.egg/datasets/load.py", line 612, in load_dataset ignore_verifications=ignore_verifications, File "/dara/libs/anaconda3/envs/success432/lib/python3.7/site-packages/datasets-1.2.1-py3.7.egg/datasets/builder.py", line 527, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "/dara/libs/anaconda3/envs/success432/lib/python3.7/site-packages/datasets-1.2.1-py3.7.egg/datasets/builder.py", line 1050, in _download_and_prepare "\n\t`{}`".format(usage_example) datasets.builder.MissingBeamOptions: Trying to generate a dataset using Apache Beam, yet no Beam Runner or PipelineOptions() has been provided in `load_dataset` or in the builder arguments. For big datasets it has to run on large-scale data processing tools like Dataflow, Spark, etc. More information about Apache Beam runners at https://beam.apache.org/documentation/runners/capability-matrix/ If you really want to run it locally because you feel like the Dataset is small enough, you can use the local beam runner called `DirectRunner` (you may run out of memory). Example of usage: `load_dataset('wikipedia', '20200501.es', beam_runner='DirectRunner')` thanks @lhoestq for any suggestion/help
189
not being able to get wikipedia es language Hi I am trying to run a code with wikipedia of config 20200501.es, getting: Traceback (most recent call last): File "run_mlm_t5.py", line 608, in <module> main() File "run_mlm_t5.py", line 359, in main datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name) File "/dara/libs/anaconda3/envs/success432/lib/python3.7/site-packages/datasets-1.2.1-py3.7.egg/datasets/load.py", line 612, in load_dataset ignore_verifications=ignore_verifications, File "/dara/libs/anaconda3/envs/success432/lib/python3.7/site-packages/datasets-1.2.1-py3.7.egg/datasets/builder.py", line 527, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "/dara/libs/anaconda3/envs/success432/lib/python3.7/site-packages/datasets-1.2.1-py3.7.egg/datasets/builder.py", line 1050, in _download_and_prepare "\n\t`{}`".format(usage_example) datasets.builder.MissingBeamOptions: Trying to generate a dataset using Apache Beam, yet no Beam Runner or PipelineOptions() has been provided in `load_dataset` or in the builder arguments. For big datasets it has to run on large-scale data processing tools like Dataflow, Spark, etc. More information about Apache Beam runners at https://beam.apache.org/documentation/runners/capability-matrix/ If you really want to run it locally because you feel like the Dataset is small enough, you can use the local beam runner called `DirectRunner` (you may run out of memory). Example of usage: `load_dataset('wikipedia', '20200501.es', beam_runner='DirectRunner')` thanks @lhoestq for any suggestion/help Thanks a lot for the information and help. This would be great to have these datasets. @lhoestq <https://github.com/lhoestq> Do you know a way I could get smaller amount of these data like 1 GBtype of each language to deal with computatioanl requirements? thanks On Sat, Mar 6, 2021 at 5:36 PM Jonatas Grosman <[email protected]> wrote: > Hi @dorost1234 <https://github.com/dorost1234>, so sorry, but looking at > my files here, I figure out that I've preprocessed files using the > HF/datasets for all the languages previously listed by me (Portuguese, > Russian, French, Japanese, Chinese, and Turkish) except the Spanish (on my > tests I've used the wikicorpus <https://www.cs.upc.edu/~nlp/wikicorpus/> > instead). > > Only with the Spanish Wikipedia's dump, I had the same KeyError: '000nbsp' > problem already reported here #577 > <https://github.com/huggingface/datasets/issues/577> > > So nowadays, even with access to a high resource machine, you couldn't be > able to get Wikipedia's Spanish data using the HF/datasets :( > > — > You are receiving this because you were mentioned. > Reply to this email directly, view it on GitHub > <https://github.com/huggingface/datasets/issues/1994#issuecomment-791985546>, > or unsubscribe > <https://github.com/notifications/unsubscribe-auth/AS37NMWMO7WOHWLOROPD6Q3TCJKXPANCNFSM4YUZIF4A> > . >
[ -0.342106998, 0.0471930355, -0.1062646955, 0.0620169379, 0.2004550099, 0.1777444929, 0.1768746972, 0.3401961923, 0.1373332739, 0.092118144, 0.4105238616, 0.3346936703, 0.0160006285, 0.3076459467, 0.1113206893, -0.3370866179, 0.0556504615, 0.0752221197, -0.1947188824, -0.2001763731, -0.1320843697, 0.1037430167, -0.272518456, -0.0701155216, -0.1488358974, 0.1070384458, 0.1227777824, -0.0196698997, -0.1926016062, -0.1862006783, 0.0680221319, -0.0362134874, 0.2280332297, 0.1079431623, -0.0001084146, 0.0806313455, 0.5717443228, -0.1583802849, -0.4590223432, -0.1303219795, -0.0813638344, -0.3462578654, 0.2564505935, -0.3715741038, -0.3347843289, -0.0256401207, 0.318754971, -0.5857157707, 0.2412882745, 0.1479619443, 0.2182684839, -0.074211061, 0.3515353203, -0.0048846975, 0.4105972052, 0.218606621, -0.0360496975, -0.1243074909, 0.0106627941, 0.0249650925, 0.0606177002, 0.4618475437, 0.0472857058, -0.1142472178, 0.3039733768, -0.3094905615, 0.2656842172, -0.3731161952, 0.4229688048, 0.254131496, 1.0161629915, -0.119702071, 0.0995207354, 0.1050663292, 0.0040745772, 0.1287816912, 0.2428364605, 0.2005355954, -0.3642729223, -0.0796794295, 0.1134930998, -0.2830435038, -0.3356786072, 0.3455580473, -0.1017289236, 0.5368951559, 0.1090376526, 0.1416433007, -0.150975883, -0.1852885038, 0.077301845, -0.0707804114, 0.1030775905, 0.3541409969, -0.0930455402, 0.1351344287, 0.2457793355, 0.1751322001, 0.0443398058, -0.0947962031, -0.2797641158, 0.1917007565, 0.3685204089, 0.0461874716, 0.0220659226, 0.0323533826, 0.3556629121, -0.1849303991, 0.2050385475, -0.0305734221, 0.0079398304, 0.0666475371, -0.0586211532, -0.3365760744, -0.6453831196, 0.2325167954, -0.0009588003, -0.1367515028, 0.1923416853, 0.1587264538, -0.3540837765, -0.2998664975, -0.0057486519, 0.2017253339, 0.1522040963, 0.2051187009, 0.2833249867, -0.0867262259, -0.3417101502, -0.3844319582, -0.0466405228, 0.2829634249, -0.4593486786, 0.0780525208, 0.2093624324, 0.1067862362, 0.3750689924, -0.035515219, -0.0439993925, 0.0425271392, 0.1307715923, 0.0788350701, -0.1385990381, 0.1594758928, 0.1490189433, 0.2470005602, 0.199904114, -0.2224667817, -0.0522187874, 0.0016836133, -0.0903742462, -0.1905190945, -0.1856555045, 0.1717608124, 0.1227799952, 0.1018855721, 0.0458259359, 0.3413793743, 0.171399951, -0.2258880436, 0.1436650306, -0.0075099263, -0.1345750242, -0.0918876901, 0.3624590039, 0.3725726902, -0.6563612223, 0.1040467173, -0.0495636165, 0.1877679974, 0.1437000185, -0.2795009911, -0.2813878059, 0.4237989187, -0.0935202762, -0.1007724851, 0.3089182973, -0.2708931565, 0.081591405, 0.1968427747, 0.0673343688, -0.282261163, 0.237101227, -0.1123532653, 0.0422959253, 0.1624546647, 0.1141088232, 0.1663444042, 0.1164604202, -0.0702250004, -0.2196754515, -0.1222946569, -0.0431550592, 0.1172711104, 0.2665440738, -0.1195795983, 0.1249018013, 0.5266054869, 0.3261623085, -0.2632549703, 0.0764252096, 0.543215692, -0.3122921586, 0.080658935, 0.1918923855, -0.0554748774, -0.0499001071, 0.1809133589, -0.2391944975, 0.4039111137, 0.0790579692, -0.0053860694, -0.2668074667, -0.0530284941, -0.2360290587, -0.4283646047, 0.2114923149, 0.0466560945, -0.0355188549, 0.2530859113, 0.0529347956, -0.0900342315, -0.2782238126, -0.1389370114, -0.812212646, 0.2934661508, -0.2860758901, -0.0800814331, -0.0875595286, 0.0202555209, 0.0639515072, -0.1236339211, -0.2867788374, 0.1009157822, 0.18732737, 0.0372004472, -0.0119494284, 0.1644943506, 0.1220300347, -0.2648275495, 0.3166705966, 0.3054233193, 0.1199401766, 0.0179687589, -0.2019149065, 0.1108083352, 0.0477328151, 0.3355244994, 0.0727868006, 0.268589437, 0.185182482, 0.1680478305, -0.1562814713, -0.1591637582, 0.3021562994, 0.4226678014, 0.181898281, -0.1457033753, 0.0370390266, 0.0772160515, 0.4515739977, 0.1048435122, -0.0922240764, -0.1263716072, -0.3054103851, -0.059478581, 0.4833450615, -0.1791241169, -0.0160227492, 0.2791061401, -0.0161975361, 0.0771191493, -0.1511853635, -0.1175534129, 0.4446227849, 0.0723266453, 0.5178593397, -0.0257203169, -0.1244163141, -0.1868183315, -0.1908414662, -0.2879431546, -0.1234146655, 0.284740746, -0.3124693632, 0.2768904865, -0.4178831875, -0.5642527342, -0.2084295154, 0.4299705625, -0.3480248451, -0.343069315, -0.0680081025, 0.0778866485, -0.0229115039, 0.2500191927, 0.1072104126, -0.0355425328, 0.2320448309, 0.0074739102, -0.2216772735, -0.5956383944, -0.4356402755, 0.0326633379, 0.2823257744, 0.0373752564, 0.127229467, -0.1569058299, -0.0672412887, -0.1452949792, -0.4021955132, 0.3414442539, -0.086984396, -0.0084639192, 0.1166533232, 0.4272182286, -0.1959809959, -0.0950586945, 0.3098008633, 0.1152016968, -0.1476499885, -0.0692659691, -0.084672302, -0.0623620898, -0.0308235921, -0.4383018613, -0.1505848467, -0.3273385763, -0.18200019, 0.1689834595, 0.1332359165, 0.3523074687, 0.2645773888, 0.2091480792, 0.3283592761, 0.0954611376, -0.0965571851, -0.159337163, 0.2170189917, -0.3185726702, -0.3167466223, 0.1040418744, -0.1413134336, 0.2305061221, 0.1135407761, -0.1463302672, 0.0680317357, 0.1159728989, 0.0200539455, -0.1013206616, 0.3257167637, 0.7469018698, -0.0126238726, -0.0016666912, -0.0988116637, 0.0478257984, 0.0307379421, -0.4368043542, 0.3473179638, 0.1777922213, 0.5277687311, -0.0701482594, 0.7515986562, 0.1148357391, 0.1166793332, 0.1321654916, -0.0752612948, 0.066186443, -0.2724730372, -0.188459456, 0.2927806675, 0.0403267741, -0.3030903637, 0.3898433447, -0.127701357, -0.259891063, -0.4387772083, 0.0750475526, 0.0016001388, -0.2447390705, -0.0376061797, -0.3750053048, 0.3839117885, -0.0953027904, 0.3992145061, -0.0802457482, -0.0731420591, 0.0592001975, 0.2196859717, -0.098245427, 0.1342238337, -0.1730972528, -0.2497491091, -0.3993259966, 0.2461432517, 0.0012101755, 0.1436173022, -0.2927531302, 0.0079167038, 0.2831736803, 0.0087452494, 0.5200994015, -0.647043407, -0.0973824859, 0.3353388906, 0.1921804994, -0.6571787596, -0.1413872242, -0.187676996, 0.2771171331, 0.3285015225, -0.0478473566, -0.3322195709, -0.1513583362, 0.2680896521, 0.0485687181, -0.099098891, 0.0515202284, -0.2417584062, -0.1433175057, -0.3353154659, -0.0657826364, -0.0996941552, 0.1351074576, 0.1002395377, 0.2149956673, 0.0813034549, 0.0262182131, -0.1448778659, 0.2050134391, 0.1226052865, 0.1383645833, -0.2560665309, 0.1037121117, 0.4806480408, -0.0265886039, -0.1080245748, 0.1851129979, -0.2079534829, 0.1726381928, -0.2150921375, 0.1455085874, 0.160410583, -0.1206460148, -0.239364028, 0.0364792645, -0.2542996109, -0.0464656241, 0.0528433025, 0.2087157667, 0.0810017139, -0.1274004132, -0.4575786591, 0.5609189868, 0.1885296255, -0.0729710311, 0.2990118265, -0.0156657286, -0.4306365252, 0.4052889049, 0.4329439104, 0.863566637, 0.0299162772, 0.0139990831, 0.1714197397, 0.1671355665, 0.6254858971, -0.546677649, 0.2091644406, -0.2812896967, 0.3198877275, -0.0952551737, 0.0653769672, 0.3957328796, 0.1431853026, -0.2221699357, 0.3536064625, -0.0173850358, 0.0741588175, 0.0565965325, 0.3767169714, 0.1265326738, -0.3078528345, -0.1175288707, 0.1213966459, -0.1823623031, 0.2824689746, -0.249821797, -0.0125391986, -0.0145078152, -0.2449237704, -0.4106995165, 0.0911928341, -0.2241829932, 0.4608555734, -0.3423031569, -0.4593053162, 0.2506961226, 0.2268087268, 0.2354614288, 0.3696656525, -0.3735500872, 0.2001677752, 0.0150045706, -0.2361065596, -0.0761884451, 0.0410972536, 0.3866562545, -0.1922807395, -0.392267704, 0.2118110955, -0.1738401949, -0.0978841856, -0.2912861705, -0.3177188635, 0.3188327849, 0.2502014935, 0.1240343899, 0.1725910157, -0.0860563293, -0.1338625252, 0.1198046133, -0.284142375, 0.0101041943, 0.0086889528, 0.0882757753, -0.0868180171, 0.030908484, 0.2571512461, 0.1876179427, 0.0172612518, 0.5952087641, 0.3785046935, -0.2194746584, -0.2659060657, 0.178608492, -0.2292426229, -0.0606898479, -0.2634160519, 0.1508060098, 0.0923175961, -0.0571265519, 0.1029211059, -0.0157442763, -0.1409100294, -0.0071757734, -0.268037498, -0.0209584422, 0.0222999901, -0.1638099253, -0.0015578466, 0.1883047372, 0.1332467198, 0.2853648663, -0.2360228747, -0.279116869, -0.2388354838, -0.0223193243, 0.045320794, 0.4137128592, -0.0166399982, -0.2360474765, -0.0387385488, 0.1452316642, -0.2301059514, -0.2452724278, -0.1725503057, -0.0468343943, 0.1290073991, -0.0397849306, -0.1874576509, 0.1358539164, -0.3403597474, -0.2925053835, -0.2041293383, -0.1316379905, -0.1293066144, -0.0242856815, 0.2222883105, -0.1042089462, 0.3449909687, -0.2878000736, 0.0879828781, 0.034875717, 0.2938311696, 0.0511715002, 0.2495483309, 0.41686064, -0.1764675379, -0.5602069497, 0.1830453873, -0.221145913, 0.1743836701, 0.1633219123, -0.0828018486, -0.0480112657, 0.0299650989, -0.0214732029, 0.0264018588, -0.0819887146, -0.0302334651, 0.1355876029, 0.2045514733, -0.2827223539, 0.1239572018, 0.42209813, -0.0330972001, 0.0961895287, 0.0262788273, 0.2615513206, -0.0534218326, 0.1746625155, 0.0410571396, 0.0168638192, -0.0434479564, 0.2639890015, 0.094607465, 0.0811473131, 0.1160610765, -0.1200714335, 0.0464198925, 0.1310728192, 0.3746132553, 0.1071263105, 0.0660359412, 0.1008161604, 0.2165687382, -0.2253762037, -0.1409871876, 0.3062997162, -0.1027754545, -0.0209076181, 0.022877207, -0.0645727441, 0.0748563558, 0.148017332, -0.0637499765, -0.3180228472, 0.1386723369, -0.0777267665, -0.1830138564, -0.6274292469, -0.2322815359, 0.0546509475, -0.0176587775, 0.0890895426, -0.083697319, -0.1092471033, 0.2026977837, -0.0350255333, -0.2306361496, 0.6797720194, -0.0616485365, 0.0446975715, -0.0551759675, 0.2520868778, -0.2132345289, -0.0712454692, -0.1705530137, -0.0018401407, 0.1578254402, 0.2109286636, -0.4701039195, -0.1439928114, -0.0009010807, 0.0189442262, -0.0591774397, 0.0006444044, 0.0630014166, -0.0377971865, 0.2940510511, 0.1096708104, -0.0898017138, -0.198442772, 0.2169164121, -0.0071819276, -0.02003837, -0.2484543771, 0.0045180507, 0.1042116433, -0.10660851, 0.1146246195, -0.5152722597, 0.0413266681, 0.2593999505, 0.3884593248, -0.1085287929, -0.2229960114, 0.0836436749, -0.3275438249, 0.5394180417, 0.0841736719, 0.1905830353, -0.1180474758, -0.2930147648, -0.295096606, 0.0054535158, -0.169594124, -0.36802423, -0.1203950047, 0.3059184849, 0.392803967, 0.244593814, 0.1168802083, -0.2535528243, -0.1298051924, 0.2650590837, -0.1438631266, -0.1589303762, -0.0732823759, 0.0492415652, -0.2251881659, -0.1773682684, 0.0832061097, -0.0194314569, 0.0752258524, -0.2276206911, -0.1473575383, 0.3186531067, -0.4347780645, 0.2595768869, 0.0258949418, 0.5472239256, 0.0291320384, -0.0422725901, -0.1655566692, 0.2228383422, -0.0450003929, 0.4914212227, 0.0616206713, 0.228508383, -0.2155004442, -0.3188500404, -0.3452578187, 0.6317014098, 0.0320964009, -0.05509964, -0.2490800023, -0.0586699843, -0.2294991314, 0.2923286557, -0.1192454696, 0.066292733, -0.0366522931, 0.1867339909, -0.3581701815, -0.2367312908, 0.3384192586, -0.4211322665, -0.3356796503, -0.189714551, 0.0682094321, -0.1494335234, 0.292988956, -0.1057342887, -0.0153542757, 0.2634702325, -0.1352271736, -0.0167237595, 0.0001434274, 0.0598571301, 0.1573978215, -0.2458986491, -0.4044715166, -0.1943297386, -0.0603253655, -0.3799313307, -0.2492929399 ]
https://github.com/huggingface/datasets/issues/1994
not being able to get wikipedia es language
Hi ! As mentioned above the Spanish configuration have parsing issues from `mwparserfromhell`. I haven't tested with the latest `mwparserfromhell` >=0.6 though. Which version of `mwparserfromhell` are you using ? > @lhoestq Could you help me to upload these preprocessed datasets to Huggingface's repositories? To be more precise, I've built datasets from the following languages using the 20201201 dumps: Spanish, Portuguese, Russian, French, Japanese, Chinese, and Turkish. Process these datasets have high costs that most of the community can't afford. I think these preprocessed datasets I have could be helpful for someone without access to high-resource machines to process Wikipedia's dumps like @dorost1234 That would be awesome ! Feel free to ping me on slack so we can put the processed wikipedia files on google storage with the other ones we've already preprocessed. > Do you know a way I could get smaller amount of these data like 1 GBtype of each language to deal with computatioanl requirements? thanks I'd suggest to copy the [wikipedia.py](https://github.com/huggingface/datasets/blob/master/datasets/wikipedia/wikipedia.py) to a new script `custom_wikipedia.py` and modify it to only download and process only a subset of the raw data files. You can for example replace [this line](https://github.com/huggingface/datasets/blob/64e59fc45ca2134218b3e42e83fddddbe840ff74/datasets/wikipedia/wikipedia.py#L446) by: ```python if total_bytes >= (1 << 30): # stop if the total amount of data is >= 1GB break else: xml_urls.append(_base_url(lang) + fname) ``` Then you can load your custom wikipedia dataset with ```python load_dataset("path/to/my/custom_wikipedia.py", f"{date}.{language}") ```
Hi I am trying to run a code with wikipedia of config 20200501.es, getting: Traceback (most recent call last): File "run_mlm_t5.py", line 608, in <module> main() File "run_mlm_t5.py", line 359, in main datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name) File "/dara/libs/anaconda3/envs/success432/lib/python3.7/site-packages/datasets-1.2.1-py3.7.egg/datasets/load.py", line 612, in load_dataset ignore_verifications=ignore_verifications, File "/dara/libs/anaconda3/envs/success432/lib/python3.7/site-packages/datasets-1.2.1-py3.7.egg/datasets/builder.py", line 527, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "/dara/libs/anaconda3/envs/success432/lib/python3.7/site-packages/datasets-1.2.1-py3.7.egg/datasets/builder.py", line 1050, in _download_and_prepare "\n\t`{}`".format(usage_example) datasets.builder.MissingBeamOptions: Trying to generate a dataset using Apache Beam, yet no Beam Runner or PipelineOptions() has been provided in `load_dataset` or in the builder arguments. For big datasets it has to run on large-scale data processing tools like Dataflow, Spark, etc. More information about Apache Beam runners at https://beam.apache.org/documentation/runners/capability-matrix/ If you really want to run it locally because you feel like the Dataset is small enough, you can use the local beam runner called `DirectRunner` (you may run out of memory). Example of usage: `load_dataset('wikipedia', '20200501.es', beam_runner='DirectRunner')` thanks @lhoestq for any suggestion/help
231
not being able to get wikipedia es language Hi I am trying to run a code with wikipedia of config 20200501.es, getting: Traceback (most recent call last): File "run_mlm_t5.py", line 608, in <module> main() File "run_mlm_t5.py", line 359, in main datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name) File "/dara/libs/anaconda3/envs/success432/lib/python3.7/site-packages/datasets-1.2.1-py3.7.egg/datasets/load.py", line 612, in load_dataset ignore_verifications=ignore_verifications, File "/dara/libs/anaconda3/envs/success432/lib/python3.7/site-packages/datasets-1.2.1-py3.7.egg/datasets/builder.py", line 527, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "/dara/libs/anaconda3/envs/success432/lib/python3.7/site-packages/datasets-1.2.1-py3.7.egg/datasets/builder.py", line 1050, in _download_and_prepare "\n\t`{}`".format(usage_example) datasets.builder.MissingBeamOptions: Trying to generate a dataset using Apache Beam, yet no Beam Runner or PipelineOptions() has been provided in `load_dataset` or in the builder arguments. For big datasets it has to run on large-scale data processing tools like Dataflow, Spark, etc. More information about Apache Beam runners at https://beam.apache.org/documentation/runners/capability-matrix/ If you really want to run it locally because you feel like the Dataset is small enough, you can use the local beam runner called `DirectRunner` (you may run out of memory). Example of usage: `load_dataset('wikipedia', '20200501.es', beam_runner='DirectRunner')` thanks @lhoestq for any suggestion/help Hi ! As mentioned above the Spanish configuration have parsing issues from `mwparserfromhell`. I haven't tested with the latest `mwparserfromhell` >=0.6 though. Which version of `mwparserfromhell` are you using ? > @lhoestq Could you help me to upload these preprocessed datasets to Huggingface's repositories? To be more precise, I've built datasets from the following languages using the 20201201 dumps: Spanish, Portuguese, Russian, French, Japanese, Chinese, and Turkish. Process these datasets have high costs that most of the community can't afford. I think these preprocessed datasets I have could be helpful for someone without access to high-resource machines to process Wikipedia's dumps like @dorost1234 That would be awesome ! Feel free to ping me on slack so we can put the processed wikipedia files on google storage with the other ones we've already preprocessed. > Do you know a way I could get smaller amount of these data like 1 GBtype of each language to deal with computatioanl requirements? thanks I'd suggest to copy the [wikipedia.py](https://github.com/huggingface/datasets/blob/master/datasets/wikipedia/wikipedia.py) to a new script `custom_wikipedia.py` and modify it to only download and process only a subset of the raw data files. You can for example replace [this line](https://github.com/huggingface/datasets/blob/64e59fc45ca2134218b3e42e83fddddbe840ff74/datasets/wikipedia/wikipedia.py#L446) by: ```python if total_bytes >= (1 << 30): # stop if the total amount of data is >= 1GB break else: xml_urls.append(_base_url(lang) + fname) ``` Then you can load your custom wikipedia dataset with ```python load_dataset("path/to/my/custom_wikipedia.py", f"{date}.{language}") ```
[ -0.342106998, 0.0471930355, -0.1062646955, 0.0620169379, 0.2004550099, 0.1777444929, 0.1768746972, 0.3401961923, 0.1373332739, 0.092118144, 0.4105238616, 0.3346936703, 0.0160006285, 0.3076459467, 0.1113206893, -0.3370866179, 0.0556504615, 0.0752221197, -0.1947188824, -0.2001763731, -0.1320843697, 0.1037430167, -0.272518456, -0.0701155216, -0.1488358974, 0.1070384458, 0.1227777824, -0.0196698997, -0.1926016062, -0.1862006783, 0.0680221319, -0.0362134874, 0.2280332297, 0.1079431623, -0.0001084146, 0.0806313455, 0.5717443228, -0.1583802849, -0.4590223432, -0.1303219795, -0.0813638344, -0.3462578654, 0.2564505935, -0.3715741038, -0.3347843289, -0.0256401207, 0.318754971, -0.5857157707, 0.2412882745, 0.1479619443, 0.2182684839, -0.074211061, 0.3515353203, -0.0048846975, 0.4105972052, 0.218606621, -0.0360496975, -0.1243074909, 0.0106627941, 0.0249650925, 0.0606177002, 0.4618475437, 0.0472857058, -0.1142472178, 0.3039733768, -0.3094905615, 0.2656842172, -0.3731161952, 0.4229688048, 0.254131496, 1.0161629915, -0.119702071, 0.0995207354, 0.1050663292, 0.0040745772, 0.1287816912, 0.2428364605, 0.2005355954, -0.3642729223, -0.0796794295, 0.1134930998, -0.2830435038, -0.3356786072, 0.3455580473, -0.1017289236, 0.5368951559, 0.1090376526, 0.1416433007, -0.150975883, -0.1852885038, 0.077301845, -0.0707804114, 0.1030775905, 0.3541409969, -0.0930455402, 0.1351344287, 0.2457793355, 0.1751322001, 0.0443398058, -0.0947962031, -0.2797641158, 0.1917007565, 0.3685204089, 0.0461874716, 0.0220659226, 0.0323533826, 0.3556629121, -0.1849303991, 0.2050385475, -0.0305734221, 0.0079398304, 0.0666475371, -0.0586211532, -0.3365760744, -0.6453831196, 0.2325167954, -0.0009588003, -0.1367515028, 0.1923416853, 0.1587264538, -0.3540837765, -0.2998664975, -0.0057486519, 0.2017253339, 0.1522040963, 0.2051187009, 0.2833249867, -0.0867262259, -0.3417101502, -0.3844319582, -0.0466405228, 0.2829634249, -0.4593486786, 0.0780525208, 0.2093624324, 0.1067862362, 0.3750689924, -0.035515219, -0.0439993925, 0.0425271392, 0.1307715923, 0.0788350701, -0.1385990381, 0.1594758928, 0.1490189433, 0.2470005602, 0.199904114, -0.2224667817, -0.0522187874, 0.0016836133, -0.0903742462, -0.1905190945, -0.1856555045, 0.1717608124, 0.1227799952, 0.1018855721, 0.0458259359, 0.3413793743, 0.171399951, -0.2258880436, 0.1436650306, -0.0075099263, -0.1345750242, -0.0918876901, 0.3624590039, 0.3725726902, -0.6563612223, 0.1040467173, -0.0495636165, 0.1877679974, 0.1437000185, -0.2795009911, -0.2813878059, 0.4237989187, -0.0935202762, -0.1007724851, 0.3089182973, -0.2708931565, 0.081591405, 0.1968427747, 0.0673343688, -0.282261163, 0.237101227, -0.1123532653, 0.0422959253, 0.1624546647, 0.1141088232, 0.1663444042, 0.1164604202, -0.0702250004, -0.2196754515, -0.1222946569, -0.0431550592, 0.1172711104, 0.2665440738, -0.1195795983, 0.1249018013, 0.5266054869, 0.3261623085, -0.2632549703, 0.0764252096, 0.543215692, -0.3122921586, 0.080658935, 0.1918923855, -0.0554748774, -0.0499001071, 0.1809133589, -0.2391944975, 0.4039111137, 0.0790579692, -0.0053860694, -0.2668074667, -0.0530284941, -0.2360290587, -0.4283646047, 0.2114923149, 0.0466560945, -0.0355188549, 0.2530859113, 0.0529347956, -0.0900342315, -0.2782238126, -0.1389370114, -0.812212646, 0.2934661508, -0.2860758901, -0.0800814331, -0.0875595286, 0.0202555209, 0.0639515072, -0.1236339211, -0.2867788374, 0.1009157822, 0.18732737, 0.0372004472, -0.0119494284, 0.1644943506, 0.1220300347, -0.2648275495, 0.3166705966, 0.3054233193, 0.1199401766, 0.0179687589, -0.2019149065, 0.1108083352, 0.0477328151, 0.3355244994, 0.0727868006, 0.268589437, 0.185182482, 0.1680478305, -0.1562814713, -0.1591637582, 0.3021562994, 0.4226678014, 0.181898281, -0.1457033753, 0.0370390266, 0.0772160515, 0.4515739977, 0.1048435122, -0.0922240764, -0.1263716072, -0.3054103851, -0.059478581, 0.4833450615, -0.1791241169, -0.0160227492, 0.2791061401, -0.0161975361, 0.0771191493, -0.1511853635, -0.1175534129, 0.4446227849, 0.0723266453, 0.5178593397, -0.0257203169, -0.1244163141, -0.1868183315, -0.1908414662, -0.2879431546, -0.1234146655, 0.284740746, -0.3124693632, 0.2768904865, -0.4178831875, -0.5642527342, -0.2084295154, 0.4299705625, -0.3480248451, -0.343069315, -0.0680081025, 0.0778866485, -0.0229115039, 0.2500191927, 0.1072104126, -0.0355425328, 0.2320448309, 0.0074739102, -0.2216772735, -0.5956383944, -0.4356402755, 0.0326633379, 0.2823257744, 0.0373752564, 0.127229467, -0.1569058299, -0.0672412887, -0.1452949792, -0.4021955132, 0.3414442539, -0.086984396, -0.0084639192, 0.1166533232, 0.4272182286, -0.1959809959, -0.0950586945, 0.3098008633, 0.1152016968, -0.1476499885, -0.0692659691, -0.084672302, -0.0623620898, -0.0308235921, -0.4383018613, -0.1505848467, -0.3273385763, -0.18200019, 0.1689834595, 0.1332359165, 0.3523074687, 0.2645773888, 0.2091480792, 0.3283592761, 0.0954611376, -0.0965571851, -0.159337163, 0.2170189917, -0.3185726702, -0.3167466223, 0.1040418744, -0.1413134336, 0.2305061221, 0.1135407761, -0.1463302672, 0.0680317357, 0.1159728989, 0.0200539455, -0.1013206616, 0.3257167637, 0.7469018698, -0.0126238726, -0.0016666912, -0.0988116637, 0.0478257984, 0.0307379421, -0.4368043542, 0.3473179638, 0.1777922213, 0.5277687311, -0.0701482594, 0.7515986562, 0.1148357391, 0.1166793332, 0.1321654916, -0.0752612948, 0.066186443, -0.2724730372, -0.188459456, 0.2927806675, 0.0403267741, -0.3030903637, 0.3898433447, -0.127701357, -0.259891063, -0.4387772083, 0.0750475526, 0.0016001388, -0.2447390705, -0.0376061797, -0.3750053048, 0.3839117885, -0.0953027904, 0.3992145061, -0.0802457482, -0.0731420591, 0.0592001975, 0.2196859717, -0.098245427, 0.1342238337, -0.1730972528, -0.2497491091, -0.3993259966, 0.2461432517, 0.0012101755, 0.1436173022, -0.2927531302, 0.0079167038, 0.2831736803, 0.0087452494, 0.5200994015, -0.647043407, -0.0973824859, 0.3353388906, 0.1921804994, -0.6571787596, -0.1413872242, -0.187676996, 0.2771171331, 0.3285015225, -0.0478473566, -0.3322195709, -0.1513583362, 0.2680896521, 0.0485687181, -0.099098891, 0.0515202284, -0.2417584062, -0.1433175057, -0.3353154659, -0.0657826364, -0.0996941552, 0.1351074576, 0.1002395377, 0.2149956673, 0.0813034549, 0.0262182131, -0.1448778659, 0.2050134391, 0.1226052865, 0.1383645833, -0.2560665309, 0.1037121117, 0.4806480408, -0.0265886039, -0.1080245748, 0.1851129979, -0.2079534829, 0.1726381928, -0.2150921375, 0.1455085874, 0.160410583, -0.1206460148, -0.239364028, 0.0364792645, -0.2542996109, -0.0464656241, 0.0528433025, 0.2087157667, 0.0810017139, -0.1274004132, -0.4575786591, 0.5609189868, 0.1885296255, -0.0729710311, 0.2990118265, -0.0156657286, -0.4306365252, 0.4052889049, 0.4329439104, 0.863566637, 0.0299162772, 0.0139990831, 0.1714197397, 0.1671355665, 0.6254858971, -0.546677649, 0.2091644406, -0.2812896967, 0.3198877275, -0.0952551737, 0.0653769672, 0.3957328796, 0.1431853026, -0.2221699357, 0.3536064625, -0.0173850358, 0.0741588175, 0.0565965325, 0.3767169714, 0.1265326738, -0.3078528345, -0.1175288707, 0.1213966459, -0.1823623031, 0.2824689746, -0.249821797, -0.0125391986, -0.0145078152, -0.2449237704, -0.4106995165, 0.0911928341, -0.2241829932, 0.4608555734, -0.3423031569, -0.4593053162, 0.2506961226, 0.2268087268, 0.2354614288, 0.3696656525, -0.3735500872, 0.2001677752, 0.0150045706, -0.2361065596, -0.0761884451, 0.0410972536, 0.3866562545, -0.1922807395, -0.392267704, 0.2118110955, -0.1738401949, -0.0978841856, -0.2912861705, -0.3177188635, 0.3188327849, 0.2502014935, 0.1240343899, 0.1725910157, -0.0860563293, -0.1338625252, 0.1198046133, -0.284142375, 0.0101041943, 0.0086889528, 0.0882757753, -0.0868180171, 0.030908484, 0.2571512461, 0.1876179427, 0.0172612518, 0.5952087641, 0.3785046935, -0.2194746584, -0.2659060657, 0.178608492, -0.2292426229, -0.0606898479, -0.2634160519, 0.1508060098, 0.0923175961, -0.0571265519, 0.1029211059, -0.0157442763, -0.1409100294, -0.0071757734, -0.268037498, -0.0209584422, 0.0222999901, -0.1638099253, -0.0015578466, 0.1883047372, 0.1332467198, 0.2853648663, -0.2360228747, -0.279116869, -0.2388354838, -0.0223193243, 0.045320794, 0.4137128592, -0.0166399982, -0.2360474765, -0.0387385488, 0.1452316642, -0.2301059514, -0.2452724278, -0.1725503057, -0.0468343943, 0.1290073991, -0.0397849306, -0.1874576509, 0.1358539164, -0.3403597474, -0.2925053835, -0.2041293383, -0.1316379905, -0.1293066144, -0.0242856815, 0.2222883105, -0.1042089462, 0.3449909687, -0.2878000736, 0.0879828781, 0.034875717, 0.2938311696, 0.0511715002, 0.2495483309, 0.41686064, -0.1764675379, -0.5602069497, 0.1830453873, -0.221145913, 0.1743836701, 0.1633219123, -0.0828018486, -0.0480112657, 0.0299650989, -0.0214732029, 0.0264018588, -0.0819887146, -0.0302334651, 0.1355876029, 0.2045514733, -0.2827223539, 0.1239572018, 0.42209813, -0.0330972001, 0.0961895287, 0.0262788273, 0.2615513206, -0.0534218326, 0.1746625155, 0.0410571396, 0.0168638192, -0.0434479564, 0.2639890015, 0.094607465, 0.0811473131, 0.1160610765, -0.1200714335, 0.0464198925, 0.1310728192, 0.3746132553, 0.1071263105, 0.0660359412, 0.1008161604, 0.2165687382, -0.2253762037, -0.1409871876, 0.3062997162, -0.1027754545, -0.0209076181, 0.022877207, -0.0645727441, 0.0748563558, 0.148017332, -0.0637499765, -0.3180228472, 0.1386723369, -0.0777267665, -0.1830138564, -0.6274292469, -0.2322815359, 0.0546509475, -0.0176587775, 0.0890895426, -0.083697319, -0.1092471033, 0.2026977837, -0.0350255333, -0.2306361496, 0.6797720194, -0.0616485365, 0.0446975715, -0.0551759675, 0.2520868778, -0.2132345289, -0.0712454692, -0.1705530137, -0.0018401407, 0.1578254402, 0.2109286636, -0.4701039195, -0.1439928114, -0.0009010807, 0.0189442262, -0.0591774397, 0.0006444044, 0.0630014166, -0.0377971865, 0.2940510511, 0.1096708104, -0.0898017138, -0.198442772, 0.2169164121, -0.0071819276, -0.02003837, -0.2484543771, 0.0045180507, 0.1042116433, -0.10660851, 0.1146246195, -0.5152722597, 0.0413266681, 0.2593999505, 0.3884593248, -0.1085287929, -0.2229960114, 0.0836436749, -0.3275438249, 0.5394180417, 0.0841736719, 0.1905830353, -0.1180474758, -0.2930147648, -0.295096606, 0.0054535158, -0.169594124, -0.36802423, -0.1203950047, 0.3059184849, 0.392803967, 0.244593814, 0.1168802083, -0.2535528243, -0.1298051924, 0.2650590837, -0.1438631266, -0.1589303762, -0.0732823759, 0.0492415652, -0.2251881659, -0.1773682684, 0.0832061097, -0.0194314569, 0.0752258524, -0.2276206911, -0.1473575383, 0.3186531067, -0.4347780645, 0.2595768869, 0.0258949418, 0.5472239256, 0.0291320384, -0.0422725901, -0.1655566692, 0.2228383422, -0.0450003929, 0.4914212227, 0.0616206713, 0.228508383, -0.2155004442, -0.3188500404, -0.3452578187, 0.6317014098, 0.0320964009, -0.05509964, -0.2490800023, -0.0586699843, -0.2294991314, 0.2923286557, -0.1192454696, 0.066292733, -0.0366522931, 0.1867339909, -0.3581701815, -0.2367312908, 0.3384192586, -0.4211322665, -0.3356796503, -0.189714551, 0.0682094321, -0.1494335234, 0.292988956, -0.1057342887, -0.0153542757, 0.2634702325, -0.1352271736, -0.0167237595, 0.0001434274, 0.0598571301, 0.1573978215, -0.2458986491, -0.4044715166, -0.1943297386, -0.0603253655, -0.3799313307, -0.2492929399 ]
https://github.com/huggingface/datasets/issues/1994
not being able to get wikipedia es language
Hi @lhoestq! > Hi ! As mentioned above the Spanish configuration have parsing issues from mwparserfromhell. I haven't tested with the latest mwparserfromhell >=0.6 though. Which version of mwparserfromhell are you using ? I'm using the latest mwparserfromhell version (0.6) > That would be awesome ! Feel free to ping me on slack so we can put the processed wikipedia files on google storage with the other ones we've already preprocessed. I'll ping you there 👍
Hi I am trying to run a code with wikipedia of config 20200501.es, getting: Traceback (most recent call last): File "run_mlm_t5.py", line 608, in <module> main() File "run_mlm_t5.py", line 359, in main datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name) File "/dara/libs/anaconda3/envs/success432/lib/python3.7/site-packages/datasets-1.2.1-py3.7.egg/datasets/load.py", line 612, in load_dataset ignore_verifications=ignore_verifications, File "/dara/libs/anaconda3/envs/success432/lib/python3.7/site-packages/datasets-1.2.1-py3.7.egg/datasets/builder.py", line 527, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "/dara/libs/anaconda3/envs/success432/lib/python3.7/site-packages/datasets-1.2.1-py3.7.egg/datasets/builder.py", line 1050, in _download_and_prepare "\n\t`{}`".format(usage_example) datasets.builder.MissingBeamOptions: Trying to generate a dataset using Apache Beam, yet no Beam Runner or PipelineOptions() has been provided in `load_dataset` or in the builder arguments. For big datasets it has to run on large-scale data processing tools like Dataflow, Spark, etc. More information about Apache Beam runners at https://beam.apache.org/documentation/runners/capability-matrix/ If you really want to run it locally because you feel like the Dataset is small enough, you can use the local beam runner called `DirectRunner` (you may run out of memory). Example of usage: `load_dataset('wikipedia', '20200501.es', beam_runner='DirectRunner')` thanks @lhoestq for any suggestion/help
76
not being able to get wikipedia es language Hi I am trying to run a code with wikipedia of config 20200501.es, getting: Traceback (most recent call last): File "run_mlm_t5.py", line 608, in <module> main() File "run_mlm_t5.py", line 359, in main datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name) File "/dara/libs/anaconda3/envs/success432/lib/python3.7/site-packages/datasets-1.2.1-py3.7.egg/datasets/load.py", line 612, in load_dataset ignore_verifications=ignore_verifications, File "/dara/libs/anaconda3/envs/success432/lib/python3.7/site-packages/datasets-1.2.1-py3.7.egg/datasets/builder.py", line 527, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "/dara/libs/anaconda3/envs/success432/lib/python3.7/site-packages/datasets-1.2.1-py3.7.egg/datasets/builder.py", line 1050, in _download_and_prepare "\n\t`{}`".format(usage_example) datasets.builder.MissingBeamOptions: Trying to generate a dataset using Apache Beam, yet no Beam Runner or PipelineOptions() has been provided in `load_dataset` or in the builder arguments. For big datasets it has to run on large-scale data processing tools like Dataflow, Spark, etc. More information about Apache Beam runners at https://beam.apache.org/documentation/runners/capability-matrix/ If you really want to run it locally because you feel like the Dataset is small enough, you can use the local beam runner called `DirectRunner` (you may run out of memory). Example of usage: `load_dataset('wikipedia', '20200501.es', beam_runner='DirectRunner')` thanks @lhoestq for any suggestion/help Hi @lhoestq! > Hi ! As mentioned above the Spanish configuration have parsing issues from mwparserfromhell. I haven't tested with the latest mwparserfromhell >=0.6 though. Which version of mwparserfromhell are you using ? I'm using the latest mwparserfromhell version (0.6) > That would be awesome ! Feel free to ping me on slack so we can put the processed wikipedia files on google storage with the other ones we've already preprocessed. I'll ping you there 👍
[ -0.342106998, 0.0471930355, -0.1062646955, 0.0620169379, 0.2004550099, 0.1777444929, 0.1768746972, 0.3401961923, 0.1373332739, 0.092118144, 0.4105238616, 0.3346936703, 0.0160006285, 0.3076459467, 0.1113206893, -0.3370866179, 0.0556504615, 0.0752221197, -0.1947188824, -0.2001763731, -0.1320843697, 0.1037430167, -0.272518456, -0.0701155216, -0.1488358974, 0.1070384458, 0.1227777824, -0.0196698997, -0.1926016062, -0.1862006783, 0.0680221319, -0.0362134874, 0.2280332297, 0.1079431623, -0.0001084146, 0.0806313455, 0.5717443228, -0.1583802849, -0.4590223432, -0.1303219795, -0.0813638344, -0.3462578654, 0.2564505935, -0.3715741038, -0.3347843289, -0.0256401207, 0.318754971, -0.5857157707, 0.2412882745, 0.1479619443, 0.2182684839, -0.074211061, 0.3515353203, -0.0048846975, 0.4105972052, 0.218606621, -0.0360496975, -0.1243074909, 0.0106627941, 0.0249650925, 0.0606177002, 0.4618475437, 0.0472857058, -0.1142472178, 0.3039733768, -0.3094905615, 0.2656842172, -0.3731161952, 0.4229688048, 0.254131496, 1.0161629915, -0.119702071, 0.0995207354, 0.1050663292, 0.0040745772, 0.1287816912, 0.2428364605, 0.2005355954, -0.3642729223, -0.0796794295, 0.1134930998, -0.2830435038, -0.3356786072, 0.3455580473, -0.1017289236, 0.5368951559, 0.1090376526, 0.1416433007, -0.150975883, -0.1852885038, 0.077301845, -0.0707804114, 0.1030775905, 0.3541409969, -0.0930455402, 0.1351344287, 0.2457793355, 0.1751322001, 0.0443398058, -0.0947962031, -0.2797641158, 0.1917007565, 0.3685204089, 0.0461874716, 0.0220659226, 0.0323533826, 0.3556629121, -0.1849303991, 0.2050385475, -0.0305734221, 0.0079398304, 0.0666475371, -0.0586211532, -0.3365760744, -0.6453831196, 0.2325167954, -0.0009588003, -0.1367515028, 0.1923416853, 0.1587264538, -0.3540837765, -0.2998664975, -0.0057486519, 0.2017253339, 0.1522040963, 0.2051187009, 0.2833249867, -0.0867262259, -0.3417101502, -0.3844319582, -0.0466405228, 0.2829634249, -0.4593486786, 0.0780525208, 0.2093624324, 0.1067862362, 0.3750689924, -0.035515219, -0.0439993925, 0.0425271392, 0.1307715923, 0.0788350701, -0.1385990381, 0.1594758928, 0.1490189433, 0.2470005602, 0.199904114, -0.2224667817, -0.0522187874, 0.0016836133, -0.0903742462, -0.1905190945, -0.1856555045, 0.1717608124, 0.1227799952, 0.1018855721, 0.0458259359, 0.3413793743, 0.171399951, -0.2258880436, 0.1436650306, -0.0075099263, -0.1345750242, -0.0918876901, 0.3624590039, 0.3725726902, -0.6563612223, 0.1040467173, -0.0495636165, 0.1877679974, 0.1437000185, -0.2795009911, -0.2813878059, 0.4237989187, -0.0935202762, -0.1007724851, 0.3089182973, -0.2708931565, 0.081591405, 0.1968427747, 0.0673343688, -0.282261163, 0.237101227, -0.1123532653, 0.0422959253, 0.1624546647, 0.1141088232, 0.1663444042, 0.1164604202, -0.0702250004, -0.2196754515, -0.1222946569, -0.0431550592, 0.1172711104, 0.2665440738, -0.1195795983, 0.1249018013, 0.5266054869, 0.3261623085, -0.2632549703, 0.0764252096, 0.543215692, -0.3122921586, 0.080658935, 0.1918923855, -0.0554748774, -0.0499001071, 0.1809133589, -0.2391944975, 0.4039111137, 0.0790579692, -0.0053860694, -0.2668074667, -0.0530284941, -0.2360290587, -0.4283646047, 0.2114923149, 0.0466560945, -0.0355188549, 0.2530859113, 0.0529347956, -0.0900342315, -0.2782238126, -0.1389370114, -0.812212646, 0.2934661508, -0.2860758901, -0.0800814331, -0.0875595286, 0.0202555209, 0.0639515072, -0.1236339211, -0.2867788374, 0.1009157822, 0.18732737, 0.0372004472, -0.0119494284, 0.1644943506, 0.1220300347, -0.2648275495, 0.3166705966, 0.3054233193, 0.1199401766, 0.0179687589, -0.2019149065, 0.1108083352, 0.0477328151, 0.3355244994, 0.0727868006, 0.268589437, 0.185182482, 0.1680478305, -0.1562814713, -0.1591637582, 0.3021562994, 0.4226678014, 0.181898281, -0.1457033753, 0.0370390266, 0.0772160515, 0.4515739977, 0.1048435122, -0.0922240764, -0.1263716072, -0.3054103851, -0.059478581, 0.4833450615, -0.1791241169, -0.0160227492, 0.2791061401, -0.0161975361, 0.0771191493, -0.1511853635, -0.1175534129, 0.4446227849, 0.0723266453, 0.5178593397, -0.0257203169, -0.1244163141, -0.1868183315, -0.1908414662, -0.2879431546, -0.1234146655, 0.284740746, -0.3124693632, 0.2768904865, -0.4178831875, -0.5642527342, -0.2084295154, 0.4299705625, -0.3480248451, -0.343069315, -0.0680081025, 0.0778866485, -0.0229115039, 0.2500191927, 0.1072104126, -0.0355425328, 0.2320448309, 0.0074739102, -0.2216772735, -0.5956383944, -0.4356402755, 0.0326633379, 0.2823257744, 0.0373752564, 0.127229467, -0.1569058299, -0.0672412887, -0.1452949792, -0.4021955132, 0.3414442539, -0.086984396, -0.0084639192, 0.1166533232, 0.4272182286, -0.1959809959, -0.0950586945, 0.3098008633, 0.1152016968, -0.1476499885, -0.0692659691, -0.084672302, -0.0623620898, -0.0308235921, -0.4383018613, -0.1505848467, -0.3273385763, -0.18200019, 0.1689834595, 0.1332359165, 0.3523074687, 0.2645773888, 0.2091480792, 0.3283592761, 0.0954611376, -0.0965571851, -0.159337163, 0.2170189917, -0.3185726702, -0.3167466223, 0.1040418744, -0.1413134336, 0.2305061221, 0.1135407761, -0.1463302672, 0.0680317357, 0.1159728989, 0.0200539455, -0.1013206616, 0.3257167637, 0.7469018698, -0.0126238726, -0.0016666912, -0.0988116637, 0.0478257984, 0.0307379421, -0.4368043542, 0.3473179638, 0.1777922213, 0.5277687311, -0.0701482594, 0.7515986562, 0.1148357391, 0.1166793332, 0.1321654916, -0.0752612948, 0.066186443, -0.2724730372, -0.188459456, 0.2927806675, 0.0403267741, -0.3030903637, 0.3898433447, -0.127701357, -0.259891063, -0.4387772083, 0.0750475526, 0.0016001388, -0.2447390705, -0.0376061797, -0.3750053048, 0.3839117885, -0.0953027904, 0.3992145061, -0.0802457482, -0.0731420591, 0.0592001975, 0.2196859717, -0.098245427, 0.1342238337, -0.1730972528, -0.2497491091, -0.3993259966, 0.2461432517, 0.0012101755, 0.1436173022, -0.2927531302, 0.0079167038, 0.2831736803, 0.0087452494, 0.5200994015, -0.647043407, -0.0973824859, 0.3353388906, 0.1921804994, -0.6571787596, -0.1413872242, -0.187676996, 0.2771171331, 0.3285015225, -0.0478473566, -0.3322195709, -0.1513583362, 0.2680896521, 0.0485687181, -0.099098891, 0.0515202284, -0.2417584062, -0.1433175057, -0.3353154659, -0.0657826364, -0.0996941552, 0.1351074576, 0.1002395377, 0.2149956673, 0.0813034549, 0.0262182131, -0.1448778659, 0.2050134391, 0.1226052865, 0.1383645833, -0.2560665309, 0.1037121117, 0.4806480408, -0.0265886039, -0.1080245748, 0.1851129979, -0.2079534829, 0.1726381928, -0.2150921375, 0.1455085874, 0.160410583, -0.1206460148, -0.239364028, 0.0364792645, -0.2542996109, -0.0464656241, 0.0528433025, 0.2087157667, 0.0810017139, -0.1274004132, -0.4575786591, 0.5609189868, 0.1885296255, -0.0729710311, 0.2990118265, -0.0156657286, -0.4306365252, 0.4052889049, 0.4329439104, 0.863566637, 0.0299162772, 0.0139990831, 0.1714197397, 0.1671355665, 0.6254858971, -0.546677649, 0.2091644406, -0.2812896967, 0.3198877275, -0.0952551737, 0.0653769672, 0.3957328796, 0.1431853026, -0.2221699357, 0.3536064625, -0.0173850358, 0.0741588175, 0.0565965325, 0.3767169714, 0.1265326738, -0.3078528345, -0.1175288707, 0.1213966459, -0.1823623031, 0.2824689746, -0.249821797, -0.0125391986, -0.0145078152, -0.2449237704, -0.4106995165, 0.0911928341, -0.2241829932, 0.4608555734, -0.3423031569, -0.4593053162, 0.2506961226, 0.2268087268, 0.2354614288, 0.3696656525, -0.3735500872, 0.2001677752, 0.0150045706, -0.2361065596, -0.0761884451, 0.0410972536, 0.3866562545, -0.1922807395, -0.392267704, 0.2118110955, -0.1738401949, -0.0978841856, -0.2912861705, -0.3177188635, 0.3188327849, 0.2502014935, 0.1240343899, 0.1725910157, -0.0860563293, -0.1338625252, 0.1198046133, -0.284142375, 0.0101041943, 0.0086889528, 0.0882757753, -0.0868180171, 0.030908484, 0.2571512461, 0.1876179427, 0.0172612518, 0.5952087641, 0.3785046935, -0.2194746584, -0.2659060657, 0.178608492, -0.2292426229, -0.0606898479, -0.2634160519, 0.1508060098, 0.0923175961, -0.0571265519, 0.1029211059, -0.0157442763, -0.1409100294, -0.0071757734, -0.268037498, -0.0209584422, 0.0222999901, -0.1638099253, -0.0015578466, 0.1883047372, 0.1332467198, 0.2853648663, -0.2360228747, -0.279116869, -0.2388354838, -0.0223193243, 0.045320794, 0.4137128592, -0.0166399982, -0.2360474765, -0.0387385488, 0.1452316642, -0.2301059514, -0.2452724278, -0.1725503057, -0.0468343943, 0.1290073991, -0.0397849306, -0.1874576509, 0.1358539164, -0.3403597474, -0.2925053835, -0.2041293383, -0.1316379905, -0.1293066144, -0.0242856815, 0.2222883105, -0.1042089462, 0.3449909687, -0.2878000736, 0.0879828781, 0.034875717, 0.2938311696, 0.0511715002, 0.2495483309, 0.41686064, -0.1764675379, -0.5602069497, 0.1830453873, -0.221145913, 0.1743836701, 0.1633219123, -0.0828018486, -0.0480112657, 0.0299650989, -0.0214732029, 0.0264018588, -0.0819887146, -0.0302334651, 0.1355876029, 0.2045514733, -0.2827223539, 0.1239572018, 0.42209813, -0.0330972001, 0.0961895287, 0.0262788273, 0.2615513206, -0.0534218326, 0.1746625155, 0.0410571396, 0.0168638192, -0.0434479564, 0.2639890015, 0.094607465, 0.0811473131, 0.1160610765, -0.1200714335, 0.0464198925, 0.1310728192, 0.3746132553, 0.1071263105, 0.0660359412, 0.1008161604, 0.2165687382, -0.2253762037, -0.1409871876, 0.3062997162, -0.1027754545, -0.0209076181, 0.022877207, -0.0645727441, 0.0748563558, 0.148017332, -0.0637499765, -0.3180228472, 0.1386723369, -0.0777267665, -0.1830138564, -0.6274292469, -0.2322815359, 0.0546509475, -0.0176587775, 0.0890895426, -0.083697319, -0.1092471033, 0.2026977837, -0.0350255333, -0.2306361496, 0.6797720194, -0.0616485365, 0.0446975715, -0.0551759675, 0.2520868778, -0.2132345289, -0.0712454692, -0.1705530137, -0.0018401407, 0.1578254402, 0.2109286636, -0.4701039195, -0.1439928114, -0.0009010807, 0.0189442262, -0.0591774397, 0.0006444044, 0.0630014166, -0.0377971865, 0.2940510511, 0.1096708104, -0.0898017138, -0.198442772, 0.2169164121, -0.0071819276, -0.02003837, -0.2484543771, 0.0045180507, 0.1042116433, -0.10660851, 0.1146246195, -0.5152722597, 0.0413266681, 0.2593999505, 0.3884593248, -0.1085287929, -0.2229960114, 0.0836436749, -0.3275438249, 0.5394180417, 0.0841736719, 0.1905830353, -0.1180474758, -0.2930147648, -0.295096606, 0.0054535158, -0.169594124, -0.36802423, -0.1203950047, 0.3059184849, 0.392803967, 0.244593814, 0.1168802083, -0.2535528243, -0.1298051924, 0.2650590837, -0.1438631266, -0.1589303762, -0.0732823759, 0.0492415652, -0.2251881659, -0.1773682684, 0.0832061097, -0.0194314569, 0.0752258524, -0.2276206911, -0.1473575383, 0.3186531067, -0.4347780645, 0.2595768869, 0.0258949418, 0.5472239256, 0.0291320384, -0.0422725901, -0.1655566692, 0.2228383422, -0.0450003929, 0.4914212227, 0.0616206713, 0.228508383, -0.2155004442, -0.3188500404, -0.3452578187, 0.6317014098, 0.0320964009, -0.05509964, -0.2490800023, -0.0586699843, -0.2294991314, 0.2923286557, -0.1192454696, 0.066292733, -0.0366522931, 0.1867339909, -0.3581701815, -0.2367312908, 0.3384192586, -0.4211322665, -0.3356796503, -0.189714551, 0.0682094321, -0.1494335234, 0.292988956, -0.1057342887, -0.0153542757, 0.2634702325, -0.1352271736, -0.0167237595, 0.0001434274, 0.0598571301, 0.1573978215, -0.2458986491, -0.4044715166, -0.1943297386, -0.0603253655, -0.3799313307, -0.2492929399 ]
https://github.com/huggingface/datasets/issues/1994
not being able to get wikipedia es language
Thank you so much @jonatasgrosman and @lhoestq this would be a great help. I am really thankful to you both and to wonderful Huggingface dataset library allowing us to train models at scale.
Hi I am trying to run a code with wikipedia of config 20200501.es, getting: Traceback (most recent call last): File "run_mlm_t5.py", line 608, in <module> main() File "run_mlm_t5.py", line 359, in main datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name) File "/dara/libs/anaconda3/envs/success432/lib/python3.7/site-packages/datasets-1.2.1-py3.7.egg/datasets/load.py", line 612, in load_dataset ignore_verifications=ignore_verifications, File "/dara/libs/anaconda3/envs/success432/lib/python3.7/site-packages/datasets-1.2.1-py3.7.egg/datasets/builder.py", line 527, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "/dara/libs/anaconda3/envs/success432/lib/python3.7/site-packages/datasets-1.2.1-py3.7.egg/datasets/builder.py", line 1050, in _download_and_prepare "\n\t`{}`".format(usage_example) datasets.builder.MissingBeamOptions: Trying to generate a dataset using Apache Beam, yet no Beam Runner or PipelineOptions() has been provided in `load_dataset` or in the builder arguments. For big datasets it has to run on large-scale data processing tools like Dataflow, Spark, etc. More information about Apache Beam runners at https://beam.apache.org/documentation/runners/capability-matrix/ If you really want to run it locally because you feel like the Dataset is small enough, you can use the local beam runner called `DirectRunner` (you may run out of memory). Example of usage: `load_dataset('wikipedia', '20200501.es', beam_runner='DirectRunner')` thanks @lhoestq for any suggestion/help
33
not being able to get wikipedia es language Hi I am trying to run a code with wikipedia of config 20200501.es, getting: Traceback (most recent call last): File "run_mlm_t5.py", line 608, in <module> main() File "run_mlm_t5.py", line 359, in main datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name) File "/dara/libs/anaconda3/envs/success432/lib/python3.7/site-packages/datasets-1.2.1-py3.7.egg/datasets/load.py", line 612, in load_dataset ignore_verifications=ignore_verifications, File "/dara/libs/anaconda3/envs/success432/lib/python3.7/site-packages/datasets-1.2.1-py3.7.egg/datasets/builder.py", line 527, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "/dara/libs/anaconda3/envs/success432/lib/python3.7/site-packages/datasets-1.2.1-py3.7.egg/datasets/builder.py", line 1050, in _download_and_prepare "\n\t`{}`".format(usage_example) datasets.builder.MissingBeamOptions: Trying to generate a dataset using Apache Beam, yet no Beam Runner or PipelineOptions() has been provided in `load_dataset` or in the builder arguments. For big datasets it has to run on large-scale data processing tools like Dataflow, Spark, etc. More information about Apache Beam runners at https://beam.apache.org/documentation/runners/capability-matrix/ If you really want to run it locally because you feel like the Dataset is small enough, you can use the local beam runner called `DirectRunner` (you may run out of memory). Example of usage: `load_dataset('wikipedia', '20200501.es', beam_runner='DirectRunner')` thanks @lhoestq for any suggestion/help Thank you so much @jonatasgrosman and @lhoestq this would be a great help. I am really thankful to you both and to wonderful Huggingface dataset library allowing us to train models at scale.
[ -0.342106998, 0.0471930355, -0.1062646955, 0.0620169379, 0.2004550099, 0.1777444929, 0.1768746972, 0.3401961923, 0.1373332739, 0.092118144, 0.4105238616, 0.3346936703, 0.0160006285, 0.3076459467, 0.1113206893, -0.3370866179, 0.0556504615, 0.0752221197, -0.1947188824, -0.2001763731, -0.1320843697, 0.1037430167, -0.272518456, -0.0701155216, -0.1488358974, 0.1070384458, 0.1227777824, -0.0196698997, -0.1926016062, -0.1862006783, 0.0680221319, -0.0362134874, 0.2280332297, 0.1079431623, -0.0001084146, 0.0806313455, 0.5717443228, -0.1583802849, -0.4590223432, -0.1303219795, -0.0813638344, -0.3462578654, 0.2564505935, -0.3715741038, -0.3347843289, -0.0256401207, 0.318754971, -0.5857157707, 0.2412882745, 0.1479619443, 0.2182684839, -0.074211061, 0.3515353203, -0.0048846975, 0.4105972052, 0.218606621, -0.0360496975, -0.1243074909, 0.0106627941, 0.0249650925, 0.0606177002, 0.4618475437, 0.0472857058, -0.1142472178, 0.3039733768, -0.3094905615, 0.2656842172, -0.3731161952, 0.4229688048, 0.254131496, 1.0161629915, -0.119702071, 0.0995207354, 0.1050663292, 0.0040745772, 0.1287816912, 0.2428364605, 0.2005355954, -0.3642729223, -0.0796794295, 0.1134930998, -0.2830435038, -0.3356786072, 0.3455580473, -0.1017289236, 0.5368951559, 0.1090376526, 0.1416433007, -0.150975883, -0.1852885038, 0.077301845, -0.0707804114, 0.1030775905, 0.3541409969, -0.0930455402, 0.1351344287, 0.2457793355, 0.1751322001, 0.0443398058, -0.0947962031, -0.2797641158, 0.1917007565, 0.3685204089, 0.0461874716, 0.0220659226, 0.0323533826, 0.3556629121, -0.1849303991, 0.2050385475, -0.0305734221, 0.0079398304, 0.0666475371, -0.0586211532, -0.3365760744, -0.6453831196, 0.2325167954, -0.0009588003, -0.1367515028, 0.1923416853, 0.1587264538, -0.3540837765, -0.2998664975, -0.0057486519, 0.2017253339, 0.1522040963, 0.2051187009, 0.2833249867, -0.0867262259, -0.3417101502, -0.3844319582, -0.0466405228, 0.2829634249, -0.4593486786, 0.0780525208, 0.2093624324, 0.1067862362, 0.3750689924, -0.035515219, -0.0439993925, 0.0425271392, 0.1307715923, 0.0788350701, -0.1385990381, 0.1594758928, 0.1490189433, 0.2470005602, 0.199904114, -0.2224667817, -0.0522187874, 0.0016836133, -0.0903742462, -0.1905190945, -0.1856555045, 0.1717608124, 0.1227799952, 0.1018855721, 0.0458259359, 0.3413793743, 0.171399951, -0.2258880436, 0.1436650306, -0.0075099263, -0.1345750242, -0.0918876901, 0.3624590039, 0.3725726902, -0.6563612223, 0.1040467173, -0.0495636165, 0.1877679974, 0.1437000185, -0.2795009911, -0.2813878059, 0.4237989187, -0.0935202762, -0.1007724851, 0.3089182973, -0.2708931565, 0.081591405, 0.1968427747, 0.0673343688, -0.282261163, 0.237101227, -0.1123532653, 0.0422959253, 0.1624546647, 0.1141088232, 0.1663444042, 0.1164604202, -0.0702250004, -0.2196754515, -0.1222946569, -0.0431550592, 0.1172711104, 0.2665440738, -0.1195795983, 0.1249018013, 0.5266054869, 0.3261623085, -0.2632549703, 0.0764252096, 0.543215692, -0.3122921586, 0.080658935, 0.1918923855, -0.0554748774, -0.0499001071, 0.1809133589, -0.2391944975, 0.4039111137, 0.0790579692, -0.0053860694, -0.2668074667, -0.0530284941, -0.2360290587, -0.4283646047, 0.2114923149, 0.0466560945, -0.0355188549, 0.2530859113, 0.0529347956, -0.0900342315, -0.2782238126, -0.1389370114, -0.812212646, 0.2934661508, -0.2860758901, -0.0800814331, -0.0875595286, 0.0202555209, 0.0639515072, -0.1236339211, -0.2867788374, 0.1009157822, 0.18732737, 0.0372004472, -0.0119494284, 0.1644943506, 0.1220300347, -0.2648275495, 0.3166705966, 0.3054233193, 0.1199401766, 0.0179687589, -0.2019149065, 0.1108083352, 0.0477328151, 0.3355244994, 0.0727868006, 0.268589437, 0.185182482, 0.1680478305, -0.1562814713, -0.1591637582, 0.3021562994, 0.4226678014, 0.181898281, -0.1457033753, 0.0370390266, 0.0772160515, 0.4515739977, 0.1048435122, -0.0922240764, -0.1263716072, -0.3054103851, -0.059478581, 0.4833450615, -0.1791241169, -0.0160227492, 0.2791061401, -0.0161975361, 0.0771191493, -0.1511853635, -0.1175534129, 0.4446227849, 0.0723266453, 0.5178593397, -0.0257203169, -0.1244163141, -0.1868183315, -0.1908414662, -0.2879431546, -0.1234146655, 0.284740746, -0.3124693632, 0.2768904865, -0.4178831875, -0.5642527342, -0.2084295154, 0.4299705625, -0.3480248451, -0.343069315, -0.0680081025, 0.0778866485, -0.0229115039, 0.2500191927, 0.1072104126, -0.0355425328, 0.2320448309, 0.0074739102, -0.2216772735, -0.5956383944, -0.4356402755, 0.0326633379, 0.2823257744, 0.0373752564, 0.127229467, -0.1569058299, -0.0672412887, -0.1452949792, -0.4021955132, 0.3414442539, -0.086984396, -0.0084639192, 0.1166533232, 0.4272182286, -0.1959809959, -0.0950586945, 0.3098008633, 0.1152016968, -0.1476499885, -0.0692659691, -0.084672302, -0.0623620898, -0.0308235921, -0.4383018613, -0.1505848467, -0.3273385763, -0.18200019, 0.1689834595, 0.1332359165, 0.3523074687, 0.2645773888, 0.2091480792, 0.3283592761, 0.0954611376, -0.0965571851, -0.159337163, 0.2170189917, -0.3185726702, -0.3167466223, 0.1040418744, -0.1413134336, 0.2305061221, 0.1135407761, -0.1463302672, 0.0680317357, 0.1159728989, 0.0200539455, -0.1013206616, 0.3257167637, 0.7469018698, -0.0126238726, -0.0016666912, -0.0988116637, 0.0478257984, 0.0307379421, -0.4368043542, 0.3473179638, 0.1777922213, 0.5277687311, -0.0701482594, 0.7515986562, 0.1148357391, 0.1166793332, 0.1321654916, -0.0752612948, 0.066186443, -0.2724730372, -0.188459456, 0.2927806675, 0.0403267741, -0.3030903637, 0.3898433447, -0.127701357, -0.259891063, -0.4387772083, 0.0750475526, 0.0016001388, -0.2447390705, -0.0376061797, -0.3750053048, 0.3839117885, -0.0953027904, 0.3992145061, -0.0802457482, -0.0731420591, 0.0592001975, 0.2196859717, -0.098245427, 0.1342238337, -0.1730972528, -0.2497491091, -0.3993259966, 0.2461432517, 0.0012101755, 0.1436173022, -0.2927531302, 0.0079167038, 0.2831736803, 0.0087452494, 0.5200994015, -0.647043407, -0.0973824859, 0.3353388906, 0.1921804994, -0.6571787596, -0.1413872242, -0.187676996, 0.2771171331, 0.3285015225, -0.0478473566, -0.3322195709, -0.1513583362, 0.2680896521, 0.0485687181, -0.099098891, 0.0515202284, -0.2417584062, -0.1433175057, -0.3353154659, -0.0657826364, -0.0996941552, 0.1351074576, 0.1002395377, 0.2149956673, 0.0813034549, 0.0262182131, -0.1448778659, 0.2050134391, 0.1226052865, 0.1383645833, -0.2560665309, 0.1037121117, 0.4806480408, -0.0265886039, -0.1080245748, 0.1851129979, -0.2079534829, 0.1726381928, -0.2150921375, 0.1455085874, 0.160410583, -0.1206460148, -0.239364028, 0.0364792645, -0.2542996109, -0.0464656241, 0.0528433025, 0.2087157667, 0.0810017139, -0.1274004132, -0.4575786591, 0.5609189868, 0.1885296255, -0.0729710311, 0.2990118265, -0.0156657286, -0.4306365252, 0.4052889049, 0.4329439104, 0.863566637, 0.0299162772, 0.0139990831, 0.1714197397, 0.1671355665, 0.6254858971, -0.546677649, 0.2091644406, -0.2812896967, 0.3198877275, -0.0952551737, 0.0653769672, 0.3957328796, 0.1431853026, -0.2221699357, 0.3536064625, -0.0173850358, 0.0741588175, 0.0565965325, 0.3767169714, 0.1265326738, -0.3078528345, -0.1175288707, 0.1213966459, -0.1823623031, 0.2824689746, -0.249821797, -0.0125391986, -0.0145078152, -0.2449237704, -0.4106995165, 0.0911928341, -0.2241829932, 0.4608555734, -0.3423031569, -0.4593053162, 0.2506961226, 0.2268087268, 0.2354614288, 0.3696656525, -0.3735500872, 0.2001677752, 0.0150045706, -0.2361065596, -0.0761884451, 0.0410972536, 0.3866562545, -0.1922807395, -0.392267704, 0.2118110955, -0.1738401949, -0.0978841856, -0.2912861705, -0.3177188635, 0.3188327849, 0.2502014935, 0.1240343899, 0.1725910157, -0.0860563293, -0.1338625252, 0.1198046133, -0.284142375, 0.0101041943, 0.0086889528, 0.0882757753, -0.0868180171, 0.030908484, 0.2571512461, 0.1876179427, 0.0172612518, 0.5952087641, 0.3785046935, -0.2194746584, -0.2659060657, 0.178608492, -0.2292426229, -0.0606898479, -0.2634160519, 0.1508060098, 0.0923175961, -0.0571265519, 0.1029211059, -0.0157442763, -0.1409100294, -0.0071757734, -0.268037498, -0.0209584422, 0.0222999901, -0.1638099253, -0.0015578466, 0.1883047372, 0.1332467198, 0.2853648663, -0.2360228747, -0.279116869, -0.2388354838, -0.0223193243, 0.045320794, 0.4137128592, -0.0166399982, -0.2360474765, -0.0387385488, 0.1452316642, -0.2301059514, -0.2452724278, -0.1725503057, -0.0468343943, 0.1290073991, -0.0397849306, -0.1874576509, 0.1358539164, -0.3403597474, -0.2925053835, -0.2041293383, -0.1316379905, -0.1293066144, -0.0242856815, 0.2222883105, -0.1042089462, 0.3449909687, -0.2878000736, 0.0879828781, 0.034875717, 0.2938311696, 0.0511715002, 0.2495483309, 0.41686064, -0.1764675379, -0.5602069497, 0.1830453873, -0.221145913, 0.1743836701, 0.1633219123, -0.0828018486, -0.0480112657, 0.0299650989, -0.0214732029, 0.0264018588, -0.0819887146, -0.0302334651, 0.1355876029, 0.2045514733, -0.2827223539, 0.1239572018, 0.42209813, -0.0330972001, 0.0961895287, 0.0262788273, 0.2615513206, -0.0534218326, 0.1746625155, 0.0410571396, 0.0168638192, -0.0434479564, 0.2639890015, 0.094607465, 0.0811473131, 0.1160610765, -0.1200714335, 0.0464198925, 0.1310728192, 0.3746132553, 0.1071263105, 0.0660359412, 0.1008161604, 0.2165687382, -0.2253762037, -0.1409871876, 0.3062997162, -0.1027754545, -0.0209076181, 0.022877207, -0.0645727441, 0.0748563558, 0.148017332, -0.0637499765, -0.3180228472, 0.1386723369, -0.0777267665, -0.1830138564, -0.6274292469, -0.2322815359, 0.0546509475, -0.0176587775, 0.0890895426, -0.083697319, -0.1092471033, 0.2026977837, -0.0350255333, -0.2306361496, 0.6797720194, -0.0616485365, 0.0446975715, -0.0551759675, 0.2520868778, -0.2132345289, -0.0712454692, -0.1705530137, -0.0018401407, 0.1578254402, 0.2109286636, -0.4701039195, -0.1439928114, -0.0009010807, 0.0189442262, -0.0591774397, 0.0006444044, 0.0630014166, -0.0377971865, 0.2940510511, 0.1096708104, -0.0898017138, -0.198442772, 0.2169164121, -0.0071819276, -0.02003837, -0.2484543771, 0.0045180507, 0.1042116433, -0.10660851, 0.1146246195, -0.5152722597, 0.0413266681, 0.2593999505, 0.3884593248, -0.1085287929, -0.2229960114, 0.0836436749, -0.3275438249, 0.5394180417, 0.0841736719, 0.1905830353, -0.1180474758, -0.2930147648, -0.295096606, 0.0054535158, -0.169594124, -0.36802423, -0.1203950047, 0.3059184849, 0.392803967, 0.244593814, 0.1168802083, -0.2535528243, -0.1298051924, 0.2650590837, -0.1438631266, -0.1589303762, -0.0732823759, 0.0492415652, -0.2251881659, -0.1773682684, 0.0832061097, -0.0194314569, 0.0752258524, -0.2276206911, -0.1473575383, 0.3186531067, -0.4347780645, 0.2595768869, 0.0258949418, 0.5472239256, 0.0291320384, -0.0422725901, -0.1655566692, 0.2228383422, -0.0450003929, 0.4914212227, 0.0616206713, 0.228508383, -0.2155004442, -0.3188500404, -0.3452578187, 0.6317014098, 0.0320964009, -0.05509964, -0.2490800023, -0.0586699843, -0.2294991314, 0.2923286557, -0.1192454696, 0.066292733, -0.0366522931, 0.1867339909, -0.3581701815, -0.2367312908, 0.3384192586, -0.4211322665, -0.3356796503, -0.189714551, 0.0682094321, -0.1494335234, 0.292988956, -0.1057342887, -0.0153542757, 0.2634702325, -0.1352271736, -0.0167237595, 0.0001434274, 0.0598571301, 0.1573978215, -0.2458986491, -0.4044715166, -0.1943297386, -0.0603253655, -0.3799313307, -0.2492929399 ]
https://github.com/huggingface/datasets/issues/1993
How to load a dataset with load_from disk and save it again after doing transformations without changing the original?
Hi ! That looks like a bug, can you provide some code so that we can reproduce ? It's not supposed to update the original dataset
I am using the latest datasets library. In my work, I first use **load_from_disk** to load a data set that contains 3.8Gb information. Then during my training process, I update that dataset object and add new elements and save it in a different place. When I save the dataset with **save_to_disk**, the original dataset which is already in the disk also gets updated. I do not want to update it. How to prevent from this?
26
How to load a dataset with load_from disk and save it again after doing transformations without changing the original? I am using the latest datasets library. In my work, I first use **load_from_disk** to load a data set that contains 3.8Gb information. Then during my training process, I update that dataset object and add new elements and save it in a different place. When I save the dataset with **save_to_disk**, the original dataset which is already in the disk also gets updated. I do not want to update it. How to prevent from this? Hi ! That looks like a bug, can you provide some code so that we can reproduce ? It's not supposed to update the original dataset
[ -0.2773599327, -0.1424061954, -0.0097126774, 0.2224387825, 0.234768182, 0.1286468357, -0.0314264484, -0.0836329237, -0.0445272811, 0.0425954573, 0.0756766796, 0.3508271575, 0.0656661689, 0.215092361, 0.189496696, 0.2755101621, 0.3028122187, 0.2871474922, -0.3395663798, -0.1187533438, -0.2247806787, -0.1271228343, 0.0034546703, -0.2915347219, -0.1811132431, -0.2847266495, -0.105179131, 0.011286051, 0.1192112416, 0.1282493621, 0.1472533941, 0.1170898825, 0.2598931491, 0.3208324313, -0.0001200398, 0.0065590367, -0.2820392549, -0.0981554836, -0.31712991, -0.1483111829, 0.0040694252, -0.1686497927, 0.0125795305, -0.3187099099, 0.0167111084, -0.0577576384, -0.1532115489, -0.2047885656, 0.5439523458, -0.2619330883, 0.1075946242, -0.0745562762, -0.187593922, 0.053586185, -0.2637373805, 0.3224838972, 0.1635244787, 0.0492274761, -0.0166151002, 0.357750684, 0.0076642223, 0.2626110017, -0.2154628336, -0.2576285005, 0.3756662905, -0.0119470675, 0.1762692928, -0.3532519341, 0.1566134542, -0.0655308515, 0.7306799889, -0.4183008075, -0.2183704972, -0.2186259031, 0.1446022987, -0.1294230521, 0.1498942822, 0.2500553131, -0.0096551217, 0.1328632534, -0.5013388991, -0.7865976691, -0.0961472318, 0.0907195956, 0.0513804704, -0.5484754443, 0.0074870735, 0.13161847, 0.1669690907, 0.3084481061, 0.4444074631, -0.2608911991, -0.2427157015, 0.1032828018, -0.290340066, -0.3080196381, -0.3247925937, 0.1850419641, -0.0413481109, 0.2232469916, 0.0851406157, -0.0896953195, -0.258159399, 0.1403544545, 0.1931942701, 0.2976645231, 0.1033944339, 0.2071948946, 0.0640979782, 0.0867729336, -0.2276674211, -0.0555466823, 0.2099662423, 0.1116869152, 0.6322055459, -0.3062039018, 0.2605335414, 0.0181007236, 0.0575665981, 0.117309764, 0.1301244646, -0.0381411202, -0.1821731925, 0.3218332827, 0.1012513191, 0.1070649773, 0.1898792088, 0.2406490743, -0.0559981987, -0.1312300861, -0.170879811, -0.0795027614, -0.302084595, 0.3862604499, 0.0738744363, 0.0053741075, 0.1103695258, 0.4839032292, -0.45218575, -0.1569831967, 0.0093463585, -0.1823616326, 0.3648673594, 0.1807545424, 0.1329003572, 0.1929759979, -0.0767006651, -0.0259806961, -0.0506211743, 0.7035811543, -0.3622855842, -0.1167381704, 0.0317434072, 0.1288756579, -0.0997810215, 0.1189192683, -0.657471478, 0.1957009882, 0.1090388745, -0.2294834703, 0.2326246351, 0.064470306, -0.3933760524, -0.1955352128, -0.0600751638, 0.2446705103, -0.3517106771, -0.1330958754, 0.1671473682, -0.2163998038, -0.0562941246, 0.1603800505, -0.2772350013, 0.2107777596, -0.3416083157, -0.3182986379, 0.5734578371, 0.1237904131, -0.4386877418, 0.1376539469, -0.0473179519, -0.0854981765, -0.0338460617, 0.5759630203, 0.0887065381, -0.1218518093, -0.4468068182, 0.2835900784, 0.0914309099, 0.0993330628, -0.000094153, -0.1719219089, 0.2446640283, -0.3138798773, -0.1098828167, 0.4869317412, 0.291351378, 0.4426922798, 0.334646374, 0.0546467789, 0.1226764098, 0.4205862284, -0.1444274485, 0.0363450646, -0.188934058, 0.1604404002, -0.605027616, -0.0283063464, 0.1515416503, -0.5714520216, 0.4265671968, -0.0966285393, -0.0594579019, -0.2061414123, -0.0825064555, 0.0565845557, -0.0742595568, 0.0540461168, -0.0702318177, -0.1691197753, -0.2333437651, 0.4565922618, -0.0745808557, 0.1019804478, -0.6434777379, 0.4120723605, 0.1448138207, -0.1876071692, -0.2897028327, -0.077004835, 0.2022821307, 0.0158426054, -0.1604728699, 0.379460454, 0.1969828904, 0.3693662584, -0.0724361539, 0.1969145834, 0.0275861863, -0.0366296321, 0.0015104264, -0.1320197582, 0.178373605, -0.0849591121, -0.1314109564, -0.0251698717, -0.1762408912, 0.0567241423, 0.0693458915, -0.1900812536, 0.0065396726, -0.3226761818, -0.0129017718, -0.2311117947, -0.2205686271, 0.1944508851, 0.361749649, 0.1074926928, -0.196682781, -0.1728540659, 0.2807905972, -0.2587947249, -0.0464546457, 0.0443933494, -0.2743504047, 0.0095039457, -0.1260942072, 0.570771575, 0.1891010702, 0.1061205566, 0.0777843371, 0.1742015034, 0.1364916563, -0.0232196823, 0.0245526247, 0.0353943892, 0.5409007668, 0.2572126389, -0.0064351708, 0.0857305974, -0.1593878269, 0.4665906429, 0.1098956391, -0.1207866073, -0.3045049906, 0.1523130387, -0.1394735277, 0.0934549943, -0.4907519519, -0.0858553052, -0.2307418734, 0.1629550457, -0.253011167, 0.7551643252, 0.206769675, 0.1947494447, 0.1520795524, 0.0233585387, -0.0885053724, -0.4377731681, -0.0893534571, 0.1271414757, -0.0993080139, -0.0616392642, 0.0731261224, -0.0676449165, 0.3914982975, -0.0824564844, -0.054449942, -0.472240299, 0.0678149238, -0.0471548624, 0.0970690548, 0.1179435626, -0.1721114069, 0.1620835662, -0.402690649, -0.0154977404, -0.1130088866, -0.4427281022, -0.2376412451, 0.0469759554, 0.1358088255, 0.2856691778, -0.020717416, -0.1760309041, 0.0313204303, -0.0240333714, -0.1644775718, -0.1798791289, 0.0381253585, 0.0707306862, 0.1785487086, -0.2493127733, 0.2252113521, 0.0366105884, -0.2901349664, -0.5891330242, 0.3810378313, 0.1769789308, -0.2777748406, 0.2593784928, -0.1830548793, -0.0385803953, 0.335954845, -0.6108111739, -0.0890945196, 0.0473068282, 0.0712167397, -0.4067155719, 0.326679945, 0.3233913779, -0.1105935276, 0.0090249479, -0.1059059054, -0.2592622638, 0.0587808415, 0.0994869322, 0.4200105667, -0.2023088932, 0.2221488059, -0.0814596638, 0.2542732656, -0.0070597678, -0.1169081628, 0.3640681505, 0.1134618521, 0.5133029222, -0.2445793748, -0.1410063803, -0.5643545985, -0.1771263778, -0.2818340659, -0.0114471614, -0.0227352828, -0.0442442223, -0.1466464251, -0.2983010411, -0.2498424202, -0.1560129374, -0.000416128, -0.273683846, 0.305290997, 0.102162227, 0.2262859493, 0.1891045272, -0.2032570839, -0.0671016872, 0.2009995878, 0.3148539066, 0.0471927226, -0.3226697147, -0.0306129586, -0.1401811093, 0.1583725214, -0.2089394331, -0.0048104078, 0.1612964123, -0.064238891, 0.0978769511, 0.2093061805, 0.8259219527, 0.2282082886, 0.1617144048, 0.0667232424, -0.3872631192, -0.285574019, -0.0050816536, 0.0198310241, -0.2780987024, -0.08809302, 0.6831377745, 0.1787524968, -0.0507893674, -0.2957938612, 0.4659900367, -0.331803441, -0.3347011209, -0.2603486776, -0.199175179, -0.5212271214, -0.1314111948, -0.2619122267, -0.0284722336, -0.1773988307, 0.113788493, -0.1871512234, -0.0758929998, 0.0513756722, -0.1798714548, 0.33519575, 0.3329254389, 0.0540520847, 0.0823944062, 0.1873526424, 0.1717303842, 0.3534222543, -0.0996237844, -0.0959057063, -0.0483042151, 0.0681136101, 0.1413038671, 0.0803877562, 0.0522793308, 0.0050396621, -0.0257188398, -0.2154929042, -0.3657268286, -0.0852147639, -0.0878769532, -0.1379947811, -0.2146568298, -0.4565047026, 0.5085780025, -0.0864706635, -0.0846952572, -0.0616628304, -0.0977540687, -0.2706189156, 0.1074461192, 0.1182117015, 0.8301041126, 0.1662538201, 0.2188903689, 0.1812036633, -0.2468581647, 0.0367080756, 0.0289866552, -0.0480847433, -0.3911787868, -0.345946312, -0.1515959799, -0.171696648, 0.0086907204, 0.3013531268, -0.346003294, 0.3065207303, -0.2786551118, -0.0542786792, -0.1268516034, -0.0232126787, -0.1616663784, -0.1308979243, -0.1627978981, 0.0030435957, -0.0186129157, 0.0688090697, -0.0729743168, 0.0433278643, 0.1778713763, -0.1023888364, 0.307885766, 0.1381434053, -0.0280987415, 0.2491621077, -0.1203389689, -0.4506573677, -0.0506095216, 0.5732137561, 0.4336514175, 0.0530108362, 0.068748638, -0.0989172831, -0.0141946301, 0.39029935, -0.1978021562, -0.1549125612, 0.4320687056, 0.1253274679, -0.0773227736, 0.0669239983, -0.0534174815, -0.1615179181, -0.0730298758, -0.012171641, 0.0610186793, -0.3188638091, 0.0215419233, 0.2385416925, 0.3357428014, -0.1063530743, 0.0380114503, 0.0047736336, -0.0055085905, 0.2677950561, 0.035695862, -0.2979888916, 0.0134075414, 0.5746378303, 0.2181510478, -0.020175077, 0.4256411195, -0.3335490227, 0.1248635054, -0.2270948738, 0.5075290203, 0.1834754944, -0.2038392127, 0.2045845389, 0.0383667387, 0.4741449952, -0.0272541232, -0.0167221595, 0.0738132745, -0.0079368278, 0.1543702185, -0.0486600623, -0.3517210186, 0.0910365731, 0.2286337018, 0.3515551686, 0.3458957374, -0.1389693618, 0.0248693079, 0.3707375526, -0.2032514364, 0.1789877415, 0.2704666853, 0.2227459252, 0.2163431346, 0.2249100804, -0.3069206476, -0.3214673996, -0.0353056528, -0.1933947653, -0.2613628507, -0.1477646083, -0.0689215958, 0.1421384513, -0.0735851377, 0.2744117379, -0.2740538716, -0.4286925197, 0.198490411, -0.1260865331, 0.1044978127, 0.1898785532, 0.2151737958, 0.2136208564, 0.1381165832, 0.4634355605, -0.271399647, -0.1352327317, -0.209698692, 0.1733741462, -0.0220647305, -0.0064743608, 0.1258606315, -0.1178693697, -0.6242117286, -0.0673954934, 0.568531692, 0.1167619824, -0.0426342897, -0.2280731499, 0.0550831258, 0.1555533409, 0.2226057649, 0.1180749089, -0.4023568034, -0.3365202546, 0.3168423772, 0.1549125016, -0.0792562515, -0.1912564933, 0.2755456269, -0.1716839373, -0.3012567759, 0.1850245893, 0.1411784142, -0.0526258051, -0.3393750787, 0.0854594633, 0.2024497688, -0.1482758522, 0.4022919834, 0.6510438323, -0.2748965025, 0.0234391876, 0.1474159509, 0.3377687633, -0.1483328193, 0.4305059016, -0.0011166185, 0.4770655632, -0.0052316831, 0.0808767527, -0.1037396044, -0.403650403, 0.0769736618, 0.1380402595, -0.2588015497, 0.0405350477, -0.0300862342, -0.1536854506, 0.1886298656, -0.3479964733, -0.1480426192, 0.3714606762, -0.2411904931, 0.1074002981, -0.0134344026, -0.1359695494, 0.2627211213, 0.2455379963, -0.0099923927, -0.2409635782, 0.379596591, 0.085514538, -0.1817890406, 0.1468250006, 0.0894479156, 0.2030432522, -0.1944677085, -0.1617189497, 0.069356896, -0.123747468, 0.0871067643, 0.0874504745, 0.0389344543, -0.1845512539, 0.1138073877, 0.2477377951, 0.20417054, 0.2740825117, -0.037313018, 0.1291213781, 0.1125143617, -0.0035211295, 0.0093157068, 0.2051872909, -0.0007488504, 0.003897097, 0.3048616052, 0.0947669744, 0.3823274374, -0.4848352671, 0.2595471442, 0.2937278152, -0.0746513158, -0.249584049, 0.0423016101, 0.1689218134, 0.0155460387, 0.5528268218, -0.2686410546, 0.0056018643, 0.0508063063, 0.0381750911, 0.0514432192, 0.4367136955, 0.2386619002, -0.4496117532, -0.2709538937, -0.2319019139, -0.5596634746, 0.0184255168, 0.3477915227, 0.3131184578, -0.2493396252, 0.1025705338, 0.076387085, 0.1652166843, 0.048202429, -0.1767884046, 0.0744337887, 0.3412542045, 0.1767937541, -0.2534860671, -0.0234436877, 0.2920182049, -0.1093695834, -0.2514942288, 0.1846387982, 0.0725313425, -0.007318899, 0.1785518527, 0.1702844799, -0.2235813588, 0.4020433128, 0.6338937879, 0.0853702873, 0.0235493816, -0.1998799592, 0.2453511655, 0.3206827044, -0.0403755456, -0.1977474093, -0.0849018618, 0.0871068537, 0.1833115816, -0.3971988559, 0.3609266579, -0.2117160857, -0.112945959, 0.1277286708, 0.0651455075, -0.5358836055, 0.0491104648, 0.0694134235, 0.1766891629, 0.1368403584, 0.3822605014, 0.0120541928, 0.3451387286, -0.1944080293, -0.1288732886, 0.3826501369, -0.183870405, -0.3120287657, -0.1820341498, 0.329867363, -0.051579833, -0.1072216406, -0.3974066973, 0.1122055352, 0.4550141692, -0.2239277363, 0.0127509981, 0.5110882521, -0.2035415322, 0.1770403534, 0.1363916993, 0.5885226727, 0.1271755248, -0.3351356983, -0.0040454566, -0.3007531762 ]
https://github.com/huggingface/datasets/issues/1993
How to load a dataset with load_from disk and save it again after doing transformations without changing the original?
Hi, I experimented with RAG. Actually, you can run the [use_own_knowldge_dataset.py](https://github.com/shamanez/transformers/blob/rag-end-to-end-retrieval/examples/research_projects/rag/use_own_knowledge_dataset.py#L80). In the 80 you can save the dataset object to the disk with save_to_disk. Then in order to compute the embeddings in this use **load_from_disk**. Then finally save it. You can see the original dataset object (CSV after splitting also will be changed) One more thing- when I save the dataset object with **save_to_disk** it name the arrow file with cache.... rather than using dataset. arrow. Can you add a variable that we can feed a name to save_to_disk function?
I am using the latest datasets library. In my work, I first use **load_from_disk** to load a data set that contains 3.8Gb information. Then during my training process, I update that dataset object and add new elements and save it in a different place. When I save the dataset with **save_to_disk**, the original dataset which is already in the disk also gets updated. I do not want to update it. How to prevent from this?
91
How to load a dataset with load_from disk and save it again after doing transformations without changing the original? I am using the latest datasets library. In my work, I first use **load_from_disk** to load a data set that contains 3.8Gb information. Then during my training process, I update that dataset object and add new elements and save it in a different place. When I save the dataset with **save_to_disk**, the original dataset which is already in the disk also gets updated. I do not want to update it. How to prevent from this? Hi, I experimented with RAG. Actually, you can run the [use_own_knowldge_dataset.py](https://github.com/shamanez/transformers/blob/rag-end-to-end-retrieval/examples/research_projects/rag/use_own_knowledge_dataset.py#L80). In the 80 you can save the dataset object to the disk with save_to_disk. Then in order to compute the embeddings in this use **load_from_disk**. Then finally save it. You can see the original dataset object (CSV after splitting also will be changed) One more thing- when I save the dataset object with **save_to_disk** it name the arrow file with cache.... rather than using dataset. arrow. Can you add a variable that we can feed a name to save_to_disk function?
[ -0.2981736362, -0.0828652903, 0.0267275795, 0.1493994594, 0.306789428, 0.1228004992, -0.0562067814, -0.0614767745, 0.0445276648, 0.0541940853, -0.0652615875, 0.3738247156, 0.0215632133, 0.1011979207, 0.1474014819, 0.2532068193, 0.1987994015, 0.2516976297, -0.2688191533, -0.0971938968, -0.2197244316, -0.2309302539, 0.0529333055, -0.3456068933, -0.2162119001, -0.2678649724, -0.1700968146, 0.0145697072, 0.1032243147, -0.0398214944, 0.1639600396, 0.1300251186, 0.3564489782, 0.2765147388, -0.0001222565, 0.0449469015, -0.3267859519, -0.1661965102, -0.3974142969, -0.143990621, 0.1779918075, -0.2638607621, 0.064707458, -0.3373178244, -0.044643037, -0.1765092164, -0.107605502, -0.2636468709, 0.6995686293, -0.3083574772, 0.0656188428, -0.0540521443, -0.2422592342, 0.0614365079, -0.0760417283, 0.2449963391, 0.1191360354, 0.1519680321, -0.0484968536, 0.2226027995, -0.1404742897, 0.2548883259, -0.2061856091, -0.1893692762, 0.39679268, -0.0019805431, 0.0755404681, -0.3313623667, 0.0782873109, -0.0002816143, 0.7876374722, -0.4693836272, -0.3323039412, -0.2304030657, 0.2201098502, -0.0707606897, 0.0433409587, 0.2069165409, 0.0135483034, 0.2221799344, -0.447239399, -0.8105931282, -0.1399760991, 0.1488464326, 0.0819216222, -0.4945167899, 0.0238878727, 0.1483845413, 0.2077625245, 0.2897449434, 0.3728310466, -0.2549817562, -0.1742677242, 0.103985101, -0.3044410348, -0.2441857308, -0.2922515571, 0.0569521077, -0.0547050014, 0.3812351525, 0.1349295378, -0.0329645649, -0.2412496805, 0.1737684757, 0.1737944335, 0.28971228, 0.1109258533, 0.1706044078, 0.1379616261, 0.0049734376, -0.2106246501, -0.1055163816, 0.1187183484, 0.1315824389, 0.5387068987, -0.2161189914, 0.2105351239, 0.0456548482, 0.1233998761, 0.0126172565, 0.0549338311, -0.0481305905, -0.1775921881, 0.3871257007, 0.0820180178, 0.1812815666, 0.1506488919, 0.2366101146, 0.0228764415, -0.1150495559, -0.1261830032, -0.0348105021, -0.2900653183, 0.3913136423, 0.2009627819, -0.0995992422, 0.1868813783, 0.4064935148, -0.434612453, -0.1599065512, 0.0141042992, -0.2374430001, 0.5390251875, 0.1750430018, 0.0522039533, 0.2025619149, 0.0051059257, -0.0455212966, -0.1667995751, 0.5195534229, -0.2719990015, -0.1811145246, 0.1025098339, 0.0902323276, -0.1660817116, 0.21139431, -0.4340538085, 0.1076637506, 0.0573433004, -0.1293476671, 0.1663847864, 0.0311019719, -0.336686641, -0.2785730064, 0.0628453866, 0.3072364926, -0.4218389392, -0.1641580164, 0.0618918575, -0.0940395519, -0.2057057172, 0.2003055811, -0.2843596041, 0.2975259721, -0.2760422826, -0.2422117144, 0.5749605298, -0.0287336297, -0.4812774062, 0.1532566994, 0.0253596678, 0.00569655, 0.0016571321, 0.61757195, 0.3191409707, -0.1399007887, -0.4540524781, 0.3999417722, 0.1578350961, 0.1049261987, 0.0218711123, -0.2957137525, 0.2183942795, -0.286896348, -0.1871248037, 0.3673585653, 0.2825941145, 0.264655292, 0.3615923226, 0.0234333053, 0.155454576, 0.3602969348, 0.0220472608, 0.0340864733, -0.1074190438, 0.0527728721, -0.6752665043, -0.000834018, 0.155476898, -0.5374920964, 0.1736094356, -0.1934853643, -0.0924269632, -0.1653457135, -0.0885926783, -0.0135687599, -0.0897684097, -0.0308931172, -0.0441640988, -0.2119163275, -0.2746410966, 0.4201807678, -0.0376427583, 0.1762324274, -0.6207963228, 0.4170430303, 0.1973150522, -0.2141881287, -0.1617540717, -0.0837894008, 0.2295796275, 0.0185933709, -0.0512566194, 0.3639728725, 0.1689340472, 0.3720762432, 0.0581996255, 0.123394832, 0.0281125102, -0.1681797206, 0.2201292366, -0.0435150377, 0.1642448306, -0.1232947707, -0.2530218661, 0.0886409059, -0.1890539974, 0.1372637898, 0.0867500752, -0.1663253903, -0.011846073, -0.3778168261, -0.0842535272, -0.2564431429, -0.2976897359, 0.1848404109, 0.445897907, 0.0632536113, 0.0249880105, -0.1737429649, 0.3163312674, -0.1756475866, 0.0119170602, 0.0152701503, -0.3919638693, -0.0695014969, -0.1718241274, 0.488899827, 0.1010778844, 0.0891603231, 0.0631390586, 0.1061019599, 0.1201619059, 0.0404634625, 0.0341840759, 0.0189373121, 0.5688119531, 0.3238117099, 0.0262622908, 0.0392557047, -0.158634603, 0.4841207564, 0.1311214566, -0.1580862105, -0.2029994726, 0.060250856, -0.1202480346, 0.2065154612, -0.4876644909, -0.1865926832, -0.3327079713, 0.1092466712, -0.256514132, 0.6586428881, 0.2108451426, 0.2717780173, 0.158768177, 0.045616515, -0.1248292774, -0.4218962789, -0.0536409207, -0.031254895, 0.0374602936, -0.0909012109, -0.0181665719, 0.0350252725, 0.4715487957, 0.1138015166, -0.0306692086, -0.5500054359, 0.0920291469, -0.0775485784, 0.2022331506, 0.082757853, -0.1859749705, 0.137291953, -0.2366600633, -0.0745643228, -0.1108952612, -0.4580129087, -0.1761929989, -0.0046441853, 0.0675839931, 0.339730829, 0.0321196243, -0.3095202744, -0.0657436103, -0.077238299, -0.1141661406, -0.1819244623, -0.0122260563, -0.0531607345, 0.1659831405, -0.2359535992, 0.2322049439, 0.0053279959, -0.2006023973, -0.4661619663, 0.4412537515, 0.1245173439, -0.1237187386, 0.2641139627, -0.2815723717, -0.1656348258, 0.4785479605, -0.5246483684, -0.1548045725, 0.0558006465, 0.1381168664, -0.3403528333, 0.4552122355, 0.3021211326, 0.0476575978, 0.0140215009, -0.0724770725, -0.2228313088, 0.0957026333, 0.0429992005, 0.4033216536, -0.1240112484, 0.1896505505, -0.0526103787, 0.4766649306, 0.0482530892, -0.1304226518, 0.280292958, 0.1950442195, 0.4728260934, -0.1371493638, -0.1203952804, -0.486736387, -0.2577694654, -0.2264499813, -0.0197654925, 0.000706384, 0.05172842, -0.0943004489, -0.2863278687, -0.1904701591, -0.2041418999, 0.076158084, -0.2113740146, 0.3135752082, 0.0572800487, 0.1835837364, 0.1221528649, -0.1776895225, 0.099170506, 0.1698622406, 0.4022676647, 0.0150111131, -0.3136445582, 0.0082832351, -0.1507179439, 0.1457837522, -0.2008710802, -0.1088746786, 0.263815999, -0.0960788801, 0.0826126784, 0.2346355915, 0.8441634774, 0.0945905373, 0.0936691388, 0.0452637374, -0.2911584377, -0.2852756679, 0.0557535738, 0.0138808191, -0.2369903326, -0.1452257037, 0.6316404939, 0.0028976649, -0.0583519489, -0.1630967706, 0.5997645259, -0.4410638809, -0.3710057437, -0.1498324424, -0.1423987001, -0.5282942057, -0.227499038, -0.2783733308, -0.1651142538, -0.165716663, 0.1216930002, -0.3377404511, -0.0797512233, 0.1186227798, -0.1386127472, 0.3896144629, 0.2384509742, 0.0550586581, 0.1810157895, 0.3151732683, 0.2113414854, 0.4770441055, -0.2193967402, -0.3072482347, -0.1956391633, 0.1561983675, 0.1901347041, 0.1089459807, 0.0555664711, 0.043780677, -0.0478344858, -0.1942570955, -0.445042491, -0.134737283, -0.1656711251, -0.0990400314, -0.1916392893, -0.4690861702, 0.6322373152, -0.1739893258, -0.1316199899, -0.1235205978, -0.0665300637, -0.2540266514, 0.3347471058, 0.1608250588, 0.9694904089, 0.0472936146, 0.1549807191, 0.1151881814, -0.3309179544, 0.1146969125, -0.0952976048, -0.0556072891, -0.4986627102, -0.2365256846, -0.1501409113, -0.1499620974, 0.0369531214, 0.4310849309, -0.3788288236, 0.3566516638, -0.320109129, -0.0296789669, -0.1564428508, 0.1767744273, -0.1408026814, -0.238823548, -0.1166879535, -0.016976038, 0.0095410831, 0.1132641807, 0.0370530747, 0.0269383639, 0.1899426877, -0.0198009238, 0.2504060864, 0.162072584, -0.0853407755, 0.3151870072, -0.1668693125, -0.5314211845, -0.0107576177, 0.5266746879, 0.5019893646, 0.0503391065, 0.0927916393, -0.0129765105, 0.0295862705, 0.2790662348, -0.1464174986, -0.1045439243, 0.4724719524, 0.1752949804, -0.2453789711, 0.2079087496, -0.095970422, -0.1067543179, 0.0770221204, -0.0453320891, 0.2414692342, -0.3650996685, 0.0446830839, 0.267370671, 0.2766035199, -0.0850388035, -0.0106885089, 0.035599716, 0.0274107791, 0.2962164581, 0.0216509867, -0.2268106639, 0.0739025325, 0.457952559, 0.2298098356, 0.0274649113, 0.452978909, -0.3027490675, 0.0437546, -0.2348898649, 0.3578218818, 0.1558246017, -0.2728922069, 0.164093703, 0.1499304473, 0.3521015644, -0.0766547397, -0.1872918159, 0.0960828438, 0.0095183542, -0.0317108929, -0.0927926898, -0.3228533864, 0.1501919031, 0.3122369945, 0.3856060207, 0.2359102964, -0.2864778638, -0.0425240397, 0.4829112291, -0.2021657228, 0.223626852, 0.2858694792, 0.2984411418, 0.0155725889, 0.1222399026, -0.263071388, -0.3910295367, -0.0439398922, -0.2537713051, -0.2928429246, -0.1167141423, -0.0936502442, 0.1613433808, -0.1719063073, 0.2861399055, -0.3794547915, -0.4428187609, 0.2977697849, -0.2330526412, 0.1779196411, 0.2634782195, 0.2481665015, 0.2294869125, 0.190430522, 0.3597934246, -0.3228965998, -0.0372620039, -0.2004567385, 0.1767511219, 0.0193686187, 0.0437837802, -0.0080935471, -0.1049270183, -0.5006386638, -0.0623634607, 0.5708613396, 0.0377837941, 0.0752919763, -0.1121588498, -0.0733084008, 0.0764944702, 0.2585809529, 0.1424665749, -0.316640079, -0.3115602434, 0.3152824342, 0.1083469987, -0.1660612226, -0.1455032825, 0.2591178417, -0.3066035807, -0.2280292213, 0.162731871, 0.0407922938, 0.0030275732, -0.3377049863, 0.0188239217, 0.3602541387, -0.156586051, 0.3047994077, 0.4423649311, -0.0967153385, -0.0677864254, 0.1052055135, 0.3428691626, 0.0583961755, 0.2408362776, -0.0606639534, 0.3778831959, -0.0158730373, 0.0611626506, -0.0311945342, -0.4003715217, 0.0675600395, 0.2207542956, -0.2321502864, 0.0245230608, 0.0097705163, 0.0145138744, 0.2708438039, -0.3510391116, -0.1519542783, 0.3862372041, -0.0674809217, 0.0649072975, 0.05013524, -0.1028003395, 0.2203301191, 0.2604193687, -0.0059284158, -0.3765153587, 0.3823736012, 0.154700458, -0.0371918902, 0.142636463, 0.0961541086, 0.1613837332, -0.0567564033, -0.2217996567, -0.0699076429, 0.0152475312, 0.1601680815, 0.0454158001, -0.0462475643, -0.1148172021, 0.0529403463, 0.1100773439, 0.33444646, 0.3077129722, -0.0333201177, 0.0886464119, -0.0147225149, -0.1016331017, 0.0101879202, 0.2018378824, 0.0004488192, 0.0180065595, 0.1105649471, 0.0184141491, 0.337485373, -0.3615121245, 0.2868885994, 0.3628123403, -0.1820759773, -0.166922003, 0.0322594494, 0.131150946, -0.0288603082, 0.6571775675, -0.3129003048, -0.001436308, 0.1126715988, 0.0295943953, -0.1300791949, 0.2919333577, 0.3886239231, -0.4222634137, -0.2638185918, -0.1415783018, -0.5935500264, -0.0703664571, 0.2431906462, 0.1278577894, -0.2338164449, 0.1324101985, 0.2079683393, 0.2505530715, -0.0467722937, -0.2302669287, 0.1695554107, 0.3301641047, 0.083253637, -0.2390666902, -0.0924551114, 0.4059372842, -0.079901807, -0.3620833457, 0.0415076166, 0.1896496415, -0.0573390052, 0.2455222607, 0.1919701844, 0.0094556585, 0.3001293242, 0.6162532568, -0.0190497059, -0.0020514838, -0.2047891319, 0.2092382908, 0.4031697214, 0.0222746357, -0.1401595324, -0.09945108, 0.1238331795, 0.2696533799, -0.4371397793, 0.3272205591, -0.2485330701, -0.1709992439, 0.064275533, 0.085140124, -0.4315859675, 0.050964728, 0.1431972682, 0.2185949385, 0.1820221543, 0.3784554005, -0.0685857236, 0.3610672951, -0.1881102026, -0.1009039432, 0.4753727913, -0.1566341072, -0.2016950995, -0.0870267153, 0.42870453, -0.0821658224, 0.0284779761, -0.5293527842, 0.0917173475, 0.4609172642, -0.2307267785, -0.0510536358, 0.4078032374, -0.0736480355, 0.1740235984, 0.0477650911, 0.4229541719, 0.1043647528, -0.3273547292, -0.1745104641, -0.3433350325 ]
https://github.com/huggingface/datasets/issues/1993
How to load a dataset with load_from disk and save it again after doing transformations without changing the original?
@lhoestq I also found that cache in tmp directory gets updated after transformations. This is really problematic when using datasets interactively. Let's say we use the shards function to a dataset loaded with csv, atm when we do transformations to shards and combine them it updates the original csv cache.
I am using the latest datasets library. In my work, I first use **load_from_disk** to load a data set that contains 3.8Gb information. Then during my training process, I update that dataset object and add new elements and save it in a different place. When I save the dataset with **save_to_disk**, the original dataset which is already in the disk also gets updated. I do not want to update it. How to prevent from this?
50
How to load a dataset with load_from disk and save it again after doing transformations without changing the original? I am using the latest datasets library. In my work, I first use **load_from_disk** to load a data set that contains 3.8Gb information. Then during my training process, I update that dataset object and add new elements and save it in a different place. When I save the dataset with **save_to_disk**, the original dataset which is already in the disk also gets updated. I do not want to update it. How to prevent from this? @lhoestq I also found that cache in tmp directory gets updated after transformations. This is really problematic when using datasets interactively. Let's say we use the shards function to a dataset loaded with csv, atm when we do transformations to shards and combine them it updates the original csv cache.
[ -0.3775413632, -0.1095239669, 0.0013314486, 0.2857869565, 0.2583917975, 0.1318970919, -0.0723694563, -0.0919264257, -0.0414136834, -0.0703072622, -0.0545118712, 0.2699586749, 0.0232356973, 0.0732330158, 0.1965224445, 0.2476299703, 0.2620952129, 0.2115163207, -0.4262388945, -0.0511153527, -0.2185807526, -0.1405911595, -0.0047839209, -0.2865778506, -0.2252597213, -0.3567643166, -0.0927874818, 0.0716758519, 0.2163684815, 0.0895131379, 0.1970446706, 0.1367612481, 0.2189596295, 0.3962477148, -0.0001211941, 0.0404283404, -0.3316933811, -0.1156464666, -0.3154456317, -0.0537974909, 0.0001287311, -0.212025106, 0.0525792167, -0.2816852033, -0.046888411, 0.0064466745, -0.1075409576, -0.3362382352, 0.5601175427, -0.2909076512, 0.0684703365, -0.1258433014, -0.3435744047, 0.1475197226, -0.2772862911, 0.3350456953, 0.1380088776, -0.1039554924, -0.0801336467, 0.3443601727, 0.0155062657, 0.2434513271, -0.2749489546, -0.1867040992, 0.3630913198, -0.0399343111, 0.0585352927, -0.25517869, 0.2135361731, -0.0502430424, 0.7311308384, -0.4320096374, -0.2579135895, -0.2524376512, 0.0672599971, -0.0608983971, 0.1881186068, 0.2648537159, 0.1020965427, 0.1773753613, -0.6674369574, -0.7337227464, -0.0253953412, 0.1337728202, -0.0163031816, -0.5745205879, 0.0006100386, 0.14879103, 0.062443573, 0.2391050011, 0.4866169393, -0.237111792, -0.3087269366, 0.1965989321, -0.3022062778, -0.186470449, -0.2256151289, 0.2395221442, -0.1068106294, 0.161578998, 0.0734238327, -0.0433907919, -0.3852363229, 0.1298672855, 0.1477089971, 0.3210477531, 0.1508115679, 0.211325869, 0.1089462787, -0.1171293259, -0.2213822007, -0.0770056918, 0.2559015453, 0.0755556822, 0.6239589453, -0.2735370696, 0.1777051985, 0.0221854299, 0.179060623, 0.016073741, 0.1482894123, -0.0388496928, -0.1566102356, 0.3401578069, 0.0454192087, 0.1725090742, 0.1815036386, 0.1542686224, -0.0600080602, -0.1481684744, -0.1722121239, -0.1459456235, -0.2952176929, 0.4529230595, 0.169722572, -0.0070342701, 0.0887549147, 0.4451130629, -0.4322243929, -0.1200901195, -0.0233450979, -0.1521674097, 0.4138382375, 0.232396856, 0.1351476014, 0.2169103175, -0.030757742, 0.0287325233, -0.0869794115, 0.6420638561, -0.3159514964, -0.1536167562, 0.2198779732, 0.0855470076, -0.2015258372, 0.1320276707, -0.6194603443, 0.1727587283, 0.2716607153, -0.136869356, 0.1567053348, 0.0461916737, -0.3810896575, -0.2422451079, -0.0971096158, 0.3406151533, -0.4246286452, -0.2163511217, 0.2547135949, -0.1289497018, -0.2241911143, 0.2647132874, -0.2679213285, 0.2254051119, -0.2347068936, -0.3467521667, 0.5462707281, 0.0552273765, -0.3988834321, 0.0837444365, 0.0544948131, -0.0453629084, -0.0010167807, 0.5464832783, 0.1674204767, -0.1307810843, -0.5164813995, 0.3973064721, 0.1192879602, 0.1762741953, 0.0391113609, -0.151485607, 0.2610332668, -0.2685465813, -0.0825340003, 0.4303971529, 0.2913790047, 0.2922709584, 0.2142870724, 0.022637384, 0.1894327253, 0.3739202023, -0.1842548996, 0.1289744079, -0.1220930815, 0.1327110678, -0.6422827244, 0.0001155213, 0.1669116467, -0.6285803318, 0.2326984853, -0.0832131952, 0.024500329, -0.1535639912, -0.0242394172, 0.0609049834, -0.1061296016, 0.0199471638, -0.0505513921, -0.2283897102, -0.2481736839, 0.6387435198, -0.029980801, 0.1081738919, -0.6304491162, 0.3527701199, 0.2514101863, -0.247528702, -0.383118093, -0.1212913543, 0.2003686577, -0.097803399, -0.21136415, 0.4761022031, 0.2251042724, 0.3998027146, 0.0064947824, 0.2575467229, 0.0505139306, 0.0444826335, 0.2104928792, -0.1847688556, 0.0873615667, -0.0954157785, -0.1755376458, 0.0191607401, -0.2041370273, 0.0782019719, 0.1050145179, -0.2045364827, 0.1093201861, -0.2950011194, 0.0116041675, -0.2338982224, -0.3099158108, 0.1454838216, 0.3009774387, 0.1118346453, -0.0831264704, -0.1830652505, 0.2358209491, -0.2309437543, -0.0270278715, 0.0012544985, -0.3378607631, -0.0525657535, -0.1386363059, 0.5303156972, 0.1911534667, 0.0668934137, -0.0152236149, 0.1222701818, 0.1313402802, -0.0362393484, -0.0084723607, 0.0071459971, 0.4104355574, 0.2127816081, -0.0609664991, 0.1045980453, -0.1168991625, 0.4943224788, 0.1455183029, -0.1304628998, -0.3501490951, 0.1002554893, -0.1553599685, 0.0072969869, -0.3188313246, -0.0977084339, -0.2095628977, 0.1084099486, -0.2698787451, 0.7121251822, 0.2677804828, 0.2180773467, 0.1329806447, 0.1029776484, -0.0710621849, -0.4081364274, -0.0947029367, -0.0753435642, -0.0411890931, -0.0888821185, 0.0353819765, -0.030644672, 0.3885793388, -0.1165229157, 0.1027396023, -0.4580664933, 0.0715832859, -0.0804569051, 0.1002640501, 0.1204330996, -0.2551063597, 0.2448672056, -0.412589848, 0.0325442702, -0.1087877825, -0.4531968832, -0.1931725442, 0.0459405184, 0.0540228076, 0.1399483979, 0.0338589326, -0.1722109914, -0.0154424869, -0.0375099853, -0.1620903313, -0.1627319008, 0.0563958958, 0.1628100723, 0.0724281967, -0.3136124015, 0.1613569856, 0.1359167993, -0.3148086071, -0.6189990044, 0.3667176962, 0.1239368618, -0.1368633062, 0.2416618913, -0.1194216311, -0.0519922636, 0.5253449678, -0.6610503197, -0.0536315627, 0.0278385077, 0.1480036229, -0.3420061171, 0.3685706854, 0.3670853376, 0.0587698221, 0.0175578073, -0.0795674175, -0.2193677127, 0.0355433375, 0.1981667876, 0.3416230381, -0.148890391, 0.1682678163, -0.0125522763, 0.3555630147, -0.0052122399, -0.1876686811, 0.3496344388, 0.2760186195, 0.514116168, -0.18929708, -0.105521962, -0.5744798183, -0.1770072281, -0.1977818012, 0.0307645034, 0.1037045941, -0.0454980507, -0.1361050159, -0.1728488505, -0.3196503222, -0.1677067429, 0.0215867888, -0.3802637756, 0.3766802251, 0.1258681864, 0.2262201905, 0.0465901121, -0.1971979439, -0.0069376156, 0.2207197547, 0.3263595104, 0.0762134865, -0.196341902, 0.0560266525, 0.0341770798, 0.2427734733, -0.1556183994, -0.0294060875, 0.1411685497, -0.1030972973, 0.0389266312, 0.3316908181, 0.7368650436, 0.0918535739, 0.093449533, 0.0727232099, -0.3702743649, -0.2972919047, -0.0185839236, 0.051749438, -0.2108956724, -0.1065100208, 0.6030525565, 0.1897174865, -0.0930285007, -0.3880620301, 0.4908542633, -0.352111131, -0.4243789315, -0.1121425703, -0.0784953833, -0.4928716421, -0.1960448921, -0.3165829182, -0.1781640649, -0.1199569702, 0.0184133127, -0.3197630644, -0.1178011447, 0.0356113128, -0.1558899879, 0.3335538208, 0.3068920374, 0.0824254528, 0.1043405756, 0.1859700382, 0.0567432418, 0.312723577, -0.1555330008, -0.0530603714, -0.1701952815, 0.2026267946, 0.0648548752, 0.0702827722, -0.0058352239, -0.0307657272, -0.1382610947, -0.2153840363, -0.2612840831, -0.010475412, -0.22100389, -0.0227103047, -0.1755327135, -0.4874754846, 0.4563180506, -0.1010734737, -0.1883667111, -0.147600919, -0.070186168, -0.3030479848, 0.163548097, 0.1351786256, 0.8293325901, -0.0081275422, 0.1564802676, 0.0635271594, -0.1072185487, 0.0256152675, -0.1322310716, -0.0666987151, -0.3328027725, -0.2906268835, -0.182567507, -0.1834262609, -0.0186117962, 0.3404779732, -0.3613783717, 0.3638460636, -0.2523616552, -0.0129181845, -0.0684404671, -0.0061907917, -0.0827887058, -0.2392557263, -0.1205001995, 0.0178154558, -0.1263618916, 0.020652011, -0.0170570947, 0.1329817772, 0.1653865278, 0.088344872, 0.3602742553, 0.0859848261, -0.0614528209, 0.3906390071, -0.1673135459, -0.4016440213, -0.1059149057, 0.6008502841, 0.4341289699, 0.0510474406, 0.0976213664, -0.0349934362, 0.0490861461, 0.299687475, -0.1671097279, -0.0298143178, 0.4338352978, 0.237777859, -0.0086459219, 0.0113462135, -0.1001395881, -0.1390535235, -0.0175676048, -0.0650365725, 0.0446570553, -0.3660846651, 0.0471703224, 0.2655337751, 0.346013546, 0.0343469977, 0.0075052227, 0.0799464807, 0.0904640779, 0.3925041556, 0.0361485183, -0.3290793002, 0.0518724285, 0.5086250305, 0.1846591234, -0.0978847593, 0.2865213454, -0.2758656144, 0.0242181495, -0.1840948015, 0.4132820368, 0.0370379947, -0.2001434267, 0.1599384695, 0.0937233865, 0.4383999407, 0.0149285719, -0.1348423213, 0.0453367643, 0.0022421069, 0.0129868612, -0.0573016703, -0.3163823187, 0.1181786358, 0.2467704117, 0.3534678221, 0.3582061231, -0.2377296388, -0.0091207027, 0.4705203176, -0.1857518852, 0.1302446127, 0.3519061804, 0.3294469416, 0.2843285203, 0.1291948706, -0.2915621698, -0.349634558, -0.0622043461, -0.2297860086, -0.3173732162, -0.1254490912, 0.0059910044, 0.1760306805, -0.0534441881, 0.1571176648, -0.3403254151, -0.4503933191, 0.2765609026, -0.2510399818, 0.1360724121, 0.1708590239, 0.0842052102, 0.12725088, 0.1955580711, 0.4348476827, -0.2793289721, -0.0205028225, -0.2099933624, 0.0822774246, -0.1371683031, -0.0476507023, 0.068094112, -0.1127316952, -0.5614904165, 0.0071764793, 0.7099935412, 0.1469894648, 0.0845739096, -0.2261671275, 0.0306615159, 0.1549834013, 0.2425207496, 0.0265946239, -0.2630413175, -0.326207757, 0.322283566, 0.1072233468, 0.0007805005, -0.1187378615, 0.2667146921, -0.1083324999, -0.291561842, 0.1660128832, 0.1182729006, 0.0491998047, -0.1892533302, 0.0828059018, 0.4146967232, -0.2138021141, 0.3286815584, 0.509899199, -0.2169273347, 0.0500129312, 0.1384069473, 0.3438330889, -0.1801338494, 0.4385666847, 0.0227652714, 0.4802248478, -0.004277762, 0.096332863, -0.0411800817, -0.4797661304, 0.0866852105, 0.0685350522, -0.2614328563, 0.0901097953, 0.0387504064, 0.0042926557, 0.1711465418, -0.3964390755, -0.1746976078, 0.4800511897, -0.1526479274, 0.0949189812, 0.1018084139, -0.1112462431, 0.2824839056, 0.2111830264, -0.0595507063, -0.2754020095, 0.4276593328, 0.1697070301, -0.0429921187, 0.0644590035, 0.0970565677, 0.1154240817, -0.1176579446, -0.1695508659, 0.0883059055, -0.1025517583, 0.0809187293, 0.0268963166, -0.0096896561, -0.2110144645, 0.098792389, 0.0845460594, 0.3834225237, 0.3057735562, -0.0233611129, 0.1660700887, 0.1643567532, -0.1570232809, -0.0190253053, 0.1402455866, -0.0021698605, 0.0448976606, 0.2179054618, -0.0300383382, 0.4400352836, -0.3797805011, 0.2381943166, 0.3017781973, -0.1042672694, -0.1633946449, 0.0579113141, 0.1083804071, 0.0334221497, 0.5928038955, -0.3671617806, -0.0240954235, 0.038385395, 0.0305531658, 0.0665905774, 0.4713377357, 0.2755863369, -0.3269458711, -0.2479607612, -0.1492935121, -0.5072795153, -0.0564655736, 0.345133543, 0.3302529454, -0.348849237, 0.0901835486, 0.0922687799, 0.2255482376, -0.0054460317, -0.1682601869, 0.1758976281, 0.3226552606, 0.0473418906, -0.2322090417, -0.0225880966, 0.2931556106, -0.1141255274, -0.181520313, 0.1177117825, 0.1478695422, -0.0170847625, 0.1777736694, 0.1491094232, -0.0692705736, 0.3727113605, 0.5638625622, 0.0122296717, 0.0836875141, -0.1030978858, 0.3902326524, 0.3161495626, -0.1495487839, -0.0536088049, -0.1487931162, 0.0682306662, 0.1575759351, -0.5072302818, 0.2509381771, -0.1679805666, -0.2084990293, 0.0972753763, 0.1540709436, -0.4413482547, -0.0845659152, 0.0100882724, 0.1932954639, 0.0599626973, 0.3546243906, 0.0319327191, 0.4073850811, -0.1656410545, -0.1417235732, 0.391110301, -0.1909819543, -0.293428123, -0.1084171534, 0.2496725321, -0.1243690848, -0.1343962997, -0.3410142064, 0.1087983698, 0.4196592867, -0.275385797, -0.012733303, 0.4381880462, -0.1423448473, 0.1340463459, 0.0069052428, 0.5526456833, 0.1068052351, -0.2677080333, -0.0825622305, -0.2169013917 ]
https://github.com/huggingface/datasets/issues/1993
How to load a dataset with load_from disk and save it again after doing transformations without changing the original?
I plan to update the save_to_disk method in #2025 so I can make sure the new save_to_disk doesn't corrupt your cache files. But from your last message it looks like save_to_disk isn't the root cause right ?
I am using the latest datasets library. In my work, I first use **load_from_disk** to load a data set that contains 3.8Gb information. Then during my training process, I update that dataset object and add new elements and save it in a different place. When I save the dataset with **save_to_disk**, the original dataset which is already in the disk also gets updated. I do not want to update it. How to prevent from this?
37
How to load a dataset with load_from disk and save it again after doing transformations without changing the original? I am using the latest datasets library. In my work, I first use **load_from_disk** to load a data set that contains 3.8Gb information. Then during my training process, I update that dataset object and add new elements and save it in a different place. When I save the dataset with **save_to_disk**, the original dataset which is already in the disk also gets updated. I do not want to update it. How to prevent from this? I plan to update the save_to_disk method in #2025 so I can make sure the new save_to_disk doesn't corrupt your cache files. But from your last message it looks like save_to_disk isn't the root cause right ?
[ -0.3105081916, -0.0680620745, 0.0046884753, 0.2137427032, 0.3093696237, 0.0905762762, -0.0354264155, 0.0527891219, -0.0732764155, 0.0061633438, 0.0222793072, 0.3242504001, 0.0898373127, 0.1039876565, 0.1767606735, 0.2547084689, 0.2500333488, 0.193762064, -0.3340503871, -0.0268146619, -0.2293640673, -0.1129300296, 0.1087109894, -0.283557415, -0.3304687142, -0.350222826, -0.0617359057, 0.0674630478, 0.1010749042, 0.0025959536, 0.1650635004, 0.1604155451, 0.2431450784, 0.2890096307, -0.0001189022, 0.0036651194, -0.2793881297, -0.0914112478, -0.3182115853, -0.0627906919, 0.0237715617, -0.1687759757, 0.0643626153, -0.278434962, -0.0268733874, 0.0422447696, -0.1302840561, -0.2041807771, 0.6294936538, -0.2092858255, 0.1225880757, -0.1459361613, -0.1816230267, 0.0268532448, -0.2328372002, 0.2694653273, 0.0554412231, 0.0393739492, 0.0392525718, 0.3304747343, -0.089667514, 0.2254991978, -0.3003200889, -0.2334360182, 0.41138345, -0.0618235692, 0.177033782, -0.3527988195, 0.1796049625, -0.0407533087, 0.8042436242, -0.3945491612, -0.2202157825, -0.2704585493, 0.0771652013, -0.1269114316, 0.1884327978, 0.0927259624, 0.0741951615, 0.1356613934, -0.5429514647, -0.8058210015, -0.0792823136, 0.0439730398, 0.0849195719, -0.5327281952, -0.0286310371, 0.1143598333, 0.2698811889, 0.2803545892, 0.511733532, -0.1818695813, -0.2572779357, 0.1177859455, -0.2956849337, -0.2979614735, -0.2101861537, 0.2007380724, -0.0370490029, 0.2396803796, 0.1317307353, -0.0441244505, -0.286270678, 0.0730633587, 0.133690834, 0.3349231184, 0.0764578804, 0.1115135774, 0.0928422511, 0.0828305036, -0.1914319247, -0.0887878016, 0.3011985421, -0.0253594853, 0.6220217943, -0.2496525645, 0.3028306067, -0.0809738487, 0.131975323, 0.0198020637, 0.1669227779, -0.0307591856, -0.14100492, 0.238806963, 0.1260763407, 0.2384851873, 0.1625218689, 0.2277153134, -0.0890764892, -0.0952498466, -0.1974939555, -0.0420269817, -0.2991291285, 0.4488771558, 0.1797113121, -0.0550354347, 0.0623020381, 0.444839865, -0.426871717, -0.1361712515, -0.0558107868, -0.2085802853, 0.3360285759, 0.2015108317, 0.1050625592, 0.2018719912, -0.0205757059, -0.0619853511, -0.0804888755, 0.6188933849, -0.4360117316, -0.2547795177, 0.0720276386, 0.1330969632, -0.1292628348, 0.1620908976, -0.6500722766, 0.1481628716, 0.182338655, -0.1603372991, 0.2286168486, 0.0785049796, -0.3790599704, -0.2501144111, -0.0768622905, 0.2681691051, -0.3776040971, -0.0919737965, 0.1421827078, -0.1908734441, -0.0786425024, 0.2338195592, -0.323012352, 0.2565498352, -0.2728489637, -0.295114994, 0.5308724642, 0.1095690578, -0.4193350673, 0.1607093811, -0.0415811017, -0.0676334947, 0.0187848173, 0.5070462227, 0.1284543574, -0.2125235051, -0.3108472824, 0.2478176057, 0.1098069921, 0.0558849424, -0.0957123637, -0.1768734902, 0.2356048226, -0.2986459434, -0.0614739358, 0.4517143965, 0.2861815095, 0.4201845825, 0.2112654299, 0.0092200683, 0.0990409479, 0.3704629242, -0.0746404529, -0.0521772392, -0.2253955454, 0.2060772628, -0.6755851507, 0.0409302637, 0.179239139, -0.6058936715, 0.3495005369, -0.1251088977, -0.0100669153, -0.2055462152, -0.0684829801, 0.0286560357, -0.0467947051, 0.0033017006, -0.0353212059, -0.1637222171, -0.2710679471, 0.5333384275, -0.0845816284, 0.0758437812, -0.6207577586, 0.3459842503, 0.1316463053, -0.1627100706, -0.320921123, -0.0708475038, 0.294480741, 0.0222210139, -0.1368245035, 0.3887175918, 0.1961943656, 0.4301017523, 0.0012599394, 0.2552749217, 0.0939524472, -0.042264536, 0.097975634, -0.1994079947, 0.1112072617, -0.1304405481, -0.1259729564, -0.056881763, -0.2236299515, 0.0619357601, 0.0439168811, -0.2145465165, 0.0435215831, -0.341788739, 0.0263666436, -0.2048583329, -0.2158520818, 0.1839471757, 0.3429167867, 0.1599927098, -0.1657074541, -0.1038519293, 0.2246287167, -0.2585547268, -0.0839281902, 0.0609280244, -0.1497136652, -0.0967745036, -0.1595599204, 0.5698388815, 0.179943189, 0.072289601, 0.0952891856, 0.1322448701, 0.0780079141, -0.0757001564, 0.0063119419, -0.0098387226, 0.5663113594, 0.2622883916, -0.0351032652, 0.1173703671, -0.1512573659, 0.4364987612, 0.1587661356, -0.0320276693, -0.3339218199, 0.0973033234, -0.120798789, 0.0436150879, -0.3793647289, -0.1152434945, -0.253418535, 0.0617880002, -0.1707230061, 0.7472001314, 0.242815122, 0.1477636099, 0.0102007166, 0.1077872291, -0.1298884749, -0.3767108321, -0.1586436927, 0.1013625935, -0.0191385336, -0.0515206382, 0.1256589293, -0.0810726956, 0.3847852051, -0.0449684747, -0.0184504651, -0.5178280473, 0.0705108792, -0.0671274066, 0.0722047389, 0.0966841504, -0.1959407479, 0.181896925, -0.3614750803, -0.0663396716, -0.1263326705, -0.4590771794, -0.1805945933, 0.0563872308, 0.0017033517, 0.2645662427, -0.0602228269, -0.2389341742, 0.0197034385, -0.0604274273, -0.1862337291, -0.2104735076, 0.0663477182, 0.0624301285, 0.1308452338, -0.2201141268, 0.2857634723, 0.0032418929, -0.3236317337, -0.6576062441, 0.4279028475, 0.1779451221, -0.2001415789, 0.312207222, -0.1104267761, -0.0269733686, 0.4068780243, -0.589081347, -0.1938368231, 0.0083894003, 0.1047086492, -0.4142181873, 0.2215414792, 0.3652363122, -0.0205240101, -0.0421428233, -0.0373716317, -0.2552669644, 0.0953874066, 0.1543391794, 0.477227211, -0.2085598111, 0.2322048694, 0.0358265489, 0.3859617412, -0.0511955023, -0.0470176078, 0.382145524, 0.2632109523, 0.5747003555, -0.2582439184, -0.1334563494, -0.5062972903, -0.2519564629, -0.3096195459, -0.0341154672, -0.0407006182, -0.0676549599, -0.1260346919, -0.2426859587, -0.2178797126, -0.1950591207, 0.0797050968, -0.2889830172, 0.3272453249, 0.0038286522, 0.1908490956, 0.1868159622, -0.2061286569, -0.0138955005, 0.2137175202, 0.3998018503, 0.0800073892, -0.327563107, 0.0140289143, -0.2869059741, 0.2075460702, -0.2099595815, 0.0030589737, 0.0532290936, -0.0138413981, 0.0894817039, 0.2036099434, 0.7742394805, 0.1549127549, 0.1421175599, 0.1629954129, -0.4092798233, -0.2115704715, 0.0028167665, 0.0995187089, -0.2312852442, -0.1408344954, 0.683401525, 0.1378548145, -0.1164825708, -0.4072923958, 0.4617176056, -0.2899161577, -0.2482808679, -0.1648037434, -0.2642419338, -0.494628042, -0.1494388133, -0.2242547572, -0.1094839051, -0.1916747242, 0.1237000674, -0.1940566599, -0.1066656634, 0.0562276356, -0.1835999042, 0.325707972, 0.306414187, 0.0279387161, 0.1640270948, 0.1848331988, 0.1314572841, 0.3027800918, -0.1124107689, -0.0372945927, -0.0790411532, 0.1409600377, 0.0719047487, 0.1694459915, 0.0061106309, 0.0176247209, -0.011918406, -0.174677968, -0.2852496207, -0.0722133517, -0.145493865, -0.1713910997, -0.2936676145, -0.43445158, 0.5158484578, -0.042294614, -0.1093988121, -0.1100791991, -0.1075987518, -0.2939425409, 0.1297604293, 0.2262259722, 0.9243398905, 0.0883859321, 0.1814994514, 0.0876085386, -0.1721738726, 0.0167081095, -0.0423724875, -0.046322044, -0.3026045561, -0.3657318652, -0.1760591865, -0.1443958133, 0.0477700755, 0.263994664, -0.3115508556, 0.3357237577, -0.2909370661, -0.1034816727, -0.1046894938, -0.0075613186, -0.2122484744, -0.2458738536, -0.2050828636, 0.0313249603, -0.1515485495, -0.0273838881, -0.0318107456, -0.0045631565, 0.2649883032, -0.0017584637, 0.3558606505, 0.1569266766, -0.0803068876, 0.2989884615, -0.1692279875, -0.4347158074, -0.053097412, 0.5133097172, 0.4914640486, 0.0112368036, 0.0094524659, -0.0553231053, -0.0235153325, 0.3598999977, -0.1810908914, -0.1940714121, 0.4862324297, 0.0869535953, -0.059040688, 0.0497812293, -0.0420018993, -0.2919218242, -0.0474304259, -0.1287675649, 0.1325781345, -0.2795439661, -0.0459129587, 0.2894845307, 0.2738039196, -0.0742635429, 0.05402546, 0.0834547952, 0.0090322457, 0.3221891224, -0.0452657454, -0.3151639104, 0.0543158501, 0.5431886315, 0.1804058552, -0.0464720912, 0.336017251, -0.3092154264, 0.0523005277, -0.2045598328, 0.3989336491, 0.1732904762, -0.1432103962, 0.1380075812, 0.0204505585, 0.4439572096, -0.0311353132, -0.0242851302, 0.0992707834, -0.00841593, 0.1196399629, -0.0480964705, -0.3914590776, 0.1300693005, 0.24585177, 0.3818081319, 0.3204663396, -0.1763051599, 0.0028132722, 0.3804039061, -0.2188312262, 0.1583356708, 0.280914247, 0.2071997821, 0.2206029296, 0.1162376106, -0.265707016, -0.3280177414, -0.0514552072, -0.1594754755, -0.3051246703, -0.1652150154, -0.0302933007, 0.1364434659, -0.037577007, 0.1899551153, -0.2565506399, -0.4506434798, 0.2677791119, -0.1295458972, 0.1429375708, 0.247330755, 0.2051231265, 0.1521451026, 0.0653467625, 0.4487793148, -0.2328962088, -0.1185057014, -0.210509479, 0.1233188435, -0.0207091533, -0.0022416078, 0.0580321439, -0.1482614875, -0.5246191621, -0.0672188178, 0.5569463372, 0.1424943209, -0.0765212178, -0.2013107687, 0.0068910196, 0.2139702588, 0.2115525901, 0.0510493964, -0.3432707489, -0.2787159979, 0.3432045281, 0.144266203, -0.0160446987, -0.225481078, 0.2461639196, -0.1806957275, -0.3061955273, 0.1442252398, 0.176764071, -0.0585688949, -0.2754857838, 0.1589037329, 0.2719599605, -0.3255971372, 0.3828682303, 0.5380003452, -0.2591251135, 0.0096260812, 0.2257223129, 0.2819713056, -0.1335764229, 0.4269311428, 0.0098499674, 0.5303927064, -0.0395822152, 0.1332314909, -0.0633737743, -0.415178597, 0.0702959523, 0.1649888903, -0.2766590416, 0.0600556508, 0.0243207458, -0.097979933, 0.1432589591, -0.4174816012, -0.1507120728, 0.4192141891, -0.2484189123, 0.1074258834, 0.0579755753, -0.1120397151, 0.2826022804, 0.2744212151, -0.0536197312, -0.2268412113, 0.4427160919, 0.1255392134, -0.1913319081, 0.2044381946, 0.1249772757, 0.1588974595, -0.0993126333, -0.1169836298, 0.1147720069, -0.0848860145, -0.0037678964, 0.0291743204, 0.0298790056, -0.1809430122, 0.1118034869, 0.1676975787, 0.2783717513, 0.305947125, -0.0228864439, 0.1679928899, 0.0827449113, -0.0256152451, -0.0337700695, 0.2122332156, 0.0137037337, 0.014026843, 0.3118375242, -0.0362617038, 0.4630798399, -0.3419648707, 0.2062887996, 0.4129405618, -0.1074002609, -0.1485196054, 0.0904574543, 0.1278403848, -0.0378109589, 0.570561707, -0.2957130075, -0.0160772316, 0.0124919042, 0.0395255312, 0.1230498999, 0.4332265258, 0.2128032744, -0.4697760344, -0.2823475003, -0.1664895266, -0.6273468733, -0.0508995578, 0.3253652453, 0.3701802492, -0.2258561105, 0.1118431613, 0.0707369596, 0.2098542899, 0.0369164683, -0.2351113111, 0.1503263414, 0.2999602556, 0.1234922111, -0.1595017612, 0.0503461361, 0.2770725787, -0.1349765062, -0.2388401181, 0.1724777967, 0.1970547885, -0.014319215, 0.2137266695, 0.1389211714, -0.155682385, 0.4832550287, 0.5390318036, 0.1382325888, 0.0534416586, -0.1822286248, 0.3323269784, 0.2797114253, -0.0581522956, -0.1694723368, -0.1795462072, 0.0746413693, 0.1931521297, -0.390331775, 0.385284096, -0.2698164284, -0.0080449879, 0.0730059147, 0.1210963577, -0.5197295547, 0.0209050179, 0.1311252713, 0.171831578, 0.1720622778, 0.4176315367, 0.0450439639, 0.3535897136, -0.2674763203, -0.1531490535, 0.4640334249, -0.1586669683, -0.3031260371, -0.1587204635, 0.3097465336, 0.0269459113, -0.0641724542, -0.3660286665, 0.0210535824, 0.3587176204, -0.2671590447, -0.0269524641, 0.5555730462, -0.2037758231, 0.1576040983, 0.0878340378, 0.5945926905, 0.0969751328, -0.305318445, -0.0882790908, -0.3290881813 ]
https://github.com/huggingface/datasets/issues/1993
How to load a dataset with load_from disk and save it again after doing transformations without changing the original?
ok, one more thing. When we use save_to_disk there are two files other than .arrow. dataset_info.json and state.json. Sometimes most of the fields in the dataset_infor.json are null, especially when saving dataset objects. Anyways I think load_from_disk uses the arrow files mentioned in state.json right?
I am using the latest datasets library. In my work, I first use **load_from_disk** to load a data set that contains 3.8Gb information. Then during my training process, I update that dataset object and add new elements and save it in a different place. When I save the dataset with **save_to_disk**, the original dataset which is already in the disk also gets updated. I do not want to update it. How to prevent from this?
45
How to load a dataset with load_from disk and save it again after doing transformations without changing the original? I am using the latest datasets library. In my work, I first use **load_from_disk** to load a data set that contains 3.8Gb information. Then during my training process, I update that dataset object and add new elements and save it in a different place. When I save the dataset with **save_to_disk**, the original dataset which is already in the disk also gets updated. I do not want to update it. How to prevent from this? ok, one more thing. When we use save_to_disk there are two files other than .arrow. dataset_info.json and state.json. Sometimes most of the fields in the dataset_infor.json are null, especially when saving dataset objects. Anyways I think load_from_disk uses the arrow files mentioned in state.json right?
[ -0.300722301, -0.0692068264, -0.0054888315, 0.2683239877, 0.186875701, 0.0893004686, -0.0907419398, -0.0502165593, -0.0936116576, -0.0296892226, 0.0845306665, 0.3922942877, 0.0921070352, 0.2010049224, 0.1915560663, 0.2176253945, 0.2755787373, 0.2541546822, -0.298114568, -0.0849449113, -0.1826585382, -0.201149404, 0.035145849, -0.2450298965, -0.2057037503, -0.3581504226, -0.0677714422, 0.0153925661, 0.1225500032, 0.0245491862, 0.1340076923, 0.0892244577, 0.2528144419, 0.2696573436, -0.000121676, 0.047567144, -0.3047076762, -0.1001052856, -0.3526186645, -0.1412883997, -0.069719933, -0.2212414742, 0.0719517395, -0.3070663512, 0.0589957535, -0.2824418843, -0.126073271, -0.2450782657, 0.6672537327, -0.2722014785, 0.0699747354, -0.1284600496, -0.1617946327, 0.0976968259, -0.2888138592, 0.3928674757, 0.1804586351, 0.0834342241, -0.0248980485, 0.3822439313, -0.0219696052, 0.1612482965, -0.2000204027, -0.2527585924, 0.383341521, -0.0076433662, 0.2212197483, -0.2953319848, 0.1467775255, 0.013578685, 0.8064630032, -0.4050230086, -0.2574876547, -0.28823632, 0.1536289752, -0.0580589846, 0.1496302038, 0.2156997323, 0.0218875445, 0.1402101368, -0.5136812329, -0.868442297, -0.1266844422, 0.1264936775, 0.1287236661, -0.5532695651, -0.0229648016, 0.1637459695, 0.2024900913, 0.2185245454, 0.4860473573, -0.3468028903, -0.26651299, 0.1081003398, -0.2416039407, -0.2579501867, -0.354360044, 0.1011796743, -0.0114107206, 0.289411664, 0.1406663805, -0.0836778805, -0.3567634821, 0.1603853852, 0.2414061427, 0.2809043527, 0.2183113694, 0.169306457, 0.0739969164, -0.0631905943, -0.1861827075, -0.097051084, 0.1862165779, 0.041519735, 0.5600597858, -0.3111512363, 0.2295672596, -0.0122573972, 0.1502871811, 0.0228205509, 0.0895475149, -0.1179459542, -0.1425842047, 0.2670942545, 0.1297622025, 0.2194281816, 0.1593542099, 0.2407314628, 0.0423474312, -0.0376061648, -0.1410650015, -0.0918839201, -0.209706068, 0.4661524296, 0.0937511176, -0.0388412029, 0.1977843344, 0.4313407838, -0.4969685674, -0.1085932776, 0.0501840636, -0.1930903196, 0.3274522126, 0.1736687422, 0.1454108655, 0.248924911, -0.08799164, -0.0936398059, -0.1191325933, 0.5767199397, -0.357534349, -0.1520613879, 0.0701175183, 0.1043710411, -0.1598287076, 0.0983539596, -0.8150241375, 0.1427526474, 0.0247535761, -0.1231689826, 0.1728976965, 0.0534343086, -0.2563692331, -0.2302290201, -0.0512652807, 0.1930936873, -0.4120173752, -0.1680331528, 0.1258456707, -0.2549984753, -0.1799414456, 0.2108703256, -0.3636851311, 0.2950890362, -0.2587228417, -0.3023214638, 0.6723539233, 0.020460397, -0.3387462497, 0.1760646105, -0.0282904506, -0.1184441745, 0.0147043392, 0.5250899196, 0.1372104287, -0.0953128189, -0.4145091176, 0.2945402563, 0.140781045, 0.0868426114, 0.0795525312, -0.2047659904, 0.1286371052, -0.2869851887, -0.245630905, 0.3859403431, 0.2542546988, 0.3583351672, 0.3105891645, 0.0150292506, 0.1410470009, 0.458147645, -0.1164280772, 0.0385380015, -0.212767452, 0.1784368902, -0.7484532595, -0.0065716207, 0.2338045985, -0.6842119098, 0.3345314264, -0.1203258485, -0.0277767815, -0.1687024832, -0.066419661, 0.1298467517, -0.0762263387, 0.0424030647, -0.0529154874, -0.1547598392, -0.2675635815, 0.3820067346, -0.0523813143, 0.1227224618, -0.6055700183, 0.3676995635, 0.2111806571, -0.2002484947, -0.2397428751, -0.1931338906, 0.2055211216, 0.0092982985, -0.0893528759, 0.3786782324, 0.1809557229, 0.4551723003, 0.0918432772, 0.2322871685, 0.0534292608, -0.0460144468, 0.1447263509, -0.1604726911, 0.1452554762, -0.1221863851, -0.263800621, 0.0442182943, -0.2015416026, 0.1787593812, 0.134549439, -0.1926778257, 0.0233344361, -0.2902033031, -0.0180920884, -0.2220671773, -0.2539128959, 0.1853523105, 0.3977226615, 0.1267138124, -0.1721723974, -0.1254343092, 0.2959309816, -0.2575976849, -0.021460887, -0.0102389567, -0.3651688099, 0.0082921311, -0.0941084921, 0.6046720743, 0.1611141115, 0.0820363835, 0.0866395384, 0.0911178142, 0.1511918008, -0.0454355963, 0.0442335196, -0.0101494975, 0.5799141526, 0.2443163544, -0.0383161232, -0.0365614109, -0.114924565, 0.3536055386, 0.1652425528, -0.0946868807, -0.2773091793, 0.1180243269, -0.2011263818, 0.0713501722, -0.4884607196, -0.1273130178, -0.2521909475, 0.1512749195, -0.271494329, 0.7723134756, 0.2325677872, 0.1263020933, 0.1219078004, 0.015431419, -0.147023946, -0.4388964176, -0.0966938287, -0.0195643082, -0.0103024235, -0.0622432046, 0.1154472679, 0.0493930988, 0.3781047761, -0.0810577124, -0.0131594092, -0.4396045506, 0.1891238689, -0.065680176, 0.1645979434, 0.0659913719, -0.2215652764, 0.279546231, -0.3811886907, -0.0384200141, -0.0594332293, -0.3607290983, -0.2850466669, -0.0065293871, 0.013489712, 0.2896597683, 0.0172294602, -0.1902120709, 0.0335529, -0.0402979776, 0.0173522215, -0.1225785688, 0.0557491817, -0.0140359662, 0.2444538474, -0.1130924076, 0.1804332584, 0.0764264092, -0.2114167064, -0.5961002111, 0.4128052592, 0.1633279026, -0.1741422713, 0.3108077049, -0.1741729081, -0.0210466795, 0.3101858497, -0.6087189913, -0.1141921058, 0.0600614697, 0.1037476584, -0.3919460773, 0.3361912072, 0.3062703311, -0.0278478116, 0.0144452341, -0.0334715471, -0.2389530391, 0.0784412175, 0.1437770575, 0.4244508147, -0.1612543464, 0.2261485755, -0.0966196209, 0.3579064012, 0.0317311063, -0.1503336132, 0.2577559352, 0.1534895152, 0.4387213588, -0.1750786752, -0.0522776283, -0.5761284232, -0.1618200243, -0.2217732966, -0.114825137, -0.0057709944, 0.0323960409, -0.1075936705, -0.2496584803, -0.2805706859, -0.1933779418, 0.0845355764, -0.2493491173, 0.2655929327, 0.0192372054, 0.1759130508, 0.1493865103, -0.1331045926, -0.0371736661, 0.2424816787, 0.356749475, 0.0340545103, -0.4226410985, -0.0830406845, -0.0818450674, 0.1717509329, -0.2144636512, -0.0884094462, 0.1600835621, 0.0011427626, 0.0677131787, 0.1965409219, 0.736179173, 0.1874347776, 0.0636998937, 0.0926945657, -0.3455914855, -0.3881475329, 0.0843278468, 0.0506143868, -0.2877062261, -0.117487967, 0.7245599627, 0.080399096, -0.1206825376, -0.3576760888, 0.5562204719, -0.3704289794, -0.295506835, -0.1457948536, -0.1664605886, -0.5476545691, -0.2133507133, -0.308275938, -0.1582365483, -0.1307763904, 0.0646412522, -0.2534779906, -0.0915704519, 0.0220782459, -0.1182214022, 0.3918708265, 0.266674161, 0.0193669498, 0.1644687653, 0.2219796479, 0.32841447, 0.3666435778, -0.0153752156, -0.097427614, -0.1326036155, 0.0867797956, 0.1648631245, 0.0936436951, 0.0686153322, 0.0479841977, 0.0268370025, -0.2086210251, -0.3092783391, -0.0560041182, -0.1340935379, -0.1367205381, -0.1440845132, -0.5415614843, 0.5702608228, -0.0650222972, -0.140814662, -0.0851875991, -0.0459548496, -0.2711399198, 0.1703907251, 0.1498792022, 0.8716293573, 0.1089723259, 0.17788288, 0.1109231412, -0.2702059746, 0.0874601156, 0.0335818157, -0.1201457381, -0.3685469031, -0.1829182208, -0.1566403806, -0.2075342536, 0.0405541062, 0.4153392911, -0.2801254988, 0.3261989951, -0.2238128185, -0.1505963206, -0.1990748793, 0.096172303, -0.1657649577, -0.1743450761, -0.1681721509, -0.0114011243, -0.0881936699, -0.0306614507, 0.0053101406, 0.041388873, 0.0553509444, -0.018718943, 0.3721586466, 0.0846237987, -0.0624595396, 0.2771232426, -0.1577946246, -0.4986289442, -0.0826174542, 0.5926849842, 0.3960546255, -0.0334481336, 0.0526533201, -0.0723137259, 0.0268864278, 0.3063699305, -0.2422438711, -0.1719271243, 0.4481702149, 0.1376743913, -0.0855185539, 0.1409665346, -0.094511956, -0.1698206663, -0.0376817733, -0.0860804617, 0.0551041365, -0.2550103068, 0.0474662073, 0.271235168, 0.253031671, -0.02101136, 0.0095766168, 0.1501526088, 0.057903938, 0.298020035, 0.0394541174, -0.2374410182, 0.0459563844, 0.518802464, 0.2067333758, 0.0214127898, 0.4381724298, -0.3275933266, 0.1210740507, -0.2402663827, 0.5366311073, 0.2017430663, -0.1746363938, 0.1869061589, 0.0694176108, 0.400788337, -0.0473451726, -0.0213022642, 0.0853852481, 0.0111679155, 0.1445221603, -0.0958094299, -0.438056767, 0.2343148589, 0.2624765933, 0.3535430431, 0.2583892941, -0.2324335575, -0.0680491924, 0.3585876822, -0.1744464487, 0.2054150254, 0.3005222678, 0.2823812664, 0.1684187055, 0.2044437081, -0.2087187022, -0.3440040052, -0.0438149087, -0.2555530369, -0.2365292907, -0.1251323521, -0.059807349, 0.1539492309, -0.0436912104, 0.1677892208, -0.3266105354, -0.4847743809, 0.2891399562, -0.1375052035, 0.0824396685, 0.0819534659, 0.219714269, 0.184092626, 0.093729496, 0.4481509328, -0.3184416294, -0.1187557057, -0.1921021342, 0.1783018112, -0.0328109413, 0.0121085541, 0.0642221719, -0.1316830665, -0.6189082265, -0.0990727618, 0.5383810401, 0.1635979116, -0.0226290114, -0.1675629616, -0.0290071443, 0.1075523198, 0.254422605, 0.2053809762, -0.3422955871, -0.2245645523, 0.3293198347, 0.1255977303, 0.0269110203, -0.1925329715, 0.2880922258, -0.1918519735, -0.2873285115, 0.1465843916, 0.0319879353, -0.0512792319, -0.4122620821, 0.0254711211, 0.1751541197, -0.1580882668, 0.3159534037, 0.5974051952, -0.2331492901, -0.0708442628, 0.1466575861, 0.39944911, -0.0056823045, 0.330552429, -0.0007102266, 0.3764373362, 0.0240041837, 0.0916095674, -0.0240890644, -0.3671693802, 0.0081163375, 0.1389635205, -0.2195096612, 0.0497022197, 0.0751757249, -0.0880867392, 0.2082579434, -0.3309556544, -0.0835977271, 0.3510943949, -0.1629562676, 0.0826333314, -0.1298547536, -0.1498636603, 0.3026362062, 0.2705849409, -0.0788762271, -0.3361343145, 0.3281604648, 0.1423031241, -0.0971574113, 0.1063300073, 0.187246576, 0.1876193285, -0.1655018628, -0.1503584534, 0.0128682349, -0.0289310552, 0.0125153642, 0.0165963341, 0.0012615919, -0.2274465412, 0.0419400297, 0.1657588184, 0.316542387, 0.3196209669, -0.0838941634, 0.1499596387, 0.0178738981, -0.0008008219, -0.0735292882, 0.2127766609, 0.0151790939, 0.0294535272, 0.2632459998, 0.0044016978, 0.379575789, -0.3571351171, 0.2479708344, 0.3106712699, -0.1404628605, -0.1665804982, 0.0103725046, 0.2103222311, -0.1065977886, 0.5434313416, -0.2923467159, -0.0012199134, 0.0241245665, 0.014269881, -0.0414992534, 0.4267641306, 0.2331005037, -0.4311105609, -0.1866672039, -0.1895917207, -0.5319390297, -0.098979719, 0.2813745737, 0.2668112516, -0.2489682436, 0.1820269823, 0.1321468204, 0.2249127328, 0.05982925, -0.1167490929, 0.1265684366, 0.3670851588, 0.1188411266, -0.237884447, 0.050278917, 0.3357858062, -0.0974641666, -0.2143314779, 0.1917596608, 0.1325946003, -0.0512679219, 0.2214894295, 0.1896936148, -0.1321160644, 0.4478757679, 0.646235466, 0.0189495254, 0.0312894918, -0.1774074286, 0.2362671494, 0.3744187057, -0.0216820668, -0.1565991044, -0.0167006142, 0.0922046453, 0.2499129623, -0.456681937, 0.4448708296, -0.2041885257, -0.186814487, 0.0137962624, -0.0477890223, -0.4581758976, 0.0463744029, 0.065158397, 0.1430877745, 0.1621834338, 0.3478297889, -0.0187161602, 0.3184935749, -0.189969033, -0.0243143439, 0.4145448208, -0.0772267058, -0.1907040179, -0.0427961387, 0.2818668783, 0.0554946586, 0.0050823782, -0.4016093016, 0.1224802583, 0.4839175045, -0.2663436234, -0.0787809044, 0.3923038244, -0.1582095772, 0.1256153286, 0.0675276071, 0.6033192873, 0.0422040932, -0.3597432375, -0.0921211988, -0.2827449143 ]
https://github.com/huggingface/datasets/issues/1993
How to load a dataset with load_from disk and save it again after doing transformations without changing the original?
Perfect. For now, I am loading the dataset from CSV in my interactive process and will wait until you make the PR!
I am using the latest datasets library. In my work, I first use **load_from_disk** to load a data set that contains 3.8Gb information. Then during my training process, I update that dataset object and add new elements and save it in a different place. When I save the dataset with **save_to_disk**, the original dataset which is already in the disk also gets updated. I do not want to update it. How to prevent from this?
22
How to load a dataset with load_from disk and save it again after doing transformations without changing the original? I am using the latest datasets library. In my work, I first use **load_from_disk** to load a data set that contains 3.8Gb information. Then during my training process, I update that dataset object and add new elements and save it in a different place. When I save the dataset with **save_to_disk**, the original dataset which is already in the disk also gets updated. I do not want to update it. How to prevent from this? Perfect. For now, I am loading the dataset from CSV in my interactive process and will wait until you make the PR!
[ -0.3435497284, -0.1861006618, -0.0237766895, 0.1979094744, 0.2351959646, 0.0903734565, -0.0758543015, -0.0891271532, -0.002448, 0.0613526255, 0.0818680823, 0.2888204455, 0.0089174956, 0.2742180824, 0.2110168338, 0.2311645299, 0.257101357, 0.3034489751, -0.3161802292, -0.0310901329, -0.1955247521, -0.1905547678, 0.0157796443, -0.2773297727, -0.1335467249, -0.3582568467, -0.0840451717, -0.0099306572, 0.0723499507, 0.0670774356, 0.1237912029, 0.1421201676, 0.3197945952, 0.3073057532, -0.0001188234, 0.0112632811, -0.3935619891, -0.1174851805, -0.2952137589, -0.1752287745, 0.019872725, -0.1928230971, 0.0426129177, -0.2823274136, -0.0355922021, -0.0789244026, -0.1382195354, -0.184242785, 0.6355673075, -0.2757766247, 0.0882281363, -0.1013195664, -0.2604751885, 0.1003405601, -0.3609257638, 0.3109509349, 0.1697657406, 0.0327256061, -0.0230120644, 0.352384299, -0.0059227422, 0.1834038198, -0.2202826738, -0.2364938557, 0.3685043156, -0.0557335243, 0.1962572336, -0.3266142607, 0.136603713, -0.0504188053, 0.7573291063, -0.3973724544, -0.2224437892, -0.2200311124, 0.222311765, -0.1780086756, 0.102820009, 0.2710525095, -0.0004193671, 0.1309109032, -0.5915708542, -0.8006386161, -0.1265454739, 0.0599237867, 0.0174781233, -0.600536108, -0.0098795481, 0.1061761081, 0.2177743614, 0.2815049291, 0.4598245323, -0.2353617698, -0.2161786705, 0.1422933489, -0.2949935198, -0.274567157, -0.2943739891, 0.1907632649, -0.0581795387, 0.1961973011, 0.0701109469, -0.092365846, -0.2840209305, 0.1482524872, 0.1528834105, 0.3160925508, 0.1148210615, 0.1808682531, 0.0832409561, 0.0590579212, -0.2331293523, -0.0536450818, 0.1533098966, 0.0603943169, 0.5767165422, -0.2273498476, 0.1721361428, 0.023944281, 0.0714495406, 0.0731745586, 0.1662714481, -0.0902279913, -0.1174425185, 0.3433510065, 0.120250009, 0.2047810704, 0.1899907887, 0.2010242939, -0.0489032492, -0.1141748726, -0.1551880091, -0.0595465563, -0.3120181561, 0.41968894, 0.1253363043, 0.0080646388, 0.1199116111, 0.5349017382, -0.4715519249, -0.1450415701, 0.0144293308, -0.1974767148, 0.3453067839, 0.1837600768, 0.1647832543, 0.1672118604, -0.0709508955, -0.0298969671, -0.1003755033, 0.6497285962, -0.3161400557, -0.1092397943, 0.1016733572, 0.1262909025, -0.1379483789, 0.1107458398, -0.7127205133, 0.197991401, 0.0198921263, -0.1377771646, 0.1604964137, 0.0238326453, -0.3551614285, -0.1828231215, -0.0532663018, 0.1804094166, -0.3858017325, -0.1600942463, 0.1927722096, -0.2199112922, -0.1124549955, 0.2244848311, -0.3141227067, 0.2418793589, -0.2732775807, -0.3577343225, 0.5291256905, 0.1001327038, -0.3341225386, 0.1677856743, -0.034818463, -0.0790616199, 0.0231736545, 0.5614815354, 0.1681263, -0.109280318, -0.4543690681, 0.3388876319, 0.0994201303, 0.1335133314, 0.0695956349, -0.1695289463, 0.2710562646, -0.3116511703, -0.1427364796, 0.4807795584, 0.2460566908, 0.3417783976, 0.3239539564, -0.024512209, 0.0995803773, 0.4077054858, -0.15120776, 0.0790724531, -0.2095586061, 0.1262254417, -0.6138045788, -0.0311105177, 0.1936891526, -0.5951251388, 0.3615722954, -0.122651428, -0.064284943, -0.2044180036, -0.0127760768, 0.074924916, -0.0688732415, -0.0022939369, -0.110988766, -0.1776319444, -0.2606810927, 0.4837683737, -0.0590836182, 0.0931876749, -0.6138253808, 0.3396214545, 0.1712856591, -0.2045489252, -0.2430603206, -0.0967052132, 0.2103916854, 0.031946253, -0.0962716043, 0.3377920389, 0.1939776838, 0.4088326097, 0.012982456, 0.1993596256, 0.0663036555, -0.013270393, 0.0733956695, -0.2320132852, 0.136041522, -0.0811844468, -0.1756190211, 0.0617035031, -0.2363676131, 0.0892639458, 0.158132121, -0.2045088559, 0.0544072315, -0.3416890502, 0.0190342739, -0.2046748102, -0.1858688891, 0.2192382812, 0.3088556826, 0.1363542974, -0.2268323302, -0.2074434757, 0.2330196202, -0.2737059593, -0.0912178457, 0.0353357159, -0.2595540583, 0.016884394, -0.1204079539, 0.5437598825, 0.1188663095, 0.1275319904, 0.005332957, 0.1194353625, 0.1251196861, 0.0129796006, 0.0339162908, -0.0343918614, 0.5523135066, 0.2647173405, -0.050943464, 0.0724444687, -0.1624066532, 0.4198667109, 0.1504423022, -0.1196852028, -0.3011407852, 0.0994732976, -0.1615886986, 0.0660833716, -0.468075484, -0.0841381401, -0.247243613, 0.2366382778, -0.2964736223, 0.7885240912, 0.2594655752, 0.1625139415, 0.1108182669, 0.0459688976, -0.1312013716, -0.4180257916, -0.057359498, 0.0374375507, 0.0125368275, -0.048334498, 0.0752370134, -0.0037026815, 0.4305589795, -0.0291058347, -0.0665602386, -0.426974982, 0.1278458536, -0.0823730528, 0.102974236, 0.1104521975, -0.212049976, 0.2974177003, -0.4168388247, -0.0541326925, -0.1244077906, -0.4201672077, -0.2594534457, 0.0294523835, 0.0546956435, 0.2615019679, 0.0107818395, -0.2051884383, -0.0094755739, -0.0083107278, -0.1173743382, -0.1713140309, 0.0468002185, 0.0203505494, 0.1569826007, -0.2946608067, 0.2539893687, 0.0822964534, -0.237668559, -0.5970131755, 0.3417882919, 0.1599007845, -0.1892436147, 0.2897327542, -0.1801793575, -0.0554158986, 0.3803259134, -0.5858957767, -0.0945967436, 0.0443138555, 0.1413554102, -0.4069653153, 0.3347261548, 0.3081908822, -0.0225073341, -0.0081292205, -0.0677944273, -0.2454162091, 0.0576776266, 0.1356201619, 0.399793148, -0.2072360963, 0.2203688622, -0.0573366433, 0.3448047936, -0.0246942639, -0.1513891667, 0.2897455692, 0.1356436759, 0.4245443642, -0.1676990539, -0.1270467192, -0.5524553061, -0.1735002846, -0.2354567945, -0.0060491823, -0.0379285961, 0.0072154421, -0.1281891018, -0.2558848858, -0.284393847, -0.1308058649, 0.050418444, -0.2452310324, 0.3822579384, 0.0587056652, 0.1576601267, 0.1527382433, -0.1986498833, -0.068963781, 0.2094495595, 0.3548835516, 0.0272180401, -0.2600482106, -0.0348767787, -0.1532876939, 0.1102515906, -0.2091602683, -0.0276742522, 0.1221670359, -0.0030594841, 0.0609426461, 0.2545267344, 0.8182936311, 0.2156582028, 0.137447983, 0.0889693275, -0.4251456559, -0.2478489876, 0.0456907749, 0.032248877, -0.3078768849, -0.0940758884, 0.672399044, 0.1526482105, -0.0902086943, -0.3045022488, 0.5188000202, -0.3563797474, -0.3737734556, -0.2266181409, -0.1663166285, -0.5012155771, -0.12888816, -0.2598287165, -0.0439995602, -0.1832845807, 0.106131956, -0.2196146697, -0.0676039606, 0.1095382944, -0.131000638, 0.330073297, 0.3421658576, 0.0496451333, 0.1242489219, 0.2176740617, 0.1669385135, 0.3173026145, -0.105337061, -0.1126387566, -0.1280663908, 0.1298918873, 0.1712062657, 0.0756069198, 0.0527425744, 0.073239401, -0.0068589244, -0.1699390858, -0.3829434514, -0.0453674272, -0.1490218639, -0.0730892196, -0.2039040625, -0.4751249552, 0.4746288061, -0.0925761387, -0.1258587539, -0.1472212076, -0.1061395779, -0.2921002507, 0.1399549693, 0.1306459457, 0.863239646, 0.0326743349, 0.1525592357, 0.1198748052, -0.170532167, 0.0168490782, -0.0012274757, -0.0839211792, -0.4019958377, -0.3279490471, -0.1733229905, -0.1934762895, 0.0378246158, 0.3253149986, -0.3283302486, 0.3507510424, -0.2487782836, -0.1089889407, -0.1078145579, 0.0443413705, -0.1169934347, -0.164963454, -0.1856901199, -0.0061430372, -0.0798517317, -0.0044730878, -0.0543576032, 0.0740771741, 0.2115781456, 0.0019404292, 0.3221925199, 0.1227277666, -0.0707129166, 0.2805036902, -0.1962249875, -0.4649518728, -0.0051140413, 0.6101843715, 0.4340725243, 0.0248928554, 0.0813787878, -0.0706977025, -0.0266578868, 0.3314712644, -0.210478574, -0.1034399644, 0.4504613876, 0.136667192, -0.1030480415, 0.0925333723, -0.047437828, -0.1213080958, 0.0198431015, -0.0646406859, 0.11354509, -0.3509955704, 0.0355070643, 0.2403182834, 0.3644150198, -0.0586994924, 0.0314691253, 0.0625161529, 0.0130528286, 0.3171584606, 0.070859611, -0.2808793783, 0.037620455, 0.5294992924, 0.2024804205, -0.0426782891, 0.3699869215, -0.2707162797, 0.089993909, -0.2675445378, 0.4640225172, 0.1178859174, -0.1746009439, 0.1856896877, 0.1257211864, 0.4507122636, -0.0159635469, -0.0439135022, 0.0883901119, -0.0629789829, 0.1653647274, -0.0940569192, -0.3822157979, 0.121072948, 0.23729527, 0.3630730212, 0.3535113335, -0.1228335723, -0.0329007767, 0.3971118927, -0.2104937881, 0.1599493921, 0.2804697454, 0.2849238515, 0.214312315, 0.1544957161, -0.3230310082, -0.3599320054, -0.0096667223, -0.2506662607, -0.2394523621, -0.1587038934, -0.0525224879, 0.1439283192, -0.113995336, 0.2321473509, -0.28543818, -0.4382479191, 0.2356995791, -0.1452859044, 0.0925417095, 0.1704604179, 0.2144286484, 0.2009411305, 0.078535974, 0.426656425, -0.3415492773, -0.1125033796, -0.2172948122, 0.1889523864, -0.0322937071, 0.0051215771, 0.0702452362, -0.1169626042, -0.6251550317, -0.0948786139, 0.6250929236, 0.1212150306, -0.0073649157, -0.1670638174, 0.010022521, 0.1534459591, 0.2904004455, 0.0841550827, -0.3773589134, -0.246101141, 0.3773589134, 0.1504218578, -0.0956230164, -0.1158767939, 0.2852271497, -0.2092481405, -0.2813021839, 0.1848054975, 0.1058100909, -0.0454828218, -0.3390639722, 0.0373212546, 0.2553979754, -0.1684485376, 0.3619693816, 0.591391623, -0.2182151824, -0.0562765338, 0.1396618187, 0.4150111079, -0.13962093, 0.3794617057, -0.0036845766, 0.381893605, -0.0570315272, 0.1477709413, -0.109039396, -0.4267396629, 0.1011377424, 0.1654103696, -0.2610382736, 0.0225983188, -0.0011137314, -0.1030323207, 0.1897850186, -0.376621902, -0.1189316064, 0.4679526091, -0.2189382911, 0.1519280076, -0.004886806, -0.1219154447, 0.2515875995, 0.3047003448, -0.0060796523, -0.2621268928, 0.3338618577, 0.1696126461, -0.1097294092, 0.0838388726, 0.0973996371, 0.2091325521, -0.1747376323, -0.1729256511, 0.0424712822, -0.0594644733, 0.0830611661, 0.0510296635, 0.0068144705, -0.2014680505, 0.0683360845, 0.1713882387, 0.2928631306, 0.250870347, -0.0251091868, 0.1290169954, 0.0307840556, -0.0182990842, 0.0967057794, 0.1933038235, 0.0061854497, 0.025468301, 0.2639415264, 0.0461047888, 0.3334488869, -0.3797312975, 0.2068742812, 0.4354175925, -0.0902821869, -0.2419115901, 0.0280014407, 0.2125843763, 0.0150207393, 0.5192965269, -0.2999188602, 0.0126514919, 0.0953990296, 0.0301375054, 0.0329525173, 0.3783242702, 0.2253107131, -0.3717054725, -0.3008452356, -0.2156759501, -0.5639154315, -0.0835939199, 0.368894428, 0.2425530255, -0.2383334041, 0.097968474, 0.0944173932, 0.1586004198, 0.0331654884, -0.1553777605, 0.1296761036, 0.3835383058, 0.1775436401, -0.2048421353, -0.0034464113, 0.3353903592, -0.1584968269, -0.1920845807, 0.1638852656, 0.0912281498, -0.0265971608, 0.1800369918, 0.1969439685, -0.199673295, 0.4232631922, 0.5758478642, 0.0331581011, 0.0936799794, -0.2577309608, 0.3264777064, 0.4559472501, -0.0390743427, -0.1805488467, -0.108318001, 0.1445313692, 0.1627390683, -0.4258211255, 0.3830114603, -0.2226231098, -0.13338539, 0.0844243243, 0.0172236934, -0.5296297073, 0.0026824027, 0.1237281263, 0.1853370816, 0.1231874302, 0.4071827829, -0.0208552703, 0.3346153796, -0.1735916436, -0.1036755741, 0.3725513816, -0.1448468268, -0.2540253401, -0.1261510551, 0.354965508, -0.0646670237, -0.0190831684, -0.393191129, 0.1495350897, 0.4303221107, -0.2442899942, -0.0405436493, 0.5292308331, -0.1951892376, 0.1532833874, 0.100050658, 0.5462210774, 0.1079477146, -0.3573215306, -0.0870736018, -0.2885379493 ]
https://github.com/huggingface/datasets/issues/1992
`datasets.map` multi processing much slower than single processing
Hi @hwijeen, you might want to look at issues #1796 and #1949. I think it could be something related to the I/O operations being performed.
Hi, thank you for the great library. I've been using datasets to pretrain language models, and it often involves datasets as large as ~70G. My data preparation step is roughly two steps: `load_dataset` which splits corpora into a table of sentences, and `map` converts a sentence into a list of integers, using a tokenizer. I noticed that `map` function with `num_proc=mp.cpu_count() //2` takes more than 20 hours to finish the job where as `num_proc=1` gets the job done in about 5 hours. The machine I used has 40 cores, with 126G of RAM. There were no other jobs when `map` function was running. What could be the reason? I would be happy to provide information necessary to spot the reason. p.s. I was experiencing the imbalance issue mentioned in [here](https://github.com/huggingface/datasets/issues/610#issuecomment-705177036) when I was using multi processing. p.s.2 When I run `map` with `num_proc=1`, I see one tqdm bar but all the cores are working. When `num_proc=20`, only 20 cores work. ![Screen Shot 2021-03-05 at 11 04 59](https://user-images.githubusercontent.com/29157715/110056895-ef6cf000-7da2-11eb-8307-6698e9fb1ad4.png)
25
`datasets.map` multi processing much slower than single processing Hi, thank you for the great library. I've been using datasets to pretrain language models, and it often involves datasets as large as ~70G. My data preparation step is roughly two steps: `load_dataset` which splits corpora into a table of sentences, and `map` converts a sentence into a list of integers, using a tokenizer. I noticed that `map` function with `num_proc=mp.cpu_count() //2` takes more than 20 hours to finish the job where as `num_proc=1` gets the job done in about 5 hours. The machine I used has 40 cores, with 126G of RAM. There were no other jobs when `map` function was running. What could be the reason? I would be happy to provide information necessary to spot the reason. p.s. I was experiencing the imbalance issue mentioned in [here](https://github.com/huggingface/datasets/issues/610#issuecomment-705177036) when I was using multi processing. p.s.2 When I run `map` with `num_proc=1`, I see one tqdm bar but all the cores are working. When `num_proc=20`, only 20 cores work. ![Screen Shot 2021-03-05 at 11 04 59](https://user-images.githubusercontent.com/29157715/110056895-ef6cf000-7da2-11eb-8307-6698e9fb1ad4.png) Hi @hwijeen, you might want to look at issues #1796 and #1949. I think it could be something related to the I/O operations being performed.
[ -0.4131571651, -0.3192062974, -0.0879166424, 0.3574211299, -0.1027500778, 0.0203936398, 0.3424055576, 0.1157953888, 0.057924673, -0.0040248632, 0.0656988174, 0.4142295122, 0.1868180633, 0.2118217349, -0.1675524414, 0.0080593918, 0.1905094683, -0.0455831066, 0.1740603149, -0.0060442835, -0.1642415524, 0.1392724067, -0.4981357455, -0.0023561306, -0.4168527722, -0.1493239552, 0.1035205424, 0.1356756389, -0.1574591994, -0.2285339683, -0.2626930773, 0.1599623859, -0.0759371519, 0.5732400417, -0.0001228117, -0.1976779401, 0.0128012998, 0.2621524036, 0.0754682794, 0.0612592176, -0.1325606108, -0.2765826583, -0.0494401492, -0.1092956215, 0.1161134094, 0.2015768737, -0.0607613772, -0.4477421641, 0.0259234682, 0.0857625157, 0.0549794212, 0.3612494767, -0.3099787235, 0.0393089578, -0.377681911, 0.168724522, -0.1538438797, 0.0505479239, 0.2789548934, -0.180955559, -0.1093195975, 0.3070887327, -0.071271196, 0.2966091037, 0.0082049612, -0.082981661, 0.0533870049, -0.4509487152, 0.1897550076, 0.3490734398, 0.0353323407, -0.0632031709, -0.1647020578, -0.2374165803, -0.3268582523, -0.1349695027, 0.2022649944, 0.1401260793, 0.1821073592, -0.0051690843, -0.5538260937, 0.1473839581, 0.3451812267, -0.0721949488, -0.1189690456, 0.011225095, 0.12752828, 0.3288132846, 0.3404774368, 0.1203623563, -0.0500155501, -0.2203397602, 0.3193725348, 0.2178268284, -0.7854888439, -0.0352135375, 0.2125980854, -0.1020864025, -0.0854895562, -0.1859985739, -0.1023484319, 0.3468084335, -0.330537498, 0.095494777, 0.3070701957, -0.0764187798, 0.0073990691, 0.1116778702, -0.0347224586, -0.1712292731, -0.3314741254, 0.0631495714, 0.0929084197, -0.3245918751, -0.0648109019, 0.1292849779, -0.3052828312, -0.0903894901, -0.1549667865, 0.0295763612, -0.2378288507, -0.102342248, 0.1326781362, 0.0770514458, -0.0129047483, 0.7939466834, -0.2598310709, 0.1157046482, -0.472381413, -0.5671405196, -0.0263562277, -0.1367468685, -0.3721125126, 0.2238743901, 0.1279513538, -0.0222430415, 0.1407321393, 0.3258404136, 0.0503653847, -0.2243561447, 0.3272613883, -0.5305345058, 0.1972395927, 0.0816775709, 0.1585822254, 0.5495990515, -0.114408806, 0.3264811933, -0.1295258105, 0.2438610494, -0.5274053812, -0.2451352775, 0.1805239767, -0.0436880514, 0.1031670645, 0.106412895, -0.4637281895, 0.4980571568, 0.3198492825, -0.2184123993, -0.1693587899, -0.1991793215, -0.6358717084, -0.1516772062, -0.0613875687, 0.1673318148, -0.3309351206, 0.2380711585, -0.3223771155, 0.1468189657, 0.4350243509, 0.6122484207, -0.1885802448, 0.3844539523, 0.0008836463, 0.198412478, -0.0064409673, -0.0765071362, -0.3745233417, 0.5169084668, -0.1592250019, -0.0011446029, -0.1906943023, 0.1531789005, 0.240319103, -0.0547439121, 0.3251420259, 0.2936649024, 0.0304950867, 0.3874753416, -0.2230067998, -0.1107542291, 0.1460555196, 0.0392802507, -0.084182471, -0.091257982, -0.0136798508, -0.2940005064, 0.3163225651, -0.0127957035, 0.0252217576, 0.4302801788, -0.3920024335, -0.1519800872, -0.1472372115, -0.2302906215, -0.0732989162, 0.3663208783, -0.0278734341, 0.0501868203, 0.4308094978, 0.0351640582, 0.1925525665, 0.1138258651, -0.0405154228, -0.0642078444, -0.1118851081, -0.0805780962, -0.154322058, -0.1789608598, -0.009086974, 0.4500132799, 0.1817547083, -0.1041792259, -0.0312028453, -0.1325508058, 0.0812655687, 0.0562892742, -0.1986997128, -0.0696265921, 0.0854892284, 0.0502702035, -0.0791461542, 0.2618640363, 0.4632996917, -0.0539055727, 0.170970723, 0.1155771911, 0.372867167, -0.0540260524, 0.0484470874, -0.1458727717, 0.1021564007, -0.2390236855, -0.023904521, 0.3120741248, 0.0839071572, 0.4422302842, 0.0316378474, -0.1361157149, -0.0101460889, 0.2965461612, 0.1542537361, 0.0568742603, 0.3458302915, 0.3308041096, 0.2301613092, 0.3350547254, -0.1322718263, 0.3230474293, 0.6291485429, 0.0487079769, -0.3480745256, 0.0437152237, -0.1839312315, -0.369540453, 0.0226525757, -0.1412674785, 0.5598791838, 0.0200402513, 0.2318469882, -0.0362141691, -0.1006810442, -0.0587042943, -0.0230611488, 0.1029912159, 0.2264126986, -0.1050924435, 0.2959204316, -0.0159354676, -0.0601113401, -0.2421921343, 0.3389689326, 0.2527017295, -0.2600573599, 0.1031632051, -0.292693615, 0.1555965245, 0.1763422042, -0.1003411114, -0.2901908755, -0.2128410935, -0.1558172405, -0.0844461247, 0.2200264186, -0.0549233742, 0.2770822644, -0.1361937672, -0.1055421978, -0.0475390218, 0.0010068715, -0.1382568926, -0.1498215646, -0.0109747313, 0.286336422, 0.2263470888, 0.0418869853, -0.0677932948, -0.2715707421, -0.0647875965, -0.2076480091, -0.1236512512, 0.1410821527, 0.0555920377, -0.1938759685, -0.0573871359, -0.2245588601, 0.1536775529, 0.1814560592, -0.2490200251, -0.1899707615, 0.051632911, -0.1066287532, -0.2332419753, 0.0450814813, -0.1557426155, -0.087059319, -0.1077111363, 0.2935893536, -0.1721995473, 0.3419694006, -0.2260833532, 0.0634781644, -0.079782173, -0.1079571098, 0.0158773772, -0.3331028819, -0.3667621613, -0.0119899828, -0.0184050389, -0.1921170205, -0.134492889, 0.089742668, 0.1568117738, 0.1717813611, -0.1599655747, 0.1699117124, -0.390740633, 0.1194336638, 0.0705732405, 0.0674811229, 0.4676004648, 0.0276586115, 0.0626558214, 0.0156415626, -0.4355053306, -0.0635609478, 0.3192826211, 0.0368367881, 0.0172179043, 0.3445577025, 0.0313460156, 0.6403149962, 0.4947385788, -0.164586395, 0.2020889521, 0.0096629485, -0.1716499329, -0.4027164876, -0.2180110514, 0.1240070388, -0.2614223957, 0.1684180349, 0.4269156456, 0.003642261, -0.4294799566, -0.0166894197, 0.2439737618, -0.244527936, -0.0141030923, 0.1481057107, -0.1232680678, 0.196644932, 0.2461677194, -0.1976925433, -0.3519732654, -0.0353396833, -0.0661898777, -0.1060340106, -0.098615095, -0.2421046197, -0.4882793427, -0.0338981785, -0.3716014922, 0.2611172497, 0.0420060642, 0.2969750166, -0.0439388007, 0.1057708263, 0.3316416144, 0.0295935832, 0.5544953346, -0.4164329767, -0.1365626752, 0.131018877, -0.3980675638, -0.2873516977, 0.0707291067, -0.170730114, 0.2828142941, 0.588453114, 0.5143987536, -0.0563282371, -0.2053915113, 0.0086566582, 0.1212090999, 0.1553757042, -0.2661052048, -0.3546745479, 0.1345767528, -0.1294955611, 0.1268245131, -0.0423870608, 0.1320045143, 0.1232841164, -0.1420476288, 0.0194365848, 0.1154943258, 0.2381988317, 0.1704019606, 0.1206153035, 0.0930255055, 0.3004202843, 0.2673071623, -0.072371535, 0.062234737, 0.3293827772, -0.1249065399, -0.0998567417, 0.2132406533, 0.0241131149, 0.3280752301, 0.3196839392, 0.1498576254, 0.0306499861, 0.1590188742, 0.2774956822, -0.2244988084, 0.2721706927, 0.396022886, 0.3916813433, -0.4936522841, -0.5062222481, -0.0205671452, 0.4649198651, -0.1460791528, 0.2714831531, -0.7679567337, 0.0800637007, 0.0503081605, 0.0999303758, 0.7852851152, -0.4731322229, 0.0379718393, -0.311959058, 0.2154319882, -0.0481759906, -0.5948626399, 0.1334771067, -0.1847290099, -0.3472980559, 0.027562961, -0.10907612, 0.2031949908, 0.5102789998, 0.1583228707, 0.2661415339, 0.3404273093, 0.0784621611, -0.0262436867, 0.3504177928, 0.5003805757, -0.3187172115, 0.1645901948, 0.0327547565, 0.1939358115, -0.2070086896, 0.0298593454, 0.0704519823, -0.0611509085, 0.0293345749, -0.318343848, -0.2279881686, -0.3977982402, 0.196371153, -0.0764121562, 0.28263551, 0.3900786042, 0.2677479386, -0.0713077188, 0.0901602581, 0.0085477699, 0.0534890853, 0.26379475, 0.233420223, 0.3824103773, -0.4639772177, -0.0287041645, -0.1009590551, -0.2506048381, -0.2602866292, -0.1532425284, -0.1185088903, -0.1225386858, 0.4491189718, 0.1657285839, 0.1570970416, -0.2264567167, 0.2328821719, 0.079041481, -0.109907113, -0.0125142904, 0.0914817303, 0.0223497339, 0.6711219549, -0.2834817767, -0.5138156414, -0.0342975557, 0.3942316771, 0.2499610186, -0.0952271223, 0.0476648919, 0.2129704654, -0.2575141191, -0.1355023682, 0.153529793, -0.1033582985, -0.0991860703, 0.1059219465, 0.020850163, -0.2245253921, 0.2546941638, -0.1348882914, -0.1512794048, -0.053231094, -0.1917675734, -0.2759401202, -0.2528981864, -0.1800830364, -0.3516554236, -0.2163471282, 0.2313813567, 0.024728138, 0.1297438145, 0.4729886651, -0.1329038888, 0.0583194345, 0.0901112109, 0.2110867798, -0.0189657472, -0.2514665127, 0.0779229105, -0.0258276798, -0.0658426657, 0.0795581043, -0.0867980868, -0.1474019885, -0.0117546916, 0.1851728708, -0.022485815, -0.2631608546, 0.3296194971, -0.1456147432, -0.2043026388, -0.4302747846, -0.0622508042, 0.0521584749, -0.0218548328, -0.104260087, 0.279108882, -0.2983769774, -0.2712827325, 0.442723006, -0.2003640234, -0.0969036669, -0.0010560229, 0.2870849371, 0.4510102868, -0.0946663991, -0.100541696, 0.0290762223, 0.264441222, 0.069205001, 0.1374589652, -0.0965789557, 0.1816247404, 0.2666926384, 0.3389314115, 0.1272503436, 0.1346456707, -0.253164947, 0.0023171678, 0.0016432946, -0.2403116226, -0.1764900833, 0.5670012832, 0.0328632295, 0.1380589455, 0.0516137704, 0.3361947834, 0.2363512069, -0.0093842745, -0.1060243025, 0.0810824633, -0.2906021178, 0.0611943379, 0.1536387652, 0.2585487962, 0.2591071129, 0.4466492832, 0.1197477654, -0.0015335716, 0.4460706711, 0.2742267251, 0.2714106441, 0.4872277677, 0.2653104067, -0.0395578817, -0.3783239722, 0.2096999586, 0.5037139058, -0.3329574168, -0.0574918389, -0.0578086823, 0.2234262973, -0.2494556755, -0.3842218518, -0.2609777451, 0.3868536651, -0.1655794084, -0.2582350969, 0.2212102115, -0.0687719285, -0.0023645461, 0.1776569635, -0.2204600126, 0.1424397826, 0.7928743958, 0.1301531345, 0.0441229232, -0.389139235, -0.3411384225, -0.1499899924, 0.1697580367, -0.1381986886, 0.1828525364, -0.3203031719, -0.0100656785, -0.0007449985, 0.3008364141, 0.376493752, 0.2772649527, -0.1428852379, 0.1006295085, -0.0221896805, 0.161260426, 0.0073999986, 0.1828809679, 0.0322886892, 0.1748712957, 0.1654180139, -0.1053680703, -0.0901593417, -0.4533829093, 0.0302182753, 0.353749305, -0.1493938863, 0.1578142643, -0.3038738668, -0.1554051787, 0.0109654367, 0.2941297293, -0.2735162973, -0.0898392051, 0.495356977, -0.4910947084, 0.0730641112, -0.151382491, 0.0253127776, -0.0798001587, 0.5650862455, 0.3381135762, 0.0105564874, -0.4115415812, -0.1151142716, -0.5973333716, -0.0711947829, -0.3206051588, 0.2698096633, 0.0732987225, 0.2909343541, 0.0744076893, 0.1212650985, 0.4038817883, -0.0933896303, -0.083543472, 0.3543795347, -0.3133423328, 0.4769580662, -0.2434431463, -0.1946041733, -0.0849101618, -0.4186906219, 0.3781761527, 0.075360164, -0.1486227661, -0.1737608463, -0.002793327, 0.1544393003, 0.1478453875, 0.1885035187, 0.3548047245, 0.3634970486, 0.0412942097, 0.0078073964, -0.1190250814, 0.1936975718, -0.0414554626, 0.3311108053, -0.0583354533, 0.0689005107, -0.3055814803, 0.1666468531, 0.1130412817, -0.1093772501, 0.0038680732, -0.2370979637, -0.3271936178, -0.0505088419, -0.0389763862, 0.3171598911, 0.0952735692, 0.4033240378, 0.1399895549, -0.093445465, -0.1850917339, -0.0801381245, -0.0288048089, -0.2668254077, -0.2905770838, -0.4305557013, 0.2277179956, -0.2528905272, 0.1613216549, -0.2331477702, -0.3237472177, 0.3040857315, -0.0249335375, -0.3681617081, 0.3654676974, -0.3870630264, -0.0856689364, -0.1473059952, 0.0290639102, -0.0981448591, -0.4448872209, 0.191325441, -0.1197811291 ]
https://github.com/huggingface/datasets/issues/1992
`datasets.map` multi processing much slower than single processing
I see that many people are experiencing the same issue. Is this problem considered an "official" bug that is worth a closer look? @lhoestq
Hi, thank you for the great library. I've been using datasets to pretrain language models, and it often involves datasets as large as ~70G. My data preparation step is roughly two steps: `load_dataset` which splits corpora into a table of sentences, and `map` converts a sentence into a list of integers, using a tokenizer. I noticed that `map` function with `num_proc=mp.cpu_count() //2` takes more than 20 hours to finish the job where as `num_proc=1` gets the job done in about 5 hours. The machine I used has 40 cores, with 126G of RAM. There were no other jobs when `map` function was running. What could be the reason? I would be happy to provide information necessary to spot the reason. p.s. I was experiencing the imbalance issue mentioned in [here](https://github.com/huggingface/datasets/issues/610#issuecomment-705177036) when I was using multi processing. p.s.2 When I run `map` with `num_proc=1`, I see one tqdm bar but all the cores are working. When `num_proc=20`, only 20 cores work. ![Screen Shot 2021-03-05 at 11 04 59](https://user-images.githubusercontent.com/29157715/110056895-ef6cf000-7da2-11eb-8307-6698e9fb1ad4.png)
24
`datasets.map` multi processing much slower than single processing Hi, thank you for the great library. I've been using datasets to pretrain language models, and it often involves datasets as large as ~70G. My data preparation step is roughly two steps: `load_dataset` which splits corpora into a table of sentences, and `map` converts a sentence into a list of integers, using a tokenizer. I noticed that `map` function with `num_proc=mp.cpu_count() //2` takes more than 20 hours to finish the job where as `num_proc=1` gets the job done in about 5 hours. The machine I used has 40 cores, with 126G of RAM. There were no other jobs when `map` function was running. What could be the reason? I would be happy to provide information necessary to spot the reason. p.s. I was experiencing the imbalance issue mentioned in [here](https://github.com/huggingface/datasets/issues/610#issuecomment-705177036) when I was using multi processing. p.s.2 When I run `map` with `num_proc=1`, I see one tqdm bar but all the cores are working. When `num_proc=20`, only 20 cores work. ![Screen Shot 2021-03-05 at 11 04 59](https://user-images.githubusercontent.com/29157715/110056895-ef6cf000-7da2-11eb-8307-6698e9fb1ad4.png) I see that many people are experiencing the same issue. Is this problem considered an "official" bug that is worth a closer look? @lhoestq
[ -0.3866337836, -0.2725810111, -0.0787934437, 0.3493689895, -0.106092453, -0.005166024, 0.3705374002, 0.1268499494, 0.0547804534, -0.0164257511, 0.0762919709, 0.4323450029, 0.1645939648, 0.1775636673, -0.1425017267, 0.0690407827, 0.2205798626, -0.0627332628, 0.1990937293, -0.0131206661, -0.1687244177, 0.1928426176, -0.496389091, -0.0021657422, -0.4106547832, -0.12482135, 0.1040453166, 0.1048685163, -0.1357279271, -0.2046503425, -0.2140672207, 0.137012139, -0.1355688274, 0.5738759637, -0.0001229709, -0.1984732151, 0.0549879894, 0.2633068562, 0.076416105, 0.0830867141, -0.1329538226, -0.2601751089, -0.0424127281, -0.0829149708, 0.1244728118, 0.2161739022, -0.058563903, -0.4646040797, -0.0096627846, 0.0843351781, 0.0631441623, 0.3764817715, -0.2817440033, 0.0143859796, -0.3346053362, 0.1581185907, -0.1740892828, 0.050787013, 0.2852863669, -0.1864521503, -0.1175598055, 0.3048102856, -0.0474990755, 0.3209555745, 0.0011858032, -0.0322240964, 0.0270201806, -0.4442288876, 0.1620768458, 0.3706927598, 0.0055628866, -0.0727395415, -0.1854885519, -0.2690021992, -0.3177762628, -0.1561565995, 0.2311841547, 0.1288770437, 0.1493098587, -0.013225019, -0.5340881944, 0.137452513, 0.386660248, -0.0713503584, -0.1523337662, 0.0201119501, 0.1103035212, 0.3094666004, 0.3142452836, 0.122839734, -0.0455448031, -0.1715076864, 0.2885455191, 0.182954669, -0.7955271006, -0.0417101197, 0.248928979, -0.112960279, -0.0615525544, -0.181465432, -0.0985894352, 0.3503522277, -0.3340125084, 0.1081217676, 0.3353155255, -0.0971494764, 0.0022061802, 0.0807372183, 0.0160700809, -0.1644108146, -0.3038092554, 0.1016724408, 0.1055111811, -0.3424445987, -0.071261555, 0.1095164865, -0.2824556231, -0.0873279795, -0.1478877068, 0.0589936636, -0.215959996, -0.0632727221, 0.1097479388, 0.0793706179, -0.019251179, 0.804156661, -0.2690220177, 0.0870173424, -0.4744414091, -0.5820884705, -0.0185750127, -0.1468968391, -0.3591330945, 0.196796298, 0.1042193547, -0.0287772454, 0.1002883241, 0.3114525676, 0.0865713358, -0.2278883457, 0.3016509116, -0.4975840151, 0.2251563668, 0.1189088523, 0.1471591145, 0.5624080896, -0.12077564, 0.3020246029, -0.1247041598, 0.2404901981, -0.538642168, -0.226261884, 0.1390108615, -0.046970427, 0.0906338543, 0.115041703, -0.4588498175, 0.4970785975, 0.3395268321, -0.2471322119, -0.1647283733, -0.1944391131, -0.6674044132, -0.1534181833, -0.0376289636, 0.1841218323, -0.3353410363, 0.2206212878, -0.3466388583, 0.1560324728, 0.4349000752, 0.6155385971, -0.1899303794, 0.357547313, -0.0506500714, 0.2021542341, -0.0163857415, -0.0397709273, -0.3898435533, 0.5365142822, -0.1695720553, 0.0112688616, -0.2257875949, 0.1606896967, 0.2166392654, -0.060812477, 0.3597382307, 0.2520617843, 0.0037232898, 0.4067166448, -0.2268608809, -0.1484754086, 0.1806096733, 0.0356507599, -0.0509556048, -0.1092446521, -0.0207677186, -0.2912407517, 0.3273311555, 0.0346138403, 0.019052159, 0.4201274514, -0.3767906129, -0.1781181693, -0.1492091119, -0.2470975965, -0.0693645403, 0.3475505114, -0.0082945004, 0.0345357507, 0.4530821443, 0.0276285037, 0.2079563141, 0.1241190434, -0.0410282128, -0.0788132623, -0.1196678206, -0.0874335617, -0.1914295256, -0.1583942771, -0.0411383808, 0.4514873028, 0.2057487965, -0.1229942665, -0.0540044494, -0.1302855313, 0.09773615, 0.0768279731, -0.199016124, -0.082281366, 0.0642760545, 0.0279886611, -0.0868978947, 0.2680096626, 0.4869925678, -0.0700860471, 0.1350846887, 0.0879850537, 0.4050618708, -0.0231112912, -0.0172423571, -0.111520417, 0.1151869372, -0.2409276366, -0.0333326124, 0.3163408041, 0.1158863902, 0.3995568752, 0.0307295397, -0.1051462442, 0.0267669335, 0.2851706147, 0.1078847423, 0.0460051075, 0.3108842671, 0.31362468, 0.2151770294, 0.3205102682, -0.1061690152, 0.3456173837, 0.6657004952, 0.083314836, -0.3104916513, 0.0496396162, -0.1518194675, -0.3581570983, 0.0141461138, -0.1226073802, 0.5757824183, 0.0022506714, 0.2472880781, -0.0382554829, -0.1148136109, -0.0809829235, -0.0141079053, 0.108009845, 0.2107909918, -0.0710326508, 0.3324418664, -0.0037923343, -0.1000336707, -0.2148349434, 0.3497828245, 0.2076939642, -0.283382535, 0.1074737832, -0.3034693301, 0.202235654, 0.159931317, -0.103608042, -0.3013640642, -0.2368096709, -0.1221834868, -0.0886195824, 0.1853170395, -0.0142413881, 0.2501136065, -0.0963023901, -0.115376085, -0.0365741551, 0.0350121781, -0.1128343642, -0.1560258567, -0.0114224888, 0.2804486454, 0.1901463568, 0.0729658231, -0.0563281737, -0.2777391672, -0.1246765032, -0.2436752915, -0.0937550217, 0.1492809057, 0.0766110271, -0.1636894196, -0.1074149236, -0.2078328133, 0.1690098047, 0.1589678079, -0.3020036817, -0.2018781751, 0.0461155549, -0.118548885, -0.2314856797, -0.0106226876, -0.1588874608, -0.0949643552, -0.1099473387, 0.2879396677, -0.1672467142, 0.319992125, -0.1932984143, 0.052721262, -0.088968046, -0.1160117537, -0.0425560214, -0.3604642153, -0.345747292, -0.0074075572, -0.0419458821, -0.2252168208, -0.1405960321, 0.0771877766, 0.1546160132, 0.1581604779, -0.1823361516, 0.1749548018, -0.3803263605, 0.139709577, 0.086909622, 0.022016244, 0.4934560061, -0.0037510879, 0.0688596293, 0.0072937235, -0.4403317869, -0.062973544, 0.2977600098, 0.0230551474, 0.0195935704, 0.3518145084, 0.0513638109, 0.6315267086, 0.4889097214, -0.1507582515, 0.1987279803, -0.0477830879, -0.1115794033, -0.399653405, -0.2119541168, 0.1117120907, -0.282622993, 0.1254274249, 0.4168576896, -0.0117395911, -0.4363338649, -0.0093133003, 0.2886066735, -0.2262658179, -0.0335348584, 0.1407322735, -0.1364983022, 0.1556613445, 0.2492789924, -0.1519770324, -0.3358055353, -0.0443014614, -0.0655482635, -0.1016884297, -0.1039938182, -0.2754547596, -0.4782882333, -0.011619553, -0.377999872, 0.230085656, 0.0478084944, 0.3498311639, -0.0442245156, 0.0869573653, 0.3212327063, -0.0168991089, 0.5688459873, -0.3910735846, -0.1088192463, 0.1516806185, -0.3594422638, -0.2883341312, 0.0306876972, -0.1507095844, 0.2883813977, 0.6098178029, 0.5065737963, -0.0416913927, -0.1537957639, 0.0076691806, 0.097675398, 0.1281901151, -0.2506240606, -0.3729522824, 0.1217523217, -0.0959059596, 0.1306330115, 0.014319025, 0.1115723252, 0.1250596195, -0.1616070569, 0.0231326539, 0.0852767825, 0.2221220285, 0.1544778347, 0.1185792163, 0.0978062004, 0.3397477865, 0.2531826794, -0.0906121954, 0.0212654155, 0.345221132, -0.1188253909, -0.1019112766, 0.2752822936, 0.0147783831, 0.3062773943, 0.3589974046, 0.1124794632, 0.0289850347, 0.1859196126, 0.2604251504, -0.2158244699, 0.24470523, 0.4137662053, 0.3523689508, -0.4705946743, -0.4870200455, -0.0180303939, 0.4810304046, -0.1415035129, 0.3186242282, -0.7869359851, 0.0805433765, 0.030883763, 0.0685203746, 0.7341235876, -0.4244517684, 0.0844888538, -0.2732587457, 0.2042400539, -0.045379743, -0.5877484679, 0.1424937546, -0.1993722767, -0.3385686874, 0.0265436321, -0.1084178388, 0.1729335636, 0.4824618697, 0.1901154816, 0.2567999661, 0.3360644579, 0.150034368, -0.0127168931, 0.3075154424, 0.4955804944, -0.3149344623, 0.1551856399, 0.029793188, 0.2141152024, -0.191116184, 0.035000056, 0.0768581927, -0.0452110097, -0.005710803, -0.3479855061, -0.1982783675, -0.3737334609, 0.2166280746, -0.0152997077, 0.2827970088, 0.3574745953, 0.2437444329, -0.0598135889, 0.0877161771, -0.0267880596, 0.0855959356, 0.2774120569, 0.2729421854, 0.3718233705, -0.4484908283, -0.0329684801, -0.0818326324, -0.1895798147, -0.2662759721, -0.1657214463, -0.138387382, -0.1347089857, 0.510538578, 0.1755462885, 0.1854100525, -0.1983136982, 0.2382969558, 0.1368564665, -0.1418379843, -0.0154677574, 0.0910690725, 0.036725834, 0.6409506202, -0.3012275994, -0.4983734488, -0.0441619083, 0.4551080465, 0.2364104092, -0.0826210752, 0.0378694646, 0.2227642238, -0.2593607306, -0.1275499165, 0.1750162393, -0.1204335466, -0.1331342608, 0.1422904283, -0.0169946328, -0.2429299653, 0.239728272, -0.1239749193, -0.1485929787, -0.0695605129, -0.1981937587, -0.274543047, -0.2284979522, -0.1922997087, -0.3533959985, -0.2301904559, 0.2255143374, 0.0270399638, 0.1312208921, 0.4111306071, -0.1242666394, 0.063413538, 0.1151678041, 0.1511101276, -0.0477395952, -0.2192234248, 0.0848913565, -0.0454672165, -0.0886407197, 0.1240958869, -0.0863493383, -0.1349319518, -0.0359487161, 0.1907496154, -0.0293508656, -0.2500731647, 0.3638284802, -0.1229361445, -0.2473059893, -0.412450701, -0.0434978679, 0.0781401545, -0.0084608123, -0.1043873504, 0.2735492587, -0.3038493991, -0.2333779633, 0.4588100314, -0.1831391752, -0.0493289568, -0.0164842978, 0.2902961671, 0.4413703084, -0.0644908622, -0.1011530459, 0.0276400764, 0.2080297321, 0.0845933408, 0.1611508429, -0.1326498985, 0.1946246326, 0.2788701057, 0.3437084556, 0.1637820154, 0.073566854, -0.2542279661, -0.0023204386, -0.0041939034, -0.257489562, -0.2087838054, 0.5838804841, 0.0964359194, 0.1197781265, 0.0411367677, 0.3612360954, 0.1861499548, -0.0093719475, -0.0711821318, 0.0869956017, -0.3279544115, 0.0698115304, 0.1804554164, 0.2434648126, 0.2993234694, 0.4279682636, 0.0917912573, 0.0042312071, 0.4806728661, 0.2743299603, 0.2556971908, 0.5029739738, 0.2437453866, -0.0248371996, -0.3844454288, 0.2235190868, 0.4877792001, -0.3467883468, -0.0386703983, -0.0356298015, 0.2398195416, -0.2759622633, -0.3680637479, -0.3111705482, 0.3639385998, -0.1686622649, -0.2518335879, 0.2508211732, -0.053662695, 0.0110086203, 0.188388437, -0.2071026564, 0.1562432498, 0.8072531223, 0.1221694499, 0.0070220046, -0.3940956891, -0.3178667724, -0.1933318079, 0.1779831648, -0.1600325108, 0.183205992, -0.3481116295, -0.0136614889, -0.0037104296, 0.3205564022, 0.3718772531, 0.2885127664, -0.1304168999, 0.0477965027, -0.0299578551, 0.1783383489, -0.0260135978, 0.218933925, 0.0283293873, 0.1776462793, 0.1494836062, -0.1087213755, -0.0802766159, -0.3959599435, 0.0510727577, 0.392252177, -0.1891975105, 0.1715064943, -0.3878601789, -0.1462850273, 0.0034631789, 0.2993423343, -0.2532049417, -0.1017916054, 0.5167979002, -0.4817174077, 0.0881936625, -0.1758195907, 0.0260638297, -0.0718232989, 0.5631071925, 0.2815417051, -0.0157232713, -0.3569284678, -0.095378086, -0.6198188066, -0.0195463374, -0.3267101645, 0.3234164715, 0.0649850667, 0.3096296191, 0.0509842336, 0.1159684956, 0.3893094659, -0.1246111989, -0.0964444652, 0.3271768689, -0.3246979117, 0.4432677627, -0.2233606875, -0.1983083487, -0.0727175549, -0.4446123242, 0.3880726695, 0.0543563887, -0.1546517015, -0.1481699646, -0.0597662479, 0.1554168016, 0.1724304557, 0.1892538667, 0.3503006697, 0.3331795633, 0.0380784199, -0.0212676562, -0.1654649228, 0.155339092, -0.0420160815, 0.3519108593, -0.0852081999, 0.0682388544, -0.2896389365, 0.1777040511, 0.0935720801, -0.1146297157, 0.0163655281, -0.2013130784, -0.3573482931, -0.027392827, -0.0389282182, 0.3227160275, 0.0799016729, 0.3904701769, 0.0798128992, -0.0845012367, -0.1620466113, -0.1161690354, -0.0229114592, -0.3266755044, -0.2992131412, -0.4464144707, 0.247254923, -0.2571526468, 0.1094824299, -0.2349527627, -0.3330853581, 0.3025573194, 0.0018810965, -0.3634393811, 0.3403202891, -0.426315248, -0.0976774916, -0.1567452252, 0.0731857568, -0.0885367915, -0.4450537264, 0.2454164028, -0.1163512319 ]
https://github.com/huggingface/datasets/issues/1992
`datasets.map` multi processing much slower than single processing
Yes this is an official bug. On my side I haven't managed to reproduce it but @theo-m has. We'll investigate this !
Hi, thank you for the great library. I've been using datasets to pretrain language models, and it often involves datasets as large as ~70G. My data preparation step is roughly two steps: `load_dataset` which splits corpora into a table of sentences, and `map` converts a sentence into a list of integers, using a tokenizer. I noticed that `map` function with `num_proc=mp.cpu_count() //2` takes more than 20 hours to finish the job where as `num_proc=1` gets the job done in about 5 hours. The machine I used has 40 cores, with 126G of RAM. There were no other jobs when `map` function was running. What could be the reason? I would be happy to provide information necessary to spot the reason. p.s. I was experiencing the imbalance issue mentioned in [here](https://github.com/huggingface/datasets/issues/610#issuecomment-705177036) when I was using multi processing. p.s.2 When I run `map` with `num_proc=1`, I see one tqdm bar but all the cores are working. When `num_proc=20`, only 20 cores work. ![Screen Shot 2021-03-05 at 11 04 59](https://user-images.githubusercontent.com/29157715/110056895-ef6cf000-7da2-11eb-8307-6698e9fb1ad4.png)
22
`datasets.map` multi processing much slower than single processing Hi, thank you for the great library. I've been using datasets to pretrain language models, and it often involves datasets as large as ~70G. My data preparation step is roughly two steps: `load_dataset` which splits corpora into a table of sentences, and `map` converts a sentence into a list of integers, using a tokenizer. I noticed that `map` function with `num_proc=mp.cpu_count() //2` takes more than 20 hours to finish the job where as `num_proc=1` gets the job done in about 5 hours. The machine I used has 40 cores, with 126G of RAM. There were no other jobs when `map` function was running. What could be the reason? I would be happy to provide information necessary to spot the reason. p.s. I was experiencing the imbalance issue mentioned in [here](https://github.com/huggingface/datasets/issues/610#issuecomment-705177036) when I was using multi processing. p.s.2 When I run `map` with `num_proc=1`, I see one tqdm bar but all the cores are working. When `num_proc=20`, only 20 cores work. ![Screen Shot 2021-03-05 at 11 04 59](https://user-images.githubusercontent.com/29157715/110056895-ef6cf000-7da2-11eb-8307-6698e9fb1ad4.png) Yes this is an official bug. On my side I haven't managed to reproduce it but @theo-m has. We'll investigate this !
[ -0.4096486568, -0.3040939569, -0.084701322, 0.3398915231, -0.0897003338, 0.0127340406, 0.3527614176, 0.1181459725, 0.058212325, 0.0094828159, 0.0727028027, 0.4454628527, 0.1630732119, 0.189329654, -0.140084818, 0.030221561, 0.2145638019, -0.0554910861, 0.1930125356, -0.009090282, -0.1625764817, 0.155602172, -0.5023615956, 0.0061126649, -0.4096403122, -0.1224158034, 0.1134263575, 0.1184024811, -0.1367547214, -0.2299794555, -0.235691309, 0.1276423931, -0.0973550528, 0.5718790889, -0.000123495, -0.188706398, 0.0392465405, 0.275313586, 0.0935693234, 0.0743589997, -0.1399449706, -0.2675495148, -0.0483151563, -0.0967940837, 0.1221139431, 0.2130558044, -0.067520462, -0.4581290781, -0.0038366839, 0.086987406, 0.0546000935, 0.369735837, -0.3081156015, 0.0285560302, -0.3477620482, 0.1482300013, -0.1653358042, 0.0483657718, 0.2727538347, -0.1806851327, -0.1124009043, 0.3173139095, -0.0748663098, 0.3036650717, -0.0166221634, -0.0566673279, 0.0528348051, -0.4617330134, 0.1841138303, 0.3488663435, 0.0046465695, -0.0733980387, -0.1476437151, -0.2400639057, -0.3316352367, -0.1445305347, 0.2060095519, 0.1393594742, 0.1707959026, -0.0030377074, -0.5398427248, 0.1457112581, 0.3567882776, -0.0727697015, -0.1326306462, 0.0157898553, 0.1214101613, 0.3247834444, 0.3295473456, 0.1282670498, -0.0393195562, -0.1861980259, 0.3062698543, 0.2130703628, -0.7936053872, -0.048487924, 0.230721131, -0.1161449552, -0.0666976497, -0.1693450511, -0.1044372618, 0.3401466906, -0.3380639851, 0.1036486104, 0.2965791523, -0.0940641165, 0.011503838, 0.1055324227, -0.0219707005, -0.1720061749, -0.3138701618, 0.0885760039, 0.1108505949, -0.3309868574, -0.0520168394, 0.1264755279, -0.2921321094, -0.083215341, -0.1314234436, 0.0433557518, -0.2141341567, -0.0657924116, 0.1219371855, 0.0876594633, -0.020528974, 0.8091931939, -0.2801371813, 0.1047492325, -0.4791381955, -0.5906726122, -0.0183128063, -0.1310724169, -0.3497514129, 0.2159641385, 0.1177537292, -0.0320877768, 0.1305217594, 0.3339617848, 0.0465605669, -0.2266200036, 0.3357836902, -0.5207979083, 0.2082929611, 0.1060205847, 0.1533147246, 0.556080699, -0.1143066585, 0.3106350303, -0.1215612292, 0.2645988464, -0.5323984623, -0.2379589081, 0.1448969841, -0.0522090048, 0.1052638292, 0.1218633205, -0.4693042338, 0.4962758124, 0.3239687979, -0.2415213585, -0.1572943032, -0.1935512424, -0.6807099581, -0.1566352248, -0.0482700802, 0.1644488871, -0.3335202336, 0.2270423025, -0.3317825198, 0.1459441483, 0.4463775754, 0.5977522731, -0.1945761442, 0.3576442301, -0.0237722844, 0.1998112202, -0.0121899247, -0.0591240302, -0.3943868876, 0.5213026404, -0.1812321246, -0.0069301873, -0.218744427, 0.1681260467, 0.2308536768, -0.0585273132, 0.3284294307, 0.2740376592, 0.0182396341, 0.4006505907, -0.2312323451, -0.1404776275, 0.1745202392, 0.0220592171, -0.0664570034, -0.0973709673, -0.0106214136, -0.2823179364, 0.3429303765, 0.0160741769, 0.0190714598, 0.4239672422, -0.383946687, -0.1766142249, -0.140847683, -0.2507993877, -0.0771211162, 0.3548490405, -0.0161997303, 0.0330527835, 0.4360342622, 0.0295187682, 0.1947903186, 0.1215822622, -0.0341639072, -0.0828239694, -0.1245474368, -0.0914569795, -0.1777033359, -0.1682781875, -0.0154163837, 0.4407095015, 0.2054565251, -0.1136585176, -0.0448651537, -0.1442041993, 0.090837948, 0.0958687216, -0.2234874815, -0.0967263579, 0.0980231017, 0.0393656828, -0.0858788788, 0.2614972889, 0.473593086, -0.0647707134, 0.1389827281, 0.0886042342, 0.3819344342, -0.0518061854, 0.0125038084, -0.1227142215, 0.1179006398, -0.24454014, -0.0177458692, 0.3030712008, 0.1027346924, 0.42376405, 0.0093254894, -0.1245473325, 0.0180589259, 0.2912704945, 0.146774292, 0.0439318642, 0.3255984783, 0.3314089775, 0.2144908607, 0.3231860399, -0.1254149973, 0.3435012102, 0.6361768842, 0.0632760227, -0.3252542317, 0.0318584368, -0.1783328354, -0.3582534194, 0.0271829832, -0.1357810646, 0.5621809363, 0.0008783042, 0.2314517349, -0.0275593624, -0.1016285121, -0.0770715326, -0.027014263, 0.1100120991, 0.2270746827, -0.105565466, 0.3235615492, -0.012885686, -0.0454218946, -0.2321381718, 0.3384538889, 0.2258008868, -0.2655063272, 0.1165243834, -0.3123520017, 0.1925366223, 0.1699938923, -0.1106922254, -0.2881991565, -0.2154276967, -0.1364982575, -0.0801258236, 0.1979133636, -0.0297544748, 0.2590242028, -0.1393480301, -0.110480845, -0.0400150046, 0.0211555362, -0.123718895, -0.1452606618, -0.0168916471, 0.2741612792, 0.2089082301, 0.0379455015, -0.0567797571, -0.2843340039, -0.0929551125, -0.223677963, -0.103662923, 0.1599898934, 0.0655341372, -0.1882636696, -0.0869260877, -0.2204572409, 0.1812089235, 0.1581975222, -0.2650479674, -0.1830224395, 0.0601653755, -0.1190669015, -0.2122447491, 0.0102414489, -0.1542372704, -0.0883429572, -0.0925784782, 0.2850446105, -0.1693923473, 0.3432777822, -0.2147856653, 0.0628610402, -0.0864122659, -0.1067366526, -0.0121783894, -0.3401823044, -0.37412256, -0.0052902829, -0.0206396412, -0.2117353529, -0.1438670158, 0.0744260252, 0.1531659961, 0.1476217061, -0.1737328619, 0.1924842298, -0.3921592534, 0.1361331046, 0.0613378026, 0.026609512, 0.4794917107, 0.0183997788, 0.0740955919, 0.0087158754, -0.4381611943, -0.0841046944, 0.2906065583, 0.0134121627, 0.0183809325, 0.3479088247, 0.0413984135, 0.634726882, 0.4861657321, -0.1431155652, 0.1921540201, -0.0242666584, -0.154458344, -0.3937432468, -0.2161061466, 0.1225521117, -0.2629096508, 0.1614921093, 0.4107544422, -0.004305996, -0.4227932394, -0.0008047223, 0.232125178, -0.2147950828, -0.0154876634, 0.1425658613, -0.1290991604, 0.1569969058, 0.2508653402, -0.1738860756, -0.3479388058, -0.0462887138, -0.0596799813, -0.1070540696, -0.1073272973, -0.2466082722, -0.4860383272, -0.0262889229, -0.3734409809, 0.2421613634, 0.0494482554, 0.3200061321, -0.0182063803, 0.1125687435, 0.3193672597, 0.0135954544, 0.5667479038, -0.3824684918, -0.1051649749, 0.1393256038, -0.369050324, -0.2961441278, 0.0472286195, -0.1584999859, 0.2740096152, 0.5899748802, 0.5148351192, -0.0092028528, -0.1744453311, -0.0026541427, 0.1248297915, 0.1343104392, -0.2558061182, -0.3702327907, 0.1224810183, -0.1186216921, 0.1311179996, -0.0073254928, 0.1288420856, 0.1130926311, -0.1465182751, 0.0253685731, 0.0986626297, 0.205263257, 0.1549216211, 0.1151604503, 0.0833984241, 0.3108260036, 0.2329060733, -0.0853873119, 0.0293091331, 0.3309388757, -0.1140495688, -0.0981436223, 0.245746538, 0.029643286, 0.3158792853, 0.3062438369, 0.1195380539, 0.0503815822, 0.1765030622, 0.2736956775, -0.2165953219, 0.2651926577, 0.4047729969, 0.3798926771, -0.4751807451, -0.4996889532, -0.0021378994, 0.4812624454, -0.1455398351, 0.2885552049, -0.8008272648, 0.0941814333, 0.0404599234, 0.0750566199, 0.7513072491, -0.4283932745, 0.0547340326, -0.290638566, 0.1864210367, -0.0401576459, -0.5946903229, 0.1480185688, -0.193869561, -0.3592974842, 0.0260500088, -0.1081057489, 0.189450413, 0.4942734838, 0.170498848, 0.2647927701, 0.3171115816, 0.1156069487, -0.0115671176, 0.3212324977, 0.5124130249, -0.3162502348, 0.1704144478, 0.0245616809, 0.2073135674, -0.2166735977, 0.0332605839, 0.0919919163, -0.0394997075, 0.0051118061, -0.3249231577, -0.1912869215, -0.3838331103, 0.2179379016, -0.0508306846, 0.2920320034, 0.3759080768, 0.2679611146, -0.0715065747, 0.0968253314, 0.002558345, 0.0619816966, 0.2923749089, 0.2626044154, 0.3842225671, -0.4712408781, -0.0278314073, -0.1048300713, -0.240193814, -0.2531825304, -0.1586780101, -0.1203276813, -0.1395849586, 0.4965134263, 0.1751244366, 0.190396294, -0.2085005939, 0.2218900621, 0.1242450178, -0.1349462718, -0.0184657872, 0.0999105126, 0.0267604813, 0.6535867453, -0.3103857934, -0.5013614893, -0.0315315947, 0.4279739261, 0.2679142654, -0.0882946551, 0.0311929211, 0.2301478386, -0.2587218881, -0.1286642849, 0.1715878546, -0.1222174913, -0.1143976301, 0.1223205477, -0.0090482756, -0.2285382003, 0.2377553284, -0.1473873258, -0.1642845571, -0.0562660322, -0.1955027878, -0.279969871, -0.2492465377, -0.1993587315, -0.3673150539, -0.2489989996, 0.2481581271, 0.03553712, 0.1180195436, 0.4483623207, -0.1203232184, 0.0711581707, 0.1135156229, 0.1802239716, -0.0537470691, -0.2146888077, 0.0826702863, -0.0330272019, -0.0839462876, 0.1185895726, -0.082695201, -0.1370539069, -0.0379952043, 0.1925500184, -0.0232908092, -0.2450542301, 0.3410162926, -0.1211560667, -0.2160391062, -0.408619076, -0.0402072966, 0.0703652129, 0.0017753672, -0.1067220569, 0.2822423875, -0.3028363883, -0.263941437, 0.4480734468, -0.1902101338, -0.0775019675, -0.0155576877, 0.2981880903, 0.4519789219, -0.0809331387, -0.0976521969, 0.0195757672, 0.2365053296, 0.0848746523, 0.1398587823, -0.1199763864, 0.1827153414, 0.262699306, 0.316489011, 0.1239286065, 0.0985504538, -0.2516516149, 0.0024661459, -0.0108006187, -0.2553517818, -0.2139283121, 0.5657910705, 0.0606563613, 0.1268810928, 0.037549518, 0.3244929612, 0.205741331, -0.01582174, -0.0779162645, 0.0725623742, -0.3115455806, 0.0609443337, 0.1631503403, 0.2488364428, 0.2783688605, 0.4251826406, 0.1101088673, 0.0030400902, 0.4774034619, 0.2828221321, 0.2613266706, 0.5220370889, 0.2338135839, -0.0255849026, -0.3653486371, 0.2001153678, 0.506909132, -0.3683279157, -0.0568224862, -0.0439153202, 0.232349962, -0.2388919592, -0.3795404434, -0.2639643848, 0.3889548481, -0.1608816683, -0.2568485737, 0.243508637, -0.0473560467, 0.0063968599, 0.1846165657, -0.2035260797, 0.1530354023, 0.8075752258, 0.1228651106, -0.0009973682, -0.3829835653, -0.3443284631, -0.1443083286, 0.1634518355, -0.1493181735, 0.1704648584, -0.3239407241, -0.0275484473, -0.0192409456, 0.2792570293, 0.3590281308, 0.2796684206, -0.1201953292, 0.0742154717, -0.0097497683, 0.1716915816, 0.0075831115, 0.178850472, 0.039596986, 0.1739643216, 0.1511008143, -0.1174859554, -0.0779491216, -0.4345591962, 0.0654477775, 0.3959388733, -0.1649537981, 0.1745498478, -0.3532506824, -0.1534026563, -0.0058770496, 0.2983114123, -0.2523604929, -0.0957889259, 0.5177609921, -0.4819996953, 0.0849935487, -0.176422596, 0.0201750696, -0.0753380209, 0.5530557632, 0.2912756801, -0.0139786098, -0.3776096106, -0.1037471592, -0.5993498564, -0.027002342, -0.3273996711, 0.2998803556, 0.0710290372, 0.2913452387, 0.0507971495, 0.1112928092, 0.4081785083, -0.0945437849, -0.0640788376, 0.3450732231, -0.3213584423, 0.4485046566, -0.2388505191, -0.1924459338, -0.0728881955, -0.4286515415, 0.3931479752, 0.0691621602, -0.1504866332, -0.1682016253, -0.0282135606, 0.1636442542, 0.152528882, 0.1952548921, 0.3520744443, 0.3359539211, 0.0250954404, -0.0006477833, -0.1216744632, 0.2023508847, -0.0488463566, 0.3206844032, -0.0580118001, 0.0556005388, -0.299497962, 0.1774425656, 0.108261615, -0.1121886373, 0.0085694864, -0.222835958, -0.3369591832, -0.0309146643, -0.046586141, 0.3373244107, 0.0686803162, 0.372941941, 0.1067378893, -0.0717502013, -0.1552369297, -0.106936805, -0.02283144, -0.2881877422, -0.3033365011, -0.4513738453, 0.2482393682, -0.2632824779, 0.1336897016, -0.2243404388, -0.3340463638, 0.3018875718, -0.0021039024, -0.3622488081, 0.3494457304, -0.4049947262, -0.0751623735, -0.1555634439, 0.0664821714, -0.07479693, -0.4459969401, 0.2267218828, -0.1301652342 ]
https://github.com/huggingface/datasets/issues/1992
`datasets.map` multi processing much slower than single processing
Thank you for the reply! I would be happy to follow the discussions related to the issue. If you do not mind, could you also give a little more explanation on my p.s.2? I am having a hard time figuring out why the single processing `map` uses all of my cores. @lhoestq @theo-m
Hi, thank you for the great library. I've been using datasets to pretrain language models, and it often involves datasets as large as ~70G. My data preparation step is roughly two steps: `load_dataset` which splits corpora into a table of sentences, and `map` converts a sentence into a list of integers, using a tokenizer. I noticed that `map` function with `num_proc=mp.cpu_count() //2` takes more than 20 hours to finish the job where as `num_proc=1` gets the job done in about 5 hours. The machine I used has 40 cores, with 126G of RAM. There were no other jobs when `map` function was running. What could be the reason? I would be happy to provide information necessary to spot the reason. p.s. I was experiencing the imbalance issue mentioned in [here](https://github.com/huggingface/datasets/issues/610#issuecomment-705177036) when I was using multi processing. p.s.2 When I run `map` with `num_proc=1`, I see one tqdm bar but all the cores are working. When `num_proc=20`, only 20 cores work. ![Screen Shot 2021-03-05 at 11 04 59](https://user-images.githubusercontent.com/29157715/110056895-ef6cf000-7da2-11eb-8307-6698e9fb1ad4.png)
53
`datasets.map` multi processing much slower than single processing Hi, thank you for the great library. I've been using datasets to pretrain language models, and it often involves datasets as large as ~70G. My data preparation step is roughly two steps: `load_dataset` which splits corpora into a table of sentences, and `map` converts a sentence into a list of integers, using a tokenizer. I noticed that `map` function with `num_proc=mp.cpu_count() //2` takes more than 20 hours to finish the job where as `num_proc=1` gets the job done in about 5 hours. The machine I used has 40 cores, with 126G of RAM. There were no other jobs when `map` function was running. What could be the reason? I would be happy to provide information necessary to spot the reason. p.s. I was experiencing the imbalance issue mentioned in [here](https://github.com/huggingface/datasets/issues/610#issuecomment-705177036) when I was using multi processing. p.s.2 When I run `map` with `num_proc=1`, I see one tqdm bar but all the cores are working. When `num_proc=20`, only 20 cores work. ![Screen Shot 2021-03-05 at 11 04 59](https://user-images.githubusercontent.com/29157715/110056895-ef6cf000-7da2-11eb-8307-6698e9fb1ad4.png) Thank you for the reply! I would be happy to follow the discussions related to the issue. If you do not mind, could you also give a little more explanation on my p.s.2? I am having a hard time figuring out why the single processing `map` uses all of my cores. @lhoestq @theo-m
[ -0.3987978101, -0.3398563564, -0.0919534415, 0.3478131592, -0.1069306433, 0.0302641541, 0.3706740737, 0.102625519, 0.062308386, 0.0149742626, 0.0955683291, 0.4472281635, 0.1740679145, 0.1985436678, -0.1503284574, 0.0324670374, 0.2079119086, -0.0139354505, 0.2080073059, -0.0224974751, -0.1496806294, 0.1676016897, -0.4635993242, -0.0011215061, -0.4276064336, -0.1505297273, 0.1084920019, 0.1583691686, -0.1540076733, -0.2310483158, -0.2729552686, 0.1561854482, -0.0772200376, 0.5987077951, -0.0001209586, -0.1784321368, -0.015478367, 0.2657153308, 0.0826330706, 0.0226126015, -0.1489177793, -0.2439105958, -0.0508770309, -0.1065185815, 0.1241559088, 0.2492050231, -0.0815332159, -0.4744795561, 0.0348688439, 0.0918458477, 0.0700883791, 0.3698400557, -0.3573279977, 0.005835034, -0.4008419514, 0.1153549775, -0.1398288608, 0.0462572388, 0.3084880114, -0.1706036031, -0.1413282007, 0.3538626432, -0.0510776639, 0.3019240499, -0.00053469, -0.091770269, 0.0509420633, -0.4716903567, 0.2142588943, 0.3441270292, 0.0050043948, -0.0449160635, -0.1534074247, -0.2339182198, -0.3566296101, -0.1425358057, 0.1976323426, 0.1191563234, 0.146893993, 0.0236068964, -0.5594057441, 0.1424555928, 0.3238303959, -0.0603597164, -0.1207489371, 0.0340402499, 0.102419287, 0.3249109983, 0.352527082, 0.1588868797, -0.0753307045, -0.2213252187, 0.3150903583, 0.1927132905, -0.7903560996, -0.0546729863, 0.2171826661, -0.0919131041, -0.0570157096, -0.1511585712, -0.1151763648, 0.3496941626, -0.3474547863, 0.0873434842, 0.3179745674, -0.0674330071, 0.033335112, 0.0778569058, -0.0398388691, -0.1619220525, -0.2981227934, 0.0592452213, 0.0821141452, -0.3091103733, -0.0677430779, 0.1036747992, -0.3128348887, -0.0841978118, -0.1708452106, 0.0062156357, -0.217565909, -0.0867861956, 0.1496060938, 0.0932788253, -0.0010676198, 0.8402994871, -0.2644472718, 0.0933751464, -0.4438734353, -0.6254183054, -0.0214879699, -0.0977302641, -0.3783908188, 0.2289136946, 0.1202453077, -0.0522695892, 0.1299936622, 0.3237180412, 0.0419282317, -0.1985149682, 0.3197098076, -0.5415102243, 0.1895830184, 0.0605315752, 0.1435220242, 0.5663233399, -0.0963239074, 0.2923192084, -0.1278514564, 0.2347626686, -0.5155061483, -0.2475563884, 0.1758903116, -0.0223861188, 0.1043803394, 0.1009875685, -0.453175962, 0.5067192316, 0.2928762138, -0.1959367096, -0.1508532315, -0.1562159657, -0.6555332541, -0.1608222723, -0.0710843876, 0.1317821443, -0.3583334684, 0.2057324797, -0.3523509204, 0.1483930051, 0.4070550501, 0.6043971777, -0.2138480544, 0.3782384694, 0.024564445, 0.2347587049, 0.0038243458, -0.0866081864, -0.3828226328, 0.5263622403, -0.2283225805, -0.0003065616, -0.1912581325, 0.1750383377, 0.2384458035, -0.0272582509, 0.3657390773, 0.2632677853, 0.0094163101, 0.3835633993, -0.2240213752, -0.1533074379, 0.1631631255, 0.0522792935, -0.080373019, -0.1023804992, -0.0463996455, -0.2913078368, 0.3220105469, -0.0063352901, 0.0290317163, 0.4283189774, -0.3774930239, -0.1908318847, -0.1373764127, -0.2449975461, -0.0953907445, 0.3824573755, 0.0239035338, 0.0706381798, 0.4634762406, 0.0386807621, 0.1495975852, 0.1042517647, -0.0175236352, -0.079373233, -0.091716148, -0.1016784906, -0.180559352, -0.2226997167, -0.0659700707, 0.4419493377, 0.2227582335, -0.0988934636, -0.0392996743, -0.1586320251, 0.0430582985, 0.0839978531, -0.2125140429, -0.0789048672, 0.0700055361, 0.0641731471, -0.0729278103, 0.2602722049, 0.4253134727, -0.0739464015, 0.1746497899, 0.112814799, 0.3552789092, -0.045874998, 0.0203688573, -0.1413390934, 0.1449815333, -0.2591531873, -0.0521306992, 0.2841014266, 0.0838297009, 0.4506699443, 0.0235608816, -0.1425478607, -0.0140933171, 0.2643782496, 0.1708125025, 0.0492693856, 0.3555659056, 0.3383414745, 0.2349535525, 0.3360343874, -0.1631883383, 0.3445365429, 0.6126601696, 0.041751869, -0.3295570016, 0.0292303618, -0.2006422132, -0.3668963909, 0.083906807, -0.1144674942, 0.5725329518, 0.0204461515, 0.246456027, -0.0426011458, -0.0617181696, -0.0788925588, -0.0321186706, 0.1035837084, 0.2068730593, -0.1335344613, 0.2963624001, -0.0233537704, -0.0464382842, -0.2598059773, 0.3200154603, 0.2167464793, -0.2419923991, 0.1305706799, -0.319663465, 0.1452296972, 0.20405294, -0.1186886579, -0.3031510413, -0.2074021101, -0.116215907, -0.0619460121, 0.2765518129, -0.0591167547, 0.2854479551, -0.0924612135, -0.1519617438, -0.0172399841, -0.0202099457, -0.1655506939, -0.172631219, 0.0085463785, 0.2644037306, 0.2206044346, 0.0475904942, -0.0641813651, -0.2819516659, -0.0524871796, -0.1731323898, -0.1106103584, 0.1379326433, 0.0642574131, -0.1711054146, 0.0039566457, -0.2347941995, 0.189412415, 0.1470806748, -0.2577967048, -0.1638476551, 0.035585314, -0.1214442402, -0.2122675925, 0.0128885955, -0.1658165455, -0.0854585245, -0.0955389366, 0.3060118556, -0.1661300361, 0.323209703, -0.1944456398, 0.0642020702, -0.0389950424, -0.0717670172, 0.0312101617, -0.3452695608, -0.3713633716, -0.0210944936, 0.0280970596, -0.2007675767, -0.1226666719, 0.085142538, 0.2075579464, 0.1145334095, -0.1510453373, 0.1748335809, -0.3728005886, 0.1301904619, 0.0589382686, 0.0784901083, 0.4467203319, 0.0360536426, 0.0617041625, 0.0150991008, -0.4115449786, -0.0789793432, 0.2864608765, 0.0288678501, 0.0285071358, 0.327249378, 0.0790636539, 0.6817418337, 0.4720705748, -0.1880876422, 0.1948013455, 0.0043177381, -0.1779789925, -0.3762974441, -0.2214649618, 0.1091209352, -0.2775558531, 0.1900644302, 0.4069158137, 0.002533678, -0.4038465917, -0.0298230574, 0.2467474937, -0.2389830202, -0.0058509558, 0.1471874118, -0.0795926601, 0.1282857955, 0.2544084489, -0.1898123324, -0.3439292908, -0.0338946655, -0.0574087203, -0.0707047284, -0.1244388968, -0.2597436011, -0.5114727616, -0.0330196992, -0.3813467622, 0.2475265115, 0.0228804201, 0.2694838047, -0.0378907546, 0.1243411154, 0.3278177679, -0.0064778179, 0.5314382315, -0.3730398715, -0.1724523008, 0.1234855503, -0.4129564166, -0.2700181603, 0.1126652062, -0.1809013933, 0.2845950127, 0.5743813515, 0.5144298077, -0.0455426201, -0.224494651, -0.0374759585, 0.1309110224, 0.1329893768, -0.2703751326, -0.3282873333, 0.1430771649, -0.1507305801, 0.1006360576, -0.0207590163, 0.1367670149, 0.1283373833, -0.1023595184, 0.0580424517, 0.0914534181, 0.2539271116, 0.1980283409, 0.0963080227, 0.0602108464, 0.2583255172, 0.2657183409, -0.0980599374, 0.0382841602, 0.3328794241, -0.1548352838, -0.0922507271, 0.23302342, 0.060371045, 0.3217386603, 0.3481738567, 0.1211913601, 0.0601412058, 0.187847212, 0.242890209, -0.2255193889, 0.2873827517, 0.3583306372, 0.3687765896, -0.4462333918, -0.4971281588, -0.0129834749, 0.4985202551, -0.1683433354, 0.3029265106, -0.7764917612, 0.0737235695, 0.0215335526, 0.0744746327, 0.7982981205, -0.4352929592, 0.0622137934, -0.2951288521, 0.2099919766, -0.0567073748, -0.5967222452, 0.1344829947, -0.1911983043, -0.3781999946, 0.0069168881, -0.1047018692, 0.1857599467, 0.5643202662, 0.1523875594, 0.2857619524, 0.336623311, 0.0805621743, -0.0095907897, 0.366884917, 0.5028190017, -0.3357383013, 0.1540342569, 0.0463160463, 0.1937488019, -0.1932334602, 0.0020392314, 0.0996450335, -0.0719178542, -0.0027785674, -0.3143118322, -0.2183896005, -0.4510261714, 0.2037436068, -0.0680123121, 0.3175694644, 0.3931634426, 0.2769820988, -0.0670499802, 0.0411292091, 0.0065707769, 0.0356713571, 0.3010510802, 0.2570821643, 0.3631038964, -0.4733556211, -0.0057048909, -0.1186290681, -0.2454583496, -0.2174412608, -0.1700526327, -0.0586600266, -0.1510439813, 0.487613976, 0.1578540206, 0.1609752029, -0.1905019581, 0.2473521531, 0.1159880683, -0.1148682088, -0.0019466113, 0.1373939514, 0.0247037299, 0.6386427283, -0.2702283859, -0.4856574535, -0.0345761627, 0.3869275749, 0.2485571504, -0.107256785, 0.0116948821, 0.2025440484, -0.2665697038, -0.149611026, 0.1637885422, -0.0857771933, -0.0729992241, 0.1273660362, 0.0348299481, -0.2494175583, 0.2480974942, -0.1001480743, -0.1314283609, -0.0336118229, -0.2042176425, -0.2643251419, -0.2544717789, -0.1720088422, -0.3750604987, -0.2070088983, 0.2421015203, -0.0172375534, 0.1284516901, 0.4695535004, -0.1497865021, 0.0607127398, 0.1021557599, 0.190609321, -0.0384994969, -0.260114342, 0.0941979736, -0.0170742869, -0.0643606707, 0.0783960447, -0.085348092, -0.166820541, -0.0115814656, 0.1847727448, -0.013034977, -0.257516861, 0.3359079957, -0.1025238484, -0.1739263386, -0.3928410709, -0.050178051, 0.0468402654, 0.0097015481, -0.1023313701, 0.3172997832, -0.2931722701, -0.3031933904, 0.4068658352, -0.2091909349, -0.066545859, -0.0005234815, 0.269798398, 0.4595621824, -0.0918449312, -0.1277804375, 0.0299209021, 0.2942762971, 0.0688004792, 0.1120858341, -0.1015247703, 0.1829239428, 0.2699060142, 0.278137356, 0.1202003807, 0.1141075939, -0.2037571967, 0.005395133, 0.0241429172, -0.2130511552, -0.1793762743, 0.5706429482, 0.0138293803, 0.1518812478, 0.0689560324, 0.3217911124, 0.2287773043, -0.0012449995, -0.1071083099, 0.0849717408, -0.3123015165, 0.0684471577, 0.111009568, 0.2458711565, 0.2573176324, 0.436221838, 0.1256204844, 0.0101207048, 0.4173809588, 0.2422873825, 0.3094069064, 0.5200671554, 0.2401481271, 0.0135988668, -0.3639059365, 0.1917426437, 0.4900941551, -0.3441900909, -0.0662108809, -0.0487063155, 0.239454478, -0.2684264183, -0.3709074259, -0.2196553797, 0.3906934857, -0.1724593639, -0.2432684451, 0.2041936666, -0.0381442681, -0.0459648967, 0.1604245752, -0.2366207838, 0.1313251853, 0.8348482251, 0.1233763695, 0.0309464857, -0.3607614636, -0.3917117715, -0.1342184246, 0.1480792463, -0.1345745623, 0.1902969778, -0.3134204745, -0.0068783462, -0.0136600249, 0.2765813172, 0.3565856218, 0.277443409, -0.1138224453, 0.0915466994, -0.026879346, 0.1539754272, -0.0184284486, 0.1534868777, 0.0066649783, 0.1805168986, 0.1535551846, -0.086460121, -0.0981988311, -0.4284722209, 0.0447323546, 0.3398981094, -0.1634693146, 0.1326932907, -0.3101335168, -0.1590600014, -0.0120580317, 0.2858178914, -0.2495391071, -0.0862629116, 0.4984060526, -0.4902807474, 0.0726508275, -0.1841208339, 0.0356182083, -0.0405586138, 0.5247301459, 0.28653723, -0.0129878782, -0.4199318588, -0.1138786376, -0.5841236711, -0.0655890629, -0.3243662119, 0.2615008652, 0.0450748168, 0.2684960961, 0.0611370616, 0.1447689682, 0.4047616124, -0.1011887342, -0.0866832957, 0.3594869971, -0.3306726813, 0.5003919005, -0.2142936438, -0.1856478155, -0.05530807, -0.4004403055, 0.3668002188, 0.0968989581, -0.1297346205, -0.1715717614, -0.0162613615, 0.1787752807, 0.1407823712, 0.1806527674, 0.3315012753, 0.3267035484, 0.0269236267, -0.0089404583, -0.1012834609, 0.219316572, -0.0792324916, 0.3145405948, -0.0376672372, 0.0590488762, -0.3016563356, 0.1776500195, 0.1021889448, -0.1452145129, 0.0031905323, -0.2515268624, -0.3215592504, -0.0398883782, -0.0551038273, 0.3557630181, 0.0897438452, 0.4125424623, 0.1387649924, -0.0893786848, -0.2004948258, -0.0998041332, -0.0184917599, -0.2824789286, -0.3231768012, -0.4460310936, 0.215707913, -0.285263598, 0.1410279274, -0.2329757512, -0.3740330935, 0.3034422398, -0.0229321811, -0.4084109068, 0.3051840961, -0.3485659659, -0.0823977366, -0.1502871215, 0.0432496555, -0.078146562, -0.4487421811, 0.2001757622, -0.1336035877 ]
https://github.com/huggingface/datasets/issues/1992
`datasets.map` multi processing much slower than single processing
Regarding your ps2: It depends what function you pass to `map`. For example, fast tokenizers from `transformers` in Rust tokenize texts and parallelize the tokenization over all the cores.
Hi, thank you for the great library. I've been using datasets to pretrain language models, and it often involves datasets as large as ~70G. My data preparation step is roughly two steps: `load_dataset` which splits corpora into a table of sentences, and `map` converts a sentence into a list of integers, using a tokenizer. I noticed that `map` function with `num_proc=mp.cpu_count() //2` takes more than 20 hours to finish the job where as `num_proc=1` gets the job done in about 5 hours. The machine I used has 40 cores, with 126G of RAM. There were no other jobs when `map` function was running. What could be the reason? I would be happy to provide information necessary to spot the reason. p.s. I was experiencing the imbalance issue mentioned in [here](https://github.com/huggingface/datasets/issues/610#issuecomment-705177036) when I was using multi processing. p.s.2 When I run `map` with `num_proc=1`, I see one tqdm bar but all the cores are working. When `num_proc=20`, only 20 cores work. ![Screen Shot 2021-03-05 at 11 04 59](https://user-images.githubusercontent.com/29157715/110056895-ef6cf000-7da2-11eb-8307-6698e9fb1ad4.png)
29
`datasets.map` multi processing much slower than single processing Hi, thank you for the great library. I've been using datasets to pretrain language models, and it often involves datasets as large as ~70G. My data preparation step is roughly two steps: `load_dataset` which splits corpora into a table of sentences, and `map` converts a sentence into a list of integers, using a tokenizer. I noticed that `map` function with `num_proc=mp.cpu_count() //2` takes more than 20 hours to finish the job where as `num_proc=1` gets the job done in about 5 hours. The machine I used has 40 cores, with 126G of RAM. There were no other jobs when `map` function was running. What could be the reason? I would be happy to provide information necessary to spot the reason. p.s. I was experiencing the imbalance issue mentioned in [here](https://github.com/huggingface/datasets/issues/610#issuecomment-705177036) when I was using multi processing. p.s.2 When I run `map` with `num_proc=1`, I see one tqdm bar but all the cores are working. When `num_proc=20`, only 20 cores work. ![Screen Shot 2021-03-05 at 11 04 59](https://user-images.githubusercontent.com/29157715/110056895-ef6cf000-7da2-11eb-8307-6698e9fb1ad4.png) Regarding your ps2: It depends what function you pass to `map`. For example, fast tokenizers from `transformers` in Rust tokenize texts and parallelize the tokenization over all the cores.
[ -0.4439503849, -0.2767180204, -0.0788298845, 0.3751107454, -0.0908035338, -0.0050793216, 0.3211756051, 0.0643406957, -0.0458023176, -0.0092517212, 0.0477651507, 0.4086365104, 0.2179492414, 0.1524447203, -0.1457516253, -0.0019724546, 0.2254883796, -0.0213481821, 0.1467743516, 0.0173893422, -0.2218794525, 0.1027975082, -0.5076212883, 0.0070180837, -0.432896018, -0.1630930454, 0.0852133483, 0.0920834094, -0.1628730297, -0.2309201956, -0.2925642431, 0.2094139606, -0.0740563869, 0.5870190859, -0.0001180967, -0.1688384712, -0.0100618992, 0.2632309794, 0.10635598, 0.0013802499, -0.0580674261, -0.2970836461, -0.0959244221, -0.0974917337, 0.1089048982, 0.10524185, -0.0769347847, -0.4239000976, 0.1259804368, 0.0137933455, 0.1001286581, 0.3818839788, -0.2749177814, -0.0349338278, -0.351038754, 0.152619347, -0.1374158561, -0.0240373351, 0.2417445481, -0.1240666211, -0.1272670329, 0.3543686569, -0.1285183281, 0.2587580383, 0.0789578855, -0.0478514023, 0.0509216003, -0.4571822882, 0.1748206019, 0.4000488818, 0.0125553105, -0.0977232605, -0.1687845886, -0.2309559584, -0.2791657448, -0.1573262513, 0.2020866722, 0.1040827483, 0.1339536458, -0.0070662498, -0.6016132832, 0.2399576753, 0.3542022109, -0.1202202216, -0.1160993055, 0.0890448987, 0.1198708415, 0.3441288471, 0.3367704451, 0.0770297423, -0.087530978, -0.2567176819, 0.2177372426, 0.2279641479, -0.8232132196, -0.0756707788, 0.2212412357, -0.1676314622, -0.0521671996, -0.1305063665, -0.146545887, 0.3569336832, -0.3285427392, 0.1192994714, 0.2981948256, -0.0345788524, 0.0140542155, 0.1581133306, -0.0102358256, -0.2339849025, -0.3126995564, 0.0593382604, 0.0346814059, -0.2625648975, -0.0355954729, 0.0848608911, -0.3532976806, -0.0575250126, -0.2106845975, 0.0534192771, -0.2790291607, -0.0660476908, 0.1619874984, 0.140569523, 0.010609474, 0.7866414189, -0.3018143773, 0.048673965, -0.3648938537, -0.5528381467, -0.0429502949, -0.1930681318, -0.3997561634, 0.2632680237, 0.1055120379, 0.0493489765, 0.1494626701, 0.282112509, 0.0765932426, -0.1413562596, 0.3494641781, -0.5429766774, 0.1496424377, 0.0726191103, 0.1545602232, 0.5177941322, -0.1384747624, 0.3149018288, -0.1971453726, 0.2203018963, -0.475266993, -0.2318784595, 0.2151329517, 0.013539291, 0.0885785744, 0.0796746239, -0.5455648899, 0.5509294271, 0.2919282019, -0.1726649553, -0.1275848597, -0.1853659749, -0.6103127003, -0.1781903207, -0.0018491894, 0.122601144, -0.2417801023, 0.1732541025, -0.2710023522, 0.1222163141, 0.4497341812, 0.6742503643, -0.2196298838, 0.4246215522, 0.0158409774, 0.3035622537, 0.0449149348, -0.1139071956, -0.3109883964, 0.4910983443, -0.1610907018, -0.0346942618, -0.1811558157, 0.1404018998, 0.3190976977, -0.0290232282, 0.274230212, 0.3147366345, 0.0265185293, 0.3793389201, -0.1575172246, -0.1305786222, 0.1962329298, 0.0451973677, -0.1150431931, -0.1356099844, -0.0503521711, -0.2750132084, 0.2248001099, -0.0303578973, 0.0487307981, 0.3911471665, -0.3012831211, -0.1758218408, -0.1415568739, -0.2277329415, -0.0599741712, 0.3407979608, 0.0430904478, 0.0639523789, 0.4608144164, 0.001595594, 0.2276875526, 0.1355305165, -0.0380947143, -0.137633726, -0.0313480794, -0.0491703078, -0.1346635073, -0.2262031883, -0.0678616762, 0.3672986627, 0.223807171, -0.0643269643, 0.0883316249, -0.125775367, 0.0670794398, 0.0064630881, -0.2424022555, -0.034182556, 0.065488264, 0.1089311764, -0.0454826653, 0.27921924, 0.4492977858, -0.0380157568, 0.11827261, 0.1675733924, 0.3643089533, -0.0421775207, 0.0124647934, -0.12799263, 0.0809549689, -0.2292949855, -0.0607800148, 0.2941324711, 0.1038636267, 0.4727626145, 0.0048598871, -0.1762063205, 0.0205463544, 0.2855570316, 0.1121589765, 0.1042973623, 0.2605010569, 0.3831950128, 0.2929074168, 0.3807490766, -0.1670200527, 0.2910599113, 0.5920897722, -0.0072923079, -0.358982563, 0.081668064, -0.2233640105, -0.409229517, 0.0779986307, -0.1123956367, 0.5411708355, 0.046613805, 0.2133837938, -0.0555461422, -0.1274144351, -0.0524576977, -0.0064762309, 0.0726005733, 0.1973279119, -0.081593737, 0.2709234059, 0.0563162006, -0.0644893572, -0.2889433503, 0.3361005485, 0.2415702045, -0.2043418139, 0.0760012791, -0.2641552091, 0.1124653518, 0.1709752977, -0.0607179478, -0.2124257237, -0.1904427707, -0.1214679182, -0.1239400506, 0.1627359837, -0.0067012701, 0.273702085, -0.0764562637, -0.092732437, -0.027558716, -0.0323880762, -0.1445224732, -0.1797596663, 0.0104283132, 0.2918091714, 0.2076406926, 0.1169967055, -0.07550551, -0.2324868888, -0.0665046424, -0.2315774709, -0.055614002, 0.0795414597, 0.0135089178, -0.1537779421, -0.0750605464, -0.2716278732, 0.0461049192, 0.1981597245, -0.3055954278, -0.2410660535, 0.0426125377, -0.1434977949, -0.2572674453, 0.0451563746, -0.1229170263, -0.0881870165, -0.1083158404, 0.3268550932, -0.1563325524, 0.2969709039, -0.205931142, 0.0423744917, -0.0350833796, -0.1536311507, 0.0389462486, -0.3043987155, -0.3341439366, 0.0511075109, -0.0429352149, -0.1612557769, -0.1311007142, 0.1183316037, 0.1708218902, 0.1495737284, -0.1346122175, 0.1372232735, -0.3764242232, 0.1445041448, 0.0494961552, 0.1159211174, 0.4347306192, 0.0688749403, 0.0020961091, 0.0667254999, -0.4192672074, -0.0635156408, 0.2809040844, 0.0510031208, 0.0156694949, 0.3901450932, 0.0600491539, 0.650993526, 0.5063643456, -0.1862694919, 0.157883063, 0.0148959737, -0.1145068705, -0.4058781564, -0.1702889204, 0.1095636636, -0.2204568833, 0.118180424, 0.4101578295, -0.0052146688, -0.4526444077, 0.0020455196, 0.2613652647, -0.2650694847, -0.0189335719, 0.1734434664, -0.1055789888, 0.1956783235, 0.1890766621, -0.1457653642, -0.318857789, -0.0576308966, -0.049839668, -0.1312033981, -0.1142139733, -0.2327937782, -0.5820652843, 0.000104364, -0.3677592874, 0.2439449281, 0.0063360222, 0.2492840588, 0.0271378458, 0.0890650526, 0.3273804486, -0.0116159394, 0.4494196773, -0.3170933425, -0.1917442083, 0.1078536808, -0.4520252347, -0.2145803571, 0.0766328871, -0.1998126209, 0.2188531458, 0.6070114374, 0.5290969014, -0.1593937427, -0.2424488068, -0.0145310657, 0.0675069094, 0.2063870281, -0.2496496439, -0.2906807363, 0.1218738705, -0.146033287, 0.1630266309, -0.0644272193, 0.1508835852, 0.0983755961, -0.181458354, 0.036500439, 0.0545815378, 0.2548565865, 0.2476998568, 0.1457832158, 0.0650623962, 0.31042099, 0.3232926428, -0.1338675022, 0.1037747487, 0.2178994417, -0.0925101265, -0.1132436246, 0.190993011, 0.0520567484, 0.3045852482, 0.3385306597, 0.085650526, 0.0982142091, 0.0943278521, 0.30663082, -0.2347390801, 0.3093485832, 0.4002847373, 0.4037317634, -0.4667280316, -0.5559284687, -0.0690211132, 0.4330454469, -0.1820667088, 0.2211444676, -0.7285043001, 0.0773608834, 0.1097153649, 0.1712526083, 0.8330785036, -0.4548245072, 0.084821552, -0.3236433566, 0.253737092, 0.0580800883, -0.7181646824, 0.0962230638, -0.2373637408, -0.2546754181, 0.0246203542, -0.1100670397, 0.1980307698, 0.5148918629, 0.1154823378, 0.2528628707, 0.4243822098, 0.2372804284, -0.0995559692, 0.3643093407, 0.4965114295, -0.4183229208, 0.1333124638, 0.0802546144, 0.1976224333, -0.2389122397, 0.0270953849, 0.0834897012, -0.0795707703, 0.0184416771, -0.3758701682, -0.2915437222, -0.4238472581, 0.2038732767, -0.0037294556, 0.2687778473, 0.3288631737, 0.279758513, -0.0635965243, 0.1441976875, -0.0059178043, 0.0863514245, 0.2842143774, 0.2989463508, 0.3509506583, -0.5309542418, -0.0671196505, -0.0798981115, -0.2635246515, -0.1854156554, -0.1425002962, -0.1600114107, -0.1232455075, 0.3970692158, 0.1707141548, 0.1685151756, -0.1710101068, 0.284136802, 0.0973167717, -0.1147538126, 0.0305127129, 0.1024274826, -0.0632511824, 0.6600756049, -0.2263178825, -0.4700720906, -0.0673075467, 0.3055167198, 0.202619046, -0.1621509492, 0.0514474362, 0.1235846728, -0.2654482126, -0.1657327563, 0.267919898, -0.0332038179, -0.0632685423, 0.0777313411, -0.0185652338, -0.2477263212, 0.2914329469, 0.0157893021, -0.0839611441, -0.0706939697, -0.1701775789, -0.2372147441, -0.2801136374, -0.1467525065, -0.2820577323, -0.1556297988, 0.2202245593, 0.0711506382, 0.0766155049, 0.4940486848, -0.1891955584, -0.015063487, -0.0130065829, 0.2362148464, -0.0515912548, -0.221439153, 0.0374455936, -0.0237099864, -0.0277682357, 0.0990920961, -0.1186022088, -0.1766847819, -0.0388225242, 0.1717949063, -0.0014158562, -0.3216922879, 0.2939103544, -0.138736099, -0.2362678349, -0.4579728246, -0.0253311098, 0.0440419242, -0.0457150191, -0.1652328819, 0.3154081106, -0.2161612064, -0.2762580812, 0.4109306931, -0.1830655336, -0.0780496895, 0.0185389444, 0.2842988074, 0.4484981, -0.0958242714, -0.0226854235, 0.0760353431, 0.37302652, 0.050504867, 0.1415214688, -0.0844873115, 0.1599352062, 0.2427993119, 0.3568879962, 0.189192608, 0.1293494105, -0.2801514566, 0.0930407941, 0.0573858693, -0.1989367008, -0.1231894046, 0.4903805852, 0.018205408, 0.1448256522, 0.0927428678, 0.3649455607, 0.3037866354, 0.016197823, -0.1273453832, 0.1338043809, -0.2889988422, 0.0724493861, 0.086003691, 0.1859663427, 0.2598798871, 0.426265955, 0.0697906986, 0.0363905206, 0.4503246844, 0.2709546983, 0.3376742303, 0.477507025, 0.3344380558, -0.0255362056, -0.3478301167, 0.2448360473, 0.4501989484, -0.3315545619, -0.1329411864, -0.0553730503, 0.1937811077, -0.2377571166, -0.3416781127, -0.2749477029, 0.4440899491, -0.2080302089, -0.3045455813, 0.1787309945, -0.0995023102, -0.0396523178, 0.1984783113, -0.2173382491, 0.142400533, 0.7284573317, 0.0734272152, 0.0488699749, -0.3905399442, -0.2922236323, -0.157020852, 0.1194629893, -0.1403241009, 0.2661328018, -0.2927120328, 0.0441738442, 0.035260994, 0.3550228775, 0.3926253319, 0.3303479552, -0.1617084593, 0.0841674358, -0.0571856871, 0.1578367651, -0.0234029405, 0.2517147958, 0.0219425, 0.0856103301, 0.1510845572, -0.0631430894, -0.1325367093, -0.5011907816, -0.0569896363, 0.2782664895, -0.1449996978, 0.2023570836, -0.2890169024, -0.1213660762, 0.0647268817, 0.3031772077, -0.2443993688, -0.0538224168, 0.4503954649, -0.484729141, 0.0268957205, -0.173154816, 0.0600577928, -0.0299805682, 0.5599966645, 0.2798052132, -0.0255500227, -0.4537344575, -0.1623741239, -0.6362347603, -0.0669202358, -0.2945364118, 0.2655954957, 0.0150776803, 0.292450726, 0.0856207311, 0.2242642194, 0.3306147158, 0.005551368, -0.1317662895, 0.3757702112, -0.2399873286, 0.5442325473, -0.2748650312, -0.188313514, -0.0854738057, -0.4263992906, 0.3769554794, 0.1100716293, -0.1097063422, -0.2021089047, 0.0195116997, 0.2056245059, 0.1438641101, 0.2136925161, 0.3713986278, 0.3717585802, 0.0488744974, 0.0633163825, -0.1134328544, 0.1278327405, -0.0979392976, 0.2556671798, -0.1105475426, 0.0603193939, -0.2797142267, 0.1180018783, 0.0593304709, -0.1554960161, -0.0002600625, -0.2810497582, -0.3650558889, -0.050783582, -0.1279812157, 0.2740594447, 0.0406713784, 0.3598730862, 0.1757290959, -0.1003120393, -0.2375796735, -0.0797625035, -0.0203343779, -0.3013192713, -0.2677738965, -0.5111193657, 0.1080261543, -0.1718794852, 0.1276899874, -0.2887655497, -0.3083530664, 0.3282150626, -0.018147748, -0.4100753963, 0.3328619301, -0.3763073683, -0.1390819401, -0.177398473, 0.0250444803, -0.1261181235, -0.4447461963, 0.147843346, -0.0966655537 ]
https://github.com/huggingface/datasets/issues/1992
`datasets.map` multi processing much slower than single processing
I am still experiencing this issue with datasets 1.9.0.. Has there been a further investigation? <img width="442" alt="image" src="https://user-images.githubusercontent.com/29157715/126143387-8b5ddca2-a896-4e18-abf7-4fbf62a48b41.png">
Hi, thank you for the great library. I've been using datasets to pretrain language models, and it often involves datasets as large as ~70G. My data preparation step is roughly two steps: `load_dataset` which splits corpora into a table of sentences, and `map` converts a sentence into a list of integers, using a tokenizer. I noticed that `map` function with `num_proc=mp.cpu_count() //2` takes more than 20 hours to finish the job where as `num_proc=1` gets the job done in about 5 hours. The machine I used has 40 cores, with 126G of RAM. There were no other jobs when `map` function was running. What could be the reason? I would be happy to provide information necessary to spot the reason. p.s. I was experiencing the imbalance issue mentioned in [here](https://github.com/huggingface/datasets/issues/610#issuecomment-705177036) when I was using multi processing. p.s.2 When I run `map` with `num_proc=1`, I see one tqdm bar but all the cores are working. When `num_proc=20`, only 20 cores work. ![Screen Shot 2021-03-05 at 11 04 59](https://user-images.githubusercontent.com/29157715/110056895-ef6cf000-7da2-11eb-8307-6698e9fb1ad4.png)
19
`datasets.map` multi processing much slower than single processing Hi, thank you for the great library. I've been using datasets to pretrain language models, and it often involves datasets as large as ~70G. My data preparation step is roughly two steps: `load_dataset` which splits corpora into a table of sentences, and `map` converts a sentence into a list of integers, using a tokenizer. I noticed that `map` function with `num_proc=mp.cpu_count() //2` takes more than 20 hours to finish the job where as `num_proc=1` gets the job done in about 5 hours. The machine I used has 40 cores, with 126G of RAM. There were no other jobs when `map` function was running. What could be the reason? I would be happy to provide information necessary to spot the reason. p.s. I was experiencing the imbalance issue mentioned in [here](https://github.com/huggingface/datasets/issues/610#issuecomment-705177036) when I was using multi processing. p.s.2 When I run `map` with `num_proc=1`, I see one tqdm bar but all the cores are working. When `num_proc=20`, only 20 cores work. ![Screen Shot 2021-03-05 at 11 04 59](https://user-images.githubusercontent.com/29157715/110056895-ef6cf000-7da2-11eb-8307-6698e9fb1ad4.png) I am still experiencing this issue with datasets 1.9.0.. Has there been a further investigation? <img width="442" alt="image" src="https://user-images.githubusercontent.com/29157715/126143387-8b5ddca2-a896-4e18-abf7-4fbf62a48b41.png">
[ -0.4408696294, -0.2572330534, -0.1001466587, 0.3424952328, -0.1136198193, 0.0254862234, 0.3359663486, 0.1372743994, 0.0238079354, -0.0266043171, 0.0728430301, 0.4267615378, 0.1649508774, 0.1844829619, -0.1783975214, 0.0735182986, 0.1910467446, -0.0237313882, 0.1997009814, -0.0175592601, -0.1721213758, 0.1267192811, -0.4863219857, -0.0251147412, -0.4187075496, -0.1551897079, 0.1128486097, 0.1078350693, -0.161344707, -0.242403537, -0.2254242897, 0.1812612116, -0.09897919, 0.5712864995, -0.0001213278, -0.1757614017, 0.026249513, 0.2655772567, 0.0566575974, 0.0632181317, -0.1749767661, -0.2656294703, -0.0603120849, -0.1064618975, 0.1302662641, 0.1959711313, -0.0412269607, -0.459274888, 0.0279739182, 0.0956207439, 0.0683356225, 0.3693208992, -0.3358563781, 0.0190168284, -0.3772296309, 0.1757359356, -0.1743130386, 0.0439391956, 0.2703150511, -0.1895017475, -0.1327498257, 0.2942253947, -0.0594554543, 0.2955109775, -0.029309798, -0.0800076872, 0.0435419232, -0.4581356645, 0.2109427154, 0.3413068652, 0.0336229913, -0.0598059893, -0.2014713883, -0.2505912781, -0.3135105073, -0.0960754752, 0.1881504059, 0.158623606, 0.1437423676, 0.0002748277, -0.5647349954, 0.1250048876, 0.3329138458, -0.0845782086, -0.160668999, 0.0009775609, 0.1214760169, 0.3006644249, 0.3285796046, 0.1026581973, -0.0240332372, -0.2341749072, 0.3186653256, 0.2144549936, -0.7959994078, -0.0313886404, 0.2321541905, -0.1166580245, -0.0702338815, -0.2011481375, -0.0824338943, 0.3807694018, -0.3303595781, 0.0957021639, 0.311345458, -0.0816919059, 0.0368810184, 0.1326555461, -0.0200125333, -0.1649898589, -0.3204188049, 0.0855834112, 0.0375058129, -0.3145133555, -0.0588686839, 0.1090916693, -0.2920226157, -0.0776980221, -0.1529198736, 0.0577999577, -0.204458639, -0.0747550353, 0.1519747227, 0.0931527242, -0.0251009315, 0.7979208231, -0.2888889909, 0.0677869022, -0.4647262692, -0.551089704, -0.0266884603, -0.1435279697, -0.3716954887, 0.2059826255, 0.14672786, -0.0441314243, 0.1381735802, 0.2995371819, 0.0675622225, -0.1942554414, 0.3298444748, -0.5215240717, 0.1908670366, 0.0897703916, 0.1518647671, 0.5952274203, -0.1308274269, 0.3086298704, -0.1146127209, 0.2425245941, -0.5119681954, -0.2261328697, 0.1801622063, -0.0164728556, 0.0661156401, 0.1085789353, -0.4507104158, 0.4928020537, 0.3107573688, -0.2005253136, -0.191756472, -0.2191670239, -0.6590131521, -0.1549581587, -0.037850976, 0.1781470478, -0.3581599295, 0.2357656807, -0.3264366984, 0.1465030313, 0.4354631901, 0.5881888866, -0.1908946633, 0.374227643, -0.0167535581, 0.216868028, -0.0051937476, -0.0612439215, -0.40908885, 0.5504706502, -0.1573845148, -0.0077368096, -0.1996926516, 0.1322533488, 0.2520763874, -0.0667856559, 0.2841031849, 0.2935759425, 0.0094000474, 0.3959366083, -0.2198731601, -0.1206628084, 0.1546421647, 0.0758329555, -0.0520669445, -0.117408812, -0.0040200129, -0.2566079199, 0.3107919991, 0.0013410114, 0.0485639423, 0.4202736914, -0.3765274882, -0.181442976, -0.1402570903, -0.2091576159, -0.0894150138, 0.3687587976, -0.011204876, 0.0369150676, 0.3978400826, 0.025036864, 0.1763715446, 0.1276010126, -0.0591954701, -0.0834365338, -0.0933099091, -0.0704989433, -0.1872859895, -0.1743263304, -0.022125937, 0.443282187, 0.2146654874, -0.1109527349, -0.0165354516, -0.1274924278, 0.0751289725, 0.0695859492, -0.1862868071, -0.080008015, 0.0683451593, 0.04427246, -0.0770368502, 0.2573572397, 0.4579808712, -0.0575391389, 0.1573874056, 0.0783576667, 0.3972083926, -0.0391155854, 0.0224032719, -0.1433431655, 0.1175412014, -0.2493546158, -0.0373167321, 0.3127612174, 0.1098826677, 0.4193724096, 0.0704617053, -0.1443877816, 0.0071858093, 0.3014128804, 0.1643481851, 0.0150562301, 0.3293918073, 0.3466157019, 0.2566778958, 0.3388876021, -0.1154530793, 0.346378684, 0.6238066554, 0.0678068399, -0.3361594677, 0.0286232438, -0.1701202393, -0.3801421821, 0.0395854563, -0.113144964, 0.5269432068, 0.0170900263, 0.2577415705, -0.0255263038, -0.1162776351, -0.0751271918, -0.0387657806, 0.1148211136, 0.2368960828, -0.0769185349, 0.3169470429, -0.035440065, -0.063543424, -0.2647985816, 0.3754662871, 0.2200481296, -0.2382182628, 0.0989618152, -0.3365548849, 0.1643038839, 0.1856619567, -0.123355858, -0.2650386691, -0.2415280342, -0.1381919086, -0.0913198218, 0.2174681127, -0.0295522306, 0.2439495623, -0.1340826899, -0.0943092033, -0.0267706439, 0.0108898804, -0.1664040685, -0.155969888, 0.0049409382, 0.2704432309, 0.22643058, 0.0572018921, -0.0552711673, -0.253831774, -0.0788092464, -0.2205042541, -0.0990528688, 0.1591480076, 0.0593898073, -0.1872387528, -0.0787213966, -0.2335619926, 0.1749192774, 0.1698780507, -0.2436436117, -0.1829374433, 0.0668815225, -0.1159514636, -0.2466943711, 0.0244952813, -0.1498460919, -0.0929283202, -0.1155195087, 0.2580093443, -0.1713644862, 0.3255140185, -0.1932544112, 0.0785440207, -0.0488127731, -0.1118040606, -0.0171389282, -0.3181796074, -0.3501659036, 0.0268698968, -0.0320225433, -0.2036224008, -0.1449831873, 0.0673172176, 0.180342406, 0.1953357458, -0.1574308425, 0.1874528527, -0.4001611471, 0.1639232486, 0.0731300265, 0.0248606224, 0.4335303605, 0.0243836455, 0.0598815307, -0.00291989, -0.4167132676, -0.0724285692, 0.2753512561, 0.0008795485, -0.0096100867, 0.3409215808, 0.0701248348, 0.628754735, 0.5038677454, -0.1901981086, 0.1679045856, -0.0031841435, -0.1370070279, -0.3670369685, -0.2273973823, 0.1343928427, -0.2523147464, 0.1493883133, 0.4214681089, -0.0082764756, -0.4179486036, -0.0153307393, 0.254668802, -0.2011985034, -0.0177169591, 0.1325406432, -0.1200013757, 0.2148341537, 0.2546671033, -0.164508298, -0.3432222605, -0.0456089452, -0.0871296674, -0.1086413413, -0.1062071174, -0.2582456768, -0.4892932773, -0.0094414391, -0.3960964084, 0.2227960825, 0.0528320037, 0.3650022149, -0.0304193497, 0.1201307699, 0.3037042022, 0.0031183623, 0.5263447165, -0.4160200059, -0.114883095, 0.1485776901, -0.3820874691, -0.3232316673, 0.0533492714, -0.1624047458, 0.3027198911, 0.560893178, 0.5175610185, -0.0368243009, -0.2009236962, -0.0143956151, 0.1242436618, 0.1565524042, -0.2552374601, -0.3296490908, 0.1101542115, -0.1132431477, 0.108299017, -0.0189096704, 0.1200614572, 0.1201650575, -0.1573016644, 0.0094521623, 0.1104449406, 0.2438210398, 0.2051905096, 0.1092440337, 0.0710772574, 0.3489989042, 0.2189204097, -0.107521005, 0.0731958449, 0.3272769451, -0.1145710647, -0.112883091, 0.2355374992, 0.0178014822, 0.3012568355, 0.2909522057, 0.1026960984, 0.0352195762, 0.1488348842, 0.2517142594, -0.220465377, 0.3065986335, 0.3736085296, 0.3654960394, -0.4923383594, -0.5268406272, -0.0194875561, 0.4596675038, -0.1460446119, 0.2637676597, -0.7810161114, 0.09064693, 0.0490973778, 0.0831264555, 0.7045711875, -0.4334188104, 0.031170398, -0.3011366129, 0.2061886489, -0.0606680661, -0.5662206411, 0.1323686838, -0.1896803081, -0.3490005732, 0.0372539759, -0.1087570637, 0.2165382504, 0.5372940302, 0.1653520018, 0.2765431702, 0.3553302288, 0.108492136, -0.0140683819, 0.3652667999, 0.5064207315, -0.3291372955, 0.1828553081, 0.0533328839, 0.1820650995, -0.2416642904, 0.0324813165, 0.096376121, -0.0506635085, 0.0337357819, -0.3181340098, -0.1936040074, -0.4162681699, 0.2353662848, -0.0543483943, 0.2807029784, 0.3980908096, 0.2447253615, -0.0802797675, 0.0983421654, -0.007344299, 0.0743070617, 0.2642247677, 0.2403719723, 0.3874527812, -0.456779778, -0.0083358074, -0.0959096923, -0.2261186093, -0.2581937313, -0.1545787752, -0.0594795309, -0.1083789542, 0.4497855604, 0.1455170363, 0.1635872424, -0.1944187284, 0.2312682569, 0.0901705921, -0.1244405285, -0.0003968738, 0.0900224075, 0.0621659495, 0.6624906659, -0.2686816454, -0.4959306717, -0.0242759418, 0.4147468805, 0.2246543765, -0.0770730302, 0.0569661632, 0.2068657577, -0.2856075168, -0.1542341709, 0.1575708091, -0.1063688993, -0.1054045856, 0.1102897525, -0.0285245944, -0.2333064079, 0.2675740719, -0.1570524573, -0.1613532901, -0.0919728577, -0.1774330735, -0.280631721, -0.2413358688, -0.1948483288, -0.3812473714, -0.2053020298, 0.2162437886, 0.0149366371, 0.1217981875, 0.4578036666, -0.1445573717, 0.0478686616, 0.0947165936, 0.1962704062, -0.0460682549, -0.2353437543, 0.079306595, -0.0385891944, -0.0526576787, 0.1063537002, -0.0901940465, -0.157567963, -0.0040822774, 0.1757276803, -0.0131403748, -0.2532690763, 0.3499308825, -0.1179876551, -0.2294913828, -0.4110829234, -0.030595772, 0.0631313473, -0.0195534304, -0.0836750418, 0.261487931, -0.304856658, -0.262929678, 0.4484556317, -0.1784748584, -0.070691362, -0.0015811026, 0.2966395319, 0.4717693031, -0.0923742056, -0.0766382962, 0.0200876705, 0.2456786036, 0.0515166037, 0.1467118561, -0.1209757477, 0.2085914612, 0.2829656899, 0.3256473243, 0.1422916949, 0.1022860408, -0.2498799562, 0.011392504, 0.0165359415, -0.2410697788, -0.1997709274, 0.5652071834, 0.0460901856, 0.1719611585, 0.0491669141, 0.3464103639, 0.1937990636, -0.0170079805, -0.0793521851, 0.0941891223, -0.2903538942, 0.0594078414, 0.1839846522, 0.2628831863, 0.268840462, 0.4361991882, 0.1250478029, -0.0083826073, 0.4837760329, 0.2577887177, 0.3150915802, 0.5179545879, 0.2492688149, -0.0326482058, -0.3772102594, 0.1907105744, 0.4949614406, -0.3534457982, -0.0469899513, -0.0648748577, 0.2101311982, -0.2522913218, -0.3471131027, -0.2580217123, 0.3463011384, -0.1636478901, -0.2520795763, 0.2229750901, -0.0683909655, -0.0241793692, 0.176917389, -0.2295465022, 0.1455717087, 0.7704072595, 0.1165913567, 0.0410270877, -0.3815882206, -0.309658289, -0.1625858545, 0.1533403695, -0.1430545151, 0.1957415938, -0.3325940371, -0.0119431131, -0.0246117655, 0.3084972203, 0.3674662709, 0.3030284643, -0.12775442, 0.0828331113, -0.0116252098, 0.1468791962, -0.0056863725, 0.1899855435, -0.0187837146, 0.1753656864, 0.1828665137, -0.0948647112, -0.0923044533, -0.4366368949, 0.0524754897, 0.3449983001, -0.1648991406, 0.1421352029, -0.3117668629, -0.1528321803, 0.0407487266, 0.2989788055, -0.2570866048, -0.0971025079, 0.5395148993, -0.4918873906, 0.0776439458, -0.1672453582, 0.035982687, -0.0960043147, 0.5680379868, 0.3039913476, -0.0151547641, -0.3837943375, -0.1259978563, -0.6268151999, -0.0605527982, -0.3254492581, 0.2521611154, 0.0694543719, 0.2867888212, 0.0498366244, 0.1253738105, 0.3945255578, -0.0954657197, -0.0745221227, 0.3330538273, -0.3459299207, 0.4537992477, -0.2335770726, -0.2067915499, -0.0811020657, -0.4442896247, 0.3849734068, 0.0730768293, -0.1252090931, -0.1655890644, -0.0261918455, 0.174476251, 0.1303198338, 0.1954289973, 0.336641103, 0.3453725874, 0.0390878916, 0.0184383914, -0.1458939761, 0.1976261288, -0.0389232561, 0.3265101016, -0.0632227361, 0.0547963083, -0.2816340029, 0.1722018123, 0.1057347953, -0.1668167412, 0.0084096566, -0.2033716291, -0.3303465247, -0.038922213, -0.029436022, 0.336932689, 0.0936923027, 0.385831207, 0.1202972978, -0.0968830436, -0.170424372, -0.1283485889, -0.0215359926, -0.272849828, -0.3036381602, -0.439343214, 0.2135728747, -0.2672080994, 0.1529794037, -0.22650823, -0.3191965818, 0.3211679757, -0.0462011546, -0.3679233789, 0.3406695724, -0.3830777705, -0.0795068219, -0.1634626985, 0.0433354974, -0.0836594105, -0.4640287459, 0.1866618544, -0.1077284366 ]
https://github.com/huggingface/datasets/issues/1990
OSError: Memory mapping file failed: Cannot allocate memory
Do you think this is trying to bring the dataset into memory and if I can avoid it to save on memory so it only brings a batch into memory? @lhoestq thank you
Hi, I am trying to run a code with a wikipedia dataset, here is the command to reproduce the error. You can find the codes for run_mlm.py in huggingface repo here: https://github.com/huggingface/transformers/blob/v4.3.2/examples/language-modeling/run_mlm.py ``` python run_mlm.py --model_name_or_path bert-base-multilingual-cased --dataset_name wikipedia --dataset_config_name 20200501.en --do_train --do_eval --output_dir /dara/test --max_seq_length 128 ``` I am using transformer version: 4.3.2 But I got memory erorr using this dataset, is there a way I could save on memory with dataset library with wikipedia dataset? Specially I need to train a model with multiple of wikipedia datasets concatenated. thank you very much @lhoestq for your help and suggestions: ``` File "run_mlm.py", line 441, in <module> main() File "run_mlm.py", line 233, in main split=f"train[{data_args.validation_split_percentage}%:]", File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/load.py", line 750, in load_dataset ds = builder_instance.as_dataset(split=split, ignore_verifications=ignore_verifications, in_memory=keep_in_memory) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/builder.py", line 740, in as_dataset map_tuple=True, File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/utils/py_utils.py", line 225, in map_nested return function(data_struct) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/builder.py", line 757, in _build_single_dataset in_memory=in_memory, File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/builder.py", line 829, in _as_dataset in_memory=in_memory, File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/arrow_reader.py", line 215, in read return self.read_files(files=files, original_instructions=instructions, in_memory=in_memory) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/arrow_reader.py", line 236, in read_files pa_table = self._read_files(files, in_memory=in_memory) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/arrow_reader.py", line 171, in _read_files pa_table: pa.Table = self._get_dataset_from_filename(f_dict, in_memory=in_memory) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/arrow_reader.py", line 302, in _get_dataset_from_filename pa_table = ArrowReader.read_table(filename, in_memory=in_memory) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/arrow_reader.py", line 322, in read_table stream = stream_from(filename) File "pyarrow/io.pxi", line 782, in pyarrow.lib.memory_map File "pyarrow/io.pxi", line 743, in pyarrow.lib.MemoryMappedFile._open File "pyarrow/error.pxi", line 122, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 99, in pyarrow.lib.check_status OSError: Memory mapping file failed: Cannot allocate memory ```
33
OSError: Memory mapping file failed: Cannot allocate memory Hi, I am trying to run a code with a wikipedia dataset, here is the command to reproduce the error. You can find the codes for run_mlm.py in huggingface repo here: https://github.com/huggingface/transformers/blob/v4.3.2/examples/language-modeling/run_mlm.py ``` python run_mlm.py --model_name_or_path bert-base-multilingual-cased --dataset_name wikipedia --dataset_config_name 20200501.en --do_train --do_eval --output_dir /dara/test --max_seq_length 128 ``` I am using transformer version: 4.3.2 But I got memory erorr using this dataset, is there a way I could save on memory with dataset library with wikipedia dataset? Specially I need to train a model with multiple of wikipedia datasets concatenated. thank you very much @lhoestq for your help and suggestions: ``` File "run_mlm.py", line 441, in <module> main() File "run_mlm.py", line 233, in main split=f"train[{data_args.validation_split_percentage}%:]", File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/load.py", line 750, in load_dataset ds = builder_instance.as_dataset(split=split, ignore_verifications=ignore_verifications, in_memory=keep_in_memory) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/builder.py", line 740, in as_dataset map_tuple=True, File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/utils/py_utils.py", line 225, in map_nested return function(data_struct) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/builder.py", line 757, in _build_single_dataset in_memory=in_memory, File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/builder.py", line 829, in _as_dataset in_memory=in_memory, File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/arrow_reader.py", line 215, in read return self.read_files(files=files, original_instructions=instructions, in_memory=in_memory) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/arrow_reader.py", line 236, in read_files pa_table = self._read_files(files, in_memory=in_memory) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/arrow_reader.py", line 171, in _read_files pa_table: pa.Table = self._get_dataset_from_filename(f_dict, in_memory=in_memory) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/arrow_reader.py", line 302, in _get_dataset_from_filename pa_table = ArrowReader.read_table(filename, in_memory=in_memory) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/arrow_reader.py", line 322, in read_table stream = stream_from(filename) File "pyarrow/io.pxi", line 782, in pyarrow.lib.memory_map File "pyarrow/io.pxi", line 743, in pyarrow.lib.MemoryMappedFile._open File "pyarrow/error.pxi", line 122, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 99, in pyarrow.lib.check_status OSError: Memory mapping file failed: Cannot allocate memory ``` Do you think this is trying to bring the dataset into memory and if I can avoid it to save on memory so it only brings a batch into memory? @lhoestq thank you
[ -0.2615424395, -0.037264064, 0.052039884, 0.6045718789, 0.4538375735, 0.2834011316, 0.1456437558, 0.2724668086, 0.1785510629, 0.1056612357, -0.0581839532, 0.2273858339, -0.1771185994, -0.14591676, -0.0370904915, -0.1933317184, 0.0840208307, 0.0134713128, -0.5429401398, 0.1604685783, -0.3581551313, 0.1157063544, -0.1856328249, -0.1171600074, -0.298037529, -0.1035159305, -0.0006042197, -0.0976308584, 0.0188777149, -0.3274092674, 0.254856348, -0.1293893158, 0.0864004791, 0.5501930118, -0.0001231607, -0.0137763247, 0.2835691869, -0.1672081649, -0.2533998489, -0.12841627, -0.0416564308, -0.0297980495, 0.0984970182, -0.2252505124, -0.0119242668, -0.052592732, 0.2317304015, -0.3445146382, 0.4429750741, 0.2243883908, 0.1404946446, 0.0699651092, 0.452452153, -0.0441125929, 0.1739076525, 0.3341218233, 0.0713807568, 0.3320229053, -0.2908711433, -0.4356870949, -0.03041289, 0.3930503726, -0.0399410948, 0.0052878018, 0.5653296113, -0.1445837319, 0.0253532305, -0.336817652, 0.1123084277, -0.0072492044, 0.5341089368, -0.4902599454, -0.0283724852, -0.0147869289, -0.0533835068, -0.095239915, 0.2970979512, 0.2689523697, -0.2722631097, -0.1447608322, -0.1304169595, -0.3249985874, -0.3197001815, 0.44286865, -0.090921402, 0.1910010874, -0.0247157998, 0.3037816584, 0.5653705597, -0.2050893009, -0.2340614796, -0.0758119971, 0.1365433037, 0.3287970126, -0.2677203417, -0.1660288274, -0.3029489815, -0.2047091573, 0.3511368632, -0.4987059534, -0.3861929178, -0.1260011196, 0.1516698003, 0.0212388765, 0.403645426, 0.28173545, -0.2963657081, 0.3228371441, 0.312296778, 0.1742714792, -0.2495377362, -0.1589901745, 0.0767952651, -0.0373789892, -0.1110500097, -0.1914824843, 0.0837736949, -0.0016543567, -0.013746053, -0.0218037032, -0.2128320038, -0.123209171, -0.0538496748, 0.505523026, -0.1040842608, -0.0846187323, 0.3738275766, 0.1444596201, -0.0126844086, -0.0080770254, -0.056374982, 0.4104229808, -0.3436279297, 0.2843071222, 0.0502635688, -0.001158379, 0.3263406456, -0.0727057829, -0.0331282876, -0.0566818938, 0.1620449424, -0.3580228984, 0.0087110326, 0.1846880615, 0.1788563281, 0.2493288815, 0.2503515482, -0.147986114, -0.1526844203, 0.1969970167, -0.1634680331, -0.243303746, 0.0387372151, 0.0109293135, 0.0980136245, 0.2277472615, -0.2775138021, 0.1828102469, 0.6528621316, -0.0775154084, -0.0572651513, -0.0801965892, -0.2296680659, -0.1687688679, 0.2708779871, 0.5193135738, -0.0646528527, -0.1054834798, -0.1169703826, 0.167704314, 0.2510126829, 0.441383481, -0.1638230085, 0.2519156635, -0.0972213, 0.0167983323, 0.4141837358, -0.3105096221, -0.3419042528, -0.0056237914, -0.02522894, -0.1343221664, 0.0232779887, 0.1321311742, 0.0773996264, 0.1156660095, 0.1119254678, 0.3104186654, 0.0561034679, 0.2800842226, -0.3041982949, -0.2975763977, 0.2528687119, 0.074746117, 0.0653967634, -0.2040827572, -0.0608491711, 0.8107675314, 0.2972949743, -0.2623122931, 0.1555342078, 0.3147747815, 0.1061367095, 0.0064360863, 0.0871190131, -0.2199126482, -0.2514473796, -0.0734246075, -0.0566992164, 0.3305937648, -0.1451887935, -0.04148091, 0.153722778, -0.1186708957, -0.1722492129, -0.3908628523, 0.0622954033, 0.0130734798, 0.1235826239, 0.0900844112, 0.0810609162, 0.0560084358, -0.0939699858, 0.2478924245, -0.5998022556, 0.1715031266, -0.2896076143, -0.1076941639, -0.0214399546, -0.0624919683, 0.0274149645, -0.0474655963, -0.0685557574, 0.151992619, 0.0771347284, -0.1671153456, -0.0906849205, 0.003420189, 0.3101093769, -0.322114408, 0.1657057106, 0.2421724498, 0.1955043375, -0.0940228254, -0.1976960003, -0.1558783948, 0.1051338837, 0.3647210896, 0.079187721, 0.1687754244, 0.0262408704, 0.0895475447, 0.1797859967, -0.2070021331, 0.2181633264, 0.0123552121, 0.2408839911, 0.0950063542, -0.0293943137, -0.3097333014, 0.4583241045, 0.2681967914, 0.2772992551, 0.2424817234, -0.4937292039, -0.0740424991, -0.0656517893, -0.0718549863, 0.3221564889, 0.050078623, -0.1195640862, 0.1201547533, 0.1963379681, 0.0097030289, 0.3097597957, 0.1743880957, 0.4940780401, -0.0187087823, 0.1057225168, -0.0806347951, -0.099587217, -0.1468483806, 0.050045602, 0.5077640414, -0.1753804684, -0.0157850236, -0.1864267886, -0.400614202, -0.2753978968, 0.1643147469, -0.4642427862, -0.1369272768, -0.3849298358, 0.324758023, 0.0695632994, 0.2584396005, 0.4160763323, -0.0507139862, 0.3513424695, -0.1406711936, 0.0687716752, -0.2304129452, -0.119075343, -0.0627370849, 0.4409621954, -0.2204725891, 0.0868325308, 0.1567281336, -0.3195579052, -0.2135091722, -0.1457150131, 0.1469895244, -0.0808213577, 0.1255744845, 0.0596420653, 0.5084350109, -0.1233982295, -0.2323760241, 0.1721096486, 0.0899071246, -0.0588723496, -0.0373005271, 0.0232936516, 0.1553850174, 0.0540889949, -0.2931137085, -0.1797570139, -0.5081845522, 0.4014804065, -0.0338909701, 0.1513630897, 0.3279178739, 0.1617624164, 0.1156148165, -0.1213657856, 0.0894481912, -0.1621505171, 0.0160197765, 0.3207914531, -0.1488259435, -0.211434871, -0.0290639997, 0.0627379119, 0.3063037992, 0.2301858366, -0.615758121, -0.0209105052, -0.1136818752, -0.0108945817, -0.0588508286, 0.2863110602, 0.3913800418, 0.0789213553, 0.1078000665, 0.1375889778, -0.1677573323, 0.0949069113, -0.040983066, 0.3248965442, 0.220079124, 0.5234261751, 0.0637262985, 0.8384488225, 0.3419641852, 0.1871408075, 0.2288259268, -0.0220656786, 0.0835642591, 0.0049699321, -0.3481869102, -0.0082089268, -0.0368971527, 0.0619995892, 0.1661427021, 0.0087549537, -0.3374430537, -0.1676725894, -0.3505285978, 0.0459901616, -0.3771669269, 0.2698538005, 0.175124675, 0.3674235344, -0.0838355273, -0.0824131817, 0.0231613889, -0.351578176, 0.1945329159, 0.2135322541, -0.0175282806, 0.0211241655, -0.1137082353, -0.3958892226, -0.6405459642, 0.1182040796, -0.1544017941, 0.0629793257, -0.1038482487, 0.0933977962, 0.0600523204, 0.1583071798, 0.7553268075, 0.0059234593, -0.3072925806, -0.0461270139, -0.2609420121, -0.5063740015, 0.213784337, -0.1841569543, 0.3441572487, 0.1433891803, 0.5205535889, -0.3616019487, -0.098133713, 0.3212876618, 0.3747147024, -0.2170826197, -0.2046920657, -0.1343316734, -0.2551262975, -0.6043946743, 0.0041025281, 0.0545692146, 0.1934488267, 0.496452868, 0.2044564486, 0.0526691973, -0.0508969538, 0.1371938884, -0.0533756539, 0.3105924129, 0.1106535643, 0.1008516327, 0.1345037818, -0.1580678374, 0.3764193058, 0.2939085662, 0.0716901124, -0.3797551394, -0.099785462, 0.0576215796, 0.2523957789, -0.0627547055, -0.0139145963, 0.0038339905, 0.0268993936, 0.1780950427, -0.0997748151, 0.1322194636, 0.1875681281, 0.0874076486, -0.4511454403, -0.4366311133, 0.3414418399, 0.1997047067, 0.1596939117, 0.3301561773, -0.1424441338, -0.5566368103, 0.3253412247, 0.3589585125, 0.9608323574, -0.3551487327, 0.393727988, 0.0962183923, 0.2117648423, 0.6567658186, -0.475140363, 0.35296157, -0.3699407578, -0.0815761238, 0.0431752503, -0.133099556, 0.1379619837, -0.0172328185, -0.4360862076, 0.2891324461, 0.0913326889, -0.0398276374, -0.1840586364, 0.3883704543, 0.1124470308, -0.4811998606, -0.1841865033, 0.0319511034, -0.1269844472, 0.2439669222, -0.0456032529, -0.0274406429, 0.1156754866, -0.1150276363, -0.3924037814, -0.0374515839, -0.4836358726, 0.3076913059, -0.2517829537, 0.0015951246, 0.4047459662, 0.39280653, 0.0101813953, 0.3698485792, -0.1340498477, 0.01052651, -0.3600809574, -0.2767653167, -0.1850569844, 0.0676645488, 0.2424043119, -0.1937426925, -0.1071274877, 0.0763600692, -0.0399471372, -0.1982409656, -0.2103528678, -0.0318767168, -0.1298193038, -0.2045654804, -0.2123930752, 0.0132843237, -0.3584757745, -0.0186201781, 0.0458632894, 0.0108470432, -0.3378364742, 0.3286831379, 0.1423625648, -0.4008428454, 0.0307401158, 0.4164581895, 0.34854424, 0.1605856717, 0.7200254798, 0.3232617378, -0.2456388324, -0.1618595272, -0.0824734271, -0.0253359862, -0.3048345447, 0.2100928426, 0.0837547556, 0.1060535908, -0.3066005111, -0.0003772974, 0.1285433918, 0.0452361032, 0.0363892242, -0.3043984175, -0.5601995587, 0.2082495093, -0.0104776639, 0.0364992544, 0.2368941307, 0.0221909471, 0.0295315534, 0.2480151504, -0.1566305757, 0.020054169, -0.1691416204, 0.2507918477, 0.2438189834, -0.111687012, 0.103243947, -0.0129491724, -0.0043390244, 0.1593105793, -0.0150239132, -0.1269526631, 0.0454818383, 0.1532625109, -0.0268511754, -0.277785778, -0.0963581502, -0.5430380702, -0.0158968959, -0.3039937913, 0.0111278221, 0.0212793201, -0.1362704039, 0.1109777987, 0.2019032687, -0.273165524, -0.0630259216, 0.2792616785, -0.0221644603, -0.0507521667, 0.1658706814, 0.2017495036, 0.0937988237, -0.1570736766, -0.5362305045, 0.0558343902, -0.0843362063, -0.0266277585, 0.101993978, -0.1142850295, -0.3993758857, 0.3194218576, 0.0904668048, 0.1510136425, -0.1423277408, 0.2068411261, 0.2004513294, 0.0089689959, -0.1937266588, -0.0418561548, 0.330198288, -0.2920082211, -0.0505979992, 0.3277902007, -0.1311673075, 0.0453452766, -0.0299582072, 0.1311580241, 0.3588020802, -0.0734305382, 0.3226175904, 0.0061586453, -0.0834841579, -0.0167205818, 0.1939016134, 0.4057275355, 0.2587027848, 0.2043863237, -0.1556384414, 0.0376387686, -0.105872415, -0.254822582, 0.0379431583, -0.0836713463, 0.1414889991, 0.4189732671, -0.1775913537, 0.1592199206, -0.1939128339, 0.1780180335, 0.1845973432, -0.2745577693, 0.0787769109, 0.2984716892, -0.211687535, 0.0464744829, 0.1499888748, -0.1157814637, -0.0657883734, 0.1417856812, 0.0771138892, -0.6087391376, 0.4591957629, 0.1467868388, -0.2206509262, -0.1409264505, 0.2773649991, 0.4522539377, 0.0710783899, -0.3053991199, 0.0575941876, 0.026987914, 0.1365887225, -0.3318275809, 0.3094458878, 0.4621620774, 0.291584909, -0.1956238449, 0.2535725832, -0.1581639946, -0.012619298, 0.0154258087, -0.0236889254, 0.1164659858, 0.2165057659, 0.1130548418, -0.0109329466, -0.0586274862, -0.151095137, 0.1630202532, 0.1425208747, -0.2279159427, -0.3811420202, -0.0991921425, -0.1710887849, -0.0140400054, -0.0115701146, -0.5901705623, 0.2826705277, 0.5286228061, -0.1380667388, 0.0812100768, 0.0202329904, 0.0137295611, -0.0319658145, 0.48462376, 0.2030232549, -0.0330803879, -0.4814166129, -0.3177814782, -0.415076077, 0.0241081305, -0.3297816515, 0.0040629283, -0.0754074976, 0.1153873354, -0.0473554209, 0.0465940498, 0.0486276671, -0.3642249107, -0.0435178317, 0.1776145548, -0.1560722589, -0.2553375661, -0.1273900867, 0.1787594259, 0.1793887317, -0.198114574, 0.2631115019, 0.0087836981, -0.1398375183, -0.3518665433, 0.1338682473, 0.0501967669, 0.1779219061, 0.1576353908, 0.0610054657, 0.3895049691, 0.0040851086, -0.2422717363, 0.0258159377, 0.0002694093, -0.0998134613, 0.1413407475, 0.1294572204, 0.3691282868, -0.4097653627, -0.3827792406, -0.4327935278, 0.2897747755, -0.0637848452, -0.1197685748, -0.0350804254, -0.0376016572, 0.25265342, 0.0688296556, 0.0636018068, 0.1586664915, -0.0656887591, -0.0003351569, -0.4509043992, -0.2615722716, 0.4598855674, -0.4582999647, -0.3856020868, -0.0860999301, -0.095035553, -0.145935744, -0.1394126266, -0.7795308828, 0.0910595357, 0.2944114208, 0.0955305919, -0.4224693179, 0.0314955302, -0.1058145761, 0.1201663315, -0.1256256402, 0.3365497589, -0.0900947303, -0.4325062633, 0.1651301831, -0.2077717781 ]
https://github.com/huggingface/datasets/issues/1990
OSError: Memory mapping file failed: Cannot allocate memory
It's not trying to bring the dataset into memory. Actually, it's trying to memory map the dataset file, which is different. It allows to load large dataset files without filling up memory. What dataset did you use to get this error ? On what OS are you running ? What's your python and pyarrow version ?
Hi, I am trying to run a code with a wikipedia dataset, here is the command to reproduce the error. You can find the codes for run_mlm.py in huggingface repo here: https://github.com/huggingface/transformers/blob/v4.3.2/examples/language-modeling/run_mlm.py ``` python run_mlm.py --model_name_or_path bert-base-multilingual-cased --dataset_name wikipedia --dataset_config_name 20200501.en --do_train --do_eval --output_dir /dara/test --max_seq_length 128 ``` I am using transformer version: 4.3.2 But I got memory erorr using this dataset, is there a way I could save on memory with dataset library with wikipedia dataset? Specially I need to train a model with multiple of wikipedia datasets concatenated. thank you very much @lhoestq for your help and suggestions: ``` File "run_mlm.py", line 441, in <module> main() File "run_mlm.py", line 233, in main split=f"train[{data_args.validation_split_percentage}%:]", File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/load.py", line 750, in load_dataset ds = builder_instance.as_dataset(split=split, ignore_verifications=ignore_verifications, in_memory=keep_in_memory) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/builder.py", line 740, in as_dataset map_tuple=True, File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/utils/py_utils.py", line 225, in map_nested return function(data_struct) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/builder.py", line 757, in _build_single_dataset in_memory=in_memory, File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/builder.py", line 829, in _as_dataset in_memory=in_memory, File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/arrow_reader.py", line 215, in read return self.read_files(files=files, original_instructions=instructions, in_memory=in_memory) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/arrow_reader.py", line 236, in read_files pa_table = self._read_files(files, in_memory=in_memory) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/arrow_reader.py", line 171, in _read_files pa_table: pa.Table = self._get_dataset_from_filename(f_dict, in_memory=in_memory) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/arrow_reader.py", line 302, in _get_dataset_from_filename pa_table = ArrowReader.read_table(filename, in_memory=in_memory) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/arrow_reader.py", line 322, in read_table stream = stream_from(filename) File "pyarrow/io.pxi", line 782, in pyarrow.lib.memory_map File "pyarrow/io.pxi", line 743, in pyarrow.lib.MemoryMappedFile._open File "pyarrow/error.pxi", line 122, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 99, in pyarrow.lib.check_status OSError: Memory mapping file failed: Cannot allocate memory ```
56
OSError: Memory mapping file failed: Cannot allocate memory Hi, I am trying to run a code with a wikipedia dataset, here is the command to reproduce the error. You can find the codes for run_mlm.py in huggingface repo here: https://github.com/huggingface/transformers/blob/v4.3.2/examples/language-modeling/run_mlm.py ``` python run_mlm.py --model_name_or_path bert-base-multilingual-cased --dataset_name wikipedia --dataset_config_name 20200501.en --do_train --do_eval --output_dir /dara/test --max_seq_length 128 ``` I am using transformer version: 4.3.2 But I got memory erorr using this dataset, is there a way I could save on memory with dataset library with wikipedia dataset? Specially I need to train a model with multiple of wikipedia datasets concatenated. thank you very much @lhoestq for your help and suggestions: ``` File "run_mlm.py", line 441, in <module> main() File "run_mlm.py", line 233, in main split=f"train[{data_args.validation_split_percentage}%:]", File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/load.py", line 750, in load_dataset ds = builder_instance.as_dataset(split=split, ignore_verifications=ignore_verifications, in_memory=keep_in_memory) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/builder.py", line 740, in as_dataset map_tuple=True, File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/utils/py_utils.py", line 225, in map_nested return function(data_struct) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/builder.py", line 757, in _build_single_dataset in_memory=in_memory, File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/builder.py", line 829, in _as_dataset in_memory=in_memory, File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/arrow_reader.py", line 215, in read return self.read_files(files=files, original_instructions=instructions, in_memory=in_memory) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/arrow_reader.py", line 236, in read_files pa_table = self._read_files(files, in_memory=in_memory) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/arrow_reader.py", line 171, in _read_files pa_table: pa.Table = self._get_dataset_from_filename(f_dict, in_memory=in_memory) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/arrow_reader.py", line 302, in _get_dataset_from_filename pa_table = ArrowReader.read_table(filename, in_memory=in_memory) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/arrow_reader.py", line 322, in read_table stream = stream_from(filename) File "pyarrow/io.pxi", line 782, in pyarrow.lib.memory_map File "pyarrow/io.pxi", line 743, in pyarrow.lib.MemoryMappedFile._open File "pyarrow/error.pxi", line 122, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 99, in pyarrow.lib.check_status OSError: Memory mapping file failed: Cannot allocate memory ``` It's not trying to bring the dataset into memory. Actually, it's trying to memory map the dataset file, which is different. It allows to load large dataset files without filling up memory. What dataset did you use to get this error ? On what OS are you running ? What's your python and pyarrow version ?
[ -0.2615424395, -0.037264064, 0.052039884, 0.6045718789, 0.4538375735, 0.2834011316, 0.1456437558, 0.2724668086, 0.1785510629, 0.1056612357, -0.0581839532, 0.2273858339, -0.1771185994, -0.14591676, -0.0370904915, -0.1933317184, 0.0840208307, 0.0134713128, -0.5429401398, 0.1604685783, -0.3581551313, 0.1157063544, -0.1856328249, -0.1171600074, -0.298037529, -0.1035159305, -0.0006042197, -0.0976308584, 0.0188777149, -0.3274092674, 0.254856348, -0.1293893158, 0.0864004791, 0.5501930118, -0.0001231607, -0.0137763247, 0.2835691869, -0.1672081649, -0.2533998489, -0.12841627, -0.0416564308, -0.0297980495, 0.0984970182, -0.2252505124, -0.0119242668, -0.052592732, 0.2317304015, -0.3445146382, 0.4429750741, 0.2243883908, 0.1404946446, 0.0699651092, 0.452452153, -0.0441125929, 0.1739076525, 0.3341218233, 0.0713807568, 0.3320229053, -0.2908711433, -0.4356870949, -0.03041289, 0.3930503726, -0.0399410948, 0.0052878018, 0.5653296113, -0.1445837319, 0.0253532305, -0.336817652, 0.1123084277, -0.0072492044, 0.5341089368, -0.4902599454, -0.0283724852, -0.0147869289, -0.0533835068, -0.095239915, 0.2970979512, 0.2689523697, -0.2722631097, -0.1447608322, -0.1304169595, -0.3249985874, -0.3197001815, 0.44286865, -0.090921402, 0.1910010874, -0.0247157998, 0.3037816584, 0.5653705597, -0.2050893009, -0.2340614796, -0.0758119971, 0.1365433037, 0.3287970126, -0.2677203417, -0.1660288274, -0.3029489815, -0.2047091573, 0.3511368632, -0.4987059534, -0.3861929178, -0.1260011196, 0.1516698003, 0.0212388765, 0.403645426, 0.28173545, -0.2963657081, 0.3228371441, 0.312296778, 0.1742714792, -0.2495377362, -0.1589901745, 0.0767952651, -0.0373789892, -0.1110500097, -0.1914824843, 0.0837736949, -0.0016543567, -0.013746053, -0.0218037032, -0.2128320038, -0.123209171, -0.0538496748, 0.505523026, -0.1040842608, -0.0846187323, 0.3738275766, 0.1444596201, -0.0126844086, -0.0080770254, -0.056374982, 0.4104229808, -0.3436279297, 0.2843071222, 0.0502635688, -0.001158379, 0.3263406456, -0.0727057829, -0.0331282876, -0.0566818938, 0.1620449424, -0.3580228984, 0.0087110326, 0.1846880615, 0.1788563281, 0.2493288815, 0.2503515482, -0.147986114, -0.1526844203, 0.1969970167, -0.1634680331, -0.243303746, 0.0387372151, 0.0109293135, 0.0980136245, 0.2277472615, -0.2775138021, 0.1828102469, 0.6528621316, -0.0775154084, -0.0572651513, -0.0801965892, -0.2296680659, -0.1687688679, 0.2708779871, 0.5193135738, -0.0646528527, -0.1054834798, -0.1169703826, 0.167704314, 0.2510126829, 0.441383481, -0.1638230085, 0.2519156635, -0.0972213, 0.0167983323, 0.4141837358, -0.3105096221, -0.3419042528, -0.0056237914, -0.02522894, -0.1343221664, 0.0232779887, 0.1321311742, 0.0773996264, 0.1156660095, 0.1119254678, 0.3104186654, 0.0561034679, 0.2800842226, -0.3041982949, -0.2975763977, 0.2528687119, 0.074746117, 0.0653967634, -0.2040827572, -0.0608491711, 0.8107675314, 0.2972949743, -0.2623122931, 0.1555342078, 0.3147747815, 0.1061367095, 0.0064360863, 0.0871190131, -0.2199126482, -0.2514473796, -0.0734246075, -0.0566992164, 0.3305937648, -0.1451887935, -0.04148091, 0.153722778, -0.1186708957, -0.1722492129, -0.3908628523, 0.0622954033, 0.0130734798, 0.1235826239, 0.0900844112, 0.0810609162, 0.0560084358, -0.0939699858, 0.2478924245, -0.5998022556, 0.1715031266, -0.2896076143, -0.1076941639, -0.0214399546, -0.0624919683, 0.0274149645, -0.0474655963, -0.0685557574, 0.151992619, 0.0771347284, -0.1671153456, -0.0906849205, 0.003420189, 0.3101093769, -0.322114408, 0.1657057106, 0.2421724498, 0.1955043375, -0.0940228254, -0.1976960003, -0.1558783948, 0.1051338837, 0.3647210896, 0.079187721, 0.1687754244, 0.0262408704, 0.0895475447, 0.1797859967, -0.2070021331, 0.2181633264, 0.0123552121, 0.2408839911, 0.0950063542, -0.0293943137, -0.3097333014, 0.4583241045, 0.2681967914, 0.2772992551, 0.2424817234, -0.4937292039, -0.0740424991, -0.0656517893, -0.0718549863, 0.3221564889, 0.050078623, -0.1195640862, 0.1201547533, 0.1963379681, 0.0097030289, 0.3097597957, 0.1743880957, 0.4940780401, -0.0187087823, 0.1057225168, -0.0806347951, -0.099587217, -0.1468483806, 0.050045602, 0.5077640414, -0.1753804684, -0.0157850236, -0.1864267886, -0.400614202, -0.2753978968, 0.1643147469, -0.4642427862, -0.1369272768, -0.3849298358, 0.324758023, 0.0695632994, 0.2584396005, 0.4160763323, -0.0507139862, 0.3513424695, -0.1406711936, 0.0687716752, -0.2304129452, -0.119075343, -0.0627370849, 0.4409621954, -0.2204725891, 0.0868325308, 0.1567281336, -0.3195579052, -0.2135091722, -0.1457150131, 0.1469895244, -0.0808213577, 0.1255744845, 0.0596420653, 0.5084350109, -0.1233982295, -0.2323760241, 0.1721096486, 0.0899071246, -0.0588723496, -0.0373005271, 0.0232936516, 0.1553850174, 0.0540889949, -0.2931137085, -0.1797570139, -0.5081845522, 0.4014804065, -0.0338909701, 0.1513630897, 0.3279178739, 0.1617624164, 0.1156148165, -0.1213657856, 0.0894481912, -0.1621505171, 0.0160197765, 0.3207914531, -0.1488259435, -0.211434871, -0.0290639997, 0.0627379119, 0.3063037992, 0.2301858366, -0.615758121, -0.0209105052, -0.1136818752, -0.0108945817, -0.0588508286, 0.2863110602, 0.3913800418, 0.0789213553, 0.1078000665, 0.1375889778, -0.1677573323, 0.0949069113, -0.040983066, 0.3248965442, 0.220079124, 0.5234261751, 0.0637262985, 0.8384488225, 0.3419641852, 0.1871408075, 0.2288259268, -0.0220656786, 0.0835642591, 0.0049699321, -0.3481869102, -0.0082089268, -0.0368971527, 0.0619995892, 0.1661427021, 0.0087549537, -0.3374430537, -0.1676725894, -0.3505285978, 0.0459901616, -0.3771669269, 0.2698538005, 0.175124675, 0.3674235344, -0.0838355273, -0.0824131817, 0.0231613889, -0.351578176, 0.1945329159, 0.2135322541, -0.0175282806, 0.0211241655, -0.1137082353, -0.3958892226, -0.6405459642, 0.1182040796, -0.1544017941, 0.0629793257, -0.1038482487, 0.0933977962, 0.0600523204, 0.1583071798, 0.7553268075, 0.0059234593, -0.3072925806, -0.0461270139, -0.2609420121, -0.5063740015, 0.213784337, -0.1841569543, 0.3441572487, 0.1433891803, 0.5205535889, -0.3616019487, -0.098133713, 0.3212876618, 0.3747147024, -0.2170826197, -0.2046920657, -0.1343316734, -0.2551262975, -0.6043946743, 0.0041025281, 0.0545692146, 0.1934488267, 0.496452868, 0.2044564486, 0.0526691973, -0.0508969538, 0.1371938884, -0.0533756539, 0.3105924129, 0.1106535643, 0.1008516327, 0.1345037818, -0.1580678374, 0.3764193058, 0.2939085662, 0.0716901124, -0.3797551394, -0.099785462, 0.0576215796, 0.2523957789, -0.0627547055, -0.0139145963, 0.0038339905, 0.0268993936, 0.1780950427, -0.0997748151, 0.1322194636, 0.1875681281, 0.0874076486, -0.4511454403, -0.4366311133, 0.3414418399, 0.1997047067, 0.1596939117, 0.3301561773, -0.1424441338, -0.5566368103, 0.3253412247, 0.3589585125, 0.9608323574, -0.3551487327, 0.393727988, 0.0962183923, 0.2117648423, 0.6567658186, -0.475140363, 0.35296157, -0.3699407578, -0.0815761238, 0.0431752503, -0.133099556, 0.1379619837, -0.0172328185, -0.4360862076, 0.2891324461, 0.0913326889, -0.0398276374, -0.1840586364, 0.3883704543, 0.1124470308, -0.4811998606, -0.1841865033, 0.0319511034, -0.1269844472, 0.2439669222, -0.0456032529, -0.0274406429, 0.1156754866, -0.1150276363, -0.3924037814, -0.0374515839, -0.4836358726, 0.3076913059, -0.2517829537, 0.0015951246, 0.4047459662, 0.39280653, 0.0101813953, 0.3698485792, -0.1340498477, 0.01052651, -0.3600809574, -0.2767653167, -0.1850569844, 0.0676645488, 0.2424043119, -0.1937426925, -0.1071274877, 0.0763600692, -0.0399471372, -0.1982409656, -0.2103528678, -0.0318767168, -0.1298193038, -0.2045654804, -0.2123930752, 0.0132843237, -0.3584757745, -0.0186201781, 0.0458632894, 0.0108470432, -0.3378364742, 0.3286831379, 0.1423625648, -0.4008428454, 0.0307401158, 0.4164581895, 0.34854424, 0.1605856717, 0.7200254798, 0.3232617378, -0.2456388324, -0.1618595272, -0.0824734271, -0.0253359862, -0.3048345447, 0.2100928426, 0.0837547556, 0.1060535908, -0.3066005111, -0.0003772974, 0.1285433918, 0.0452361032, 0.0363892242, -0.3043984175, -0.5601995587, 0.2082495093, -0.0104776639, 0.0364992544, 0.2368941307, 0.0221909471, 0.0295315534, 0.2480151504, -0.1566305757, 0.020054169, -0.1691416204, 0.2507918477, 0.2438189834, -0.111687012, 0.103243947, -0.0129491724, -0.0043390244, 0.1593105793, -0.0150239132, -0.1269526631, 0.0454818383, 0.1532625109, -0.0268511754, -0.277785778, -0.0963581502, -0.5430380702, -0.0158968959, -0.3039937913, 0.0111278221, 0.0212793201, -0.1362704039, 0.1109777987, 0.2019032687, -0.273165524, -0.0630259216, 0.2792616785, -0.0221644603, -0.0507521667, 0.1658706814, 0.2017495036, 0.0937988237, -0.1570736766, -0.5362305045, 0.0558343902, -0.0843362063, -0.0266277585, 0.101993978, -0.1142850295, -0.3993758857, 0.3194218576, 0.0904668048, 0.1510136425, -0.1423277408, 0.2068411261, 0.2004513294, 0.0089689959, -0.1937266588, -0.0418561548, 0.330198288, -0.2920082211, -0.0505979992, 0.3277902007, -0.1311673075, 0.0453452766, -0.0299582072, 0.1311580241, 0.3588020802, -0.0734305382, 0.3226175904, 0.0061586453, -0.0834841579, -0.0167205818, 0.1939016134, 0.4057275355, 0.2587027848, 0.2043863237, -0.1556384414, 0.0376387686, -0.105872415, -0.254822582, 0.0379431583, -0.0836713463, 0.1414889991, 0.4189732671, -0.1775913537, 0.1592199206, -0.1939128339, 0.1780180335, 0.1845973432, -0.2745577693, 0.0787769109, 0.2984716892, -0.211687535, 0.0464744829, 0.1499888748, -0.1157814637, -0.0657883734, 0.1417856812, 0.0771138892, -0.6087391376, 0.4591957629, 0.1467868388, -0.2206509262, -0.1409264505, 0.2773649991, 0.4522539377, 0.0710783899, -0.3053991199, 0.0575941876, 0.026987914, 0.1365887225, -0.3318275809, 0.3094458878, 0.4621620774, 0.291584909, -0.1956238449, 0.2535725832, -0.1581639946, -0.012619298, 0.0154258087, -0.0236889254, 0.1164659858, 0.2165057659, 0.1130548418, -0.0109329466, -0.0586274862, -0.151095137, 0.1630202532, 0.1425208747, -0.2279159427, -0.3811420202, -0.0991921425, -0.1710887849, -0.0140400054, -0.0115701146, -0.5901705623, 0.2826705277, 0.5286228061, -0.1380667388, 0.0812100768, 0.0202329904, 0.0137295611, -0.0319658145, 0.48462376, 0.2030232549, -0.0330803879, -0.4814166129, -0.3177814782, -0.415076077, 0.0241081305, -0.3297816515, 0.0040629283, -0.0754074976, 0.1153873354, -0.0473554209, 0.0465940498, 0.0486276671, -0.3642249107, -0.0435178317, 0.1776145548, -0.1560722589, -0.2553375661, -0.1273900867, 0.1787594259, 0.1793887317, -0.198114574, 0.2631115019, 0.0087836981, -0.1398375183, -0.3518665433, 0.1338682473, 0.0501967669, 0.1779219061, 0.1576353908, 0.0610054657, 0.3895049691, 0.0040851086, -0.2422717363, 0.0258159377, 0.0002694093, -0.0998134613, 0.1413407475, 0.1294572204, 0.3691282868, -0.4097653627, -0.3827792406, -0.4327935278, 0.2897747755, -0.0637848452, -0.1197685748, -0.0350804254, -0.0376016572, 0.25265342, 0.0688296556, 0.0636018068, 0.1586664915, -0.0656887591, -0.0003351569, -0.4509043992, -0.2615722716, 0.4598855674, -0.4582999647, -0.3856020868, -0.0860999301, -0.095035553, -0.145935744, -0.1394126266, -0.7795308828, 0.0910595357, 0.2944114208, 0.0955305919, -0.4224693179, 0.0314955302, -0.1058145761, 0.1201663315, -0.1256256402, 0.3365497589, -0.0900947303, -0.4325062633, 0.1651301831, -0.2077717781 ]
https://github.com/huggingface/datasets/issues/1990
OSError: Memory mapping file failed: Cannot allocate memory
Dear @lhoestq thank you so much for coming back to me. Please find info below: 1) Dataset name: I used wikipedia with config 20200501.en 2) I got these pyarrow in my environment: pyarrow 2.0.0 <pip> pyarrow 3.0.0 <pip> 3) python version 3.7.10 4) OS version lsb_release -a No LSB modules are available. Distributor ID: Debian Description: Debian GNU/Linux 10 (buster) Release: 10 Codename: buster Is there a way I could solve the memory issue and if I could run this model, I am using GeForce GTX 108, thanks
Hi, I am trying to run a code with a wikipedia dataset, here is the command to reproduce the error. You can find the codes for run_mlm.py in huggingface repo here: https://github.com/huggingface/transformers/blob/v4.3.2/examples/language-modeling/run_mlm.py ``` python run_mlm.py --model_name_or_path bert-base-multilingual-cased --dataset_name wikipedia --dataset_config_name 20200501.en --do_train --do_eval --output_dir /dara/test --max_seq_length 128 ``` I am using transformer version: 4.3.2 But I got memory erorr using this dataset, is there a way I could save on memory with dataset library with wikipedia dataset? Specially I need to train a model with multiple of wikipedia datasets concatenated. thank you very much @lhoestq for your help and suggestions: ``` File "run_mlm.py", line 441, in <module> main() File "run_mlm.py", line 233, in main split=f"train[{data_args.validation_split_percentage}%:]", File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/load.py", line 750, in load_dataset ds = builder_instance.as_dataset(split=split, ignore_verifications=ignore_verifications, in_memory=keep_in_memory) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/builder.py", line 740, in as_dataset map_tuple=True, File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/utils/py_utils.py", line 225, in map_nested return function(data_struct) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/builder.py", line 757, in _build_single_dataset in_memory=in_memory, File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/builder.py", line 829, in _as_dataset in_memory=in_memory, File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/arrow_reader.py", line 215, in read return self.read_files(files=files, original_instructions=instructions, in_memory=in_memory) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/arrow_reader.py", line 236, in read_files pa_table = self._read_files(files, in_memory=in_memory) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/arrow_reader.py", line 171, in _read_files pa_table: pa.Table = self._get_dataset_from_filename(f_dict, in_memory=in_memory) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/arrow_reader.py", line 302, in _get_dataset_from_filename pa_table = ArrowReader.read_table(filename, in_memory=in_memory) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/arrow_reader.py", line 322, in read_table stream = stream_from(filename) File "pyarrow/io.pxi", line 782, in pyarrow.lib.memory_map File "pyarrow/io.pxi", line 743, in pyarrow.lib.MemoryMappedFile._open File "pyarrow/error.pxi", line 122, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 99, in pyarrow.lib.check_status OSError: Memory mapping file failed: Cannot allocate memory ```
88
OSError: Memory mapping file failed: Cannot allocate memory Hi, I am trying to run a code with a wikipedia dataset, here is the command to reproduce the error. You can find the codes for run_mlm.py in huggingface repo here: https://github.com/huggingface/transformers/blob/v4.3.2/examples/language-modeling/run_mlm.py ``` python run_mlm.py --model_name_or_path bert-base-multilingual-cased --dataset_name wikipedia --dataset_config_name 20200501.en --do_train --do_eval --output_dir /dara/test --max_seq_length 128 ``` I am using transformer version: 4.3.2 But I got memory erorr using this dataset, is there a way I could save on memory with dataset library with wikipedia dataset? Specially I need to train a model with multiple of wikipedia datasets concatenated. thank you very much @lhoestq for your help and suggestions: ``` File "run_mlm.py", line 441, in <module> main() File "run_mlm.py", line 233, in main split=f"train[{data_args.validation_split_percentage}%:]", File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/load.py", line 750, in load_dataset ds = builder_instance.as_dataset(split=split, ignore_verifications=ignore_verifications, in_memory=keep_in_memory) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/builder.py", line 740, in as_dataset map_tuple=True, File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/utils/py_utils.py", line 225, in map_nested return function(data_struct) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/builder.py", line 757, in _build_single_dataset in_memory=in_memory, File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/builder.py", line 829, in _as_dataset in_memory=in_memory, File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/arrow_reader.py", line 215, in read return self.read_files(files=files, original_instructions=instructions, in_memory=in_memory) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/arrow_reader.py", line 236, in read_files pa_table = self._read_files(files, in_memory=in_memory) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/arrow_reader.py", line 171, in _read_files pa_table: pa.Table = self._get_dataset_from_filename(f_dict, in_memory=in_memory) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/arrow_reader.py", line 302, in _get_dataset_from_filename pa_table = ArrowReader.read_table(filename, in_memory=in_memory) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/arrow_reader.py", line 322, in read_table stream = stream_from(filename) File "pyarrow/io.pxi", line 782, in pyarrow.lib.memory_map File "pyarrow/io.pxi", line 743, in pyarrow.lib.MemoryMappedFile._open File "pyarrow/error.pxi", line 122, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 99, in pyarrow.lib.check_status OSError: Memory mapping file failed: Cannot allocate memory ``` Dear @lhoestq thank you so much for coming back to me. Please find info below: 1) Dataset name: I used wikipedia with config 20200501.en 2) I got these pyarrow in my environment: pyarrow 2.0.0 <pip> pyarrow 3.0.0 <pip> 3) python version 3.7.10 4) OS version lsb_release -a No LSB modules are available. Distributor ID: Debian Description: Debian GNU/Linux 10 (buster) Release: 10 Codename: buster Is there a way I could solve the memory issue and if I could run this model, I am using GeForce GTX 108, thanks
[ -0.2615424395, -0.037264064, 0.052039884, 0.6045718789, 0.4538375735, 0.2834011316, 0.1456437558, 0.2724668086, 0.1785510629, 0.1056612357, -0.0581839532, 0.2273858339, -0.1771185994, -0.14591676, -0.0370904915, -0.1933317184, 0.0840208307, 0.0134713128, -0.5429401398, 0.1604685783, -0.3581551313, 0.1157063544, -0.1856328249, -0.1171600074, -0.298037529, -0.1035159305, -0.0006042197, -0.0976308584, 0.0188777149, -0.3274092674, 0.254856348, -0.1293893158, 0.0864004791, 0.5501930118, -0.0001231607, -0.0137763247, 0.2835691869, -0.1672081649, -0.2533998489, -0.12841627, -0.0416564308, -0.0297980495, 0.0984970182, -0.2252505124, -0.0119242668, -0.052592732, 0.2317304015, -0.3445146382, 0.4429750741, 0.2243883908, 0.1404946446, 0.0699651092, 0.452452153, -0.0441125929, 0.1739076525, 0.3341218233, 0.0713807568, 0.3320229053, -0.2908711433, -0.4356870949, -0.03041289, 0.3930503726, -0.0399410948, 0.0052878018, 0.5653296113, -0.1445837319, 0.0253532305, -0.336817652, 0.1123084277, -0.0072492044, 0.5341089368, -0.4902599454, -0.0283724852, -0.0147869289, -0.0533835068, -0.095239915, 0.2970979512, 0.2689523697, -0.2722631097, -0.1447608322, -0.1304169595, -0.3249985874, -0.3197001815, 0.44286865, -0.090921402, 0.1910010874, -0.0247157998, 0.3037816584, 0.5653705597, -0.2050893009, -0.2340614796, -0.0758119971, 0.1365433037, 0.3287970126, -0.2677203417, -0.1660288274, -0.3029489815, -0.2047091573, 0.3511368632, -0.4987059534, -0.3861929178, -0.1260011196, 0.1516698003, 0.0212388765, 0.403645426, 0.28173545, -0.2963657081, 0.3228371441, 0.312296778, 0.1742714792, -0.2495377362, -0.1589901745, 0.0767952651, -0.0373789892, -0.1110500097, -0.1914824843, 0.0837736949, -0.0016543567, -0.013746053, -0.0218037032, -0.2128320038, -0.123209171, -0.0538496748, 0.505523026, -0.1040842608, -0.0846187323, 0.3738275766, 0.1444596201, -0.0126844086, -0.0080770254, -0.056374982, 0.4104229808, -0.3436279297, 0.2843071222, 0.0502635688, -0.001158379, 0.3263406456, -0.0727057829, -0.0331282876, -0.0566818938, 0.1620449424, -0.3580228984, 0.0087110326, 0.1846880615, 0.1788563281, 0.2493288815, 0.2503515482, -0.147986114, -0.1526844203, 0.1969970167, -0.1634680331, -0.243303746, 0.0387372151, 0.0109293135, 0.0980136245, 0.2277472615, -0.2775138021, 0.1828102469, 0.6528621316, -0.0775154084, -0.0572651513, -0.0801965892, -0.2296680659, -0.1687688679, 0.2708779871, 0.5193135738, -0.0646528527, -0.1054834798, -0.1169703826, 0.167704314, 0.2510126829, 0.441383481, -0.1638230085, 0.2519156635, -0.0972213, 0.0167983323, 0.4141837358, -0.3105096221, -0.3419042528, -0.0056237914, -0.02522894, -0.1343221664, 0.0232779887, 0.1321311742, 0.0773996264, 0.1156660095, 0.1119254678, 0.3104186654, 0.0561034679, 0.2800842226, -0.3041982949, -0.2975763977, 0.2528687119, 0.074746117, 0.0653967634, -0.2040827572, -0.0608491711, 0.8107675314, 0.2972949743, -0.2623122931, 0.1555342078, 0.3147747815, 0.1061367095, 0.0064360863, 0.0871190131, -0.2199126482, -0.2514473796, -0.0734246075, -0.0566992164, 0.3305937648, -0.1451887935, -0.04148091, 0.153722778, -0.1186708957, -0.1722492129, -0.3908628523, 0.0622954033, 0.0130734798, 0.1235826239, 0.0900844112, 0.0810609162, 0.0560084358, -0.0939699858, 0.2478924245, -0.5998022556, 0.1715031266, -0.2896076143, -0.1076941639, -0.0214399546, -0.0624919683, 0.0274149645, -0.0474655963, -0.0685557574, 0.151992619, 0.0771347284, -0.1671153456, -0.0906849205, 0.003420189, 0.3101093769, -0.322114408, 0.1657057106, 0.2421724498, 0.1955043375, -0.0940228254, -0.1976960003, -0.1558783948, 0.1051338837, 0.3647210896, 0.079187721, 0.1687754244, 0.0262408704, 0.0895475447, 0.1797859967, -0.2070021331, 0.2181633264, 0.0123552121, 0.2408839911, 0.0950063542, -0.0293943137, -0.3097333014, 0.4583241045, 0.2681967914, 0.2772992551, 0.2424817234, -0.4937292039, -0.0740424991, -0.0656517893, -0.0718549863, 0.3221564889, 0.050078623, -0.1195640862, 0.1201547533, 0.1963379681, 0.0097030289, 0.3097597957, 0.1743880957, 0.4940780401, -0.0187087823, 0.1057225168, -0.0806347951, -0.099587217, -0.1468483806, 0.050045602, 0.5077640414, -0.1753804684, -0.0157850236, -0.1864267886, -0.400614202, -0.2753978968, 0.1643147469, -0.4642427862, -0.1369272768, -0.3849298358, 0.324758023, 0.0695632994, 0.2584396005, 0.4160763323, -0.0507139862, 0.3513424695, -0.1406711936, 0.0687716752, -0.2304129452, -0.119075343, -0.0627370849, 0.4409621954, -0.2204725891, 0.0868325308, 0.1567281336, -0.3195579052, -0.2135091722, -0.1457150131, 0.1469895244, -0.0808213577, 0.1255744845, 0.0596420653, 0.5084350109, -0.1233982295, -0.2323760241, 0.1721096486, 0.0899071246, -0.0588723496, -0.0373005271, 0.0232936516, 0.1553850174, 0.0540889949, -0.2931137085, -0.1797570139, -0.5081845522, 0.4014804065, -0.0338909701, 0.1513630897, 0.3279178739, 0.1617624164, 0.1156148165, -0.1213657856, 0.0894481912, -0.1621505171, 0.0160197765, 0.3207914531, -0.1488259435, -0.211434871, -0.0290639997, 0.0627379119, 0.3063037992, 0.2301858366, -0.615758121, -0.0209105052, -0.1136818752, -0.0108945817, -0.0588508286, 0.2863110602, 0.3913800418, 0.0789213553, 0.1078000665, 0.1375889778, -0.1677573323, 0.0949069113, -0.040983066, 0.3248965442, 0.220079124, 0.5234261751, 0.0637262985, 0.8384488225, 0.3419641852, 0.1871408075, 0.2288259268, -0.0220656786, 0.0835642591, 0.0049699321, -0.3481869102, -0.0082089268, -0.0368971527, 0.0619995892, 0.1661427021, 0.0087549537, -0.3374430537, -0.1676725894, -0.3505285978, 0.0459901616, -0.3771669269, 0.2698538005, 0.175124675, 0.3674235344, -0.0838355273, -0.0824131817, 0.0231613889, -0.351578176, 0.1945329159, 0.2135322541, -0.0175282806, 0.0211241655, -0.1137082353, -0.3958892226, -0.6405459642, 0.1182040796, -0.1544017941, 0.0629793257, -0.1038482487, 0.0933977962, 0.0600523204, 0.1583071798, 0.7553268075, 0.0059234593, -0.3072925806, -0.0461270139, -0.2609420121, -0.5063740015, 0.213784337, -0.1841569543, 0.3441572487, 0.1433891803, 0.5205535889, -0.3616019487, -0.098133713, 0.3212876618, 0.3747147024, -0.2170826197, -0.2046920657, -0.1343316734, -0.2551262975, -0.6043946743, 0.0041025281, 0.0545692146, 0.1934488267, 0.496452868, 0.2044564486, 0.0526691973, -0.0508969538, 0.1371938884, -0.0533756539, 0.3105924129, 0.1106535643, 0.1008516327, 0.1345037818, -0.1580678374, 0.3764193058, 0.2939085662, 0.0716901124, -0.3797551394, -0.099785462, 0.0576215796, 0.2523957789, -0.0627547055, -0.0139145963, 0.0038339905, 0.0268993936, 0.1780950427, -0.0997748151, 0.1322194636, 0.1875681281, 0.0874076486, -0.4511454403, -0.4366311133, 0.3414418399, 0.1997047067, 0.1596939117, 0.3301561773, -0.1424441338, -0.5566368103, 0.3253412247, 0.3589585125, 0.9608323574, -0.3551487327, 0.393727988, 0.0962183923, 0.2117648423, 0.6567658186, -0.475140363, 0.35296157, -0.3699407578, -0.0815761238, 0.0431752503, -0.133099556, 0.1379619837, -0.0172328185, -0.4360862076, 0.2891324461, 0.0913326889, -0.0398276374, -0.1840586364, 0.3883704543, 0.1124470308, -0.4811998606, -0.1841865033, 0.0319511034, -0.1269844472, 0.2439669222, -0.0456032529, -0.0274406429, 0.1156754866, -0.1150276363, -0.3924037814, -0.0374515839, -0.4836358726, 0.3076913059, -0.2517829537, 0.0015951246, 0.4047459662, 0.39280653, 0.0101813953, 0.3698485792, -0.1340498477, 0.01052651, -0.3600809574, -0.2767653167, -0.1850569844, 0.0676645488, 0.2424043119, -0.1937426925, -0.1071274877, 0.0763600692, -0.0399471372, -0.1982409656, -0.2103528678, -0.0318767168, -0.1298193038, -0.2045654804, -0.2123930752, 0.0132843237, -0.3584757745, -0.0186201781, 0.0458632894, 0.0108470432, -0.3378364742, 0.3286831379, 0.1423625648, -0.4008428454, 0.0307401158, 0.4164581895, 0.34854424, 0.1605856717, 0.7200254798, 0.3232617378, -0.2456388324, -0.1618595272, -0.0824734271, -0.0253359862, -0.3048345447, 0.2100928426, 0.0837547556, 0.1060535908, -0.3066005111, -0.0003772974, 0.1285433918, 0.0452361032, 0.0363892242, -0.3043984175, -0.5601995587, 0.2082495093, -0.0104776639, 0.0364992544, 0.2368941307, 0.0221909471, 0.0295315534, 0.2480151504, -0.1566305757, 0.020054169, -0.1691416204, 0.2507918477, 0.2438189834, -0.111687012, 0.103243947, -0.0129491724, -0.0043390244, 0.1593105793, -0.0150239132, -0.1269526631, 0.0454818383, 0.1532625109, -0.0268511754, -0.277785778, -0.0963581502, -0.5430380702, -0.0158968959, -0.3039937913, 0.0111278221, 0.0212793201, -0.1362704039, 0.1109777987, 0.2019032687, -0.273165524, -0.0630259216, 0.2792616785, -0.0221644603, -0.0507521667, 0.1658706814, 0.2017495036, 0.0937988237, -0.1570736766, -0.5362305045, 0.0558343902, -0.0843362063, -0.0266277585, 0.101993978, -0.1142850295, -0.3993758857, 0.3194218576, 0.0904668048, 0.1510136425, -0.1423277408, 0.2068411261, 0.2004513294, 0.0089689959, -0.1937266588, -0.0418561548, 0.330198288, -0.2920082211, -0.0505979992, 0.3277902007, -0.1311673075, 0.0453452766, -0.0299582072, 0.1311580241, 0.3588020802, -0.0734305382, 0.3226175904, 0.0061586453, -0.0834841579, -0.0167205818, 0.1939016134, 0.4057275355, 0.2587027848, 0.2043863237, -0.1556384414, 0.0376387686, -0.105872415, -0.254822582, 0.0379431583, -0.0836713463, 0.1414889991, 0.4189732671, -0.1775913537, 0.1592199206, -0.1939128339, 0.1780180335, 0.1845973432, -0.2745577693, 0.0787769109, 0.2984716892, -0.211687535, 0.0464744829, 0.1499888748, -0.1157814637, -0.0657883734, 0.1417856812, 0.0771138892, -0.6087391376, 0.4591957629, 0.1467868388, -0.2206509262, -0.1409264505, 0.2773649991, 0.4522539377, 0.0710783899, -0.3053991199, 0.0575941876, 0.026987914, 0.1365887225, -0.3318275809, 0.3094458878, 0.4621620774, 0.291584909, -0.1956238449, 0.2535725832, -0.1581639946, -0.012619298, 0.0154258087, -0.0236889254, 0.1164659858, 0.2165057659, 0.1130548418, -0.0109329466, -0.0586274862, -0.151095137, 0.1630202532, 0.1425208747, -0.2279159427, -0.3811420202, -0.0991921425, -0.1710887849, -0.0140400054, -0.0115701146, -0.5901705623, 0.2826705277, 0.5286228061, -0.1380667388, 0.0812100768, 0.0202329904, 0.0137295611, -0.0319658145, 0.48462376, 0.2030232549, -0.0330803879, -0.4814166129, -0.3177814782, -0.415076077, 0.0241081305, -0.3297816515, 0.0040629283, -0.0754074976, 0.1153873354, -0.0473554209, 0.0465940498, 0.0486276671, -0.3642249107, -0.0435178317, 0.1776145548, -0.1560722589, -0.2553375661, -0.1273900867, 0.1787594259, 0.1793887317, -0.198114574, 0.2631115019, 0.0087836981, -0.1398375183, -0.3518665433, 0.1338682473, 0.0501967669, 0.1779219061, 0.1576353908, 0.0610054657, 0.3895049691, 0.0040851086, -0.2422717363, 0.0258159377, 0.0002694093, -0.0998134613, 0.1413407475, 0.1294572204, 0.3691282868, -0.4097653627, -0.3827792406, -0.4327935278, 0.2897747755, -0.0637848452, -0.1197685748, -0.0350804254, -0.0376016572, 0.25265342, 0.0688296556, 0.0636018068, 0.1586664915, -0.0656887591, -0.0003351569, -0.4509043992, -0.2615722716, 0.4598855674, -0.4582999647, -0.3856020868, -0.0860999301, -0.095035553, -0.145935744, -0.1394126266, -0.7795308828, 0.0910595357, 0.2944114208, 0.0955305919, -0.4224693179, 0.0314955302, -0.1058145761, 0.1201663315, -0.1256256402, 0.3365497589, -0.0900947303, -0.4325062633, 0.1651301831, -0.2077717781 ]
https://github.com/huggingface/datasets/issues/1990
OSError: Memory mapping file failed: Cannot allocate memory
I noticed that the error happens when loading the validation dataset. What value of `data_args.validation_split_percentage` did you use ?
Hi, I am trying to run a code with a wikipedia dataset, here is the command to reproduce the error. You can find the codes for run_mlm.py in huggingface repo here: https://github.com/huggingface/transformers/blob/v4.3.2/examples/language-modeling/run_mlm.py ``` python run_mlm.py --model_name_or_path bert-base-multilingual-cased --dataset_name wikipedia --dataset_config_name 20200501.en --do_train --do_eval --output_dir /dara/test --max_seq_length 128 ``` I am using transformer version: 4.3.2 But I got memory erorr using this dataset, is there a way I could save on memory with dataset library with wikipedia dataset? Specially I need to train a model with multiple of wikipedia datasets concatenated. thank you very much @lhoestq for your help and suggestions: ``` File "run_mlm.py", line 441, in <module> main() File "run_mlm.py", line 233, in main split=f"train[{data_args.validation_split_percentage}%:]", File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/load.py", line 750, in load_dataset ds = builder_instance.as_dataset(split=split, ignore_verifications=ignore_verifications, in_memory=keep_in_memory) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/builder.py", line 740, in as_dataset map_tuple=True, File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/utils/py_utils.py", line 225, in map_nested return function(data_struct) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/builder.py", line 757, in _build_single_dataset in_memory=in_memory, File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/builder.py", line 829, in _as_dataset in_memory=in_memory, File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/arrow_reader.py", line 215, in read return self.read_files(files=files, original_instructions=instructions, in_memory=in_memory) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/arrow_reader.py", line 236, in read_files pa_table = self._read_files(files, in_memory=in_memory) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/arrow_reader.py", line 171, in _read_files pa_table: pa.Table = self._get_dataset_from_filename(f_dict, in_memory=in_memory) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/arrow_reader.py", line 302, in _get_dataset_from_filename pa_table = ArrowReader.read_table(filename, in_memory=in_memory) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/arrow_reader.py", line 322, in read_table stream = stream_from(filename) File "pyarrow/io.pxi", line 782, in pyarrow.lib.memory_map File "pyarrow/io.pxi", line 743, in pyarrow.lib.MemoryMappedFile._open File "pyarrow/error.pxi", line 122, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 99, in pyarrow.lib.check_status OSError: Memory mapping file failed: Cannot allocate memory ```
19
OSError: Memory mapping file failed: Cannot allocate memory Hi, I am trying to run a code with a wikipedia dataset, here is the command to reproduce the error. You can find the codes for run_mlm.py in huggingface repo here: https://github.com/huggingface/transformers/blob/v4.3.2/examples/language-modeling/run_mlm.py ``` python run_mlm.py --model_name_or_path bert-base-multilingual-cased --dataset_name wikipedia --dataset_config_name 20200501.en --do_train --do_eval --output_dir /dara/test --max_seq_length 128 ``` I am using transformer version: 4.3.2 But I got memory erorr using this dataset, is there a way I could save on memory with dataset library with wikipedia dataset? Specially I need to train a model with multiple of wikipedia datasets concatenated. thank you very much @lhoestq for your help and suggestions: ``` File "run_mlm.py", line 441, in <module> main() File "run_mlm.py", line 233, in main split=f"train[{data_args.validation_split_percentage}%:]", File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/load.py", line 750, in load_dataset ds = builder_instance.as_dataset(split=split, ignore_verifications=ignore_verifications, in_memory=keep_in_memory) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/builder.py", line 740, in as_dataset map_tuple=True, File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/utils/py_utils.py", line 225, in map_nested return function(data_struct) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/builder.py", line 757, in _build_single_dataset in_memory=in_memory, File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/builder.py", line 829, in _as_dataset in_memory=in_memory, File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/arrow_reader.py", line 215, in read return self.read_files(files=files, original_instructions=instructions, in_memory=in_memory) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/arrow_reader.py", line 236, in read_files pa_table = self._read_files(files, in_memory=in_memory) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/arrow_reader.py", line 171, in _read_files pa_table: pa.Table = self._get_dataset_from_filename(f_dict, in_memory=in_memory) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/arrow_reader.py", line 302, in _get_dataset_from_filename pa_table = ArrowReader.read_table(filename, in_memory=in_memory) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/arrow_reader.py", line 322, in read_table stream = stream_from(filename) File "pyarrow/io.pxi", line 782, in pyarrow.lib.memory_map File "pyarrow/io.pxi", line 743, in pyarrow.lib.MemoryMappedFile._open File "pyarrow/error.pxi", line 122, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 99, in pyarrow.lib.check_status OSError: Memory mapping file failed: Cannot allocate memory ``` I noticed that the error happens when loading the validation dataset. What value of `data_args.validation_split_percentage` did you use ?
[ -0.2615424395, -0.037264064, 0.052039884, 0.6045718789, 0.4538375735, 0.2834011316, 0.1456437558, 0.2724668086, 0.1785510629, 0.1056612357, -0.0581839532, 0.2273858339, -0.1771185994, -0.14591676, -0.0370904915, -0.1933317184, 0.0840208307, 0.0134713128, -0.5429401398, 0.1604685783, -0.3581551313, 0.1157063544, -0.1856328249, -0.1171600074, -0.298037529, -0.1035159305, -0.0006042197, -0.0976308584, 0.0188777149, -0.3274092674, 0.254856348, -0.1293893158, 0.0864004791, 0.5501930118, -0.0001231607, -0.0137763247, 0.2835691869, -0.1672081649, -0.2533998489, -0.12841627, -0.0416564308, -0.0297980495, 0.0984970182, -0.2252505124, -0.0119242668, -0.052592732, 0.2317304015, -0.3445146382, 0.4429750741, 0.2243883908, 0.1404946446, 0.0699651092, 0.452452153, -0.0441125929, 0.1739076525, 0.3341218233, 0.0713807568, 0.3320229053, -0.2908711433, -0.4356870949, -0.03041289, 0.3930503726, -0.0399410948, 0.0052878018, 0.5653296113, -0.1445837319, 0.0253532305, -0.336817652, 0.1123084277, -0.0072492044, 0.5341089368, -0.4902599454, -0.0283724852, -0.0147869289, -0.0533835068, -0.095239915, 0.2970979512, 0.2689523697, -0.2722631097, -0.1447608322, -0.1304169595, -0.3249985874, -0.3197001815, 0.44286865, -0.090921402, 0.1910010874, -0.0247157998, 0.3037816584, 0.5653705597, -0.2050893009, -0.2340614796, -0.0758119971, 0.1365433037, 0.3287970126, -0.2677203417, -0.1660288274, -0.3029489815, -0.2047091573, 0.3511368632, -0.4987059534, -0.3861929178, -0.1260011196, 0.1516698003, 0.0212388765, 0.403645426, 0.28173545, -0.2963657081, 0.3228371441, 0.312296778, 0.1742714792, -0.2495377362, -0.1589901745, 0.0767952651, -0.0373789892, -0.1110500097, -0.1914824843, 0.0837736949, -0.0016543567, -0.013746053, -0.0218037032, -0.2128320038, -0.123209171, -0.0538496748, 0.505523026, -0.1040842608, -0.0846187323, 0.3738275766, 0.1444596201, -0.0126844086, -0.0080770254, -0.056374982, 0.4104229808, -0.3436279297, 0.2843071222, 0.0502635688, -0.001158379, 0.3263406456, -0.0727057829, -0.0331282876, -0.0566818938, 0.1620449424, -0.3580228984, 0.0087110326, 0.1846880615, 0.1788563281, 0.2493288815, 0.2503515482, -0.147986114, -0.1526844203, 0.1969970167, -0.1634680331, -0.243303746, 0.0387372151, 0.0109293135, 0.0980136245, 0.2277472615, -0.2775138021, 0.1828102469, 0.6528621316, -0.0775154084, -0.0572651513, -0.0801965892, -0.2296680659, -0.1687688679, 0.2708779871, 0.5193135738, -0.0646528527, -0.1054834798, -0.1169703826, 0.167704314, 0.2510126829, 0.441383481, -0.1638230085, 0.2519156635, -0.0972213, 0.0167983323, 0.4141837358, -0.3105096221, -0.3419042528, -0.0056237914, -0.02522894, -0.1343221664, 0.0232779887, 0.1321311742, 0.0773996264, 0.1156660095, 0.1119254678, 0.3104186654, 0.0561034679, 0.2800842226, -0.3041982949, -0.2975763977, 0.2528687119, 0.074746117, 0.0653967634, -0.2040827572, -0.0608491711, 0.8107675314, 0.2972949743, -0.2623122931, 0.1555342078, 0.3147747815, 0.1061367095, 0.0064360863, 0.0871190131, -0.2199126482, -0.2514473796, -0.0734246075, -0.0566992164, 0.3305937648, -0.1451887935, -0.04148091, 0.153722778, -0.1186708957, -0.1722492129, -0.3908628523, 0.0622954033, 0.0130734798, 0.1235826239, 0.0900844112, 0.0810609162, 0.0560084358, -0.0939699858, 0.2478924245, -0.5998022556, 0.1715031266, -0.2896076143, -0.1076941639, -0.0214399546, -0.0624919683, 0.0274149645, -0.0474655963, -0.0685557574, 0.151992619, 0.0771347284, -0.1671153456, -0.0906849205, 0.003420189, 0.3101093769, -0.322114408, 0.1657057106, 0.2421724498, 0.1955043375, -0.0940228254, -0.1976960003, -0.1558783948, 0.1051338837, 0.3647210896, 0.079187721, 0.1687754244, 0.0262408704, 0.0895475447, 0.1797859967, -0.2070021331, 0.2181633264, 0.0123552121, 0.2408839911, 0.0950063542, -0.0293943137, -0.3097333014, 0.4583241045, 0.2681967914, 0.2772992551, 0.2424817234, -0.4937292039, -0.0740424991, -0.0656517893, -0.0718549863, 0.3221564889, 0.050078623, -0.1195640862, 0.1201547533, 0.1963379681, 0.0097030289, 0.3097597957, 0.1743880957, 0.4940780401, -0.0187087823, 0.1057225168, -0.0806347951, -0.099587217, -0.1468483806, 0.050045602, 0.5077640414, -0.1753804684, -0.0157850236, -0.1864267886, -0.400614202, -0.2753978968, 0.1643147469, -0.4642427862, -0.1369272768, -0.3849298358, 0.324758023, 0.0695632994, 0.2584396005, 0.4160763323, -0.0507139862, 0.3513424695, -0.1406711936, 0.0687716752, -0.2304129452, -0.119075343, -0.0627370849, 0.4409621954, -0.2204725891, 0.0868325308, 0.1567281336, -0.3195579052, -0.2135091722, -0.1457150131, 0.1469895244, -0.0808213577, 0.1255744845, 0.0596420653, 0.5084350109, -0.1233982295, -0.2323760241, 0.1721096486, 0.0899071246, -0.0588723496, -0.0373005271, 0.0232936516, 0.1553850174, 0.0540889949, -0.2931137085, -0.1797570139, -0.5081845522, 0.4014804065, -0.0338909701, 0.1513630897, 0.3279178739, 0.1617624164, 0.1156148165, -0.1213657856, 0.0894481912, -0.1621505171, 0.0160197765, 0.3207914531, -0.1488259435, -0.211434871, -0.0290639997, 0.0627379119, 0.3063037992, 0.2301858366, -0.615758121, -0.0209105052, -0.1136818752, -0.0108945817, -0.0588508286, 0.2863110602, 0.3913800418, 0.0789213553, 0.1078000665, 0.1375889778, -0.1677573323, 0.0949069113, -0.040983066, 0.3248965442, 0.220079124, 0.5234261751, 0.0637262985, 0.8384488225, 0.3419641852, 0.1871408075, 0.2288259268, -0.0220656786, 0.0835642591, 0.0049699321, -0.3481869102, -0.0082089268, -0.0368971527, 0.0619995892, 0.1661427021, 0.0087549537, -0.3374430537, -0.1676725894, -0.3505285978, 0.0459901616, -0.3771669269, 0.2698538005, 0.175124675, 0.3674235344, -0.0838355273, -0.0824131817, 0.0231613889, -0.351578176, 0.1945329159, 0.2135322541, -0.0175282806, 0.0211241655, -0.1137082353, -0.3958892226, -0.6405459642, 0.1182040796, -0.1544017941, 0.0629793257, -0.1038482487, 0.0933977962, 0.0600523204, 0.1583071798, 0.7553268075, 0.0059234593, -0.3072925806, -0.0461270139, -0.2609420121, -0.5063740015, 0.213784337, -0.1841569543, 0.3441572487, 0.1433891803, 0.5205535889, -0.3616019487, -0.098133713, 0.3212876618, 0.3747147024, -0.2170826197, -0.2046920657, -0.1343316734, -0.2551262975, -0.6043946743, 0.0041025281, 0.0545692146, 0.1934488267, 0.496452868, 0.2044564486, 0.0526691973, -0.0508969538, 0.1371938884, -0.0533756539, 0.3105924129, 0.1106535643, 0.1008516327, 0.1345037818, -0.1580678374, 0.3764193058, 0.2939085662, 0.0716901124, -0.3797551394, -0.099785462, 0.0576215796, 0.2523957789, -0.0627547055, -0.0139145963, 0.0038339905, 0.0268993936, 0.1780950427, -0.0997748151, 0.1322194636, 0.1875681281, 0.0874076486, -0.4511454403, -0.4366311133, 0.3414418399, 0.1997047067, 0.1596939117, 0.3301561773, -0.1424441338, -0.5566368103, 0.3253412247, 0.3589585125, 0.9608323574, -0.3551487327, 0.393727988, 0.0962183923, 0.2117648423, 0.6567658186, -0.475140363, 0.35296157, -0.3699407578, -0.0815761238, 0.0431752503, -0.133099556, 0.1379619837, -0.0172328185, -0.4360862076, 0.2891324461, 0.0913326889, -0.0398276374, -0.1840586364, 0.3883704543, 0.1124470308, -0.4811998606, -0.1841865033, 0.0319511034, -0.1269844472, 0.2439669222, -0.0456032529, -0.0274406429, 0.1156754866, -0.1150276363, -0.3924037814, -0.0374515839, -0.4836358726, 0.3076913059, -0.2517829537, 0.0015951246, 0.4047459662, 0.39280653, 0.0101813953, 0.3698485792, -0.1340498477, 0.01052651, -0.3600809574, -0.2767653167, -0.1850569844, 0.0676645488, 0.2424043119, -0.1937426925, -0.1071274877, 0.0763600692, -0.0399471372, -0.1982409656, -0.2103528678, -0.0318767168, -0.1298193038, -0.2045654804, -0.2123930752, 0.0132843237, -0.3584757745, -0.0186201781, 0.0458632894, 0.0108470432, -0.3378364742, 0.3286831379, 0.1423625648, -0.4008428454, 0.0307401158, 0.4164581895, 0.34854424, 0.1605856717, 0.7200254798, 0.3232617378, -0.2456388324, -0.1618595272, -0.0824734271, -0.0253359862, -0.3048345447, 0.2100928426, 0.0837547556, 0.1060535908, -0.3066005111, -0.0003772974, 0.1285433918, 0.0452361032, 0.0363892242, -0.3043984175, -0.5601995587, 0.2082495093, -0.0104776639, 0.0364992544, 0.2368941307, 0.0221909471, 0.0295315534, 0.2480151504, -0.1566305757, 0.020054169, -0.1691416204, 0.2507918477, 0.2438189834, -0.111687012, 0.103243947, -0.0129491724, -0.0043390244, 0.1593105793, -0.0150239132, -0.1269526631, 0.0454818383, 0.1532625109, -0.0268511754, -0.277785778, -0.0963581502, -0.5430380702, -0.0158968959, -0.3039937913, 0.0111278221, 0.0212793201, -0.1362704039, 0.1109777987, 0.2019032687, -0.273165524, -0.0630259216, 0.2792616785, -0.0221644603, -0.0507521667, 0.1658706814, 0.2017495036, 0.0937988237, -0.1570736766, -0.5362305045, 0.0558343902, -0.0843362063, -0.0266277585, 0.101993978, -0.1142850295, -0.3993758857, 0.3194218576, 0.0904668048, 0.1510136425, -0.1423277408, 0.2068411261, 0.2004513294, 0.0089689959, -0.1937266588, -0.0418561548, 0.330198288, -0.2920082211, -0.0505979992, 0.3277902007, -0.1311673075, 0.0453452766, -0.0299582072, 0.1311580241, 0.3588020802, -0.0734305382, 0.3226175904, 0.0061586453, -0.0834841579, -0.0167205818, 0.1939016134, 0.4057275355, 0.2587027848, 0.2043863237, -0.1556384414, 0.0376387686, -0.105872415, -0.254822582, 0.0379431583, -0.0836713463, 0.1414889991, 0.4189732671, -0.1775913537, 0.1592199206, -0.1939128339, 0.1780180335, 0.1845973432, -0.2745577693, 0.0787769109, 0.2984716892, -0.211687535, 0.0464744829, 0.1499888748, -0.1157814637, -0.0657883734, 0.1417856812, 0.0771138892, -0.6087391376, 0.4591957629, 0.1467868388, -0.2206509262, -0.1409264505, 0.2773649991, 0.4522539377, 0.0710783899, -0.3053991199, 0.0575941876, 0.026987914, 0.1365887225, -0.3318275809, 0.3094458878, 0.4621620774, 0.291584909, -0.1956238449, 0.2535725832, -0.1581639946, -0.012619298, 0.0154258087, -0.0236889254, 0.1164659858, 0.2165057659, 0.1130548418, -0.0109329466, -0.0586274862, -0.151095137, 0.1630202532, 0.1425208747, -0.2279159427, -0.3811420202, -0.0991921425, -0.1710887849, -0.0140400054, -0.0115701146, -0.5901705623, 0.2826705277, 0.5286228061, -0.1380667388, 0.0812100768, 0.0202329904, 0.0137295611, -0.0319658145, 0.48462376, 0.2030232549, -0.0330803879, -0.4814166129, -0.3177814782, -0.415076077, 0.0241081305, -0.3297816515, 0.0040629283, -0.0754074976, 0.1153873354, -0.0473554209, 0.0465940498, 0.0486276671, -0.3642249107, -0.0435178317, 0.1776145548, -0.1560722589, -0.2553375661, -0.1273900867, 0.1787594259, 0.1793887317, -0.198114574, 0.2631115019, 0.0087836981, -0.1398375183, -0.3518665433, 0.1338682473, 0.0501967669, 0.1779219061, 0.1576353908, 0.0610054657, 0.3895049691, 0.0040851086, -0.2422717363, 0.0258159377, 0.0002694093, -0.0998134613, 0.1413407475, 0.1294572204, 0.3691282868, -0.4097653627, -0.3827792406, -0.4327935278, 0.2897747755, -0.0637848452, -0.1197685748, -0.0350804254, -0.0376016572, 0.25265342, 0.0688296556, 0.0636018068, 0.1586664915, -0.0656887591, -0.0003351569, -0.4509043992, -0.2615722716, 0.4598855674, -0.4582999647, -0.3856020868, -0.0860999301, -0.095035553, -0.145935744, -0.1394126266, -0.7795308828, 0.0910595357, 0.2944114208, 0.0955305919, -0.4224693179, 0.0314955302, -0.1058145761, 0.1201663315, -0.1256256402, 0.3365497589, -0.0900947303, -0.4325062633, 0.1651301831, -0.2077717781 ]
https://github.com/huggingface/datasets/issues/1990
OSError: Memory mapping file failed: Cannot allocate memory
Dear @lhoestq thank you very much for the very sharp observation, indeed, this happens there, I use the default value of 5, I basically plan to subsample a part of the large dataset and choose it as validation set. Do you think this is bringing the data into memory during subsampling? Is there a way I could avoid this? Thank you very much for the great help. On Mon, Mar 8, 2021 at 11:28 AM Quentin Lhoest ***@***.***> wrote: > I noticed that the error happens when loading the validation dataset. > What value of data_args.validation_split_percentage did you use ? > > — > You are receiving this because you authored the thread. > Reply to this email directly, view it on GitHub > <https://github.com/huggingface/datasets/issues/1990#issuecomment-792655644>, > or unsubscribe > <https://github.com/notifications/unsubscribe-auth/AS37NMS337ZUJ7HGGVVCCR3TCSREFANCNFSM4YTYAQ2A> > . >
Hi, I am trying to run a code with a wikipedia dataset, here is the command to reproduce the error. You can find the codes for run_mlm.py in huggingface repo here: https://github.com/huggingface/transformers/blob/v4.3.2/examples/language-modeling/run_mlm.py ``` python run_mlm.py --model_name_or_path bert-base-multilingual-cased --dataset_name wikipedia --dataset_config_name 20200501.en --do_train --do_eval --output_dir /dara/test --max_seq_length 128 ``` I am using transformer version: 4.3.2 But I got memory erorr using this dataset, is there a way I could save on memory with dataset library with wikipedia dataset? Specially I need to train a model with multiple of wikipedia datasets concatenated. thank you very much @lhoestq for your help and suggestions: ``` File "run_mlm.py", line 441, in <module> main() File "run_mlm.py", line 233, in main split=f"train[{data_args.validation_split_percentage}%:]", File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/load.py", line 750, in load_dataset ds = builder_instance.as_dataset(split=split, ignore_verifications=ignore_verifications, in_memory=keep_in_memory) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/builder.py", line 740, in as_dataset map_tuple=True, File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/utils/py_utils.py", line 225, in map_nested return function(data_struct) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/builder.py", line 757, in _build_single_dataset in_memory=in_memory, File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/builder.py", line 829, in _as_dataset in_memory=in_memory, File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/arrow_reader.py", line 215, in read return self.read_files(files=files, original_instructions=instructions, in_memory=in_memory) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/arrow_reader.py", line 236, in read_files pa_table = self._read_files(files, in_memory=in_memory) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/arrow_reader.py", line 171, in _read_files pa_table: pa.Table = self._get_dataset_from_filename(f_dict, in_memory=in_memory) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/arrow_reader.py", line 302, in _get_dataset_from_filename pa_table = ArrowReader.read_table(filename, in_memory=in_memory) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/arrow_reader.py", line 322, in read_table stream = stream_from(filename) File "pyarrow/io.pxi", line 782, in pyarrow.lib.memory_map File "pyarrow/io.pxi", line 743, in pyarrow.lib.MemoryMappedFile._open File "pyarrow/error.pxi", line 122, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 99, in pyarrow.lib.check_status OSError: Memory mapping file failed: Cannot allocate memory ```
133
OSError: Memory mapping file failed: Cannot allocate memory Hi, I am trying to run a code with a wikipedia dataset, here is the command to reproduce the error. You can find the codes for run_mlm.py in huggingface repo here: https://github.com/huggingface/transformers/blob/v4.3.2/examples/language-modeling/run_mlm.py ``` python run_mlm.py --model_name_or_path bert-base-multilingual-cased --dataset_name wikipedia --dataset_config_name 20200501.en --do_train --do_eval --output_dir /dara/test --max_seq_length 128 ``` I am using transformer version: 4.3.2 But I got memory erorr using this dataset, is there a way I could save on memory with dataset library with wikipedia dataset? Specially I need to train a model with multiple of wikipedia datasets concatenated. thank you very much @lhoestq for your help and suggestions: ``` File "run_mlm.py", line 441, in <module> main() File "run_mlm.py", line 233, in main split=f"train[{data_args.validation_split_percentage}%:]", File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/load.py", line 750, in load_dataset ds = builder_instance.as_dataset(split=split, ignore_verifications=ignore_verifications, in_memory=keep_in_memory) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/builder.py", line 740, in as_dataset map_tuple=True, File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/utils/py_utils.py", line 225, in map_nested return function(data_struct) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/builder.py", line 757, in _build_single_dataset in_memory=in_memory, File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/builder.py", line 829, in _as_dataset in_memory=in_memory, File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/arrow_reader.py", line 215, in read return self.read_files(files=files, original_instructions=instructions, in_memory=in_memory) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/arrow_reader.py", line 236, in read_files pa_table = self._read_files(files, in_memory=in_memory) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/arrow_reader.py", line 171, in _read_files pa_table: pa.Table = self._get_dataset_from_filename(f_dict, in_memory=in_memory) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/arrow_reader.py", line 302, in _get_dataset_from_filename pa_table = ArrowReader.read_table(filename, in_memory=in_memory) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/arrow_reader.py", line 322, in read_table stream = stream_from(filename) File "pyarrow/io.pxi", line 782, in pyarrow.lib.memory_map File "pyarrow/io.pxi", line 743, in pyarrow.lib.MemoryMappedFile._open File "pyarrow/error.pxi", line 122, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 99, in pyarrow.lib.check_status OSError: Memory mapping file failed: Cannot allocate memory ``` Dear @lhoestq thank you very much for the very sharp observation, indeed, this happens there, I use the default value of 5, I basically plan to subsample a part of the large dataset and choose it as validation set. Do you think this is bringing the data into memory during subsampling? Is there a way I could avoid this? Thank you very much for the great help. On Mon, Mar 8, 2021 at 11:28 AM Quentin Lhoest ***@***.***> wrote: > I noticed that the error happens when loading the validation dataset. > What value of data_args.validation_split_percentage did you use ? > > — > You are receiving this because you authored the thread. > Reply to this email directly, view it on GitHub > <https://github.com/huggingface/datasets/issues/1990#issuecomment-792655644>, > or unsubscribe > <https://github.com/notifications/unsubscribe-auth/AS37NMS337ZUJ7HGGVVCCR3TCSREFANCNFSM4YTYAQ2A> > . >
[ -0.2615424395, -0.037264064, 0.052039884, 0.6045718789, 0.4538375735, 0.2834011316, 0.1456437558, 0.2724668086, 0.1785510629, 0.1056612357, -0.0581839532, 0.2273858339, -0.1771185994, -0.14591676, -0.0370904915, -0.1933317184, 0.0840208307, 0.0134713128, -0.5429401398, 0.1604685783, -0.3581551313, 0.1157063544, -0.1856328249, -0.1171600074, -0.298037529, -0.1035159305, -0.0006042197, -0.0976308584, 0.0188777149, -0.3274092674, 0.254856348, -0.1293893158, 0.0864004791, 0.5501930118, -0.0001231607, -0.0137763247, 0.2835691869, -0.1672081649, -0.2533998489, -0.12841627, -0.0416564308, -0.0297980495, 0.0984970182, -0.2252505124, -0.0119242668, -0.052592732, 0.2317304015, -0.3445146382, 0.4429750741, 0.2243883908, 0.1404946446, 0.0699651092, 0.452452153, -0.0441125929, 0.1739076525, 0.3341218233, 0.0713807568, 0.3320229053, -0.2908711433, -0.4356870949, -0.03041289, 0.3930503726, -0.0399410948, 0.0052878018, 0.5653296113, -0.1445837319, 0.0253532305, -0.336817652, 0.1123084277, -0.0072492044, 0.5341089368, -0.4902599454, -0.0283724852, -0.0147869289, -0.0533835068, -0.095239915, 0.2970979512, 0.2689523697, -0.2722631097, -0.1447608322, -0.1304169595, -0.3249985874, -0.3197001815, 0.44286865, -0.090921402, 0.1910010874, -0.0247157998, 0.3037816584, 0.5653705597, -0.2050893009, -0.2340614796, -0.0758119971, 0.1365433037, 0.3287970126, -0.2677203417, -0.1660288274, -0.3029489815, -0.2047091573, 0.3511368632, -0.4987059534, -0.3861929178, -0.1260011196, 0.1516698003, 0.0212388765, 0.403645426, 0.28173545, -0.2963657081, 0.3228371441, 0.312296778, 0.1742714792, -0.2495377362, -0.1589901745, 0.0767952651, -0.0373789892, -0.1110500097, -0.1914824843, 0.0837736949, -0.0016543567, -0.013746053, -0.0218037032, -0.2128320038, -0.123209171, -0.0538496748, 0.505523026, -0.1040842608, -0.0846187323, 0.3738275766, 0.1444596201, -0.0126844086, -0.0080770254, -0.056374982, 0.4104229808, -0.3436279297, 0.2843071222, 0.0502635688, -0.001158379, 0.3263406456, -0.0727057829, -0.0331282876, -0.0566818938, 0.1620449424, -0.3580228984, 0.0087110326, 0.1846880615, 0.1788563281, 0.2493288815, 0.2503515482, -0.147986114, -0.1526844203, 0.1969970167, -0.1634680331, -0.243303746, 0.0387372151, 0.0109293135, 0.0980136245, 0.2277472615, -0.2775138021, 0.1828102469, 0.6528621316, -0.0775154084, -0.0572651513, -0.0801965892, -0.2296680659, -0.1687688679, 0.2708779871, 0.5193135738, -0.0646528527, -0.1054834798, -0.1169703826, 0.167704314, 0.2510126829, 0.441383481, -0.1638230085, 0.2519156635, -0.0972213, 0.0167983323, 0.4141837358, -0.3105096221, -0.3419042528, -0.0056237914, -0.02522894, -0.1343221664, 0.0232779887, 0.1321311742, 0.0773996264, 0.1156660095, 0.1119254678, 0.3104186654, 0.0561034679, 0.2800842226, -0.3041982949, -0.2975763977, 0.2528687119, 0.074746117, 0.0653967634, -0.2040827572, -0.0608491711, 0.8107675314, 0.2972949743, -0.2623122931, 0.1555342078, 0.3147747815, 0.1061367095, 0.0064360863, 0.0871190131, -0.2199126482, -0.2514473796, -0.0734246075, -0.0566992164, 0.3305937648, -0.1451887935, -0.04148091, 0.153722778, -0.1186708957, -0.1722492129, -0.3908628523, 0.0622954033, 0.0130734798, 0.1235826239, 0.0900844112, 0.0810609162, 0.0560084358, -0.0939699858, 0.2478924245, -0.5998022556, 0.1715031266, -0.2896076143, -0.1076941639, -0.0214399546, -0.0624919683, 0.0274149645, -0.0474655963, -0.0685557574, 0.151992619, 0.0771347284, -0.1671153456, -0.0906849205, 0.003420189, 0.3101093769, -0.322114408, 0.1657057106, 0.2421724498, 0.1955043375, -0.0940228254, -0.1976960003, -0.1558783948, 0.1051338837, 0.3647210896, 0.079187721, 0.1687754244, 0.0262408704, 0.0895475447, 0.1797859967, -0.2070021331, 0.2181633264, 0.0123552121, 0.2408839911, 0.0950063542, -0.0293943137, -0.3097333014, 0.4583241045, 0.2681967914, 0.2772992551, 0.2424817234, -0.4937292039, -0.0740424991, -0.0656517893, -0.0718549863, 0.3221564889, 0.050078623, -0.1195640862, 0.1201547533, 0.1963379681, 0.0097030289, 0.3097597957, 0.1743880957, 0.4940780401, -0.0187087823, 0.1057225168, -0.0806347951, -0.099587217, -0.1468483806, 0.050045602, 0.5077640414, -0.1753804684, -0.0157850236, -0.1864267886, -0.400614202, -0.2753978968, 0.1643147469, -0.4642427862, -0.1369272768, -0.3849298358, 0.324758023, 0.0695632994, 0.2584396005, 0.4160763323, -0.0507139862, 0.3513424695, -0.1406711936, 0.0687716752, -0.2304129452, -0.119075343, -0.0627370849, 0.4409621954, -0.2204725891, 0.0868325308, 0.1567281336, -0.3195579052, -0.2135091722, -0.1457150131, 0.1469895244, -0.0808213577, 0.1255744845, 0.0596420653, 0.5084350109, -0.1233982295, -0.2323760241, 0.1721096486, 0.0899071246, -0.0588723496, -0.0373005271, 0.0232936516, 0.1553850174, 0.0540889949, -0.2931137085, -0.1797570139, -0.5081845522, 0.4014804065, -0.0338909701, 0.1513630897, 0.3279178739, 0.1617624164, 0.1156148165, -0.1213657856, 0.0894481912, -0.1621505171, 0.0160197765, 0.3207914531, -0.1488259435, -0.211434871, -0.0290639997, 0.0627379119, 0.3063037992, 0.2301858366, -0.615758121, -0.0209105052, -0.1136818752, -0.0108945817, -0.0588508286, 0.2863110602, 0.3913800418, 0.0789213553, 0.1078000665, 0.1375889778, -0.1677573323, 0.0949069113, -0.040983066, 0.3248965442, 0.220079124, 0.5234261751, 0.0637262985, 0.8384488225, 0.3419641852, 0.1871408075, 0.2288259268, -0.0220656786, 0.0835642591, 0.0049699321, -0.3481869102, -0.0082089268, -0.0368971527, 0.0619995892, 0.1661427021, 0.0087549537, -0.3374430537, -0.1676725894, -0.3505285978, 0.0459901616, -0.3771669269, 0.2698538005, 0.175124675, 0.3674235344, -0.0838355273, -0.0824131817, 0.0231613889, -0.351578176, 0.1945329159, 0.2135322541, -0.0175282806, 0.0211241655, -0.1137082353, -0.3958892226, -0.6405459642, 0.1182040796, -0.1544017941, 0.0629793257, -0.1038482487, 0.0933977962, 0.0600523204, 0.1583071798, 0.7553268075, 0.0059234593, -0.3072925806, -0.0461270139, -0.2609420121, -0.5063740015, 0.213784337, -0.1841569543, 0.3441572487, 0.1433891803, 0.5205535889, -0.3616019487, -0.098133713, 0.3212876618, 0.3747147024, -0.2170826197, -0.2046920657, -0.1343316734, -0.2551262975, -0.6043946743, 0.0041025281, 0.0545692146, 0.1934488267, 0.496452868, 0.2044564486, 0.0526691973, -0.0508969538, 0.1371938884, -0.0533756539, 0.3105924129, 0.1106535643, 0.1008516327, 0.1345037818, -0.1580678374, 0.3764193058, 0.2939085662, 0.0716901124, -0.3797551394, -0.099785462, 0.0576215796, 0.2523957789, -0.0627547055, -0.0139145963, 0.0038339905, 0.0268993936, 0.1780950427, -0.0997748151, 0.1322194636, 0.1875681281, 0.0874076486, -0.4511454403, -0.4366311133, 0.3414418399, 0.1997047067, 0.1596939117, 0.3301561773, -0.1424441338, -0.5566368103, 0.3253412247, 0.3589585125, 0.9608323574, -0.3551487327, 0.393727988, 0.0962183923, 0.2117648423, 0.6567658186, -0.475140363, 0.35296157, -0.3699407578, -0.0815761238, 0.0431752503, -0.133099556, 0.1379619837, -0.0172328185, -0.4360862076, 0.2891324461, 0.0913326889, -0.0398276374, -0.1840586364, 0.3883704543, 0.1124470308, -0.4811998606, -0.1841865033, 0.0319511034, -0.1269844472, 0.2439669222, -0.0456032529, -0.0274406429, 0.1156754866, -0.1150276363, -0.3924037814, -0.0374515839, -0.4836358726, 0.3076913059, -0.2517829537, 0.0015951246, 0.4047459662, 0.39280653, 0.0101813953, 0.3698485792, -0.1340498477, 0.01052651, -0.3600809574, -0.2767653167, -0.1850569844, 0.0676645488, 0.2424043119, -0.1937426925, -0.1071274877, 0.0763600692, -0.0399471372, -0.1982409656, -0.2103528678, -0.0318767168, -0.1298193038, -0.2045654804, -0.2123930752, 0.0132843237, -0.3584757745, -0.0186201781, 0.0458632894, 0.0108470432, -0.3378364742, 0.3286831379, 0.1423625648, -0.4008428454, 0.0307401158, 0.4164581895, 0.34854424, 0.1605856717, 0.7200254798, 0.3232617378, -0.2456388324, -0.1618595272, -0.0824734271, -0.0253359862, -0.3048345447, 0.2100928426, 0.0837547556, 0.1060535908, -0.3066005111, -0.0003772974, 0.1285433918, 0.0452361032, 0.0363892242, -0.3043984175, -0.5601995587, 0.2082495093, -0.0104776639, 0.0364992544, 0.2368941307, 0.0221909471, 0.0295315534, 0.2480151504, -0.1566305757, 0.020054169, -0.1691416204, 0.2507918477, 0.2438189834, -0.111687012, 0.103243947, -0.0129491724, -0.0043390244, 0.1593105793, -0.0150239132, -0.1269526631, 0.0454818383, 0.1532625109, -0.0268511754, -0.277785778, -0.0963581502, -0.5430380702, -0.0158968959, -0.3039937913, 0.0111278221, 0.0212793201, -0.1362704039, 0.1109777987, 0.2019032687, -0.273165524, -0.0630259216, 0.2792616785, -0.0221644603, -0.0507521667, 0.1658706814, 0.2017495036, 0.0937988237, -0.1570736766, -0.5362305045, 0.0558343902, -0.0843362063, -0.0266277585, 0.101993978, -0.1142850295, -0.3993758857, 0.3194218576, 0.0904668048, 0.1510136425, -0.1423277408, 0.2068411261, 0.2004513294, 0.0089689959, -0.1937266588, -0.0418561548, 0.330198288, -0.2920082211, -0.0505979992, 0.3277902007, -0.1311673075, 0.0453452766, -0.0299582072, 0.1311580241, 0.3588020802, -0.0734305382, 0.3226175904, 0.0061586453, -0.0834841579, -0.0167205818, 0.1939016134, 0.4057275355, 0.2587027848, 0.2043863237, -0.1556384414, 0.0376387686, -0.105872415, -0.254822582, 0.0379431583, -0.0836713463, 0.1414889991, 0.4189732671, -0.1775913537, 0.1592199206, -0.1939128339, 0.1780180335, 0.1845973432, -0.2745577693, 0.0787769109, 0.2984716892, -0.211687535, 0.0464744829, 0.1499888748, -0.1157814637, -0.0657883734, 0.1417856812, 0.0771138892, -0.6087391376, 0.4591957629, 0.1467868388, -0.2206509262, -0.1409264505, 0.2773649991, 0.4522539377, 0.0710783899, -0.3053991199, 0.0575941876, 0.026987914, 0.1365887225, -0.3318275809, 0.3094458878, 0.4621620774, 0.291584909, -0.1956238449, 0.2535725832, -0.1581639946, -0.012619298, 0.0154258087, -0.0236889254, 0.1164659858, 0.2165057659, 0.1130548418, -0.0109329466, -0.0586274862, -0.151095137, 0.1630202532, 0.1425208747, -0.2279159427, -0.3811420202, -0.0991921425, -0.1710887849, -0.0140400054, -0.0115701146, -0.5901705623, 0.2826705277, 0.5286228061, -0.1380667388, 0.0812100768, 0.0202329904, 0.0137295611, -0.0319658145, 0.48462376, 0.2030232549, -0.0330803879, -0.4814166129, -0.3177814782, -0.415076077, 0.0241081305, -0.3297816515, 0.0040629283, -0.0754074976, 0.1153873354, -0.0473554209, 0.0465940498, 0.0486276671, -0.3642249107, -0.0435178317, 0.1776145548, -0.1560722589, -0.2553375661, -0.1273900867, 0.1787594259, 0.1793887317, -0.198114574, 0.2631115019, 0.0087836981, -0.1398375183, -0.3518665433, 0.1338682473, 0.0501967669, 0.1779219061, 0.1576353908, 0.0610054657, 0.3895049691, 0.0040851086, -0.2422717363, 0.0258159377, 0.0002694093, -0.0998134613, 0.1413407475, 0.1294572204, 0.3691282868, -0.4097653627, -0.3827792406, -0.4327935278, 0.2897747755, -0.0637848452, -0.1197685748, -0.0350804254, -0.0376016572, 0.25265342, 0.0688296556, 0.0636018068, 0.1586664915, -0.0656887591, -0.0003351569, -0.4509043992, -0.2615722716, 0.4598855674, -0.4582999647, -0.3856020868, -0.0860999301, -0.095035553, -0.145935744, -0.1394126266, -0.7795308828, 0.0910595357, 0.2944114208, 0.0955305919, -0.4224693179, 0.0314955302, -0.1058145761, 0.1201663315, -0.1256256402, 0.3365497589, -0.0900947303, -0.4325062633, 0.1651301831, -0.2077717781 ]
https://github.com/huggingface/datasets/issues/1990
OSError: Memory mapping file failed: Cannot allocate memory
Methods like `dataset.shard`, `dataset.train_test_split`, `dataset.select` etc. don't bring the dataset in memory. The only time when samples are brought to memory is when you access elements via `dataset[0]`, `dataset[:10]`, `dataset["my_column_names"]`. But it's possible that trying to use those methods to build your validation set doesn't fix the issue since, if I understand correctly, the error happens when when the dataset arrow file is opened (just before the 5% percentage is applied). Did you try to reproduce this issue in a google colab ? This would be super helpful to investigate why this happened. Also maybe you can try clearing your cache at `~/.cache/huggingface/datasets` and try again. If the arrow file was corrupted somehow, removing it and rebuilding may fix the issue.
Hi, I am trying to run a code with a wikipedia dataset, here is the command to reproduce the error. You can find the codes for run_mlm.py in huggingface repo here: https://github.com/huggingface/transformers/blob/v4.3.2/examples/language-modeling/run_mlm.py ``` python run_mlm.py --model_name_or_path bert-base-multilingual-cased --dataset_name wikipedia --dataset_config_name 20200501.en --do_train --do_eval --output_dir /dara/test --max_seq_length 128 ``` I am using transformer version: 4.3.2 But I got memory erorr using this dataset, is there a way I could save on memory with dataset library with wikipedia dataset? Specially I need to train a model with multiple of wikipedia datasets concatenated. thank you very much @lhoestq for your help and suggestions: ``` File "run_mlm.py", line 441, in <module> main() File "run_mlm.py", line 233, in main split=f"train[{data_args.validation_split_percentage}%:]", File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/load.py", line 750, in load_dataset ds = builder_instance.as_dataset(split=split, ignore_verifications=ignore_verifications, in_memory=keep_in_memory) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/builder.py", line 740, in as_dataset map_tuple=True, File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/utils/py_utils.py", line 225, in map_nested return function(data_struct) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/builder.py", line 757, in _build_single_dataset in_memory=in_memory, File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/builder.py", line 829, in _as_dataset in_memory=in_memory, File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/arrow_reader.py", line 215, in read return self.read_files(files=files, original_instructions=instructions, in_memory=in_memory) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/arrow_reader.py", line 236, in read_files pa_table = self._read_files(files, in_memory=in_memory) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/arrow_reader.py", line 171, in _read_files pa_table: pa.Table = self._get_dataset_from_filename(f_dict, in_memory=in_memory) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/arrow_reader.py", line 302, in _get_dataset_from_filename pa_table = ArrowReader.read_table(filename, in_memory=in_memory) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/arrow_reader.py", line 322, in read_table stream = stream_from(filename) File "pyarrow/io.pxi", line 782, in pyarrow.lib.memory_map File "pyarrow/io.pxi", line 743, in pyarrow.lib.MemoryMappedFile._open File "pyarrow/error.pxi", line 122, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 99, in pyarrow.lib.check_status OSError: Memory mapping file failed: Cannot allocate memory ```
121
OSError: Memory mapping file failed: Cannot allocate memory Hi, I am trying to run a code with a wikipedia dataset, here is the command to reproduce the error. You can find the codes for run_mlm.py in huggingface repo here: https://github.com/huggingface/transformers/blob/v4.3.2/examples/language-modeling/run_mlm.py ``` python run_mlm.py --model_name_or_path bert-base-multilingual-cased --dataset_name wikipedia --dataset_config_name 20200501.en --do_train --do_eval --output_dir /dara/test --max_seq_length 128 ``` I am using transformer version: 4.3.2 But I got memory erorr using this dataset, is there a way I could save on memory with dataset library with wikipedia dataset? Specially I need to train a model with multiple of wikipedia datasets concatenated. thank you very much @lhoestq for your help and suggestions: ``` File "run_mlm.py", line 441, in <module> main() File "run_mlm.py", line 233, in main split=f"train[{data_args.validation_split_percentage}%:]", File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/load.py", line 750, in load_dataset ds = builder_instance.as_dataset(split=split, ignore_verifications=ignore_verifications, in_memory=keep_in_memory) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/builder.py", line 740, in as_dataset map_tuple=True, File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/utils/py_utils.py", line 225, in map_nested return function(data_struct) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/builder.py", line 757, in _build_single_dataset in_memory=in_memory, File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/builder.py", line 829, in _as_dataset in_memory=in_memory, File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/arrow_reader.py", line 215, in read return self.read_files(files=files, original_instructions=instructions, in_memory=in_memory) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/arrow_reader.py", line 236, in read_files pa_table = self._read_files(files, in_memory=in_memory) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/arrow_reader.py", line 171, in _read_files pa_table: pa.Table = self._get_dataset_from_filename(f_dict, in_memory=in_memory) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/arrow_reader.py", line 302, in _get_dataset_from_filename pa_table = ArrowReader.read_table(filename, in_memory=in_memory) File "/dara/libs/anaconda3/envs/code/lib/python3.7/site-packages/datasets-1.3.0-py3.7.egg/datasets/arrow_reader.py", line 322, in read_table stream = stream_from(filename) File "pyarrow/io.pxi", line 782, in pyarrow.lib.memory_map File "pyarrow/io.pxi", line 743, in pyarrow.lib.MemoryMappedFile._open File "pyarrow/error.pxi", line 122, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 99, in pyarrow.lib.check_status OSError: Memory mapping file failed: Cannot allocate memory ``` Methods like `dataset.shard`, `dataset.train_test_split`, `dataset.select` etc. don't bring the dataset in memory. The only time when samples are brought to memory is when you access elements via `dataset[0]`, `dataset[:10]`, `dataset["my_column_names"]`. But it's possible that trying to use those methods to build your validation set doesn't fix the issue since, if I understand correctly, the error happens when when the dataset arrow file is opened (just before the 5% percentage is applied). Did you try to reproduce this issue in a google colab ? This would be super helpful to investigate why this happened. Also maybe you can try clearing your cache at `~/.cache/huggingface/datasets` and try again. If the arrow file was corrupted somehow, removing it and rebuilding may fix the issue.
[ -0.2615424395, -0.037264064, 0.052039884, 0.6045718789, 0.4538375735, 0.2834011316, 0.1456437558, 0.2724668086, 0.1785510629, 0.1056612357, -0.0581839532, 0.2273858339, -0.1771185994, -0.14591676, -0.0370904915, -0.1933317184, 0.0840208307, 0.0134713128, -0.5429401398, 0.1604685783, -0.3581551313, 0.1157063544, -0.1856328249, -0.1171600074, -0.298037529, -0.1035159305, -0.0006042197, -0.0976308584, 0.0188777149, -0.3274092674, 0.254856348, -0.1293893158, 0.0864004791, 0.5501930118, -0.0001231607, -0.0137763247, 0.2835691869, -0.1672081649, -0.2533998489, -0.12841627, -0.0416564308, -0.0297980495, 0.0984970182, -0.2252505124, -0.0119242668, -0.052592732, 0.2317304015, -0.3445146382, 0.4429750741, 0.2243883908, 0.1404946446, 0.0699651092, 0.452452153, -0.0441125929, 0.1739076525, 0.3341218233, 0.0713807568, 0.3320229053, -0.2908711433, -0.4356870949, -0.03041289, 0.3930503726, -0.0399410948, 0.0052878018, 0.5653296113, -0.1445837319, 0.0253532305, -0.336817652, 0.1123084277, -0.0072492044, 0.5341089368, -0.4902599454, -0.0283724852, -0.0147869289, -0.0533835068, -0.095239915, 0.2970979512, 0.2689523697, -0.2722631097, -0.1447608322, -0.1304169595, -0.3249985874, -0.3197001815, 0.44286865, -0.090921402, 0.1910010874, -0.0247157998, 0.3037816584, 0.5653705597, -0.2050893009, -0.2340614796, -0.0758119971, 0.1365433037, 0.3287970126, -0.2677203417, -0.1660288274, -0.3029489815, -0.2047091573, 0.3511368632, -0.4987059534, -0.3861929178, -0.1260011196, 0.1516698003, 0.0212388765, 0.403645426, 0.28173545, -0.2963657081, 0.3228371441, 0.312296778, 0.1742714792, -0.2495377362, -0.1589901745, 0.0767952651, -0.0373789892, -0.1110500097, -0.1914824843, 0.0837736949, -0.0016543567, -0.013746053, -0.0218037032, -0.2128320038, -0.123209171, -0.0538496748, 0.505523026, -0.1040842608, -0.0846187323, 0.3738275766, 0.1444596201, -0.0126844086, -0.0080770254, -0.056374982, 0.4104229808, -0.3436279297, 0.2843071222, 0.0502635688, -0.001158379, 0.3263406456, -0.0727057829, -0.0331282876, -0.0566818938, 0.1620449424, -0.3580228984, 0.0087110326, 0.1846880615, 0.1788563281, 0.2493288815, 0.2503515482, -0.147986114, -0.1526844203, 0.1969970167, -0.1634680331, -0.243303746, 0.0387372151, 0.0109293135, 0.0980136245, 0.2277472615, -0.2775138021, 0.1828102469, 0.6528621316, -0.0775154084, -0.0572651513, -0.0801965892, -0.2296680659, -0.1687688679, 0.2708779871, 0.5193135738, -0.0646528527, -0.1054834798, -0.1169703826, 0.167704314, 0.2510126829, 0.441383481, -0.1638230085, 0.2519156635, -0.0972213, 0.0167983323, 0.4141837358, -0.3105096221, -0.3419042528, -0.0056237914, -0.02522894, -0.1343221664, 0.0232779887, 0.1321311742, 0.0773996264, 0.1156660095, 0.1119254678, 0.3104186654, 0.0561034679, 0.2800842226, -0.3041982949, -0.2975763977, 0.2528687119, 0.074746117, 0.0653967634, -0.2040827572, -0.0608491711, 0.8107675314, 0.2972949743, -0.2623122931, 0.1555342078, 0.3147747815, 0.1061367095, 0.0064360863, 0.0871190131, -0.2199126482, -0.2514473796, -0.0734246075, -0.0566992164, 0.3305937648, -0.1451887935, -0.04148091, 0.153722778, -0.1186708957, -0.1722492129, -0.3908628523, 0.0622954033, 0.0130734798, 0.1235826239, 0.0900844112, 0.0810609162, 0.0560084358, -0.0939699858, 0.2478924245, -0.5998022556, 0.1715031266, -0.2896076143, -0.1076941639, -0.0214399546, -0.0624919683, 0.0274149645, -0.0474655963, -0.0685557574, 0.151992619, 0.0771347284, -0.1671153456, -0.0906849205, 0.003420189, 0.3101093769, -0.322114408, 0.1657057106, 0.2421724498, 0.1955043375, -0.0940228254, -0.1976960003, -0.1558783948, 0.1051338837, 0.3647210896, 0.079187721, 0.1687754244, 0.0262408704, 0.0895475447, 0.1797859967, -0.2070021331, 0.2181633264, 0.0123552121, 0.2408839911, 0.0950063542, -0.0293943137, -0.3097333014, 0.4583241045, 0.2681967914, 0.2772992551, 0.2424817234, -0.4937292039, -0.0740424991, -0.0656517893, -0.0718549863, 0.3221564889, 0.050078623, -0.1195640862, 0.1201547533, 0.1963379681, 0.0097030289, 0.3097597957, 0.1743880957, 0.4940780401, -0.0187087823, 0.1057225168, -0.0806347951, -0.099587217, -0.1468483806, 0.050045602, 0.5077640414, -0.1753804684, -0.0157850236, -0.1864267886, -0.400614202, -0.2753978968, 0.1643147469, -0.4642427862, -0.1369272768, -0.3849298358, 0.324758023, 0.0695632994, 0.2584396005, 0.4160763323, -0.0507139862, 0.3513424695, -0.1406711936, 0.0687716752, -0.2304129452, -0.119075343, -0.0627370849, 0.4409621954, -0.2204725891, 0.0868325308, 0.1567281336, -0.3195579052, -0.2135091722, -0.1457150131, 0.1469895244, -0.0808213577, 0.1255744845, 0.0596420653, 0.5084350109, -0.1233982295, -0.2323760241, 0.1721096486, 0.0899071246, -0.0588723496, -0.0373005271, 0.0232936516, 0.1553850174, 0.0540889949, -0.2931137085, -0.1797570139, -0.5081845522, 0.4014804065, -0.0338909701, 0.1513630897, 0.3279178739, 0.1617624164, 0.1156148165, -0.1213657856, 0.0894481912, -0.1621505171, 0.0160197765, 0.3207914531, -0.1488259435, -0.211434871, -0.0290639997, 0.0627379119, 0.3063037992, 0.2301858366, -0.615758121, -0.0209105052, -0.1136818752, -0.0108945817, -0.0588508286, 0.2863110602, 0.3913800418, 0.0789213553, 0.1078000665, 0.1375889778, -0.1677573323, 0.0949069113, -0.040983066, 0.3248965442, 0.220079124, 0.5234261751, 0.0637262985, 0.8384488225, 0.3419641852, 0.1871408075, 0.2288259268, -0.0220656786, 0.0835642591, 0.0049699321, -0.3481869102, -0.0082089268, -0.0368971527, 0.0619995892, 0.1661427021, 0.0087549537, -0.3374430537, -0.1676725894, -0.3505285978, 0.0459901616, -0.3771669269, 0.2698538005, 0.175124675, 0.3674235344, -0.0838355273, -0.0824131817, 0.0231613889, -0.351578176, 0.1945329159, 0.2135322541, -0.0175282806, 0.0211241655, -0.1137082353, -0.3958892226, -0.6405459642, 0.1182040796, -0.1544017941, 0.0629793257, -0.1038482487, 0.0933977962, 0.0600523204, 0.1583071798, 0.7553268075, 0.0059234593, -0.3072925806, -0.0461270139, -0.2609420121, -0.5063740015, 0.213784337, -0.1841569543, 0.3441572487, 0.1433891803, 0.5205535889, -0.3616019487, -0.098133713, 0.3212876618, 0.3747147024, -0.2170826197, -0.2046920657, -0.1343316734, -0.2551262975, -0.6043946743, 0.0041025281, 0.0545692146, 0.1934488267, 0.496452868, 0.2044564486, 0.0526691973, -0.0508969538, 0.1371938884, -0.0533756539, 0.3105924129, 0.1106535643, 0.1008516327, 0.1345037818, -0.1580678374, 0.3764193058, 0.2939085662, 0.0716901124, -0.3797551394, -0.099785462, 0.0576215796, 0.2523957789, -0.0627547055, -0.0139145963, 0.0038339905, 0.0268993936, 0.1780950427, -0.0997748151, 0.1322194636, 0.1875681281, 0.0874076486, -0.4511454403, -0.4366311133, 0.3414418399, 0.1997047067, 0.1596939117, 0.3301561773, -0.1424441338, -0.5566368103, 0.3253412247, 0.3589585125, 0.9608323574, -0.3551487327, 0.393727988, 0.0962183923, 0.2117648423, 0.6567658186, -0.475140363, 0.35296157, -0.3699407578, -0.0815761238, 0.0431752503, -0.133099556, 0.1379619837, -0.0172328185, -0.4360862076, 0.2891324461, 0.0913326889, -0.0398276374, -0.1840586364, 0.3883704543, 0.1124470308, -0.4811998606, -0.1841865033, 0.0319511034, -0.1269844472, 0.2439669222, -0.0456032529, -0.0274406429, 0.1156754866, -0.1150276363, -0.3924037814, -0.0374515839, -0.4836358726, 0.3076913059, -0.2517829537, 0.0015951246, 0.4047459662, 0.39280653, 0.0101813953, 0.3698485792, -0.1340498477, 0.01052651, -0.3600809574, -0.2767653167, -0.1850569844, 0.0676645488, 0.2424043119, -0.1937426925, -0.1071274877, 0.0763600692, -0.0399471372, -0.1982409656, -0.2103528678, -0.0318767168, -0.1298193038, -0.2045654804, -0.2123930752, 0.0132843237, -0.3584757745, -0.0186201781, 0.0458632894, 0.0108470432, -0.3378364742, 0.3286831379, 0.1423625648, -0.4008428454, 0.0307401158, 0.4164581895, 0.34854424, 0.1605856717, 0.7200254798, 0.3232617378, -0.2456388324, -0.1618595272, -0.0824734271, -0.0253359862, -0.3048345447, 0.2100928426, 0.0837547556, 0.1060535908, -0.3066005111, -0.0003772974, 0.1285433918, 0.0452361032, 0.0363892242, -0.3043984175, -0.5601995587, 0.2082495093, -0.0104776639, 0.0364992544, 0.2368941307, 0.0221909471, 0.0295315534, 0.2480151504, -0.1566305757, 0.020054169, -0.1691416204, 0.2507918477, 0.2438189834, -0.111687012, 0.103243947, -0.0129491724, -0.0043390244, 0.1593105793, -0.0150239132, -0.1269526631, 0.0454818383, 0.1532625109, -0.0268511754, -0.277785778, -0.0963581502, -0.5430380702, -0.0158968959, -0.3039937913, 0.0111278221, 0.0212793201, -0.1362704039, 0.1109777987, 0.2019032687, -0.273165524, -0.0630259216, 0.2792616785, -0.0221644603, -0.0507521667, 0.1658706814, 0.2017495036, 0.0937988237, -0.1570736766, -0.5362305045, 0.0558343902, -0.0843362063, -0.0266277585, 0.101993978, -0.1142850295, -0.3993758857, 0.3194218576, 0.0904668048, 0.1510136425, -0.1423277408, 0.2068411261, 0.2004513294, 0.0089689959, -0.1937266588, -0.0418561548, 0.330198288, -0.2920082211, -0.0505979992, 0.3277902007, -0.1311673075, 0.0453452766, -0.0299582072, 0.1311580241, 0.3588020802, -0.0734305382, 0.3226175904, 0.0061586453, -0.0834841579, -0.0167205818, 0.1939016134, 0.4057275355, 0.2587027848, 0.2043863237, -0.1556384414, 0.0376387686, -0.105872415, -0.254822582, 0.0379431583, -0.0836713463, 0.1414889991, 0.4189732671, -0.1775913537, 0.1592199206, -0.1939128339, 0.1780180335, 0.1845973432, -0.2745577693, 0.0787769109, 0.2984716892, -0.211687535, 0.0464744829, 0.1499888748, -0.1157814637, -0.0657883734, 0.1417856812, 0.0771138892, -0.6087391376, 0.4591957629, 0.1467868388, -0.2206509262, -0.1409264505, 0.2773649991, 0.4522539377, 0.0710783899, -0.3053991199, 0.0575941876, 0.026987914, 0.1365887225, -0.3318275809, 0.3094458878, 0.4621620774, 0.291584909, -0.1956238449, 0.2535725832, -0.1581639946, -0.012619298, 0.0154258087, -0.0236889254, 0.1164659858, 0.2165057659, 0.1130548418, -0.0109329466, -0.0586274862, -0.151095137, 0.1630202532, 0.1425208747, -0.2279159427, -0.3811420202, -0.0991921425, -0.1710887849, -0.0140400054, -0.0115701146, -0.5901705623, 0.2826705277, 0.5286228061, -0.1380667388, 0.0812100768, 0.0202329904, 0.0137295611, -0.0319658145, 0.48462376, 0.2030232549, -0.0330803879, -0.4814166129, -0.3177814782, -0.415076077, 0.0241081305, -0.3297816515, 0.0040629283, -0.0754074976, 0.1153873354, -0.0473554209, 0.0465940498, 0.0486276671, -0.3642249107, -0.0435178317, 0.1776145548, -0.1560722589, -0.2553375661, -0.1273900867, 0.1787594259, 0.1793887317, -0.198114574, 0.2631115019, 0.0087836981, -0.1398375183, -0.3518665433, 0.1338682473, 0.0501967669, 0.1779219061, 0.1576353908, 0.0610054657, 0.3895049691, 0.0040851086, -0.2422717363, 0.0258159377, 0.0002694093, -0.0998134613, 0.1413407475, 0.1294572204, 0.3691282868, -0.4097653627, -0.3827792406, -0.4327935278, 0.2897747755, -0.0637848452, -0.1197685748, -0.0350804254, -0.0376016572, 0.25265342, 0.0688296556, 0.0636018068, 0.1586664915, -0.0656887591, -0.0003351569, -0.4509043992, -0.2615722716, 0.4598855674, -0.4582999647, -0.3856020868, -0.0860999301, -0.095035553, -0.145935744, -0.1394126266, -0.7795308828, 0.0910595357, 0.2944114208, 0.0955305919, -0.4224693179, 0.0314955302, -0.1058145761, 0.1201663315, -0.1256256402, 0.3365497589, -0.0900947303, -0.4325062633, 0.1651301831, -0.2077717781 ]
https://github.com/huggingface/datasets/issues/1989
Question/problem with dataset labels
It seems that I get parsing errors for various fields in my data. For example now I get this: ``` File "../../../models/tr-4.3.2/run_puppets.py", line 523, in <module> main() File "../../../models/tr-4.3.2/run_puppets.py", line 249, in main datasets = load_dataset("csv", data_files=data_files) File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/load.py", line 740, in load_dataset builder_instance.download_and_prepare( File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py", line 572, in download_and_prepare self._download_and_prepare( File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py", line 650, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py", line 1028, in _prepare_split writer.write_table(table) File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/arrow_writer.py", line 292, in write_table pa_table = pa_table.cast(self._schema) File "pyarrow/table.pxi", line 1311, in pyarrow.lib.Table.cast File "pyarrow/table.pxi", line 265, in pyarrow.lib.ChunkedArray.cast File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/pyarrow/compute.py", line 87, in cast return call_function("cast", [arr], options) File "pyarrow/_compute.pyx", line 298, in pyarrow._compute.call_function File "pyarrow/_compute.pyx", line 192, in pyarrow._compute.Function.call File "pyarrow/error.pxi", line 122, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 84, in pyarrow.lib.check_status pyarrow.lib.ArrowInvalid: Failed to parse string: https://www.netgalley.com/catalog/book/121872 ```
Hi, I'm using a dataset with two labels "nurse" and "not nurse". For whatever reason (that I don't understand), I get an error that I think comes from the datasets package (using csv). Everything works fine if the labels are "nurse" and "surgeon". This is the trace I get: ``` File "../../../models/tr-4.3.2/run_puppets.py", line 523, in <module> main() File "../../../models/tr-4.3.2/run_puppets.py", line 249, in main datasets = load_dataset("csv", data_files=data_files) File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/load.py", line 740, in load_dataset builder_instance.download_and_prepare( File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py", line 572, in download_and_prepare self._download_and_prepare( File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py", line 650, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py", line 1028, in _prepare_split writer.write_table(table) File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/arrow_writer.py", line 292, in write_table pa_table = pa_table.cast(self._schema) File "pyarrow/table.pxi", line 1311, in pyarrow.lib.Table.cast File "pyarrow/table.pxi", line 265, in pyarrow.lib.ChunkedArray.cast File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/pyarrow/compute.py", line 87, in cast return call_function("cast", [arr], options) File "pyarrow/_compute.pyx", line 298, in pyarrow._compute.call_function File "pyarrow/_compute.pyx", line 192, in pyarrow._compute.Function.call File "pyarrow/error.pxi", line 122, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 84, in pyarrow.lib.check_status pyarrow.lib.ArrowInvalid: Failed to parse string: not nurse ``` Any ideas how to fix this? For now, I'll probably make them numeric.
128
Question/problem with dataset labels Hi, I'm using a dataset with two labels "nurse" and "not nurse". For whatever reason (that I don't understand), I get an error that I think comes from the datasets package (using csv). Everything works fine if the labels are "nurse" and "surgeon". This is the trace I get: ``` File "../../../models/tr-4.3.2/run_puppets.py", line 523, in <module> main() File "../../../models/tr-4.3.2/run_puppets.py", line 249, in main datasets = load_dataset("csv", data_files=data_files) File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/load.py", line 740, in load_dataset builder_instance.download_and_prepare( File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py", line 572, in download_and_prepare self._download_and_prepare( File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py", line 650, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py", line 1028, in _prepare_split writer.write_table(table) File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/arrow_writer.py", line 292, in write_table pa_table = pa_table.cast(self._schema) File "pyarrow/table.pxi", line 1311, in pyarrow.lib.Table.cast File "pyarrow/table.pxi", line 265, in pyarrow.lib.ChunkedArray.cast File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/pyarrow/compute.py", line 87, in cast return call_function("cast", [arr], options) File "pyarrow/_compute.pyx", line 298, in pyarrow._compute.call_function File "pyarrow/_compute.pyx", line 192, in pyarrow._compute.Function.call File "pyarrow/error.pxi", line 122, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 84, in pyarrow.lib.check_status pyarrow.lib.ArrowInvalid: Failed to parse string: not nurse ``` Any ideas how to fix this? For now, I'll probably make them numeric. It seems that I get parsing errors for various fields in my data. For example now I get this: ``` File "../../../models/tr-4.3.2/run_puppets.py", line 523, in <module> main() File "../../../models/tr-4.3.2/run_puppets.py", line 249, in main datasets = load_dataset("csv", data_files=data_files) File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/load.py", line 740, in load_dataset builder_instance.download_and_prepare( File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py", line 572, in download_and_prepare self._download_and_prepare( File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py", line 650, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py", line 1028, in _prepare_split writer.write_table(table) File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/arrow_writer.py", line 292, in write_table pa_table = pa_table.cast(self._schema) File "pyarrow/table.pxi", line 1311, in pyarrow.lib.Table.cast File "pyarrow/table.pxi", line 265, in pyarrow.lib.ChunkedArray.cast File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/pyarrow/compute.py", line 87, in cast return call_function("cast", [arr], options) File "pyarrow/_compute.pyx", line 298, in pyarrow._compute.call_function File "pyarrow/_compute.pyx", line 192, in pyarrow._compute.Function.call File "pyarrow/error.pxi", line 122, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 84, in pyarrow.lib.check_status pyarrow.lib.ArrowInvalid: Failed to parse string: https://www.netgalley.com/catalog/book/121872 ```
[ 0.1789144427, -0.057323128, 0.0051793307, 0.1343671829, 0.4113537669, 0.3502127528, 0.6419944763, 0.1637073457, -0.1613178402, 0.072349824, 0.1788541377, 0.0638753623, -0.0607730746, 0.0305259675, -0.1302311867, -0.1193703264, 0.0890838355, 0.1734793484, 0.1816425472, -0.0444667041, -0.286742866, -0.0398263708, -0.1566802263, 0.3662884235, -0.2972058058, -0.3766842186, 0.2105431557, -0.1205282211, -0.1131331921, -0.4633958042, 0.2718096972, 0.0861200094, 0.0026804134, 0.4034270048, -0.0001030963, 0.0587568581, 0.2967478335, 0.1559889764, -0.3984079361, -0.4321284294, -0.1893597841, -0.0234078132, 0.0345638394, -0.3044766188, 0.0979833081, -0.2846685052, -0.0905411169, -0.2756659687, 0.1046864837, 0.4386058748, 0.3266399801, 0.237339586, -0.2064997256, -0.2293036431, 0.2311525941, 0.1250883639, -0.0305088237, 0.0494753569, -0.1344385892, -0.0064583756, 0.4515703321, 0.4609146118, -0.2723957896, 0.2647711337, 0.1353648901, 0.1463630944, 0.1377249658, -0.3910482228, 0.2763094604, 0.1961432099, 0.7452609539, -0.2964995503, -0.2943911254, -0.1697053611, 0.1373762935, -0.4167192578, 0.1813386679, 0.0700832978, 0.0063755624, -0.0470149219, -0.0331625827, 0.0610272177, 0.0807419121, 0.088180244, -0.058075048, 0.038328439, -0.0986413136, 0.3288167715, 0.1125300378, -0.0747508556, 0.2975301743, -0.0059942957, -0.0885701925, 0.0415448695, -0.4325241446, -0.0296082944, -0.0368807204, 0.0516761094, -0.1181377918, -0.0387408957, 0.0183865093, -0.3749561012, -0.1474356353, 0.340344727, 0.2151345611, 0.2662760317, 0.270699501, 0.561686635, 0.0911724865, -0.076162532, 0.0308041647, -0.0558077544, -0.0015740022, -0.4626429379, 0.2433208525, 0.098931089, 0.2934702635, -0.2398588359, -0.5455213189, 0.1924420744, -0.028101556, 0.0940956473, 0.1541178524, 0.3049503267, 0.0221221931, 0.2065179646, 0.0793469846, 0.1936080754, -0.0091701373, -0.1172054559, -0.2069241256, 0.097607933, -0.2002791464, -0.1501066089, 0.0502696931, -0.0720528513, 0.112449035, 0.0640596598, -0.0010050014, -0.0760565847, -0.0163033158, -0.386464119, -0.0127479844, 0.3588934541, -0.1032633185, 0.4203503132, 0.2520543635, -0.4185499549, 0.0596993417, 0.180211544, -0.3688523173, -0.0338138118, -0.2121574283, 0.2862125933, -0.1030440629, -0.1879811138, -0.120091483, 0.0468235351, 0.4193201959, -0.2145541608, 0.1575900912, -0.3543839455, -0.3093226552, -0.2777700722, -0.0663040802, 0.221432507, -0.6722468138, 0.0043894351, -0.1475469768, -0.0291133374, 0.0528065674, 0.2960191965, -0.081004411, 0.206291616, -0.0705920234, 0.0303499103, 0.1395510137, -0.39069134, -0.11046388, 0.1035437435, -0.1420033276, -0.2442641705, 0.0704807565, -0.0403395817, 0.0917313546, -0.0916262269, 0.0582318529, -0.1318776309, -0.1996324956, -0.095133312, -0.1437039226, 0.0538111925, 0.6539095044, 0.092732884, -0.016799951, 0.0756468922, -0.1002285182, -0.3448367715, -0.0425324477, -0.1009554416, 0.2062196583, 0.214790225, 0.0556404255, 0.2983596921, 0.1459521949, -0.0644701868, -0.4424967766, 0.1017011777, -0.0400517844, 0.1395647824, -0.1451431215, -0.1923440099, -0.3297649324, -0.0537859574, -0.207976386, 0.0183235332, 0.1633132845, 0.0683605894, -0.2214221656, -0.020483382, 0.0140844062, -0.0758843049, -0.0172139481, 0.1093305945, -0.1040250063, 0.2656517625, -0.0951160192, 0.116893813, -0.0267395489, 0.2531200647, 0.4326064289, 0.2400517166, -0.0466213152, 0.3670239747, 0.084860608, -0.3270231783, 0.0078401389, -0.1726581603, 0.0181291979, -0.0838745013, -0.0163269751, 0.1145247221, 0.2768394947, -0.1085970625, -0.0847192705, 0.1411860287, -0.1772007197, 0.2762841582, -0.1619747579, 0.2004609108, 0.2599627078, -0.1093928665, 0.1251224875, -0.2127112299, 0.2158808112, -0.1297984868, 0.2343142927, 0.0071424991, -0.2617174089, 0.0677194297, 0.4220536947, 0.0015310869, -0.0035241153, 0.0097740078, -0.1586680263, 0.1657462418, -0.0130176423, 0.595718503, 0.3528425694, 0.2059558183, -0.1638753265, -0.0582683906, -0.2622587979, -0.1369837075, 0.2124616951, 0.0951014534, 0.0298528336, 0.0572960638, 0.0261100121, -0.0664387867, -0.1765723825, -0.2433389872, 0.2082312554, 0.3464296758, -0.5103123188, -0.0029067099, -0.3452731669, -0.2318638116, -0.3185971379, -0.0987910032, -0.2351591289, -0.4590441883, 0.0904377103, -0.0774913728, -0.1903931051, 0.1450762749, -0.0375637673, 0.0079173446, -0.0910728574, 0.1520518363, -0.0975841284, -0.4702500403, -0.2045714408, 0.181112498, 0.0074796826, 0.0469533242, 0.4813602567, -0.1431986094, -0.1245556474, -0.0785719529, -0.2953169942, 0.004026711, -0.273065865, 0.1366039962, 0.1816231012, 0.1038596928, 0.0084618628, -0.1486843973, 0.2930161357, -0.0715195388, 0.0246399194, 0.1069570184, 0.0452329181, -0.2920733988, -0.266469866, -0.4750190973, -0.4745301902, -0.1774820089, 0.066948086, -0.075908497, -0.0335288309, 0.5198025703, 0.0684419274, 0.0656811595, 0.0931448191, 0.0232526585, -0.3467434943, -0.0935404599, 0.249047786, -0.1790920943, -0.2102451921, 0.1960572302, 0.1093096733, 0.117527917, -0.2039329857, -0.3139224052, 0.072862342, -0.0576011613, 0.0589447021, 0.0813104361, 0.1948960274, 0.2138825953, 0.2671021521, -0.148003608, -0.3270512819, -0.3317119479, 0.1381733567, -0.0719680786, 0.1306351572, -0.1062558144, 0.294085294, -0.1520836949, 0.326508522, 0.0217725486, -0.2126559466, 0.1918890625, -0.0478477404, 0.520732522, 0.0683804899, -0.419374764, 0.0658853427, -0.1191069186, 0.02694612, 0.1760427952, -0.3196391761, 0.0379565507, -0.1479680836, 0.3946040869, -0.2478048354, -0.0996567905, -0.1006430164, -0.1501684636, 0.0405272953, 0.116900228, -0.040975228, -0.2084080577, -0.1915850639, -0.2512803078, 0.0578238294, -0.0954613686, -0.0875516236, -0.533575058, -0.2334990203, -0.1649958044, 0.2940984964, 0.1574512422, 0.3346636295, -0.178517282, 0.245471403, 0.0477584191, 0.2458998263, 0.6149812341, -0.4832391143, 0.1547023356, 0.2263717949, 0.393127352, -0.1780013144, -0.1272554398, -0.1692572534, 0.294726193, -0.2957774103, 0.025988616, -0.1555343568, -0.0910770968, 0.2631005943, 0.1554055959, -0.1223802269, -0.3149801195, -0.2309516668, -0.1793931127, -0.1272853315, -0.0533968471, 0.0635774657, 0.1866384149, -0.3784871697, 0.0986480787, 0.1408237219, 0.0735076368, 0.2715044916, 0.1186349988, 0.2232432365, 0.0302770212, 0.1973614246, 0.3174023926, 0.2587255538, 0.5099826455, 0.5483982563, -0.361846596, -0.5113291144, -0.1194787994, -0.1147696823, 0.2007077783, 0.0650010258, -0.1422150731, 0.1660956144, -0.0506403036, 0.1854585111, 0.0961979926, 0.0223077685, 0.4922947288, 0.1605761498, -0.4898482263, -0.5388928652, 0.2713592649, 0.0392415076, -0.0478406623, 0.1281554401, 0.0797320753, -0.34075737, 0.2059525102, -0.1559934914, 0.6908727288, 0.0837976485, -0.0510308072, -0.0170311369, -0.2261731774, 0.7132236958, -0.1187110916, 0.0007714238, -0.3614291549, -0.3074661195, -0.0622300394, -0.0221187174, 0.0234749615, 0.4506936669, -0.3085789084, 0.3788375258, -0.3285133541, 0.2046866119, 0.0287500769, -0.0740614384, 0.2494399697, -0.1323136389, -0.0824862868, 0.2010340542, -0.1576189697, -0.1343759, -0.1674346626, 0.0419053286, -0.2318482399, -0.268060714, -0.2262607664, 0.0822606981, -0.2538250387, 0.1415783465, -0.0856541172, -0.0167192668, 0.2168118805, 0.2025100589, 0.4863220453, 0.0789239407, -0.1482865214, 0.1838956475, 0.0421488881, 0.1370233893, 0.0343485884, 0.0537469126, 0.4150625467, 0.1160497814, -0.269980818, 0.1285304129, -0.0795676112, 0.1759498715, -0.0870315358, 0.0838944018, -0.0983975679, -0.365375042, 0.0326474421, -0.0770388097, 0.2287106514, -0.2537734807, 0.1773460954, 0.05198282, -0.0466798581, 0.212078914, -0.263691932, -0.1465979069, -0.0457465835, 0.189233005, 0.0259639658, 0.1933565438, 0.2472447008, 0.0259734392, -0.3513919115, -0.256511271, 0.0389520228, 0.0239993706, -0.6778355837, 0.2459826171, 0.2533545494, 0.0759459734, -0.0571892112, 0.2232684493, -0.0158299785, 0.0710852891, 0.0610140264, -0.5274376869, -0.2186502069, -0.0046704933, -0.1847545803, 0.1169300228, 0.2478653342, 0.411005199, 0.1337578297, 0.0714498237, -0.3641543388, -0.0209538639, -0.1723941118, 0.2980129421, 0.1525107771, 0.0199611969, 0.2820311487, -0.1788064986, 0.2182169855, 0.000743961, 0.0077501163, -0.2498183846, -0.1872092783, 0.1124107167, 0.1352090985, -0.1972161382, -0.0634114146, -0.1643811017, 0.0578370653, -0.0719838366, -0.01725078, 0.3105740547, 0.0032080635, 0.3735309243, -0.1509215832, 0.2327848375, -0.0463301651, 0.2182776928, 0.012717111, -0.1140014604, 0.0742453933, 0.1729658246, -0.1127647161, 0.0194780678, -0.175079599, 0.0847948045, -0.1170052737, -0.1179298759, 0.1342933476, -0.5689803958, 0.2959565818, 0.1936382949, 0.4493626952, 0.2781368196, -0.1868257672, -0.0707665235, 0.382609427, 0.3079268634, -0.3656697273, -0.1683600098, 0.1630015671, 0.1655610502, 0.0003906116, 0.0756074935, 0.0607256889, -0.0310595334, 0.0448929518, 0.0080861226, 0.4554387331, -0.4376542866, 0.2349057645, 0.5269825459, -0.0619710423, 0.0999839455, 0.4967942536, 0.1731764078, 0.0635330305, 0.5881979465, 0.0346502401, 0.1773208678, 0.1874702573, -0.1379602253, -0.0754204839, -0.1722173542, 0.1809183061, 0.096972689, 0.0188566819, -0.0428316295, -0.0954477638, 0.3011341691, -0.3839455545, 0.0041104853, -0.005768612, 0.1111970246, -0.2255034596, -0.1060155705, -0.156262815, -0.0987097323, -0.1664462984, -0.1973159015, 0.0140282586, -0.1700509042, 0.3556355834, -0.0742807835, -0.1959642619, -0.4565813541, -0.186778456, 0.3054198325, 0.0650815889, -0.2473098487, 0.0163198765, 0.2487559468, -0.1455011517, 0.3213778138, 0.0862398222, 0.6039390564, 0.1713753343, 0.0897910297, -0.3410919607, -0.0972952843, -0.0885801613, 0.1516634077, 0.215567857, 0.0459204428, -0.0368340053, 0.3922656775, 0.2018782198, -0.1707493365, 0.3085800409, 0.335742414, 0.2227040529, -0.1706194282, -0.0630669147, -0.1339654028, -0.2573548257, -0.3266395628, 0.1013187319, -0.2697946429, 0.1159572452, 0.4622559547, -0.041513823, 0.0840901136, -0.2942292094, 0.1462801695, 0.1317102909, 0.3118901253, 0.2739444971, -0.0476244763, -0.3456507921, 0.1615713835, -0.5773795843, 0.1294606328, -0.1186996847, -0.1146927923, -0.0334538557, -0.1582232863, 0.1593216956, 0.0206148606, 0.3829502463, 0.1888178885, -0.0159398764, -0.1086774319, -0.1195141003, -0.1931984574, -0.0825987458, -0.1219009459, 0.2010164857, -0.3226899803, -0.0618356764, -0.1457766742, 0.0389759243, -0.3498084843, 0.093714118, 0.1062970459, -0.0201896131, 0.3603177071, 0.1459481418, 0.7699725628, 0.0488149971, 0.1150305942, -0.0913877785, -0.3536492884, -0.4042431414, 0.368868947, 0.3255910277, 0.2565359175, -0.1063772365, 0.0097639635, -0.1644828916, 0.0945067853, -0.0435467474, 0.3211488426, -0.2544763386, 0.2145048827, -0.0240108967, 0.0171400569, 0.0991312712, -0.0556260049, -0.0026465841, 0.3410544395, -0.2067562342, -0.6047098637, 0.6198095083, -0.2129314691, -0.2395552993, 0.1537307203, 0.1545256972, 0.2213793695, -0.2187476307, -0.5100531578, 0.0247500241, 0.3773830235, 0.019003924, -0.4423446357, -0.0037067216, -0.1927571893, 0.0514445379, 0.1135602593, 0.3062540889, 0.1166285425, -0.1932862103, 0.1991046816, -0.2543465793 ]
https://github.com/huggingface/datasets/issues/1989
Question/problem with dataset labels
Not sure if this helps, this is how I load my files (as in the sample scripts on transformers): ``` if data_args.train_file.endswith(".csv"): # Loading a dataset from local csv files datasets = load_dataset("csv", data_files=data_files) ```
Hi, I'm using a dataset with two labels "nurse" and "not nurse". For whatever reason (that I don't understand), I get an error that I think comes from the datasets package (using csv). Everything works fine if the labels are "nurse" and "surgeon". This is the trace I get: ``` File "../../../models/tr-4.3.2/run_puppets.py", line 523, in <module> main() File "../../../models/tr-4.3.2/run_puppets.py", line 249, in main datasets = load_dataset("csv", data_files=data_files) File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/load.py", line 740, in load_dataset builder_instance.download_and_prepare( File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py", line 572, in download_and_prepare self._download_and_prepare( File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py", line 650, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py", line 1028, in _prepare_split writer.write_table(table) File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/arrow_writer.py", line 292, in write_table pa_table = pa_table.cast(self._schema) File "pyarrow/table.pxi", line 1311, in pyarrow.lib.Table.cast File "pyarrow/table.pxi", line 265, in pyarrow.lib.ChunkedArray.cast File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/pyarrow/compute.py", line 87, in cast return call_function("cast", [arr], options) File "pyarrow/_compute.pyx", line 298, in pyarrow._compute.call_function File "pyarrow/_compute.pyx", line 192, in pyarrow._compute.Function.call File "pyarrow/error.pxi", line 122, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 84, in pyarrow.lib.check_status pyarrow.lib.ArrowInvalid: Failed to parse string: not nurse ``` Any ideas how to fix this? For now, I'll probably make them numeric.
35
Question/problem with dataset labels Hi, I'm using a dataset with two labels "nurse" and "not nurse". For whatever reason (that I don't understand), I get an error that I think comes from the datasets package (using csv). Everything works fine if the labels are "nurse" and "surgeon". This is the trace I get: ``` File "../../../models/tr-4.3.2/run_puppets.py", line 523, in <module> main() File "../../../models/tr-4.3.2/run_puppets.py", line 249, in main datasets = load_dataset("csv", data_files=data_files) File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/load.py", line 740, in load_dataset builder_instance.download_and_prepare( File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py", line 572, in download_and_prepare self._download_and_prepare( File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py", line 650, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py", line 1028, in _prepare_split writer.write_table(table) File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/arrow_writer.py", line 292, in write_table pa_table = pa_table.cast(self._schema) File "pyarrow/table.pxi", line 1311, in pyarrow.lib.Table.cast File "pyarrow/table.pxi", line 265, in pyarrow.lib.ChunkedArray.cast File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/pyarrow/compute.py", line 87, in cast return call_function("cast", [arr], options) File "pyarrow/_compute.pyx", line 298, in pyarrow._compute.call_function File "pyarrow/_compute.pyx", line 192, in pyarrow._compute.Function.call File "pyarrow/error.pxi", line 122, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 84, in pyarrow.lib.check_status pyarrow.lib.ArrowInvalid: Failed to parse string: not nurse ``` Any ideas how to fix this? For now, I'll probably make them numeric. Not sure if this helps, this is how I load my files (as in the sample scripts on transformers): ``` if data_args.train_file.endswith(".csv"): # Loading a dataset from local csv files datasets = load_dataset("csv", data_files=data_files) ```
[ 0.1789144427, -0.057323128, 0.0051793307, 0.1343671829, 0.4113537669, 0.3502127528, 0.6419944763, 0.1637073457, -0.1613178402, 0.072349824, 0.1788541377, 0.0638753623, -0.0607730746, 0.0305259675, -0.1302311867, -0.1193703264, 0.0890838355, 0.1734793484, 0.1816425472, -0.0444667041, -0.286742866, -0.0398263708, -0.1566802263, 0.3662884235, -0.2972058058, -0.3766842186, 0.2105431557, -0.1205282211, -0.1131331921, -0.4633958042, 0.2718096972, 0.0861200094, 0.0026804134, 0.4034270048, -0.0001030963, 0.0587568581, 0.2967478335, 0.1559889764, -0.3984079361, -0.4321284294, -0.1893597841, -0.0234078132, 0.0345638394, -0.3044766188, 0.0979833081, -0.2846685052, -0.0905411169, -0.2756659687, 0.1046864837, 0.4386058748, 0.3266399801, 0.237339586, -0.2064997256, -0.2293036431, 0.2311525941, 0.1250883639, -0.0305088237, 0.0494753569, -0.1344385892, -0.0064583756, 0.4515703321, 0.4609146118, -0.2723957896, 0.2647711337, 0.1353648901, 0.1463630944, 0.1377249658, -0.3910482228, 0.2763094604, 0.1961432099, 0.7452609539, -0.2964995503, -0.2943911254, -0.1697053611, 0.1373762935, -0.4167192578, 0.1813386679, 0.0700832978, 0.0063755624, -0.0470149219, -0.0331625827, 0.0610272177, 0.0807419121, 0.088180244, -0.058075048, 0.038328439, -0.0986413136, 0.3288167715, 0.1125300378, -0.0747508556, 0.2975301743, -0.0059942957, -0.0885701925, 0.0415448695, -0.4325241446, -0.0296082944, -0.0368807204, 0.0516761094, -0.1181377918, -0.0387408957, 0.0183865093, -0.3749561012, -0.1474356353, 0.340344727, 0.2151345611, 0.2662760317, 0.270699501, 0.561686635, 0.0911724865, -0.076162532, 0.0308041647, -0.0558077544, -0.0015740022, -0.4626429379, 0.2433208525, 0.098931089, 0.2934702635, -0.2398588359, -0.5455213189, 0.1924420744, -0.028101556, 0.0940956473, 0.1541178524, 0.3049503267, 0.0221221931, 0.2065179646, 0.0793469846, 0.1936080754, -0.0091701373, -0.1172054559, -0.2069241256, 0.097607933, -0.2002791464, -0.1501066089, 0.0502696931, -0.0720528513, 0.112449035, 0.0640596598, -0.0010050014, -0.0760565847, -0.0163033158, -0.386464119, -0.0127479844, 0.3588934541, -0.1032633185, 0.4203503132, 0.2520543635, -0.4185499549, 0.0596993417, 0.180211544, -0.3688523173, -0.0338138118, -0.2121574283, 0.2862125933, -0.1030440629, -0.1879811138, -0.120091483, 0.0468235351, 0.4193201959, -0.2145541608, 0.1575900912, -0.3543839455, -0.3093226552, -0.2777700722, -0.0663040802, 0.221432507, -0.6722468138, 0.0043894351, -0.1475469768, -0.0291133374, 0.0528065674, 0.2960191965, -0.081004411, 0.206291616, -0.0705920234, 0.0303499103, 0.1395510137, -0.39069134, -0.11046388, 0.1035437435, -0.1420033276, -0.2442641705, 0.0704807565, -0.0403395817, 0.0917313546, -0.0916262269, 0.0582318529, -0.1318776309, -0.1996324956, -0.095133312, -0.1437039226, 0.0538111925, 0.6539095044, 0.092732884, -0.016799951, 0.0756468922, -0.1002285182, -0.3448367715, -0.0425324477, -0.1009554416, 0.2062196583, 0.214790225, 0.0556404255, 0.2983596921, 0.1459521949, -0.0644701868, -0.4424967766, 0.1017011777, -0.0400517844, 0.1395647824, -0.1451431215, -0.1923440099, -0.3297649324, -0.0537859574, -0.207976386, 0.0183235332, 0.1633132845, 0.0683605894, -0.2214221656, -0.020483382, 0.0140844062, -0.0758843049, -0.0172139481, 0.1093305945, -0.1040250063, 0.2656517625, -0.0951160192, 0.116893813, -0.0267395489, 0.2531200647, 0.4326064289, 0.2400517166, -0.0466213152, 0.3670239747, 0.084860608, -0.3270231783, 0.0078401389, -0.1726581603, 0.0181291979, -0.0838745013, -0.0163269751, 0.1145247221, 0.2768394947, -0.1085970625, -0.0847192705, 0.1411860287, -0.1772007197, 0.2762841582, -0.1619747579, 0.2004609108, 0.2599627078, -0.1093928665, 0.1251224875, -0.2127112299, 0.2158808112, -0.1297984868, 0.2343142927, 0.0071424991, -0.2617174089, 0.0677194297, 0.4220536947, 0.0015310869, -0.0035241153, 0.0097740078, -0.1586680263, 0.1657462418, -0.0130176423, 0.595718503, 0.3528425694, 0.2059558183, -0.1638753265, -0.0582683906, -0.2622587979, -0.1369837075, 0.2124616951, 0.0951014534, 0.0298528336, 0.0572960638, 0.0261100121, -0.0664387867, -0.1765723825, -0.2433389872, 0.2082312554, 0.3464296758, -0.5103123188, -0.0029067099, -0.3452731669, -0.2318638116, -0.3185971379, -0.0987910032, -0.2351591289, -0.4590441883, 0.0904377103, -0.0774913728, -0.1903931051, 0.1450762749, -0.0375637673, 0.0079173446, -0.0910728574, 0.1520518363, -0.0975841284, -0.4702500403, -0.2045714408, 0.181112498, 0.0074796826, 0.0469533242, 0.4813602567, -0.1431986094, -0.1245556474, -0.0785719529, -0.2953169942, 0.004026711, -0.273065865, 0.1366039962, 0.1816231012, 0.1038596928, 0.0084618628, -0.1486843973, 0.2930161357, -0.0715195388, 0.0246399194, 0.1069570184, 0.0452329181, -0.2920733988, -0.266469866, -0.4750190973, -0.4745301902, -0.1774820089, 0.066948086, -0.075908497, -0.0335288309, 0.5198025703, 0.0684419274, 0.0656811595, 0.0931448191, 0.0232526585, -0.3467434943, -0.0935404599, 0.249047786, -0.1790920943, -0.2102451921, 0.1960572302, 0.1093096733, 0.117527917, -0.2039329857, -0.3139224052, 0.072862342, -0.0576011613, 0.0589447021, 0.0813104361, 0.1948960274, 0.2138825953, 0.2671021521, -0.148003608, -0.3270512819, -0.3317119479, 0.1381733567, -0.0719680786, 0.1306351572, -0.1062558144, 0.294085294, -0.1520836949, 0.326508522, 0.0217725486, -0.2126559466, 0.1918890625, -0.0478477404, 0.520732522, 0.0683804899, -0.419374764, 0.0658853427, -0.1191069186, 0.02694612, 0.1760427952, -0.3196391761, 0.0379565507, -0.1479680836, 0.3946040869, -0.2478048354, -0.0996567905, -0.1006430164, -0.1501684636, 0.0405272953, 0.116900228, -0.040975228, -0.2084080577, -0.1915850639, -0.2512803078, 0.0578238294, -0.0954613686, -0.0875516236, -0.533575058, -0.2334990203, -0.1649958044, 0.2940984964, 0.1574512422, 0.3346636295, -0.178517282, 0.245471403, 0.0477584191, 0.2458998263, 0.6149812341, -0.4832391143, 0.1547023356, 0.2263717949, 0.393127352, -0.1780013144, -0.1272554398, -0.1692572534, 0.294726193, -0.2957774103, 0.025988616, -0.1555343568, -0.0910770968, 0.2631005943, 0.1554055959, -0.1223802269, -0.3149801195, -0.2309516668, -0.1793931127, -0.1272853315, -0.0533968471, 0.0635774657, 0.1866384149, -0.3784871697, 0.0986480787, 0.1408237219, 0.0735076368, 0.2715044916, 0.1186349988, 0.2232432365, 0.0302770212, 0.1973614246, 0.3174023926, 0.2587255538, 0.5099826455, 0.5483982563, -0.361846596, -0.5113291144, -0.1194787994, -0.1147696823, 0.2007077783, 0.0650010258, -0.1422150731, 0.1660956144, -0.0506403036, 0.1854585111, 0.0961979926, 0.0223077685, 0.4922947288, 0.1605761498, -0.4898482263, -0.5388928652, 0.2713592649, 0.0392415076, -0.0478406623, 0.1281554401, 0.0797320753, -0.34075737, 0.2059525102, -0.1559934914, 0.6908727288, 0.0837976485, -0.0510308072, -0.0170311369, -0.2261731774, 0.7132236958, -0.1187110916, 0.0007714238, -0.3614291549, -0.3074661195, -0.0622300394, -0.0221187174, 0.0234749615, 0.4506936669, -0.3085789084, 0.3788375258, -0.3285133541, 0.2046866119, 0.0287500769, -0.0740614384, 0.2494399697, -0.1323136389, -0.0824862868, 0.2010340542, -0.1576189697, -0.1343759, -0.1674346626, 0.0419053286, -0.2318482399, -0.268060714, -0.2262607664, 0.0822606981, -0.2538250387, 0.1415783465, -0.0856541172, -0.0167192668, 0.2168118805, 0.2025100589, 0.4863220453, 0.0789239407, -0.1482865214, 0.1838956475, 0.0421488881, 0.1370233893, 0.0343485884, 0.0537469126, 0.4150625467, 0.1160497814, -0.269980818, 0.1285304129, -0.0795676112, 0.1759498715, -0.0870315358, 0.0838944018, -0.0983975679, -0.365375042, 0.0326474421, -0.0770388097, 0.2287106514, -0.2537734807, 0.1773460954, 0.05198282, -0.0466798581, 0.212078914, -0.263691932, -0.1465979069, -0.0457465835, 0.189233005, 0.0259639658, 0.1933565438, 0.2472447008, 0.0259734392, -0.3513919115, -0.256511271, 0.0389520228, 0.0239993706, -0.6778355837, 0.2459826171, 0.2533545494, 0.0759459734, -0.0571892112, 0.2232684493, -0.0158299785, 0.0710852891, 0.0610140264, -0.5274376869, -0.2186502069, -0.0046704933, -0.1847545803, 0.1169300228, 0.2478653342, 0.411005199, 0.1337578297, 0.0714498237, -0.3641543388, -0.0209538639, -0.1723941118, 0.2980129421, 0.1525107771, 0.0199611969, 0.2820311487, -0.1788064986, 0.2182169855, 0.000743961, 0.0077501163, -0.2498183846, -0.1872092783, 0.1124107167, 0.1352090985, -0.1972161382, -0.0634114146, -0.1643811017, 0.0578370653, -0.0719838366, -0.01725078, 0.3105740547, 0.0032080635, 0.3735309243, -0.1509215832, 0.2327848375, -0.0463301651, 0.2182776928, 0.012717111, -0.1140014604, 0.0742453933, 0.1729658246, -0.1127647161, 0.0194780678, -0.175079599, 0.0847948045, -0.1170052737, -0.1179298759, 0.1342933476, -0.5689803958, 0.2959565818, 0.1936382949, 0.4493626952, 0.2781368196, -0.1868257672, -0.0707665235, 0.382609427, 0.3079268634, -0.3656697273, -0.1683600098, 0.1630015671, 0.1655610502, 0.0003906116, 0.0756074935, 0.0607256889, -0.0310595334, 0.0448929518, 0.0080861226, 0.4554387331, -0.4376542866, 0.2349057645, 0.5269825459, -0.0619710423, 0.0999839455, 0.4967942536, 0.1731764078, 0.0635330305, 0.5881979465, 0.0346502401, 0.1773208678, 0.1874702573, -0.1379602253, -0.0754204839, -0.1722173542, 0.1809183061, 0.096972689, 0.0188566819, -0.0428316295, -0.0954477638, 0.3011341691, -0.3839455545, 0.0041104853, -0.005768612, 0.1111970246, -0.2255034596, -0.1060155705, -0.156262815, -0.0987097323, -0.1664462984, -0.1973159015, 0.0140282586, -0.1700509042, 0.3556355834, -0.0742807835, -0.1959642619, -0.4565813541, -0.186778456, 0.3054198325, 0.0650815889, -0.2473098487, 0.0163198765, 0.2487559468, -0.1455011517, 0.3213778138, 0.0862398222, 0.6039390564, 0.1713753343, 0.0897910297, -0.3410919607, -0.0972952843, -0.0885801613, 0.1516634077, 0.215567857, 0.0459204428, -0.0368340053, 0.3922656775, 0.2018782198, -0.1707493365, 0.3085800409, 0.335742414, 0.2227040529, -0.1706194282, -0.0630669147, -0.1339654028, -0.2573548257, -0.3266395628, 0.1013187319, -0.2697946429, 0.1159572452, 0.4622559547, -0.041513823, 0.0840901136, -0.2942292094, 0.1462801695, 0.1317102909, 0.3118901253, 0.2739444971, -0.0476244763, -0.3456507921, 0.1615713835, -0.5773795843, 0.1294606328, -0.1186996847, -0.1146927923, -0.0334538557, -0.1582232863, 0.1593216956, 0.0206148606, 0.3829502463, 0.1888178885, -0.0159398764, -0.1086774319, -0.1195141003, -0.1931984574, -0.0825987458, -0.1219009459, 0.2010164857, -0.3226899803, -0.0618356764, -0.1457766742, 0.0389759243, -0.3498084843, 0.093714118, 0.1062970459, -0.0201896131, 0.3603177071, 0.1459481418, 0.7699725628, 0.0488149971, 0.1150305942, -0.0913877785, -0.3536492884, -0.4042431414, 0.368868947, 0.3255910277, 0.2565359175, -0.1063772365, 0.0097639635, -0.1644828916, 0.0945067853, -0.0435467474, 0.3211488426, -0.2544763386, 0.2145048827, -0.0240108967, 0.0171400569, 0.0991312712, -0.0556260049, -0.0026465841, 0.3410544395, -0.2067562342, -0.6047098637, 0.6198095083, -0.2129314691, -0.2395552993, 0.1537307203, 0.1545256972, 0.2213793695, -0.2187476307, -0.5100531578, 0.0247500241, 0.3773830235, 0.019003924, -0.4423446357, -0.0037067216, -0.1927571893, 0.0514445379, 0.1135602593, 0.3062540889, 0.1166285425, -0.1932862103, 0.1991046816, -0.2543465793 ]
https://github.com/huggingface/datasets/issues/1989
Question/problem with dataset labels
Since this worked out of the box in a few examples before, I wonder if it's some quoting issue or something else.
Hi, I'm using a dataset with two labels "nurse" and "not nurse". For whatever reason (that I don't understand), I get an error that I think comes from the datasets package (using csv). Everything works fine if the labels are "nurse" and "surgeon". This is the trace I get: ``` File "../../../models/tr-4.3.2/run_puppets.py", line 523, in <module> main() File "../../../models/tr-4.3.2/run_puppets.py", line 249, in main datasets = load_dataset("csv", data_files=data_files) File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/load.py", line 740, in load_dataset builder_instance.download_and_prepare( File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py", line 572, in download_and_prepare self._download_and_prepare( File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py", line 650, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py", line 1028, in _prepare_split writer.write_table(table) File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/arrow_writer.py", line 292, in write_table pa_table = pa_table.cast(self._schema) File "pyarrow/table.pxi", line 1311, in pyarrow.lib.Table.cast File "pyarrow/table.pxi", line 265, in pyarrow.lib.ChunkedArray.cast File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/pyarrow/compute.py", line 87, in cast return call_function("cast", [arr], options) File "pyarrow/_compute.pyx", line 298, in pyarrow._compute.call_function File "pyarrow/_compute.pyx", line 192, in pyarrow._compute.Function.call File "pyarrow/error.pxi", line 122, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 84, in pyarrow.lib.check_status pyarrow.lib.ArrowInvalid: Failed to parse string: not nurse ``` Any ideas how to fix this? For now, I'll probably make them numeric.
22
Question/problem with dataset labels Hi, I'm using a dataset with two labels "nurse" and "not nurse". For whatever reason (that I don't understand), I get an error that I think comes from the datasets package (using csv). Everything works fine if the labels are "nurse" and "surgeon". This is the trace I get: ``` File "../../../models/tr-4.3.2/run_puppets.py", line 523, in <module> main() File "../../../models/tr-4.3.2/run_puppets.py", line 249, in main datasets = load_dataset("csv", data_files=data_files) File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/load.py", line 740, in load_dataset builder_instance.download_and_prepare( File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py", line 572, in download_and_prepare self._download_and_prepare( File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py", line 650, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py", line 1028, in _prepare_split writer.write_table(table) File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/arrow_writer.py", line 292, in write_table pa_table = pa_table.cast(self._schema) File "pyarrow/table.pxi", line 1311, in pyarrow.lib.Table.cast File "pyarrow/table.pxi", line 265, in pyarrow.lib.ChunkedArray.cast File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/pyarrow/compute.py", line 87, in cast return call_function("cast", [arr], options) File "pyarrow/_compute.pyx", line 298, in pyarrow._compute.call_function File "pyarrow/_compute.pyx", line 192, in pyarrow._compute.Function.call File "pyarrow/error.pxi", line 122, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 84, in pyarrow.lib.check_status pyarrow.lib.ArrowInvalid: Failed to parse string: not nurse ``` Any ideas how to fix this? For now, I'll probably make them numeric. Since this worked out of the box in a few examples before, I wonder if it's some quoting issue or something else.
[ 0.1789144427, -0.057323128, 0.0051793307, 0.1343671829, 0.4113537669, 0.3502127528, 0.6419944763, 0.1637073457, -0.1613178402, 0.072349824, 0.1788541377, 0.0638753623, -0.0607730746, 0.0305259675, -0.1302311867, -0.1193703264, 0.0890838355, 0.1734793484, 0.1816425472, -0.0444667041, -0.286742866, -0.0398263708, -0.1566802263, 0.3662884235, -0.2972058058, -0.3766842186, 0.2105431557, -0.1205282211, -0.1131331921, -0.4633958042, 0.2718096972, 0.0861200094, 0.0026804134, 0.4034270048, -0.0001030963, 0.0587568581, 0.2967478335, 0.1559889764, -0.3984079361, -0.4321284294, -0.1893597841, -0.0234078132, 0.0345638394, -0.3044766188, 0.0979833081, -0.2846685052, -0.0905411169, -0.2756659687, 0.1046864837, 0.4386058748, 0.3266399801, 0.237339586, -0.2064997256, -0.2293036431, 0.2311525941, 0.1250883639, -0.0305088237, 0.0494753569, -0.1344385892, -0.0064583756, 0.4515703321, 0.4609146118, -0.2723957896, 0.2647711337, 0.1353648901, 0.1463630944, 0.1377249658, -0.3910482228, 0.2763094604, 0.1961432099, 0.7452609539, -0.2964995503, -0.2943911254, -0.1697053611, 0.1373762935, -0.4167192578, 0.1813386679, 0.0700832978, 0.0063755624, -0.0470149219, -0.0331625827, 0.0610272177, 0.0807419121, 0.088180244, -0.058075048, 0.038328439, -0.0986413136, 0.3288167715, 0.1125300378, -0.0747508556, 0.2975301743, -0.0059942957, -0.0885701925, 0.0415448695, -0.4325241446, -0.0296082944, -0.0368807204, 0.0516761094, -0.1181377918, -0.0387408957, 0.0183865093, -0.3749561012, -0.1474356353, 0.340344727, 0.2151345611, 0.2662760317, 0.270699501, 0.561686635, 0.0911724865, -0.076162532, 0.0308041647, -0.0558077544, -0.0015740022, -0.4626429379, 0.2433208525, 0.098931089, 0.2934702635, -0.2398588359, -0.5455213189, 0.1924420744, -0.028101556, 0.0940956473, 0.1541178524, 0.3049503267, 0.0221221931, 0.2065179646, 0.0793469846, 0.1936080754, -0.0091701373, -0.1172054559, -0.2069241256, 0.097607933, -0.2002791464, -0.1501066089, 0.0502696931, -0.0720528513, 0.112449035, 0.0640596598, -0.0010050014, -0.0760565847, -0.0163033158, -0.386464119, -0.0127479844, 0.3588934541, -0.1032633185, 0.4203503132, 0.2520543635, -0.4185499549, 0.0596993417, 0.180211544, -0.3688523173, -0.0338138118, -0.2121574283, 0.2862125933, -0.1030440629, -0.1879811138, -0.120091483, 0.0468235351, 0.4193201959, -0.2145541608, 0.1575900912, -0.3543839455, -0.3093226552, -0.2777700722, -0.0663040802, 0.221432507, -0.6722468138, 0.0043894351, -0.1475469768, -0.0291133374, 0.0528065674, 0.2960191965, -0.081004411, 0.206291616, -0.0705920234, 0.0303499103, 0.1395510137, -0.39069134, -0.11046388, 0.1035437435, -0.1420033276, -0.2442641705, 0.0704807565, -0.0403395817, 0.0917313546, -0.0916262269, 0.0582318529, -0.1318776309, -0.1996324956, -0.095133312, -0.1437039226, 0.0538111925, 0.6539095044, 0.092732884, -0.016799951, 0.0756468922, -0.1002285182, -0.3448367715, -0.0425324477, -0.1009554416, 0.2062196583, 0.214790225, 0.0556404255, 0.2983596921, 0.1459521949, -0.0644701868, -0.4424967766, 0.1017011777, -0.0400517844, 0.1395647824, -0.1451431215, -0.1923440099, -0.3297649324, -0.0537859574, -0.207976386, 0.0183235332, 0.1633132845, 0.0683605894, -0.2214221656, -0.020483382, 0.0140844062, -0.0758843049, -0.0172139481, 0.1093305945, -0.1040250063, 0.2656517625, -0.0951160192, 0.116893813, -0.0267395489, 0.2531200647, 0.4326064289, 0.2400517166, -0.0466213152, 0.3670239747, 0.084860608, -0.3270231783, 0.0078401389, -0.1726581603, 0.0181291979, -0.0838745013, -0.0163269751, 0.1145247221, 0.2768394947, -0.1085970625, -0.0847192705, 0.1411860287, -0.1772007197, 0.2762841582, -0.1619747579, 0.2004609108, 0.2599627078, -0.1093928665, 0.1251224875, -0.2127112299, 0.2158808112, -0.1297984868, 0.2343142927, 0.0071424991, -0.2617174089, 0.0677194297, 0.4220536947, 0.0015310869, -0.0035241153, 0.0097740078, -0.1586680263, 0.1657462418, -0.0130176423, 0.595718503, 0.3528425694, 0.2059558183, -0.1638753265, -0.0582683906, -0.2622587979, -0.1369837075, 0.2124616951, 0.0951014534, 0.0298528336, 0.0572960638, 0.0261100121, -0.0664387867, -0.1765723825, -0.2433389872, 0.2082312554, 0.3464296758, -0.5103123188, -0.0029067099, -0.3452731669, -0.2318638116, -0.3185971379, -0.0987910032, -0.2351591289, -0.4590441883, 0.0904377103, -0.0774913728, -0.1903931051, 0.1450762749, -0.0375637673, 0.0079173446, -0.0910728574, 0.1520518363, -0.0975841284, -0.4702500403, -0.2045714408, 0.181112498, 0.0074796826, 0.0469533242, 0.4813602567, -0.1431986094, -0.1245556474, -0.0785719529, -0.2953169942, 0.004026711, -0.273065865, 0.1366039962, 0.1816231012, 0.1038596928, 0.0084618628, -0.1486843973, 0.2930161357, -0.0715195388, 0.0246399194, 0.1069570184, 0.0452329181, -0.2920733988, -0.266469866, -0.4750190973, -0.4745301902, -0.1774820089, 0.066948086, -0.075908497, -0.0335288309, 0.5198025703, 0.0684419274, 0.0656811595, 0.0931448191, 0.0232526585, -0.3467434943, -0.0935404599, 0.249047786, -0.1790920943, -0.2102451921, 0.1960572302, 0.1093096733, 0.117527917, -0.2039329857, -0.3139224052, 0.072862342, -0.0576011613, 0.0589447021, 0.0813104361, 0.1948960274, 0.2138825953, 0.2671021521, -0.148003608, -0.3270512819, -0.3317119479, 0.1381733567, -0.0719680786, 0.1306351572, -0.1062558144, 0.294085294, -0.1520836949, 0.326508522, 0.0217725486, -0.2126559466, 0.1918890625, -0.0478477404, 0.520732522, 0.0683804899, -0.419374764, 0.0658853427, -0.1191069186, 0.02694612, 0.1760427952, -0.3196391761, 0.0379565507, -0.1479680836, 0.3946040869, -0.2478048354, -0.0996567905, -0.1006430164, -0.1501684636, 0.0405272953, 0.116900228, -0.040975228, -0.2084080577, -0.1915850639, -0.2512803078, 0.0578238294, -0.0954613686, -0.0875516236, -0.533575058, -0.2334990203, -0.1649958044, 0.2940984964, 0.1574512422, 0.3346636295, -0.178517282, 0.245471403, 0.0477584191, 0.2458998263, 0.6149812341, -0.4832391143, 0.1547023356, 0.2263717949, 0.393127352, -0.1780013144, -0.1272554398, -0.1692572534, 0.294726193, -0.2957774103, 0.025988616, -0.1555343568, -0.0910770968, 0.2631005943, 0.1554055959, -0.1223802269, -0.3149801195, -0.2309516668, -0.1793931127, -0.1272853315, -0.0533968471, 0.0635774657, 0.1866384149, -0.3784871697, 0.0986480787, 0.1408237219, 0.0735076368, 0.2715044916, 0.1186349988, 0.2232432365, 0.0302770212, 0.1973614246, 0.3174023926, 0.2587255538, 0.5099826455, 0.5483982563, -0.361846596, -0.5113291144, -0.1194787994, -0.1147696823, 0.2007077783, 0.0650010258, -0.1422150731, 0.1660956144, -0.0506403036, 0.1854585111, 0.0961979926, 0.0223077685, 0.4922947288, 0.1605761498, -0.4898482263, -0.5388928652, 0.2713592649, 0.0392415076, -0.0478406623, 0.1281554401, 0.0797320753, -0.34075737, 0.2059525102, -0.1559934914, 0.6908727288, 0.0837976485, -0.0510308072, -0.0170311369, -0.2261731774, 0.7132236958, -0.1187110916, 0.0007714238, -0.3614291549, -0.3074661195, -0.0622300394, -0.0221187174, 0.0234749615, 0.4506936669, -0.3085789084, 0.3788375258, -0.3285133541, 0.2046866119, 0.0287500769, -0.0740614384, 0.2494399697, -0.1323136389, -0.0824862868, 0.2010340542, -0.1576189697, -0.1343759, -0.1674346626, 0.0419053286, -0.2318482399, -0.268060714, -0.2262607664, 0.0822606981, -0.2538250387, 0.1415783465, -0.0856541172, -0.0167192668, 0.2168118805, 0.2025100589, 0.4863220453, 0.0789239407, -0.1482865214, 0.1838956475, 0.0421488881, 0.1370233893, 0.0343485884, 0.0537469126, 0.4150625467, 0.1160497814, -0.269980818, 0.1285304129, -0.0795676112, 0.1759498715, -0.0870315358, 0.0838944018, -0.0983975679, -0.365375042, 0.0326474421, -0.0770388097, 0.2287106514, -0.2537734807, 0.1773460954, 0.05198282, -0.0466798581, 0.212078914, -0.263691932, -0.1465979069, -0.0457465835, 0.189233005, 0.0259639658, 0.1933565438, 0.2472447008, 0.0259734392, -0.3513919115, -0.256511271, 0.0389520228, 0.0239993706, -0.6778355837, 0.2459826171, 0.2533545494, 0.0759459734, -0.0571892112, 0.2232684493, -0.0158299785, 0.0710852891, 0.0610140264, -0.5274376869, -0.2186502069, -0.0046704933, -0.1847545803, 0.1169300228, 0.2478653342, 0.411005199, 0.1337578297, 0.0714498237, -0.3641543388, -0.0209538639, -0.1723941118, 0.2980129421, 0.1525107771, 0.0199611969, 0.2820311487, -0.1788064986, 0.2182169855, 0.000743961, 0.0077501163, -0.2498183846, -0.1872092783, 0.1124107167, 0.1352090985, -0.1972161382, -0.0634114146, -0.1643811017, 0.0578370653, -0.0719838366, -0.01725078, 0.3105740547, 0.0032080635, 0.3735309243, -0.1509215832, 0.2327848375, -0.0463301651, 0.2182776928, 0.012717111, -0.1140014604, 0.0742453933, 0.1729658246, -0.1127647161, 0.0194780678, -0.175079599, 0.0847948045, -0.1170052737, -0.1179298759, 0.1342933476, -0.5689803958, 0.2959565818, 0.1936382949, 0.4493626952, 0.2781368196, -0.1868257672, -0.0707665235, 0.382609427, 0.3079268634, -0.3656697273, -0.1683600098, 0.1630015671, 0.1655610502, 0.0003906116, 0.0756074935, 0.0607256889, -0.0310595334, 0.0448929518, 0.0080861226, 0.4554387331, -0.4376542866, 0.2349057645, 0.5269825459, -0.0619710423, 0.0999839455, 0.4967942536, 0.1731764078, 0.0635330305, 0.5881979465, 0.0346502401, 0.1773208678, 0.1874702573, -0.1379602253, -0.0754204839, -0.1722173542, 0.1809183061, 0.096972689, 0.0188566819, -0.0428316295, -0.0954477638, 0.3011341691, -0.3839455545, 0.0041104853, -0.005768612, 0.1111970246, -0.2255034596, -0.1060155705, -0.156262815, -0.0987097323, -0.1664462984, -0.1973159015, 0.0140282586, -0.1700509042, 0.3556355834, -0.0742807835, -0.1959642619, -0.4565813541, -0.186778456, 0.3054198325, 0.0650815889, -0.2473098487, 0.0163198765, 0.2487559468, -0.1455011517, 0.3213778138, 0.0862398222, 0.6039390564, 0.1713753343, 0.0897910297, -0.3410919607, -0.0972952843, -0.0885801613, 0.1516634077, 0.215567857, 0.0459204428, -0.0368340053, 0.3922656775, 0.2018782198, -0.1707493365, 0.3085800409, 0.335742414, 0.2227040529, -0.1706194282, -0.0630669147, -0.1339654028, -0.2573548257, -0.3266395628, 0.1013187319, -0.2697946429, 0.1159572452, 0.4622559547, -0.041513823, 0.0840901136, -0.2942292094, 0.1462801695, 0.1317102909, 0.3118901253, 0.2739444971, -0.0476244763, -0.3456507921, 0.1615713835, -0.5773795843, 0.1294606328, -0.1186996847, -0.1146927923, -0.0334538557, -0.1582232863, 0.1593216956, 0.0206148606, 0.3829502463, 0.1888178885, -0.0159398764, -0.1086774319, -0.1195141003, -0.1931984574, -0.0825987458, -0.1219009459, 0.2010164857, -0.3226899803, -0.0618356764, -0.1457766742, 0.0389759243, -0.3498084843, 0.093714118, 0.1062970459, -0.0201896131, 0.3603177071, 0.1459481418, 0.7699725628, 0.0488149971, 0.1150305942, -0.0913877785, -0.3536492884, -0.4042431414, 0.368868947, 0.3255910277, 0.2565359175, -0.1063772365, 0.0097639635, -0.1644828916, 0.0945067853, -0.0435467474, 0.3211488426, -0.2544763386, 0.2145048827, -0.0240108967, 0.0171400569, 0.0991312712, -0.0556260049, -0.0026465841, 0.3410544395, -0.2067562342, -0.6047098637, 0.6198095083, -0.2129314691, -0.2395552993, 0.1537307203, 0.1545256972, 0.2213793695, -0.2187476307, -0.5100531578, 0.0247500241, 0.3773830235, 0.019003924, -0.4423446357, -0.0037067216, -0.1927571893, 0.0514445379, 0.1135602593, 0.3062540889, 0.1166285425, -0.1932862103, 0.1991046816, -0.2543465793 ]
https://github.com/huggingface/datasets/issues/1989
Question/problem with dataset labels
Hi @ioana-blue, Can you share a sample from your .csv? A dummy where you get this error will also help. I tried this csv: ```csv feature,label 1.2,not nurse 1.3,nurse 1.5,surgeon ``` and the following snippet: ```python from datasets import load_dataset d = load_dataset("csv",data_files=['test.csv']) print(d) print(d['train']['label']) ``` and this works perfectly fine for me: ```sh DatasetDict({ train: Dataset({ features: ['feature', 'label'], num_rows: 3 }) }) ['not nurse', 'nurse', 'surgeon'] ``` I'm sure your csv is more complicated than this one. But it is hard to tell where the issue might be without looking at a sample.
Hi, I'm using a dataset with two labels "nurse" and "not nurse". For whatever reason (that I don't understand), I get an error that I think comes from the datasets package (using csv). Everything works fine if the labels are "nurse" and "surgeon". This is the trace I get: ``` File "../../../models/tr-4.3.2/run_puppets.py", line 523, in <module> main() File "../../../models/tr-4.3.2/run_puppets.py", line 249, in main datasets = load_dataset("csv", data_files=data_files) File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/load.py", line 740, in load_dataset builder_instance.download_and_prepare( File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py", line 572, in download_and_prepare self._download_and_prepare( File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py", line 650, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py", line 1028, in _prepare_split writer.write_table(table) File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/arrow_writer.py", line 292, in write_table pa_table = pa_table.cast(self._schema) File "pyarrow/table.pxi", line 1311, in pyarrow.lib.Table.cast File "pyarrow/table.pxi", line 265, in pyarrow.lib.ChunkedArray.cast File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/pyarrow/compute.py", line 87, in cast return call_function("cast", [arr], options) File "pyarrow/_compute.pyx", line 298, in pyarrow._compute.call_function File "pyarrow/_compute.pyx", line 192, in pyarrow._compute.Function.call File "pyarrow/error.pxi", line 122, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 84, in pyarrow.lib.check_status pyarrow.lib.ArrowInvalid: Failed to parse string: not nurse ``` Any ideas how to fix this? For now, I'll probably make them numeric.
95
Question/problem with dataset labels Hi, I'm using a dataset with two labels "nurse" and "not nurse". For whatever reason (that I don't understand), I get an error that I think comes from the datasets package (using csv). Everything works fine if the labels are "nurse" and "surgeon". This is the trace I get: ``` File "../../../models/tr-4.3.2/run_puppets.py", line 523, in <module> main() File "../../../models/tr-4.3.2/run_puppets.py", line 249, in main datasets = load_dataset("csv", data_files=data_files) File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/load.py", line 740, in load_dataset builder_instance.download_and_prepare( File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py", line 572, in download_and_prepare self._download_and_prepare( File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py", line 650, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py", line 1028, in _prepare_split writer.write_table(table) File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/arrow_writer.py", line 292, in write_table pa_table = pa_table.cast(self._schema) File "pyarrow/table.pxi", line 1311, in pyarrow.lib.Table.cast File "pyarrow/table.pxi", line 265, in pyarrow.lib.ChunkedArray.cast File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/pyarrow/compute.py", line 87, in cast return call_function("cast", [arr], options) File "pyarrow/_compute.pyx", line 298, in pyarrow._compute.call_function File "pyarrow/_compute.pyx", line 192, in pyarrow._compute.Function.call File "pyarrow/error.pxi", line 122, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 84, in pyarrow.lib.check_status pyarrow.lib.ArrowInvalid: Failed to parse string: not nurse ``` Any ideas how to fix this? For now, I'll probably make them numeric. Hi @ioana-blue, Can you share a sample from your .csv? A dummy where you get this error will also help. I tried this csv: ```csv feature,label 1.2,not nurse 1.3,nurse 1.5,surgeon ``` and the following snippet: ```python from datasets import load_dataset d = load_dataset("csv",data_files=['test.csv']) print(d) print(d['train']['label']) ``` and this works perfectly fine for me: ```sh DatasetDict({ train: Dataset({ features: ['feature', 'label'], num_rows: 3 }) }) ['not nurse', 'nurse', 'surgeon'] ``` I'm sure your csv is more complicated than this one. But it is hard to tell where the issue might be without looking at a sample.
[ 0.1789144427, -0.057323128, 0.0051793307, 0.1343671829, 0.4113537669, 0.3502127528, 0.6419944763, 0.1637073457, -0.1613178402, 0.072349824, 0.1788541377, 0.0638753623, -0.0607730746, 0.0305259675, -0.1302311867, -0.1193703264, 0.0890838355, 0.1734793484, 0.1816425472, -0.0444667041, -0.286742866, -0.0398263708, -0.1566802263, 0.3662884235, -0.2972058058, -0.3766842186, 0.2105431557, -0.1205282211, -0.1131331921, -0.4633958042, 0.2718096972, 0.0861200094, 0.0026804134, 0.4034270048, -0.0001030963, 0.0587568581, 0.2967478335, 0.1559889764, -0.3984079361, -0.4321284294, -0.1893597841, -0.0234078132, 0.0345638394, -0.3044766188, 0.0979833081, -0.2846685052, -0.0905411169, -0.2756659687, 0.1046864837, 0.4386058748, 0.3266399801, 0.237339586, -0.2064997256, -0.2293036431, 0.2311525941, 0.1250883639, -0.0305088237, 0.0494753569, -0.1344385892, -0.0064583756, 0.4515703321, 0.4609146118, -0.2723957896, 0.2647711337, 0.1353648901, 0.1463630944, 0.1377249658, -0.3910482228, 0.2763094604, 0.1961432099, 0.7452609539, -0.2964995503, -0.2943911254, -0.1697053611, 0.1373762935, -0.4167192578, 0.1813386679, 0.0700832978, 0.0063755624, -0.0470149219, -0.0331625827, 0.0610272177, 0.0807419121, 0.088180244, -0.058075048, 0.038328439, -0.0986413136, 0.3288167715, 0.1125300378, -0.0747508556, 0.2975301743, -0.0059942957, -0.0885701925, 0.0415448695, -0.4325241446, -0.0296082944, -0.0368807204, 0.0516761094, -0.1181377918, -0.0387408957, 0.0183865093, -0.3749561012, -0.1474356353, 0.340344727, 0.2151345611, 0.2662760317, 0.270699501, 0.561686635, 0.0911724865, -0.076162532, 0.0308041647, -0.0558077544, -0.0015740022, -0.4626429379, 0.2433208525, 0.098931089, 0.2934702635, -0.2398588359, -0.5455213189, 0.1924420744, -0.028101556, 0.0940956473, 0.1541178524, 0.3049503267, 0.0221221931, 0.2065179646, 0.0793469846, 0.1936080754, -0.0091701373, -0.1172054559, -0.2069241256, 0.097607933, -0.2002791464, -0.1501066089, 0.0502696931, -0.0720528513, 0.112449035, 0.0640596598, -0.0010050014, -0.0760565847, -0.0163033158, -0.386464119, -0.0127479844, 0.3588934541, -0.1032633185, 0.4203503132, 0.2520543635, -0.4185499549, 0.0596993417, 0.180211544, -0.3688523173, -0.0338138118, -0.2121574283, 0.2862125933, -0.1030440629, -0.1879811138, -0.120091483, 0.0468235351, 0.4193201959, -0.2145541608, 0.1575900912, -0.3543839455, -0.3093226552, -0.2777700722, -0.0663040802, 0.221432507, -0.6722468138, 0.0043894351, -0.1475469768, -0.0291133374, 0.0528065674, 0.2960191965, -0.081004411, 0.206291616, -0.0705920234, 0.0303499103, 0.1395510137, -0.39069134, -0.11046388, 0.1035437435, -0.1420033276, -0.2442641705, 0.0704807565, -0.0403395817, 0.0917313546, -0.0916262269, 0.0582318529, -0.1318776309, -0.1996324956, -0.095133312, -0.1437039226, 0.0538111925, 0.6539095044, 0.092732884, -0.016799951, 0.0756468922, -0.1002285182, -0.3448367715, -0.0425324477, -0.1009554416, 0.2062196583, 0.214790225, 0.0556404255, 0.2983596921, 0.1459521949, -0.0644701868, -0.4424967766, 0.1017011777, -0.0400517844, 0.1395647824, -0.1451431215, -0.1923440099, -0.3297649324, -0.0537859574, -0.207976386, 0.0183235332, 0.1633132845, 0.0683605894, -0.2214221656, -0.020483382, 0.0140844062, -0.0758843049, -0.0172139481, 0.1093305945, -0.1040250063, 0.2656517625, -0.0951160192, 0.116893813, -0.0267395489, 0.2531200647, 0.4326064289, 0.2400517166, -0.0466213152, 0.3670239747, 0.084860608, -0.3270231783, 0.0078401389, -0.1726581603, 0.0181291979, -0.0838745013, -0.0163269751, 0.1145247221, 0.2768394947, -0.1085970625, -0.0847192705, 0.1411860287, -0.1772007197, 0.2762841582, -0.1619747579, 0.2004609108, 0.2599627078, -0.1093928665, 0.1251224875, -0.2127112299, 0.2158808112, -0.1297984868, 0.2343142927, 0.0071424991, -0.2617174089, 0.0677194297, 0.4220536947, 0.0015310869, -0.0035241153, 0.0097740078, -0.1586680263, 0.1657462418, -0.0130176423, 0.595718503, 0.3528425694, 0.2059558183, -0.1638753265, -0.0582683906, -0.2622587979, -0.1369837075, 0.2124616951, 0.0951014534, 0.0298528336, 0.0572960638, 0.0261100121, -0.0664387867, -0.1765723825, -0.2433389872, 0.2082312554, 0.3464296758, -0.5103123188, -0.0029067099, -0.3452731669, -0.2318638116, -0.3185971379, -0.0987910032, -0.2351591289, -0.4590441883, 0.0904377103, -0.0774913728, -0.1903931051, 0.1450762749, -0.0375637673, 0.0079173446, -0.0910728574, 0.1520518363, -0.0975841284, -0.4702500403, -0.2045714408, 0.181112498, 0.0074796826, 0.0469533242, 0.4813602567, -0.1431986094, -0.1245556474, -0.0785719529, -0.2953169942, 0.004026711, -0.273065865, 0.1366039962, 0.1816231012, 0.1038596928, 0.0084618628, -0.1486843973, 0.2930161357, -0.0715195388, 0.0246399194, 0.1069570184, 0.0452329181, -0.2920733988, -0.266469866, -0.4750190973, -0.4745301902, -0.1774820089, 0.066948086, -0.075908497, -0.0335288309, 0.5198025703, 0.0684419274, 0.0656811595, 0.0931448191, 0.0232526585, -0.3467434943, -0.0935404599, 0.249047786, -0.1790920943, -0.2102451921, 0.1960572302, 0.1093096733, 0.117527917, -0.2039329857, -0.3139224052, 0.072862342, -0.0576011613, 0.0589447021, 0.0813104361, 0.1948960274, 0.2138825953, 0.2671021521, -0.148003608, -0.3270512819, -0.3317119479, 0.1381733567, -0.0719680786, 0.1306351572, -0.1062558144, 0.294085294, -0.1520836949, 0.326508522, 0.0217725486, -0.2126559466, 0.1918890625, -0.0478477404, 0.520732522, 0.0683804899, -0.419374764, 0.0658853427, -0.1191069186, 0.02694612, 0.1760427952, -0.3196391761, 0.0379565507, -0.1479680836, 0.3946040869, -0.2478048354, -0.0996567905, -0.1006430164, -0.1501684636, 0.0405272953, 0.116900228, -0.040975228, -0.2084080577, -0.1915850639, -0.2512803078, 0.0578238294, -0.0954613686, -0.0875516236, -0.533575058, -0.2334990203, -0.1649958044, 0.2940984964, 0.1574512422, 0.3346636295, -0.178517282, 0.245471403, 0.0477584191, 0.2458998263, 0.6149812341, -0.4832391143, 0.1547023356, 0.2263717949, 0.393127352, -0.1780013144, -0.1272554398, -0.1692572534, 0.294726193, -0.2957774103, 0.025988616, -0.1555343568, -0.0910770968, 0.2631005943, 0.1554055959, -0.1223802269, -0.3149801195, -0.2309516668, -0.1793931127, -0.1272853315, -0.0533968471, 0.0635774657, 0.1866384149, -0.3784871697, 0.0986480787, 0.1408237219, 0.0735076368, 0.2715044916, 0.1186349988, 0.2232432365, 0.0302770212, 0.1973614246, 0.3174023926, 0.2587255538, 0.5099826455, 0.5483982563, -0.361846596, -0.5113291144, -0.1194787994, -0.1147696823, 0.2007077783, 0.0650010258, -0.1422150731, 0.1660956144, -0.0506403036, 0.1854585111, 0.0961979926, 0.0223077685, 0.4922947288, 0.1605761498, -0.4898482263, -0.5388928652, 0.2713592649, 0.0392415076, -0.0478406623, 0.1281554401, 0.0797320753, -0.34075737, 0.2059525102, -0.1559934914, 0.6908727288, 0.0837976485, -0.0510308072, -0.0170311369, -0.2261731774, 0.7132236958, -0.1187110916, 0.0007714238, -0.3614291549, -0.3074661195, -0.0622300394, -0.0221187174, 0.0234749615, 0.4506936669, -0.3085789084, 0.3788375258, -0.3285133541, 0.2046866119, 0.0287500769, -0.0740614384, 0.2494399697, -0.1323136389, -0.0824862868, 0.2010340542, -0.1576189697, -0.1343759, -0.1674346626, 0.0419053286, -0.2318482399, -0.268060714, -0.2262607664, 0.0822606981, -0.2538250387, 0.1415783465, -0.0856541172, -0.0167192668, 0.2168118805, 0.2025100589, 0.4863220453, 0.0789239407, -0.1482865214, 0.1838956475, 0.0421488881, 0.1370233893, 0.0343485884, 0.0537469126, 0.4150625467, 0.1160497814, -0.269980818, 0.1285304129, -0.0795676112, 0.1759498715, -0.0870315358, 0.0838944018, -0.0983975679, -0.365375042, 0.0326474421, -0.0770388097, 0.2287106514, -0.2537734807, 0.1773460954, 0.05198282, -0.0466798581, 0.212078914, -0.263691932, -0.1465979069, -0.0457465835, 0.189233005, 0.0259639658, 0.1933565438, 0.2472447008, 0.0259734392, -0.3513919115, -0.256511271, 0.0389520228, 0.0239993706, -0.6778355837, 0.2459826171, 0.2533545494, 0.0759459734, -0.0571892112, 0.2232684493, -0.0158299785, 0.0710852891, 0.0610140264, -0.5274376869, -0.2186502069, -0.0046704933, -0.1847545803, 0.1169300228, 0.2478653342, 0.411005199, 0.1337578297, 0.0714498237, -0.3641543388, -0.0209538639, -0.1723941118, 0.2980129421, 0.1525107771, 0.0199611969, 0.2820311487, -0.1788064986, 0.2182169855, 0.000743961, 0.0077501163, -0.2498183846, -0.1872092783, 0.1124107167, 0.1352090985, -0.1972161382, -0.0634114146, -0.1643811017, 0.0578370653, -0.0719838366, -0.01725078, 0.3105740547, 0.0032080635, 0.3735309243, -0.1509215832, 0.2327848375, -0.0463301651, 0.2182776928, 0.012717111, -0.1140014604, 0.0742453933, 0.1729658246, -0.1127647161, 0.0194780678, -0.175079599, 0.0847948045, -0.1170052737, -0.1179298759, 0.1342933476, -0.5689803958, 0.2959565818, 0.1936382949, 0.4493626952, 0.2781368196, -0.1868257672, -0.0707665235, 0.382609427, 0.3079268634, -0.3656697273, -0.1683600098, 0.1630015671, 0.1655610502, 0.0003906116, 0.0756074935, 0.0607256889, -0.0310595334, 0.0448929518, 0.0080861226, 0.4554387331, -0.4376542866, 0.2349057645, 0.5269825459, -0.0619710423, 0.0999839455, 0.4967942536, 0.1731764078, 0.0635330305, 0.5881979465, 0.0346502401, 0.1773208678, 0.1874702573, -0.1379602253, -0.0754204839, -0.1722173542, 0.1809183061, 0.096972689, 0.0188566819, -0.0428316295, -0.0954477638, 0.3011341691, -0.3839455545, 0.0041104853, -0.005768612, 0.1111970246, -0.2255034596, -0.1060155705, -0.156262815, -0.0987097323, -0.1664462984, -0.1973159015, 0.0140282586, -0.1700509042, 0.3556355834, -0.0742807835, -0.1959642619, -0.4565813541, -0.186778456, 0.3054198325, 0.0650815889, -0.2473098487, 0.0163198765, 0.2487559468, -0.1455011517, 0.3213778138, 0.0862398222, 0.6039390564, 0.1713753343, 0.0897910297, -0.3410919607, -0.0972952843, -0.0885801613, 0.1516634077, 0.215567857, 0.0459204428, -0.0368340053, 0.3922656775, 0.2018782198, -0.1707493365, 0.3085800409, 0.335742414, 0.2227040529, -0.1706194282, -0.0630669147, -0.1339654028, -0.2573548257, -0.3266395628, 0.1013187319, -0.2697946429, 0.1159572452, 0.4622559547, -0.041513823, 0.0840901136, -0.2942292094, 0.1462801695, 0.1317102909, 0.3118901253, 0.2739444971, -0.0476244763, -0.3456507921, 0.1615713835, -0.5773795843, 0.1294606328, -0.1186996847, -0.1146927923, -0.0334538557, -0.1582232863, 0.1593216956, 0.0206148606, 0.3829502463, 0.1888178885, -0.0159398764, -0.1086774319, -0.1195141003, -0.1931984574, -0.0825987458, -0.1219009459, 0.2010164857, -0.3226899803, -0.0618356764, -0.1457766742, 0.0389759243, -0.3498084843, 0.093714118, 0.1062970459, -0.0201896131, 0.3603177071, 0.1459481418, 0.7699725628, 0.0488149971, 0.1150305942, -0.0913877785, -0.3536492884, -0.4042431414, 0.368868947, 0.3255910277, 0.2565359175, -0.1063772365, 0.0097639635, -0.1644828916, 0.0945067853, -0.0435467474, 0.3211488426, -0.2544763386, 0.2145048827, -0.0240108967, 0.0171400569, 0.0991312712, -0.0556260049, -0.0026465841, 0.3410544395, -0.2067562342, -0.6047098637, 0.6198095083, -0.2129314691, -0.2395552993, 0.1537307203, 0.1545256972, 0.2213793695, -0.2187476307, -0.5100531578, 0.0247500241, 0.3773830235, 0.019003924, -0.4423446357, -0.0037067216, -0.1927571893, 0.0514445379, 0.1135602593, 0.3062540889, 0.1166285425, -0.1932862103, 0.1991046816, -0.2543465793 ]
https://github.com/huggingface/datasets/issues/1989
Question/problem with dataset labels
I've had versions where it worked fain. For this dataset, I had all kind of parsing issues that I couldn't understand. What I ended up doing is strip all the columns that I didn't need and also make the label 0/1. I think one line that may have caused a problem was the csv version of this: ```crawl-data/CC-MAIN-2017-47/segments/1510934806225.78/wet/CC-MAIN-20171120203833-20171120223833-00571.warc.wet.gz Rose Blakey is an aspiring journalist. She is desperate to escape the from the small Australian town in which she lives. Rejection after rejection mean she is stuck in what she sees as a dead-end waitressing job. ^M ('Rose', '', 'Blakey') journalist F 38 journalist https://www.netgalley.com/catalog/book/121872 _ is desperate to escape the from the small Australian town in which _ lives. Rejection after rejection mean _ is stuck in what _ sees as a dead-end waitressing job. She is desperate to escape the from the small Australian town in which she lives. Rejection after rejection mean she is stuck in what she sees as a dead-end waitressing job.``` The error I got in this case is this one: https://github.com/huggingface/datasets/issues/1989#issuecomment-790842771 Note, this line was part of a much larger file and until this line I guess it was working fine.
Hi, I'm using a dataset with two labels "nurse" and "not nurse". For whatever reason (that I don't understand), I get an error that I think comes from the datasets package (using csv). Everything works fine if the labels are "nurse" and "surgeon". This is the trace I get: ``` File "../../../models/tr-4.3.2/run_puppets.py", line 523, in <module> main() File "../../../models/tr-4.3.2/run_puppets.py", line 249, in main datasets = load_dataset("csv", data_files=data_files) File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/load.py", line 740, in load_dataset builder_instance.download_and_prepare( File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py", line 572, in download_and_prepare self._download_and_prepare( File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py", line 650, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py", line 1028, in _prepare_split writer.write_table(table) File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/arrow_writer.py", line 292, in write_table pa_table = pa_table.cast(self._schema) File "pyarrow/table.pxi", line 1311, in pyarrow.lib.Table.cast File "pyarrow/table.pxi", line 265, in pyarrow.lib.ChunkedArray.cast File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/pyarrow/compute.py", line 87, in cast return call_function("cast", [arr], options) File "pyarrow/_compute.pyx", line 298, in pyarrow._compute.call_function File "pyarrow/_compute.pyx", line 192, in pyarrow._compute.Function.call File "pyarrow/error.pxi", line 122, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 84, in pyarrow.lib.check_status pyarrow.lib.ArrowInvalid: Failed to parse string: not nurse ``` Any ideas how to fix this? For now, I'll probably make them numeric.
197
Question/problem with dataset labels Hi, I'm using a dataset with two labels "nurse" and "not nurse". For whatever reason (that I don't understand), I get an error that I think comes from the datasets package (using csv). Everything works fine if the labels are "nurse" and "surgeon". This is the trace I get: ``` File "../../../models/tr-4.3.2/run_puppets.py", line 523, in <module> main() File "../../../models/tr-4.3.2/run_puppets.py", line 249, in main datasets = load_dataset("csv", data_files=data_files) File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/load.py", line 740, in load_dataset builder_instance.download_and_prepare( File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py", line 572, in download_and_prepare self._download_and_prepare( File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py", line 650, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py", line 1028, in _prepare_split writer.write_table(table) File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/arrow_writer.py", line 292, in write_table pa_table = pa_table.cast(self._schema) File "pyarrow/table.pxi", line 1311, in pyarrow.lib.Table.cast File "pyarrow/table.pxi", line 265, in pyarrow.lib.ChunkedArray.cast File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/pyarrow/compute.py", line 87, in cast return call_function("cast", [arr], options) File "pyarrow/_compute.pyx", line 298, in pyarrow._compute.call_function File "pyarrow/_compute.pyx", line 192, in pyarrow._compute.Function.call File "pyarrow/error.pxi", line 122, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 84, in pyarrow.lib.check_status pyarrow.lib.ArrowInvalid: Failed to parse string: not nurse ``` Any ideas how to fix this? For now, I'll probably make them numeric. I've had versions where it worked fain. For this dataset, I had all kind of parsing issues that I couldn't understand. What I ended up doing is strip all the columns that I didn't need and also make the label 0/1. I think one line that may have caused a problem was the csv version of this: ```crawl-data/CC-MAIN-2017-47/segments/1510934806225.78/wet/CC-MAIN-20171120203833-20171120223833-00571.warc.wet.gz Rose Blakey is an aspiring journalist. She is desperate to escape the from the small Australian town in which she lives. Rejection after rejection mean she is stuck in what she sees as a dead-end waitressing job. ^M ('Rose', '', 'Blakey') journalist F 38 journalist https://www.netgalley.com/catalog/book/121872 _ is desperate to escape the from the small Australian town in which _ lives. Rejection after rejection mean _ is stuck in what _ sees as a dead-end waitressing job. She is desperate to escape the from the small Australian town in which she lives. Rejection after rejection mean she is stuck in what she sees as a dead-end waitressing job.``` The error I got in this case is this one: https://github.com/huggingface/datasets/issues/1989#issuecomment-790842771 Note, this line was part of a much larger file and until this line I guess it was working fine.
[ 0.1789144427, -0.057323128, 0.0051793307, 0.1343671829, 0.4113537669, 0.3502127528, 0.6419944763, 0.1637073457, -0.1613178402, 0.072349824, 0.1788541377, 0.0638753623, -0.0607730746, 0.0305259675, -0.1302311867, -0.1193703264, 0.0890838355, 0.1734793484, 0.1816425472, -0.0444667041, -0.286742866, -0.0398263708, -0.1566802263, 0.3662884235, -0.2972058058, -0.3766842186, 0.2105431557, -0.1205282211, -0.1131331921, -0.4633958042, 0.2718096972, 0.0861200094, 0.0026804134, 0.4034270048, -0.0001030963, 0.0587568581, 0.2967478335, 0.1559889764, -0.3984079361, -0.4321284294, -0.1893597841, -0.0234078132, 0.0345638394, -0.3044766188, 0.0979833081, -0.2846685052, -0.0905411169, -0.2756659687, 0.1046864837, 0.4386058748, 0.3266399801, 0.237339586, -0.2064997256, -0.2293036431, 0.2311525941, 0.1250883639, -0.0305088237, 0.0494753569, -0.1344385892, -0.0064583756, 0.4515703321, 0.4609146118, -0.2723957896, 0.2647711337, 0.1353648901, 0.1463630944, 0.1377249658, -0.3910482228, 0.2763094604, 0.1961432099, 0.7452609539, -0.2964995503, -0.2943911254, -0.1697053611, 0.1373762935, -0.4167192578, 0.1813386679, 0.0700832978, 0.0063755624, -0.0470149219, -0.0331625827, 0.0610272177, 0.0807419121, 0.088180244, -0.058075048, 0.038328439, -0.0986413136, 0.3288167715, 0.1125300378, -0.0747508556, 0.2975301743, -0.0059942957, -0.0885701925, 0.0415448695, -0.4325241446, -0.0296082944, -0.0368807204, 0.0516761094, -0.1181377918, -0.0387408957, 0.0183865093, -0.3749561012, -0.1474356353, 0.340344727, 0.2151345611, 0.2662760317, 0.270699501, 0.561686635, 0.0911724865, -0.076162532, 0.0308041647, -0.0558077544, -0.0015740022, -0.4626429379, 0.2433208525, 0.098931089, 0.2934702635, -0.2398588359, -0.5455213189, 0.1924420744, -0.028101556, 0.0940956473, 0.1541178524, 0.3049503267, 0.0221221931, 0.2065179646, 0.0793469846, 0.1936080754, -0.0091701373, -0.1172054559, -0.2069241256, 0.097607933, -0.2002791464, -0.1501066089, 0.0502696931, -0.0720528513, 0.112449035, 0.0640596598, -0.0010050014, -0.0760565847, -0.0163033158, -0.386464119, -0.0127479844, 0.3588934541, -0.1032633185, 0.4203503132, 0.2520543635, -0.4185499549, 0.0596993417, 0.180211544, -0.3688523173, -0.0338138118, -0.2121574283, 0.2862125933, -0.1030440629, -0.1879811138, -0.120091483, 0.0468235351, 0.4193201959, -0.2145541608, 0.1575900912, -0.3543839455, -0.3093226552, -0.2777700722, -0.0663040802, 0.221432507, -0.6722468138, 0.0043894351, -0.1475469768, -0.0291133374, 0.0528065674, 0.2960191965, -0.081004411, 0.206291616, -0.0705920234, 0.0303499103, 0.1395510137, -0.39069134, -0.11046388, 0.1035437435, -0.1420033276, -0.2442641705, 0.0704807565, -0.0403395817, 0.0917313546, -0.0916262269, 0.0582318529, -0.1318776309, -0.1996324956, -0.095133312, -0.1437039226, 0.0538111925, 0.6539095044, 0.092732884, -0.016799951, 0.0756468922, -0.1002285182, -0.3448367715, -0.0425324477, -0.1009554416, 0.2062196583, 0.214790225, 0.0556404255, 0.2983596921, 0.1459521949, -0.0644701868, -0.4424967766, 0.1017011777, -0.0400517844, 0.1395647824, -0.1451431215, -0.1923440099, -0.3297649324, -0.0537859574, -0.207976386, 0.0183235332, 0.1633132845, 0.0683605894, -0.2214221656, -0.020483382, 0.0140844062, -0.0758843049, -0.0172139481, 0.1093305945, -0.1040250063, 0.2656517625, -0.0951160192, 0.116893813, -0.0267395489, 0.2531200647, 0.4326064289, 0.2400517166, -0.0466213152, 0.3670239747, 0.084860608, -0.3270231783, 0.0078401389, -0.1726581603, 0.0181291979, -0.0838745013, -0.0163269751, 0.1145247221, 0.2768394947, -0.1085970625, -0.0847192705, 0.1411860287, -0.1772007197, 0.2762841582, -0.1619747579, 0.2004609108, 0.2599627078, -0.1093928665, 0.1251224875, -0.2127112299, 0.2158808112, -0.1297984868, 0.2343142927, 0.0071424991, -0.2617174089, 0.0677194297, 0.4220536947, 0.0015310869, -0.0035241153, 0.0097740078, -0.1586680263, 0.1657462418, -0.0130176423, 0.595718503, 0.3528425694, 0.2059558183, -0.1638753265, -0.0582683906, -0.2622587979, -0.1369837075, 0.2124616951, 0.0951014534, 0.0298528336, 0.0572960638, 0.0261100121, -0.0664387867, -0.1765723825, -0.2433389872, 0.2082312554, 0.3464296758, -0.5103123188, -0.0029067099, -0.3452731669, -0.2318638116, -0.3185971379, -0.0987910032, -0.2351591289, -0.4590441883, 0.0904377103, -0.0774913728, -0.1903931051, 0.1450762749, -0.0375637673, 0.0079173446, -0.0910728574, 0.1520518363, -0.0975841284, -0.4702500403, -0.2045714408, 0.181112498, 0.0074796826, 0.0469533242, 0.4813602567, -0.1431986094, -0.1245556474, -0.0785719529, -0.2953169942, 0.004026711, -0.273065865, 0.1366039962, 0.1816231012, 0.1038596928, 0.0084618628, -0.1486843973, 0.2930161357, -0.0715195388, 0.0246399194, 0.1069570184, 0.0452329181, -0.2920733988, -0.266469866, -0.4750190973, -0.4745301902, -0.1774820089, 0.066948086, -0.075908497, -0.0335288309, 0.5198025703, 0.0684419274, 0.0656811595, 0.0931448191, 0.0232526585, -0.3467434943, -0.0935404599, 0.249047786, -0.1790920943, -0.2102451921, 0.1960572302, 0.1093096733, 0.117527917, -0.2039329857, -0.3139224052, 0.072862342, -0.0576011613, 0.0589447021, 0.0813104361, 0.1948960274, 0.2138825953, 0.2671021521, -0.148003608, -0.3270512819, -0.3317119479, 0.1381733567, -0.0719680786, 0.1306351572, -0.1062558144, 0.294085294, -0.1520836949, 0.326508522, 0.0217725486, -0.2126559466, 0.1918890625, -0.0478477404, 0.520732522, 0.0683804899, -0.419374764, 0.0658853427, -0.1191069186, 0.02694612, 0.1760427952, -0.3196391761, 0.0379565507, -0.1479680836, 0.3946040869, -0.2478048354, -0.0996567905, -0.1006430164, -0.1501684636, 0.0405272953, 0.116900228, -0.040975228, -0.2084080577, -0.1915850639, -0.2512803078, 0.0578238294, -0.0954613686, -0.0875516236, -0.533575058, -0.2334990203, -0.1649958044, 0.2940984964, 0.1574512422, 0.3346636295, -0.178517282, 0.245471403, 0.0477584191, 0.2458998263, 0.6149812341, -0.4832391143, 0.1547023356, 0.2263717949, 0.393127352, -0.1780013144, -0.1272554398, -0.1692572534, 0.294726193, -0.2957774103, 0.025988616, -0.1555343568, -0.0910770968, 0.2631005943, 0.1554055959, -0.1223802269, -0.3149801195, -0.2309516668, -0.1793931127, -0.1272853315, -0.0533968471, 0.0635774657, 0.1866384149, -0.3784871697, 0.0986480787, 0.1408237219, 0.0735076368, 0.2715044916, 0.1186349988, 0.2232432365, 0.0302770212, 0.1973614246, 0.3174023926, 0.2587255538, 0.5099826455, 0.5483982563, -0.361846596, -0.5113291144, -0.1194787994, -0.1147696823, 0.2007077783, 0.0650010258, -0.1422150731, 0.1660956144, -0.0506403036, 0.1854585111, 0.0961979926, 0.0223077685, 0.4922947288, 0.1605761498, -0.4898482263, -0.5388928652, 0.2713592649, 0.0392415076, -0.0478406623, 0.1281554401, 0.0797320753, -0.34075737, 0.2059525102, -0.1559934914, 0.6908727288, 0.0837976485, -0.0510308072, -0.0170311369, -0.2261731774, 0.7132236958, -0.1187110916, 0.0007714238, -0.3614291549, -0.3074661195, -0.0622300394, -0.0221187174, 0.0234749615, 0.4506936669, -0.3085789084, 0.3788375258, -0.3285133541, 0.2046866119, 0.0287500769, -0.0740614384, 0.2494399697, -0.1323136389, -0.0824862868, 0.2010340542, -0.1576189697, -0.1343759, -0.1674346626, 0.0419053286, -0.2318482399, -0.268060714, -0.2262607664, 0.0822606981, -0.2538250387, 0.1415783465, -0.0856541172, -0.0167192668, 0.2168118805, 0.2025100589, 0.4863220453, 0.0789239407, -0.1482865214, 0.1838956475, 0.0421488881, 0.1370233893, 0.0343485884, 0.0537469126, 0.4150625467, 0.1160497814, -0.269980818, 0.1285304129, -0.0795676112, 0.1759498715, -0.0870315358, 0.0838944018, -0.0983975679, -0.365375042, 0.0326474421, -0.0770388097, 0.2287106514, -0.2537734807, 0.1773460954, 0.05198282, -0.0466798581, 0.212078914, -0.263691932, -0.1465979069, -0.0457465835, 0.189233005, 0.0259639658, 0.1933565438, 0.2472447008, 0.0259734392, -0.3513919115, -0.256511271, 0.0389520228, 0.0239993706, -0.6778355837, 0.2459826171, 0.2533545494, 0.0759459734, -0.0571892112, 0.2232684493, -0.0158299785, 0.0710852891, 0.0610140264, -0.5274376869, -0.2186502069, -0.0046704933, -0.1847545803, 0.1169300228, 0.2478653342, 0.411005199, 0.1337578297, 0.0714498237, -0.3641543388, -0.0209538639, -0.1723941118, 0.2980129421, 0.1525107771, 0.0199611969, 0.2820311487, -0.1788064986, 0.2182169855, 0.000743961, 0.0077501163, -0.2498183846, -0.1872092783, 0.1124107167, 0.1352090985, -0.1972161382, -0.0634114146, -0.1643811017, 0.0578370653, -0.0719838366, -0.01725078, 0.3105740547, 0.0032080635, 0.3735309243, -0.1509215832, 0.2327848375, -0.0463301651, 0.2182776928, 0.012717111, -0.1140014604, 0.0742453933, 0.1729658246, -0.1127647161, 0.0194780678, -0.175079599, 0.0847948045, -0.1170052737, -0.1179298759, 0.1342933476, -0.5689803958, 0.2959565818, 0.1936382949, 0.4493626952, 0.2781368196, -0.1868257672, -0.0707665235, 0.382609427, 0.3079268634, -0.3656697273, -0.1683600098, 0.1630015671, 0.1655610502, 0.0003906116, 0.0756074935, 0.0607256889, -0.0310595334, 0.0448929518, 0.0080861226, 0.4554387331, -0.4376542866, 0.2349057645, 0.5269825459, -0.0619710423, 0.0999839455, 0.4967942536, 0.1731764078, 0.0635330305, 0.5881979465, 0.0346502401, 0.1773208678, 0.1874702573, -0.1379602253, -0.0754204839, -0.1722173542, 0.1809183061, 0.096972689, 0.0188566819, -0.0428316295, -0.0954477638, 0.3011341691, -0.3839455545, 0.0041104853, -0.005768612, 0.1111970246, -0.2255034596, -0.1060155705, -0.156262815, -0.0987097323, -0.1664462984, -0.1973159015, 0.0140282586, -0.1700509042, 0.3556355834, -0.0742807835, -0.1959642619, -0.4565813541, -0.186778456, 0.3054198325, 0.0650815889, -0.2473098487, 0.0163198765, 0.2487559468, -0.1455011517, 0.3213778138, 0.0862398222, 0.6039390564, 0.1713753343, 0.0897910297, -0.3410919607, -0.0972952843, -0.0885801613, 0.1516634077, 0.215567857, 0.0459204428, -0.0368340053, 0.3922656775, 0.2018782198, -0.1707493365, 0.3085800409, 0.335742414, 0.2227040529, -0.1706194282, -0.0630669147, -0.1339654028, -0.2573548257, -0.3266395628, 0.1013187319, -0.2697946429, 0.1159572452, 0.4622559547, -0.041513823, 0.0840901136, -0.2942292094, 0.1462801695, 0.1317102909, 0.3118901253, 0.2739444971, -0.0476244763, -0.3456507921, 0.1615713835, -0.5773795843, 0.1294606328, -0.1186996847, -0.1146927923, -0.0334538557, -0.1582232863, 0.1593216956, 0.0206148606, 0.3829502463, 0.1888178885, -0.0159398764, -0.1086774319, -0.1195141003, -0.1931984574, -0.0825987458, -0.1219009459, 0.2010164857, -0.3226899803, -0.0618356764, -0.1457766742, 0.0389759243, -0.3498084843, 0.093714118, 0.1062970459, -0.0201896131, 0.3603177071, 0.1459481418, 0.7699725628, 0.0488149971, 0.1150305942, -0.0913877785, -0.3536492884, -0.4042431414, 0.368868947, 0.3255910277, 0.2565359175, -0.1063772365, 0.0097639635, -0.1644828916, 0.0945067853, -0.0435467474, 0.3211488426, -0.2544763386, 0.2145048827, -0.0240108967, 0.0171400569, 0.0991312712, -0.0556260049, -0.0026465841, 0.3410544395, -0.2067562342, -0.6047098637, 0.6198095083, -0.2129314691, -0.2395552993, 0.1537307203, 0.1545256972, 0.2213793695, -0.2187476307, -0.5100531578, 0.0247500241, 0.3773830235, 0.019003924, -0.4423446357, -0.0037067216, -0.1927571893, 0.0514445379, 0.1135602593, 0.3062540889, 0.1166285425, -0.1932862103, 0.1991046816, -0.2543465793 ]
https://github.com/huggingface/datasets/issues/1989
Question/problem with dataset labels
Hi @ioana-blue, What is the separator you're using for the csv? I see there are only two commas in the given line, but they don't seem like appropriate points. Also, is this a string part of one line, or an entire line? There should also be a label, right?
Hi, I'm using a dataset with two labels "nurse" and "not nurse". For whatever reason (that I don't understand), I get an error that I think comes from the datasets package (using csv). Everything works fine if the labels are "nurse" and "surgeon". This is the trace I get: ``` File "../../../models/tr-4.3.2/run_puppets.py", line 523, in <module> main() File "../../../models/tr-4.3.2/run_puppets.py", line 249, in main datasets = load_dataset("csv", data_files=data_files) File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/load.py", line 740, in load_dataset builder_instance.download_and_prepare( File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py", line 572, in download_and_prepare self._download_and_prepare( File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py", line 650, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py", line 1028, in _prepare_split writer.write_table(table) File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/arrow_writer.py", line 292, in write_table pa_table = pa_table.cast(self._schema) File "pyarrow/table.pxi", line 1311, in pyarrow.lib.Table.cast File "pyarrow/table.pxi", line 265, in pyarrow.lib.ChunkedArray.cast File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/pyarrow/compute.py", line 87, in cast return call_function("cast", [arr], options) File "pyarrow/_compute.pyx", line 298, in pyarrow._compute.call_function File "pyarrow/_compute.pyx", line 192, in pyarrow._compute.Function.call File "pyarrow/error.pxi", line 122, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 84, in pyarrow.lib.check_status pyarrow.lib.ArrowInvalid: Failed to parse string: not nurse ``` Any ideas how to fix this? For now, I'll probably make them numeric.
49
Question/problem with dataset labels Hi, I'm using a dataset with two labels "nurse" and "not nurse". For whatever reason (that I don't understand), I get an error that I think comes from the datasets package (using csv). Everything works fine if the labels are "nurse" and "surgeon". This is the trace I get: ``` File "../../../models/tr-4.3.2/run_puppets.py", line 523, in <module> main() File "../../../models/tr-4.3.2/run_puppets.py", line 249, in main datasets = load_dataset("csv", data_files=data_files) File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/load.py", line 740, in load_dataset builder_instance.download_and_prepare( File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py", line 572, in download_and_prepare self._download_and_prepare( File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py", line 650, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py", line 1028, in _prepare_split writer.write_table(table) File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/arrow_writer.py", line 292, in write_table pa_table = pa_table.cast(self._schema) File "pyarrow/table.pxi", line 1311, in pyarrow.lib.Table.cast File "pyarrow/table.pxi", line 265, in pyarrow.lib.ChunkedArray.cast File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/pyarrow/compute.py", line 87, in cast return call_function("cast", [arr], options) File "pyarrow/_compute.pyx", line 298, in pyarrow._compute.call_function File "pyarrow/_compute.pyx", line 192, in pyarrow._compute.Function.call File "pyarrow/error.pxi", line 122, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 84, in pyarrow.lib.check_status pyarrow.lib.ArrowInvalid: Failed to parse string: not nurse ``` Any ideas how to fix this? For now, I'll probably make them numeric. Hi @ioana-blue, What is the separator you're using for the csv? I see there are only two commas in the given line, but they don't seem like appropriate points. Also, is this a string part of one line, or an entire line? There should also be a label, right?
[ 0.1789144427, -0.057323128, 0.0051793307, 0.1343671829, 0.4113537669, 0.3502127528, 0.6419944763, 0.1637073457, -0.1613178402, 0.072349824, 0.1788541377, 0.0638753623, -0.0607730746, 0.0305259675, -0.1302311867, -0.1193703264, 0.0890838355, 0.1734793484, 0.1816425472, -0.0444667041, -0.286742866, -0.0398263708, -0.1566802263, 0.3662884235, -0.2972058058, -0.3766842186, 0.2105431557, -0.1205282211, -0.1131331921, -0.4633958042, 0.2718096972, 0.0861200094, 0.0026804134, 0.4034270048, -0.0001030963, 0.0587568581, 0.2967478335, 0.1559889764, -0.3984079361, -0.4321284294, -0.1893597841, -0.0234078132, 0.0345638394, -0.3044766188, 0.0979833081, -0.2846685052, -0.0905411169, -0.2756659687, 0.1046864837, 0.4386058748, 0.3266399801, 0.237339586, -0.2064997256, -0.2293036431, 0.2311525941, 0.1250883639, -0.0305088237, 0.0494753569, -0.1344385892, -0.0064583756, 0.4515703321, 0.4609146118, -0.2723957896, 0.2647711337, 0.1353648901, 0.1463630944, 0.1377249658, -0.3910482228, 0.2763094604, 0.1961432099, 0.7452609539, -0.2964995503, -0.2943911254, -0.1697053611, 0.1373762935, -0.4167192578, 0.1813386679, 0.0700832978, 0.0063755624, -0.0470149219, -0.0331625827, 0.0610272177, 0.0807419121, 0.088180244, -0.058075048, 0.038328439, -0.0986413136, 0.3288167715, 0.1125300378, -0.0747508556, 0.2975301743, -0.0059942957, -0.0885701925, 0.0415448695, -0.4325241446, -0.0296082944, -0.0368807204, 0.0516761094, -0.1181377918, -0.0387408957, 0.0183865093, -0.3749561012, -0.1474356353, 0.340344727, 0.2151345611, 0.2662760317, 0.270699501, 0.561686635, 0.0911724865, -0.076162532, 0.0308041647, -0.0558077544, -0.0015740022, -0.4626429379, 0.2433208525, 0.098931089, 0.2934702635, -0.2398588359, -0.5455213189, 0.1924420744, -0.028101556, 0.0940956473, 0.1541178524, 0.3049503267, 0.0221221931, 0.2065179646, 0.0793469846, 0.1936080754, -0.0091701373, -0.1172054559, -0.2069241256, 0.097607933, -0.2002791464, -0.1501066089, 0.0502696931, -0.0720528513, 0.112449035, 0.0640596598, -0.0010050014, -0.0760565847, -0.0163033158, -0.386464119, -0.0127479844, 0.3588934541, -0.1032633185, 0.4203503132, 0.2520543635, -0.4185499549, 0.0596993417, 0.180211544, -0.3688523173, -0.0338138118, -0.2121574283, 0.2862125933, -0.1030440629, -0.1879811138, -0.120091483, 0.0468235351, 0.4193201959, -0.2145541608, 0.1575900912, -0.3543839455, -0.3093226552, -0.2777700722, -0.0663040802, 0.221432507, -0.6722468138, 0.0043894351, -0.1475469768, -0.0291133374, 0.0528065674, 0.2960191965, -0.081004411, 0.206291616, -0.0705920234, 0.0303499103, 0.1395510137, -0.39069134, -0.11046388, 0.1035437435, -0.1420033276, -0.2442641705, 0.0704807565, -0.0403395817, 0.0917313546, -0.0916262269, 0.0582318529, -0.1318776309, -0.1996324956, -0.095133312, -0.1437039226, 0.0538111925, 0.6539095044, 0.092732884, -0.016799951, 0.0756468922, -0.1002285182, -0.3448367715, -0.0425324477, -0.1009554416, 0.2062196583, 0.214790225, 0.0556404255, 0.2983596921, 0.1459521949, -0.0644701868, -0.4424967766, 0.1017011777, -0.0400517844, 0.1395647824, -0.1451431215, -0.1923440099, -0.3297649324, -0.0537859574, -0.207976386, 0.0183235332, 0.1633132845, 0.0683605894, -0.2214221656, -0.020483382, 0.0140844062, -0.0758843049, -0.0172139481, 0.1093305945, -0.1040250063, 0.2656517625, -0.0951160192, 0.116893813, -0.0267395489, 0.2531200647, 0.4326064289, 0.2400517166, -0.0466213152, 0.3670239747, 0.084860608, -0.3270231783, 0.0078401389, -0.1726581603, 0.0181291979, -0.0838745013, -0.0163269751, 0.1145247221, 0.2768394947, -0.1085970625, -0.0847192705, 0.1411860287, -0.1772007197, 0.2762841582, -0.1619747579, 0.2004609108, 0.2599627078, -0.1093928665, 0.1251224875, -0.2127112299, 0.2158808112, -0.1297984868, 0.2343142927, 0.0071424991, -0.2617174089, 0.0677194297, 0.4220536947, 0.0015310869, -0.0035241153, 0.0097740078, -0.1586680263, 0.1657462418, -0.0130176423, 0.595718503, 0.3528425694, 0.2059558183, -0.1638753265, -0.0582683906, -0.2622587979, -0.1369837075, 0.2124616951, 0.0951014534, 0.0298528336, 0.0572960638, 0.0261100121, -0.0664387867, -0.1765723825, -0.2433389872, 0.2082312554, 0.3464296758, -0.5103123188, -0.0029067099, -0.3452731669, -0.2318638116, -0.3185971379, -0.0987910032, -0.2351591289, -0.4590441883, 0.0904377103, -0.0774913728, -0.1903931051, 0.1450762749, -0.0375637673, 0.0079173446, -0.0910728574, 0.1520518363, -0.0975841284, -0.4702500403, -0.2045714408, 0.181112498, 0.0074796826, 0.0469533242, 0.4813602567, -0.1431986094, -0.1245556474, -0.0785719529, -0.2953169942, 0.004026711, -0.273065865, 0.1366039962, 0.1816231012, 0.1038596928, 0.0084618628, -0.1486843973, 0.2930161357, -0.0715195388, 0.0246399194, 0.1069570184, 0.0452329181, -0.2920733988, -0.266469866, -0.4750190973, -0.4745301902, -0.1774820089, 0.066948086, -0.075908497, -0.0335288309, 0.5198025703, 0.0684419274, 0.0656811595, 0.0931448191, 0.0232526585, -0.3467434943, -0.0935404599, 0.249047786, -0.1790920943, -0.2102451921, 0.1960572302, 0.1093096733, 0.117527917, -0.2039329857, -0.3139224052, 0.072862342, -0.0576011613, 0.0589447021, 0.0813104361, 0.1948960274, 0.2138825953, 0.2671021521, -0.148003608, -0.3270512819, -0.3317119479, 0.1381733567, -0.0719680786, 0.1306351572, -0.1062558144, 0.294085294, -0.1520836949, 0.326508522, 0.0217725486, -0.2126559466, 0.1918890625, -0.0478477404, 0.520732522, 0.0683804899, -0.419374764, 0.0658853427, -0.1191069186, 0.02694612, 0.1760427952, -0.3196391761, 0.0379565507, -0.1479680836, 0.3946040869, -0.2478048354, -0.0996567905, -0.1006430164, -0.1501684636, 0.0405272953, 0.116900228, -0.040975228, -0.2084080577, -0.1915850639, -0.2512803078, 0.0578238294, -0.0954613686, -0.0875516236, -0.533575058, -0.2334990203, -0.1649958044, 0.2940984964, 0.1574512422, 0.3346636295, -0.178517282, 0.245471403, 0.0477584191, 0.2458998263, 0.6149812341, -0.4832391143, 0.1547023356, 0.2263717949, 0.393127352, -0.1780013144, -0.1272554398, -0.1692572534, 0.294726193, -0.2957774103, 0.025988616, -0.1555343568, -0.0910770968, 0.2631005943, 0.1554055959, -0.1223802269, -0.3149801195, -0.2309516668, -0.1793931127, -0.1272853315, -0.0533968471, 0.0635774657, 0.1866384149, -0.3784871697, 0.0986480787, 0.1408237219, 0.0735076368, 0.2715044916, 0.1186349988, 0.2232432365, 0.0302770212, 0.1973614246, 0.3174023926, 0.2587255538, 0.5099826455, 0.5483982563, -0.361846596, -0.5113291144, -0.1194787994, -0.1147696823, 0.2007077783, 0.0650010258, -0.1422150731, 0.1660956144, -0.0506403036, 0.1854585111, 0.0961979926, 0.0223077685, 0.4922947288, 0.1605761498, -0.4898482263, -0.5388928652, 0.2713592649, 0.0392415076, -0.0478406623, 0.1281554401, 0.0797320753, -0.34075737, 0.2059525102, -0.1559934914, 0.6908727288, 0.0837976485, -0.0510308072, -0.0170311369, -0.2261731774, 0.7132236958, -0.1187110916, 0.0007714238, -0.3614291549, -0.3074661195, -0.0622300394, -0.0221187174, 0.0234749615, 0.4506936669, -0.3085789084, 0.3788375258, -0.3285133541, 0.2046866119, 0.0287500769, -0.0740614384, 0.2494399697, -0.1323136389, -0.0824862868, 0.2010340542, -0.1576189697, -0.1343759, -0.1674346626, 0.0419053286, -0.2318482399, -0.268060714, -0.2262607664, 0.0822606981, -0.2538250387, 0.1415783465, -0.0856541172, -0.0167192668, 0.2168118805, 0.2025100589, 0.4863220453, 0.0789239407, -0.1482865214, 0.1838956475, 0.0421488881, 0.1370233893, 0.0343485884, 0.0537469126, 0.4150625467, 0.1160497814, -0.269980818, 0.1285304129, -0.0795676112, 0.1759498715, -0.0870315358, 0.0838944018, -0.0983975679, -0.365375042, 0.0326474421, -0.0770388097, 0.2287106514, -0.2537734807, 0.1773460954, 0.05198282, -0.0466798581, 0.212078914, -0.263691932, -0.1465979069, -0.0457465835, 0.189233005, 0.0259639658, 0.1933565438, 0.2472447008, 0.0259734392, -0.3513919115, -0.256511271, 0.0389520228, 0.0239993706, -0.6778355837, 0.2459826171, 0.2533545494, 0.0759459734, -0.0571892112, 0.2232684493, -0.0158299785, 0.0710852891, 0.0610140264, -0.5274376869, -0.2186502069, -0.0046704933, -0.1847545803, 0.1169300228, 0.2478653342, 0.411005199, 0.1337578297, 0.0714498237, -0.3641543388, -0.0209538639, -0.1723941118, 0.2980129421, 0.1525107771, 0.0199611969, 0.2820311487, -0.1788064986, 0.2182169855, 0.000743961, 0.0077501163, -0.2498183846, -0.1872092783, 0.1124107167, 0.1352090985, -0.1972161382, -0.0634114146, -0.1643811017, 0.0578370653, -0.0719838366, -0.01725078, 0.3105740547, 0.0032080635, 0.3735309243, -0.1509215832, 0.2327848375, -0.0463301651, 0.2182776928, 0.012717111, -0.1140014604, 0.0742453933, 0.1729658246, -0.1127647161, 0.0194780678, -0.175079599, 0.0847948045, -0.1170052737, -0.1179298759, 0.1342933476, -0.5689803958, 0.2959565818, 0.1936382949, 0.4493626952, 0.2781368196, -0.1868257672, -0.0707665235, 0.382609427, 0.3079268634, -0.3656697273, -0.1683600098, 0.1630015671, 0.1655610502, 0.0003906116, 0.0756074935, 0.0607256889, -0.0310595334, 0.0448929518, 0.0080861226, 0.4554387331, -0.4376542866, 0.2349057645, 0.5269825459, -0.0619710423, 0.0999839455, 0.4967942536, 0.1731764078, 0.0635330305, 0.5881979465, 0.0346502401, 0.1773208678, 0.1874702573, -0.1379602253, -0.0754204839, -0.1722173542, 0.1809183061, 0.096972689, 0.0188566819, -0.0428316295, -0.0954477638, 0.3011341691, -0.3839455545, 0.0041104853, -0.005768612, 0.1111970246, -0.2255034596, -0.1060155705, -0.156262815, -0.0987097323, -0.1664462984, -0.1973159015, 0.0140282586, -0.1700509042, 0.3556355834, -0.0742807835, -0.1959642619, -0.4565813541, -0.186778456, 0.3054198325, 0.0650815889, -0.2473098487, 0.0163198765, 0.2487559468, -0.1455011517, 0.3213778138, 0.0862398222, 0.6039390564, 0.1713753343, 0.0897910297, -0.3410919607, -0.0972952843, -0.0885801613, 0.1516634077, 0.215567857, 0.0459204428, -0.0368340053, 0.3922656775, 0.2018782198, -0.1707493365, 0.3085800409, 0.335742414, 0.2227040529, -0.1706194282, -0.0630669147, -0.1339654028, -0.2573548257, -0.3266395628, 0.1013187319, -0.2697946429, 0.1159572452, 0.4622559547, -0.041513823, 0.0840901136, -0.2942292094, 0.1462801695, 0.1317102909, 0.3118901253, 0.2739444971, -0.0476244763, -0.3456507921, 0.1615713835, -0.5773795843, 0.1294606328, -0.1186996847, -0.1146927923, -0.0334538557, -0.1582232863, 0.1593216956, 0.0206148606, 0.3829502463, 0.1888178885, -0.0159398764, -0.1086774319, -0.1195141003, -0.1931984574, -0.0825987458, -0.1219009459, 0.2010164857, -0.3226899803, -0.0618356764, -0.1457766742, 0.0389759243, -0.3498084843, 0.093714118, 0.1062970459, -0.0201896131, 0.3603177071, 0.1459481418, 0.7699725628, 0.0488149971, 0.1150305942, -0.0913877785, -0.3536492884, -0.4042431414, 0.368868947, 0.3255910277, 0.2565359175, -0.1063772365, 0.0097639635, -0.1644828916, 0.0945067853, -0.0435467474, 0.3211488426, -0.2544763386, 0.2145048827, -0.0240108967, 0.0171400569, 0.0991312712, -0.0556260049, -0.0026465841, 0.3410544395, -0.2067562342, -0.6047098637, 0.6198095083, -0.2129314691, -0.2395552993, 0.1537307203, 0.1545256972, 0.2213793695, -0.2187476307, -0.5100531578, 0.0247500241, 0.3773830235, 0.019003924, -0.4423446357, -0.0037067216, -0.1927571893, 0.0514445379, 0.1135602593, 0.3062540889, 0.1166285425, -0.1932862103, 0.1991046816, -0.2543465793 ]
https://github.com/huggingface/datasets/issues/1989
Question/problem with dataset labels
Sorry for the confusion, the sample above was from a tsv that was used to derive the csv. Let me construct the csv again (I had remove it). This is the line in the csv - this is the whole line: ```crawl-data/CC-MAIN-2017-47/segments/1510934806225.78/wet/CC-MAIN-20171120203833-20171120223833-00571.warc.wet.gz,Rose Blakey is an aspiring journalist. She is desperate to escape the from the small Australian town in which she lives. Rejection after rejection mean she is stuck in what she sees as a dead,"('Rose', '', 'Blakey')",journalist,F,38,journalist,https://www.netgalley.com/catalog/book/121872,_ is desperate to escape the from the small Australian town in which _ lives. Rejection after rejection mean _ is stuck in what _ sees as a dead-end waitressing job., She is desperate to escape the from the small Australian town in which she lives. Rejection after rejection mean she is stuck in what she sees as a dead-end waitressing job.```
Hi, I'm using a dataset with two labels "nurse" and "not nurse". For whatever reason (that I don't understand), I get an error that I think comes from the datasets package (using csv). Everything works fine if the labels are "nurse" and "surgeon". This is the trace I get: ``` File "../../../models/tr-4.3.2/run_puppets.py", line 523, in <module> main() File "../../../models/tr-4.3.2/run_puppets.py", line 249, in main datasets = load_dataset("csv", data_files=data_files) File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/load.py", line 740, in load_dataset builder_instance.download_and_prepare( File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py", line 572, in download_and_prepare self._download_and_prepare( File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py", line 650, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py", line 1028, in _prepare_split writer.write_table(table) File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/arrow_writer.py", line 292, in write_table pa_table = pa_table.cast(self._schema) File "pyarrow/table.pxi", line 1311, in pyarrow.lib.Table.cast File "pyarrow/table.pxi", line 265, in pyarrow.lib.ChunkedArray.cast File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/pyarrow/compute.py", line 87, in cast return call_function("cast", [arr], options) File "pyarrow/_compute.pyx", line 298, in pyarrow._compute.call_function File "pyarrow/_compute.pyx", line 192, in pyarrow._compute.Function.call File "pyarrow/error.pxi", line 122, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 84, in pyarrow.lib.check_status pyarrow.lib.ArrowInvalid: Failed to parse string: not nurse ``` Any ideas how to fix this? For now, I'll probably make them numeric.
139
Question/problem with dataset labels Hi, I'm using a dataset with two labels "nurse" and "not nurse". For whatever reason (that I don't understand), I get an error that I think comes from the datasets package (using csv). Everything works fine if the labels are "nurse" and "surgeon". This is the trace I get: ``` File "../../../models/tr-4.3.2/run_puppets.py", line 523, in <module> main() File "../../../models/tr-4.3.2/run_puppets.py", line 249, in main datasets = load_dataset("csv", data_files=data_files) File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/load.py", line 740, in load_dataset builder_instance.download_and_prepare( File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py", line 572, in download_and_prepare self._download_and_prepare( File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py", line 650, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py", line 1028, in _prepare_split writer.write_table(table) File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/arrow_writer.py", line 292, in write_table pa_table = pa_table.cast(self._schema) File "pyarrow/table.pxi", line 1311, in pyarrow.lib.Table.cast File "pyarrow/table.pxi", line 265, in pyarrow.lib.ChunkedArray.cast File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/pyarrow/compute.py", line 87, in cast return call_function("cast", [arr], options) File "pyarrow/_compute.pyx", line 298, in pyarrow._compute.call_function File "pyarrow/_compute.pyx", line 192, in pyarrow._compute.Function.call File "pyarrow/error.pxi", line 122, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 84, in pyarrow.lib.check_status pyarrow.lib.ArrowInvalid: Failed to parse string: not nurse ``` Any ideas how to fix this? For now, I'll probably make them numeric. Sorry for the confusion, the sample above was from a tsv that was used to derive the csv. Let me construct the csv again (I had remove it). This is the line in the csv - this is the whole line: ```crawl-data/CC-MAIN-2017-47/segments/1510934806225.78/wet/CC-MAIN-20171120203833-20171120223833-00571.warc.wet.gz,Rose Blakey is an aspiring journalist. She is desperate to escape the from the small Australian town in which she lives. Rejection after rejection mean she is stuck in what she sees as a dead,"('Rose', '', 'Blakey')",journalist,F,38,journalist,https://www.netgalley.com/catalog/book/121872,_ is desperate to escape the from the small Australian town in which _ lives. Rejection after rejection mean _ is stuck in what _ sees as a dead-end waitressing job., She is desperate to escape the from the small Australian town in which she lives. Rejection after rejection mean she is stuck in what she sees as a dead-end waitressing job.```
[ 0.1789144427, -0.057323128, 0.0051793307, 0.1343671829, 0.4113537669, 0.3502127528, 0.6419944763, 0.1637073457, -0.1613178402, 0.072349824, 0.1788541377, 0.0638753623, -0.0607730746, 0.0305259675, -0.1302311867, -0.1193703264, 0.0890838355, 0.1734793484, 0.1816425472, -0.0444667041, -0.286742866, -0.0398263708, -0.1566802263, 0.3662884235, -0.2972058058, -0.3766842186, 0.2105431557, -0.1205282211, -0.1131331921, -0.4633958042, 0.2718096972, 0.0861200094, 0.0026804134, 0.4034270048, -0.0001030963, 0.0587568581, 0.2967478335, 0.1559889764, -0.3984079361, -0.4321284294, -0.1893597841, -0.0234078132, 0.0345638394, -0.3044766188, 0.0979833081, -0.2846685052, -0.0905411169, -0.2756659687, 0.1046864837, 0.4386058748, 0.3266399801, 0.237339586, -0.2064997256, -0.2293036431, 0.2311525941, 0.1250883639, -0.0305088237, 0.0494753569, -0.1344385892, -0.0064583756, 0.4515703321, 0.4609146118, -0.2723957896, 0.2647711337, 0.1353648901, 0.1463630944, 0.1377249658, -0.3910482228, 0.2763094604, 0.1961432099, 0.7452609539, -0.2964995503, -0.2943911254, -0.1697053611, 0.1373762935, -0.4167192578, 0.1813386679, 0.0700832978, 0.0063755624, -0.0470149219, -0.0331625827, 0.0610272177, 0.0807419121, 0.088180244, -0.058075048, 0.038328439, -0.0986413136, 0.3288167715, 0.1125300378, -0.0747508556, 0.2975301743, -0.0059942957, -0.0885701925, 0.0415448695, -0.4325241446, -0.0296082944, -0.0368807204, 0.0516761094, -0.1181377918, -0.0387408957, 0.0183865093, -0.3749561012, -0.1474356353, 0.340344727, 0.2151345611, 0.2662760317, 0.270699501, 0.561686635, 0.0911724865, -0.076162532, 0.0308041647, -0.0558077544, -0.0015740022, -0.4626429379, 0.2433208525, 0.098931089, 0.2934702635, -0.2398588359, -0.5455213189, 0.1924420744, -0.028101556, 0.0940956473, 0.1541178524, 0.3049503267, 0.0221221931, 0.2065179646, 0.0793469846, 0.1936080754, -0.0091701373, -0.1172054559, -0.2069241256, 0.097607933, -0.2002791464, -0.1501066089, 0.0502696931, -0.0720528513, 0.112449035, 0.0640596598, -0.0010050014, -0.0760565847, -0.0163033158, -0.386464119, -0.0127479844, 0.3588934541, -0.1032633185, 0.4203503132, 0.2520543635, -0.4185499549, 0.0596993417, 0.180211544, -0.3688523173, -0.0338138118, -0.2121574283, 0.2862125933, -0.1030440629, -0.1879811138, -0.120091483, 0.0468235351, 0.4193201959, -0.2145541608, 0.1575900912, -0.3543839455, -0.3093226552, -0.2777700722, -0.0663040802, 0.221432507, -0.6722468138, 0.0043894351, -0.1475469768, -0.0291133374, 0.0528065674, 0.2960191965, -0.081004411, 0.206291616, -0.0705920234, 0.0303499103, 0.1395510137, -0.39069134, -0.11046388, 0.1035437435, -0.1420033276, -0.2442641705, 0.0704807565, -0.0403395817, 0.0917313546, -0.0916262269, 0.0582318529, -0.1318776309, -0.1996324956, -0.095133312, -0.1437039226, 0.0538111925, 0.6539095044, 0.092732884, -0.016799951, 0.0756468922, -0.1002285182, -0.3448367715, -0.0425324477, -0.1009554416, 0.2062196583, 0.214790225, 0.0556404255, 0.2983596921, 0.1459521949, -0.0644701868, -0.4424967766, 0.1017011777, -0.0400517844, 0.1395647824, -0.1451431215, -0.1923440099, -0.3297649324, -0.0537859574, -0.207976386, 0.0183235332, 0.1633132845, 0.0683605894, -0.2214221656, -0.020483382, 0.0140844062, -0.0758843049, -0.0172139481, 0.1093305945, -0.1040250063, 0.2656517625, -0.0951160192, 0.116893813, -0.0267395489, 0.2531200647, 0.4326064289, 0.2400517166, -0.0466213152, 0.3670239747, 0.084860608, -0.3270231783, 0.0078401389, -0.1726581603, 0.0181291979, -0.0838745013, -0.0163269751, 0.1145247221, 0.2768394947, -0.1085970625, -0.0847192705, 0.1411860287, -0.1772007197, 0.2762841582, -0.1619747579, 0.2004609108, 0.2599627078, -0.1093928665, 0.1251224875, -0.2127112299, 0.2158808112, -0.1297984868, 0.2343142927, 0.0071424991, -0.2617174089, 0.0677194297, 0.4220536947, 0.0015310869, -0.0035241153, 0.0097740078, -0.1586680263, 0.1657462418, -0.0130176423, 0.595718503, 0.3528425694, 0.2059558183, -0.1638753265, -0.0582683906, -0.2622587979, -0.1369837075, 0.2124616951, 0.0951014534, 0.0298528336, 0.0572960638, 0.0261100121, -0.0664387867, -0.1765723825, -0.2433389872, 0.2082312554, 0.3464296758, -0.5103123188, -0.0029067099, -0.3452731669, -0.2318638116, -0.3185971379, -0.0987910032, -0.2351591289, -0.4590441883, 0.0904377103, -0.0774913728, -0.1903931051, 0.1450762749, -0.0375637673, 0.0079173446, -0.0910728574, 0.1520518363, -0.0975841284, -0.4702500403, -0.2045714408, 0.181112498, 0.0074796826, 0.0469533242, 0.4813602567, -0.1431986094, -0.1245556474, -0.0785719529, -0.2953169942, 0.004026711, -0.273065865, 0.1366039962, 0.1816231012, 0.1038596928, 0.0084618628, -0.1486843973, 0.2930161357, -0.0715195388, 0.0246399194, 0.1069570184, 0.0452329181, -0.2920733988, -0.266469866, -0.4750190973, -0.4745301902, -0.1774820089, 0.066948086, -0.075908497, -0.0335288309, 0.5198025703, 0.0684419274, 0.0656811595, 0.0931448191, 0.0232526585, -0.3467434943, -0.0935404599, 0.249047786, -0.1790920943, -0.2102451921, 0.1960572302, 0.1093096733, 0.117527917, -0.2039329857, -0.3139224052, 0.072862342, -0.0576011613, 0.0589447021, 0.0813104361, 0.1948960274, 0.2138825953, 0.2671021521, -0.148003608, -0.3270512819, -0.3317119479, 0.1381733567, -0.0719680786, 0.1306351572, -0.1062558144, 0.294085294, -0.1520836949, 0.326508522, 0.0217725486, -0.2126559466, 0.1918890625, -0.0478477404, 0.520732522, 0.0683804899, -0.419374764, 0.0658853427, -0.1191069186, 0.02694612, 0.1760427952, -0.3196391761, 0.0379565507, -0.1479680836, 0.3946040869, -0.2478048354, -0.0996567905, -0.1006430164, -0.1501684636, 0.0405272953, 0.116900228, -0.040975228, -0.2084080577, -0.1915850639, -0.2512803078, 0.0578238294, -0.0954613686, -0.0875516236, -0.533575058, -0.2334990203, -0.1649958044, 0.2940984964, 0.1574512422, 0.3346636295, -0.178517282, 0.245471403, 0.0477584191, 0.2458998263, 0.6149812341, -0.4832391143, 0.1547023356, 0.2263717949, 0.393127352, -0.1780013144, -0.1272554398, -0.1692572534, 0.294726193, -0.2957774103, 0.025988616, -0.1555343568, -0.0910770968, 0.2631005943, 0.1554055959, -0.1223802269, -0.3149801195, -0.2309516668, -0.1793931127, -0.1272853315, -0.0533968471, 0.0635774657, 0.1866384149, -0.3784871697, 0.0986480787, 0.1408237219, 0.0735076368, 0.2715044916, 0.1186349988, 0.2232432365, 0.0302770212, 0.1973614246, 0.3174023926, 0.2587255538, 0.5099826455, 0.5483982563, -0.361846596, -0.5113291144, -0.1194787994, -0.1147696823, 0.2007077783, 0.0650010258, -0.1422150731, 0.1660956144, -0.0506403036, 0.1854585111, 0.0961979926, 0.0223077685, 0.4922947288, 0.1605761498, -0.4898482263, -0.5388928652, 0.2713592649, 0.0392415076, -0.0478406623, 0.1281554401, 0.0797320753, -0.34075737, 0.2059525102, -0.1559934914, 0.6908727288, 0.0837976485, -0.0510308072, -0.0170311369, -0.2261731774, 0.7132236958, -0.1187110916, 0.0007714238, -0.3614291549, -0.3074661195, -0.0622300394, -0.0221187174, 0.0234749615, 0.4506936669, -0.3085789084, 0.3788375258, -0.3285133541, 0.2046866119, 0.0287500769, -0.0740614384, 0.2494399697, -0.1323136389, -0.0824862868, 0.2010340542, -0.1576189697, -0.1343759, -0.1674346626, 0.0419053286, -0.2318482399, -0.268060714, -0.2262607664, 0.0822606981, -0.2538250387, 0.1415783465, -0.0856541172, -0.0167192668, 0.2168118805, 0.2025100589, 0.4863220453, 0.0789239407, -0.1482865214, 0.1838956475, 0.0421488881, 0.1370233893, 0.0343485884, 0.0537469126, 0.4150625467, 0.1160497814, -0.269980818, 0.1285304129, -0.0795676112, 0.1759498715, -0.0870315358, 0.0838944018, -0.0983975679, -0.365375042, 0.0326474421, -0.0770388097, 0.2287106514, -0.2537734807, 0.1773460954, 0.05198282, -0.0466798581, 0.212078914, -0.263691932, -0.1465979069, -0.0457465835, 0.189233005, 0.0259639658, 0.1933565438, 0.2472447008, 0.0259734392, -0.3513919115, -0.256511271, 0.0389520228, 0.0239993706, -0.6778355837, 0.2459826171, 0.2533545494, 0.0759459734, -0.0571892112, 0.2232684493, -0.0158299785, 0.0710852891, 0.0610140264, -0.5274376869, -0.2186502069, -0.0046704933, -0.1847545803, 0.1169300228, 0.2478653342, 0.411005199, 0.1337578297, 0.0714498237, -0.3641543388, -0.0209538639, -0.1723941118, 0.2980129421, 0.1525107771, 0.0199611969, 0.2820311487, -0.1788064986, 0.2182169855, 0.000743961, 0.0077501163, -0.2498183846, -0.1872092783, 0.1124107167, 0.1352090985, -0.1972161382, -0.0634114146, -0.1643811017, 0.0578370653, -0.0719838366, -0.01725078, 0.3105740547, 0.0032080635, 0.3735309243, -0.1509215832, 0.2327848375, -0.0463301651, 0.2182776928, 0.012717111, -0.1140014604, 0.0742453933, 0.1729658246, -0.1127647161, 0.0194780678, -0.175079599, 0.0847948045, -0.1170052737, -0.1179298759, 0.1342933476, -0.5689803958, 0.2959565818, 0.1936382949, 0.4493626952, 0.2781368196, -0.1868257672, -0.0707665235, 0.382609427, 0.3079268634, -0.3656697273, -0.1683600098, 0.1630015671, 0.1655610502, 0.0003906116, 0.0756074935, 0.0607256889, -0.0310595334, 0.0448929518, 0.0080861226, 0.4554387331, -0.4376542866, 0.2349057645, 0.5269825459, -0.0619710423, 0.0999839455, 0.4967942536, 0.1731764078, 0.0635330305, 0.5881979465, 0.0346502401, 0.1773208678, 0.1874702573, -0.1379602253, -0.0754204839, -0.1722173542, 0.1809183061, 0.096972689, 0.0188566819, -0.0428316295, -0.0954477638, 0.3011341691, -0.3839455545, 0.0041104853, -0.005768612, 0.1111970246, -0.2255034596, -0.1060155705, -0.156262815, -0.0987097323, -0.1664462984, -0.1973159015, 0.0140282586, -0.1700509042, 0.3556355834, -0.0742807835, -0.1959642619, -0.4565813541, -0.186778456, 0.3054198325, 0.0650815889, -0.2473098487, 0.0163198765, 0.2487559468, -0.1455011517, 0.3213778138, 0.0862398222, 0.6039390564, 0.1713753343, 0.0897910297, -0.3410919607, -0.0972952843, -0.0885801613, 0.1516634077, 0.215567857, 0.0459204428, -0.0368340053, 0.3922656775, 0.2018782198, -0.1707493365, 0.3085800409, 0.335742414, 0.2227040529, -0.1706194282, -0.0630669147, -0.1339654028, -0.2573548257, -0.3266395628, 0.1013187319, -0.2697946429, 0.1159572452, 0.4622559547, -0.041513823, 0.0840901136, -0.2942292094, 0.1462801695, 0.1317102909, 0.3118901253, 0.2739444971, -0.0476244763, -0.3456507921, 0.1615713835, -0.5773795843, 0.1294606328, -0.1186996847, -0.1146927923, -0.0334538557, -0.1582232863, 0.1593216956, 0.0206148606, 0.3829502463, 0.1888178885, -0.0159398764, -0.1086774319, -0.1195141003, -0.1931984574, -0.0825987458, -0.1219009459, 0.2010164857, -0.3226899803, -0.0618356764, -0.1457766742, 0.0389759243, -0.3498084843, 0.093714118, 0.1062970459, -0.0201896131, 0.3603177071, 0.1459481418, 0.7699725628, 0.0488149971, 0.1150305942, -0.0913877785, -0.3536492884, -0.4042431414, 0.368868947, 0.3255910277, 0.2565359175, -0.1063772365, 0.0097639635, -0.1644828916, 0.0945067853, -0.0435467474, 0.3211488426, -0.2544763386, 0.2145048827, -0.0240108967, 0.0171400569, 0.0991312712, -0.0556260049, -0.0026465841, 0.3410544395, -0.2067562342, -0.6047098637, 0.6198095083, -0.2129314691, -0.2395552993, 0.1537307203, 0.1545256972, 0.2213793695, -0.2187476307, -0.5100531578, 0.0247500241, 0.3773830235, 0.019003924, -0.4423446357, -0.0037067216, -0.1927571893, 0.0514445379, 0.1135602593, 0.3062540889, 0.1166285425, -0.1932862103, 0.1991046816, -0.2543465793 ]
https://github.com/huggingface/datasets/issues/1989
Question/problem with dataset labels
Hi, Just in case you want to use tsv directly, you can use the separator argument while loading the dataset. ```python d = load_dataset("csv",data_files=['test.csv'],sep="\t") ``` Additionally, I don't face the issues with the following csv (same as the one you provided): ```sh link1,text1,info1,info2,info3,info4,info5,link2,text2,text3 crawl-data/CC-MAIN-2017-47/segments/1510934806225.78/wet/CC-MAIN-20171120203833-20171120223833-00571.warc.wet.gz,Rose Blakey is an aspiring journalist. She is desperate to escape the from the small Australian town in which she lives. Rejection after rejection mean she is stuck in what she sees as a dead,"('Rose', '', 'Blakey')",journalist,F,38,journalist,https://www.netgalley.com/catalog/book/121872,_ is desperate to escape the from the small Australian town in which _ lives. Rejection after rejection mean _ is stuck in what _ sees as a dead-end waitressing job., She is desperate to escape the from the small Australian town in which she lives. Rejection after rejection mean she is stuck in what she sees as a dead-end waitressing job. ``` Output after loading: ```sh {'link1': 'crawl-data/CC-MAIN-2017-47/segments/1510934806225.78/wet/CC-MAIN-20171120203833-20171120223833-00571.warc.wet.gz', 'text1': 'Rose Blakey is an aspiring journalist. She is desperate to escape the from the small Australian town in which she lives. Rejection after rejection mean she is stuck in what she sees as a dead', 'info1': "('Rose', '', 'Blakey')", 'info2': 'journalist', 'info3': 'F', 'info4': 38, 'info5': 'journalist', 'link2': 'https://www.netgalley.com/catalog/book/121872', 'text2': '_ is desperate to escape the from the small Australian town in which _ lives. Rejection after rejection mean _ is stuck in what _ sees as a dead-end waitressing job.', 'text3': ' She is desperate to escape the from the small Australian town in which she lives. Rejection after rejection mean she is stuck in what she sees as a dead-end waitressing job.'} ``` Can you check once if the tsv works for you directly using the separator argument? The conversion from tsv to csv could create issues, I'm only guessing though.
Hi, I'm using a dataset with two labels "nurse" and "not nurse". For whatever reason (that I don't understand), I get an error that I think comes from the datasets package (using csv). Everything works fine if the labels are "nurse" and "surgeon". This is the trace I get: ``` File "../../../models/tr-4.3.2/run_puppets.py", line 523, in <module> main() File "../../../models/tr-4.3.2/run_puppets.py", line 249, in main datasets = load_dataset("csv", data_files=data_files) File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/load.py", line 740, in load_dataset builder_instance.download_and_prepare( File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py", line 572, in download_and_prepare self._download_and_prepare( File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py", line 650, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py", line 1028, in _prepare_split writer.write_table(table) File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/arrow_writer.py", line 292, in write_table pa_table = pa_table.cast(self._schema) File "pyarrow/table.pxi", line 1311, in pyarrow.lib.Table.cast File "pyarrow/table.pxi", line 265, in pyarrow.lib.ChunkedArray.cast File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/pyarrow/compute.py", line 87, in cast return call_function("cast", [arr], options) File "pyarrow/_compute.pyx", line 298, in pyarrow._compute.call_function File "pyarrow/_compute.pyx", line 192, in pyarrow._compute.Function.call File "pyarrow/error.pxi", line 122, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 84, in pyarrow.lib.check_status pyarrow.lib.ArrowInvalid: Failed to parse string: not nurse ``` Any ideas how to fix this? For now, I'll probably make them numeric.
292
Question/problem with dataset labels Hi, I'm using a dataset with two labels "nurse" and "not nurse". For whatever reason (that I don't understand), I get an error that I think comes from the datasets package (using csv). Everything works fine if the labels are "nurse" and "surgeon". This is the trace I get: ``` File "../../../models/tr-4.3.2/run_puppets.py", line 523, in <module> main() File "../../../models/tr-4.3.2/run_puppets.py", line 249, in main datasets = load_dataset("csv", data_files=data_files) File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/load.py", line 740, in load_dataset builder_instance.download_and_prepare( File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py", line 572, in download_and_prepare self._download_and_prepare( File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py", line 650, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py", line 1028, in _prepare_split writer.write_table(table) File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/arrow_writer.py", line 292, in write_table pa_table = pa_table.cast(self._schema) File "pyarrow/table.pxi", line 1311, in pyarrow.lib.Table.cast File "pyarrow/table.pxi", line 265, in pyarrow.lib.ChunkedArray.cast File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/pyarrow/compute.py", line 87, in cast return call_function("cast", [arr], options) File "pyarrow/_compute.pyx", line 298, in pyarrow._compute.call_function File "pyarrow/_compute.pyx", line 192, in pyarrow._compute.Function.call File "pyarrow/error.pxi", line 122, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 84, in pyarrow.lib.check_status pyarrow.lib.ArrowInvalid: Failed to parse string: not nurse ``` Any ideas how to fix this? For now, I'll probably make them numeric. Hi, Just in case you want to use tsv directly, you can use the separator argument while loading the dataset. ```python d = load_dataset("csv",data_files=['test.csv'],sep="\t") ``` Additionally, I don't face the issues with the following csv (same as the one you provided): ```sh link1,text1,info1,info2,info3,info4,info5,link2,text2,text3 crawl-data/CC-MAIN-2017-47/segments/1510934806225.78/wet/CC-MAIN-20171120203833-20171120223833-00571.warc.wet.gz,Rose Blakey is an aspiring journalist. She is desperate to escape the from the small Australian town in which she lives. Rejection after rejection mean she is stuck in what she sees as a dead,"('Rose', '', 'Blakey')",journalist,F,38,journalist,https://www.netgalley.com/catalog/book/121872,_ is desperate to escape the from the small Australian town in which _ lives. Rejection after rejection mean _ is stuck in what _ sees as a dead-end waitressing job., She is desperate to escape the from the small Australian town in which she lives. Rejection after rejection mean she is stuck in what she sees as a dead-end waitressing job. ``` Output after loading: ```sh {'link1': 'crawl-data/CC-MAIN-2017-47/segments/1510934806225.78/wet/CC-MAIN-20171120203833-20171120223833-00571.warc.wet.gz', 'text1': 'Rose Blakey is an aspiring journalist. She is desperate to escape the from the small Australian town in which she lives. Rejection after rejection mean she is stuck in what she sees as a dead', 'info1': "('Rose', '', 'Blakey')", 'info2': 'journalist', 'info3': 'F', 'info4': 38, 'info5': 'journalist', 'link2': 'https://www.netgalley.com/catalog/book/121872', 'text2': '_ is desperate to escape the from the small Australian town in which _ lives. Rejection after rejection mean _ is stuck in what _ sees as a dead-end waitressing job.', 'text3': ' She is desperate to escape the from the small Australian town in which she lives. Rejection after rejection mean she is stuck in what she sees as a dead-end waitressing job.'} ``` Can you check once if the tsv works for you directly using the separator argument? The conversion from tsv to csv could create issues, I'm only guessing though.
[ 0.1789144427, -0.057323128, 0.0051793307, 0.1343671829, 0.4113537669, 0.3502127528, 0.6419944763, 0.1637073457, -0.1613178402, 0.072349824, 0.1788541377, 0.0638753623, -0.0607730746, 0.0305259675, -0.1302311867, -0.1193703264, 0.0890838355, 0.1734793484, 0.1816425472, -0.0444667041, -0.286742866, -0.0398263708, -0.1566802263, 0.3662884235, -0.2972058058, -0.3766842186, 0.2105431557, -0.1205282211, -0.1131331921, -0.4633958042, 0.2718096972, 0.0861200094, 0.0026804134, 0.4034270048, -0.0001030963, 0.0587568581, 0.2967478335, 0.1559889764, -0.3984079361, -0.4321284294, -0.1893597841, -0.0234078132, 0.0345638394, -0.3044766188, 0.0979833081, -0.2846685052, -0.0905411169, -0.2756659687, 0.1046864837, 0.4386058748, 0.3266399801, 0.237339586, -0.2064997256, -0.2293036431, 0.2311525941, 0.1250883639, -0.0305088237, 0.0494753569, -0.1344385892, -0.0064583756, 0.4515703321, 0.4609146118, -0.2723957896, 0.2647711337, 0.1353648901, 0.1463630944, 0.1377249658, -0.3910482228, 0.2763094604, 0.1961432099, 0.7452609539, -0.2964995503, -0.2943911254, -0.1697053611, 0.1373762935, -0.4167192578, 0.1813386679, 0.0700832978, 0.0063755624, -0.0470149219, -0.0331625827, 0.0610272177, 0.0807419121, 0.088180244, -0.058075048, 0.038328439, -0.0986413136, 0.3288167715, 0.1125300378, -0.0747508556, 0.2975301743, -0.0059942957, -0.0885701925, 0.0415448695, -0.4325241446, -0.0296082944, -0.0368807204, 0.0516761094, -0.1181377918, -0.0387408957, 0.0183865093, -0.3749561012, -0.1474356353, 0.340344727, 0.2151345611, 0.2662760317, 0.270699501, 0.561686635, 0.0911724865, -0.076162532, 0.0308041647, -0.0558077544, -0.0015740022, -0.4626429379, 0.2433208525, 0.098931089, 0.2934702635, -0.2398588359, -0.5455213189, 0.1924420744, -0.028101556, 0.0940956473, 0.1541178524, 0.3049503267, 0.0221221931, 0.2065179646, 0.0793469846, 0.1936080754, -0.0091701373, -0.1172054559, -0.2069241256, 0.097607933, -0.2002791464, -0.1501066089, 0.0502696931, -0.0720528513, 0.112449035, 0.0640596598, -0.0010050014, -0.0760565847, -0.0163033158, -0.386464119, -0.0127479844, 0.3588934541, -0.1032633185, 0.4203503132, 0.2520543635, -0.4185499549, 0.0596993417, 0.180211544, -0.3688523173, -0.0338138118, -0.2121574283, 0.2862125933, -0.1030440629, -0.1879811138, -0.120091483, 0.0468235351, 0.4193201959, -0.2145541608, 0.1575900912, -0.3543839455, -0.3093226552, -0.2777700722, -0.0663040802, 0.221432507, -0.6722468138, 0.0043894351, -0.1475469768, -0.0291133374, 0.0528065674, 0.2960191965, -0.081004411, 0.206291616, -0.0705920234, 0.0303499103, 0.1395510137, -0.39069134, -0.11046388, 0.1035437435, -0.1420033276, -0.2442641705, 0.0704807565, -0.0403395817, 0.0917313546, -0.0916262269, 0.0582318529, -0.1318776309, -0.1996324956, -0.095133312, -0.1437039226, 0.0538111925, 0.6539095044, 0.092732884, -0.016799951, 0.0756468922, -0.1002285182, -0.3448367715, -0.0425324477, -0.1009554416, 0.2062196583, 0.214790225, 0.0556404255, 0.2983596921, 0.1459521949, -0.0644701868, -0.4424967766, 0.1017011777, -0.0400517844, 0.1395647824, -0.1451431215, -0.1923440099, -0.3297649324, -0.0537859574, -0.207976386, 0.0183235332, 0.1633132845, 0.0683605894, -0.2214221656, -0.020483382, 0.0140844062, -0.0758843049, -0.0172139481, 0.1093305945, -0.1040250063, 0.2656517625, -0.0951160192, 0.116893813, -0.0267395489, 0.2531200647, 0.4326064289, 0.2400517166, -0.0466213152, 0.3670239747, 0.084860608, -0.3270231783, 0.0078401389, -0.1726581603, 0.0181291979, -0.0838745013, -0.0163269751, 0.1145247221, 0.2768394947, -0.1085970625, -0.0847192705, 0.1411860287, -0.1772007197, 0.2762841582, -0.1619747579, 0.2004609108, 0.2599627078, -0.1093928665, 0.1251224875, -0.2127112299, 0.2158808112, -0.1297984868, 0.2343142927, 0.0071424991, -0.2617174089, 0.0677194297, 0.4220536947, 0.0015310869, -0.0035241153, 0.0097740078, -0.1586680263, 0.1657462418, -0.0130176423, 0.595718503, 0.3528425694, 0.2059558183, -0.1638753265, -0.0582683906, -0.2622587979, -0.1369837075, 0.2124616951, 0.0951014534, 0.0298528336, 0.0572960638, 0.0261100121, -0.0664387867, -0.1765723825, -0.2433389872, 0.2082312554, 0.3464296758, -0.5103123188, -0.0029067099, -0.3452731669, -0.2318638116, -0.3185971379, -0.0987910032, -0.2351591289, -0.4590441883, 0.0904377103, -0.0774913728, -0.1903931051, 0.1450762749, -0.0375637673, 0.0079173446, -0.0910728574, 0.1520518363, -0.0975841284, -0.4702500403, -0.2045714408, 0.181112498, 0.0074796826, 0.0469533242, 0.4813602567, -0.1431986094, -0.1245556474, -0.0785719529, -0.2953169942, 0.004026711, -0.273065865, 0.1366039962, 0.1816231012, 0.1038596928, 0.0084618628, -0.1486843973, 0.2930161357, -0.0715195388, 0.0246399194, 0.1069570184, 0.0452329181, -0.2920733988, -0.266469866, -0.4750190973, -0.4745301902, -0.1774820089, 0.066948086, -0.075908497, -0.0335288309, 0.5198025703, 0.0684419274, 0.0656811595, 0.0931448191, 0.0232526585, -0.3467434943, -0.0935404599, 0.249047786, -0.1790920943, -0.2102451921, 0.1960572302, 0.1093096733, 0.117527917, -0.2039329857, -0.3139224052, 0.072862342, -0.0576011613, 0.0589447021, 0.0813104361, 0.1948960274, 0.2138825953, 0.2671021521, -0.148003608, -0.3270512819, -0.3317119479, 0.1381733567, -0.0719680786, 0.1306351572, -0.1062558144, 0.294085294, -0.1520836949, 0.326508522, 0.0217725486, -0.2126559466, 0.1918890625, -0.0478477404, 0.520732522, 0.0683804899, -0.419374764, 0.0658853427, -0.1191069186, 0.02694612, 0.1760427952, -0.3196391761, 0.0379565507, -0.1479680836, 0.3946040869, -0.2478048354, -0.0996567905, -0.1006430164, -0.1501684636, 0.0405272953, 0.116900228, -0.040975228, -0.2084080577, -0.1915850639, -0.2512803078, 0.0578238294, -0.0954613686, -0.0875516236, -0.533575058, -0.2334990203, -0.1649958044, 0.2940984964, 0.1574512422, 0.3346636295, -0.178517282, 0.245471403, 0.0477584191, 0.2458998263, 0.6149812341, -0.4832391143, 0.1547023356, 0.2263717949, 0.393127352, -0.1780013144, -0.1272554398, -0.1692572534, 0.294726193, -0.2957774103, 0.025988616, -0.1555343568, -0.0910770968, 0.2631005943, 0.1554055959, -0.1223802269, -0.3149801195, -0.2309516668, -0.1793931127, -0.1272853315, -0.0533968471, 0.0635774657, 0.1866384149, -0.3784871697, 0.0986480787, 0.1408237219, 0.0735076368, 0.2715044916, 0.1186349988, 0.2232432365, 0.0302770212, 0.1973614246, 0.3174023926, 0.2587255538, 0.5099826455, 0.5483982563, -0.361846596, -0.5113291144, -0.1194787994, -0.1147696823, 0.2007077783, 0.0650010258, -0.1422150731, 0.1660956144, -0.0506403036, 0.1854585111, 0.0961979926, 0.0223077685, 0.4922947288, 0.1605761498, -0.4898482263, -0.5388928652, 0.2713592649, 0.0392415076, -0.0478406623, 0.1281554401, 0.0797320753, -0.34075737, 0.2059525102, -0.1559934914, 0.6908727288, 0.0837976485, -0.0510308072, -0.0170311369, -0.2261731774, 0.7132236958, -0.1187110916, 0.0007714238, -0.3614291549, -0.3074661195, -0.0622300394, -0.0221187174, 0.0234749615, 0.4506936669, -0.3085789084, 0.3788375258, -0.3285133541, 0.2046866119, 0.0287500769, -0.0740614384, 0.2494399697, -0.1323136389, -0.0824862868, 0.2010340542, -0.1576189697, -0.1343759, -0.1674346626, 0.0419053286, -0.2318482399, -0.268060714, -0.2262607664, 0.0822606981, -0.2538250387, 0.1415783465, -0.0856541172, -0.0167192668, 0.2168118805, 0.2025100589, 0.4863220453, 0.0789239407, -0.1482865214, 0.1838956475, 0.0421488881, 0.1370233893, 0.0343485884, 0.0537469126, 0.4150625467, 0.1160497814, -0.269980818, 0.1285304129, -0.0795676112, 0.1759498715, -0.0870315358, 0.0838944018, -0.0983975679, -0.365375042, 0.0326474421, -0.0770388097, 0.2287106514, -0.2537734807, 0.1773460954, 0.05198282, -0.0466798581, 0.212078914, -0.263691932, -0.1465979069, -0.0457465835, 0.189233005, 0.0259639658, 0.1933565438, 0.2472447008, 0.0259734392, -0.3513919115, -0.256511271, 0.0389520228, 0.0239993706, -0.6778355837, 0.2459826171, 0.2533545494, 0.0759459734, -0.0571892112, 0.2232684493, -0.0158299785, 0.0710852891, 0.0610140264, -0.5274376869, -0.2186502069, -0.0046704933, -0.1847545803, 0.1169300228, 0.2478653342, 0.411005199, 0.1337578297, 0.0714498237, -0.3641543388, -0.0209538639, -0.1723941118, 0.2980129421, 0.1525107771, 0.0199611969, 0.2820311487, -0.1788064986, 0.2182169855, 0.000743961, 0.0077501163, -0.2498183846, -0.1872092783, 0.1124107167, 0.1352090985, -0.1972161382, -0.0634114146, -0.1643811017, 0.0578370653, -0.0719838366, -0.01725078, 0.3105740547, 0.0032080635, 0.3735309243, -0.1509215832, 0.2327848375, -0.0463301651, 0.2182776928, 0.012717111, -0.1140014604, 0.0742453933, 0.1729658246, -0.1127647161, 0.0194780678, -0.175079599, 0.0847948045, -0.1170052737, -0.1179298759, 0.1342933476, -0.5689803958, 0.2959565818, 0.1936382949, 0.4493626952, 0.2781368196, -0.1868257672, -0.0707665235, 0.382609427, 0.3079268634, -0.3656697273, -0.1683600098, 0.1630015671, 0.1655610502, 0.0003906116, 0.0756074935, 0.0607256889, -0.0310595334, 0.0448929518, 0.0080861226, 0.4554387331, -0.4376542866, 0.2349057645, 0.5269825459, -0.0619710423, 0.0999839455, 0.4967942536, 0.1731764078, 0.0635330305, 0.5881979465, 0.0346502401, 0.1773208678, 0.1874702573, -0.1379602253, -0.0754204839, -0.1722173542, 0.1809183061, 0.096972689, 0.0188566819, -0.0428316295, -0.0954477638, 0.3011341691, -0.3839455545, 0.0041104853, -0.005768612, 0.1111970246, -0.2255034596, -0.1060155705, -0.156262815, -0.0987097323, -0.1664462984, -0.1973159015, 0.0140282586, -0.1700509042, 0.3556355834, -0.0742807835, -0.1959642619, -0.4565813541, -0.186778456, 0.3054198325, 0.0650815889, -0.2473098487, 0.0163198765, 0.2487559468, -0.1455011517, 0.3213778138, 0.0862398222, 0.6039390564, 0.1713753343, 0.0897910297, -0.3410919607, -0.0972952843, -0.0885801613, 0.1516634077, 0.215567857, 0.0459204428, -0.0368340053, 0.3922656775, 0.2018782198, -0.1707493365, 0.3085800409, 0.335742414, 0.2227040529, -0.1706194282, -0.0630669147, -0.1339654028, -0.2573548257, -0.3266395628, 0.1013187319, -0.2697946429, 0.1159572452, 0.4622559547, -0.041513823, 0.0840901136, -0.2942292094, 0.1462801695, 0.1317102909, 0.3118901253, 0.2739444971, -0.0476244763, -0.3456507921, 0.1615713835, -0.5773795843, 0.1294606328, -0.1186996847, -0.1146927923, -0.0334538557, -0.1582232863, 0.1593216956, 0.0206148606, 0.3829502463, 0.1888178885, -0.0159398764, -0.1086774319, -0.1195141003, -0.1931984574, -0.0825987458, -0.1219009459, 0.2010164857, -0.3226899803, -0.0618356764, -0.1457766742, 0.0389759243, -0.3498084843, 0.093714118, 0.1062970459, -0.0201896131, 0.3603177071, 0.1459481418, 0.7699725628, 0.0488149971, 0.1150305942, -0.0913877785, -0.3536492884, -0.4042431414, 0.368868947, 0.3255910277, 0.2565359175, -0.1063772365, 0.0097639635, -0.1644828916, 0.0945067853, -0.0435467474, 0.3211488426, -0.2544763386, 0.2145048827, -0.0240108967, 0.0171400569, 0.0991312712, -0.0556260049, -0.0026465841, 0.3410544395, -0.2067562342, -0.6047098637, 0.6198095083, -0.2129314691, -0.2395552993, 0.1537307203, 0.1545256972, 0.2213793695, -0.2187476307, -0.5100531578, 0.0247500241, 0.3773830235, 0.019003924, -0.4423446357, -0.0037067216, -0.1927571893, 0.0514445379, 0.1135602593, 0.3062540889, 0.1166285425, -0.1932862103, 0.1991046816, -0.2543465793 ]
https://github.com/huggingface/datasets/issues/1989
Question/problem with dataset labels
thanks for the tip. very strange :/ I'll check my datasets version as well. I will have more similar experiments soon so I'll let you know if I manage to get rid of this.
Hi, I'm using a dataset with two labels "nurse" and "not nurse". For whatever reason (that I don't understand), I get an error that I think comes from the datasets package (using csv). Everything works fine if the labels are "nurse" and "surgeon". This is the trace I get: ``` File "../../../models/tr-4.3.2/run_puppets.py", line 523, in <module> main() File "../../../models/tr-4.3.2/run_puppets.py", line 249, in main datasets = load_dataset("csv", data_files=data_files) File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/load.py", line 740, in load_dataset builder_instance.download_and_prepare( File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py", line 572, in download_and_prepare self._download_and_prepare( File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py", line 650, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py", line 1028, in _prepare_split writer.write_table(table) File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/arrow_writer.py", line 292, in write_table pa_table = pa_table.cast(self._schema) File "pyarrow/table.pxi", line 1311, in pyarrow.lib.Table.cast File "pyarrow/table.pxi", line 265, in pyarrow.lib.ChunkedArray.cast File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/pyarrow/compute.py", line 87, in cast return call_function("cast", [arr], options) File "pyarrow/_compute.pyx", line 298, in pyarrow._compute.call_function File "pyarrow/_compute.pyx", line 192, in pyarrow._compute.Function.call File "pyarrow/error.pxi", line 122, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 84, in pyarrow.lib.check_status pyarrow.lib.ArrowInvalid: Failed to parse string: not nurse ``` Any ideas how to fix this? For now, I'll probably make them numeric.
34
Question/problem with dataset labels Hi, I'm using a dataset with two labels "nurse" and "not nurse". For whatever reason (that I don't understand), I get an error that I think comes from the datasets package (using csv). Everything works fine if the labels are "nurse" and "surgeon". This is the trace I get: ``` File "../../../models/tr-4.3.2/run_puppets.py", line 523, in <module> main() File "../../../models/tr-4.3.2/run_puppets.py", line 249, in main datasets = load_dataset("csv", data_files=data_files) File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/load.py", line 740, in load_dataset builder_instance.download_and_prepare( File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py", line 572, in download_and_prepare self._download_and_prepare( File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py", line 650, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py", line 1028, in _prepare_split writer.write_table(table) File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/arrow_writer.py", line 292, in write_table pa_table = pa_table.cast(self._schema) File "pyarrow/table.pxi", line 1311, in pyarrow.lib.Table.cast File "pyarrow/table.pxi", line 265, in pyarrow.lib.ChunkedArray.cast File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/pyarrow/compute.py", line 87, in cast return call_function("cast", [arr], options) File "pyarrow/_compute.pyx", line 298, in pyarrow._compute.call_function File "pyarrow/_compute.pyx", line 192, in pyarrow._compute.Function.call File "pyarrow/error.pxi", line 122, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 84, in pyarrow.lib.check_status pyarrow.lib.ArrowInvalid: Failed to parse string: not nurse ``` Any ideas how to fix this? For now, I'll probably make them numeric. thanks for the tip. very strange :/ I'll check my datasets version as well. I will have more similar experiments soon so I'll let you know if I manage to get rid of this.
[ 0.1789144427, -0.057323128, 0.0051793307, 0.1343671829, 0.4113537669, 0.3502127528, 0.6419944763, 0.1637073457, -0.1613178402, 0.072349824, 0.1788541377, 0.0638753623, -0.0607730746, 0.0305259675, -0.1302311867, -0.1193703264, 0.0890838355, 0.1734793484, 0.1816425472, -0.0444667041, -0.286742866, -0.0398263708, -0.1566802263, 0.3662884235, -0.2972058058, -0.3766842186, 0.2105431557, -0.1205282211, -0.1131331921, -0.4633958042, 0.2718096972, 0.0861200094, 0.0026804134, 0.4034270048, -0.0001030963, 0.0587568581, 0.2967478335, 0.1559889764, -0.3984079361, -0.4321284294, -0.1893597841, -0.0234078132, 0.0345638394, -0.3044766188, 0.0979833081, -0.2846685052, -0.0905411169, -0.2756659687, 0.1046864837, 0.4386058748, 0.3266399801, 0.237339586, -0.2064997256, -0.2293036431, 0.2311525941, 0.1250883639, -0.0305088237, 0.0494753569, -0.1344385892, -0.0064583756, 0.4515703321, 0.4609146118, -0.2723957896, 0.2647711337, 0.1353648901, 0.1463630944, 0.1377249658, -0.3910482228, 0.2763094604, 0.1961432099, 0.7452609539, -0.2964995503, -0.2943911254, -0.1697053611, 0.1373762935, -0.4167192578, 0.1813386679, 0.0700832978, 0.0063755624, -0.0470149219, -0.0331625827, 0.0610272177, 0.0807419121, 0.088180244, -0.058075048, 0.038328439, -0.0986413136, 0.3288167715, 0.1125300378, -0.0747508556, 0.2975301743, -0.0059942957, -0.0885701925, 0.0415448695, -0.4325241446, -0.0296082944, -0.0368807204, 0.0516761094, -0.1181377918, -0.0387408957, 0.0183865093, -0.3749561012, -0.1474356353, 0.340344727, 0.2151345611, 0.2662760317, 0.270699501, 0.561686635, 0.0911724865, -0.076162532, 0.0308041647, -0.0558077544, -0.0015740022, -0.4626429379, 0.2433208525, 0.098931089, 0.2934702635, -0.2398588359, -0.5455213189, 0.1924420744, -0.028101556, 0.0940956473, 0.1541178524, 0.3049503267, 0.0221221931, 0.2065179646, 0.0793469846, 0.1936080754, -0.0091701373, -0.1172054559, -0.2069241256, 0.097607933, -0.2002791464, -0.1501066089, 0.0502696931, -0.0720528513, 0.112449035, 0.0640596598, -0.0010050014, -0.0760565847, -0.0163033158, -0.386464119, -0.0127479844, 0.3588934541, -0.1032633185, 0.4203503132, 0.2520543635, -0.4185499549, 0.0596993417, 0.180211544, -0.3688523173, -0.0338138118, -0.2121574283, 0.2862125933, -0.1030440629, -0.1879811138, -0.120091483, 0.0468235351, 0.4193201959, -0.2145541608, 0.1575900912, -0.3543839455, -0.3093226552, -0.2777700722, -0.0663040802, 0.221432507, -0.6722468138, 0.0043894351, -0.1475469768, -0.0291133374, 0.0528065674, 0.2960191965, -0.081004411, 0.206291616, -0.0705920234, 0.0303499103, 0.1395510137, -0.39069134, -0.11046388, 0.1035437435, -0.1420033276, -0.2442641705, 0.0704807565, -0.0403395817, 0.0917313546, -0.0916262269, 0.0582318529, -0.1318776309, -0.1996324956, -0.095133312, -0.1437039226, 0.0538111925, 0.6539095044, 0.092732884, -0.016799951, 0.0756468922, -0.1002285182, -0.3448367715, -0.0425324477, -0.1009554416, 0.2062196583, 0.214790225, 0.0556404255, 0.2983596921, 0.1459521949, -0.0644701868, -0.4424967766, 0.1017011777, -0.0400517844, 0.1395647824, -0.1451431215, -0.1923440099, -0.3297649324, -0.0537859574, -0.207976386, 0.0183235332, 0.1633132845, 0.0683605894, -0.2214221656, -0.020483382, 0.0140844062, -0.0758843049, -0.0172139481, 0.1093305945, -0.1040250063, 0.2656517625, -0.0951160192, 0.116893813, -0.0267395489, 0.2531200647, 0.4326064289, 0.2400517166, -0.0466213152, 0.3670239747, 0.084860608, -0.3270231783, 0.0078401389, -0.1726581603, 0.0181291979, -0.0838745013, -0.0163269751, 0.1145247221, 0.2768394947, -0.1085970625, -0.0847192705, 0.1411860287, -0.1772007197, 0.2762841582, -0.1619747579, 0.2004609108, 0.2599627078, -0.1093928665, 0.1251224875, -0.2127112299, 0.2158808112, -0.1297984868, 0.2343142927, 0.0071424991, -0.2617174089, 0.0677194297, 0.4220536947, 0.0015310869, -0.0035241153, 0.0097740078, -0.1586680263, 0.1657462418, -0.0130176423, 0.595718503, 0.3528425694, 0.2059558183, -0.1638753265, -0.0582683906, -0.2622587979, -0.1369837075, 0.2124616951, 0.0951014534, 0.0298528336, 0.0572960638, 0.0261100121, -0.0664387867, -0.1765723825, -0.2433389872, 0.2082312554, 0.3464296758, -0.5103123188, -0.0029067099, -0.3452731669, -0.2318638116, -0.3185971379, -0.0987910032, -0.2351591289, -0.4590441883, 0.0904377103, -0.0774913728, -0.1903931051, 0.1450762749, -0.0375637673, 0.0079173446, -0.0910728574, 0.1520518363, -0.0975841284, -0.4702500403, -0.2045714408, 0.181112498, 0.0074796826, 0.0469533242, 0.4813602567, -0.1431986094, -0.1245556474, -0.0785719529, -0.2953169942, 0.004026711, -0.273065865, 0.1366039962, 0.1816231012, 0.1038596928, 0.0084618628, -0.1486843973, 0.2930161357, -0.0715195388, 0.0246399194, 0.1069570184, 0.0452329181, -0.2920733988, -0.266469866, -0.4750190973, -0.4745301902, -0.1774820089, 0.066948086, -0.075908497, -0.0335288309, 0.5198025703, 0.0684419274, 0.0656811595, 0.0931448191, 0.0232526585, -0.3467434943, -0.0935404599, 0.249047786, -0.1790920943, -0.2102451921, 0.1960572302, 0.1093096733, 0.117527917, -0.2039329857, -0.3139224052, 0.072862342, -0.0576011613, 0.0589447021, 0.0813104361, 0.1948960274, 0.2138825953, 0.2671021521, -0.148003608, -0.3270512819, -0.3317119479, 0.1381733567, -0.0719680786, 0.1306351572, -0.1062558144, 0.294085294, -0.1520836949, 0.326508522, 0.0217725486, -0.2126559466, 0.1918890625, -0.0478477404, 0.520732522, 0.0683804899, -0.419374764, 0.0658853427, -0.1191069186, 0.02694612, 0.1760427952, -0.3196391761, 0.0379565507, -0.1479680836, 0.3946040869, -0.2478048354, -0.0996567905, -0.1006430164, -0.1501684636, 0.0405272953, 0.116900228, -0.040975228, -0.2084080577, -0.1915850639, -0.2512803078, 0.0578238294, -0.0954613686, -0.0875516236, -0.533575058, -0.2334990203, -0.1649958044, 0.2940984964, 0.1574512422, 0.3346636295, -0.178517282, 0.245471403, 0.0477584191, 0.2458998263, 0.6149812341, -0.4832391143, 0.1547023356, 0.2263717949, 0.393127352, -0.1780013144, -0.1272554398, -0.1692572534, 0.294726193, -0.2957774103, 0.025988616, -0.1555343568, -0.0910770968, 0.2631005943, 0.1554055959, -0.1223802269, -0.3149801195, -0.2309516668, -0.1793931127, -0.1272853315, -0.0533968471, 0.0635774657, 0.1866384149, -0.3784871697, 0.0986480787, 0.1408237219, 0.0735076368, 0.2715044916, 0.1186349988, 0.2232432365, 0.0302770212, 0.1973614246, 0.3174023926, 0.2587255538, 0.5099826455, 0.5483982563, -0.361846596, -0.5113291144, -0.1194787994, -0.1147696823, 0.2007077783, 0.0650010258, -0.1422150731, 0.1660956144, -0.0506403036, 0.1854585111, 0.0961979926, 0.0223077685, 0.4922947288, 0.1605761498, -0.4898482263, -0.5388928652, 0.2713592649, 0.0392415076, -0.0478406623, 0.1281554401, 0.0797320753, -0.34075737, 0.2059525102, -0.1559934914, 0.6908727288, 0.0837976485, -0.0510308072, -0.0170311369, -0.2261731774, 0.7132236958, -0.1187110916, 0.0007714238, -0.3614291549, -0.3074661195, -0.0622300394, -0.0221187174, 0.0234749615, 0.4506936669, -0.3085789084, 0.3788375258, -0.3285133541, 0.2046866119, 0.0287500769, -0.0740614384, 0.2494399697, -0.1323136389, -0.0824862868, 0.2010340542, -0.1576189697, -0.1343759, -0.1674346626, 0.0419053286, -0.2318482399, -0.268060714, -0.2262607664, 0.0822606981, -0.2538250387, 0.1415783465, -0.0856541172, -0.0167192668, 0.2168118805, 0.2025100589, 0.4863220453, 0.0789239407, -0.1482865214, 0.1838956475, 0.0421488881, 0.1370233893, 0.0343485884, 0.0537469126, 0.4150625467, 0.1160497814, -0.269980818, 0.1285304129, -0.0795676112, 0.1759498715, -0.0870315358, 0.0838944018, -0.0983975679, -0.365375042, 0.0326474421, -0.0770388097, 0.2287106514, -0.2537734807, 0.1773460954, 0.05198282, -0.0466798581, 0.212078914, -0.263691932, -0.1465979069, -0.0457465835, 0.189233005, 0.0259639658, 0.1933565438, 0.2472447008, 0.0259734392, -0.3513919115, -0.256511271, 0.0389520228, 0.0239993706, -0.6778355837, 0.2459826171, 0.2533545494, 0.0759459734, -0.0571892112, 0.2232684493, -0.0158299785, 0.0710852891, 0.0610140264, -0.5274376869, -0.2186502069, -0.0046704933, -0.1847545803, 0.1169300228, 0.2478653342, 0.411005199, 0.1337578297, 0.0714498237, -0.3641543388, -0.0209538639, -0.1723941118, 0.2980129421, 0.1525107771, 0.0199611969, 0.2820311487, -0.1788064986, 0.2182169855, 0.000743961, 0.0077501163, -0.2498183846, -0.1872092783, 0.1124107167, 0.1352090985, -0.1972161382, -0.0634114146, -0.1643811017, 0.0578370653, -0.0719838366, -0.01725078, 0.3105740547, 0.0032080635, 0.3735309243, -0.1509215832, 0.2327848375, -0.0463301651, 0.2182776928, 0.012717111, -0.1140014604, 0.0742453933, 0.1729658246, -0.1127647161, 0.0194780678, -0.175079599, 0.0847948045, -0.1170052737, -0.1179298759, 0.1342933476, -0.5689803958, 0.2959565818, 0.1936382949, 0.4493626952, 0.2781368196, -0.1868257672, -0.0707665235, 0.382609427, 0.3079268634, -0.3656697273, -0.1683600098, 0.1630015671, 0.1655610502, 0.0003906116, 0.0756074935, 0.0607256889, -0.0310595334, 0.0448929518, 0.0080861226, 0.4554387331, -0.4376542866, 0.2349057645, 0.5269825459, -0.0619710423, 0.0999839455, 0.4967942536, 0.1731764078, 0.0635330305, 0.5881979465, 0.0346502401, 0.1773208678, 0.1874702573, -0.1379602253, -0.0754204839, -0.1722173542, 0.1809183061, 0.096972689, 0.0188566819, -0.0428316295, -0.0954477638, 0.3011341691, -0.3839455545, 0.0041104853, -0.005768612, 0.1111970246, -0.2255034596, -0.1060155705, -0.156262815, -0.0987097323, -0.1664462984, -0.1973159015, 0.0140282586, -0.1700509042, 0.3556355834, -0.0742807835, -0.1959642619, -0.4565813541, -0.186778456, 0.3054198325, 0.0650815889, -0.2473098487, 0.0163198765, 0.2487559468, -0.1455011517, 0.3213778138, 0.0862398222, 0.6039390564, 0.1713753343, 0.0897910297, -0.3410919607, -0.0972952843, -0.0885801613, 0.1516634077, 0.215567857, 0.0459204428, -0.0368340053, 0.3922656775, 0.2018782198, -0.1707493365, 0.3085800409, 0.335742414, 0.2227040529, -0.1706194282, -0.0630669147, -0.1339654028, -0.2573548257, -0.3266395628, 0.1013187319, -0.2697946429, 0.1159572452, 0.4622559547, -0.041513823, 0.0840901136, -0.2942292094, 0.1462801695, 0.1317102909, 0.3118901253, 0.2739444971, -0.0476244763, -0.3456507921, 0.1615713835, -0.5773795843, 0.1294606328, -0.1186996847, -0.1146927923, -0.0334538557, -0.1582232863, 0.1593216956, 0.0206148606, 0.3829502463, 0.1888178885, -0.0159398764, -0.1086774319, -0.1195141003, -0.1931984574, -0.0825987458, -0.1219009459, 0.2010164857, -0.3226899803, -0.0618356764, -0.1457766742, 0.0389759243, -0.3498084843, 0.093714118, 0.1062970459, -0.0201896131, 0.3603177071, 0.1459481418, 0.7699725628, 0.0488149971, 0.1150305942, -0.0913877785, -0.3536492884, -0.4042431414, 0.368868947, 0.3255910277, 0.2565359175, -0.1063772365, 0.0097639635, -0.1644828916, 0.0945067853, -0.0435467474, 0.3211488426, -0.2544763386, 0.2145048827, -0.0240108967, 0.0171400569, 0.0991312712, -0.0556260049, -0.0026465841, 0.3410544395, -0.2067562342, -0.6047098637, 0.6198095083, -0.2129314691, -0.2395552993, 0.1537307203, 0.1545256972, 0.2213793695, -0.2187476307, -0.5100531578, 0.0247500241, 0.3773830235, 0.019003924, -0.4423446357, -0.0037067216, -0.1927571893, 0.0514445379, 0.1135602593, 0.3062540889, 0.1166285425, -0.1932862103, 0.1991046816, -0.2543465793 ]
https://github.com/huggingface/datasets/issues/1989
Question/problem with dataset labels
No problem at all. I thought I'd be able to solve this but I'm unable to replicate the issue :/
Hi, I'm using a dataset with two labels "nurse" and "not nurse". For whatever reason (that I don't understand), I get an error that I think comes from the datasets package (using csv). Everything works fine if the labels are "nurse" and "surgeon". This is the trace I get: ``` File "../../../models/tr-4.3.2/run_puppets.py", line 523, in <module> main() File "../../../models/tr-4.3.2/run_puppets.py", line 249, in main datasets = load_dataset("csv", data_files=data_files) File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/load.py", line 740, in load_dataset builder_instance.download_and_prepare( File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py", line 572, in download_and_prepare self._download_and_prepare( File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py", line 650, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py", line 1028, in _prepare_split writer.write_table(table) File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/arrow_writer.py", line 292, in write_table pa_table = pa_table.cast(self._schema) File "pyarrow/table.pxi", line 1311, in pyarrow.lib.Table.cast File "pyarrow/table.pxi", line 265, in pyarrow.lib.ChunkedArray.cast File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/pyarrow/compute.py", line 87, in cast return call_function("cast", [arr], options) File "pyarrow/_compute.pyx", line 298, in pyarrow._compute.call_function File "pyarrow/_compute.pyx", line 192, in pyarrow._compute.Function.call File "pyarrow/error.pxi", line 122, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 84, in pyarrow.lib.check_status pyarrow.lib.ArrowInvalid: Failed to parse string: not nurse ``` Any ideas how to fix this? For now, I'll probably make them numeric.
20
Question/problem with dataset labels Hi, I'm using a dataset with two labels "nurse" and "not nurse". For whatever reason (that I don't understand), I get an error that I think comes from the datasets package (using csv). Everything works fine if the labels are "nurse" and "surgeon". This is the trace I get: ``` File "../../../models/tr-4.3.2/run_puppets.py", line 523, in <module> main() File "../../../models/tr-4.3.2/run_puppets.py", line 249, in main datasets = load_dataset("csv", data_files=data_files) File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/load.py", line 740, in load_dataset builder_instance.download_and_prepare( File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py", line 572, in download_and_prepare self._download_and_prepare( File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py", line 650, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py", line 1028, in _prepare_split writer.write_table(table) File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/arrow_writer.py", line 292, in write_table pa_table = pa_table.cast(self._schema) File "pyarrow/table.pxi", line 1311, in pyarrow.lib.Table.cast File "pyarrow/table.pxi", line 265, in pyarrow.lib.ChunkedArray.cast File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/pyarrow/compute.py", line 87, in cast return call_function("cast", [arr], options) File "pyarrow/_compute.pyx", line 298, in pyarrow._compute.call_function File "pyarrow/_compute.pyx", line 192, in pyarrow._compute.Function.call File "pyarrow/error.pxi", line 122, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 84, in pyarrow.lib.check_status pyarrow.lib.ArrowInvalid: Failed to parse string: not nurse ``` Any ideas how to fix this? For now, I'll probably make them numeric. No problem at all. I thought I'd be able to solve this but I'm unable to replicate the issue :/
[ 0.1789144427, -0.057323128, 0.0051793307, 0.1343671829, 0.4113537669, 0.3502127528, 0.6419944763, 0.1637073457, -0.1613178402, 0.072349824, 0.1788541377, 0.0638753623, -0.0607730746, 0.0305259675, -0.1302311867, -0.1193703264, 0.0890838355, 0.1734793484, 0.1816425472, -0.0444667041, -0.286742866, -0.0398263708, -0.1566802263, 0.3662884235, -0.2972058058, -0.3766842186, 0.2105431557, -0.1205282211, -0.1131331921, -0.4633958042, 0.2718096972, 0.0861200094, 0.0026804134, 0.4034270048, -0.0001030963, 0.0587568581, 0.2967478335, 0.1559889764, -0.3984079361, -0.4321284294, -0.1893597841, -0.0234078132, 0.0345638394, -0.3044766188, 0.0979833081, -0.2846685052, -0.0905411169, -0.2756659687, 0.1046864837, 0.4386058748, 0.3266399801, 0.237339586, -0.2064997256, -0.2293036431, 0.2311525941, 0.1250883639, -0.0305088237, 0.0494753569, -0.1344385892, -0.0064583756, 0.4515703321, 0.4609146118, -0.2723957896, 0.2647711337, 0.1353648901, 0.1463630944, 0.1377249658, -0.3910482228, 0.2763094604, 0.1961432099, 0.7452609539, -0.2964995503, -0.2943911254, -0.1697053611, 0.1373762935, -0.4167192578, 0.1813386679, 0.0700832978, 0.0063755624, -0.0470149219, -0.0331625827, 0.0610272177, 0.0807419121, 0.088180244, -0.058075048, 0.038328439, -0.0986413136, 0.3288167715, 0.1125300378, -0.0747508556, 0.2975301743, -0.0059942957, -0.0885701925, 0.0415448695, -0.4325241446, -0.0296082944, -0.0368807204, 0.0516761094, -0.1181377918, -0.0387408957, 0.0183865093, -0.3749561012, -0.1474356353, 0.340344727, 0.2151345611, 0.2662760317, 0.270699501, 0.561686635, 0.0911724865, -0.076162532, 0.0308041647, -0.0558077544, -0.0015740022, -0.4626429379, 0.2433208525, 0.098931089, 0.2934702635, -0.2398588359, -0.5455213189, 0.1924420744, -0.028101556, 0.0940956473, 0.1541178524, 0.3049503267, 0.0221221931, 0.2065179646, 0.0793469846, 0.1936080754, -0.0091701373, -0.1172054559, -0.2069241256, 0.097607933, -0.2002791464, -0.1501066089, 0.0502696931, -0.0720528513, 0.112449035, 0.0640596598, -0.0010050014, -0.0760565847, -0.0163033158, -0.386464119, -0.0127479844, 0.3588934541, -0.1032633185, 0.4203503132, 0.2520543635, -0.4185499549, 0.0596993417, 0.180211544, -0.3688523173, -0.0338138118, -0.2121574283, 0.2862125933, -0.1030440629, -0.1879811138, -0.120091483, 0.0468235351, 0.4193201959, -0.2145541608, 0.1575900912, -0.3543839455, -0.3093226552, -0.2777700722, -0.0663040802, 0.221432507, -0.6722468138, 0.0043894351, -0.1475469768, -0.0291133374, 0.0528065674, 0.2960191965, -0.081004411, 0.206291616, -0.0705920234, 0.0303499103, 0.1395510137, -0.39069134, -0.11046388, 0.1035437435, -0.1420033276, -0.2442641705, 0.0704807565, -0.0403395817, 0.0917313546, -0.0916262269, 0.0582318529, -0.1318776309, -0.1996324956, -0.095133312, -0.1437039226, 0.0538111925, 0.6539095044, 0.092732884, -0.016799951, 0.0756468922, -0.1002285182, -0.3448367715, -0.0425324477, -0.1009554416, 0.2062196583, 0.214790225, 0.0556404255, 0.2983596921, 0.1459521949, -0.0644701868, -0.4424967766, 0.1017011777, -0.0400517844, 0.1395647824, -0.1451431215, -0.1923440099, -0.3297649324, -0.0537859574, -0.207976386, 0.0183235332, 0.1633132845, 0.0683605894, -0.2214221656, -0.020483382, 0.0140844062, -0.0758843049, -0.0172139481, 0.1093305945, -0.1040250063, 0.2656517625, -0.0951160192, 0.116893813, -0.0267395489, 0.2531200647, 0.4326064289, 0.2400517166, -0.0466213152, 0.3670239747, 0.084860608, -0.3270231783, 0.0078401389, -0.1726581603, 0.0181291979, -0.0838745013, -0.0163269751, 0.1145247221, 0.2768394947, -0.1085970625, -0.0847192705, 0.1411860287, -0.1772007197, 0.2762841582, -0.1619747579, 0.2004609108, 0.2599627078, -0.1093928665, 0.1251224875, -0.2127112299, 0.2158808112, -0.1297984868, 0.2343142927, 0.0071424991, -0.2617174089, 0.0677194297, 0.4220536947, 0.0015310869, -0.0035241153, 0.0097740078, -0.1586680263, 0.1657462418, -0.0130176423, 0.595718503, 0.3528425694, 0.2059558183, -0.1638753265, -0.0582683906, -0.2622587979, -0.1369837075, 0.2124616951, 0.0951014534, 0.0298528336, 0.0572960638, 0.0261100121, -0.0664387867, -0.1765723825, -0.2433389872, 0.2082312554, 0.3464296758, -0.5103123188, -0.0029067099, -0.3452731669, -0.2318638116, -0.3185971379, -0.0987910032, -0.2351591289, -0.4590441883, 0.0904377103, -0.0774913728, -0.1903931051, 0.1450762749, -0.0375637673, 0.0079173446, -0.0910728574, 0.1520518363, -0.0975841284, -0.4702500403, -0.2045714408, 0.181112498, 0.0074796826, 0.0469533242, 0.4813602567, -0.1431986094, -0.1245556474, -0.0785719529, -0.2953169942, 0.004026711, -0.273065865, 0.1366039962, 0.1816231012, 0.1038596928, 0.0084618628, -0.1486843973, 0.2930161357, -0.0715195388, 0.0246399194, 0.1069570184, 0.0452329181, -0.2920733988, -0.266469866, -0.4750190973, -0.4745301902, -0.1774820089, 0.066948086, -0.075908497, -0.0335288309, 0.5198025703, 0.0684419274, 0.0656811595, 0.0931448191, 0.0232526585, -0.3467434943, -0.0935404599, 0.249047786, -0.1790920943, -0.2102451921, 0.1960572302, 0.1093096733, 0.117527917, -0.2039329857, -0.3139224052, 0.072862342, -0.0576011613, 0.0589447021, 0.0813104361, 0.1948960274, 0.2138825953, 0.2671021521, -0.148003608, -0.3270512819, -0.3317119479, 0.1381733567, -0.0719680786, 0.1306351572, -0.1062558144, 0.294085294, -0.1520836949, 0.326508522, 0.0217725486, -0.2126559466, 0.1918890625, -0.0478477404, 0.520732522, 0.0683804899, -0.419374764, 0.0658853427, -0.1191069186, 0.02694612, 0.1760427952, -0.3196391761, 0.0379565507, -0.1479680836, 0.3946040869, -0.2478048354, -0.0996567905, -0.1006430164, -0.1501684636, 0.0405272953, 0.116900228, -0.040975228, -0.2084080577, -0.1915850639, -0.2512803078, 0.0578238294, -0.0954613686, -0.0875516236, -0.533575058, -0.2334990203, -0.1649958044, 0.2940984964, 0.1574512422, 0.3346636295, -0.178517282, 0.245471403, 0.0477584191, 0.2458998263, 0.6149812341, -0.4832391143, 0.1547023356, 0.2263717949, 0.393127352, -0.1780013144, -0.1272554398, -0.1692572534, 0.294726193, -0.2957774103, 0.025988616, -0.1555343568, -0.0910770968, 0.2631005943, 0.1554055959, -0.1223802269, -0.3149801195, -0.2309516668, -0.1793931127, -0.1272853315, -0.0533968471, 0.0635774657, 0.1866384149, -0.3784871697, 0.0986480787, 0.1408237219, 0.0735076368, 0.2715044916, 0.1186349988, 0.2232432365, 0.0302770212, 0.1973614246, 0.3174023926, 0.2587255538, 0.5099826455, 0.5483982563, -0.361846596, -0.5113291144, -0.1194787994, -0.1147696823, 0.2007077783, 0.0650010258, -0.1422150731, 0.1660956144, -0.0506403036, 0.1854585111, 0.0961979926, 0.0223077685, 0.4922947288, 0.1605761498, -0.4898482263, -0.5388928652, 0.2713592649, 0.0392415076, -0.0478406623, 0.1281554401, 0.0797320753, -0.34075737, 0.2059525102, -0.1559934914, 0.6908727288, 0.0837976485, -0.0510308072, -0.0170311369, -0.2261731774, 0.7132236958, -0.1187110916, 0.0007714238, -0.3614291549, -0.3074661195, -0.0622300394, -0.0221187174, 0.0234749615, 0.4506936669, -0.3085789084, 0.3788375258, -0.3285133541, 0.2046866119, 0.0287500769, -0.0740614384, 0.2494399697, -0.1323136389, -0.0824862868, 0.2010340542, -0.1576189697, -0.1343759, -0.1674346626, 0.0419053286, -0.2318482399, -0.268060714, -0.2262607664, 0.0822606981, -0.2538250387, 0.1415783465, -0.0856541172, -0.0167192668, 0.2168118805, 0.2025100589, 0.4863220453, 0.0789239407, -0.1482865214, 0.1838956475, 0.0421488881, 0.1370233893, 0.0343485884, 0.0537469126, 0.4150625467, 0.1160497814, -0.269980818, 0.1285304129, -0.0795676112, 0.1759498715, -0.0870315358, 0.0838944018, -0.0983975679, -0.365375042, 0.0326474421, -0.0770388097, 0.2287106514, -0.2537734807, 0.1773460954, 0.05198282, -0.0466798581, 0.212078914, -0.263691932, -0.1465979069, -0.0457465835, 0.189233005, 0.0259639658, 0.1933565438, 0.2472447008, 0.0259734392, -0.3513919115, -0.256511271, 0.0389520228, 0.0239993706, -0.6778355837, 0.2459826171, 0.2533545494, 0.0759459734, -0.0571892112, 0.2232684493, -0.0158299785, 0.0710852891, 0.0610140264, -0.5274376869, -0.2186502069, -0.0046704933, -0.1847545803, 0.1169300228, 0.2478653342, 0.411005199, 0.1337578297, 0.0714498237, -0.3641543388, -0.0209538639, -0.1723941118, 0.2980129421, 0.1525107771, 0.0199611969, 0.2820311487, -0.1788064986, 0.2182169855, 0.000743961, 0.0077501163, -0.2498183846, -0.1872092783, 0.1124107167, 0.1352090985, -0.1972161382, -0.0634114146, -0.1643811017, 0.0578370653, -0.0719838366, -0.01725078, 0.3105740547, 0.0032080635, 0.3735309243, -0.1509215832, 0.2327848375, -0.0463301651, 0.2182776928, 0.012717111, -0.1140014604, 0.0742453933, 0.1729658246, -0.1127647161, 0.0194780678, -0.175079599, 0.0847948045, -0.1170052737, -0.1179298759, 0.1342933476, -0.5689803958, 0.2959565818, 0.1936382949, 0.4493626952, 0.2781368196, -0.1868257672, -0.0707665235, 0.382609427, 0.3079268634, -0.3656697273, -0.1683600098, 0.1630015671, 0.1655610502, 0.0003906116, 0.0756074935, 0.0607256889, -0.0310595334, 0.0448929518, 0.0080861226, 0.4554387331, -0.4376542866, 0.2349057645, 0.5269825459, -0.0619710423, 0.0999839455, 0.4967942536, 0.1731764078, 0.0635330305, 0.5881979465, 0.0346502401, 0.1773208678, 0.1874702573, -0.1379602253, -0.0754204839, -0.1722173542, 0.1809183061, 0.096972689, 0.0188566819, -0.0428316295, -0.0954477638, 0.3011341691, -0.3839455545, 0.0041104853, -0.005768612, 0.1111970246, -0.2255034596, -0.1060155705, -0.156262815, -0.0987097323, -0.1664462984, -0.1973159015, 0.0140282586, -0.1700509042, 0.3556355834, -0.0742807835, -0.1959642619, -0.4565813541, -0.186778456, 0.3054198325, 0.0650815889, -0.2473098487, 0.0163198765, 0.2487559468, -0.1455011517, 0.3213778138, 0.0862398222, 0.6039390564, 0.1713753343, 0.0897910297, -0.3410919607, -0.0972952843, -0.0885801613, 0.1516634077, 0.215567857, 0.0459204428, -0.0368340053, 0.3922656775, 0.2018782198, -0.1707493365, 0.3085800409, 0.335742414, 0.2227040529, -0.1706194282, -0.0630669147, -0.1339654028, -0.2573548257, -0.3266395628, 0.1013187319, -0.2697946429, 0.1159572452, 0.4622559547, -0.041513823, 0.0840901136, -0.2942292094, 0.1462801695, 0.1317102909, 0.3118901253, 0.2739444971, -0.0476244763, -0.3456507921, 0.1615713835, -0.5773795843, 0.1294606328, -0.1186996847, -0.1146927923, -0.0334538557, -0.1582232863, 0.1593216956, 0.0206148606, 0.3829502463, 0.1888178885, -0.0159398764, -0.1086774319, -0.1195141003, -0.1931984574, -0.0825987458, -0.1219009459, 0.2010164857, -0.3226899803, -0.0618356764, -0.1457766742, 0.0389759243, -0.3498084843, 0.093714118, 0.1062970459, -0.0201896131, 0.3603177071, 0.1459481418, 0.7699725628, 0.0488149971, 0.1150305942, -0.0913877785, -0.3536492884, -0.4042431414, 0.368868947, 0.3255910277, 0.2565359175, -0.1063772365, 0.0097639635, -0.1644828916, 0.0945067853, -0.0435467474, 0.3211488426, -0.2544763386, 0.2145048827, -0.0240108967, 0.0171400569, 0.0991312712, -0.0556260049, -0.0026465841, 0.3410544395, -0.2067562342, -0.6047098637, 0.6198095083, -0.2129314691, -0.2395552993, 0.1537307203, 0.1545256972, 0.2213793695, -0.2187476307, -0.5100531578, 0.0247500241, 0.3773830235, 0.019003924, -0.4423446357, -0.0037067216, -0.1927571893, 0.0514445379, 0.1135602593, 0.3062540889, 0.1166285425, -0.1932862103, 0.1991046816, -0.2543465793 ]
https://github.com/huggingface/datasets/issues/1988
Readme.md is misleading about kinds of datasets?
Hi ! Yes it's possible to use image data. There are already a few of them available (MNIST, CIFAR..)
Hi! At the README.MD, you say: "efficient data pre-processing: simple, fast and reproducible data pre-processing for the above public datasets as well as your own local datasets in CSV/JSON/text. " But here: https://github.com/huggingface/datasets/blob/master/templates/new_dataset_script.py#L82-L117 You mention other kinds of datasets, with images and so on. I'm confused. Is it possible to use it to store, say, imagenet locally?
19
Readme.md is misleading about kinds of datasets? Hi! At the README.MD, you say: "efficient data pre-processing: simple, fast and reproducible data pre-processing for the above public datasets as well as your own local datasets in CSV/JSON/text. " But here: https://github.com/huggingface/datasets/blob/master/templates/new_dataset_script.py#L82-L117 You mention other kinds of datasets, with images and so on. I'm confused. Is it possible to use it to store, say, imagenet locally? Hi ! Yes it's possible to use image data. There are already a few of them available (MNIST, CIFAR..)
[ -0.1048941836, -0.4077845812, -0.125210762, 0.3528690338, 0.2064329982, 0.0773039982, 0.2821692526, -0.0132196704, 0.1014456153, -0.0921513513, -0.297154665, -0.0767041743, -0.059190385, 0.5414654016, 0.5551632643, -0.0550172329, 0.1947561204, 0.0077366307, -0.160664171, 0.0243536085, -0.1311548799, -0.0184782278, -0.191962257, -0.0560767688, -0.2441980243, 0.0734436288, -0.2431033254, 0.2023607492, -0.3524552584, -0.315318197, 0.1265481412, 0.1420261115, 0.2038789093, 0.1515562087, -0.000114474, 0.0261504799, 0.2794187665, -0.2648743391, -0.0799025744, -0.275431484, -0.2100362182, -0.1958541125, 0.1365064979, -0.3097442389, -0.0344097354, -0.363969326, 0.3208794892, -0.2029704899, 0.4163271487, 0.3321008086, 0.1734582782, 0.1770461649, -0.0120291412, 0.0715580061, 0.1994965971, 0.7043316364, -0.2353240848, 0.0765623599, 0.3966986239, 0.2751343846, 0.131759584, 0.1904015839, -0.147100687, 0.2446242422, 0.6670564413, 0.284782052, -0.0634087473, -0.5953475833, 0.176810205, 0.3605565429, 0.7247242928, -0.2514558136, -0.3772628605, -0.2556193769, -0.3492872119, -0.1461129487, -0.0531076789, 0.2958310544, -0.0094540939, 0.2340739667, -0.5905615687, -0.2758908272, -0.185131371, -0.03295663, 0.0618029907, 0.2776288986, -0.3768875897, 0.266797632, 0.1519195139, 0.1478042305, 0.0193917044, -0.2411193252, 0.0904682577, 0.2136392593, 0.1061233357, -0.2127496004, -0.3010907173, 0.1735036969, 0.4054276943, 0.0513450913, -0.0248883031, -0.000173091, -0.2388935387, 0.2633927464, 0.3330246806, -0.0660582781, -0.0647346899, -0.0764099658, 0.2803305387, -0.0680022985, 0.2875714898, -0.0922327489, -0.2132637203, -0.0572034791, -0.1317408383, -0.3184927106, 0.1354007274, -0.2608078122, -0.0464891903, 0.0581913926, 0.1385321617, -0.1853196174, -0.1996646523, 0.2353787571, -0.0096434876, -0.1611840427, 0.1309793293, 0.2234884948, 0.1141237691, -0.1701416224, 0.0089836419, 0.1949694604, -0.2847524583, 0.1963900924, 0.0610170811, -0.204150781, 0.33923015, -0.1049999446, 0.2044091672, 0.0342720896, 0.1778144538, -0.2119626403, 0.3175317943, 0.4655556977, -0.0916533545, 0.0578259006, 0.0791011304, 0.0507051572, -0.4007253945, 0.1867389083, -0.4734029174, -0.2855848372, -0.1491544545, 0.0366015062, -0.1271823347, 0.0141972192, -0.4138627946, 0.2678915262, 0.1148287505, 0.1325332969, 0.2375144362, 0.0565746687, -0.3937698603, -0.2800176144, 0.2161932439, 0.2000336945, -0.4700542688, 0.1166006178, -0.0538982339, -0.248496443, -0.0362888575, 0.2947600484, -0.1932141781, 0.1562082022, -0.2128871977, 0.1740452945, 0.1366382241, -0.4921631217, 0.202911824, 0.3513145745, 0.3671304584, -0.1108640581, 0.0441714972, 0.1537508518, 0.0429131538, 0.0106784292, -0.2065616846, 0.2118648291, 0.0240098331, -0.164777413, -0.051058501, -0.4474027455, -0.0594860725, 0.200252682, 0.0996523127, 0.1039628237, 0.1326233447, -0.0051945522, 0.0929168388, -0.0749803185, 0.3068461418, 0.0156943779, 0.1508461833, 0.1359282583, 0.1380655468, -0.0318657607, -0.4235831499, 0.1685133874, 0.0633090213, 0.0763661638, 0.0761730969, -0.3972407579, -0.017949231, -0.0966624916, -0.0226483047, -0.3566531837, 0.0199157223, -0.0699631423, 0.1150772348, -0.1959696412, -0.5987908244, 0.3285931349, -0.1511593759, 0.0230146572, -0.4239829779, 0.1418730021, -0.1346035004, 0.1803489923, -0.0286205374, -0.0403110757, -0.2251119763, -0.3223883212, 0.2558919787, 0.3308745027, 0.0934396833, 0.0722598583, 0.1576118767, 0.5650750399, 0.1312621385, -0.2301089317, 0.3880788982, -0.191067338, 0.2906060219, -0.060173817, -0.4578298926, 0.4475467205, -0.0550351553, 0.130847916, 0.0638443157, -0.1445365548, 0.2165031433, -0.0154156312, -0.2617865503, -0.1515645534, -0.0750200972, 0.0945290923, 0.361197114, -0.0716757178, -0.3708127141, 0.036555253, 0.2601165175, -0.1820848584, -0.0158426873, 0.2417080998, -0.115055725, -0.304446876, 0.1658322066, 0.0687477142, 0.4986749291, 0.039202854, 0.066974625, 0.2871890962, 0.0804617405, -0.1671082675, 0.1338184476, 0.0213156082, 0.2222679555, -0.0037228288, -0.213540107, -0.0318361409, -0.1227990836, 0.099000223, 0.0228220448, 0.0743142664, -0.2289333344, 0.2501448095, -0.1536980867, -0.2292583585, 0.0220878832, 0.0896797031, -0.3034619391, 0.0047840327, -0.1613831371, -0.0531566553, 0.07999143, -0.1376590133, -0.0357056707, 0.4570163488, -0.1464422941, 0.1405967474, -0.3284783959, 0.0716088712, 0.0750908926, 0.0750454217, 0.3216889799, 0.1382001042, 0.4002681971, -0.3740538657, -0.1360500753, -0.3646128774, -0.1546108276, 0.4024240673, -0.2423148155, 0.395917058, 0.3424028754, 0.2233854532, -0.119829908, 0.2312309146, 0.1523533911, -0.2863830924, -0.1678373516, -0.3098677397, -0.099755697, -0.2488845885, -0.3115010858, -0.0051124394, -0.3916944563, -0.1449795067, 0.2766246498, 0.3025510609, 0.3917848468, 0.2861987948, 0.1617546976, 0.3849444985, -0.2790233195, 0.0002963841, -0.3693481088, -0.6604457498, 0.280684948, -0.2496236712, -0.3559562564, 0.2686173916, 0.1082687527, 0.1110763401, 0.0524175093, -0.5647813082, -0.3803995252, 0.0735142976, -0.0298805274, 0.31731534, 0.2644764781, 0.141149655, -0.3616518974, 0.0216106735, -0.2539397478, -0.271432817, -0.0720843971, -0.006952669, 0.1494464725, 0.3848909736, 0.2619085312, -0.0657449886, 0.4962342381, 0.1023640633, -0.0069292872, 0.4028248489, 0.0429876447, 0.4390587509, -0.5036189556, 0.1889144182, 0.322976917, -0.2280292213, -0.0893525407, 0.2797306478, 0.1519521922, -0.0002822373, -0.2032932937, 0.0741907656, -0.2951329947, 0.086004369, 0.1225502864, 0.3008067608, 0.035766013, -0.0828718394, -0.2113486677, 0.0658425763, 0.0793484598, -0.1980213374, 0.5932250023, 0.3951217532, 0.042381864, -0.4509614706, -0.0493147522, -0.4759034514, 0.2078606486, -0.2291046679, 0.0366469808, -0.0622765869, 0.1710507572, 0.3513619006, -0.2008667737, 0.3242232203, -0.4471005201, -0.3030699193, 0.114862822, -0.2994036674, -0.1905007362, 0.0899868459, -0.1753987074, 0.1934819371, -0.0422457904, 0.4469904602, -0.2695119083, -0.33100003, 0.2156674266, 0.0433718972, -0.2091081887, -0.1733766943, -0.0237391591, -0.3795312047, -0.4606886506, -0.3016344905, 0.1094654649, -0.3531166017, 0.0789417252, 0.1045584232, 0.0741389245, 0.2746049166, 0.0787392184, 0.0344861411, 0.0890976191, -0.0308660567, -0.1190998182, 0.2502966225, 0.2833504677, 0.1083383858, 0.6675299406, -0.2094112784, -0.1703841537, 0.1666611731, -0.0685449764, 0.3022340536, 0.2958958149, -0.0461923108, -0.0509172045, 0.247473374, -0.0380420685, -0.5824603438, 0.0347114578, 0.2892962396, -0.1367734224, -0.495451808, -0.595793426, 0.6540585756, 0.0735015273, -0.0504068583, 0.08165887, 0.2155457437, -0.3724491, 0.1935533285, 0.5435108542, 1.07117033, -0.2064467818, 0.4783606827, -0.0353165045, -0.0264182016, 0.3445597291, -0.1600822806, -0.2060883939, -0.2130371183, 0.0525087975, -0.2116368562, -0.0434282385, 0.2980108559, 0.0743615925, -0.2512974143, 0.0711921901, 0.0467816591, 0.199285537, -0.2622815371, 0.3801470399, -0.0763468891, -0.2325717658, -0.0787085742, 0.1511821896, 0.1660848111, 0.0884917229, -0.0883434713, 0.05180436, -0.1285295188, -0.0104412362, -0.2773343623, -0.4066330791, 0.0938110352, -0.2124228477, 0.0439097546, -0.0421205088, 0.1966652274, 0.0610067621, 0.4875642955, -0.0119992038, -0.506159544, -0.0909200162, -0.1689055264, -0.1601185501, 0.0015373342, -0.338193208, 0.2413755208, -0.1594563425, 0.0756149888, -0.0897731036, -0.0050942488, -0.2896891832, -0.1152638271, 0.0730125457, 0.0224783421, -0.1160958856, -0.3256320953, 0.0479333252, -0.1418654323, 0.0119074956, 0.0715864897, 0.2889600694, 0.0282933414, 0.2428254485, -0.0221462082, -0.1877585649, -0.1326960176, 0.0051653236, 0.1976086348, -0.0216007084, -0.0415340699, 0.1155258715, -0.2569546402, -0.1879383028, 0.2555363178, 0.3657173514, -0.2913580537, 0.0343416668, 0.2049902529, -0.0385924429, -0.2323977202, 0.3837562203, 0.2756188512, -0.253952831, -0.1566251814, -0.4555265009, -0.4556473494, 0.2915144265, 0.0550088808, 0.2722640932, 0.0974761397, -0.1319730133, 0.3784186244, 0.1438314915, -0.2696526051, 0.2071357667, 0.1943932176, 0.2276328355, 0.3067966104, 0.1615451574, 0.1273259372, -0.1219342276, -0.102117002, 0.0005312003, -0.5738060474, -0.1093948334, -0.0829922184, 0.2434399724, 0.2102243751, -0.6044511199, 0.2512056828, -0.1884344816, -0.4141260684, -0.1705609262, 0.0567877367, 0.3243685961, -0.1336841881, -0.1698006392, 0.3111149967, 0.0358860306, 0.1018795669, 0.012681175, 0.1406435072, 0.2875843942, 0.1090647504, 0.005835609, -0.1595466137, -0.0762466192, 0.2651561797, 0.2241552025, 0.3071343601, 0.0347258635, 0.4503048956, -0.0871045887, 0.2993295193, -0.0995816141, 0.6628457904, 0.4894657135, -0.2899219394, 0.2158207893, 0.3399309516, 0.0476657674, -0.151532352, -0.0237082094, 0.1133870035, 0.1913730949, -0.1148006842, 0.3257425725, 0.5763186216, 0.3541561663, -0.0552235506, -0.0920712873, 0.4977541268, -0.2361807823, -0.0451118872, -0.0041512754, -0.2009322792, 0.2144486457, 0.3568070829, 0.295900017, 0.2447044402, 0.3949373364, -0.0449647829, 0.3169939518, 0.2117173672, 0.3111313283, 0.183691144, -0.1737132967, 0.3419050872, 0.3521098197, -0.0029113553, 0.2933191955, 0.0115054362, 0.2548393011, -0.0377790779, 0.0649408549, -0.2181034386, 0.2974995375, 0.0736959279, -0.2234393507, -0.1065743715, -0.2485697567, 0.0351706892, 0.0781804323, -0.2575295269, -0.439198941, 0.4528004527, -0.1613833904, 0.0814212263, -0.0117288008, 0.2299820334, -0.1840505898, -0.0126003213, -0.0147155523, 0.4757890701, -0.0388569944, 0.1751498878, 0.2862822711, 0.4984343052, 0.4124892354, 0.2951298654, 0.0415235274, 0.1162273139, -0.2170938551, -0.0240294635, -0.1073998436, 0.2956201434, 0.1052563339, -0.2680220604, 0.3524370492, 0.0467499122, -0.015058009, 0.1611466706, -0.2480764985, -0.0947324038, -0.2578946948, -0.0653261542, -0.039803952, -0.0521666184, -0.0196104236, 0.0834794268, -0.4652502537, -0.1512023211, 0.4083550274, -0.1822608113, 0.217026785, -0.0191246048, 0.0429893695, -0.1277043223, 0.5674461126, 0.1758662611, 0.2255424261, -0.1872519553, -0.0654120594, -0.619135499, 0.0173133202, -0.1485696286, -0.0276777633, -0.0342554674, 0.1928006113, 0.1183427125, 0.3820804954, 0.1264029145, -0.1649758965, 0.0781744048, 0.1624613255, 0.0699716508, 0.028105922, -0.1390951276, 0.5387625694, -0.1229067296, -0.0895446017, 0.3787789345, -0.0359519571, -0.1172064617, -0.2300395072, 0.2673722506, 0.1256121397, 0.0506165251, 0.4510181546, 0.01114765, 0.1042971909, -0.2395531833, -0.074933812, -0.2782073915, 0.0913220644, -0.3062452376, 0.1464632452, 0.0392665304, -0.0720210671, -0.5130119324, -0.1260093451, -0.1060918123, -0.0476451963, -0.2147372365, -0.1384328157, -0.2805693746, -0.0222005881, -0.3666781783, -0.1302177906, 0.0799453706, 0.1912412196, 0.0207773689, -0.3268554807, -0.4230948091, -0.0962444097, 0.5732992291, -0.0807914808, -0.0943528116, 0.0504299216, -0.2250857949, 0.0867059529, -0.1694978774, -0.8003811836, -0.0244748369, 0.2794878781, 0.1144609079, -0.0494960472, 0.1213407367, 0.037600629, -0.1471037567, -0.3729900122, 0.3526125848, -0.003682266, -0.1638886929, -0.3388904035, -0.4334890246 ]
https://github.com/huggingface/datasets/issues/1983
The size of CoNLL-2003 is not consistant with the official release.
Hi, if you inspect the raw data, you can find there are 946 occurrences of `-DOCSTART- -X- -X- O` in the train split and `14041 + 946 = 14987`, which is exactly the number of sentences the authors report. `-DOCSTART-` is a special line that acts as a boundary between two different documents and is filtered out in our implementation. @lhoestq What do you think about including these lines? ([Link](https://github.com/flairNLP/flair/issues/1097) to a similar issue in the flairNLP repo)
Thanks for the dataset sharing! But when I use conll-2003, I meet some questions. The statistics of conll-2003 in this repo is : \#train 14041 \#dev 3250 \#test 3453 While the official statistics is: \#train 14987 \#dev 3466 \#test 3684 Wish for your reply~
78
The size of CoNLL-2003 is not consistant with the official release. Thanks for the dataset sharing! But when I use conll-2003, I meet some questions. The statistics of conll-2003 in this repo is : \#train 14041 \#dev 3250 \#test 3453 While the official statistics is: \#train 14987 \#dev 3466 \#test 3684 Wish for your reply~ Hi, if you inspect the raw data, you can find there are 946 occurrences of `-DOCSTART- -X- -X- O` in the train split and `14041 + 946 = 14987`, which is exactly the number of sentences the authors report. `-DOCSTART-` is a special line that acts as a boundary between two different documents and is filtered out in our implementation. @lhoestq What do you think about including these lines? ([Link](https://github.com/flairNLP/flair/issues/1097) to a similar issue in the flairNLP repo)
[ 0.166070506, -0.3441516161, -0.0265198722, 0.3718197346, -0.3747006059, -0.0020877272, 0.061371237, -0.0708982497, -0.9394962788, -0.0062830895, 0.1252352893, 0.1568081826, 0.0813581347, 0.0008897334, -0.0184588768, 0.029295681, 0.1648516208, -0.0400792323, 0.279507935, -0.1671274453, -0.0582850389, 0.4750362039, -0.5303710103, 0.0231516361, -0.82115978, 0.0690074787, -0.1038992107, 0.1645848006, -0.367931366, -0.355176568, 0.276661396, 0.0723335445, 0.1248625293, 0.193193078, -0.0001210675, -0.4359930158, 0.2224061489, -0.0981825739, -0.1973603368, 0.2145419717, -0.1930085421, -0.4295054972, -0.0382195041, -0.187508598, 0.2144866139, 0.4310618639, -0.545250237, 0.2614451349, 0.3766057789, 0.3219401538, 0.1062865034, -0.0599870533, 0.1251414418, -0.0609837398, 0.5427099466, 0.0443484224, -0.0532879047, 0.269005537, 0.1820477843, 0.221075654, -0.0648550689, 0.3887673318, 0.0820062459, -0.2496802509, -0.0430986807, -0.0280939117, -0.2199688703, -0.221895203, 0.0012411531, 0.4098289907, 0.4609612823, -0.2167001218, -0.3023411632, -0.6893435121, 0.273096323, -0.2258214653, 0.1093588471, -0.007354226, -0.0039548464, -0.0349639989, -0.1026144028, -0.3313955963, -0.2891081274, -0.1153045446, -0.2888515592, 0.3619832993, -0.0982109904, 0.0420258343, 0.1299826652, 0.2171079516, 0.6810011268, -0.0352975875, -0.0374368057, -0.0599744022, 0.0213083029, -0.2826972008, 0.0769814402, -0.0876311809, 0.4273090959, -0.3164522648, -0.3112626374, -0.444193095, 0.0422773138, -0.0517054982, 0.3466988802, 0.0796580911, 0.1834946871, 0.4299299121, 0.0845107436, -0.0441889949, 0.1412354559, 0.1142534763, -0.3085032105, -0.1048447564, -0.4565196335, 0.086384289, -0.4163789153, -0.4130688906, -0.1330944002, 0.1724143177, -0.111301817, -0.2724635601, 0.0154791214, 0.0970016569, 0.2453031838, 0.5682414174, -0.0069986284, -0.1539081484, -0.0962361097, -0.2754601538, -0.0487614051, -0.1259209812, -0.0837791041, -0.040745452, -0.0431361198, -0.4689644873, 0.1422905028, -0.036728397, 0.3424782753, 0.1044102311, 0.000499852, -0.1908177882, 0.1123938039, -0.0760019124, -0.2280942798, -0.0431925654, 0.0182661042, 0.4265726507, -0.2598367333, 0.1983311623, -0.0825976357, -0.324842751, -0.2638596892, 0.0226160288, -0.2561662793, -0.1643791944, 0.619392097, 0.0523143299, 0.2874729633, -0.1028844565, 0.2342780977, -0.2183295339, -0.1448468119, -0.0757277757, 0.2444780618, 0.1550737321, -0.2432813048, -0.0339366943, 0.0535970926, -0.017869873, 0.0158101283, 0.23357445, -0.1454826593, 0.4814393222, -0.0997481495, -0.1582869291, 0.3144387305, -0.5198951364, -0.1304044425, 0.1959634423, 0.1512758434, -0.0103272051, -0.124601528, -0.2870708406, 0.5772901773, -0.0048112087, 0.0324353576, 0.0367222577, 0.0223800633, 0.0059988722, -0.3243202567, -0.1682892591, -0.4615068436, -0.3119511604, -0.0392334349, -0.4152750671, -0.3570274115, -0.1325614899, 0.420611918, 0.1739861667, -0.0713800937, 0.1050241962, 0.2062050104, 0.2779874206, 0.1916785985, 0.3133233786, -0.1000999585, -0.0194031671, 0.3702383041, 0.1440893859, 0.5833434463, -0.2024100274, -0.3424496353, 0.0180991665, 0.3618108332, -0.2660244405, 0.0464324504, 0.078456834, 0.2490747869, 0.1045737863, -0.2230346203, 0.229434073, -0.0686062053, 0.0829589069, -0.0228829402, -0.1679258943, 0.0076259244, -0.0514646433, 0.0765402466, 0.3759821355, 0.0501765683, 0.2213460207, -0.0430644527, 0.1560602337, 0.3733199537, 0.0259112176, 0.1593760848, -0.1503410041, 0.1712961495, 0.0713374987, 0.0039656907, -0.3762099743, -0.0671596602, 0.1555731744, -0.119015865, 0.2018062025, 0.3937219381, -0.0849654377, 0.1251069903, -0.1524041444, -0.1032809913, -0.0504981838, -0.0435630716, -0.4440818131, -0.0775449127, 0.2097177953, 0.0434643477, 0.1147812754, -0.1278448552, 0.0794451386, 0.2715922892, -0.0406669155, -0.3521393538, 0.3497368395, -0.361070931, -0.0431853682, 0.1686317921, 0.157498166, 0.1628735662, 0.2707742155, 0.4084943831, 0.0136155989, -0.1261947304, -0.2134843767, 0.2715884745, 0.2755283713, 0.2698624134, 0.3130464554, 0.1287539005, 0.2043977678, -0.0576744862, -0.052232191, 0.0049608499, -0.1004541442, -0.2025470436, -0.1476153731, 0.0883113742, -0.3175348341, -0.0191395152, -0.2643443346, 0.1351879537, -0.2632875741, 0.2045491934, -0.2654726803, -0.1398562342, -0.0968473032, -0.4157764912, 0.3907613754, -0.2395298481, 0.2784121633, 0.0863355249, -0.2383729666, -0.4046698511, 0.0646501631, -0.1899422705, -0.1168672815, 0.3373414278, -0.367026329, 0.1029953063, 0.1408557594, -0.3336955011, 0.4816084504, -0.1656112224, -0.1645952314, 0.201917693, -0.3982411921, -0.0883897245, 0.1549085528, -0.188339889, -0.0865183324, -0.0104287863, -0.2035205066, -0.1064207703, 0.1076329648, -0.113415882, -0.2887969017, 0.0965062007, -0.2495457232, 0.0297888387, -0.1858460307, 0.0634326935, -0.3321931958, -0.094624117, 0.1867456883, -0.3426501453, 0.287134707, -0.1742215306, -0.3361062109, 0.0613683648, -0.1169490814, -0.1123993769, 0.051932767, -0.187153399, -0.1176809222, -0.2642970383, -0.556443572, 0.3457523286, -0.0687347949, 0.133045435, -0.2591456175, 0.1160948426, 0.3091045618, 0.0254707709, 0.0253793821, -0.3204878271, 0.0329142287, -0.0702274442, -0.0610330626, 0.593092382, -0.2280665338, 0.072978884, 0.1565074921, 0.1225825623, 0.4253535271, 0.0593686886, -0.048137527, 0.0182672683, 0.1644161344, -0.107125625, 0.1683374643, 0.207721442, -0.0976901203, -0.1563351452, 0.4705617428, 0.3646207154, -0.0054982733, -0.1388778836, 0.1833251417, -0.0293368772, -0.2661374211, 0.1739901155, 0.2995579839, 0.3880097568, -0.154684335, 0.1660909057, -0.1512527317, 0.0750181526, -0.2321187556, -0.1701996475, 0.3782020211, -0.2222845405, 0.391569376, 0.3863418698, -0.3913906515, 0.282263428, 0.3291307688, -0.0832038671, 0.0201573372, -0.2512384057, 0.0599985607, 0.108063437, 0.3921406567, -0.2249244303, -0.4162836373, 0.440213114, 0.1864140928, -0.3669568002, -0.0029856116, -0.421674788, -0.6974323988, 1.1738072634, 0.2573477328, -0.1538087279, 0.006469436, 0.3078434765, 0.0786397457, 0.013955988, -0.2059750855, -0.1701979339, -0.1316945851, -0.2217649668, 0.0581705607, 0.0521629751, -0.0452026464, -0.2391822785, -0.1456111223, 0.4471738338, -0.173331812, -0.0507850982, 0.3019071519, 0.2329544574, 0.0359911434, 0.1739749759, 0.1901966184, 0.239975214, 0.2120048702, 0.277710408, -0.0766570121, -0.429961741, 0.1638707817, -0.2015993297, 0.5481738448, 0.4593527615, 0.0066285506, -0.0979802683, -0.5291193128, -0.0279728211, 0.3044689298, 0.1693528891, 0.2401064336, -0.0530312136, -0.3426636457, -0.0914303064, 0.1091331616, 0.1910515577, -0.3062945008, -0.0053373575, -0.2550164461, -0.0913890451, 0.0554534122, 0.2086658776, 0.9420129657, 0.2601417005, 0.1926537156, 0.1376914978, -0.4085131884, 0.6010934114, 0.0820224211, 0.1172554344, -0.2683612406, 0.1279534101, 0.0676627308, -0.1992435455, -0.1237358004, -0.2735460103, -0.2983321846, -0.1589802355, -0.3140903413, -0.1726134121, -0.1010139063, 0.3583069742, -0.1642763764, -0.0845818669, 0.4812370241, 0.0399215594, 0.3590166867, 0.0060379151, -0.1238963306, 0.0394351929, -0.3739420176, -0.0988586843, -0.5869011283, -0.2476879656, -0.017537728, -0.021594204, -0.132688731, -0.610732317, 0.0473338291, 0.2841537595, 0.2572386563, -0.0001591747, -0.1271251142, 0.1364337802, 0.3836015761, -0.0967625156, 0.3567717671, 0.1492610723, 0.036887899, -0.1886468232, -0.2704181969, -0.0527102724, -0.0406090543, 0.0104836226, 0.1263318807, -0.0127740391, 0.2184480876, -0.5251656771, 0.1823173463, 0.2948208451, 0.0213303939, -0.2041354477, 0.1176782921, 0.1039167494, -0.1102818102, 0.0116425594, -0.3245984316, -0.3441008627, -0.1030215994, -0.1764570624, 0.2090327889, -0.0325297043, -0.0658807158, 0.2634503543, -0.161349684, -0.0393637158, 0.4047771096, -0.4816960692, -0.1757544428, 0.0467468649, 0.3898820579, -0.4873675704, -0.2078987807, 0.7181904912, 0.283985585, 0.121031642, -0.2442062795, 0.0776855946, -0.2190178633, 0.2853496373, -0.1448170841, 0.2672016323, -0.171492815, 0.1936893761, 0.1794566512, -0.2558462322, -0.2345597893, -0.051765576, -0.0645454749, 0.0557143427, -0.0814133435, 0.0005702765, -0.1619117111, -0.0869018659, -0.0464038625, 0.2907567322, 0.1483400464, -0.1066333577, -0.0454832092, 0.1994403452, 0.0568397194, -0.1714213789, -0.0616388507, 0.2124747783, -0.1362294555, -0.1371075362, 0.1286390573, -0.029047858, 0.1667295396, 0.3370332122, -0.6418233514, 0.2252513319, 0.0984826908, 0.427683115, 0.2031523436, 0.3347710073, 0.1589770913, 0.2815194726, -0.136761263, 0.0131745636, 0.224578321, 0.0837198272, -0.1395099163, 0.1632849723, -0.0118574761, 0.2165132761, 0.0882183164, 0.1616093218, -0.0195054971, 0.3819689155, -0.1094946116, -0.0760948658, 0.2928071916, 0.1094410866, -0.1039121449, 0.0777934939, -0.3227872252, 0.1022260338, -0.1177078635, 0.1059039533, 0.1338492483, -0.0717746541, -0.2860384881, -0.0957181081, 0.2287202775, 0.4395952225, 0.0452024415, 0.2318581939, -0.207823053, 0.3169746101, -0.1538722068, -0.0106308954, 0.0769630894, -0.3803688884, 0.3780267239, -0.1478173584, 0.0793885663, 0.4393115044, 0.4490016997, -0.1216980815, 0.5643338561, 0.0937559083, 0.1662646234, 0.0777895749, -0.1747878641, 0.07629399, 0.339404732, 0.1429421455, -0.5593453646, 0.0119869914, 0.009836534, 0.0507725924, -0.0907636434, 0.0733439624, 0.3212529123, 0.0812146813, -0.1045708358, -0.0404204316, -0.0034828335, 0.084808141, -0.1408281922, -0.0825389922, 0.2572431564, -0.142891556, 0.2666387558, -0.250908643, 0.2829682529, -0.1334727407, 0.2678280771, -0.0321186036, 0.3751235306, 0.3795364499, 0.0595998652, 0.2736057639, -0.1282399446, -0.0425591171, 0.1863373369, -0.007687144, 0.2494966984, 0.3891302943, 0.170057416, 0.2802571058, 0.0582993925, -0.0292894244, -0.1207249314, -0.0304331072, -0.0494102091, -0.0676257014, -0.1022972465, -0.0696651489, -0.2004575431, 0.1851495206, 0.1658860594, -0.3086848855, 0.4326111376, 0.2365029752, -0.086800985, -0.0161569826, 0.1564302891, 0.010688033, -0.1097475216, 0.0504859425, 0.2927235663, 0.3041369319, 0.1310098022, -0.5701601505, -0.1223329753, 0.1272025704, -0.1752166152, -0.5535447001, 0.1471071094, 0.0704302862, 0.1053016782, 0.1867404133, 0.133562237, 0.0324814208, -0.1700442433, 0.0589950457, -0.0915264413, -0.1022746861, 0.3059031963, -0.0794074237, 0.015319638, 0.1056589037, 0.0515683591, 0.0710837692, -0.1111141071, 0.0873576999, -0.2075468898, 0.2392425388, 0.2646925449, 0.2493787408, 0.3220413625, 0.6761337519, -0.160497278, 0.095937863, 0.0055758492, -0.0548030175, -0.0238489993, 0.1650028378, -0.0799586549, -0.3598209023, -0.3013979495, 0.0875920951, 0.3000226617, 0.3268480599, 0.3117432892, -0.1694523096, -0.3693899214, -0.3254947066, 0.0781040043, -0.2393300831, 0.1011591852, 0.3707354367, -0.1734390259, -0.2449708879, 0.0340411961, -0.1015897393, 0.434627682, -0.1382069141, 0.112789467, -0.3447736502, 0.1693845242, 0.649116993, -0.113444373, -0.640267849, -0.267822355, 0.3487849236, 0.2495372146, -0.2667503655, 0.1410764456, 0.2826902866, -0.1879064292, -0.0119998753, 0.881647408, -0.1740207672, -0.2488283813, -0.2054696083, -0.0559660569 ]
https://github.com/huggingface/datasets/issues/1983
The size of CoNLL-2003 is not consistant with the official release.
We should mention in the Conll2003 dataset card that these lines have been removed indeed. If some users are interested in using these lines (maybe to recombine documents ?) then we can add a parameter to the conll2003 dataset to include them. But IMO the default config should stay the current one (without the `-DOCSTART-` stuff), so that you can directly train NER models without additional preprocessing. Let me know what you think
Thanks for the dataset sharing! But when I use conll-2003, I meet some questions. The statistics of conll-2003 in this repo is : \#train 14041 \#dev 3250 \#test 3453 While the official statistics is: \#train 14987 \#dev 3466 \#test 3684 Wish for your reply~
73
The size of CoNLL-2003 is not consistant with the official release. Thanks for the dataset sharing! But when I use conll-2003, I meet some questions. The statistics of conll-2003 in this repo is : \#train 14041 \#dev 3250 \#test 3453 While the official statistics is: \#train 14987 \#dev 3466 \#test 3684 Wish for your reply~ We should mention in the Conll2003 dataset card that these lines have been removed indeed. If some users are interested in using these lines (maybe to recombine documents ?) then we can add a parameter to the conll2003 dataset to include them. But IMO the default config should stay the current one (without the `-DOCSTART-` stuff), so that you can directly train NER models without additional preprocessing. Let me know what you think
[ -0.0790515989, 0.0053054988, 0.0227090195, 0.1767311692, -0.1750466377, 0.0091940686, 0.1926342547, 0.1599834859, -1.0088423491, 0.0919717252, 0.1161214858, 0.0397599153, -0.0169361047, 0.1187618077, -0.0615694374, 0.309782654, 0.0787528455, 0.0600119755, 0.1479185373, -0.1191561744, -0.3082511425, 0.3580760062, -0.3310668766, 0.0405781716, -0.5341426134, 0.1651311964, -0.0984804109, 0.1878359616, -0.4342068732, -0.4354423583, 0.366830945, 0.1122711897, 0.413078934, 0.0164174438, -0.0001118863, -0.1192543879, 0.2520216107, -0.1412216723, -0.0766934827, 0.1694636047, -0.0502098911, -0.2738063931, 0.0147659332, -0.0273163617, -0.0503351949, 0.2545050085, -0.1091153398, 0.2557535768, 0.0737719983, 0.3681803942, 0.2139769942, 0.0384480283, 0.1702186614, -0.0514832996, 0.3541510403, 0.2172907144, -0.0525222495, 0.3811751008, -0.1951489151, 0.1040109172, -0.209963128, 0.2688074112, 0.1873316467, -0.2268105447, 0.3166731894, 0.1540001333, 0.2569657862, -0.2214959115, -0.2121856362, 0.3500758708, 0.2903465629, -0.2142491341, -0.1941875517, -0.2296763957, 0.2725406587, -0.4574779272, 0.0604041703, 0.0433200672, -0.0058562979, 0.0137382504, -0.2138531208, -0.5553429127, -0.2926457524, 0.0585918166, -0.3667201996, 0.388166666, -0.1157285124, -0.1022901386, 0.1817388535, 0.0599912629, 0.6260009408, 0.0103355609, -0.1692814082, -0.1431289166, -0.1197362319, -0.2859584689, -0.0559345484, 0.0654564127, 0.2638854384, -0.0636548325, -0.115692392, -0.4510708451, 0.2121989131, -0.2482628077, -0.0093585672, 0.1131959558, 0.28376472, 0.2398556769, 0.1120827347, 0.2224414796, 0.2796356678, 0.1129840016, -0.2029005438, -0.0597668104, -0.243473947, -0.0676077455, -0.0179154985, -0.2810789943, 0.1291227043, 0.1988325864, 0.0639457628, -0.0796379223, -0.1012120619, 0.0184939709, 0.0820041299, 0.4512066543, 0.0034325272, -0.1984363645, -0.0845289528, -0.3352281451, -0.1166150197, -0.2821263969, -0.082938008, -0.0459288582, 0.0355486944, -0.2012433857, 0.1888842136, -0.1283840835, 0.2089136839, 0.3528966308, 0.1774380803, -0.1730100811, 0.1446496099, -0.0073265545, -0.2975330651, -0.1950110793, -0.0585651137, 0.1618613601, -0.279987067, 0.0485449955, -0.0993475467, -0.3043544888, -0.4162810147, 0.1212235987, -0.1019024551, 0.0118264928, 0.6224346161, 0.1664647758, 0.0826452449, -0.1743583679, 0.0671647936, -0.4080203474, -0.3539325595, -0.175871402, 0.3193430007, 0.2330730557, -0.230045259, -0.1173341423, -0.091165334, -0.1505450904, 0.1310708821, 0.0084170513, -0.1777451038, 0.110576272, -0.0720573813, -0.2215398848, 0.251827538, -0.3360651731, -0.3417874575, 0.1112435609, 0.2198239267, -0.3266861141, -0.0330131389, -0.0516681746, 0.3488054574, -0.0335535631, 0.0222428367, 0.0991626233, 0.0220308099, -0.2132711262, -0.3179377019, -0.2815464139, -0.3954845965, -0.1032077819, 0.1473605633, -0.1974994987, -0.3529446423, 0.03155661, 0.3055688441, 0.1924330741, 0.011237476, 0.3021038175, 0.3747837842, -0.1904215664, 0.0783940107, 0.2963240743, -0.6002668142, 0.0333614871, -0.0880930498, 0.2312197685, 0.7295770049, -0.0865770355, -0.0486964732, -0.1075350642, 0.1938241571, -0.2102124691, 0.1165840402, 0.0602157488, 0.2370423079, 0.0884938538, -0.1364406496, 0.0785466433, -0.2363152206, 0.1135209799, -0.227884993, -0.1792078614, -0.0897695869, -0.0024871826, 0.0092414767, 0.0679098368, -0.1765297055, 0.2218803763, 0.0440060832, 0.3089009821, 0.3044916689, -0.313616544, 0.080999203, -0.0011140257, 0.0070045963, 0.0568196476, 0.0082931742, -0.2714274228, -0.3744515777, 0.2555374205, -0.0846405625, 0.0808000118, 0.4652872682, -0.0698694587, 0.2097195387, -0.0009585842, -0.1454472095, -0.0171781182, -0.0766732767, -0.5671275258, -0.2756131589, 0.359734714, -0.0090085194, 0.380638361, -0.3556631207, -0.0670059696, 0.2865486145, 0.0019145086, -0.4107645154, 0.441816628, -0.3745269477, -0.0814529881, 0.1061327904, 0.4837850034, 0.0947722793, 0.2629712522, 0.2847138941, 0.1773801148, -0.0606922731, -0.0977046564, 0.3825394511, 0.0797181576, 0.6006680727, 0.2228210717, 0.0153303817, 0.0987114012, 0.0872502849, -0.1637641191, 0.0181888044, 0.1527939141, -0.2198045999, -0.2572899461, 0.0601755083, -0.0677529648, -0.0747491121, -0.0177050754, -0.3243749738, -0.1396199167, 0.0603802763, -0.238569051, 0.0713472292, -0.0294603687, -0.5579314232, 0.3389033973, -0.2254011333, 0.2155263424, 0.1509423554, 0.0823791027, -0.5002082586, 0.1482925564, -0.1069184095, -0.3531935811, 0.0481997207, -0.4182687998, 0.0668952987, 0.2385117412, -0.3264964223, 0.3696914017, 0.134767279, 0.190429613, 0.2230059654, -0.3871459067, -0.1640753895, 0.2841858268, -0.1811349988, 0.0183177739, -0.2151918113, -0.0226861015, -0.3398991823, 0.2574865222, -0.1655433774, -0.4132041335, -0.0645679012, -0.1689621508, -0.0013989117, 0.0684765801, 0.0359241553, 0.0072926618, -0.0268487595, -0.0757277161, -0.4006311297, 0.2760810852, -0.0114548411, -0.2453074753, 0.2559420466, 0.0025321692, -0.1818641424, -0.0200049654, -0.1705815643, 0.1318052113, -0.108192727, -0.6059449911, 0.236382097, -0.0703081712, -0.0106607825, -0.1274933666, -0.0597986579, 0.3178861737, 0.2325276136, -0.026087692, 0.094921276, 0.0383143574, 0.2087804228, -0.1287233531, 0.4611241221, -0.0976863652, 0.077309683, 0.045961082, 0.3247408271, 0.2846693099, -0.2928977609, -0.1263488531, 0.0874621868, 0.3358827829, 0.0002201162, 0.2209348828, 0.0259128623, 0.0353938192, 0.0152606145, 0.3652923703, 0.2062507123, -0.1151997894, 0.0174174458, 0.2381310761, 0.1925427467, -0.1675614566, 0.0327133536, 0.2342021018, 0.6284464002, -0.1660374701, 0.0329457223, 0.0276785716, -0.333124876, -0.1734181345, -0.1224721521, 0.190443933, -0.1301647872, 0.1776044071, 0.5518292189, -0.5440957546, 0.2639871538, -0.0514191873, 0.0805387124, 0.1151378602, -0.2817250192, -0.1604717374, -0.0060487911, 0.467994839, -0.0481594652, -0.412579149, 0.3504714966, 0.165305078, -0.4734292626, -0.1215543598, -0.2587652504, -0.5339022279, 1.0868718624, 0.5440806746, -0.0359399244, -0.2314252853, 0.3389771581, -0.0286156461, -0.2221271545, -0.1624898463, -0.2948036492, 0.0752848983, -0.0209757984, -0.0550568737, -0.2603352666, -0.1130759269, -0.2074433863, -0.0102985725, 0.2051169574, -0.1974100173, 0.0964840055, 0.2191102654, 0.3813681006, 0.1402321756, 0.2431926727, 0.0593852885, 0.4666587114, 0.4851012826, 0.1532856822, -0.0573613979, -0.2719491124, 0.2822732329, -0.1091229916, 0.5299077034, 0.3107828796, -0.0572632663, -0.0213017538, -0.2038784027, 0.0771391615, 0.0760963038, 0.2159231007, 0.3242278993, -0.2165443599, -0.3204387426, -0.120432198, 0.0201634318, 0.2061259896, -0.2027852535, -0.4543352425, -0.14858073, -0.0730136335, -0.1013201624, 0.4920629263, 0.8532772064, 0.0660225004, 0.2991862297, -0.0171365757, -0.2874810696, 0.4888046086, -0.0867126882, 0.1391887367, -0.3684086204, -0.0079656597, 0.0710504279, -0.108803235, -0.1466743797, 0.0864089429, -0.1399549693, 0.0994460955, -0.1318169087, -0.2483178377, -0.0121792462, 0.3627191782, 0.0624585524, 0.0470752902, 0.6486371756, 0.0402390435, -0.0018703062, -0.1850620508, -0.0330135599, -0.0668511018, -0.116280362, 0.0411880463, -0.1368859261, -0.111540027, 0.0805258453, -0.0213481411, 0.1995275319, -0.4030070305, 0.0898967385, 0.5373715758, 0.1734158099, 0.2524738014, -0.2667483091, -0.0780734867, 0.2593310773, -0.120040834, 0.398303777, 0.1348485351, 0.0571175143, -0.2200695574, -0.2907456756, -0.0389298834, 0.1188781932, 0.1148880646, 0.002232343, -0.3247585595, 0.1397279799, -0.5065875649, 0.1417085975, 0.0707654953, 0.0411730856, -0.1231541336, 0.2083688825, -0.1243159622, -0.0224424303, 0.0308006443, -0.1415690184, -0.3870671988, -0.0869079679, -0.1063449159, 0.2709776461, 0.2768912911, 0.1275363415, 0.149686262, -0.0527110472, -0.0856912136, 0.2901486754, -0.1613326073, -0.1506539881, 0.1519983858, 0.4072238803, -0.0559114218, -0.0959186703, 0.2289099842, 0.2441458255, 0.0138015049, -0.0843920633, 0.2946994007, -0.4281077385, 0.1821243465, -0.2010681033, 0.4821612239, -0.112501651, -0.0547959656, -0.0732147396, -0.260173738, -0.3238524199, -0.0153864678, -0.1974713504, -0.0878956914, -0.2802776694, 0.0168673303, -0.2452737391, -0.0561280623, 0.032081075, -0.0878541544, -0.0835090727, -0.1851973832, -0.0691233575, 0.1099173576, -0.0350422002, -0.1135482341, 0.186198011, 0.0987315178, -0.3318322301, -0.0568742305, -0.0724850148, -0.2056241333, 0.2165590972, 0.6052776575, -0.4788674414, 0.0174343549, 0.2167272568, 0.3572168648, 0.0631686449, 0.2910675704, 0.1918241978, 0.5138146281, -0.0972710699, 0.016756162, -0.0803733245, 0.1394072175, -0.3710767031, -0.0375036746, -0.0178773999, 0.0828924924, -0.0480666086, -0.0041854531, 0.138723135, 0.1144267023, -0.0810979903, -0.1132284701, 0.2425556481, 0.2390529215, -0.2424699664, 0.0384460539, -0.1725451797, 0.05876467, -0.0347020328, 0.1650695652, 0.1652332842, -0.0666310117, -0.1837200969, 0.1502305567, -0.0941497535, 0.4256554544, -0.0145785399, 0.2439222783, 0.0069966242, 0.3048892915, 0.3469515443, -0.1299916655, 0.1580553949, -0.0452578776, 0.519287169, -0.0432183258, -0.1320543587, 0.3089761734, 0.341555208, -0.4437060654, 0.457395494, 0.1989682019, 0.1121174544, 0.0746015608, -0.0678190812, 0.0970053375, 0.4011938572, -0.1341475248, -0.5298087001, 0.0278161727, -0.0927998424, -0.1768020391, -0.164904207, -0.0588302836, 0.4024439454, 0.3872844577, -0.0608080886, -0.1517050862, -0.0667158887, 0.0923592076, -0.244411245, 0.0574363545, 0.5005826354, -0.022106152, 0.0581261031, -0.24973239, 0.0316068456, -0.1127102375, -0.0047121067, -0.1360363364, 0.4472357333, 0.2742930055, 0.0504243821, 0.1626673937, -0.1984318197, 0.2732846141, 0.049783051, -0.144620195, 0.1420492679, 0.5019465685, 0.218043983, 0.1841220111, 0.1261108965, -0.0163301602, -0.2222193927, -0.1227298081, 0.0380658023, -0.0254142731, 0.1366610527, 0.2436606586, -0.178557232, 0.1551505625, 0.2969260812, -0.4654333889, 0.3182476759, 0.57495749, 0.1311012059, 0.0354701057, 0.0578067712, 0.0711147636, -0.1768958569, 0.0446703099, 0.2089404762, 0.1623996794, -0.1082177758, -0.5213890076, -0.0811593831, 0.2729400098, -0.1001615077, -0.1645811498, 0.1313475966, 0.1835096776, 0.077796191, 0.0132114664, -0.1120464206, -0.0527080037, -0.4384756982, 0.180906564, -0.1560254097, 0.0202432293, -0.1199270189, -0.0052764993, 0.0289471224, -0.1149221733, -0.0118540078, -0.1289928406, -0.0810680091, -0.0968910456, 0.1312233806, 0.3844473958, 0.4371200204, 0.2869355679, 0.2150786966, 0.3534068763, -0.0599927902, -0.2232440412, -0.0786947906, 0.2101552784, -0.2013530731, -0.058558315, -0.2093857229, -0.2135192752, -0.3199552298, -0.1325806379, 0.1056050509, 0.2887850404, 0.2079715878, -0.0856634378, -0.348472476, -0.1450228542, 0.1012750715, -0.2613719702, 0.2602859139, 0.276410073, -0.1039938927, -0.2661340833, -0.0656879693, -0.0074327327, 0.3319244981, 0.0968857557, 0.2977834642, -0.4783824086, -0.0235060453, 0.2744103968, 0.0364438966, -0.4960815609, -0.0709709078, 0.4799346626, 0.1348757446, -0.2606060505, 0.3722869158, 0.1307559907, -0.0844979063, -0.1351376027, 0.5800476074, -0.3410001397, -0.3498989642, -0.5202120543, -0.1578115374 ]
https://github.com/huggingface/datasets/issues/1983
The size of CoNLL-2003 is not consistant with the official release.
@lhoestq Yes, I agree adding a small note should be sufficient. Currently, NLTK's `ConllCorpusReader` ignores the `-DOCSTART-` lines so I think it's ok if we do the same. If there is an interest in the future to use these lines, then we can include them.
Thanks for the dataset sharing! But when I use conll-2003, I meet some questions. The statistics of conll-2003 in this repo is : \#train 14041 \#dev 3250 \#test 3453 While the official statistics is: \#train 14987 \#dev 3466 \#test 3684 Wish for your reply~
45
The size of CoNLL-2003 is not consistant with the official release. Thanks for the dataset sharing! But when I use conll-2003, I meet some questions. The statistics of conll-2003 in this repo is : \#train 14041 \#dev 3250 \#test 3453 While the official statistics is: \#train 14987 \#dev 3466 \#test 3684 Wish for your reply~ @lhoestq Yes, I agree adding a small note should be sufficient. Currently, NLTK's `ConllCorpusReader` ignores the `-DOCSTART-` lines so I think it's ok if we do the same. If there is an interest in the future to use these lines, then we can include them.
[ 0.1301078945, 0.09628959, 0.0394508839, 0.0533670299, -0.2169308513, 0.0075208396, 0.1542733312, -0.0001620967, -0.9731165171, 0.0672691017, 0.2056126744, 0.0701418296, -0.0513289459, -0.0842718109, -0.0803271905, 0.3419834077, -0.067574501, 0.3278602362, 0.2285477072, -0.122763522, -0.3668458462, 0.2775171101, -0.2749781013, -0.0082389675, -0.393466115, 0.0806119069, -0.1419337541, 0.2710107863, -0.2415266633, -0.5320184231, 0.3974421024, 0.2227786183, 0.0772375092, 0.0288815051, -0.000115512, -0.2126497328, 0.3872513771, -0.2159654796, -0.2099740803, 0.473077178, -0.1129040942, -0.7660291195, -0.0443730727, -0.4447827637, 0.0319344774, 0.5121639967, -0.0817524493, 0.1743454933, 0.2542613745, 0.1613584459, 0.1676936001, 0.239318341, 0.2375083715, 0.1333177984, 0.3475005329, -0.024968762, -0.1696097702, 0.5508458018, -0.2081133276, 0.1203339547, -0.2780004144, 0.3548772931, 0.1467533708, -0.2336138785, 0.1369726658, -0.0380338654, 0.2645013928, -0.0674743429, -0.1419990063, 0.2909506559, 0.2943903804, -0.2650746107, -0.1194988564, -0.5421311259, 0.2677495778, -0.4985671639, 0.0995381474, -0.0365588143, -0.0151116401, 0.0170590375, -0.2545988858, -0.41988796, -0.3282956481, 0.1200168654, -0.1598799229, 0.4180839956, -0.0272401497, 0.0301426128, 0.1538595557, 0.1586639583, 0.5796192288, 0.0767199472, -0.2444944233, 0.0215662532, -0.0377819799, -0.4418596625, 0.1902304739, -0.1309909075, 0.1642338037, -0.2104476839, -0.1204379424, -0.4199703932, -0.090106681, -0.0593099147, 0.0193501525, 0.0543409437, 0.412879616, 0.3364707828, 0.240822494, -0.1000609398, 0.411439836, 0.143622309, -0.2529667914, -0.1811211556, -0.1239448637, 0.1675829142, -0.2642979026, -0.2406898737, 0.162481159, 0.1565834433, -0.0349362493, -0.0735281706, -0.0618177503, -0.0178563483, 0.2747395933, 0.3580441475, 0.0686172694, -0.0945585296, 0.0771589279, -0.2723607421, -0.0594632924, -0.348752737, 0.005907923, -0.0171537958, -0.1843850315, -0.0562590249, 0.3026266992, -0.3127996624, 0.2598235309, 0.3169442713, 0.1503161937, 0.0124025829, 0.0943748206, 0.0488493554, -0.0882599801, -0.1484766304, 0.0212389175, 0.1710011363, -0.3730174601, 0.2206995636, 0.107878983, -0.3871750832, -0.4981611669, 0.0574468225, -0.3294166028, -0.0661148727, 0.569233954, 0.0615518354, 0.1533859968, -0.2984736264, 0.2479482144, -0.1679144651, -0.1764442325, -0.1377007514, 0.2795295417, 0.0724268556, 0.0772198737, -0.2327023, -0.2192713618, -0.1420799941, 0.2104844749, 0.0464699827, -0.1911342293, 0.1837271452, -0.0846438408, -0.0169072822, 0.4908642173, -0.3189495802, -0.2493044287, 0.4301476479, -0.0368911326, -0.2194398195, -0.0988790095, 0.1389306039, 0.1706575006, -0.1958430111, -0.0332032032, 0.1517599672, 0.0310923997, 0.128944993, -0.3339418471, -0.2219435573, -0.2317955047, -0.2167308629, 0.1633665562, -0.2227860391, -0.2178168893, 0.2956930697, 0.4338989258, 0.0595173165, -0.0693798661, 0.2499161512, 0.3685534894, -0.2128673792, -0.1087667793, 0.4909598231, -0.3863345087, 0.0884434879, 0.0807876736, 0.2146432847, 0.7478346825, -0.2653276622, -0.2305813134, -0.1599819958, 0.2598364055, -0.0037722187, 0.1104201451, 0.152140975, 0.1595449448, 0.2314087898, 0.1487796605, 0.0730551183, -0.161521405, 0.0371760093, 0.0772237331, -0.1853346229, -0.0302616153, -0.1165646911, 0.1630451381, 0.3133795857, 0.0409843028, 0.2251077294, -0.1252539158, 0.369248271, 0.0459585339, -0.0481309108, 0.0709811151, -0.1661586761, 0.0461779386, 0.2672269642, -0.0127220321, -0.3932288885, -0.4152542651, 0.0613914281, 0.0116802566, 0.0987938195, 0.5511184931, -0.2438949645, 0.0746924281, -0.0841131508, -0.190233767, -0.1499231011, -0.2079460919, -0.2950226367, -0.2136437893, 0.3231470883, -0.2128849179, 0.1534336507, -0.31016922, -0.0634001866, 0.4416493475, -0.1853233874, -0.1847078204, 0.3180698156, -0.2418947369, -0.0890739933, 0.2481346726, 0.225614056, 0.0159506015, 0.2709317505, 0.2830390334, 0.1357547194, -0.2408514917, -0.1283156723, 0.1752321422, 0.2388233244, 0.4394446909, 0.2391957939, 0.0922866613, 0.1148137897, 0.0340715125, -0.0045288727, -0.0054155663, -0.0277316011, -0.2279877961, -0.3621945679, 0.1602541804, -0.1504974812, -0.0650821924, -0.3093798757, -0.2254505455, -0.3511164784, 0.1018533707, -0.1388073117, -0.1369157732, 0.1145197004, -0.5290243626, 0.4189195335, -0.0392220095, 0.2031291723, 0.204745397, -0.2497674525, -0.5104731917, 0.0853451192, -0.0410052389, -0.3061437011, 0.3523702919, -0.4794406593, 0.0280888081, 0.2486198992, -0.4806947708, 0.3634319305, -0.0830030441, -0.1581349224, 0.2018323392, -0.2051298171, -0.3833320737, 0.1208052784, -0.2449852824, 0.224606812, -0.1539995968, 0.0005650073, -0.0720464289, 0.2123024911, -0.4482308924, -0.1638090014, 0.1669666767, -0.3378914297, 0.1977346539, -0.0912570655, 0.0160743706, 0.0817924067, -0.1622827947, 0.2011844218, -0.1818697602, 0.115479514, -0.1136726364, 0.0167078823, 0.2259346247, -0.0811314136, -0.1662235409, 0.0699584931, -0.2387208343, 0.0106037837, -0.3078626394, -0.7261510491, 0.0743751153, 0.0595255718, -0.0601579174, -0.1150820926, 0.0376047567, 0.2131719887, 0.1127523929, 0.0523196161, -0.0855742022, -0.1226233095, 0.1621291786, 0.09451098, 0.5319262743, -0.2228879631, 0.3096297979, -0.0022928789, 0.1590558887, 0.2853762507, -0.0007305796, -0.225256592, -0.0015947074, 0.2930029929, 0.2588473856, 0.328658253, 0.3251230419, 0.1030991897, -0.1379561573, 0.453840673, 0.0773999542, -0.1460181177, 0.0553966612, 0.1441565156, 0.0169386491, -0.4341695309, 0.0573547259, 0.1168068424, 0.562643826, -0.218477726, -0.0084212795, -0.1097340956, -0.1650134176, -0.2341178507, -0.0293202102, 0.3005229831, -0.0291777272, 0.2054887414, 0.2458184063, -0.5631024241, 0.2150882781, -0.0362779535, 0.0829901993, 0.1746262461, -0.2535675764, -0.2356998622, 0.104433924, 0.0360959917, -0.0938178375, -0.206331104, 0.3459341824, 0.3252567053, -0.2910985947, -0.2175762057, -0.2208030373, -0.2699081898, 1.2819190025, 0.4255767763, -0.3862962127, 0.0430356599, 0.3762323558, -0.1483179182, -0.1491270959, -0.2190727293, -0.3982903659, -0.176394552, -0.1942517757, 0.1178863645, -0.0154517777, -0.0890325755, -0.123460345, 0.0912797451, 0.3205407858, -0.1780037582, 0.0968417972, 0.3929634392, 0.2283862084, 0.5601583123, 0.1672635376, 0.0511208847, 0.318878144, -0.0553446598, 0.1946554929, 0.1176551282, -0.0828340352, 0.2511397004, -0.3525593281, 0.4620983005, 0.3488353789, 0.1313167512, -0.1007164121, -0.1621298045, 0.0177412536, 0.1748205423, 0.3541528285, 0.1557815373, -0.3248018622, -0.3251655698, -0.1433885992, 0.2663401663, 0.0685091168, -0.1487399787, -0.4119541943, -0.1902712286, -0.2139975429, -0.1538043618, 0.2392159402, 0.8080550432, 0.1239835098, 0.170426935, 0.3559845686, -0.2942593396, 0.4923350811, 0.0814508945, 0.0388292447, -0.3318095505, 0.2694885731, 0.1430427283, -0.041259598, -0.246694684, -0.0483897924, -0.4165380895, -0.0031491816, 0.0022390634, -0.2413030863, -0.0930722356, 0.3237605095, 0.0527841002, 0.0639535785, 0.2752559781, 0.0389373973, 0.132610023, -0.0510025285, 0.0120956413, -0.2595162392, -0.175807178, -0.1770466268, -0.353235364, -0.3114777207, 0.1412596703, 0.0185094029, -0.0236559734, -0.4095526338, 0.1921207607, 0.2770201266, 0.3589102626, 0.2970501184, -0.2169284672, -0.1093110442, 0.2528964877, -0.2034262568, 0.3574485183, 0.2469752431, 0.0348187536, -0.2830649018, -0.1956481636, 0.1517182291, -0.1001776457, -0.0376819894, 0.1460779309, -0.1781593859, 0.014208056, -0.3417792618, -0.0354534872, 0.3411014676, -0.087754555, -0.0100298822, 0.1375861913, 0.0932519585, -0.0353012942, -0.1563229114, -0.2820819318, -0.206004709, -0.0444565825, -0.3939485252, 0.1372537762, 0.1824112236, -0.0218912549, 0.0423908755, 0.0228500217, 0.0014151186, 0.12895675, -0.4131374061, -0.0770955682, -0.0668572709, 0.5177922845, -0.2952236235, -0.291372925, 0.2481761873, 0.194796443, 0.2999888062, -0.102282539, 0.2632979751, -0.4071255028, 0.2513204813, -0.2720454335, 0.445905894, 0.0000083297, 0.4026785493, -0.0745480582, -0.1872903407, -0.2772980034, -0.2720988393, -0.2297483087, 0.0107980296, -0.1879495978, 0.0458858237, -0.145642966, -0.1231527328, -0.0274068527, 0.1666630358, -0.0020092577, -0.1085648239, 0.0261019245, 0.1678994745, 0.0458098054, -0.0362753272, 0.2290017605, 0.0017384067, -0.1395782381, -0.0205960665, 0.0394501239, -0.3833726943, 0.1314444542, 0.6604417562, -0.5886902213, 0.4171704352, 0.2511739433, 0.2564392388, -0.0192744508, 0.3532114625, -0.1148338467, 0.5428197384, -0.0046754368, 0.1038531512, 0.2478196025, 0.0658435524, -0.3922310472, 0.1441468298, -0.0034275688, 0.1552129686, -0.0760345832, 0.0041327924, -0.0537700802, 0.0722348988, -0.2965032458, -0.1990163028, 0.2163129151, 0.1753440648, -0.2990164757, 0.1887124181, -0.1672665477, -0.034873616, 0.1587669551, 0.1492213607, 0.031630218, -0.1084924415, -0.187009871, 0.2079921961, -0.1151560694, 0.3894236088, -0.0186802987, 0.2622981369, -0.0982708707, 0.2752374113, 0.0979674831, -0.1320032477, 0.264331609, -0.4030513167, 0.526894331, -0.1661984026, -0.1249703094, 0.2696355879, 0.1843376011, -0.2103804648, 0.3639316559, 0.31023103, 0.099276334, 0.2528161705, 0.0409564897, 0.1101133078, 0.1543634534, 0.1772450954, -0.6114677191, 0.1304254532, -0.021784693, 0.037178304, 0.0025651008, 0.2486211061, 0.1974563301, 0.113574788, -0.0705641434, -0.0309346467, -0.3614550531, 0.0356951542, -0.0779794976, 0.2171179205, 0.3358730972, 0.1498036683, 0.0945754796, -0.3691617846, 0.0371610746, -0.163991645, -0.0264081657, -0.1165780276, 0.423006475, 0.3049896955, 0.0142474901, 0.1797240674, -0.0623151287, 0.1979971975, 0.1574593186, -0.1397766471, 0.0717099458, 0.3436503112, 0.0809432119, 0.2746036649, 0.1012332067, -0.0663011223, 0.040720094, -0.1917508543, -0.1818825901, 0.0257626884, 0.1480091065, 0.1553256661, -0.2714479268, 0.1351744533, 0.1511497647, -0.2748748958, 0.3268386722, 0.3695691228, 0.3335464597, 0.092220664, -0.1199246645, 0.0460597053, -0.0518144555, 0.1357111633, 0.3351663947, 0.1156702638, 0.0591659583, -0.6472343206, -0.2615152001, 0.2753868699, -0.185898304, -0.645183444, 0.3044982255, 0.0233298168, 0.1042952836, 0.0785891712, -0.112003848, -0.1032506302, -0.4663712382, -0.12247926, -0.1709788144, -0.1859326363, 0.0332653075, -0.0808855295, 0.0616830736, -0.0555324182, 0.0894193053, 0.084513247, -0.0057156906, -0.079898335, 0.1564453542, 0.4028079808, 0.5088060498, 0.2772644758, 0.1935527772, 0.5034732819, -0.1609892845, -0.2187093645, 0.0961427614, 0.0153528564, -0.0406199805, -0.1719726026, -0.2326993048, -0.0901056826, -0.2025835514, 0.1903233081, -0.0134505518, 0.2978093922, 0.2321577072, -0.0934984013, -0.1128150374, -0.1320217848, -0.0002959594, -0.1756170243, 0.0633369088, 0.2933472991, -0.099039793, -0.0328284465, -0.0693779588, -0.2204187065, 0.2743245363, -0.0955022499, 0.1714580953, -0.2696416378, 0.1478173584, 0.0846034139, 0.1020463705, -0.5734165907, -0.0021999925, 0.4456372857, 0.3907032609, -0.3774712384, 0.2812388241, 0.1921704561, -0.1185682565, 0.0316980109, 0.6229762435, -0.2807606459, -0.5063768029, -0.4081285, -0.2519996762 ]
https://github.com/huggingface/datasets/issues/1983
The size of CoNLL-2003 is not consistant with the official release.
I added a mention of this in conll2003's dataset card: https://github.com/huggingface/datasets/blob/fc9796920da88486c3b97690969aabf03d6b4088/datasets/conll2003/README.md#conll2003 Edit: just saw your PR @mariosasko (noticed it too late ^^) Let me take a look at it :)
Thanks for the dataset sharing! But when I use conll-2003, I meet some questions. The statistics of conll-2003 in this repo is : \#train 14041 \#dev 3250 \#test 3453 While the official statistics is: \#train 14987 \#dev 3466 \#test 3684 Wish for your reply~
30
The size of CoNLL-2003 is not consistant with the official release. Thanks for the dataset sharing! But when I use conll-2003, I meet some questions. The statistics of conll-2003 in this repo is : \#train 14041 \#dev 3250 \#test 3453 While the official statistics is: \#train 14987 \#dev 3466 \#test 3684 Wish for your reply~ I added a mention of this in conll2003's dataset card: https://github.com/huggingface/datasets/blob/fc9796920da88486c3b97690969aabf03d6b4088/datasets/conll2003/README.md#conll2003 Edit: just saw your PR @mariosasko (noticed it too late ^^) Let me take a look at it :)
[ -0.1177800074, -0.149090156, -0.1239806712, 0.4063586891, -0.142168209, -0.1860254109, 0.269566834, 0.0108109657, -0.9765856266, 0.1297613382, 0.0317089111, -0.046530053, 0.0295430012, 0.1740378439, -0.073604688, 0.1277457625, 0.0628564134, -0.119488731, -0.0711034685, -0.1619691551, -0.146912083, 0.4227973819, -0.3452404141, -0.0569808967, -0.4710492492, 0.2424957454, -0.122627683, 0.0701177716, -0.5567560196, -0.3233382702, 0.4087004364, -0.0866100043, 0.1769326478, 0.3554419875, -0.0001040467, -0.1748575419, 0.2246980369, -0.1157423183, -0.065555945, 0.2404021919, -0.2004334331, -0.1920391619, -0.1547531337, -0.0302861109, 0.028111726, 0.2732360363, -0.3089978099, 0.2993924916, 0.182216391, 0.2430880815, 0.2945326269, 0.0809209198, 0.2179148197, -0.1760448664, 0.2989802957, 0.1917587221, -0.1165724993, 0.2260446548, -0.1307201982, 0.2275841534, -0.0872838423, 0.2860422134, 0.3349745274, -0.1724301428, 0.0849059373, -0.026191745, -0.0870814174, -0.0864439905, 0.0954531729, 0.3211067319, 0.394913286, -0.3121784925, -0.4026528299, -0.191368863, 0.0310517363, -0.3462637067, 0.056320373, 0.0096388273, 0.0461320132, -0.0584370084, -0.4982583523, -0.1443536282, -0.2075567842, -0.0425582603, -0.3624978065, 0.4512245655, -0.2420070469, 0.0177786704, 0.1008714586, -0.0527407192, 0.4142465889, 0.0274848901, -0.092244193, -0.0860951915, -0.2407744229, -0.3211271763, 0.1106197983, -0.1267758161, 0.4134696126, -0.1761904359, -0.3213566542, -0.4195227325, 0.0159683712, -0.3341849446, 0.1879395247, 0.2340653688, 0.0104158837, 0.1668916494, 0.1190473586, 0.0761187449, 0.2723383904, 0.0930755064, -0.2449100614, -0.1001407057, -0.2591288686, -0.0199951287, -0.1423549056, -0.2868366241, -0.1039169207, 0.0991117135, -0.0918711275, -0.1583967954, -0.0469874144, 0.1526240408, -0.007952176, 0.4125006497, -0.1267409623, -0.055519063, -0.025935255, -0.2938327193, -0.2362733632, -0.306984812, -0.1196084023, -0.206977427, -0.1334818155, -0.1495284289, 0.2941321731, -0.1133819222, 0.2720681131, 0.2048840076, 0.0209798515, -0.131098941, 0.0350978598, -0.0036284998, -0.2124439776, -0.2451637089, -0.0987365395, 0.1680232435, -0.2560645044, -0.1284075081, 0.0571404696, -0.3249763846, -0.3823206425, 0.1705316007, -0.1979278326, -0.0290266164, 0.5316369534, 0.0959369093, 0.0505766459, 0.1557333171, 0.1403919458, -0.3408176899, -0.0699076429, -0.2292315662, 0.3176358938, 0.0836290717, -0.19078511, -0.0787202343, -0.0876962394, -0.2094606012, 0.1775775403, 0.2158055305, -0.0621554442, -0.0934580266, -0.1083809435, -0.2343145162, 0.1496348679, -0.3616794348, -0.4399794936, 0.220920831, 0.1757690907, -0.2946112752, 0.0770806447, -0.0218824558, 0.3208505511, 0.0463329889, 0.091138579, 0.0918140113, 0.041753009, -0.0348819569, -0.1790222526, -0.3428449333, -0.3542280197, -0.1385770738, 0.2041585445, -0.3445735276, -0.1481052637, 0.073054269, 0.3761891127, 0.2262466699, -0.0707726777, 0.2620154023, 0.4964690208, -0.1420654655, 0.0202059336, 0.261814177, -0.347964257, 0.0389451236, 0.120395869, 0.1105894744, 0.7259976268, -0.1705367565, -0.2706593275, 0.0465810373, 0.2493649125, -0.0999447703, 0.2031152248, 0.0404588394, 0.3650391102, -0.0040919706, -0.1104712486, 0.1139743701, -0.0178985558, -0.0292757489, 0.1010709554, -0.1370583922, -0.0016142307, -0.0653421134, 0.1549782157, 0.2403030246, -0.041192174, 0.1002100855, -0.0479530692, 0.2280957103, 0.3012153506, -0.203102529, 0.2046182603, 0.0422942936, 0.0624803826, 0.2254554182, 0.08787027, -0.4247789681, -0.2324252874, 0.2775830925, -0.1241128594, 0.2256473154, 0.484554857, -0.2323310077, 0.1195515096, -0.0293782949, 0.0251129344, -0.0848059654, 0.0052105933, -0.3428605795, -0.2204591334, 0.181562826, 0.0575421751, 0.2655124366, -0.3689694703, 0.0382845663, 0.3136283457, -0.0431070738, -0.3063025177, 0.2688685954, -0.4913649559, -0.082264863, 0.2280890048, 0.4648602009, 0.1076150239, 0.2788805068, 0.4253000021, 0.0682943389, 0.0518129542, -0.0445777923, 0.1996298134, 0.047905162, 0.4186436534, 0.1436413229, 0.0831095427, 0.096578151, -0.0389879383, -0.0646344274, -0.0050438419, 0.0042763986, -0.082438536, -0.2426884919, -0.0907872319, -0.0100192651, -0.0121672601, -0.217655763, -0.251437515, -0.1626994014, 0.1214176267, -0.3009019792, 0.0510758087, -0.063310504, -0.3588639498, 0.1681366861, 0.0136895776, 0.3135439754, 0.2385150045, 0.1388936192, -0.4799482226, 0.2259171456, -0.1357046813, -0.3781638145, 0.237961933, -0.416647017, 0.0695397705, 0.0819515735, -0.2997787595, 0.386254251, -0.1278281063, 0.0064578447, 0.163887471, -0.3423287868, -0.2572751343, 0.3563472629, -0.0730229095, -0.1017330512, -0.2386431098, 0.0057299137, -0.3039765358, 0.0857306123, -0.2400321364, -0.2603770196, -0.0834301934, -0.0932429805, 0.1943804771, 0.0187603906, -0.0278613232, 0.0240292549, 0.114752844, 0.1572364867, -0.2134675682, 0.1495198309, -0.2803866267, -0.3806746006, 0.1139086634, -0.0351744257, -0.2225522995, 0.0481994972, 0.0305068418, 0.0931162983, -0.1576380432, -0.688348949, -0.0888283104, -0.1576085538, 0.1290766895, -0.1252103746, 0.1556965113, 0.223045662, 0.0539970472, -0.1211585104, -0.11042355, -0.1563746184, 0.0411269739, 0.0945947617, 0.666049242, -0.1945739686, 0.2059249729, 0.2436728626, 0.4627049565, 0.4733082056, -0.2580980957, -0.0867395848, -0.0067990636, 0.2599475384, 0.0125003997, 0.3047554493, 0.3487644494, -0.0693456084, -0.0428560451, 0.3592763245, 0.2311929911, -0.011224756, 0.1118724197, 0.2965575159, 0.1082374156, -0.0736090839, -0.0059641208, 0.4028125405, 0.4447234869, -0.1062420458, 0.1473760754, -0.1348291039, -0.1046173573, -0.1210755929, -0.2605175078, 0.0995495096, -0.1071478873, 0.2515939474, 0.3448480964, -0.6651982665, 0.3250334859, 0.0519773699, 0.0264491104, 0.064659372, -0.1042147428, -0.1022304669, 0.0845466703, 0.4017075002, 0.0158036854, -0.1736899316, 0.2601075172, -0.0285713524, -0.3924729824, -0.0987123623, -0.4133393764, -0.418616116, 1.0134061575, 0.4779087305, -0.1989346147, -0.0723820329, 0.2843051553, 0.1422548741, -0.0698136315, -0.1559869349, -0.3303982317, -0.1588707119, 0.0416567847, 0.0585854836, -0.0234087929, 0.0060519017, -0.1393434703, -0.1141656116, 0.2211965024, -0.2400445044, 0.0303375162, 0.2552058399, 0.4171557426, 0.2711314261, 0.1991779059, -0.022170553, 0.359005034, 0.2364830673, 0.387263, 0.0796743184, -0.2558591664, 0.3316526711, -0.0051721521, 0.4434925914, 0.3573234975, -0.0277480558, -0.1808558106, -0.2613327801, 0.1665477455, 0.0823952928, 0.2123357803, 0.3883031011, -0.0115759932, -0.2462444752, -0.1123890728, 0.1828770041, 0.1039714217, -0.0659532323, -0.2461933792, -0.0813811421, 0.0203255974, -0.0806613564, 0.2885068357, 0.8127249479, -0.0819903612, 0.0596108362, 0.0411756076, -0.3376260996, 0.2398923039, -0.0695429444, 0.1148757711, -0.3390148878, -0.0835398212, 0.1362097561, -0.1137316748, -0.2418106198, -0.0780687183, -0.1553238928, 0.0390690975, -0.1424756199, -0.0921166688, -0.0923301354, 0.241052255, -0.0133186979, 0.1570475996, 0.4033722281, 0.2571755648, 0.2467216998, 0.0312089883, -0.007686872, -0.0942279324, -0.2511580288, -0.0310155898, -0.4506997466, -0.1496544778, -0.0415388495, 0.0437068567, 0.1463957727, -0.4477828145, -0.0523125753, 0.4075405002, 0.1918009669, 0.1762988716, -0.1778765321, 0.114367798, 0.1589154899, 0.1622074842, 0.4319055676, 0.2148408294, -0.1464108527, -0.1885228753, -0.2969200611, 0.1371771991, 0.0668577999, 0.0508464724, 0.0620931983, -0.1832192689, 0.0084643541, -0.4938528538, 0.3007799983, 0.0256841108, 0.065286994, -0.0152886435, 0.2463904619, 0.0747111291, -0.0519327894, 0.0346723013, -0.0704206303, -0.4362963736, -0.1606466323, -0.1092337146, 0.1591437906, 0.368476212, -0.0709744692, 0.1098435074, 0.0327449962, -0.0309941471, 0.2632470727, -0.3497719467, -0.0467957854, 0.0411750376, 0.0660474226, -0.2239822298, -0.1087349355, 0.1983457059, 0.3862469196, -0.0009006876, -0.20269835, 0.1171668172, -0.3669370115, 0.1662437469, -0.1405933052, 0.4673705101, -0.2569175363, 0.1729712635, -0.0228858031, -0.3501440287, -0.397106111, -0.1263404489, -0.2659687102, -0.1135251373, -0.3912785947, -0.1805748791, -0.1014032364, -0.0171221532, 0.1442000568, -0.0524013191, -0.1238121092, -0.2701582015, -0.0278828777, 0.0554124638, -0.0799709558, -0.1237790361, 0.0732188299, 0.1210662276, -0.3472323418, -0.0554115325, 0.1460536271, -0.0395323038, 0.2261102647, 0.4076477885, -0.5039839149, 0.0725948736, 0.2214101851, 0.2120587826, 0.3264289796, 0.3990578651, 0.0824616849, 0.4527712464, 0.1557210833, 0.0685366541, -0.0174625181, 0.0426177159, -0.2237729132, -0.0387070253, 0.0853188783, 0.1677062809, 0.1316863894, 0.2200066745, 0.227294296, 0.1832954884, -0.106409505, 0.0482759178, 0.1594006121, 0.3050546646, -0.2743838131, 0.1071228236, -0.2487888485, 0.3690178692, -0.032347668, 0.1779420972, 0.1711963415, 0.039964512, -0.0335227363, 0.0794005617, 0.0834059715, 0.5254682302, -0.016351169, 0.1120553166, -0.0185537636, 0.4008264542, 0.2523583472, -0.2061772794, 0.1637971401, 0.0349366814, 0.3331682384, -0.1194412336, -0.2856720388, 0.2920552194, 0.3565746844, -0.1682103276, 0.3340028226, 0.1833140552, -0.0667124838, 0.0179814566, -0.0859555006, 0.1677904427, -0.012094615, -0.0016968362, -0.7779331803, 0.0512740873, -0.0561566241, -0.1049492955, 0.1208095998, -0.0815202072, 0.170918718, 0.3347250521, -0.2347367257, -0.1270284653, 0.0550200753, -0.0758109689, -0.1394141763, -0.050918214, 0.1089931205, 0.2049470395, 0.0740084946, -0.2799779773, 0.2123619169, 0.0756096393, 0.1040030792, -0.1048162803, 0.4057818651, 0.2850221097, -0.0817152858, 0.0166610703, -0.0904397815, 0.2010720819, 0.1049896777, -0.2600868046, 0.094087854, 0.3385108113, 0.0787672102, 0.2597362399, 0.2011122108, -0.1343291253, -0.2416918576, -0.2874894142, 0.0504152291, -0.18829301, 0.1537919939, -0.1491676718, -0.0916519165, 0.0543054752, 0.130551666, -0.4923561215, 0.2276895493, 0.3193546236, 0.0556116402, 0.1301303506, -0.0193795133, 0.1160943881, -0.2794570923, -0.0227176249, 0.247423768, 0.2013018727, 0.087941274, -0.5815749764, -0.0923746303, 0.3105400503, -0.1654675156, -0.3448004723, 0.0532618687, 0.3007677495, 0.0372680128, 0.0376976244, 0.1974073052, -0.1079812497, -0.2613868415, 0.1192396358, -0.3053135276, 0.0157388337, 0.0029158983, 0.0249561574, 0.1774374843, -0.016139783, 0.0565105081, -0.1310530454, 0.0159716904, -0.1169695109, 0.0239995793, 0.3244977891, 0.2114358544, 0.3351796865, 0.1502852142, 0.4356201589, -0.1151319817, -0.3086130321, -0.1074877679, 0.0539787896, 0.0432387143, -0.1012954712, -0.3373309672, -0.2797781825, -0.1999594867, 0.0397303216, 0.2189150453, 0.4644094408, 0.2239392251, -0.1449688077, -0.2340931594, -0.0960400552, -0.1071277335, -0.3327951133, 0.1731460989, 0.2569656372, -0.145527944, -0.2706972361, 0.0175241232, -0.0046457238, 0.3147621751, -0.1813987345, 0.1084276736, -0.3498392105, -0.154106304, 0.2446239442, -0.1181626692, -0.4130524993, 0.0719896853, 0.3762164414, 0.3241556287, -0.0967505574, 0.3059366047, 0.1406516731, -0.188891843, -0.0053485781, 0.7830972075, -0.3070815802, -0.4296425581, -0.1124283671, -0.0667238012 ]
https://github.com/huggingface/datasets/issues/1981
wmt datasets fail to load
yes, of course, I reverted to the version before that and it works ;) but since a new release was just made you will probably need to make a hotfix. and add the wmt to the tests?
on master: ``` python -c 'from datasets import load_dataset; load_dataset("wmt14", "de-en")' Downloading and preparing dataset wmt14/de-en (download: Unknown size, generated: Unknown size, post-processed: Unknown size, total: Unknown size) to /home/stas/.cache/huggingface/datasets/wmt14/de-en/1.0.0/43e717d978d2261502b0194999583acb874ba73b0f4aed0ada2889d1bb00f36e... Traceback (most recent call last): File "<string>", line 1, in <module> File "/mnt/nvme1/code/huggingface/datasets-master/src/datasets/load.py", line 740, in load_dataset builder_instance.download_and_prepare( File "/mnt/nvme1/code/huggingface/datasets-master/src/datasets/builder.py", line 578, in download_and_prepare self._download_and_prepare( File "/mnt/nvme1/code/huggingface/datasets-master/src/datasets/builder.py", line 634, in _download_and_prepare split_generators = self._split_generators(dl_manager, **split_generators_kwargs) File "/home/stas/.cache/huggingface/modules/datasets_modules/datasets/wmt14/43e717d978d2261502b0194999583acb874ba73b0f4aed0ada2889d1bb00f36e/wmt_utils.py", line 760, in _split_generators extraction_map = dict(downloaded_files, **manual_files) ``` it worked fine recently. same problem if I try wmt16. git bisect points to this commit from Feb 25 as the culprit https://github.com/huggingface/datasets/commit/792f1d9bb1c5361908f73e2ef7f0181b2be409fa @albertvillanova
37
wmt datasets fail to load on master: ``` python -c 'from datasets import load_dataset; load_dataset("wmt14", "de-en")' Downloading and preparing dataset wmt14/de-en (download: Unknown size, generated: Unknown size, post-processed: Unknown size, total: Unknown size) to /home/stas/.cache/huggingface/datasets/wmt14/de-en/1.0.0/43e717d978d2261502b0194999583acb874ba73b0f4aed0ada2889d1bb00f36e... Traceback (most recent call last): File "<string>", line 1, in <module> File "/mnt/nvme1/code/huggingface/datasets-master/src/datasets/load.py", line 740, in load_dataset builder_instance.download_and_prepare( File "/mnt/nvme1/code/huggingface/datasets-master/src/datasets/builder.py", line 578, in download_and_prepare self._download_and_prepare( File "/mnt/nvme1/code/huggingface/datasets-master/src/datasets/builder.py", line 634, in _download_and_prepare split_generators = self._split_generators(dl_manager, **split_generators_kwargs) File "/home/stas/.cache/huggingface/modules/datasets_modules/datasets/wmt14/43e717d978d2261502b0194999583acb874ba73b0f4aed0ada2889d1bb00f36e/wmt_utils.py", line 760, in _split_generators extraction_map = dict(downloaded_files, **manual_files) ``` it worked fine recently. same problem if I try wmt16. git bisect points to this commit from Feb 25 as the culprit https://github.com/huggingface/datasets/commit/792f1d9bb1c5361908f73e2ef7f0181b2be409fa @albertvillanova yes, of course, I reverted to the version before that and it works ;) but since a new release was just made you will probably need to make a hotfix. and add the wmt to the tests?
[ -0.3290721774, -0.0584941357, -0.0104082599, 0.5395735502, 0.3104315698, 0.0041043535, 0.20977965, 0.0872704089, 0.3129349947, 0.1078864411, -0.0224996582, -0.1256613433, -0.2969317734, 0.1887944937, 0.1114165783, 0.1848196089, -0.1364243478, 0.0058543496, -0.8216048479, 0.0158688203, -0.1838494837, 0.1984839439, -0.167342037, -0.0969724581, -0.5068029165, 0.2375525087, -0.0300085619, 0.2536429167, -0.2113710195, -0.4816322923, 0.5141909122, 0.0309754163, 0.0518512577, 0.5576845407, -0.0001141044, 0.151525557, 0.2935244441, -0.0102459118, -0.2466028631, -0.2974120677, -0.5779015422, -0.3827318549, 0.0219601616, 0.2245495617, -0.1884618104, 0.0820964426, -0.240066871, -0.3640689552, 0.2820507288, 0.2943234742, 0.2214949876, 0.415157944, 0.2789460719, -0.309194088, 0.0510979444, 0.2907715142, -0.1379879266, -0.0280021429, 0.0135745909, -0.1352174878, 0.0232768059, 0.0316455141, 0.0733230338, 0.3297719657, 0.3457939029, -0.1587233692, 0.2857410014, -0.0081028454, 0.2792252898, 0.0577791333, 0.196494475, -0.0757790208, -0.2360398173, -0.0594308451, -0.1306953132, -0.4276535511, 0.2592033744, 0.2658744454, 0.0303440131, 0.2660059631, -0.3589413464, 0.0739578009, 0.2212082744, 0.0317870677, -0.3881678283, 0.377141118, -0.311494112, 0.0018199123, 0.2749302089, -0.1902685463, 0.1660660654, -0.1114595681, -0.0187489055, 0.0837207213, -0.5072566271, 0.2616918683, 0.0255594216, 0.2756205201, -0.080057241, 0.158236891, -0.2520164549, 0.0149280876, 0.2089378983, -0.0155651644, 0.1787930727, 0.1386242807, -0.1099446937, -0.0626591966, 0.2749222219, 0.0550981387, -0.1853418052, 0.1351206601, -0.1703791618, -0.4433654249, -0.0891755894, -0.1894305944, 0.1525506973, -0.0720275789, -0.259921968, 0.0635320395, 0.1355188936, -0.3142133057, 0.0204191059, 0.2855195999, 0.0484090075, 0.1702363491, 0.1179608256, 0.0036532003, -0.0042029768, -0.0357705802, -0.356447041, -0.3906193972, -0.2991642356, 0.0611202568, 0.4078394175, -0.218572557, 0.228302747, 0.0004106164, -0.1310046017, -0.1273209155, -0.2269294858, -0.0077419803, 0.218893528, 0.4824033678, 0.0710929483, 0.2990788817, 0.244366318, 0.1595918089, -0.0081310496, -0.0074382517, -0.099539116, -0.2956004739, 0.129521057, 0.2581729889, -0.0815231055, 0.1570642591, -0.2294502705, -0.1136632562, 0.1050200462, 0.3215994835, -0.1928714961, -0.2417547405, -0.1637252569, -0.066638723, 0.5321370959, 0.5977163911, 0.0095657185, -0.1942434609, -0.3947505057, -0.0471857563, 0.2344344556, 0.3322233558, -0.0298237316, 0.1007022113, -0.2609951198, -0.2470604479, -0.0820464492, -0.0594501421, -0.183284685, 0.1371449828, -0.1313238442, 0.2751172185, 0.0324520469, -0.1263801455, 0.0145311803, -0.2265356332, 0.3428908288, 0.0891364068, -0.1580776423, 0.0836277902, -0.0794163719, -0.3164909482, 0.2474279106, 0.1886272281, 0.1936812997, -0.1896170974, 0.2157250792, 0.0242884457, 0.0684090033, 0.0570892282, 0.1292504668, 0.0385189466, 0.0848583654, -0.012778338, -0.0889182165, 0.0534031913, -0.447301656, 0.2964881361, 0.269192636, 0.0437410511, 0.1173467636, 0.1208165959, -0.1622186601, 0.13357687, -0.3434742987, -0.1887685806, 0.0876791999, 0.1349028051, -0.0035157129, -0.1450344622, -0.0388086475, -0.0239786468, -0.2259171605, 0.1487138569, 0.2445332706, 0.0667201504, -0.1433454007, -0.1252084225, 0.2802848816, 0.2743450105, 0.1635606736, -0.1697694361, -0.1630631387, 0.0908573046, 0.1399755478, 0.3951956034, -0.0871864706, 0.1039212644, 0.1791914403, -0.4736975431, 0.1699436903, 0.1361609995, -0.1402691752, -0.2992375493, 0.120428741, 0.0424620919, -0.1103157252, 0.2675850391, 0.1175594181, 0.0357344747, 0.1648181081, 0.070990026, 0.1453139335, -0.3879216909, 0.2801464796, -0.0923160538, 0.3428555727, 0.2670230269, 0.0239536017, -0.0425493941, 0.3805397749, 0.1634019911, 0.2022345662, 0.0150982998, -0.3856003881, -0.0856612027, -0.0661869422, 0.0501855165, 0.3967727721, 0.0735270008, 0.0935864449, 0.1786359251, 0.114971295, -0.3025265336, 0.4467021823, -0.0749784783, -0.0767069533, 0.3043871224, -0.0235594586, -0.0722774118, -0.2620557547, 0.5669638515, 0.0582102686, 0.0062173288, -0.1975154579, -0.2630079687, -0.4342723489, 0.235784024, -0.350056529, -0.5691423416, -0.205263555, -0.2057436854, -0.2758672237, 0.1181361526, -0.0988535583, 0.2478711605, 0.0687461495, 0.2188890874, -0.0490783267, 0.3465975523, -0.0977027416, -0.2259618938, -0.1064975113, 0.0391055197, 0.531206429, -0.2995471656, 0.3275354505, -0.1957136095, 0.0639886782, -0.2002594918, -0.2282969803, 0.0872323737, -0.0478701815, 0.3465406597, 0.2117685527, -0.0232824236, 0.364433527, -0.1089352071, 0.3259529173, -0.1572976112, -0.0153348558, 0.0034700036, -0.0445439406, -0.142670542, -0.2228536606, -0.3446230292, -0.4408051372, -0.38834548, -0.0106526744, -0.0261883438, -0.041893553, 0.0917574763, -0.1342886686, -0.0532306172, -0.0178117566, -0.0258909091, -0.3486142755, -0.2984478474, 0.2000669688, -0.3020643294, -0.2819241881, 0.2392929345, 0.1354366541, 0.4544391036, 0.0401276685, -0.3937389553, 0.580820024, -0.1391109526, -0.1142628118, 0.1804574281, 0.3090637922, -0.0905659199, 0.1654050052, -0.0495855138, -0.1657475233, -0.264600873, -0.1806015968, -0.2320662737, 0.1591045111, -0.1456700712, 0.0627860576, 0.0104182586, 0.8047190309, 0.0654782131, -0.2943533063, 0.1827456653, 0.1267128289, 0.22185269, -0.0006961301, -0.5895357728, 0.2010112554, -0.0986171663, 0.2215834707, 0.3626621366, 0.0432907455, 0.1737743169, -0.1139222234, 0.1939598769, -0.1887793094, -0.3513717055, -0.1281633973, 0.2005108893, 0.384968102, 0.0900530443, 0.1219890267, 0.0273914561, -0.0954924524, -0.0095352717, 0.3547010124, 0.1222474873, 0.0885327458, -0.1050639749, -0.0560129024, -0.2369753569, 0.0535893925, -0.1932053417, 0.4575623572, -0.0324506685, -0.1230477318, -0.0423157625, -0.018290678, 0.5026881099, 0.196738705, 0.392770201, 0.1022482887, -0.4248225689, -0.2392999828, -0.1275756508, 0.0902224034, -0.0735769495, 0.1285207719, 0.1846205294, -0.2020289898, -0.5072083473, 0.2025788128, 0.110791266, -0.1888124496, -0.1198265851, -0.1453298032, 0.0249493048, -0.2902212739, -0.0777402893, -0.2248148024, 0.1797914803, -0.4049386382, -0.023972854, -0.1545184255, -0.0788380727, 0.1511588097, 0.0657216012, 0.0934650078, 0.0442998596, 0.4923816025, 0.3122971356, 0.3200490177, 0.5650812387, 0.615952909, -0.1010635719, 0.0344185531, 0.0835056677, 0.0163797066, 0.052282501, 0.2831603289, -0.0781764388, 0.1111001968, 0.0438617133, 0.1107479557, -0.5960832238, 0.1240012124, 0.2019079924, 0.0680201054, -0.357242465, -0.0997589529, 0.1946074665, 0.0268734321, 0.2006981224, 0.1760098636, 0.1702614427, -0.3972955346, -0.4666161835, 0.0168192871, 0.494731009, -0.0735877305, 0.2222425938, -0.1423189342, -0.1103766337, 0.0566480383, 0.2778766751, -0.1172653213, -0.1914952397, 0.1790857166, 0.0319306925, -0.1585558057, 0.0860942155, 0.1152570099, -0.074036397, 0.2761102319, 0.0473108888, 0.5473350286, 0.1399029195, 0.0827613249, -0.1333880872, -0.2570033967, -0.2534720302, 0.1469008625, -0.040101774, 0.3355660141, -0.2314385772, -0.1019250154, 0.3119747043, -0.0665351152, -0.2452949733, 0.006580241, -0.6495986581, 0.1033414826, -0.0357615538, -0.1031016409, 0.3692238927, -0.2313648611, 0.1811163127, 0.3199765384, -0.1902631074, 0.101099968, -0.3137950599, 0.0383314565, -0.2302719355, 0.2646709085, 0.1008015499, -0.0336168185, -0.0603650734, -0.1086391211, -0.040744178, -0.0539291054, 0.0338524282, 0.0507716499, -0.0552918538, -0.049335558, -0.3194902837, 0.0118200779, 0.01315099, -0.1511109769, 0.1543609649, 0.0290808994, -0.0549282245, 0.3291850686, -0.0549550839, -0.1067547947, -0.0585500076, 0.4145898521, -0.2623614073, 0.0229861513, 0.3038800061, 0.4151065946, -0.0175478719, -0.2813272774, -0.0685153008, 0.0908067673, -0.2448109835, 0.27016747, 0.1164213791, -0.0899816453, 0.3801681995, 0.561144352, 0.3422603309, -0.1498251259, 0.0122462288, -0.2868362665, -0.1911177933, 0.06081523, -0.1435581297, 0.1625946313, 0.0277143493, 0.4404928684, -0.174705416, 0.3926444352, -0.3059358299, 0.2749379277, -0.0947568417, -0.0000579925, 0.2123729736, -0.1585533768, 0.1591585428, -0.092134729, 0.0412249677, -0.0340268984, -0.5342018604, -0.2137607932, -0.1178592443, 0.094538033, 0.0980823785, -0.2711147368, 0.1690744013, -0.1080356762, 0.0807956457, -0.1697111577, 0.3470470011, 0.0660693496, -0.1222603619, 0.0229018033, 0.0703008622, 0.0658249557, -0.1689614058, 0.1390581727, 0.0714532286, -0.0677271932, -0.004992824, -0.0410777628, 0.0441779867, 0.0208380446, 0.1150303781, 0.0102870464, -0.0216588713, 0.1182219386, 0.5093998313, -0.3056087196, -0.2525116503, 0.2638111115, 0.2856666148, 0.1686179787, 0.0513615236, 0.0614273101, -0.1690220535, 0.1712699234, -0.295384407, -0.0795395225, -0.0377572887, 0.1637817621, 0.0857126564, 0.0499727502, 0.3570747375, -0.2151892185, -0.2337025553, 0.3549884558, 0.3251186609, -0.1116922349, 0.1748536229, 0.4612627625, 0.0847785696, 0.2086673677, 0.1075343117, -0.1653206944, 0.10477487, 0.3765082955, -0.2396265268, 0.6803712249, 0.0646546483, 0.0063732327, 0.2407553494, -0.4143283069, 0.1107710898, 0.2690974474, -0.1568294764, 0.0244205967, -0.2630803585, 0.1377332509, -0.3402011395, -0.2731532454, -0.1855367422, 0.1984927356, -0.0655511543, -0.1254134029, -0.2556758821, -0.1166858748, -0.0780744553, 0.0273623541, -0.0752226561, -0.1022675335, 0.2595927715, 0.1732608676, -0.1564743519, -0.4046474099, -0.3694781065, 0.0161442123, -0.0983204991, -0.1228213087, 0.2560083866, 0.4048366845, -0.2123370916, 0.1384947449, 0.4051621854, 0.4715678096, 0.3013880551, -0.019286247, -0.0860341489, 0.0871977657, -0.0851399675, -0.2775003314, 0.4197261631, -0.256807059, -0.1573418081, 0.0049491078, 0.1699633002, -0.1862419993, -0.36442554, 0.1278568655, -0.312604636, -0.2835619748, 0.1925960928, -0.0886968076, -0.0576488152, -0.046404805, 0.3801314831, -0.0463572331, 0.227106601, 0.6677178144, -0.0275352802, 0.1280926317, -0.2423587441, 0.1004885435, 0.0852620155, 0.7199052572, 0.2930562198, -0.0817145929, -0.2865350842, -0.5099943876, -0.7815914154, 0.0482604392, 0.1542910635, 0.4362874031, 0.0736527219, 0.0439882576, 0.1192258596, -0.022530023, 0.1537166834, 0.1220185757, 0.2925760448, -0.2151335776, -0.3548650146, 0.1796961129, -0.0950151533, -0.1906720847, -0.0053810701, -0.3220207691, 0.1466880143, -0.2788922787, 0.0247031078, -0.2417233735, 0.423589766, 0.0029747784, 0.2875815034, 0.2188121825, 0.0880904496, 0.3063713312, 0.0107985735, -0.0630578622, -0.4197328091, -0.311278224, 0.0145377479, 0.0860738903, -0.1074681431, 0.3646842241, -0.0537011325, -0.2685218155, -0.4432089329, 0.1050859094, 0.1143686622, 0.2023361176, -0.1769938469, 0.2222105861, -0.2147685289, -0.1733142138, 0.3443752229, 0.4282422364, -0.0292371623, 0.1878371388, -0.2106765211, -0.3873320818, 0.2546340823, -0.2887779176, -0.1629849672, -0.4629842937, 0.1772361249, -0.0954382569, -0.1698629558, -0.4217800498, 0.1528435349, 0.1712167561, -0.1016814485, -0.2147470117, 0.372612536, -0.046054516, -0.0684142113, -0.0185814574, 0.1694672108, 0.1803844571, -0.3343187273, -0.1139620915, -0.0598332062 ]
https://github.com/huggingface/datasets/issues/1981
wmt datasets fail to load
@stas00 it is fixed. @lhoestq are you releasing the hot fix or would you prefer me to do it?
on master: ``` python -c 'from datasets import load_dataset; load_dataset("wmt14", "de-en")' Downloading and preparing dataset wmt14/de-en (download: Unknown size, generated: Unknown size, post-processed: Unknown size, total: Unknown size) to /home/stas/.cache/huggingface/datasets/wmt14/de-en/1.0.0/43e717d978d2261502b0194999583acb874ba73b0f4aed0ada2889d1bb00f36e... Traceback (most recent call last): File "<string>", line 1, in <module> File "/mnt/nvme1/code/huggingface/datasets-master/src/datasets/load.py", line 740, in load_dataset builder_instance.download_and_prepare( File "/mnt/nvme1/code/huggingface/datasets-master/src/datasets/builder.py", line 578, in download_and_prepare self._download_and_prepare( File "/mnt/nvme1/code/huggingface/datasets-master/src/datasets/builder.py", line 634, in _download_and_prepare split_generators = self._split_generators(dl_manager, **split_generators_kwargs) File "/home/stas/.cache/huggingface/modules/datasets_modules/datasets/wmt14/43e717d978d2261502b0194999583acb874ba73b0f4aed0ada2889d1bb00f36e/wmt_utils.py", line 760, in _split_generators extraction_map = dict(downloaded_files, **manual_files) ``` it worked fine recently. same problem if I try wmt16. git bisect points to this commit from Feb 25 as the culprit https://github.com/huggingface/datasets/commit/792f1d9bb1c5361908f73e2ef7f0181b2be409fa @albertvillanova
19
wmt datasets fail to load on master: ``` python -c 'from datasets import load_dataset; load_dataset("wmt14", "de-en")' Downloading and preparing dataset wmt14/de-en (download: Unknown size, generated: Unknown size, post-processed: Unknown size, total: Unknown size) to /home/stas/.cache/huggingface/datasets/wmt14/de-en/1.0.0/43e717d978d2261502b0194999583acb874ba73b0f4aed0ada2889d1bb00f36e... Traceback (most recent call last): File "<string>", line 1, in <module> File "/mnt/nvme1/code/huggingface/datasets-master/src/datasets/load.py", line 740, in load_dataset builder_instance.download_and_prepare( File "/mnt/nvme1/code/huggingface/datasets-master/src/datasets/builder.py", line 578, in download_and_prepare self._download_and_prepare( File "/mnt/nvme1/code/huggingface/datasets-master/src/datasets/builder.py", line 634, in _download_and_prepare split_generators = self._split_generators(dl_manager, **split_generators_kwargs) File "/home/stas/.cache/huggingface/modules/datasets_modules/datasets/wmt14/43e717d978d2261502b0194999583acb874ba73b0f4aed0ada2889d1bb00f36e/wmt_utils.py", line 760, in _split_generators extraction_map = dict(downloaded_files, **manual_files) ``` it worked fine recently. same problem if I try wmt16. git bisect points to this commit from Feb 25 as the culprit https://github.com/huggingface/datasets/commit/792f1d9bb1c5361908f73e2ef7f0181b2be409fa @albertvillanova @stas00 it is fixed. @lhoestq are you releasing the hot fix or would you prefer me to do it?
[ -0.3290721774, -0.0584941357, -0.0104082599, 0.5395735502, 0.3104315698, 0.0041043535, 0.20977965, 0.0872704089, 0.3129349947, 0.1078864411, -0.0224996582, -0.1256613433, -0.2969317734, 0.1887944937, 0.1114165783, 0.1848196089, -0.1364243478, 0.0058543496, -0.8216048479, 0.0158688203, -0.1838494837, 0.1984839439, -0.167342037, -0.0969724581, -0.5068029165, 0.2375525087, -0.0300085619, 0.2536429167, -0.2113710195, -0.4816322923, 0.5141909122, 0.0309754163, 0.0518512577, 0.5576845407, -0.0001141044, 0.151525557, 0.2935244441, -0.0102459118, -0.2466028631, -0.2974120677, -0.5779015422, -0.3827318549, 0.0219601616, 0.2245495617, -0.1884618104, 0.0820964426, -0.240066871, -0.3640689552, 0.2820507288, 0.2943234742, 0.2214949876, 0.415157944, 0.2789460719, -0.309194088, 0.0510979444, 0.2907715142, -0.1379879266, -0.0280021429, 0.0135745909, -0.1352174878, 0.0232768059, 0.0316455141, 0.0733230338, 0.3297719657, 0.3457939029, -0.1587233692, 0.2857410014, -0.0081028454, 0.2792252898, 0.0577791333, 0.196494475, -0.0757790208, -0.2360398173, -0.0594308451, -0.1306953132, -0.4276535511, 0.2592033744, 0.2658744454, 0.0303440131, 0.2660059631, -0.3589413464, 0.0739578009, 0.2212082744, 0.0317870677, -0.3881678283, 0.377141118, -0.311494112, 0.0018199123, 0.2749302089, -0.1902685463, 0.1660660654, -0.1114595681, -0.0187489055, 0.0837207213, -0.5072566271, 0.2616918683, 0.0255594216, 0.2756205201, -0.080057241, 0.158236891, -0.2520164549, 0.0149280876, 0.2089378983, -0.0155651644, 0.1787930727, 0.1386242807, -0.1099446937, -0.0626591966, 0.2749222219, 0.0550981387, -0.1853418052, 0.1351206601, -0.1703791618, -0.4433654249, -0.0891755894, -0.1894305944, 0.1525506973, -0.0720275789, -0.259921968, 0.0635320395, 0.1355188936, -0.3142133057, 0.0204191059, 0.2855195999, 0.0484090075, 0.1702363491, 0.1179608256, 0.0036532003, -0.0042029768, -0.0357705802, -0.356447041, -0.3906193972, -0.2991642356, 0.0611202568, 0.4078394175, -0.218572557, 0.228302747, 0.0004106164, -0.1310046017, -0.1273209155, -0.2269294858, -0.0077419803, 0.218893528, 0.4824033678, 0.0710929483, 0.2990788817, 0.244366318, 0.1595918089, -0.0081310496, -0.0074382517, -0.099539116, -0.2956004739, 0.129521057, 0.2581729889, -0.0815231055, 0.1570642591, -0.2294502705, -0.1136632562, 0.1050200462, 0.3215994835, -0.1928714961, -0.2417547405, -0.1637252569, -0.066638723, 0.5321370959, 0.5977163911, 0.0095657185, -0.1942434609, -0.3947505057, -0.0471857563, 0.2344344556, 0.3322233558, -0.0298237316, 0.1007022113, -0.2609951198, -0.2470604479, -0.0820464492, -0.0594501421, -0.183284685, 0.1371449828, -0.1313238442, 0.2751172185, 0.0324520469, -0.1263801455, 0.0145311803, -0.2265356332, 0.3428908288, 0.0891364068, -0.1580776423, 0.0836277902, -0.0794163719, -0.3164909482, 0.2474279106, 0.1886272281, 0.1936812997, -0.1896170974, 0.2157250792, 0.0242884457, 0.0684090033, 0.0570892282, 0.1292504668, 0.0385189466, 0.0848583654, -0.012778338, -0.0889182165, 0.0534031913, -0.447301656, 0.2964881361, 0.269192636, 0.0437410511, 0.1173467636, 0.1208165959, -0.1622186601, 0.13357687, -0.3434742987, -0.1887685806, 0.0876791999, 0.1349028051, -0.0035157129, -0.1450344622, -0.0388086475, -0.0239786468, -0.2259171605, 0.1487138569, 0.2445332706, 0.0667201504, -0.1433454007, -0.1252084225, 0.2802848816, 0.2743450105, 0.1635606736, -0.1697694361, -0.1630631387, 0.0908573046, 0.1399755478, 0.3951956034, -0.0871864706, 0.1039212644, 0.1791914403, -0.4736975431, 0.1699436903, 0.1361609995, -0.1402691752, -0.2992375493, 0.120428741, 0.0424620919, -0.1103157252, 0.2675850391, 0.1175594181, 0.0357344747, 0.1648181081, 0.070990026, 0.1453139335, -0.3879216909, 0.2801464796, -0.0923160538, 0.3428555727, 0.2670230269, 0.0239536017, -0.0425493941, 0.3805397749, 0.1634019911, 0.2022345662, 0.0150982998, -0.3856003881, -0.0856612027, -0.0661869422, 0.0501855165, 0.3967727721, 0.0735270008, 0.0935864449, 0.1786359251, 0.114971295, -0.3025265336, 0.4467021823, -0.0749784783, -0.0767069533, 0.3043871224, -0.0235594586, -0.0722774118, -0.2620557547, 0.5669638515, 0.0582102686, 0.0062173288, -0.1975154579, -0.2630079687, -0.4342723489, 0.235784024, -0.350056529, -0.5691423416, -0.205263555, -0.2057436854, -0.2758672237, 0.1181361526, -0.0988535583, 0.2478711605, 0.0687461495, 0.2188890874, -0.0490783267, 0.3465975523, -0.0977027416, -0.2259618938, -0.1064975113, 0.0391055197, 0.531206429, -0.2995471656, 0.3275354505, -0.1957136095, 0.0639886782, -0.2002594918, -0.2282969803, 0.0872323737, -0.0478701815, 0.3465406597, 0.2117685527, -0.0232824236, 0.364433527, -0.1089352071, 0.3259529173, -0.1572976112, -0.0153348558, 0.0034700036, -0.0445439406, -0.142670542, -0.2228536606, -0.3446230292, -0.4408051372, -0.38834548, -0.0106526744, -0.0261883438, -0.041893553, 0.0917574763, -0.1342886686, -0.0532306172, -0.0178117566, -0.0258909091, -0.3486142755, -0.2984478474, 0.2000669688, -0.3020643294, -0.2819241881, 0.2392929345, 0.1354366541, 0.4544391036, 0.0401276685, -0.3937389553, 0.580820024, -0.1391109526, -0.1142628118, 0.1804574281, 0.3090637922, -0.0905659199, 0.1654050052, -0.0495855138, -0.1657475233, -0.264600873, -0.1806015968, -0.2320662737, 0.1591045111, -0.1456700712, 0.0627860576, 0.0104182586, 0.8047190309, 0.0654782131, -0.2943533063, 0.1827456653, 0.1267128289, 0.22185269, -0.0006961301, -0.5895357728, 0.2010112554, -0.0986171663, 0.2215834707, 0.3626621366, 0.0432907455, 0.1737743169, -0.1139222234, 0.1939598769, -0.1887793094, -0.3513717055, -0.1281633973, 0.2005108893, 0.384968102, 0.0900530443, 0.1219890267, 0.0273914561, -0.0954924524, -0.0095352717, 0.3547010124, 0.1222474873, 0.0885327458, -0.1050639749, -0.0560129024, -0.2369753569, 0.0535893925, -0.1932053417, 0.4575623572, -0.0324506685, -0.1230477318, -0.0423157625, -0.018290678, 0.5026881099, 0.196738705, 0.392770201, 0.1022482887, -0.4248225689, -0.2392999828, -0.1275756508, 0.0902224034, -0.0735769495, 0.1285207719, 0.1846205294, -0.2020289898, -0.5072083473, 0.2025788128, 0.110791266, -0.1888124496, -0.1198265851, -0.1453298032, 0.0249493048, -0.2902212739, -0.0777402893, -0.2248148024, 0.1797914803, -0.4049386382, -0.023972854, -0.1545184255, -0.0788380727, 0.1511588097, 0.0657216012, 0.0934650078, 0.0442998596, 0.4923816025, 0.3122971356, 0.3200490177, 0.5650812387, 0.615952909, -0.1010635719, 0.0344185531, 0.0835056677, 0.0163797066, 0.052282501, 0.2831603289, -0.0781764388, 0.1111001968, 0.0438617133, 0.1107479557, -0.5960832238, 0.1240012124, 0.2019079924, 0.0680201054, -0.357242465, -0.0997589529, 0.1946074665, 0.0268734321, 0.2006981224, 0.1760098636, 0.1702614427, -0.3972955346, -0.4666161835, 0.0168192871, 0.494731009, -0.0735877305, 0.2222425938, -0.1423189342, -0.1103766337, 0.0566480383, 0.2778766751, -0.1172653213, -0.1914952397, 0.1790857166, 0.0319306925, -0.1585558057, 0.0860942155, 0.1152570099, -0.074036397, 0.2761102319, 0.0473108888, 0.5473350286, 0.1399029195, 0.0827613249, -0.1333880872, -0.2570033967, -0.2534720302, 0.1469008625, -0.040101774, 0.3355660141, -0.2314385772, -0.1019250154, 0.3119747043, -0.0665351152, -0.2452949733, 0.006580241, -0.6495986581, 0.1033414826, -0.0357615538, -0.1031016409, 0.3692238927, -0.2313648611, 0.1811163127, 0.3199765384, -0.1902631074, 0.101099968, -0.3137950599, 0.0383314565, -0.2302719355, 0.2646709085, 0.1008015499, -0.0336168185, -0.0603650734, -0.1086391211, -0.040744178, -0.0539291054, 0.0338524282, 0.0507716499, -0.0552918538, -0.049335558, -0.3194902837, 0.0118200779, 0.01315099, -0.1511109769, 0.1543609649, 0.0290808994, -0.0549282245, 0.3291850686, -0.0549550839, -0.1067547947, -0.0585500076, 0.4145898521, -0.2623614073, 0.0229861513, 0.3038800061, 0.4151065946, -0.0175478719, -0.2813272774, -0.0685153008, 0.0908067673, -0.2448109835, 0.27016747, 0.1164213791, -0.0899816453, 0.3801681995, 0.561144352, 0.3422603309, -0.1498251259, 0.0122462288, -0.2868362665, -0.1911177933, 0.06081523, -0.1435581297, 0.1625946313, 0.0277143493, 0.4404928684, -0.174705416, 0.3926444352, -0.3059358299, 0.2749379277, -0.0947568417, -0.0000579925, 0.2123729736, -0.1585533768, 0.1591585428, -0.092134729, 0.0412249677, -0.0340268984, -0.5342018604, -0.2137607932, -0.1178592443, 0.094538033, 0.0980823785, -0.2711147368, 0.1690744013, -0.1080356762, 0.0807956457, -0.1697111577, 0.3470470011, 0.0660693496, -0.1222603619, 0.0229018033, 0.0703008622, 0.0658249557, -0.1689614058, 0.1390581727, 0.0714532286, -0.0677271932, -0.004992824, -0.0410777628, 0.0441779867, 0.0208380446, 0.1150303781, 0.0102870464, -0.0216588713, 0.1182219386, 0.5093998313, -0.3056087196, -0.2525116503, 0.2638111115, 0.2856666148, 0.1686179787, 0.0513615236, 0.0614273101, -0.1690220535, 0.1712699234, -0.295384407, -0.0795395225, -0.0377572887, 0.1637817621, 0.0857126564, 0.0499727502, 0.3570747375, -0.2151892185, -0.2337025553, 0.3549884558, 0.3251186609, -0.1116922349, 0.1748536229, 0.4612627625, 0.0847785696, 0.2086673677, 0.1075343117, -0.1653206944, 0.10477487, 0.3765082955, -0.2396265268, 0.6803712249, 0.0646546483, 0.0063732327, 0.2407553494, -0.4143283069, 0.1107710898, 0.2690974474, -0.1568294764, 0.0244205967, -0.2630803585, 0.1377332509, -0.3402011395, -0.2731532454, -0.1855367422, 0.1984927356, -0.0655511543, -0.1254134029, -0.2556758821, -0.1166858748, -0.0780744553, 0.0273623541, -0.0752226561, -0.1022675335, 0.2595927715, 0.1732608676, -0.1564743519, -0.4046474099, -0.3694781065, 0.0161442123, -0.0983204991, -0.1228213087, 0.2560083866, 0.4048366845, -0.2123370916, 0.1384947449, 0.4051621854, 0.4715678096, 0.3013880551, -0.019286247, -0.0860341489, 0.0871977657, -0.0851399675, -0.2775003314, 0.4197261631, -0.256807059, -0.1573418081, 0.0049491078, 0.1699633002, -0.1862419993, -0.36442554, 0.1278568655, -0.312604636, -0.2835619748, 0.1925960928, -0.0886968076, -0.0576488152, -0.046404805, 0.3801314831, -0.0463572331, 0.227106601, 0.6677178144, -0.0275352802, 0.1280926317, -0.2423587441, 0.1004885435, 0.0852620155, 0.7199052572, 0.2930562198, -0.0817145929, -0.2865350842, -0.5099943876, -0.7815914154, 0.0482604392, 0.1542910635, 0.4362874031, 0.0736527219, 0.0439882576, 0.1192258596, -0.022530023, 0.1537166834, 0.1220185757, 0.2925760448, -0.2151335776, -0.3548650146, 0.1796961129, -0.0950151533, -0.1906720847, -0.0053810701, -0.3220207691, 0.1466880143, -0.2788922787, 0.0247031078, -0.2417233735, 0.423589766, 0.0029747784, 0.2875815034, 0.2188121825, 0.0880904496, 0.3063713312, 0.0107985735, -0.0630578622, -0.4197328091, -0.311278224, 0.0145377479, 0.0860738903, -0.1074681431, 0.3646842241, -0.0537011325, -0.2685218155, -0.4432089329, 0.1050859094, 0.1143686622, 0.2023361176, -0.1769938469, 0.2222105861, -0.2147685289, -0.1733142138, 0.3443752229, 0.4282422364, -0.0292371623, 0.1878371388, -0.2106765211, -0.3873320818, 0.2546340823, -0.2887779176, -0.1629849672, -0.4629842937, 0.1772361249, -0.0954382569, -0.1698629558, -0.4217800498, 0.1528435349, 0.1712167561, -0.1016814485, -0.2147470117, 0.372612536, -0.046054516, -0.0684142113, -0.0185814574, 0.1694672108, 0.1803844571, -0.3343187273, -0.1139620915, -0.0598332062 ]