Unnamed: 0.1
int64
0
113k
Unnamed: 0
float64
0
113k
title
stringlengths
7
246
abstract
stringlengths
6
3.31k
3,400
3,400
Optimal Algorithms for Testing Closeness of Discrete Distributions
We study the question of closeness testing for two discrete distributions. More precisely, given samples from two distributions $p$ and $q$ over an $n$-element set, we wish to distinguish whether $p=q$ versus $p$ is at least $\eps$-far from $q$, in either $\ell_1$ or $\ell_2$ distance. Batu et al. gave the first sub-linear time algorithms for these problems, which matched the lower bounds of Valiant up to a logarithmic factor in $n$, and a polynomial factor of $\eps.$ In this work, we present simple (and new) testers for both the $\ell_1$ and $\ell_2$ settings, with sample complexity that is information-theoretically optimal, to constant factors, both in the dependence on $n$, and the dependence on $\eps$; for the $\ell_1$ testing problem we establish that the sample complexity is $\Theta(\max\{n^{2/3}/\eps^{4/3}, n^{1/2}/\eps^2 \}).$
3,401
3,401
A balanced k-means algorithm for weighted point sets
The classical $k$-means algorithm for partitioning $n$ points in $\mathbb{R}^d$ into $k$ clusters is one of the most popular and widely spread clustering methods. The need to respect prescribed lower bounds on the cluster sizes has been observed in many scientific and business applications. In this paper, we present and analyze a generalization of $k$-means that is capable of handling weighted point sets and prescribed lower and upper bounds on the cluster sizes. We call it weight-balanced $k$-means. The key difference to existing models lies in the ability to handle the combination of weighted point sets with prescribed bounds on the cluster sizes. This imposes the need to perform partial membership clustering, and leads to significant differences. For example, while finite termination of all $k$-means variants for unweighted point sets is a simple consequence of the existence of only finitely many partitions of a given set of points, the situation is more involved for weighted point sets, as there are infinitely many partial membership clusterings. Using polyhedral theory, we show that the number of iterations of weight-balanced $k$-means is bounded above by $n^{O(dk)}$, so in particular it is polynomial for fixed $k$ and $d$. This is similar to the known worst-case upper bound for classical $k$-means for unweighted point sets and unrestricted cluster sizes, despite the much more general framework. We conclude with the discussion of some additional favorable properties of our method.
3,402
3,402
Support Recovery for the Drift Coefficient of High-Dimensional Diffusions
Consider the problem of learning the drift coefficient of a $p$-dimensional stochastic differential equation from a sample path of length $T$. We assume that the drift is parametrized by a high-dimensional vector, and study the support recovery problem when both $p$ and $T$ can tend to infinity. In particular, we prove a general lower bound on the sample-complexity $T$ by using a characterization of mutual information as a time integral of conditional variance, due to Kadota, Zakai, and Ziv. For linear stochastic differential equations, the drift coefficient is parametrized by a $p\times p$ matrix which describes which degrees of freedom interact under the dynamics. In this case, we analyze a $\ell_1$-regularized least squares estimator and prove an upper bound on $T$ that nearly matches the lower bound on specific classes of sparse matrices.
3,403
3,403
A Likelihood Ratio Approach for Probabilistic Inequalities
We propose a new approach for deriving probabilistic inequalities based on bounding likelihood ratios. We demonstrate that this approach is more general and powerful than the classical method frequently used for deriving concentration inequalities such as Chernoff bounds. We discover that the proposed approach is inherently related to statistical concepts such as monotone likelihood ratio, maximum likelihood, and the method of moments for parameter estimation. A connection between the proposed approach and the large deviation theory is also established. We show that, without using moment generating functions, tightest possible concentration inequalities may be readily derived by the proposed approach. We have derived new concentration inequalities using the proposed approach, which cannot be obtained by the classical approach based on moment generating functions.
3,404
3,404
Towards Adapting ImageNet to Reality: Scalable Domain Adaptation with Implicit Low-rank Transformations
Images seen during test time are often not from the same distribution as images used for learning. This problem, known as domain shift, occurs when training classifiers from object-centric internet image databases and trying to apply them directly to scene understanding tasks. The consequence is often severe performance degradation and is one of the major barriers for the application of classifiers in real-world systems. In this paper, we show how to learn transform-based domain adaptation classifiers in a scalable manner. The key idea is to exploit an implicit rank constraint, originated from a max-margin domain adaptation formulation, to make optimization tractable. Experiments show that the transformation between domains can be very efficiently learned from data and easily applied to new categories. This begins to bridge the gap between large-scale internet image collections and object images captured in everyday life environments.
3,405
3,405
Nested Nonnegative Cone Analysis
Motivated by the analysis of nonnegative data objects, a novel Nested Nonnegative Cone Analysis (NNCA) approach is proposed to overcome some drawbacks of existing methods. The application of traditional PCA/SVD method to nonnegative data often cause the approximation matrix leave the nonnegative cone, which leads to non-interpretable and sometimes nonsensical results. The nonnegative matrix factorization (NMF) approach overcomes this issue, however the NMF approximation matrices suffer several drawbacks: 1) the factorization may not be unique, 2) the resulting approximation matrix at a specific rank may not be unique, and 3) the subspaces spanned by the approximation matrices at different ranks may not be nested. These drawbacks will cause troubles in determining the number of components and in multi-scale (in ranks) interpretability. The NNCA approach proposed in this paper naturally generates a nested structure, and is shown to be unique at each rank. Simulations are used in this paper to illustrate the drawbacks of the traditional methods, and the usefulness of the NNCA method.
3,406
3,406
Pylearn2: a machine learning research library
Pylearn2 is a machine learning research library. This does not just mean that it is a collection of machine learning algorithms that share a common API; it means that it has been designed for flexibility and extensibility in order to facilitate research projects that involve new or unusual use cases. In this paper we give a brief history of the library, an overview of its basic philosophy, a summary of the library's architecture, and a description of how the Pylearn2 community functions socially.
3,407
3,407
Decentralized Online Big Data Classification - a Bandit Framework
Distributed, online data mining systems have emerged as a result of applications requiring analysis of large amounts of correlated and high-dimensional data produced by multiple distributed data sources. We propose a distributed online data classification framework where data is gathered by distributed data sources and processed by a heterogeneous set of distributed learners which learn online, at run-time, how to classify the different data streams either by using their locally available classification functions or by helping each other by classifying each other's data. Importantly, since the data is gathered at different locations, sending the data to another learner to process incurs additional costs such as delays, and hence this will be only beneficial if the benefits obtained from a better classification will exceed the costs. We assume that the classification functions available to each processing element are fixed, but their prediction accuracy for various types of incoming data are unknown and can change dynamically over time, and thus they need to be learned online. We model the problem of joint classification by the distributed and heterogeneous learners from multiple data sources as a distributed contextual bandit problem where each data is characterized by a specific context. We develop distributed online learning algorithms for which we can prove that they have sublinear regret. Compared to prior work in distributed online data mining, our work is the first to provide analytic regret results characterizing the performance of the proposed algorithms.
3,408
3,408
Distributed Online Learning via Cooperative Contextual Bandits
In this paper we propose a novel framework for decentralized, online learning by many learners. At each moment of time, an instance characterized by a certain context may arrive to each learner; based on the context, the learner can select one of its own actions (which gives a reward and provides information) or request assistance from another learner. In the latter case, the requester pays a cost and receives the reward but the provider learns the information. In our framework, learners are modeled as cooperative contextual bandits. Each learner seeks to maximize the expected reward from its arrivals, which involves trading off the reward received from its own actions, the information learned from its own actions, the reward received from the actions requested of others and the cost paid for these actions - taking into account what it has learned about the value of assistance from each other learner. We develop distributed online learning algorithms and provide analytic bounds to compare the efficiency of these with algorithms with the complete knowledge (oracle) benchmark (in which the expected reward of every action in every context is known by every learner). Our estimates show that regret - the loss incurred by the algorithm - is sublinear in time. Our theoretical framework can be used in many practical applications including Big Data mining, event detection in surveillance sensor networks and distributed online recommendation systems.
3,409
3,409
Online and stochastic Douglas-Rachford splitting method for large scale machine learning
Online and stochastic learning has emerged as powerful tool in large scale optimization. In this work, we generalize the Douglas-Rachford splitting (DRs) method for minimizing composite functions to online and stochastic settings (to our best knowledge this is the first time DRs been generalized to sequential version). We first establish an $O(1/\sqrt{T})$ regret bound for batch DRs method. Then we proved that the online DRs splitting method enjoy an $O(1)$ regret bound and stochastic DRs splitting has a convergence rate of $O(1/\sqrt{T})$. The proof is simple and intuitive, and the results and technique can be served as a initiate for the research on the large scale machine learning employ the DRs method. Numerical experiments of the proposed method demonstrate the effectiveness of the online and stochastic update rule, and further confirm our regret and convergence analysis.
3,410
3,410
The Sample-Complexity of General Reinforcement Learning
We present a new algorithm for general reinforcement learning where the true environment is known to belong to a finite class of N arbitrary models. The algorithm is shown to be near-optimal for all but O(N log^2 N) time-steps with high probability. Infinite classes are also considered where we show that compactness is a key criterion for determining the existence of uniform sample-complexity bounds. A matching lower bound is given for the finite case.
3,411
3,411
Minimal Dirichlet energy partitions for graphs
Motivated by a geometric problem, we introduce a new non-convex graph partitioning objective where the optimality criterion is given by the sum of the Dirichlet eigenvalues of the partition components. A relaxed formulation is identified and a novel rearrangement algorithm is proposed, which we show is strictly decreasing and converges in a finite number of iterations to a local minimum of the relaxed objective function. Our method is applied to several clustering problems on graphs constructed from synthetic data, MNIST handwritten digits, and manifold discretizations. The model has a semi-supervised extension and provides a natural representative for the clusters as well.
3,412
3,412
Learning Deep Representation Without Parameter Inference for Nonlinear Dimensionality Reduction
Unsupervised deep learning is one of the most powerful representation learning techniques. Restricted Boltzman machine, sparse coding, regularized auto-encoders, and convolutional neural networks are pioneering building blocks of deep learning. In this paper, we propose a new building block -- distributed random models. The proposed method is a special full implementation of the product of experts: (i) each expert owns multiple hidden units and different experts have different numbers of hidden units; (ii) the model of each expert is a k-center clustering, whose k-centers are only uniformly sampled examples, and whose output (i.e. the hidden units) is a sparse code that only the similarity values from a few nearest neighbors are reserved. The relationship between the pioneering building blocks, several notable research branches and the proposed method is analyzed. Experimental results show that the proposed deep model can learn better representations than deep belief networks and meanwhile can train a much larger network with much less time than deep belief networks.
3,413
3,413
Group-Sparse Signal Denoising: Non-Convex Regularization, Convex Optimization
Convex optimization with sparsity-promoting convex regularization is a standard approach for estimating sparse signals in noise. In order to promote sparsity more strongly than convex regularization, it is also standard practice to employ non-convex optimization. In this paper, we take a third approach. We utilize a non-convex regularization term chosen such that the total cost function (consisting of data consistency and regularization terms) is convex. Therefore, sparsity is more strongly promoted than in the standard convex formulation, but without sacrificing the attractive aspects of convex optimization (unique minimum, robust algorithms, etc.). We use this idea to improve the recently developed 'overlapping group shrinkage' (OGS) algorithm for the denoising of group-sparse signals. The algorithm is applied to the problem of speech enhancement with favorable results in terms of both SNR and perceptual quality.
3,414
3,414
Manopt, a Matlab toolbox for optimization on manifolds
Optimization on manifolds is a rapidly developing branch of nonlinear optimization. Its focus is on problems where the smooth geometry of the search space can be leveraged to design efficient numerical algorithms. In particular, optimization on manifolds is well-suited to deal with rank and orthogonality constraints. Such structured constraints appear pervasively in machine learning applications, including low-rank matrix completion, sensor network localization, camera network registration, independent component analysis, metric learning, dimensionality reduction and so on. The Manopt toolbox, available at www.manopt.org, is a user-friendly, documented piece of software dedicated to simplify experimenting with state of the art Riemannian optimization algorithms. We aim particularly at reaching practitioners outside our field.
3,415
3,415
The Lovasz-Bregman Divergence and connections to rank aggregation, clustering, and web ranking
We extend the recently introduced theory of Lovasz-Bregman (LB) divergences (Iyer & Bilmes, 2012) in several ways. We show that they represent a distortion between a 'score' and an 'ordering', thus providing a new view of rank aggregation and order based clustering with interesting connections to web ranking. We show how the LB divergences have a number of properties akin to many permutation based metrics, and in fact have as special cases forms very similar to the Kendall-$\tau$ metric. We also show how the LB divergences subsume a number of commonly used ranking measures in information retrieval, like the NDCG and AUC. Unlike the traditional permutation based metrics, however, the LB divergence naturally captures a notion of "confidence" in the orderings, thus providing a new representation to applications involving aggregating scores as opposed to just orderings. We show how a number of recently used web ranking models are forms of Lovasz-Bregman rank aggregation and also observe that a natural form of Mallow's model using the LB divergence has been used as conditional ranking models for the 'Learning to Rank' problem.
3,416
3,416
Ensemble of Distributed Learners for Online Classification of Dynamic Data Streams
We present an efficient distributed online learning scheme to classify data captured from distributed, heterogeneous, and dynamic data sources. Our scheme consists of multiple distributed local learners, that analyze different streams of data that are correlated to a common event that needs to be classified. Each learner uses a local classifier to make a local prediction. The local predictions are then collected by each learner and combined using a weighted majority rule to output the final prediction. We propose a novel online ensemble learning algorithm to update the aggregation rule in order to adapt to the underlying data dynamics. We rigorously determine a bound for the worst case misclassification probability of our algorithm which depends on the misclassification probabilities of the best static aggregation rule, and of the best local classifier. Importantly, the worst case misclassification probability of our algorithm tends asymptotically to 0 if the misclassification probability of the best static aggregation rule or the misclassification probability of the best local classifier tend to 0. Then we extend our algorithm to address challenges specific to the distributed implementation and we prove new bounds that apply to these settings. Finally, we test our scheme by performing an evaluation study on several data sets. When applied to data sets widely used by the literature dealing with dynamic data streams and concept drift, our scheme exhibits performance gains ranging from 34% to 71% with respect to state of the art solutions.
3,417
3,417
Monitoring with uncertainty
We discuss the problem of runtime verification of an instrumented program that misses to emit and to monitor some events. These gaps can occur when a monitoring overhead control mechanism is introduced to disable the monitor of an application with real-time constraints. We show how to use statistical models to learn the application behavior and to "fill in" the introduced gaps. Finally, we present and discuss some techniques developed in the last three years to estimate the probability that a property of interest is violated in the presence of an incomplete trace.
3,418
3,418
A stochastic hybrid model of a biological filter
We present a hybrid model of a biological filter, a genetic circuit which removes fast fluctuations in the cell's internal representation of the extra cellular environment. The model takes the classic feed-forward loop (FFL) motif and represents it as a network of continuous protein concentrations and binary, unobserved gene promoter states. We address the problem of statistical inference and parameter learning for this class of models from partial, discrete time observations. We show that the hybrid representation leads to an efficient algorithm for approximate statistical inference in this circuit, and show its effectiveness on a simulated data set.
3,419
3,419
Sparse and Non-Negative BSS for Noisy Data
Non-negative blind source separation (BSS) has raised interest in various fields of research, as testified by the wide literature on the topic of non-negative matrix factorization (NMF). In this context, it is fundamental that the sources to be estimated present some diversity in order to be efficiently retrieved. Sparsity is known to enhance such contrast between the sources while producing very robust approaches, especially to noise. In this paper we introduce a new algorithm in order to tackle the blind separation of non-negative sparse sources from noisy measurements. We first show that sparsity and non-negativity constraints have to be carefully applied on the sought-after solution. In fact, improperly constrained solutions are unlikely to be stable and are therefore sub-optimal. The proposed algorithm, named nGMCA (non-negative Generalized Morphological Component Analysis), makes use of proximal calculus techniques to provide properly constrained solutions. The performance of nGMCA compared to other state-of-the-art algorithms is demonstrated by numerical experiments encompassing a wide variety of settings, with negligible parameter tuning. In particular, nGMCA is shown to provide robustness to noise and performs well on synthetic mixtures of real NMR spectra.
3,420
3,420
Backhaul-Aware Interference Management in the Uplink of Wireless Small Cell Networks
The design of distributed mechanisms for interference management is one of the key challenges in emerging wireless small cell networks whose backhaul is capacity limited and heterogeneous (wired, wireless and a mix thereof). In this paper, a novel, backhaul-aware approach to interference management in wireless small cell networks is proposed. The proposed approach enables macrocell user equipments (MUEs) to optimize their uplink performance, by exploiting the presence of neighboring small cell base stations. The problem is formulated as a noncooperative game among the MUEs that seek to optimize their delay-rate tradeoff, given the conditions of both the radio access network and the -- possibly heterogeneous -- backhaul. To solve this game, a novel, distributed learning algorithm is proposed using which the MUEs autonomously choose their optimal uplink transmission strategies, given a limited amount of available information. The convergence of the proposed algorithm is shown and its properties are studied. Simulation results show that, under various types of backhauls, the proposed approach yields significant performance gains, in terms of both average throughput and delay for the MUEs, when compared to existing benchmark algorithms.
3,421
3,421
Bayesian Conditional Gaussian Network Classifiers with Applications to Mass Spectra Classification
Classifiers based on probabilistic graphical models are very effective. In continuous domains, maximum likelihood is usually used to assess the predictions of those classifiers. When data is scarce, this can easily lead to overfitting. In any probabilistic setting, Bayesian averaging (BA) provides theoretically optimal predictions and is known to be robust to overfitting. In this work we introduce Bayesian Conditional Gaussian Network Classifiers, which efficiently perform exact Bayesian averaging over the parameters. We evaluate the proposed classifiers against the maximum likelihood alternatives proposed so far over standard UCI datasets, concluding that performing BA improves the quality of the assessed probabilities (conditional log likelihood) whilst maintaining the error rate. Overfitting is more likely to occur in domains where the number of data items is small and the number of variables is large. These two conditions are met in the realm of bioinformatics, where the early diagnosis of cancer from mass spectra is a relevant task. We provide an application of our classification framework to that problem, comparing it with the standard maximum likelihood alternative, where the improvement of quality in the assessed probabilities is confirmed.
3,422
3,422
New Algorithms for Learning Incoherent and Overcomplete Dictionaries
In sparse recovery we are given a matrix $A$ (the dictionary) and a vector of the form $A X$ where $X$ is sparse, and the goal is to recover $X$. This is a central notion in signal processing, statistics and machine learning. But in applications such as sparse coding, edge detection, compression and super resolution, the dictionary $A$ is unknown and has to be learned from random examples of the form $Y = AX$ where $X$ is drawn from an appropriate distribution --- this is the dictionary learning problem. In most settings, $A$ is overcomplete: it has more columns than rows. This paper presents a polynomial-time algorithm for learning overcomplete dictionaries; the only previously known algorithm with provable guarantees is the recent work of Spielman, Wang and Wright who gave an algorithm for the full-rank case, which is rarely the case in applications. Our algorithm applies to incoherent dictionaries which have been a central object of study since they were introduced in seminal work of Donoho and Huo. In particular, a dictionary is $\mu$-incoherent if each pair of columns has inner product at most $\mu / \sqrt{n}$. The algorithm makes natural stochastic assumptions about the unknown sparse vector $X$, which can contain $k \leq c \min(\sqrt{n}/\mu \log n, m^{1/2 -\eta})$ non-zero entries (for any $\eta > 0$). This is close to the best $k$ allowable by the best sparse recovery algorithms even if one knows the dictionary $A$ exactly. Moreover, both the running time and sample complexity depend on $\log 1/\epsilon$, where $\epsilon$ is the target accuracy, and so our algorithms converge very quickly to the true dictionary. Our algorithm can also tolerate substantial amounts of noise provided it is incoherent with respect to the dictionary (e.g., Gaussian). In the noisy setting, our running time and sample complexity depend polynomially on $1/\epsilon$, and this is necessary.
3,423
3,423
Prediction of breast cancer recurrence using Classification Restricted Boltzmann Machine with Dropping
In this paper, we apply Classification Restricted Boltzmann Machine (ClassRBM) to the problem of predicting breast cancer recurrence. According to the Polish National Cancer Registry, in 2010 only, the breast cancer caused almost 25% of all diagnosed cases of cancer in Poland. We propose how to use ClassRBM for predicting breast cancer return and discovering relevant inputs (symptoms) in illness reappearance. Next, we outline a general probabilistic framework for learning Boltzmann machines with masks, which we refer to as Dropping. The fashion of generating masks leads to different learning methods, i.e., DropOut, DropConnect. We propose a new method called DropPart which is a generalization of DropConnect. In DropPart the Beta distribution instead of Bernoulli distribution in DropConnect is used. At the end, we carry out an experiment using real-life dataset consisting of 949 cases, provided by the Institute of Oncology Ljubljana.
3,424
3,424
Linear and Parallel Learning of Markov Random Fields
We introduce a new embarrassingly parallel parameter learning algorithm for Markov random fields with untied parameters which is efficient for a large class of practical models. Our algorithm parallelizes naturally over cliques and, for graphs of bounded degree, its complexity is linear in the number of cliques. Unlike its competitors, our algorithm is fully parallel and for log-linear models it is also data efficient, requiring only the local sufficient statistics of the data to estimate parameters.
3,425
3,425
Learning-Based Procedural Content Generation
Procedural content generation (PCG) has recently become one of the hottest topics in computational intelligence and AI game researches. Among a variety of PCG techniques, search-based approaches overwhelmingly dominate PCG development at present. While SBPCG leads to promising results and successful applications, it poses a number of challenges ranging from representation to evaluation of the content being generated. In this paper, we present an alternative yet generic PCG framework, named learning-based procedure content generation (LBPCG), to provide potential solutions to several challenging problems in existing PCG techniques. By exploring and exploiting information gained in game development and public beta test via data-driven learning, our framework can generate robust content adaptable to end-user or target players on-line with minimal interruption to their experience. Furthermore, we develop enabling techniques to implement the various models required in our framework. For a proof of concept, we have developed a prototype based on the classic open source first-person shooter game, Quake. Simulation results suggest that our framework is promising in generating quality content.
3,426
3,426
Discriminative Parameter Estimation for Random Walks Segmentation
The Random Walks (RW) algorithm is one of the most e - cient and easy-to-use probabilistic segmentation methods. By combining contrast terms with prior terms, it provides accurate segmentations of medical images in a fully automated manner. However, one of the main drawbacks of using the RW algorithm is that its parameters have to be hand-tuned. we propose a novel discriminative learning framework that estimates the parameters using a training dataset. The main challenge we face is that the training samples are not fully supervised. Speci cally, they provide a hard segmentation of the images, instead of a proba- bilistic segmentation. We overcome this challenge by treating the opti- mal probabilistic segmentation that is compatible with the given hard segmentation as a latent variable. This allows us to employ the latent support vector machine formulation for parameter estimation. We show that our approach signi cantly outperforms the baseline methods on a challenging dataset consisting of real clinical 3D MRI volumes of skeletal muscles.
3,427
3,427
Preventing Disclosure of Sensitive Knowledge by Hiding Inference
Data Mining is a way of extracting data or uncovering hidden patterns of information from databases. So, there is a need to prevent the inference rules from being disclosed such that the more secure data sets cannot be identified from non sensitive attributes. This can be done through removing or adding certain item sets in the transactions Sanitization. The purpose is to hide the Inference rules, so that the user may not be able to discover any valuable information from other non sensitive data and any organisation can release all samples of their data without the fear of Knowledge Discovery In Databases which can be achieved by investigating frequently occurring item sets, rules that can be mined from them with the objective of hiding them. Another way is to release only limited samples in the new database so that there is no information loss and it also satisfies the legitimate needs of the users. The major problem is uncovering hidden patterns, which causes a threat to the database security. Sensitive data are inferred from non-sensitive data based on the semantics of the application the user has, commonly known as the inference problem. Two fundamental approaches to protect sensitive rules from disclosure are that, preventing rules from being generated by hiding the frequent sets of data items and reducing the importance of the rules by setting their confidence below a user-specified threshold.
3,428
3,428
Online Ranking: Discrete Choice, Spearman Correlation and Other Feedback
Given a set $V$ of $n$ objects, an online ranking system outputs at each time step a full ranking of the set, observes a feedback of some form and suffers a loss. We study the setting in which the (adversarial) feedback is an element in $V$, and the loss is the position (0th, 1st, 2nd...) of the item in the outputted ranking. More generally, we study a setting in which the feedback is a subset $U$ of at most $k$ elements in $V$, and the loss is the sum of the positions of those elements. We present an algorithm of expected regret $O(n^{3/2}\sqrt{Tk})$ over a time horizon of $T$ steps with respect to the best single ranking in hindsight. This improves previous algorithms and analyses either by a factor of either $\Omega(\sqrt{k})$, a factor of $\Omega(\sqrt{\log n})$ or by improving running time from quadratic to $O(n\log n)$ per round. We also prove a matching lower bound. Our techniques also imply an improved regret bound for online rank aggregation over the Spearman correlation measure, and to other more complex ranking loss functions.
3,429
3,429
Concentration Inequalities for Bounded Random Vectors
We derive simple concentration inequalities for bounded random vectors, which generalize Hoeffding's inequalities for bounded scalar random variables. As applications, we apply the general results to multinomial and Dirichlet distributions to obtain multivariate concentration inequalities.
3,430
3,430
Non-Asymptotic Convergence Analysis of Inexact Gradient Methods for Machine Learning Without Strong Convexity
Many recent applications in machine learning and data fitting call for the algorithmic solution of structured smooth convex optimization problems. Although the gradient descent method is a natural choice for this task, it requires exact gradient computations and hence can be inefficient when the problem size is large or the gradient is difficult to evaluate. Therefore, there has been much interest in inexact gradient methods (IGMs), in which an efficiently computable approximate gradient is used to perform the update in each iteration. Currently, non-asymptotic linear convergence results for IGMs are typically established under the assumption that the objective function is strongly convex, which is not satisfied in many applications of interest; while linear convergence results that do not require the strong convexity assumption are usually asymptotic in nature. In this paper, we combine the best of these two types of results and establish---under the standard assumption that the gradient approximation errors decrease linearly to zero---the non-asymptotic linear convergence of IGMs when applied to a class of structured convex optimization problems. Such a class covers settings where the objective function is not necessarily strongly convex and includes the least squares and logistic regression problems. We believe that our techniques will find further applications in the non-asymptotic convergence analysis of other first-order methods.
3,431
3,431
API design for machine learning software: experiences from the scikit-learn project
Scikit-learn is an increasingly popular machine learning li- brary. Written in Python, it is designed to be simple and efficient, accessible to non-experts, and reusable in various contexts. In this paper, we present and discuss our design choices for the application programming interface (API) of the project. In particular, we describe the simple and elegant interface shared by all learning and processing units in the library and then discuss its advantages in terms of composition and reusability. The paper also comments on implementation details specific to the Python ecosystem and analyzes obstacles faced by users and developers of the library.
3,432
3,432
Ensemble approaches for improving community detection methods
Statistical estimates can often be improved by fusion of data from several different sources. One example is so-called ensemble methods which have been successfully applied in areas such as machine learning for classification and clustering. In this paper, we present an ensemble method to improve community detection by aggregating the information found in an ensemble of community structures. This ensemble can found by re-sampling methods, multiple runs of a stochastic community detection method, or by several different community detection algorithms applied to the same network. The proposed method is evaluated using random networks with community structures and compared with two commonly used community detection methods. The proposed method when applied on a stochastic community detection algorithm performs well with low computational complexity, thus offering both a new approach to community detection and an additional community detection method.
3,433
3,433
Unmixing Incoherent Structures of Big Data by Randomized or Greedy Decomposition
Learning big data by matrix decomposition always suffers from expensive computation, mixing of complicated structures and noise. In this paper, we study more adaptive models and efficient algorithms that decompose a data matrix as the sum of semantic components with incoherent structures. We firstly introduce "GO decomposition (GoDec)", an alternating projection method estimating the low-rank part $L$ and the sparse part $S$ from data matrix $X=L+S+G$ corrupted by noise $G$. Two acceleration strategies are proposed to obtain scalable unmixing algorithm on big data: 1) Bilateral random projection (BRP) is developed to speed up the update of $L$ in GoDec by a closed-form built from left and right random projections of $X-S$ in lower dimensions; 2) Greedy bilateral (GreB) paradigm updates the left and right factors of $L$ in a mutually adaptive and greedy incremental manner, and achieve significant improvement in both time and sample complexities. Then we proposes three nontrivial variants of GoDec that generalizes GoDec to more general data type and whose fast algorithms can be derived from the two strategies......
3,434
3,434
Scalable Probabilistic Entity-Topic Modeling
We present an LDA approach to entity disambiguation. Each topic is associated with a Wikipedia article and topics generate either content words or entity mentions. Training such models is challenging because of the topic and vocabulary size, both in the millions. We tackle these problems using a novel distributed inference and representation framework based on a parallel Gibbs sampler guided by the Wikipedia link graph, and pipelines of MapReduce allowing fast and memory-frugal processing of large datasets. We report state-of-the-art performance on a public dataset.
3,435
3,435
Relative Comparison Kernel Learning with Auxiliary Kernels
In this work we consider the problem of learning a positive semidefinite kernel matrix from relative comparisons of the form: "object A is more similar to object B than it is to C", where comparisons are given by humans. Existing solutions to this problem assume many comparisons are provided to learn a high quality kernel. However, this can be considered unrealistic for many real-world tasks since relative assessments require human input, which is often costly or difficult to obtain. Because of this, only a limited number of these comparisons may be provided. In this work, we explore methods for aiding the process of learning a kernel with the help of auxiliary kernels built from more easily extractable information regarding the relationships among objects. We propose a new kernel learning approach in which the target kernel is defined as a conic combination of auxiliary kernels and a kernel whose elements are learned directly. We formulate a convex optimization to solve for this target kernel that adds only minor overhead to methods that use no auxiliary information. Empirical results show that in the presence of few training relative comparisons, our method can learn kernels that generalize to more out-of-sample comparisons than methods that do not utilize auxiliary information, as well as similar methods that learn metrics over objects.
3,436
3,436
BayesOpt: A Library for Bayesian optimization with Robotics Applications
The purpose of this paper is twofold. On one side, we present a general framework for Bayesian optimization and we compare it with some related fields in active learning and Bayesian numerical analysis. On the other hand, Bayesian optimization and related problems (bandits, sequential experimental design) are highly dependent on the surrogate model that is selected. However, there is no clear standard in the literature. Thus, we present a fast and flexible toolbox that allows to test and combine different models and criteria with little effort. It includes most of the state-of-the-art contributions, algorithms and models. Its speed also removes part of the stigma that Bayesian optimization methods are only good for "expensive functions". The software is free and it can be used in many operating systems and computer languages.
3,437
3,437
Online Tensor Methods for Learning Latent Variable Models
We introduce an online tensor decomposition based approach for two latent variable modeling problems namely, (1) community detection, in which we learn the latent communities that the social actors in social networks belong to, and (2) topic modeling, in which we infer hidden topics of text articles. We consider decomposition of moment tensors using stochastic gradient descent. We conduct optimization of multilinear operations in SGD and avoid directly forming the tensors, to save computational and storage costs. We present optimized algorithm in two platforms. Our GPU-based implementation exploits the parallelism of SIMD architectures to allow for maximum speed-up by a careful optimization of storage and data transfer, whereas our CPU-based implementation uses efficient sparse matrix computations and is suitable for large sparse datasets. For the community detection problem, we demonstrate accuracy and computational efficiency on Facebook, Yelp and DBLP datasets, and for the topic modeling problem, we also demonstrate good performance on the New York Times dataset. We compare our results to the state-of-the-art algorithms such as the variational method, and report a gain of accuracy and a gain of several orders of magnitude in the execution time.
3,438
3,438
SKYNET: an efficient and robust neural network training tool for machine learning in astronomy
We present the first public release of our generic neural network training algorithm, called SkyNet. This efficient and robust machine learning tool is able to train large and deep feed-forward neural networks, including autoencoders, for use in a wide range of supervised and unsupervised learning applications, such as regression, classification, density estimation, clustering and dimensionality reduction. SkyNet uses a `pre-training' method to obtain a set of network parameters that has empirically been shown to be close to a good solution, followed by further optimisation using a regularised variant of Newton's method, where the level of regularisation is determined and adjusted automatically; the latter uses second-order derivative information to improve convergence, but without the need to evaluate or store the full Hessian matrix, by using a fast approximate method to calculate Hessian-vector products. This combination of methods allows for the training of complicated networks that are difficult to optimise using standard backpropagation techniques. SkyNet employs convergence criteria that naturally prevent overfitting, and also includes a fast algorithm for estimating the accuracy of network outputs. The utility and flexibility of SkyNet are demonstrated by application to a number of toy problems, and to astronomical problems focusing on the recovery of structure from blurred and noisy images, the identification of gamma-ray bursters, and the compression and denoising of galaxy images. The SkyNet software, which is implemented in standard ANSI C and fully parallelised using MPI, is available at http://www.mrao.cam.ac.uk/software/skynet/.
3,439
3,439
On the Robustness of Temporal Properties for Stochastic Models
Stochastic models such as Continuous-Time Markov Chains (CTMC) and Stochastic Hybrid Automata (SHA) are powerful formalisms to model and to reason about the dynamics of biological systems, due to their ability to capture the stochasticity inherent in biological processes. A classical question in formal modelling with clear relevance to biological modelling is the model checking problem. i.e. calculate the probability that a behaviour, expressed for instance in terms of a certain temporal logic formula, may occur in a given stochastic process. However, one may not only be interested in the notion of satisfiability, but also in the capacity of a system to mantain a particular emergent behaviour unaffected by the perturbations, caused e.g. from extrinsic noise, or by possible small changes in the model parameters. To address this issue, researchers from the verification community have recently proposed several notions of robustness for temporal logic providing suitable definitions of distance between a trajectory of a (deterministic) dynamical system and the boundaries of the set of trajectories satisfying the property of interest. The contributions of this paper are twofold. First, we extend the notion of robustness to stochastic systems, showing that this naturally leads to a distribution of robustness scores. By discussing two examples, we show how to approximate the distribution of the robustness score and its key indicators: the average robustness and the conditional average robustness. Secondly, we show how to combine these indicators with the satisfaction probability to address the system design problem, where the goal is to optimize some control parameters of a stochastic model in order to best maximize robustness of the desired specifications.
3,440
3,440
Concentration in unbounded metric spaces and algorithmic stability
We prove an extension of McDiarmid's inequality for metric spaces with unbounded diameter. To this end, we introduce the notion of the {\em subgaussian diameter}, which is a distribution-dependent refinement of the metric diameter. Our technique provides an alternative approach to that of Kutin and Niyogi's method of weakly difference-bounded functions, and yields nontrivial, dimension-free results in some interesting cases where the former does not. As an application, we give apparently the first generalization bound in the algorithmic stability setting that holds for unbounded loss functions. We furthermore extend our concentration inequality to strongly mixing processes.
3,441
3,441
Confidence-constrained joint sparsity recovery under the Poisson noise model
Our work is focused on the joint sparsity recovery problem where the common sparsity pattern is corrupted by Poisson noise. We formulate the confidence-constrained optimization problem in both least squares (LS) and maximum likelihood (ML) frameworks and study the conditions for perfect reconstruction of the original row sparsity and row sparsity pattern. However, the confidence-constrained optimization problem is non-convex. Using convex relaxation, an alternative convex reformulation of the problem is proposed. We evaluate the performance of the proposed approach using simulation results on synthetic data and show the effectiveness of proposed row sparsity and row sparsity pattern recovery framework.
3,442
3,442
Semistochastic Quadratic Bound Methods
Partition functions arise in a variety of settings, including conditional random fields, logistic regression, and latent gaussian models. In this paper, we consider semistochastic quadratic bound (SQB) methods for maximum likelihood inference based on partition function optimization. Batch methods based on the quadratic bound were recently proposed for this class of problems, and performed favorably in comparison to state-of-the-art techniques. Semistochastic methods fall in between batch algorithms, which use all the data, and stochastic gradient type methods, which use small random selections at each iteration. We build semistochastic quadratic bound-based methods, and prove both global convergence (to a stationary point) under very weak assumptions, and linear convergence rate under stronger assumptions on the objective. To make the proposed methods faster and more stable, we consider inexact subproblem minimization and batch-size selection schemes. The efficacy of SQB methods is demonstrated via comparison with several state-of-the-art techniques on commonly used datasets.
3,443
3,443
Bayesian Structural Inference for Hidden Processes
We introduce a Bayesian approach to discovering patterns in structurally complex processes. The proposed method of Bayesian Structural Inference (BSI) relies on a set of candidate unifilar HMM (uHMM) topologies for inference of process structure from a data series. We employ a recently developed exact enumeration of topological epsilon-machines. (A sequel then removes the topological restriction.) This subset of the uHMM topologies has the added benefit that inferred models are guaranteed to be epsilon-machines, irrespective of estimated transition probabilities. Properties of epsilon-machines and uHMMs allow for the derivation of analytic expressions for estimating transition probabilities, inferring start states, and comparing the posterior probability of candidate model topologies, despite process internal structure being only indirectly present in data. We demonstrate BSI's effectiveness in estimating a process's randomness, as reflected by the Shannon entropy rate, and its structure, as quantified by the statistical complexity. We also compare using the posterior distribution over candidate models and the single, maximum a posteriori model for point estimation and show that the former more accurately reflects uncertainty in estimated values. We apply BSI to in-class examples of finite- and infinite-order Markov processes, as well to an out-of-class, infinite-state hidden process.
3,444
3,444
Improvements to deep convolutional neural networks for LVCSR
Deep Convolutional Neural Networks (CNNs) are more powerful than Deep Neural Networks (DNN), as they are able to better reduce spectral variation in the input signal. This has also been confirmed experimentally, with CNNs showing improvements in word error rate (WER) between 4-12% relative compared to DNNs across a variety of LVCSR tasks. In this paper, we describe different methods to further improve CNN performance. First, we conduct a deep analysis comparing limited weight sharing and full weight sharing with state-of-the-art features. Second, we apply various pooling strategies that have shown improvements in computer vision to an LVCSR speech task. Third, we introduce a method to effectively incorporate speaker adaptation, namely fMLLR, into log-mel features. Fourth, we introduce an effective strategy to use dropout during Hessian-free sequence training. We find that with these improvements, particularly with fMLLR and dropout, we are able to achieve an additional 2-3% relative improvement in WER on a 50-hour Broadcast News task over our previous best CNN baseline. On a larger 400-hour BN task, we find an additional 4-5% relative improvement over our previous best CNN baseline.
3,445
3,445
Accelerating Hessian-free optimization for deep neural networks by implicit preconditioning and sampling
Hessian-free training has become a popular parallel second or- der optimization technique for Deep Neural Network training. This study aims at speeding up Hessian-free training, both by means of decreasing the amount of data used for training, as well as through reduction of the number of Krylov subspace solver iterations used for implicit estimation of the Hessian. In this paper, we develop an L-BFGS based preconditioning scheme that avoids the need to access the Hessian explicitly. Since L-BFGS cannot be regarded as a fixed-point iteration, we further propose the employment of flexible Krylov subspace solvers that retain the desired theoretical convergence guarantees of their conventional counterparts. Second, we propose a new sampling algorithm, which geometrically increases the amount of data utilized for gradient and Krylov subspace iteration calculations. On a 50-hr English Broadcast News task, we find that these methodologies provide roughly a 1.5x speed-up, whereas, on a 300-hr Switchboard task, these techniques provide over a 2.3x speedup, with no loss in WER. These results suggest that even further speed-up is expected, as problems scale and complexity grows.
3,446
3,446
Projection onto the probability simplex: An efficient algorithm with a simple proof, and an application
We provide an elementary proof of a simple, efficient algorithm for computing the Euclidean projection of a point onto the probability simplex. We also show an application in Laplacian K-modes clustering.
3,447
3,447
A Comparism of the Performance of Supervised and Unsupervised Machine Learning Techniques in evolving Awale/Mancala/Ayo Game Player
Awale games have become widely recognized across the world, for their innovative strategies and techniques which were used in evolving the agents (player) and have produced interesting results under various conditions. This paper will compare the results of the two major machine learning techniques by reviewing their performance when using minimax, endgame database, a combination of both techniques or other techniques, and will determine which are the best techniques.
3,448
3,448
Convergence of Nearest Neighbor Pattern Classification with Selective Sampling
In the panoply of pattern classification techniques, few enjoy the intuitive appeal and simplicity of the nearest neighbor rule: given a set of samples in some metric domain space whose value under some function is known, we estimate the function anywhere in the domain by giving the value of the nearest sample per the metric. More generally, one may use the modal value of the m nearest samples, where m is a fixed positive integer (although m=1 is known to be admissible in the sense that no larger value is asymptotically superior in terms of prediction error). The nearest neighbor rule is nonparametric and extremely general, requiring in principle only that the domain be a metric space. The classic paper on the technique, proving convergence under independent, identically-distributed (iid) sampling, is due to Cover and Hart (1967). Because taking samples is costly, there has been much research in recent years on selective sampling, in which each sample is selected from a pool of candidates ranked by a heuristic; the heuristic tries to guess which candidate would be the most "informative" sample. Lindenbaum et al. (2004) apply selective sampling to the nearest neighbor rule, but their approach sacrifices the austere generality of Cover and Hart; furthermore, their heuristic algorithm is complex and computationally expensive. Here we report recent results that enable selective sampling in the original Cover-Hart setting. Our results pose three selection heuristics and prove that their nearest neighbor rule predictions converge to the true pattern. Two of the algorithms are computationally cheap, with complexity growing linearly in the number of samples. We believe that these results constitute an important advance in the art.
3,449
3,449
A General Two-Step Approach to Learning-Based Hashing
Most existing approaches to hashing apply a single form of hash function, and an optimization process which is typically deeply coupled to this specific form. This tight coupling restricts the flexibility of the method to respond to the data, and can result in complex optimization problems that are difficult to solve. Here we propose a flexible yet simple framework that is able to accommodate different types of loss functions and hash functions. This framework allows a number of existing approaches to hashing to be placed in context, and simplifies the development of new problem-specific hashing methods. Our framework decomposes hashing learning problem into two steps: hash bit learning and hash function learning based on the learned bits. The first step can typically be formulated as binary quadratic problems, and the second step can be accomplished by training standard binary classifiers. Both problems have been extensively studied in the literature. Our extensive experiments demonstrate that the proposed framework is effective, flexible and outperforms the state-of-the-art.
3,450
3,450
A Clustering Approach to Learn Sparsely-Used Overcomplete Dictionaries
We consider the problem of learning overcomplete dictionaries in the context of sparse coding, where each sample selects a sparse subset of dictionary elements. Our main result is a strategy to approximately recover the unknown dictionary using an efficient algorithm. Our algorithm is a clustering-style procedure, where each cluster is used to estimate a dictionary element. The resulting solution can often be further cleaned up to obtain a high accuracy estimate, and we provide one simple scenario where $\ell_1$-regularized regression can be used for such a second stage.
3,451
3,451
Learning Transformations for Clustering and Classification
A low-rank transformation learning framework for subspace clustering and classification is here proposed. Many high-dimensional data, such as face images and motion sequences, approximately lie in a union of low-dimensional subspaces. The corresponding subspace clustering problem has been extensively studied in the literature to partition such high-dimensional data into clusters corresponding to their underlying low-dimensional subspaces. However, low-dimensional intrinsic structures are often violated for real-world observations, as they can be corrupted by errors or deviate from ideal models. We propose to address this by learning a linear transformation on subspaces using matrix rank, via its convex surrogate nuclear norm, as the optimization criteria. The learned linear transformation restores a low-rank structure for data from the same subspace, and, at the same time, forces a a maximally separated structure for data from different subspaces. In this way, we reduce variations within subspaces, and increase separation between subspaces for a more robust subspace clustering. This proposed learned robust subspace clustering framework significantly enhances the performance of existing subspace clustering methods. Basic theoretical results here presented help to further support the underlying framework. To exploit the low-rank structures of the transformed subspaces, we further introduce a fast subspace clustering technique, which efficiently combines robust PCA with sparse modeling. When class labels are present at the training stage, we show this low-rank transformation framework also significantly enhances classification performance. Extensive experiments using public datasets are presented, showing that the proposed approach significantly outperforms state-of-the-art methods for subspace clustering and classification.
3,452
3,452
Structure Learning of Probabilistic Logic Programs by Searching the Clause Space
Learning probabilistic logic programming languages is receiving an increasing attention and systems are available for learning the parameters (PRISM, LeProbLog, LFI-ProbLog and EMBLEM) or both the structure and the parameters (SEM-CP-logic and SLIPCASE) of these languages. In this paper we present the algorithm SLIPCOVER for "Structure LearnIng of Probabilistic logic programs by searChing OVER the clause space". It performs a beam search in the space of probabilistic clauses and a greedy search in the space of theories, using the log likelihood of the data as the guiding heuristics. To estimate the log likelihood SLIPCOVER performs Expectation Maximization with EMBLEM. The algorithm has been tested on five real world datasets and compared with SLIPCASE, SEM-CP-logic, Aleph and two algorithms for learning Markov Logic Networks (Learning using Structural Motifs (LSM) and ALEPH++ExactL1). SLIPCOVER achieves higher areas under the precision-recall and ROC curves in most cases.
3,453
3,453
Large-scale optimization with the primal-dual column generation method
The primal-dual column generation method (PDCGM) is a general-purpose column generation technique that relies on the primal-dual interior point method to solve the restricted master problems. The use of this interior point method variant allows to obtain suboptimal and well-centered dual solutions which naturally stabilizes the column generation. As recently presented in the literature, reductions in the number of calls to the oracle and in the CPU times are typically observed when compared to the standard column generation, which relies on extreme optimal dual solutions. However, these results are based on relatively small problems obtained from linear relaxations of combinatorial applications. In this paper, we investigate the behaviour of the PDCGM in a broader context, namely when solving large-scale convex optimization problems. We have selected applications that arise in important real-life contexts such as data analysis (multiple kernel learning problem), decision-making under uncertainty (two-stage stochastic programming problems) and telecommunication and transportation networks (multicommodity network flow problem). In the numerical experiments, we use publicly available benchmark instances to compare the performance of the PDCGM against recent results for different methods presented in the literature, which were the best available results to date. The analysis of these results suggests that the PDCGM offers an attractive alternative over specialized methods since it remains competitive in terms of number of iterations and CPU times even for large-scale optimization problems.
3,454
3,454
Exponentially Fast Parameter Estimation in Networks Using Distributed Dual Averaging
In this paper we present an optimization-based view of distributed parameter estimation and observational social learning in networks. Agents receive a sequence of random, independent and identically distributed (i.i.d.) signals, each of which individually may not be informative about the underlying true state, but the signals together are globally informative enough to make the true state identifiable. Using an optimization-based characterization of Bayesian learning as proximal stochastic gradient descent (with Kullback-Leibler divergence from a prior as a proximal function), we show how to efficiently use a distributed, online variant of Nesterov's dual averaging method to solve the estimation with purely local information. When the true state is globally identifiable, and the network is connected, we prove that agents eventually learn the true parameter using a randomized gossip scheme. We demonstrate that with high probability the convergence is exponentially fast with a rate dependent on the KL divergence of observations under the true state from observations under the second likeliest state. Furthermore, our work also highlights the possibility of learning under continuous adaptation of network which is a consequence of employing constant, unit stepsize for the algorithm.
3,455
3,455
Accelerated Proximal Stochastic Dual Coordinate Ascent for Regularized Loss Minimization
We introduce a proximal version of the stochastic dual coordinate ascent method and show how to accelerate the method using an inner-outer iteration procedure. We analyze the runtime of the framework and obtain rates that improve state-of-the-art results for various key machine learning optimization problems including SVM, logistic regression, ridge regression, Lasso, and multiclass SVM. Experiments validate our theoretical findings.
3,456
3,456
Minimizing Finite Sums with the Stochastic Average Gradient
We propose the stochastic average gradient (SAG) method for optimizing the sum of a finite number of smooth convex functions. Like stochastic gradient (SG) methods, the SAG method's iteration cost is independent of the number of terms in the sum. However, by incorporating a memory of previous gradient values the SAG method achieves a faster convergence rate than black-box SG methods. The convergence rate is improved from O(1/k^{1/2}) to O(1/k) in general, and when the sum is strongly-convex the convergence rate is improved from the sub-linear O(1/k) to a linear convergence rate of the form O(p^k) for p \textless{} 1. Further, in many cases the convergence rate of the new method is also faster than black-box deterministic gradient methods, in terms of the number of gradient evaluations. Numerical experiments indicate that the new algorithm often dramatically outperforms existing SG and deterministic gradient methods, and that the performance may be further improved through the use of non-uniform sampling strategies.
3,457
3,457
Maximizing submodular functions using probabilistic graphical models
We consider the problem of maximizing submodular functions; while this problem is known to be NP-hard, several numerically efficient local search techniques with approximation guarantees are available. In this paper, we propose a novel convex relaxation which is based on the relationship between submodular functions, entropies and probabilistic graphical models. In a graphical model, the entropy of the joint distribution decomposes as a sum of marginal entropies of subsets of variables; moreover, for any distribution, the entropy of the closest distribution factorizing in the graphical model provides an bound on the entropy. For directed graphical models, this last property turns out to be a direct consequence of the submodularity of the entropy function, and allows the generalization of graphical-model-based upper bounds to any submodular functions. These upper bounds may then be jointly maximized with respect to a set, while minimized with respect to the graph, leading to a convex variational inference scheme for maximizing submodular functions, based on outer approximations of the marginal polytope and maximum likelihood bounded treewidth structures. By considering graphs of increasing treewidths, we may then explore the trade-off between computational complexity and tightness of the relaxation. We also present extensions to constrained problems and maximizing the difference of submodular functions, which include all possible set functions.
3,458
3,458
Enhancements of Multi-class Support Vector Machine Construction from Binary Learners using Generalization Performance
We propose several novel methods for enhancing the multi-class SVMs by applying the generalization performance of binary classifiers as the core idea. This concept will be applied on the existing algorithms, i.e., the Decision Directed Acyclic Graph (DDAG), the Adaptive Directed Acyclic Graphs (ADAG), and Max Wins. Although in the previous approaches there have been many attempts to use some information such as the margin size and the number of support vectors as performance estimators for binary SVMs, they may not accurately reflect the actual performance of the binary SVMs. We show that the generalization ability evaluated via a cross-validation mechanism is more suitable to directly extract the actual performance of binary SVMs. Our methods are built around this performance measure, and each of them is crafted to overcome the weakness of the previous algorithm. The proposed methods include the Reordering Adaptive Directed Acyclic Graph (RADAG), Strong Elimination of the classifiers (SE), Weak Elimination of the classifiers (WE), and Voting based Candidate Filtering (VCF). Experimental results demonstrate that our methods give significantly higher accuracy than all of the traditional ones. Especially, WE provides significantly superior results compared to Max Wins which is recognized as the state of the art algorithm in terms of both accuracy and classification speed with two times faster in average.
3,459
3,459
Decision Trees for Function Evaluation - Simultaneous Optimization of Worst and Expected Cost
In several applications of automatic diagnosis and active learning a central problem is the evaluation of a discrete function by adaptively querying the values of its variables until the values read uniquely determine the value of the function. In general, the process of reading the value of a variable might involve some cost, computational or even a fee to be paid for the experiment required for obtaining the value. This cost should be taken into account when deciding the next variable to read. The goal is to design a strategy for evaluating the function incurring little cost (in the worst case or in expectation according to a prior distribution on the possible variables' assignments). Our algorithm builds a strategy (decision tree) which attains a logarithmic approxima- tion simultaneously for the expected and worst cost spent. This is best possible under the assumption that $P \neq NP.$
3,460
3,460
High-dimensional cluster analysis with the Masked EM Algorithm
Cluster analysis faces two problems in high dimensions: first, the `curse of dimensionality' that can lead to overfitting and poor generalization performance; and second, the sheer time taken for conventional algorithms to process large amounts of high-dimensional data. In many applications, only a small subset of features provide information about the cluster membership of any one data point, however this informative feature subset may not be the same for all data points. Here we introduce a `Masked EM' algorithm for fitting mixture of Gaussians models in such cases. We show that the algorithm performs close to optimally on simulated Gaussian data, and in an application of `spike sorting' of high channel-count neuronal recordings.
3,461
3,461
Temporal Autoencoding Improves Generative Models of Time Series
Restricted Boltzmann Machines (RBMs) are generative models which can learn useful representations from samples of a dataset in an unsupervised fashion. They have been widely employed as an unsupervised pre-training method in machine learning. RBMs have been modified to model time series in two main ways: The Temporal RBM stacks a number of RBMs laterally and introduces temporal dependencies between the hidden layer units; The Conditional RBM, on the other hand, considers past samples of the dataset as a conditional bias and learns a representation which takes these into account. Here we propose a new training method for both the TRBM and the CRBM, which enforces the dynamic structure of temporal datasets. We do so by treating the temporal models as denoising autoencoders, considering past frames of the dataset as corrupted versions of the present frame and minimizing the reconstruction error of the present data by the model. We call this approach Temporal Autoencoding. This leads to a significant improvement in the performance of both models in a filling-in-frames task across a number of datasets. The error reduction for motion capture data is 56\% for the CRBM and 80\% for the TRBM. Taking the posterior mean prediction instead of single samples further improves the model's estimates, decreasing the error by as much as 91\% for the CRBM on motion capture data. We also trained the model to perform forecasting on a large number of datasets and have found TA pretraining to consistently improve the performance of the forecasts. Furthermore, by looking at the prediction error across time, we can see that this improvement reflects a better representation of the dynamics of the data as opposed to a bias towards reconstructing the observed data on a short time scale.
3,462
3,462
Convex relaxations of structured matrix factorizations
We consider the factorization of a rectangular matrix $X $ into a positive linear combination of rank-one factors of the form $u v^\top$, where $u$ and $v$ belongs to certain sets $\mathcal{U}$ and $\mathcal{V}$, that may encode specific structures regarding the factors, such as positivity or sparsity. In this paper, we show that computing the optimal decomposition is equivalent to computing a certain gauge function of $X$ and we provide a detailed analysis of these gauge functions and their polars. Since these gauge functions are typically hard to compute, we present semi-definite relaxations and several algorithms that may recover approximate decompositions with approximation guarantees. We illustrate our results with simulations on finding decompositions with elements in $\{0,1\}$. As side contributions, we present a detailed analysis of variational quadratic representations of norms as well as a new iterative basis pursuit algorithm that can deal with inexact first-order oracles.
3,463
3,463
Efficient Orthogonal Tensor Decomposition, with an Application to Latent Variable Model Learning
Decomposing tensors into orthogonal factors is a well-known task in statistics, machine learning, and signal processing. We study orthogonal outer product decompositions where the factors in the summands in the decomposition are required to be orthogonal across summands, by relating this orthogonal decomposition to the singular value decompositions of the flattenings. We show that it is a non-trivial assumption for a tensor to have such an orthogonal decomposition, and we show that it is unique (up to natural symmetries) in case it exists, in which case we also demonstrate how it can be efficiently and reliably obtained by a sequence of singular value decompositions. We demonstrate how the factoring algorithm can be applied for parameter identification in latent variable and mixture models.
3,464
3,464
Recovery guarantees for exemplar-based clustering
For a certain class of distributions, we prove that the linear programming relaxation of $k$-medoids clustering---a variant of $k$-means clustering where means are replaced by exemplars from within the dataset---distinguishes points drawn from nonoverlapping balls with high probability once the number of points drawn and the separation distance between any two balls are sufficiently large. Our results hold in the nontrivial regime where the separation distance is small enough that points drawn from different balls may be closer to each other than points drawn from the same ball; in this case, clustering by thresholding pairwise distances between points can fail. We also exhibit numerical evidence of high-probability recovery in a substantially more permissive regime.
3,465
3,465
Mixed Membership Models for Time Series
In this article we discuss some of the consequences of the mixed membership perspective on time series analysis. In its most abstract form, a mixed membership model aims to associate an individual entity with some set of attributes based on a collection of observed data. Although much of the literature on mixed membership models considers the setting in which exchangeable collections of data are associated with each member of a set of entities, it is equally natural to consider problems in which an entire time series is viewed as an entity and the goal is to characterize the time series in terms of a set of underlying dynamic attributes or "dynamic regimes". Indeed, this perspective is already present in the classical hidden Markov model, where the dynamic regimes are referred to as "states", and the collection of states realized in a sample path of the underlying process can be viewed as a mixed membership characterization of the observed time series. Our goal here is to review some of the richer modeling possibilities for time series that are provided by recent developments in the mixed membership framework.
3,466
3,466
Optimized projections for compressed sensing via rank-constrained nearest correlation matrix
Optimizing the acquisition matrix is useful for compressed sensing of signals that are sparse in overcomplete dictionaries, because the acquisition matrix can be adapted to the particular correlations of the dictionary atoms. In this paper a novel formulation of the optimization problem is proposed, in the form of a rank-constrained nearest correlation matrix problem. Furthermore, improvements for three existing optimization algorithms are introduced, which are shown to be particular instances of the proposed formulation. Simulation results show notable improvements and superior robustness in sparse signal recovery.
3,467
3,467
Group Learning and Opinion Diffusion in a Broadcast Network
We analyze the following group learning problem in the context of opinion diffusion: Consider a network with $M$ users, each facing $N$ options. In a discrete time setting, at each time step, each user chooses $K$ out of the $N$ options, and receive randomly generated rewards, whose statistics depend on the options chosen as well as the user itself, and are unknown to the users. Each user aims to maximize their expected total rewards over a certain time horizon through an online learning process, i.e., a sequence of exploration (sampling the return of each option) and exploitation (selecting empirically good options) steps. Within this context we consider two group learning scenarios, (1) users with uniform preferences and (2) users with diverse preferences, and examine how a user should construct its learning process to best extract information from other's decisions and experiences so as to maximize its own reward. Performance is measured in {\em weak regret}, the difference between the user's total reward and the reward from a user-specific best single-action policy (i.e., always selecting the set of options generating the highest mean rewards for this user). Within each scenario we also consider two cases: (i) when users exchange full information, meaning they share the actual rewards they obtained from their choices, and (ii) when users exchange limited information, e.g., only their choices but not rewards obtained from these choices.
3,468
3,468
Local Support Vector Machines:Formulation and Analysis
We provide a formulation for Local Support Vector Machines (LSVMs) that generalizes previous formulations, and brings out the explicit connections to local polynomial learning used in nonparametric estimation literature. We investigate the simplest type of LSVMs called Local Linear Support Vector Machines (LLSVMs). For the first time we establish conditions under which LLSVMs make Bayes consistent predictions at each test point $x_0$. We also establish rates at which the local risk of LLSVMs converges to the minimum value of expected local risk at each point $x_0$. Using stability arguments we establish generalization error bounds for LLSVMs.
3,469
3,469
Visual-Semantic Scene Understanding by Sharing Labels in a Context Network
We consider the problem of naming objects in complex, natural scenes containing widely varying object appearance and subtly different names. Informed by cognitive research, we propose an approach based on sharing context based object hypotheses between visual and lexical spaces. To this end, we present the Visual Semantic Integration Model (VSIM) that represents object labels as entities shared between semantic and visual contexts and infers a new image by updating labels through context switching. At the core of VSIM is a semantic Pachinko Allocation Model and a visual nearest neighbor Latent Dirichlet Allocation Model. For inference, we derive an iterative Data Augmentation algorithm that pools the label probabilities and maximizes the joint label posterior of an image. Our model surpasses the performance of state-of-art methods in several visual tasks on the challenging SUN09 dataset.
3,470
3,470
A Metric-learning based framework for Support Vector Machines and Multiple Kernel Learning
Most metric learning algorithms, as well as Fisher's Discriminant Analysis (FDA), optimize some cost function of different measures of within-and between-class distances. On the other hand, Support Vector Machines(SVMs) and several Multiple Kernel Learning (MKL) algorithms are based on the SVM large margin theory. Recently, SVMs have been analyzed from SVM and metric learning, and to develop new algorithms that build on the strengths of each. Inspired by the metric learning interpretation of SVM, we develop here a new metric-learning based SVM framework in which we incorporate metric learning concepts within SVM. We extend the optimization problem of SVM to include some measure of the within-class distance and along the way we develop a new within-class distance measure which is appropriate for SVM. In addition, we adopt the same approach for MKL and show that it can be also formulated as a Mahalanobis metric learning problem. Our end result is a number of SVM/MKL algorithms that incorporate metric learning concepts. We experiment with them on a set of benchmark datasets and observe important predictive performance improvements.
3,471
3,471
Performance Investigation of Feature Selection Methods
Sentiment analysis or opinion mining has become an open research domain after proliferation of Internet and Web 2.0 social media. People express their attitudes and opinions on social media including blogs, discussion forums, tweets, etc. and, sentiment analysis concerns about detecting and extracting sentiment or opinion from online text. Sentiment based text classification is different from topical text classification since it involves discrimination based on expressed opinion on a topic. Feature selection is significant for sentiment analysis as the opinionated text may have high dimensions, which can adversely affect the performance of sentiment analysis classifier. This paper explores applicability of feature selection methods for sentiment analysis and investigates their performance for classification in term of recall, precision and accuracy. Five feature selection methods (Document Frequency, Information Gain, Gain Ratio, Chi Squared, and Relief-F) and three popular sentiment feature lexicons (HM, GI and Opinion Lexicon) are investigated on movie reviews corpus with a size of 2000 documents. The experimental results show that Information Gain gave consistent results and Gain Ratio performs overall best for sentimental feature selection while sentiment lexicons gave poor performance. Furthermore, we found that performance of the classifier depends on appropriate number of representative feature selected from text.
3,472
3,472
The Cyborg Astrobiologist: Matching of Prior Textures by Image Compression for Geological Mapping and Novelty Detection
(abridged) We describe an image-comparison technique of Heidemann and Ritter that uses image compression, and is capable of: (i) detecting novel textures in a series of images, as well as of: (ii) alerting the user to the similarity of a new image to a previously-observed texture. This image-comparison technique has been implemented and tested using our Astrobiology Phone-cam system, which employs Bluetooth communication to send images to a local laptop server in the field for the image-compression analysis. We tested the system in a field site displaying a heterogeneous suite of sandstones, limestones, mudstones and coalbeds. Some of the rocks are partly covered with lichen. The image-matching procedure of this system performed very well with data obtained through our field test, grouping all images of yellow lichens together and grouping all images of a coal bed together, and giving a 91% accuracy for similarity detection. Such similarity detection could be employed to make maps of different geological units. The novelty-detection performance of our system was also rather good (a 64% accuracy). Such novelty detection may become valuable in searching for new geological units, which could be of astrobiological interest. The image-comparison technique is an unsupervised technique that is not capable of directly classifying an image as containing a particular geological feature; labeling of such geological features is done post facto by human geologists associated with this study, for the purpose of analyzing the system's performance. By providing more advanced capabilities for similarity detection and novelty detection, this image-compression technique could be useful in giving more scientific autonomy to robotic planetary rovers, and in assisting human astronauts in their geological exploration and assessment.
3,473
3,473
Domain and Function: A Dual-Space Model of Semantic Relations and Compositions
Given appropriate representations of the semantic relations between carpenter and wood and between mason and stone (for example, vectors in a vector space model), a suitable algorithm should be able to recognize that these relations are highly similar (carpenter is to wood as mason is to stone; the relations are analogous). Likewise, with representations of dog, house, and kennel, an algorithm should be able to recognize that the semantic composition of dog and house, dog house, is highly similar to kennel (dog house and kennel are synonymous). It seems that these two tasks, recognizing relations and compositions, are closely connected. However, up to now, the best models for relations are significantly different from the best models for compositions. In this paper, we introduce a dual-space model that unifies these two tasks. This model matches the performance of the best previous models for relations and compositions. The dual-space model consists of a space for measuring domain similarity and a space for measuring function similarity. Carpenter and wood share the same domain, the domain of carpentry. Mason and stone share the same domain, the domain of masonry. Carpenter and mason share the same function, the function of artisans. Wood and stone share the same function, the function of materials. In the composition dog house, kennel has some domain overlap with both dog and house (the domains of pets and buildings). The function of kennel is similar to the function of house (the function of shelters). By combining domain and function similarities in various ways, we can model relations, compositions, and other aspects of semantics.
3,474
3,474
Learning a Loopy Model For Semantic Segmentation Exactly
Learning structured models using maximum margin techniques has become an indispensable tool for com- puter vision researchers, as many computer vision applications can be cast naturally as an image labeling problem. Pixel-based or superpixel-based conditional random fields are particularly popular examples. Typ- ically, neighborhood graphs, which contain a large number of cycles, are used. As exact inference in loopy graphs is NP-hard in general, learning these models without approximations is usually deemed infeasible. In this work we show that, despite the theoretical hardness, it is possible to learn loopy models exactly in practical applications. To this end, we analyze the use of multiple approximate inference techniques together with cutting plane training of structural SVMs. We show that our proposed method yields exact solutions with an optimality guarantees in a computer vision application, for little additional computational cost. We also propose a dynamic caching scheme to accelerate training further, yielding runtimes that are comparable with approximate methods. We hope that this insight can lead to a reconsideration of the tractability of loopy models in computer vision.
3,475
3,475
Regularized Spectral Clustering under the Degree-Corrected Stochastic Blockmodel
Spectral clustering is a fast and popular algorithm for finding clusters in networks. Recently, Chaudhuri et al. (2012) and Amini et al.(2012) proposed inspired variations on the algorithm that artificially inflate the node degrees for improved statistical performance. The current paper extends the previous statistical estimation results to the more canonical spectral clustering algorithm in a way that removes any assumption on the minimum degree and provides guidance on the choice of the tuning parameter. Moreover, our results show how the "star shape" in the eigenvectors--a common feature of empirical networks--can be explained by the Degree-Corrected Stochastic Blockmodel and the Extended Planted Partition model, two statistical models that allow for highly heterogeneous degrees. Throughout, the paper characterizes and justifies several of the variations of the spectral clustering algorithm in terms of these models.
3,476
3,476
Attribute-Efficient Evolvability of Linear Functions
In a seminal paper, Valiant (2006) introduced a computational model for evolution to address the question of complexity that can arise through Darwinian mechanisms. Valiant views evolution as a restricted form of computational learning, where the goal is to evolve a hypothesis that is close to the ideal function. Feldman (2008) showed that (correlational) statistical query learning algorithms could be framed as evolutionary mechanisms in Valiant's model. P. Valiant (2012) considered evolvability of real-valued functions and also showed that weak-optimization algorithms that use weak-evaluation oracles could be converted to evolutionary mechanisms. In this work, we focus on the complexity of representations of evolutionary mechanisms. In general, the reductions of Feldman and P. Valiant may result in intermediate representations that are arbitrarily complex (polynomial-sized circuits). We argue that biological constraints often dictate that the representations have low complexity, such as constant depth and fan-in circuits. We give mechanisms for evolving sparse linear functions under a large class of smooth distributions. These evolutionary algorithms are attribute-efficient in the sense that the size of the representations and the number of generations required depend only on the sparsity of the target function and the accuracy parameter, but have no dependence on the total number of attributes.
3,477
3,477
Temporal-Difference Learning to Assist Human Decision Making during the Control of an Artificial Limb
In this work we explore the use of reinforcement learning (RL) to help with human decision making, combining state-of-the-art RL algorithms with an application to prosthetics. Managing human-machine interaction is a problem of considerable scope, and the simplification of human-robot interfaces is especially important in the domains of biomedical technology and rehabilitation medicine. For example, amputees who control artificial limbs are often required to quickly switch between a number of control actions or modes of operation in order to operate their devices. We suggest that by learning to anticipate (predict) a user's behaviour, artificial limbs could take on an active role in a human's control decisions so as to reduce the burden on their users. Recently, we showed that RL in the form of general value functions (GVFs) could be used to accurately detect a user's control intent prior to their explicit control choices. In the present work, we explore the use of temporal-difference learning and GVFs to predict when users will switch their control influence between the different motor functions of a robot arm. Experiments were performed using a multi-function robot arm that was controlled by muscle signals from a user's body (similar to conventional artificial limb control). Our approach was able to acquire and maintain forecasts about a user's switching decisions in real time. It also provides an intuitive and reward-free way for users to correct or reinforce the decisions made by the machine learning system. We expect that when a system is certain enough about its predictions, it can begin to take over switching decisions from the user to streamline control and potentially decrease the time and effort needed to complete tasks. This preliminary study therefore suggests a way to naturally integrate human- and machine-based decision making systems.
3,478
3,478
Network Anomaly Detection: A Survey and Comparative Analysis of Stochastic and Deterministic Methods
We present five methods to the problem of network anomaly detection. These methods cover most of the common techniques in the anomaly detection field, including Statistical Hypothesis Tests (SHT), Support Vector Machines (SVM) and clustering analysis. We evaluate all methods in a simulated network that consists of nominal data, three flow-level anomalies and one packet-level attack. Through analyzing the results, we point out the advantages and disadvantages of each method and conclude that combining the results of the individual methods can yield improved anomaly detection results.
3,479
3,479
HOL(y)Hammer: Online ATP Service for HOL Light
HOL(y)Hammer is an online AI/ATP service for formal (computer-understandable) mathematics encoded in the HOL Light system. The service allows its users to upload and automatically process an arbitrary formal development (project) based on HOL Light, and to attack arbitrary conjectures that use the concepts defined in some of the uploaded projects. For that, the service uses several automated reasoning systems combined with several premise selection methods trained on all the project proofs. The projects that are readily available on the server for such query answering include the recent versions of the Flyspeck, Multivariate Analysis and Complex Analysis libraries. The service runs on a 48-CPU server, currently employing in parallel for each task 7 AI/ATP combinations and 4 decision procedures that contribute to its overall performance. The system is also available for local installation by interested users, who can customize it for their own proof development. An Emacs interface allowing parallel asynchronous queries to the service is also provided. The overall structure of the service is outlined, problems that arise and their solutions are discussed, and an initial account of using the system is given.
3,480
3,480
Bayesian rules and stochastic models for high accuracy prediction of solar radiation
It is essential to find solar predictive methods to massively insert renewable energies on the electrical distribution grid. The goal of this study is to find the best methodology allowing predicting with high accuracy the hourly global radiation. The knowledge of this quantity is essential for the grid manager or the private PV producer in order to anticipate fluctuations related to clouds occurrences and to stabilize the injected PV power. In this paper, we test both methodologies: single and hybrid predictors. In the first class, we include the multi-layer perceptron (MLP), auto-regressive and moving average (ARMA), and persistence models. In the second class, we mix these predictors with Bayesian rules to obtain ad-hoc models selections, and Bayesian averages of outputs related to single models. If MLP and ARMA are equivalent (nRMSE close to 40.5% for the both), this hybridization allows a nRMSE gain upper than 14 percentage points compared to the persistence estimation (nRMSE=37% versus 51%).
3,481
3,481
A Comparative Analysis of Ensemble Classifiers: Case Studies in Genomics
The combination of multiple classifiers using ensemble methods is increasingly important for making progress in a variety of difficult prediction problems. We present a comparative analysis of several ensemble methods through two case studies in genomics, namely the prediction of genetic interactions and protein functions, to demonstrate their efficacy on real-world datasets and draw useful conclusions about their behavior. These methods include simple aggregation, meta-learning, cluster-based meta-learning, and ensemble selection using heterogeneous classifiers trained on resampled data to improve the diversity of their predictions. We present a detailed analysis of these methods across 4 genomics datasets and find the best of these methods offer statistically significant improvements over the state of the art in their respective domains. In addition, we establish a novel connection between ensemble selection and meta-learning, demonstrating how both of these disparate methods establish a balance between ensemble diversity and performance.
3,482
3,482
Recognizing Speech in a Novel Accent: The Motor Theory of Speech Perception Reframed
The motor theory of speech perception holds that we perceive the speech of another in terms of a motor representation of that speech. However, when we have learned to recognize a foreign accent, it seems plausible that recognition of a word rarely involves reconstruction of the speech gestures of the speaker rather than the listener. To better assess the motor theory and this observation, we proceed in three stages. Part 1 places the motor theory of speech perception in a larger framework based on our earlier models of the adaptive formation of mirror neurons for grasping, and for viewing extensions of that mirror system as part of a larger system for neuro-linguistic processing, augmented by the present consideration of recognizing speech in a novel accent. Part 2 then offers a novel computational model of how a listener comes to understand the speech of someone speaking the listener's native language with a foreign accent. The core tenet of the model is that the listener uses hypotheses about the word the speaker is currently uttering to update probabilities linking the sound produced by the speaker to phonemes in the native language repertoire of the listener. This, on average, improves the recognition of later words. This model is neutral regarding the nature of the representations it uses (motor vs. auditory). It serve as a reference point for the discussion in Part 3, which proposes a dual-stream neuro-linguistic architecture to revisits claims for and against the motor theory of speech perception and the relevance of mirror neurons, and extracts some implications for the reframing of the motor theory.
3,483
3,483
Latent Fisher Discriminant Analysis
Linear Discriminant Analysis (LDA) is a well-known method for dimensionality reduction and classification. Previous studies have also extended the binary-class case into multi-classes. However, many applications, such as object detection and keyframe extraction cannot provide consistent instance-label pairs, while LDA requires labels on instance level for training. Thus it cannot be directly applied for semi-supervised classification problem. In this paper, we overcome this limitation and propose a latent variable Fisher discriminant analysis model. We relax the instance-level labeling into bag-level, is a kind of semi-supervised (video-level labels of event type are required for semantic frame extraction) and incorporates a data-driven prior over the latent variables. Hence, our method combines the latent variable inference and dimension reduction in an unified bayesian framework. We test our method on MUSK and Corel data sets and yield competitive results compared to the baseline approach. We also demonstrate its capacity on the challenging TRECVID MED11 dataset for semantic keyframe extraction and conduct a human-factors ranking-based experimental evaluation, which clearly demonstrates our proposed method consistently extracts more semantically meaningful keyframes than challenging baselines.
3,484
3,484
Stochastic Bound Majorization
Recently a majorization method for optimizing partition functions of log-linear models was proposed alongside a novel quadratic variational upper-bound. In the batch setting, it outperformed state-of-the-art first- and second-order optimization methods on various learning tasks. We propose a stochastic version of this bound majorization method as well as a low-rank modification for high-dimensional data-sets. The resulting stochastic second-order method outperforms stochastic gradient descent (across variations and various tunings) both in terms of the number of iterations and computation time till convergence while finding a better quality parameter setting. The proposed method bridges first- and second-order stochastic optimization methods by maintaining a computational complexity that is linear in the data dimension and while exploiting second order information about the pseudo-global curvature of the objective function (as opposed to the local curvature in the Hessian).
3,485
3,485
Multiple Instance Learning with Bag Dissimilarities
Multiple instance learning (MIL) is concerned with learning from sets (bags) of objects (instances), where the individual instance labels are ambiguous. In this setting, supervised learning cannot be applied directly. Often, specialized MIL methods learn by making additional assumptions about the relationship of the bag labels and instance labels. Such assumptions may fit a particular dataset, but do not generalize to the whole range of MIL problems. Other MIL methods shift the focus of assumptions from the labels to the overall (dis)similarity of bags, and therefore learn from bags directly. We propose to represent each bag by a vector of its dissimilarities to other bags in the training set, and treat these dissimilarities as a feature representation. We show several alternatives to define a dissimilarity between bags and discuss which definitions are more suitable for particular MIL problems. The experimental results show that the proposed approach is computationally inexpensive, yet very competitive with state-of-the-art algorithms on a wide range of MIL datasets.
3,486
3,486
A new look at reweighted message passing
We propose a new family of message passing techniques for MAP estimation in graphical models which we call {\em Sequential Reweighted Message Passing} (SRMP). Special cases include well-known techniques such as {\em Min-Sum Diffusion} (MSD) and a faster {\em Sequential Tree-Reweighted Message Passing} (TRW-S). Importantly, our derivation is simpler than the original derivation of TRW-S, and does not involve a decomposition into trees. This allows easy generalizations. We present such a generalization for the case of higher-order graphical models, and test it on several real-world problems with promising results.
3,487
3,487
Scalable Anomaly Detection in Large Homogenous Populations
Anomaly detection in large populations is a challenging but highly relevant problem. The problem is essentially a multi-hypothesis problem, with a hypothesis for every division of the systems into normal and anomal systems. The number of hypothesis grows rapidly with the number of systems and approximate solutions become a necessity for any problems of practical interests. In the current paper we take an optimization approach to this multi-hypothesis problem. We first observe that the problem is equivalent to a non-convex combinatorial optimization problem. We then relax the problem to a convex problem that can be solved distributively on the systems and that stays computationally tractable as the number of systems increase. An interesting property of the proposed method is that it can under certain conditions be shown to give exactly the same result as the combinatorial multi-hypothesis problem and the relaxation is hence tight.
3,488
3,488
A Kernel Classification Framework for Metric Learning
Learning a distance metric from the given training samples plays a crucial role in many machine learning tasks, and various models and optimization algorithms have been proposed in the past decade. In this paper, we generalize several state-of-the-art metric learning methods, such as large margin nearest neighbor (LMNN) and information theoretic metric learning (ITML), into a kernel classification framework. First, doublets and triplets are constructed from the training samples, and a family of degree-2 polynomial kernel functions are proposed for pairs of doublets or triplets. Then, a kernel classification framework is established, which can not only generalize many popular metric learning methods such as LMNN and ITML, but also suggest new metric learning methods, which can be efficiently implemented, interestingly, by using the standard support vector machine (SVM) solvers. Two novel metric learning methods, namely doublet-SVM and triplet-SVM, are then developed under the proposed framework. Experimental results show that doublet-SVM and triplet-SVM achieve competitive classification accuracies with state-of-the-art metric learning methods such as ITML and LMNN but with significantly less training time.
3,489
3,489
Demodulation of Sparse PPM Signals with Low Samples Using Trained RIP Matrix
Compressed sensing (CS) theory considers the restricted isometry property (RIP) as a sufficient condition for measurement matrix which guarantees the recovery of any sparse signal from its compressed measurements. The RIP condition also preserves enough information for classification of sparse symbols, even with fewer measurements. In this work, we utilize RIP bound as the cost function for training a simple neural network in order to exploit the near optimal measurements or equivalently near optimal features for classification of a known set of sparse symbols. As an example, we consider demodulation of pulse position modulation (PPM) signals. The results indicate that the proposed method has much better performance than the random measurements and requires less samples than the optimum matched filter demodulator, at the expense of some performance loss. Further, the proposed approach does not need equalizer for multipath channels in contrast to the conventional receiver.
3,490
3,490
Fenchel Duals for Drifting Adversaries
We describe a primal-dual framework for the design and analysis of online convex optimization algorithms for {\em drifting regret}. Existing literature shows (nearly) optimal drifting regret bounds only for the $\ell_2$ and the $\ell_1$-norms. Our work provides a connection between these algorithms and the Online Mirror Descent ($\omd$) updates; one key insight that results from our work is that in order for these algorithms to succeed, it suffices to have the gradient of the regularizer to be bounded (in an appropriate norm). For situations (like for the $\ell_1$ norm) where the vanilla regularizer does not have this property, we have to {\em shift} the regularizer to ensure this. Thus, this helps explain the various updates presented in \cite{bansal10, buchbinder12}. We also consider the online variant of the problem with 1-lookahead, and with movement costs in the $\ell_2$-norm. Our primal dual approach yields nearly optimal competitive ratios for this problem.
3,491
3,491
Feature Learning with Gaussian Restricted Boltzmann Machine for Robust Speech Recognition
In this paper, we first present a new variant of Gaussian restricted Boltzmann machine (GRBM) called multivariate Gaussian restricted Boltzmann machine (MGRBM), with its definition and learning algorithm. Then we propose using a learned GRBM or MGRBM to extract better features for robust speech recognition. Our experiments on Aurora2 show that both GRBM-extracted and MGRBM-extracted feature performs much better than Mel-frequency cepstral coefficient (MFCC) with either HMM-GMM or hybrid HMM-deep neural network (DNN) acoustic model, and MGRBM-extracted feature is slightly better.
3,492
3,492
Solving OSCAR regularization problems by proximal splitting algorithms
The OSCAR (octagonal selection and clustering algorithm for regression) regularizer consists of a L_1 norm plus a pair-wise L_inf norm (responsible for its grouping behavior) and was proposed to encourage group sparsity in scenarios where the groups are a priori unknown. The OSCAR regularizer has a non-trivial proximity operator, which limits its applicability. We reformulate this regularizer as a weighted sorted L_1 norm, and propose its grouping proximity operator (GPO) and approximate proximity operator (APO), thus making state-of-the-art proximal splitting algorithms (PSAs) available to solve inverse problems with OSCAR regularization. The GPO is in fact the APO followed by additional grouping and averaging operations, which are costly in time and storage, explaining the reason why algorithms with APO are much faster than that with GPO. The convergences of PSAs with GPO are guaranteed since GPO is an exact proximity operator. Although convergence of PSAs with APO is may not be guaranteed, we have experimentally found that APO behaves similarly to GPO when the regularization parameter of the pair-wise L_inf norm is set to an appropriately small value. Experiments on recovery of group-sparse signals (with unknown groups) show that PSAs with APO are very fast and accurate.
3,493
3,493
A Unified Framework for Representation-based Subspace Clustering of Out-of-sample and Large-scale Data
Under the framework of spectral clustering, the key of subspace clustering is building a similarity graph which describes the neighborhood relations among data points. Some recent works build the graph using sparse, low-rank, and $\ell_2$-norm-based representation, and have achieved state-of-the-art performance. However, these methods have suffered from the following two limitations. First, the time complexities of these methods are at least proportional to the cube of the data size, which make those methods inefficient for solving large-scale problems. Second, they cannot cope with out-of-sample data that are not used to construct the similarity graph. To cluster each out-of-sample datum, the methods have to recalculate the similarity graph and the cluster membership of the whole data set. In this paper, we propose a unified framework which makes representation-based subspace clustering algorithms feasible to cluster both out-of-sample and large-scale data. Under our framework, the large-scale problem is tackled by converting it as out-of-sample problem in the manner of "sampling, clustering, coding, and classifying". Furthermore, we give an estimation for the error bounds by treating each subspace as a point in a hyperspace. Extensive experimental results on various benchmark data sets show that our methods outperform several recently-proposed scalable methods in clustering large-scale data set.
3,494
3,494
Should I Stay or Should I Go: Coordinating Biological Needs with Continuously-updated Assessments of the Environment
This paper presents Wanderer, a model of how autonomous adaptive systems coordinate internal biological needs with moment-by-moment assessments of the probabilities of events in the external world. The extent to which Wanderer moves about or explores its environment reflects the relative activations of two competing motivational sub-systems: one represents the need to acquire energy and it excites exploration, and the other represents the need to avoid predators and it inhibits exploration. The environment contains food, predators, and neutral stimuli. Wanderer responds to these events in a way that is adaptive in the short turn, and reassesses the probabilities of these events so that it can modify its long term behaviour appropriately. When food appears, Wanderer be-comes satiated and exploration temporarily decreases. When a predator appears, Wanderer both decreases exploration in the short term, and becomes more "cautious" about exploring in the future. Wanderer also forms associations between neutral features and salient ones (food and predators) when they are present at the same time, and uses these associations to guide its behaviour.
3,495
3,495
Distributed Online Learning in Social Recommender Systems
In this paper, we consider decentralized sequential decision making in distributed online recommender systems, where items are recommended to users based on their search query as well as their specific background including history of bought items, gender and age, all of which comprise the context information of the user. In contrast to centralized recommender systems, in which there is a single centralized seller who has access to the complete inventory of items as well as the complete record of sales and user information, in decentralized recommender systems each seller/learner only has access to the inventory of items and user information for its own products and not the products and user information of other sellers, but can get commission if it sells an item of another seller. Therefore the sellers must distributedly find out for an incoming user which items to recommend (from the set of own items or items of another seller), in order to maximize the revenue from own sales and commissions. We formulate this problem as a cooperative contextual bandit problem, analytically bound the performance of the sellers compared to the best recommendation strategy given the complete realization of user arrivals and the inventory of items, as well as the context-dependent purchase probabilities of each item, and verify our results via numerical examples on a distributed data set adapted based on Amazon data. We evaluate the dependence of the performance of a seller on the inventory of items the seller has, the number of connections it has with the other sellers, and the commissions which the seller gets by selling items of other sellers to its users.
3,496
3,496
One-class Collaborative Filtering with Random Graphs: Annotated Version
The bane of one-class collaborative filtering is interpreting and modelling the latent signal from the missing class. In this paper we present a novel Bayesian generative model for implicit collaborative filtering. It forms a core component of the Xbox Live architecture, and unlike previous approaches, delineates the odds of a user disliking an item from simply not considering it. The latent signal is treated as an unobserved random graph connecting users with items they might have encountered. We demonstrate how large-scale distributed learning can be achieved through a combination of stochastic gradient descent and mean field variational inference over random graph samples. A fine-grained comparison is done against a state of the art baseline on real world data.
3,497
3,497
Generative Multiple-Instance Learning Models For Quantitative Electromyography
We present a comprehensive study of the use of generative modeling approaches for Multiple-Instance Learning (MIL) problems. In MIL a learner receives training instances grouped together into bags with labels for the bags only (which might not be correct for the comprised instances). Our work was motivated by the task of facilitating the diagnosis of neuromuscular disorders using sets of motor unit potential trains (MUPTs) detected within a muscle which can be cast as a MIL problem. Our approach leads to a state-of-the-art solution to the problem of muscle classification. By introducing and analyzing generative models for MIL in a general framework and examining a variety of model structures and components, our work also serves as a methodological guide to modelling MIL tasks. We evaluate our proposed methods both on MUPT datasets and on the MUSK1 dataset, one of the most widely used benchmarks for MIL.
3,498
3,498
The Bregman Variational Dual-Tree Framework
Graph-based methods provide a powerful tool set for many non-parametric frameworks in Machine Learning. In general, the memory and computational complexity of these methods is quadratic in the number of examples in the data which makes them quickly infeasible for moderate to large scale datasets. A significant effort to find more efficient solutions to the problem has been made in the literature. One of the state-of-the-art methods that has been recently introduced is the Variational Dual-Tree (VDT) framework. Despite some of its unique features, VDT is currently restricted only to Euclidean spaces where the Euclidean distance quantifies the similarity. In this paper, we extend the VDT framework beyond the Euclidean distance to more general Bregman divergences that include the Euclidean distance as a special case. By exploiting the properties of the general Bregman divergence, we show how the new framework can maintain all the pivotal features of the VDT framework and yet significantly improve its performance in non-Euclidean domains. We apply the proposed framework to different text categorization problems and demonstrate its benefits over the original VDT.
3,499
3,499
Hinge-loss Markov Random Fields: Convex Inference for Structured Prediction
Graphical models for structured domains are powerful tools, but the computational complexities of combinatorial prediction spaces can force restrictions on models, or require approximate inference in order to be tractable. Instead of working in a combinatorial space, we use hinge-loss Markov random fields (HL-MRFs), an expressive class of graphical models with log-concave density functions over continuous variables, which can represent confidences in discrete predictions. This paper demonstrates that HL-MRFs are general tools for fast and accurate structured prediction. We introduce the first inference algorithm that is both scalable and applicable to the full class of HL-MRFs, and show how to train HL-MRFs with several learning algorithms. Our experiments show that HL-MRFs match or surpass the predictive performance of state-of-the-art methods, including discrete models, in four application domains.