Unnamed: 0.1
int64
0
113k
Unnamed: 0
float64
0
113k
title
stringlengths
7
246
abstract
stringlengths
6
3.31k
3,300
3,300
Energy-aware adaptive bi-Lipschitz embeddings
We propose a dimensionality reducing matrix design based on training data with constraints on its Frobenius norm and number of rows. Our design criteria is aimed at preserving the distances between the data points in the dimensionality reduced space as much as possible relative to their distances in original data space. This approach can be considered as a deterministic Bi-Lipschitz embedding of the data points. We introduce a scalable learning algorithm, dubbed AMUSE, and provide a rigorous estimation guarantee by leveraging game theoretic tools. We also provide a generalization characterization of our matrix based on our sample data. We use compressive sensing problems as an example application of our problem, where the Frobenius norm design constraint translates into the sensing energy.
3,301
3,301
Performance Analysis of Clustering Algorithms for Gene Expression Data
Microarray technology is a process that allows thousands of genes simultaneously monitor to various experimental conditions. It is used to identify the co-expressed genes in specific cells or tissues that are actively used to make proteins, This method is used to analysis the gene expression, an important task in bioinformatics research. Cluster analysis of gene expression data has proved to be a useful tool for identifying co-expressed genes, biologically relevant groupings of genes and samples. In this paper we analysed K-Means with Automatic Generations of Merge Factor for ISODATA- AGMFI, to group the microarray data sets on the basic of ISODATA. AGMFI is to generate initial values for merge and Spilt factor, maximum merge times instead of selecting efficient values as in ISODATA. The initial seeds for each cluster were normally chosen either sequentially or randomly. The quality of the final clusters was found to be influenced by these initial seeds. For the real life problems, the suitable number of clusters cannot be predicted. To overcome the above drawback the current research focused on developing the clustering algorithms without giving the initial number of clusters.
3,302
3,302
MCMC Learning
The theory of learning under the uniform distribution is rich and deep, with connections to cryptography, computational complexity, and the analysis of boolean functions to name a few areas. This theory however is very limited due to the fact that the uniform distribution and the corresponding Fourier basis are rarely encountered as a statistical model. A family of distributions that vastly generalizes the uniform distribution on the Boolean cube is that of distributions represented by Markov Random Fields (MRF). Markov Random Fields are one of the main tools for modeling high dimensional data in many areas of statistics and machine learning. In this paper we initiate the investigation of extending central ideas, methods and algorithms from the theory of learning under the uniform distribution to the setup of learning concepts given examples from MRF distributions. In particular, our results establish a novel connection between properties of MCMC sampling of MRFs and learning under the MRF distribution.
3,303
3,303
A Data Management Approach for Dataset Selection Using Human Computation
As the number of applications that use machine learning algorithms increases, the need for labeled data useful for training such algorithms intensifies. Getting labels typically involves employing humans to do the annotation, which directly translates to training and working costs. Crowdsourcing platforms have made labeling cheaper and faster, but they still involve significant costs, especially for the cases where the potential set of candidate data to be labeled is large. In this paper we describe a methodology and a prototype system aiming at addressing this challenge for Web-scale problems in an industrial setting. We discuss ideas on how to efficiently select the data to use for training of machine learning algorithms in an attempt to reduce cost. We show results achieving good performance with reduced cost by carefully selecting which instances to label. Our proposed algorithm is presented as part of a framework for managing and generating training datasets, which includes, among other components, a human computation element.
3,304
3,304
Minimum Error Rate Training and the Convex Hull Semiring
We describe the line search used in the minimum error rate training algorithm MERT as the "inside score" of a weighted proof forest under a semiring defined in terms of well-understood operations from computational geometry. This conception leads to a straightforward complexity analysis of the dynamic programming MERT algorithms of Macherey et al. (2008) and Kumar et al. (2009) and practical approaches to implementation.
3,305
3,305
On Analyzing Estimation Errors due to Constrained Connections in Online Review Systems
Constrained connection is the phenomenon that a reviewer can only review a subset of products/services due to narrow range of interests or limited attention capacity. In this work, we study how constrained connections can affect estimation performance in online review systems (ORS). We find that reviewers' constrained connections will cause poor estimation performance, both from the measurements of estimation accuracy and Bayesian Cramer Rao lower bound.
3,306
3,306
Probabilistic inverse reinforcement learning in unknown environments
We consider the problem of learning by demonstration from agents acting in unknown stochastic Markov environments or games. Our aim is to estimate agent preferences in order to construct improved policies for the same task that the agents are trying to solve. To do so, we extend previous probabilistic approaches for inverse reinforcement learning in known MDPs to the case of unknown dynamics or opponents. We do this by deriving two simplified probabilistic models of the demonstrator's policy and utility. For tractability, we use maximum a posteriori estimation rather than full Bayesian inference. Under a flat prior, this results in a convex optimisation problem. We find that the resulting algorithms are highly competitive against a variety of other methods for inverse reinforcement learning that do have knowledge of the dynamics.
3,307
3,307
The Fundamental Learning Problem that Genetic Algorithms with Uniform Crossover Solve Efficiently and Repeatedly As Evolution Proceeds
This paper establishes theoretical bonafides for implicit concurrent multivariate effect evaluation--implicit concurrency for short---a broad and versatile computational learning efficiency thought to underlie general-purpose, non-local, noise-tolerant optimization in genetic algorithms with uniform crossover (UGAs). We demonstrate that implicit concurrency is indeed a form of efficient learning by showing that it can be used to obtain close-to-optimal bounds on the time and queries required to approximately correctly solve a constrained version (k=7, \eta=1/5) of a recognizable computational learning problem: learning parities with noisy membership queries. We argue that a UGA that treats the noisy membership query oracle as a fitness function can be straightforwardly used to approximately correctly learn the essential attributes in O(log^1.585 n) queries and O(n log^1.585 n) time, where n is the total number of attributes. Our proof relies on an accessible symmetry argument and the use of statistical hypothesis testing to reject a global null hypothesis at the 10^-100 level of significance. It is, to the best of our knowledge, the first relatively rigorous identification of efficient computational learning in an evolutionary algorithm on a non-trivial learning problem.
3,308
3,308
Bayesian Structured Prediction Using Gaussian Processes
We introduce a conceptually novel structured prediction model, GPstruct, which is kernelized, non-parametric and Bayesian, by design. We motivate the model with respect to existing approaches, among others, conditional random fields (CRFs), maximum margin Markov networks (M3N), and structured support vector machines (SVMstruct), which embody only a subset of its properties. We present an inference procedure based on Markov Chain Monte Carlo. The framework can be instantiated for a wide range of structured objects such as linear chains, trees, grids, and other general graphs. As a proof of concept, the model is benchmarked on several natural language processing tasks and a video gesture segmentation task involving a linear chain structure. We show prediction accuracies for GPstruct which are comparable to or exceeding those of CRFs and SVMstruct.
3,309
3,309
On Soft Power Diagrams
Many applications in data analysis begin with a set of points in a Euclidean space that is partitioned into clusters. Common tasks then are to devise a classifier deciding which of the clusters a new point is associated to, finding outliers with respect to the clusters, or identifying the type of clustering used for the partition. One of the common kinds of clusterings are (balanced) least-squares assignments with respect to a given set of sites. For these, there is a 'separating power diagram' for which each cluster lies in its own cell. In the present paper, we aim for efficient algorithms for outlier detection and the computation of thresholds that measure how similar a clustering is to a least-squares assignment for fixed sites. For this purpose, we devise a new model for the computation of a 'soft power diagram', which allows a soft separation of the clusters with 'point counting properties'; e.g. we are able to prescribe how many points we want to classify as outliers. As our results hold for a more general non-convex model of free sites, we describe it and our proofs in this more general way. Its locally optimal solutions satisfy the aforementioned point counting properties. For our target applications that use fixed sites, our algorithms are efficiently solvable to global optimality by linear programming.
3,310
3,310
Learning Markov networks with context-specific independences
Learning the Markov network structure from data is a problem that has received considerable attention in machine learning, and in many other application fields. This work focuses on a particular approach for this purpose called independence-based learning. Such approach guarantees the learning of the correct structure efficiently, whenever data is sufficient for representing the underlying distribution. However, an important issue of such approach is that the learned structures are encoded in an undirected graph. The problem with graphs is that they cannot encode some types of independence relations, such as the context-specific independences. They are a particular case of conditional independences that is true only for a certain assignment of its conditioning set, in contrast to conditional independences that must hold for all its assignments. In this work we present CSPC, an independence-based algorithm for learning structures that encode context-specific independences, and encoding them in a log-linear model, instead of a graph. The central idea of CSPC is combining the theoretical guarantees provided by the independence-based approach with the benefits of representing complex structures by using features in a log-linear model. We present experiments in a synthetic case, showing that CSPC is more accurate than the state-of-the-art IB algorithms when the underlying distribution contains CSIs.
3,311
3,311
Modified SPLICE and its Extension to Non-Stereo Data for Noise Robust Speech Recognition
In this paper, a modification to the training process of the popular SPLICE algorithm has been proposed for noise robust speech recognition. The modification is based on feature correlations, and enables this stereo-based algorithm to improve the performance in all noise conditions, especially in unseen cases. Further, the modified framework is extended to work for non-stereo datasets where clean and noisy training utterances, but not stereo counterparts, are required. Finally, an MLLR-based computationally efficient run-time noise adaptation method in SPLICE framework has been proposed. The modified SPLICE shows 8.6% absolute improvement over SPLICE in Test C of Aurora-2 database, and 2.93% overall. Non-stereo method shows 10.37% and 6.93% absolute improvements over Aurora-2 and Aurora-4 baseline models respectively. Run-time adaptation shows 9.89% absolute improvement in modified framework as compared to SPLICE for Test C, and 4.96% overall w.r.t. standard MLLR adaptation on HMMs.
3,312
3,312
A Safe Screening Rule for Sparse Logistic Regression
The l1-regularized logistic regression (or sparse logistic regression) is a widely used method for simultaneous classification and feature selection. Although many recent efforts have been devoted to its efficient implementation, its application to high dimensional data still poses significant challenges. In this paper, we present a fast and effective sparse logistic regression screening rule (Slores) to identify the 0 components in the solution vector, which may lead to a substantial reduction in the number of features to be entered to the optimization. An appealing feature of Slores is that the data set needs to be scanned only once to run the screening and its computational cost is negligible compared to that of solving the sparse logistic regression problem. Moreover, Slores is independent of solvers for sparse logistic regression, thus Slores can be integrated with any existing solver to improve the efficiency. We have evaluated Slores using high-dimensional data sets from different applications. Extensive experimental results demonstrate that Slores outperforms the existing state-of-the-art screening rules and the efficiency of solving sparse logistic regression is improved by one magnitude in general.
3,313
3,313
Efficient Mixed-Norm Regularization: Algorithms and Safe Screening Methods
Sparse learning has recently received increasing attention in many areas including machine learning, statistics, and applied mathematics. The mixed-norm regularization based on the l1q norm with q>1 is attractive in many applications of regression and classification in that it facilitates group sparsity in the model. The resulting optimization problem is, however, challenging to solve due to the inherent structure of the mixed-norm regularization. Existing work deals with special cases with q=1, 2, infinity, and they cannot be easily extended to the general case. In this paper, we propose an efficient algorithm based on the accelerated gradient method for solving the general l1q-regularized problem. One key building block of the proposed algorithm is the l1q-regularized Euclidean projection (EP_1q). Our theoretical analysis reveals the key properties of EP_1q and illustrates why EP_1q for the general q is significantly more challenging to solve than the special cases. Based on our theoretical analysis, we develop an efficient algorithm for EP_1q by solving two zero finding problems. To further improve the efficiency of solving large dimensional mixed-norm regularized problems, we propose a screening method which is able to quickly identify the inactive groups, i.e., groups that have 0 components in the solution. This may lead to substantial reduction in the number of groups to be entered to the optimization. An appealing feature of our screening method is that the data set needs to be scanned only once to run the screening. Compared to that of solving the mixed-norm regularized problems, the computational cost of our screening test is negligible. The key of the proposed screening method is an accurate sensitivity analysis of the dual optimal solution when the regularization parameter varies. Experimental results demonstrate the efficiency of the proposed algorithm.
3,314
3,314
Supervised Metric Learning with Generalization Guarantees
The crucial importance of metrics in machine learning algorithms has led to an increasing interest in optimizing distance and similarity functions, an area of research known as metric learning. When data consist of feature vectors, a large body of work has focused on learning a Mahalanobis distance. Less work has been devoted to metric learning from structured objects (such as strings or trees), most of it focusing on optimizing a notion of edit distance. We identify two important limitations of current metric learning approaches. First, they allow to improve the performance of local algorithms such as k-nearest neighbors, but metric learning for global algorithms (such as linear classifiers) has not been studied so far. Second, the question of the generalization ability of metric learning methods has been largely ignored. In this thesis, we propose theoretical and algorithmic contributions that address these limitations. Our first contribution is the derivation of a new kernel function built from learned edit probabilities. Our second contribution is a novel framework for learning string and tree edit similarities inspired by the recent theory of (e,g,t)-good similarity functions. Using uniform stability arguments, we establish theoretical guarantees for the learned similarity that give a bound on the generalization error of a linear classifier built from that similarity. In our third contribution, we extend these ideas to metric learning from feature vectors by proposing a bilinear similarity learning method that efficiently optimizes the (e,g,t)-goodness. Generalization guarantees are derived for our approach, highlighting that our method minimizes a tighter bound on the generalization error of the classifier. Our last contribution is a framework for establishing generalization bounds for a large class of existing metric learning algorithms based on a notion of algorithmic robustness.
3,315
3,315
From Bandits to Experts: A Tale of Domination and Independence
We consider the partial observability model for multi-armed bandits, introduced by Mannor and Shamir. Our main result is a characterization of regret in the directed observability model in terms of the dominating and independence numbers of the observability graph. We also show that in the undirected case, the learner can achieve optimal regret without even accessing the observability graph before selecting an action. Both results are shown using variants of the Exp3 algorithm operating on the observability graph in a time-efficient manner.
3,316
3,316
A New Convex Relaxation for Tensor Completion
We study the problem of learning a tensor from a set of linear measurements. A prominent methodology for this problem is based on a generalization of trace norm regularization, which has been used extensively for learning low rank matrices, to the tensor setting. In this paper, we highlight some limitations of this approach and propose an alternative convex relaxation on the Euclidean ball. We then describe a technique to solve the associated regularization problem, which builds upon the alternating direction method of multipliers. Experiments on one synthetic dataset and two real datasets indicate that the proposed method improves significantly over tensor trace norm regularization in terms of estimation error, while remaining computationally tractable.
3,317
3,317
Efficient Reinforcement Learning in Deterministic Systems with Value Function Generalization
We consider the problem of reinforcement learning over episodes of a finite-horizon deterministic system and as a solution propose optimistic constraint propagation (OCP), an algorithm designed to synthesize efficient exploration and value function generalization. We establish that when the true value function lies within a given hypothesis class, OCP selects optimal actions over all but at most K episodes, where K is the eluder dimension of the given hypothesis class. We establish further efficiency and asymptotic performance guarantees that apply even if the true value function does not lie in the given hypothesis class, for the special case where the hypothesis class is the span of pre-specified indicator functions over disjoint sets. We also discuss the computational complexity of OCP and present computational results involving two illustrative examples.
3,318
3,318
Robust Subspace Clustering via Thresholding
The problem of clustering noisy and incompletely observed high-dimensional data points into a union of low-dimensional subspaces and a set of outliers is considered. The number of subspaces, their dimensions, and their orientations are assumed unknown. We propose a simple low-complexity subspace clustering algorithm, which applies spectral clustering to an adjacency matrix obtained by thresholding the correlations between data points. In other words, the adjacency matrix is constructed from the nearest neighbors of each data point in spherical distance. A statistical performance analysis shows that the algorithm exhibits robustness to additive noise and succeeds even when the subspaces intersect. Specifically, our results reveal an explicit tradeoff between the affinity of the subspaces and the tolerable noise level. We furthermore prove that the algorithm succeeds even when the data points are incompletely observed with the number of missing entries allowed to be (up to a log-factor) linear in the ambient dimension. We also propose a simple scheme that provably detects outliers, and we present numerical results on real and synthetic data.
3,319
3,319
Large-scale Multi-label Learning with Missing Labels
The multi-label classification problem has generated significant interest in recent years. However, existing approaches do not adequately address two key challenges: (a) the ability to tackle problems with a large number (say millions) of labels, and (b) the ability to handle data with missing labels. In this paper, we directly address both these problems by studying the multi-label problem in a generic empirical risk minimization (ERM) framework. Our framework, despite being simple, is surprisingly able to encompass several recent label-compression based methods which can be derived as special cases of our method. To optimize the ERM problem, we develop techniques that exploit the structure of specific loss functions - such as the squared loss function - to offer efficient algorithms. We further show that our learning framework admits formal excess risk bounds even in the presence of missing labels. Our risk bounds are tight and demonstrate better generalization performance for low-rank promoting trace-norm regularization when compared to (rank insensitive) Frobenius norm regularization. Finally, we present extensive empirical results on a variety of benchmark datasets and show that our methods perform significantly better than existing label compression based methods and can scale up to very large datasets such as the Wikipedia dataset.
3,320
3,320
Model-Based Policy Gradients with Parameter-Based Exploration by Least-Squares Conditional Density Estimation
The goal of reinforcement learning (RL) is to let an agent learn an optimal control policy in an unknown environment so that future expected rewards are maximized. The model-free RL approach directly learns the policy based on data samples. Although using many samples tends to improve the accuracy of policy learning, collecting a large number of samples is often expensive in practice. On the other hand, the model-based RL approach first estimates the transition model of the environment and then learns the policy based on the estimated transition model. Thus, if the transition model is accurately learned from a small amount of data, the model-based approach can perform better than the model-free approach. In this paper, we propose a novel model-based RL method by combining a recently proposed model-free policy search method called policy gradients with parameter-based exploration and the state-of-the-art transition model estimator called least-squares conditional density estimation. Through experiments, we demonstrate the practical usefulness of the proposed method.
3,321
3,321
Random Binary Mappings for Kernel Learning and Efficient SVM
Support Vector Machines (SVMs) are powerful learners that have led to state-of-the-art results in various computer vision problems. SVMs suffer from various drawbacks in terms of selecting the right kernel, which depends on the image descriptors, as well as computational and memory efficiency. This paper introduces a novel kernel, which serves such issues well. The kernel is learned by exploiting a large amount of low-complex, randomized binary mappings of the input feature. This leads to an efficient SVM, while also alleviating the task of kernel selection. We demonstrate the capabilities of our kernel on 6 standard vision benchmarks, in which we combine several common image descriptors, namely histograms (Flowers17 and Daimler), attribute-like descriptors (UCI, OSR, and a-VOC08), and Sparse Quantization (ImageNet). Results show that our kernel learning adapts well to the different descriptors types, achieving the performance of the kernels specifically tuned for each image descriptor, and with similar evaluation cost as efficient SVM methods.
3,322
3,322
Kernel Adaptive Metropolis-Hastings
A Kernel Adaptive Metropolis-Hastings algorithm is introduced, for the purpose of sampling from a target distribution with strongly nonlinear support. The algorithm embeds the trajectory of the Markov chain into a reproducing kernel Hilbert space (RKHS), such that the feature space covariance of the samples informs the choice of proposal. The procedure is computationally efficient and straightforward to implement, since the RKHS moves can be integrated out analytically: our proposal distribution in the original space is a normal distribution whose mean and covariance depend on where the current sample lies in the support of the target distribution, and adapts to its local covariance structure. Furthermore, the procedure requires neither gradients nor any other higher order information about the target, making it particularly attractive for contexts such as Pseudo-Marginal MCMC. Kernel Adaptive Metropolis-Hastings outperforms competing fixed and adaptive samplers on multivariate, highly nonlinear target distributions, arising in both real-world and synthetic examples. Code may be downloaded at https://github.com/karlnapf/kameleon-mcmc.
3,323
3,323
Towards Distribution-Free Multi-Armed Bandits with Combinatorial Strategies
In this paper we study a generalized version of classical multi-armed bandits (MABs) problem by allowing for arbitrary constraints on constituent bandits at each decision point. The motivation of this study comes from many situations that involve repeatedly making choices subject to arbitrary constraints in an uncertain environment: for instance, regularly deciding which advertisements to display online in order to gain high click-through-rate without knowing user preferences, or what route to drive home each day under uncertain weather and traffic conditions. Assume that there are $K$ unknown random variables (RVs), i.e., arms, each evolving as an \emph{i.i.d} stochastic process over time. At each decision epoch, we select a strategy, i.e., a subset of RVs, subject to arbitrary constraints on constituent RVs. We then gain a reward that is a linear combination of observations on selected RVs. The performance of prior results for this problem heavily depends on the distribution of strategies generated by corresponding learning policy. For example, if the reward-difference between the best and second best strategy approaches zero, prior result may lead to arbitrarily large regret. Meanwhile, when there are exponential number of possible strategies at each decision point, naive extension of a prior distribution-free policy would cause poor performance in terms of regret, computation and space complexity. To this end, we propose an efficient Distribution-Free Learning (DFL) policy that achieves zero regret, regardless of the probability distribution of the resultant strategies. Our learning policy has both $O(K)$ time complexity and $O(K)$ space complexity. In successive generations, we show that even if finding the optimal strategy at each decision point is NP-hard, our policy still allows for approximated solutions while retaining near zero-regret.
3,324
3,324
Non-stationary Stochastic Optimization
We consider a non-stationary variant of a sequential stochastic optimization problem, in which the underlying cost functions may change along the horizon. We propose a measure, termed variation budget, that controls the extent of said change, and study how restrictions on this budget impact achievable performance. We identify sharp conditions under which it is possible to achieve long-run-average optimality and more refined performance measures such as rate optimality that fully characterize the complexity of such problems. In doing so, we also establish a strong connection between two rather disparate strands of literature: adversarial online convex optimization; and the more traditional stochastic approximation paradigm (couched in a non-stationary setting). This connection is the key to deriving well performing policies in the latter, by leveraging structure of optimal policies in the former. Finally, tight bounds on the minimax regret allow us to quantify the "price of non-stationarity," which mathematically captures the added complexity embedded in a temporally changing environment versus a stationary one.
3,325
3,325
On GROUSE and Incremental SVD
GROUSE (Grassmannian Rank-One Update Subspace Estimation) is an incremental algorithm for identifying a subspace of Rn from a sequence of vectors in this subspace, where only a subset of components of each vector is revealed at each iteration. Recent analysis has shown that GROUSE converges locally at an expected linear rate, under certain assumptions. GROUSE has a similar flavor to the incremental singular value decomposition algorithm, which updates the SVD of a matrix following addition of a single column. In this paper, we modify the incremental SVD approach to handle missing data, and demonstrate that this modified approach is equivalent to GROUSE, for a certain choice of an algorithmic parameter.
3,326
3,326
A scalable stage-wise approach to large-margin multi-class loss based boosting
We present a scalable and effective classification model to train multi-class boosting for multi-class classification problems. Shen and Hao introduced a direct formulation of multi- class boosting in the sense that it directly maximizes the multi- class margin [C. Shen and Z. Hao, "A direct formulation for totally-corrective multi- class boosting", in Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 2011]. The major problem of their approach is its high computational complexity for training, which hampers its application on real-world problems. In this work, we propose a scalable and simple stage-wise multi-class boosting method, which also directly maximizes the multi-class margin. Our approach of- fers a few advantages: 1) it is simple and computationally efficient to train. The approach can speed up the training time by more than two orders of magnitude without sacrificing the classification accuracy. 2) Like traditional AdaBoost, it is less sensitive to the choice of parameters and empirically demonstrates excellent generalization performance. Experimental results on challenging multi-class machine learning and vision tasks demonstrate that the proposed approach substantially improves the convergence rate and accuracy of the final visual detector at no additional computational cost compared to existing multi-class boosting.
3,327
3,327
Performance comparison of State-of-the-art Missing Value Imputation Algorithms on Some Bench mark Datasets
Decision making from data involves identifying a set of attributes that contribute to effective decision making through computational intelligence. The presence of missing values greatly influences the selection of right set of attributes and this renders degradation in classification accuracies of the classifiers. As missing values are quite common in data collection phase during field experiments or clinical trails appropriate handling would improve the classifier performance. In this paper we present a review of recently developed missing value imputation algorithms and compare their performance on some bench mark datasets.
3,328
3,328
Dimension Reduction via Colour Refinement
Colour refinement is a basic algorithmic routine for graph isomorphism testing, appearing as a subroutine in almost all practical isomorphism solvers. It partitions the vertices of a graph into "colour classes" in such a way that all vertices in the same colour class have the same number of neighbours in every colour class. Tinhofer (Disc. App. Math., 1991), Ramana, Scheinerman, and Ullman (Disc. Math., 1994) and Godsil (Lin. Alg. and its App., 1997) established a tight correspondence between colour refinement and fractional isomorphisms of graphs, which are solutions to the LP relaxation of a natural ILP formulation of graph isomorphism. We introduce a version of colour refinement for matrices and extend existing quasilinear algorithms for computing the colour classes. Then we generalise the correspondence between colour refinement and fractional automorphisms and develop a theory of fractional automorphisms and isomorphisms of matrices. We apply our results to reduce the dimensions of systems of linear equations and linear programs. Specifically, we show that any given LP L can efficiently be transformed into a (potentially) smaller LP L' whose number of variables and constraints is the number of colour classes of the colour refinement algorithm, applied to a matrix associated with the LP. The transformation is such that we can easily (by a linear mapping) map both feasible and optimal solutions back and forth between the two LPs. We demonstrate empirically that colour refinement can indeed greatly reduce the cost of solving linear programs.
3,329
3,329
A New Strategy of Cost-Free Learning in the Class Imbalance Problem
In this work, we define cost-free learning (CFL) formally in comparison with cost-sensitive learning (CSL). The main difference between them is that a CFL approach seeks optimal classification results without requiring any cost information, even in the class imbalance problem. In fact, several CFL approaches exist in the related studies, such as sampling and some criteria-based pproaches. However, to our best knowledge, none of the existing CFL and CSL approaches are able to process the abstaining classifications properly when no information is given about errors and rejects. Based on information theory, we propose a novel CFL which seeks to maximize normalized mutual information of the targets and the decision outputs of classifiers. Using the strategy, we can deal with binary/multi-class classifications with/without abstaining. Significant features are observed from the new strategy. While the degree of class imbalance is changing, the proposed strategy is able to balance the errors and rejects accordingly and automatically. Another advantage of the strategy is its ability of deriving optimal rejection thresholds for abstaining classifications and the "equivalent" costs in binary classifications. The connection between rejection thresholds and ROC curve is explored. Empirical investigation is made on several benchmark data sets in comparison with other existing approaches. The classification results demonstrate a promising perspective of the strategy in machine learning.
3,330
3,330
Square Deal: Lower Bounds and Improved Relaxations for Tensor Recovery
Recovering a low-rank tensor from incomplete information is a recurring problem in signal processing and machine learning. The most popular convex relaxation of this problem minimizes the sum of the nuclear norms of the unfoldings of the tensor. We show that this approach can be substantially suboptimal: reliably recovering a $K$-way tensor of length $n$ and Tucker rank $r$ from Gaussian measurements requires $\Omega(r n^{K-1})$ observations. In contrast, a certain (intractable) nonconvex formulation needs only $O(r^K + nrK)$ observations. We introduce a very simple, new convex relaxation, which partially bridges this gap. Our new formulation succeeds with $O(r^{\lfloor K/2 \rfloor}n^{\lceil K/2 \rceil})$ observations. While these results pertain to Gaussian measurements, simulations strongly suggest that the new norm also outperforms the sum of nuclear norms for tensor completion from a random subset of entries. Our lower bound for the sum-of-nuclear-norms model follows from a new result on recovering signals with multiple sparse structures (e.g. sparse, low rank), which perhaps surprisingly demonstrates the significant suboptimality of the commonly used recovery approach via minimizing the sum of individual sparsity inducing norms (e.g. $l_1$, nuclear norm). Our new formulation for low-rank tensor recovery however opens the possibility in reducing the sample complexity by exploiting several structures jointly.
3,331
3,331
A Near-Optimal Dynamic Learning Algorithm for Online Matching Problems with Concave Returns
We consider an online matching problem with concave returns. This problem is a significant generalization of the Adwords allocation problem and has vast applications in online advertising. In this problem, a sequence of items arrive sequentially and each has to be allocated to one of the bidders, who bid a certain value for each item. At each time, the decision maker has to allocate the current item to one of the bidders without knowing the future bids and the objective is to maximize the sum of some concave functions of each bidder's aggregate value. In this work, we propose an algorithm that achieves near-optimal performance for this problem when the bids arrive in a random order and the input data satisfies certain conditions. The key idea of our algorithm is to learn the input data pattern dynamically: we solve a sequence of carefully chosen partial allocation problems and use their optimal solutions to assist with the future decision. Our analysis belongs to the primal-dual paradigm, however, the absence of linearity of the objective function and the dynamic feature of the algorithm makes our analysis quite unique.
3,332
3,332
Online Optimization in Dynamic Environments
High-velocity streams of high-dimensional data pose significant "big data" analysis challenges across a range of applications and settings. Online learning and online convex programming play a significant role in the rapid recovery of important or anomalous information from these large datastreams. While recent advances in online learning have led to novel and rapidly converging algorithms, these methods are unable to adapt to nonstationary environments arising in real-world problems. This paper describes a dynamic mirror descent framework which addresses this challenge, yielding low theoretical regret bounds and accurate, adaptive, and computationally efficient algorithms which are applicable to broad classes of problems. The methods are capable of learning and adapting to an underlying and possibly time-varying dynamical model. Empirical results in the context of dynamic texture analysis, solar flare detection, sequential compressed sensing of a dynamic scene, traffic surveillance,tracking self-exciting point processes and network behavior in the Enron email corpus support the core theoretical findings.
3,333
3,333
Modeling Human Decision-making in Generalized Gaussian Multi-armed Bandits
We present a formal model of human decision-making in explore-exploit tasks using the context of multi-armed bandit problems, where the decision-maker must choose among multiple options with uncertain rewards. We address the standard multi-armed bandit problem, the multi-armed bandit problem with transition costs, and the multi-armed bandit problem on graphs. We focus on the case of Gaussian rewards in a setting where the decision-maker uses Bayesian inference to estimate the reward values. We model the decision-maker's prior knowledge with the Bayesian prior on the mean reward. We develop the upper credible limit (UCL) algorithm for the standard multi-armed bandit problem and show that this deterministic algorithm achieves logarithmic cumulative expected regret, which is optimal performance for uninformative priors. We show how good priors and good assumptions on the correlation structure among arms can greatly enhance decision-making performance, even over short time horizons. We extend to the stochastic UCL algorithm and draw several connections to human decision-making behavior. We present empirical data from human experiments and show that human performance is efficiently captured by the stochastic UCL algorithm with appropriate parameters. For the multi-armed bandit problem with transition costs and the multi-armed bandit problem on graphs, we generalize the UCL algorithm to the block UCL algorithm and the graphical block UCL algorithm, respectively. We show that these algorithms also achieve logarithmic cumulative expected regret and require a sub-logarithmic expected number of transitions among arms. We further illustrate the performance of these algorithms with numerical examples. NB: Appendix G included in this version details minor modifications that correct for an oversight in the previously-published proofs. The remainder of the text reflects the published work.
3,334
3,334
Generative, Fully Bayesian, Gaussian, Openset Pattern Classifier
This report works out the details of a closed-form, fully Bayesian, multiclass, openset, generative pattern classifier using multivariate Gaussian likelihoods, with conjugate priors. The generative model has a common within-class covariance, which is proportional to the between-class covariance in the conjugate prior. The scalar proportionality constant is the only plugin parameter. All other model parameters are intergated out in closed form. An expression is given for the model evidence, which can be used to make plugin estimates for the proportionality constant. Pattern recognition is done via the predictive likeihoods of classes for which training data is available, as well as a predicitve likelihood for any as yet unseen class.
3,335
3,335
Time-Series Classification Through Histograms of Symbolic Polynomials
Time-series classification has attracted considerable research attention due to the various domains where time-series data are observed, ranging from medicine to econometrics. Traditionally, the focus of time-series classification has been on short time-series data composed of a unique pattern with intraclass pattern distortions and variations, while recently there have been attempts to focus on longer series composed of various local patterns. This study presents a novel method which can detect local patterns in long time-series via fitting local polynomial functions of arbitrary degrees. The coefficients of the polynomial functions are converted to symbolic words via equivolume discretizations of the coefficients' distributions. The symbolic polynomial words enable the detection of similar local patterns by assigning the same words to similar polynomials. Moreover, a histogram of the frequencies of the words is constructed from each time-series' bag of words. Each row of the histogram enables a new representation for the series and symbolize the existence of local patterns and their frequencies. Experimental evidence demonstrates outstanding results of our method compared to the state-of-art baselines, by exhibiting the best classification accuracies in all the datasets and having statistically significant improvements in the absolute majority of experiments.
3,336
3,336
Cluster Trees on Manifolds
In this paper we investigate the problem of estimating the cluster tree for a density $f$ supported on or near a smooth $d$-dimensional manifold $M$ isometrically embedded in $\mathbb{R}^D$. We analyze a modified version of a $k$-nearest neighbor based algorithm recently proposed by Chaudhuri and Dasgupta. The main results of this paper show that under mild assumptions on $f$ and $M$, we obtain rates of convergence that depend on $d$ only but not on the ambient dimension $D$. We also show that similar (albeit non-algorithmic) results can be obtained for kernel density estimators. We sketch a construction of a sample complexity lower bound instance for a natural class of manifold oblivious clustering algorithms. We further briefly consider the known manifold case and show that in this case a spatially adaptive algorithm achieves better rates.
3,337
3,337
Does generalization performance of $l^q$ regularization learning depend on $q$? A negative example
$l^q$-regularization has been demonstrated to be an attractive technique in machine learning and statistical modeling. It attempts to improve the generalization (prediction) capability of a machine (model) through appropriately shrinking its coefficients. The shape of a $l^q$ estimator differs in varying choices of the regularization order $q$. In particular, $l^1$ leads to the LASSO estimate, while $l^{2}$ corresponds to the smooth ridge regression. This makes the order $q$ a potential tuning parameter in applications. To facilitate the use of $l^{q}$-regularization, we intend to seek for a modeling strategy where an elaborative selection on $q$ is avoidable. In this spirit, we place our investigation within a general framework of $l^{q}$-regularized kernel learning under a sample dependent hypothesis space (SDHS). For a designated class of kernel functions, we show that all $l^{q}$ estimators for $0< q < \infty$ attain similar generalization error bounds. These estimated bounds are almost optimal in the sense that up to a logarithmic factor, the upper and lower bounds are asymptotically identical. This finding tentatively reveals that, in some modeling contexts, the choice of $q$ might not have a strong impact in terms of the generalization capability. From this perspective, $q$ can be arbitrarily specified, or specified merely by other no generalization criteria like smoothness, computational complexity, sparsity, etc..
3,338
3,338
Streaming Variational Bayes
We present SDA-Bayes, a framework for (S)treaming, (D)istributed, (A)synchronous computation of a Bayesian posterior. The framework makes streaming updates to the estimated posterior according to a user-specified approximation batch primitive. We demonstrate the usefulness of our framework, with variational Bayes (VB) as the primitive, by fitting the latent Dirichlet allocation model to two large-scale document collections. We demonstrate the advantages of our algorithm over stochastic variational inference (SVI) by comparing the two after a single pass through a known amount of data---a case where SVI may be applied---and in the streaming setting, where SVI does not apply.
3,339
3,339
A Propound Method for the Improvement of Cluster Quality
In this paper Knockout Refinement Algorithm (KRA) is proposed to refine original clusters obtained by applying SOM and K-Means clustering algorithms. KRA Algorithm is based on Contingency Table concepts. Metrics are computed for the Original and Refined Clusters. Quality of Original and Refined Clusters are compared in terms of metrics. The proposed algorithm (KRA) is tested in the educational domain and results show that it generates better quality clusters in terms of improved metric values.
3,340
3,340
Sequential Transfer in Multi-armed Bandit with Finite Set of Models
Learning from prior tasks and transferring that experience to improve future performance is critical for building lifelong learning agents. Although results in supervised and reinforcement learning show that transfer may significantly improve the learning performance, most of the literature on transfer is focused on batch learning tasks. In this paper we study the problem of \textit{sequential transfer in online learning}, notably in the multi-armed bandit framework, where the objective is to minimize the cumulative regret over a sequence of tasks by incrementally transferring knowledge from prior tasks. We introduce a novel bandit algorithm based on a method-of-moments approach for the estimation of the possible tasks and derive regret bounds for it.
3,341
3,341
Multi-view Laplacian Support Vector Machines
We propose a new approach, multi-view Laplacian support vector machines (SVMs), for semi-supervised learning under the multi-view scenario. It integrates manifold regularization and multi-view regularization into the usual formulation of SVMs and is a natural extension of SVMs from supervised learning to multi-view semi-supervised learning. The function optimization problem in a reproducing kernel Hilbert space is converted to an optimization in a finite-dimensional Euclidean space. After providing a theoretical bound for the generalization performance of the proposed method, we further give a formulation of the empirical Rademacher complexity which affects the bound significantly. From this bound and the empirical Rademacher complexity, we can gain insights into the roles played by different regularization terms to the generalization performance. Experimental results on synthetic and real-world data sets are presented, which validate the effectiveness of the proposed multi-view Laplacian SVMs approach.
3,342
3,342
Infinite Mixtures of Multivariate Gaussian Processes
This paper presents a new model called infinite mixtures of multivariate Gaussian processes, which can be used to learn vector-valued functions and applied to multitask learning. As an extension of the single multivariate Gaussian process, the mixture model has the advantages of modeling multimodal data and alleviating the computationally cubic complexity of the multivariate Gaussian process. A Dirichlet process prior is adopted to allow the (possibly infinite) number of mixture components to be automatically inferred from training data, and Markov chain Monte Carlo sampling techniques are used for parameter and latent variable inference. Preliminary experimental results on multivariate regression show the feasibility of the proposed model.
3,343
3,343
A Comprehensive Evaluation of Machine Learning Techniques for Cancer Class Prediction Based on Microarray Data
Prostate cancer is among the most common cancer in males and its heterogeneity is well known. Its early detection helps making therapeutic decision. There is no standard technique or procedure yet which is full-proof in predicting cancer class. The genomic level changes can be detected in gene expression data and those changes may serve as standard model for any random cancer data for class prediction. Various techniques were implied on prostate cancer data set in order to accurately predict cancer class including machine learning techniques. Huge number of attributes and few number of sample in microarray data leads to poor machine learning, therefore the most challenging part is attribute reduction or non significant gene reduction. In this work we have compared several machine learning techniques for their accuracy in predicting the cancer class. Machine learning is effective when number of attributes (genes) are larger than the number of samples which is rarely possible with gene expression data. Attribute reduction or gene filtering is absolutely required in order to make the data more meaningful as most of the genes do not participate in tumor development and are irrelevant for cancer prediction. Here we have applied combination of statistical techniques such as inter-quartile range and t-test, which has been effective in filtering significant genes and minimizing noise from data. Further we have done a comprehensive evaluation of ten state-of-the-art machine learning techniques for their accuracy in class prediction of prostate cancer. Out of these techniques, Bayes Network out performed with an accuracy of 94.11% followed by Navie Bayes with an accuracy of 91.17%. To cross validate our results, we modified our training dataset in six different way and found that average sensitivity, specificity, precision and accuracy of Bayes Network is highest among all other techniques used.
3,344
3,344
MixedGrad: An O(1/T) Convergence Rate Algorithm for Stochastic Smooth Optimization
It is well known that the optimal convergence rate for stochastic optimization of smooth functions is $O(1/\sqrt{T})$, which is same as stochastic optimization of Lipschitz continuous convex functions. This is in contrast to optimizing smooth functions using full gradients, which yields a convergence rate of $O(1/T^2)$. In this work, we consider a new setup for optimizing smooth functions, termed as {\bf Mixed Optimization}, which allows to access both a stochastic oracle and a full gradient oracle. Our goal is to significantly improve the convergence rate of stochastic optimization of smooth functions by having an additional small number of accesses to the full gradient oracle. We show that, with an $O(\ln T)$ calls to the full gradient oracle and an $O(T)$ calls to the stochastic oracle, the proposed mixed optimization algorithm is able to achieve an optimization error of $O(1/T)$.
3,345
3,345
A Review of Machine Learning based Anomaly Detection Techniques
Intrusion detection is so much popular since the last two decades where intrusion is attempted to break into or misuse the system. It is mainly of two types based on the intrusions, first is Misuse or signature based detection and the other is Anomaly detection. In this paper Machine learning based methods which are one of the types of Anomaly detection techniques is discussed.
3,346
3,346
Learning to Understand by Evolving Theories
In this paper, we describe an approach that enables an autonomous system to infer the semantics of a command (i.e. a symbol sequence representing an action) in terms of the relations between changes in the observations and the action instances. We present a method of how to induce a theory (i.e. a semantic description) of the meaning of a command in terms of a minimal set of background knowledge. The only thing we have is a sequence of observations from which we extract what kinds of effects were caused by performing the command. This way, we yield a description of the semantics of the action and, hence, a definition.
3,347
3,347
Participation anticipating in elections using data mining methods
Anticipating the political behavior of people will be considerable help for election candidates to assess the possibility of their success and to be acknowledged about the public motivations to select them. In this paper, we provide a general schematic of the architecture of participation anticipating system in presidential election by using KNN, Classification Tree and Na\"ive Bayes and tools orange based on crisp which had hopeful output. To test and assess the proposed model, we begin to use the case study by selecting 100 qualified persons who attend in 11th presidential election of Islamic republic of Iran and anticipate their participation in Kohkiloye & Boyerahmad. We indicate that KNN can perform anticipation and classification processes with high accuracy in compared with two other algorithms to anticipate participation.
3,348
3,348
Data mining application for cyber space users tendency in blog writing: a case study
Blogs are the recent emerging media which relies on information technology and technological advance. Since the mass media in some less-developed and developing countries are in government service and their policies are developed based on governmental interests, so blogs are provided for ideas and exchanging opinions. In this paper, we highlighted performed simulations from obtained information from 100 users and bloggers in Kohkiloye and Boyer Ahmad Province and using Weka 3.6 tool and c4.5 algorithm by applying decision tree with more than %82 precision for getting future tendency anticipation of users to blogging and using in strategically areas.
3,349
3,349
Safe Screening With Variational Inequalities and Its Application to LASSO
Sparse learning techniques have been routinely used for feature selection as the resulting model usually has a small number of non-zero entries. Safe screening, which eliminates the features that are guaranteed to have zero coefficients for a certain value of the regularization parameter, is a technique for improving the computational efficiency. Safe screening is gaining increasing attention since 1) solving sparse learning formulations usually has a high computational cost especially when the number of features is large and 2) one needs to try several regularization parameters to select a suitable model. In this paper, we propose an approach called "Sasvi" (Safe screening with variational inequalities). Sasvi makes use of the variational inequality that provides the sufficient and necessary optimality condition for the dual problem. Several existing approaches for Lasso screening can be casted as relaxed versions of the proposed Sasvi, thus Sasvi provides a stronger safe screening rule. We further study the monotone properties of Sasvi for Lasso, based on which a sure removal regularization parameter can be identified for each feature. Experimental results on both synthetic and real data sets are reported to demonstrate the effectiveness of the proposed Sasvi for Lasso screening.
3,350
3,350
Multi-dimensional Parametric Mincuts for Constrained MAP Inference
In this paper, we propose novel algorithms for inferring the Maximum a Posteriori (MAP) solution of discrete pairwise random field models under multiple constraints. We show how this constrained discrete optimization problem can be formulated as a multi-dimensional parametric mincut problem via its Lagrangian dual, and prove that our algorithm isolates all constraint instances for which the problem can be solved exactly. These multiple solutions enable us to even deal with `soft constraints' (higher order penalty functions). Moreover, we propose two practical variants of our algorithm to solve problems with hard constraints. We also show how our method can be applied to solve various constrained discrete optimization problems such as submodular minimization and shortest path computation. Experimental evaluation using the foreground-background image segmentation problem with statistic constraints reveals that our method is faster and its results are closer to the ground truth labellings compared with the popular continuous relaxation based methods.
3,351
3,351
Protein (Multi-)Location Prediction: Using Location Inter-Dependencies in a Probabilistic Framework
Knowing the location of a protein within the cell is important for understanding its function, role in biological processes, and potential use as a drug target. Much progress has been made in developing computational methods that predict single locations for proteins, assuming that proteins localize to a single location. However, it has been shown that proteins localize to multiple locations. While a few recent systems have attempted to predict multiple locations of proteins, they typically treat locations as independent or capture inter-dependencies by treating each locations-combination present in the training set as an individual location-class. We present a new method and a preliminary system we have developed that directly incorporates inter-dependencies among locations into the multiple-location-prediction process, using a collection of Bayesian network classifiers. We evaluate our system on a dataset of single- and multi-localized proteins. Our results, obtained by incorporating inter-dependencies are significantly higher than those obtained by classifiers that do not use inter-dependencies. The performance of our system on multi-localized proteins is comparable to a top performing system (YLoc+), without restricting predictions to be based only on location-combinations present in the training set.
3,352
3,352
Scalable $k$-NN graph construction
The $k$-NN graph has played a central role in increasingly popular data-driven techniques for various learning and vision tasks; yet, finding an efficient and effective way to construct $k$-NN graphs remains a challenge, especially for large-scale high-dimensional data. In this paper, we propose a new approach to construct approximate $k$-NN graphs with emphasis in: efficiency and accuracy. We hierarchically and randomly divide the data points into subsets and build an exact neighborhood graph over each subset, achieving a base approximate neighborhood graph; we then repeat this process for several times to generate multiple neighborhood graphs, which are combined to yield a more accurate approximate neighborhood graph. Furthermore, we propose a neighborhood propagation scheme to further enhance the accuracy. We show both theoretical and empirical accuracy and efficiency of our approach to $k$-NN graph construction and demonstrate significant speed-up in dealing with large scale visual data.
3,353
3,353
On the accuracy of the Viterbi alignment
In a hidden Markov model, the underlying Markov chain is usually hidden. Often, the maximum likelihood alignment (Viterbi alignment) is used as its estimate. Although having the biggest likelihood, the Viterbi alignment can behave very untypically by passing states that are at most unexpected. To avoid such situations, the Viterbi alignment can be modified by forcing it not to pass these states. In this article, an iterative procedure for improving the Viterbi alignment is proposed and studied. The iterative approach is compared with a simple bunch approach where a number of states with low probability are all replaced at the same time. It can be seen that the iterative way of adjusting the Viterbi alignment is more efficient and it has several advantages over the bunch approach. The same iterative algorithm for improving the Viterbi alignment can be used in the case of peeping, that is when it is possible to reveal hidden states. In addition, lower bounds for classification probabilities of the Viterbi alignment under different conditions on the model parameters are studied.
3,354
3,354
Connecting Language and Knowledge Bases with Embedding Models for Relation Extraction
This paper proposes a novel approach for relation extraction from free text which is trained to jointly use information from the text and from existing knowledge. Our model is based on two scoring functions that operate by learning low-dimensional embeddings of words and of entities and relationships from a knowledge base. We empirically show on New York Times articles aligned with Freebase relations that our approach is able to efficiently use the extra information provided by a large subset of Freebase data (4M entities, 23k relationships) to improve over existing methods that rely on text features alone.
3,355
3,355
Likelihood-ratio calibration using prior-weighted proper scoring rules
Prior-weighted logistic regression has become a standard tool for calibration in speaker recognition. Logistic regression is the optimization of the expected value of the logarithmic scoring rule. We generalize this via a parametric family of proper scoring rules. Our theoretical analysis shows how different members of this family induce different relative weightings over a spectrum of applications of which the decision thresholds range from low to high. Special attention is given to the interaction between prior weighting and proper scoring rule parameters. Experiments on NIST SRE'12 suggest that for applications with low false-alarm rate requirements, scoring rules tailored to emphasize higher score thresholds may give better accuracy than logistic regression.
3,356
3,356
Sharp Threshold for Multivariate Multi-Response Linear Regression via Block Regularized Lasso
In this paper, we investigate a multivariate multi-response (MVMR) linear regression problem, which contains multiple linear regression models with differently distributed design matrices, and different regression and output vectors. The goal is to recover the support union of all regression vectors using $l_1/l_2$-regularized Lasso. We characterize sufficient and necessary conditions on sample complexity \emph{as a sharp threshold} to guarantee successful recovery of the support union. Namely, if the sample size is above the threshold, then $l_1/l_2$-regularized Lasso correctly recovers the support union; and if the sample size is below the threshold, $l_1/l_2$-regularized Lasso fails to recover the support union. In particular, the threshold precisely captures the impact of the sparsity of regression vectors and the statistical properties of the design matrices on sample complexity. Therefore, the threshold function also captures the advantages of joint support union recovery using multi-task Lasso over individual support recovery using single-task Lasso.
3,357
3,357
A Study on Classification in Imbalanced and Partially-Labelled Data Streams
The domain of radio astronomy is currently facing significant computational challenges, foremost amongst which are those posed by the development of the world's largest radio telescope, the Square Kilometre Array (SKA). Preliminary specifications for this instrument suggest that the final design will incorporate between 2000 and 3000 individual 15 metre receiving dishes, which together can be expected to produce a data rate of many TB/s. Given such a high data rate, it becomes crucial to consider how this information will be processed and stored to maximise its scientific utility. In this paper, we consider one possible data processing scenario for the SKA, for the purposes of an all-sky pulsar survey. In particular we treat the selection of promising signals from the SKA processing pipeline as a data stream classification problem. We consider the feasibility of classifying signals that arrive via an unlabelled and heavily class imbalanced data stream, using currently available algorithms and frameworks. Our results indicate that existing stream learners exhibit unacceptably low recall on real astronomical data when used in standard configuration; however, good false positive performance and comparable accuracy to static learners, suggests they have definite potential as an on-line solution to this particular big data challenge.
3,358
3,358
Optimistic Concurrency Control for Distributed Unsupervised Learning
Research on distributed machine learning algorithms has focused primarily on one of two extremes - algorithms that obey strict concurrency constraints or algorithms that obey few or no such constraints. We consider an intermediate alternative in which algorithms optimistically assume that conflicts are unlikely and if conflicts do arise a conflict-resolution protocol is invoked. We view this "optimistic concurrency control" paradigm as particularly appropriate for large-scale machine learning algorithms, particularly in the unsupervised setting. We demonstrate our approach in three problem areas: clustering, feature learning and online facility location. We evaluate our methods via large-scale experiments in a cluster computing environment.
3,359
3,359
DeBaCl: A Python Package for Interactive DEnsity-BAsed CLustering
The level set tree approach of Hartigan (1975) provides a probabilistically based and highly interpretable encoding of the clustering behavior of a dataset. By representing the hierarchy of data modes as a dendrogram of the level sets of a density estimator, this approach offers many advantages for exploratory analysis and clustering, especially for complex and high-dimensional data. Several R packages exist for level set tree estimation, but their practical usefulness is limited by computational inefficiency, absence of interactive graphical capabilities and, from a theoretical perspective, reliance on asymptotic approximations. To make it easier for practitioners to capture the advantages of level set trees, we have written the Python package DeBaCl for DEnsity-BAsed CLustering. In this article we illustrate how DeBaCl's level set tree estimates can be used for difficult clustering tasks and interactive graphical data analysis. The package is intended to promote the practical use of level set trees through improvements in computational efficiency and a high degree of user customization. In addition, the flexible algorithms implemented in DeBaCl enjoy finite sample accuracy, as demonstrated in recent literature on density clustering. Finally, we show the level set tree framework can be easily extended to deal with functional data.
3,360
3,360
Towards Minimax Online Learning with Unknown Time Horizon
We consider online learning when the time horizon is unknown. We apply a minimax analysis, beginning with the fixed horizon case, and then moving on to two unknown-horizon settings, one that assumes the horizon is chosen randomly according to some known distribution, and the other which allows the adversary full control over the horizon. For the random horizon setting with restricted losses, we derive a fully optimal minimax algorithm. And for the adversarial horizon setting, we prove a nontrivial lower bound which shows that the adversary obtains strictly more power than when the horizon is fixed and known. Based on the minimax solution of the random horizon setting, we then propose a new adaptive algorithm which "pretends" that the horizon is drawn from a distribution from a special family, but no matter how the actual horizon is chosen, the worst-case regret is of the optimal rate. Furthermore, our algorithm can be combined and applied in many ways, for instance, to online convex optimization, follow the perturbed leader, exponential weights algorithm and first order bounds. Experiments show that our algorithm outperforms many other existing algorithms in an online linear optimization setting.
3,361
3,361
The Planning-ahead SMO Algorithm
The sequential minimal optimization (SMO) algorithm and variants thereof are the de facto standard method for solving large quadratic programs for support vector machine (SVM) training. In this paper we propose a simple yet powerful modification. The main emphasis is on an algorithm improving the SMO step size by planning-ahead. The theoretical analysis ensures its convergence to the optimum. Experiments involving a large number of datasets were carried out to demonstrate the superiority of the new algorithm.
3,362
3,362
The Power of Localization for Efficiently Learning Linear Separators with Noise
We introduce a new approach for designing computationally efficient learning algorithms that are tolerant to noise, and demonstrate its effectiveness by designing algorithms with improved noise tolerance guarantees for learning linear separators. We consider both the malicious noise model and the adversarial label noise model. For malicious noise, where the adversary can corrupt both the label and the features, we provide a polynomial-time algorithm for learning linear separators in $\Re^d$ under isotropic log-concave distributions that can tolerate a nearly information-theoretically optimal noise rate of $\eta = \Omega(\epsilon)$. For the adversarial label noise model, where the distribution over the feature vectors is unchanged, and the overall probability of a noisy label is constrained to be at most $\eta$, we also give a polynomial-time algorithm for learning linear separators in $\Re^d$ under isotropic log-concave distributions that can handle a noise rate of $\eta = \Omega\left(\epsilon\right)$. We show that, in the active learning model, our algorithms achieve a label complexity whose dependence on the error parameter $\epsilon$ is polylogarithmic. This provides the first polynomial-time active learning algorithm for learning linear separators in the presence of malicious noise or adversarial label noise.
3,363
3,363
Fast Simultaneous Training of Generalized Linear Models (FaSTGLZ)
We present an efficient algorithm for simultaneously training sparse generalized linear models across many related problems, which may arise from bootstrapping, cross-validation and nonparametric permutation testing. Our approach leverages the redundancies across problems to obtain significant computational improvements relative to solving the problems sequentially by a conventional algorithm. We demonstrate our fast simultaneous training of generalized linear models (FaSTGLZ) algorithm on a number of real-world datasets, and we run otherwise computationally intensive bootstrapping and permutation test analyses that are typically necessary for obtaining statistically rigorous classification results and meaningful interpretation. Code is freely available at http://liinc.bme.columbia.edu/fastglz.
3,364
3,364
A Time and Space Efficient Junction Tree Architecture
The junction tree algorithm is a way of computing marginals of boolean multivariate probability distributions that factorise over sets of random variables. The junction tree algorithm first constructs a tree called a junction tree who's vertices are sets of random variables. The algorithm then performs a generalised version of belief propagation on the junction tree. The Shafer-Shenoy and Hugin architectures are two ways to perform this belief propagation that tradeoff time and space complexities in different ways: Hugin propagation is at least as fast as Shafer-Shenoy propagation and in the cases that we have large vertices of high degree is significantly faster. However, this speed increase comes at the cost of an increased space complexity. This paper first introduces a simple novel architecture, ARCH-1, which has the best of both worlds: the speed of Hugin propagation and the low space requirements of Shafer-Shenoy propagation. A more complicated novel architecture, ARCH-2, is then introduced which has, up to a factor only linear in the maximum cardinality of any vertex, time and space complexities at least as good as ARCH-1 and in the cases that we have large vertices of high degree is significantly faster than ARCH-1.
3,365
3,365
An Enhanced Features Extractor for a Portfolio of Constraint Solvers
Recent research has shown that a single arbitrarily efficient solver can be significantly outperformed by a portfolio of possibly slower on-average solvers. The solver selection is usually done by means of (un)supervised learning techniques which exploit features extracted from the problem specification. In this paper we present an useful and flexible framework that is able to extract an extensive set of features from a Constraint (Satisfaction/Optimization) Problem defined in possibly different modeling languages: MiniZinc, FlatZinc or XCSP. We also report some empirical results showing that the performances that can be obtained using these features are effective and competitive with state of the art CSP portfolio techniques.
3,366
3,366
Design and Development of an Expert System to Help Head of University Departments
One of the basic tasks which is responded for head of each university department, is employing lecturers based on some default factors such as experience, evidences, qualifies and etc. In this respect, to help the heads, some automatic systems have been proposed until now using machine learning methods, decision support systems (DSS) and etc. According to advantages and disadvantages of the previous methods, a full automatic system is designed in this paper using expert systems. The proposed system is included two main steps. In the first one, the human expert's knowledge is designed as decision trees. The second step is included an expert system which is evaluated using extracted rules of these decision trees. Also, to improve the quality of the proposed system, a majority voting algorithm is proposed as post processing step to choose the best lecturer which satisfied more expert's decision trees for each course. The results are shown that the designed system average accuracy is 78.88. Low computational complexity, simplicity to program and are some of other advantages of the proposed system.
3,367
3,367
Using Incomplete Information for Complete Weight Annotation of Road Networks -- Extended Version
We are witnessing increasing interests in the effective use of road networks. For example, to enable effective vehicle routing, weighted-graph models of transportation networks are used, where the weight of an edge captures some cost associated with traversing the edge, e.g., greenhouse gas (GHG) emissions or travel time. It is a precondition to using a graph model for routing that all edges have weights. Weights that capture travel times and GHG emissions can be extracted from GPS trajectory data collected from the network. However, GPS trajectory data typically lack the coverage needed to assign weights to all edges. This paper formulates and addresses the problem of annotating all edges in a road network with travel cost based weights from a set of trips in the network that cover only a small fraction of the edges, each with an associated ground-truth travel cost. A general framework is proposed to solve the problem. Specifically, the problem is modeled as a regression problem and solved by minimizing a judiciously designed objective function that takes into account the topology of the road network. In particular, the use of weighted PageRank values of edges is explored for assigning appropriate weights to all edges, and the property of directional adjacency of edges is also taken into account to assign weights. Empirical studies with weights capturing travel time and GHG emissions on two road networks (Skagen, Denmark, and North Jutland, Denmark) offer insight into the design properties of the proposed techniques and offer evidence that the techniques are effective.
3,368
3,368
Exploring The Contribution of Unlabeled Data in Financial Sentiment Analysis
With the proliferation of its applications in various industries, sentiment analysis by using publicly available web data has become an active research area in text classification during these years. It is argued by researchers that semi-supervised learning is an effective approach to this problem since it is capable to mitigate the manual labeling effort which is usually expensive and time-consuming. However, there was a long-term debate on the effectiveness of unlabeled data in text classification. This was partially caused by the fact that many assumptions in theoretic analysis often do not hold in practice. We argue that this problem may be further understood by adding an additional dimension in the experiment. This allows us to address this problem in the perspective of bias and variance in a broader view. We show that the well-known performance degradation issue caused by unlabeled data can be reproduced as a subset of the whole scenario. We argue that if the bias-variance trade-off is to be better balanced by a more effective feature selection method unlabeled data is very likely to boost the classification performance. We then propose a feature selection framework in which labeled and unlabeled training samples are both considered. We discuss its potential in achieving such a balance. Besides, the application in financial sentiment analysis is chosen because it not only exemplifies an important application, the data possesses better illustrative power as well. The implications of this study in text classification and financial sentiment analysis are both discussed.
3,369
3,369
MonoStream: A Minimal-Hardware High Accuracy Device-free WLAN Localization System
Device-free (DF) localization is an emerging technology that allows the detection and tracking of entities that do not carry any devices nor participate actively in the localization process. Typically, DF systems require a large number of transmitters and receivers to achieve acceptable accuracy, which is not available in many scenarios such as homes and small businesses. In this paper, we introduce MonoStream as an accurate single-stream DF localization system that leverages the rich Channel State Information (CSI) as well as MIMO information from the physical layer to provide accurate DF localization with only one stream. To boost its accuracy and attain low computational requirements, MonoStream models the DF localization problem as an object recognition problem and uses a novel set of CSI-context features and techniques with proven accuracy and efficiency. Experimental evaluation in two typical testbeds, with a side-by-side comparison with the state-of-the-art, shows that MonoStream can achieve an accuracy of 0.95m with at least 26% enhancement in median distance error using a single stream only. This enhancement in accuracy comes with an efficient execution of less than 23ms per location update on a typical laptop. This highlights the potential of MonoStream usage for real-time DF tracking applications.
3,370
3,370
Trading USDCHF filtered by Gold dynamics via HMM coupling
We devise a USDCHF trading strategy using the dynamics of gold as a filter. Our strategy involves modelling both USDCHF and gold using a coupled hidden Markov model (CHMM). The observations will be indicators, RSI and CCI, which will be used as triggers for our trading signals. Upon decoding the model in each iteration, we can get the next most probable state and the next most probable observation. Hopefully by taking advantage of intermarket analysis and the Markov property implicit in the model, trading with these most probable values will produce profitable results.
3,371
3,371
Fast Semidifferential-based Submodular Function Optimization
We present a practical and powerful new framework for both unconstrained and constrained submodular function optimization based on discrete semidifferentials (sub- and super-differentials). The resulting algorithms, which repeatedly compute and then efficiently optimize submodular semigradients, offer new and generalize many old methods for submodular optimization. Our approach, moreover, takes steps towards providing a unifying paradigm applicable to both submodular min- imization and maximization, problems that historically have been treated quite distinctly. The practicality of our algorithms is important since interest in submodularity, owing to its natural and wide applicability, has recently been in ascendance within machine learning. We analyze theoretical properties of our algorithms for minimization and maximization, and show that many state-of-the-art maximization algorithms are special cases. Lastly, we complement our theoretical analyses with supporting empirical experiments.
3,372
3,372
Sign Stable Projections, Sign Cauchy Projections and Chi-Square Kernels
The method of stable random projections is popular for efficiently computing the Lp distances in high dimension (where 0<p<=2), using small space. Because it adopts nonadaptive linear projections, this method is naturally suitable when the data are collected in a dynamic streaming fashion (i.e., turnstile data streams). In this paper, we propose to use only the signs of the projected data and analyze the probability of collision (i.e., when the two signs differ). We derive a bound of the collision probability which is exact when p=2 and becomes less sharp when p moves away from 2. Interestingly, when p=1 (i.e., Cauchy random projections), we show that the probability of collision can be accurately approximated as functions of the chi-square similarity. For example, when the (un-normalized) data are binary, the maximum approximation error of the collision probability is smaller than 0.0192. In text and vision applications, the chi-square similarity is a popular measure for nonnegative data when the features are generated from histograms. Our experiments confirm that the proposed method is promising for large-scale learning applications.
3,373
3,373
Coevolutionary networks of reinforcement-learning agents
This paper presents a model of network formation in repeated games where the players adapt their strategies and network ties simultaneously using a simple reinforcement-learning scheme. It is demonstrated that the coevolutionary dynamics of such systems can be described via coupled replicator equations. We provide a comprehensive analysis for three-player two-action games, which is the minimum system size with nontrivial structural dynamics. In particular, we characterize the Nash equilibria (NE) in such games and examine the local stability of the rest points corresponding to those equilibria. We also study general n-player networks via both simulations and analytical methods and find that in the absence of exploration, the stable equilibria consist of star motifs as the main building blocks of the network. Furthermore, in all stable equilibria the agents play pure strategies, even when the game allows mixed NE. Finally, we study the impact of exploration on learning outcomes, and observe that there is a critical exploration rate above which the symmetric and uniformly connected network topology becomes stable.
3,374
3,374
Theoretical Issues for Global Cumulative Treatment Analysis (GCTA)
Adaptive trials are now mainstream science. Recently, researchers have taken the adaptive trial concept to its natural conclusion, proposing what we call "Global Cumulative Treatment Analysis" (GCTA). Similar to the adaptive trial, decision making and data collection and analysis in the GCTA are continuous and integrated, and treatments are ranked in accord with the statistics of this information, combined with what offers the most information gain. Where GCTA differs from an adaptive trial, or, for that matter, from any trial design, is that all patients are implicitly participants in the GCTA process, regardless of whether they are formally enrolled in a trial. This paper discusses some of the theoretical and practical issues that arise in the design of a GCTA, along with some preliminary thoughts on how they might be approached.
3,375
3,375
Empirical entropy, minimax regret and minimax risk
We consider the random design regression model with square loss. We propose a method that aggregates empirical minimizers (ERM) over appropriately chosen random subsets and reduces to ERM in the extreme case, and we establish sharp oracle inequalities for its risk. We show that, under the $\varepsilon^{-p}$ growth of the empirical $\varepsilon$-entropy, the excess risk of the proposed method attains the rate $n^{-2/(2+p)}$ for $p\in(0,2)$ and $n^{-1/p}$ for $p>2$ where $n$ is the sample size. Furthermore, for $p\in(0,2)$, the excess risk rate matches the behavior of the minimax risk of function estimation in regression problems under the well-specified model. This yields a conclusion that the rates of statistical estimation in well-specified models (minimax risk) and in misspecified models (minimax regret) are equivalent in the regime $p\in(0,2)$. In other words, for $p\in(0,2)$ the problem of statistical learning enjoys the same minimax rate as the problem of statistical estimation. On the contrary, for $p>2$ we show that the rates of the minimax regret are, in general, slower than for the minimax risk. Our oracle inequalities also imply the $v\log(n/v)/n$ rates for Vapnik-Chervonenkis type classes of dimension $v$ without the usual convexity assumption on the class; we show that these rates are optimal. Finally, for a slightly modified method, we derive a bound on the excess risk of $s$-sparse convex aggregation improving that of Lounici [Math. Methods Statist. 16 (2007) 246-259] and providing the optimal rate.
3,376
3,376
Spatial-Aware Dictionary Learning for Hyperspectral Image Classification
This paper presents a structured dictionary-based model for hyperspectral data that incorporates both spectral and contextual characteristics of a spectral sample, with the goal of hyperspectral image classification. The idea is to partition the pixels of a hyperspectral image into a number of spatial neighborhoods called contextual groups and to model each pixel with a linear combination of a few dictionary elements learned from the data. Since pixels inside a contextual group are often made up of the same materials, their linear combinations are constrained to use common elements from the dictionary. To this end, dictionary learning is carried out with a joint sparse regularizer to induce a common sparsity pattern in the sparse coefficients of each contextual group. The sparse coefficients are then used for classification using a linear SVM. Experimental results on a number of real hyperspectral images confirm the effectiveness of the proposed representation for hyperspectral image classification. Moreover, experiments with simulated multispectral data show that the proposed model is capable of finding representations that may effectively be used for classification of multispectral-resolution samples.
3,377
3,377
OFF-Set: One-pass Factorization of Feature Sets for Online Recommendation in Persistent Cold Start Settings
One of the most challenging recommendation tasks is recommending to a new, previously unseen user. This is known as the 'user cold start' problem. Assuming certain features or attributes of users are known, one approach for handling new users is to initially model them based on their features. Motivated by an ad targeting application, this paper describes an extreme online recommendation setting where the cold start problem is perpetual. Every user is encountered by the system just once, receives a recommendation, and either consumes or ignores it, registering a binary reward. We introduce One-pass Factorization of Feature Sets, OFF-Set, a novel recommendation algorithm based on Latent Factor analysis, which models users by mapping their features to a latent space. Furthermore, OFF-Set is able to model non-linear interactions between pairs of features. OFF-Set is designed for purely online recommendation, performing lightweight updates of its model per each recommendation-reward observation. We evaluate OFF-Set against several state of the art baselines, and demonstrate its superiority on real ad-targeting data.
3,378
3,378
Predicting protein contact map using evolutionary and physical constraints by integer programming (extended version)
Motivation. Protein contact map describes the pairwise spatial and functional relationship of residues in a protein and contains key information for protein 3D structure prediction. Although studied extensively, it remains very challenging to predict contact map using only sequence information. Most existing methods predict the contact map matrix element-by-element, ignoring correlation among contacts and physical feasibility of the whole contact map. A couple of recent methods predict contact map based upon residue co-evolution, taking into consideration contact correlation and enforcing a sparsity restraint, but these methods require a very large number of sequence homologs for the protein under consideration and the resultant contact map may be still physically unfavorable. Results. This paper presents a novel method PhyCMAP for contact map prediction, integrating both evolutionary and physical restraints by machine learning and integer linear programming (ILP). The evolutionary restraints include sequence profile, residue co-evolution and context-specific statistical potential. The physical restraints specify more concrete relationship among contacts than the sparsity restraint. As such, our method greatly reduces the solution space of the contact map matrix and thus, significantly improves prediction accuracy. Experimental results confirm that PhyCMAP outperforms currently popular methods no matter how many sequence homologs are available for the protein under consideration. PhyCMAP can predict contacts within minutes after PSIBLAST search for sequence homologs is done, much faster than the two recent methods PSICOV and EvFold. See http://raptorx.uchicago.edu for the web server.
3,379
3,379
Coding for Random Projections
The method of random projections has become very popular for large-scale applications in statistical learning, information retrieval, bio-informatics and other applications. Using a well-designed coding scheme for the projected data, which determines the number of bits needed for each projected value and how to allocate these bits, can significantly improve the effectiveness of the algorithm, in storage cost as well as computational speed. In this paper, we study a number of simple coding schemes, focusing on the task of similarity estimation and on an application to training linear classifiers. We demonstrate that uniform quantization outperforms the standard existing influential method (Datar et. al. 2004). Indeed, we argue that in many cases coding with just a small number of bits suffices. Furthermore, we also develop a non-uniform 2-bit coding scheme that generally performs well in practice, as confirmed by our experiments on training linear support vector machines (SVM).
3,380
3,380
High-Dimensional Regression with Gaussian Mixtures and Partially-Latent Response Variables
In this work we address the problem of approximating high-dimensional data with a low-dimensional representation. We make the following contributions. We propose an inverse regression method which exchanges the roles of input and response, such that the low-dimensional variable becomes the regressor, and which is tractable. We introduce a mixture of locally-linear probabilistic mapping model that starts with estimating the parameters of inverse regression, and follows with inferring closed-form solutions for the forward parameters of the high-dimensional regression problem of interest. Moreover, we introduce a partially-latent paradigm, such that the vector-valued response variable is composed of both observed and latent entries, thus being able to deal with data contaminated by experimental artifacts that cannot be explained with noise models. The proposed probabilistic formulation could be viewed as a latent-variable augmentation of regression. We devise expectation-maximization (EM) procedures based on a data augmentation strategy which facilitates the maximum-likelihood search over the model parameters. We propose two augmentation schemes and we describe in detail the associated EM inference procedures that may well be viewed as generalizations of a number of EM regression, dimension reduction, and factor analysis algorithms. The proposed framework is validated with both synthetic and real data. We provide experimental evidence that our method outperforms several existing regression techniques.
3,381
3,381
Learning Features and their Transformations by Spatial and Temporal Spherical Clustering
Learning features invariant to arbitrary transformations in the data is a requirement for any recognition system, biological or artificial. It is now widely accepted that simple cells in the primary visual cortex respond to features while the complex cells respond to features invariant to different transformations. We present a novel two-layered feedforward neural model that learns features in the first layer by spatial spherical clustering and invariance to transformations in the second layer by temporal spherical clustering. Learning occurs in an online and unsupervised manner following the Hebbian rule. When exposed to natural videos acquired by a camera mounted on a cat's head, the first and second layer neurons in our model develop simple and complex cell-like receptive field properties. The model can predict by learning lateral connections among the first layer neurons. A topographic map to their spatial features emerges by exponentially decaying the flow of activation with distance from one neuron to another in the first layer that fire in close temporal proximity, thereby minimizing the pooling length in an online manner simultaneously with feature learning.
3,382
3,382
KL-based Control of the Learning Schedule for Surrogate Black-Box Optimization
This paper investigates the control of an ML component within the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) devoted to black-box optimization. The known CMA-ES weakness is its sample complexity, the number of evaluations of the objective function needed to approximate the global optimum. This weakness is commonly addressed through surrogate optimization, learning an estimate of the objective function a.k.a. surrogate model, and replacing most evaluations of the true objective function with the (inexpensive) evaluation of the surrogate model. This paper presents a principled control of the learning schedule (when to relearn the surrogate model), based on the Kullback-Leibler divergence of the current search distribution and the training distribution of the former surrogate model. The experimental validation of the proposed approach shows significant performance gains on a comprehensive set of ill-conditioned benchmark problems, compared to the best state of the art including the quasi-Newton high-precision BFGS method.
3,383
3,383
When are Overcomplete Topic Models Identifiable? Uniqueness of Tensor Tucker Decompositions with Structured Sparsity
Overcomplete latent representations have been very popular for unsupervised feature learning in recent years. In this paper, we specify which overcomplete models can be identified given observable moments of a certain order. We consider probabilistic admixture or topic models in the overcomplete regime, where the number of latent topics can greatly exceed the size of the observed word vocabulary. While general overcomplete topic models are not identifiable, we establish generic identifiability under a constraint, referred to as topic persistence. Our sufficient conditions for identifiability involve a novel set of "higher order" expansion conditions on the topic-word matrix or the population structure of the model. This set of higher-order expansion conditions allow for overcomplete models, and require the existence of a perfect matching from latent topics to higher order observed words. We establish that random structured topic models are identifiable w.h.p. in the overcomplete regime. Our identifiability results allows for general (non-degenerate) distributions for modeling the topic proportions, and thus, we can handle arbitrarily correlated topics in our framework. Our identifiability results imply uniqueness of a class of tensor decompositions with structured sparsity which is contained in the class of Tucker decompositions, but is more general than the Candecomp/Parafac (CP) decomposition.
3,384
3,384
Composite Self-Concordant Minimization
We propose a variable metric framework for minimizing the sum of a self-concordant function and a possibly non-smooth convex function, endowed with an easily computable proximal operator. We theoretically establish the convergence of our framework without relying on the usual Lipschitz gradient assumption on the smooth part. An important highlight of our work is a new set of analytic step-size selection and correction procedures based on the structure of the problem. We describe concrete algorithmic instances of our framework for several interesting applications and demonstrate them numerically on both synthetic and real data.
3,385
3,385
Multiclass learnability and the ERM principle
We study the sample complexity of multiclass prediction in several learning settings. For the PAC setting our analysis reveals a surprising phenomenon: In sharp contrast to binary classification, we show that there exist multiclass hypothesis classes for which some Empirical Risk Minimizers (ERM learners) have lower sample complexity than others. Furthermore, there are classes that are learnable by some ERM learners, while other ERM learners will fail to learn them. We propose a principle for designing good ERM learners, and use this principle to prove tight bounds on the sample complexity of learning {\em symmetric} multiclass hypothesis classes---classes that are invariant under permutations of label names. We further provide a characterization of mistake and regret bounds for multiclass learning in the online setting and the bandit setting, using new generalizations of Littlestone's dimension.
3,386
3,386
Compact Relaxations for MAP Inference in Pairwise MRFs with Piecewise Linear Priors
Label assignment problems with large state spaces are important tasks especially in computer vision. Often the pairwise interaction (or smoothness prior) between labels assigned at adjacent nodes (or pixels) can be described as a function of the label difference. Exact inference in such labeling tasks is still difficult, and therefore approximate inference methods based on a linear programming (LP) relaxation are commonly used in practice. In this work we study how compact linear programs can be constructed for general piecwise linear smoothness priors. The number of unknowns is O(LK) per pairwise clique in terms of the state space size $L$ and the number of linear segments K. This compares to an O(L^2) size complexity of the standard LP relaxation if the piecewise linear structure is ignored. Our compact construction and the standard LP relaxation are equivalent and lead to the same (approximate) label assignment.
3,387
3,387
Normalized Google Distance of Multisets with Applications
Normalized Google distance (NGD) is a relative semantic distance based on the World Wide Web (or any other large electronic database, for instance Wikipedia) and a search engine that returns aggregate page counts. The earlier NGD between pairs of search terms (including phrases) is not sufficient for all applications. We propose an NGD of finite multisets of search terms that is better for many applications. This gives a relative semantics shared by a multiset of search terms. We give applications and compare the results with those obtained using the pairwise NGD. The derivation of NGD method is based on Kolmogorov complexity.
3,388
3,388
The algorithm of noisy k-means
In this note, we introduce a new algorithm to deal with finite dimensional clustering with errors in variables. The design of this algorithm is based on recent theoretical advances (see Loustau (2013a,b)) in statistical learning with errors in variables. As the previous mentioned papers, the algorithm mixes different tools from the inverse problem literature and the machine learning community. Coarsely, it is based on a two-step procedure: (1) a deconvolution step to deal with noisy inputs and (2) Newton's iterations as the popular k-means.
3,389
3,389
High dimensional Sparse Gaussian Graphical Mixture Model
This paper considers the problem of networks reconstruction from heterogeneous data using a Gaussian Graphical Mixture Model (GGMM). It is well known that parameter estimation in this context is challenging due to large numbers of variables coupled with the degeneracy of the likelihood. We propose as a solution a penalized maximum likelihood technique by imposing an $l_{1}$ penalty on the precision matrix. Our approach shrinks the parameters thereby resulting in better identifiability and variable selection. We use the Expectation Maximization (EM) algorithm which involves the graphical LASSO to estimate the mixing coefficients and the precision matrices. We show that under certain regularity conditions the Penalized Maximum Likelihood (PML) estimates are consistent. We demonstrate the performance of the PML estimator through simulations and we show the utility of our method for high dimensional data analysis in a genomic application.
3,390
3,390
Axioms for graph clustering quality functions
We investigate properties that intuitively ought to be satisfied by graph clustering quality functions, that is, functions that assign a score to a clustering of a graph. Graph clustering, also known as network community detection, is often performed by optimizing such a function. Two axioms tailored for graph clustering quality functions are introduced, and the four axioms introduced in previous work on distance based clustering are reformulated and generalized for the graph setting. We show that modularity, a standard quality function for graph clustering, does not satisfy all of these six properties. This motivates the derivation of a new family of quality functions, adaptive scale modularity, which does satisfy the proposed axioms. Adaptive scale modularity has two parameters, which give greater flexibility in the kinds of clusterings that can be found. Standard graph clustering quality functions, such as normalized cut and unnormalized cut, are obtained as special cases of adaptive scale modularity. In general, the results of our investigation indicate that the considered axiomatic framework covers existing `good' quality functions for graph clustering, and can be used to derive an interesting new family of quality functions.
3,391
3,391
Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation
Stochastic neurons and hard non-linearities can be useful for a number of reasons in deep learning models, but in many cases they pose a challenging problem: how to estimate the gradient of a loss function with respect to the input of such stochastic or non-smooth neurons? I.e., can we "back-propagate" through these stochastic neurons? We examine this question, existing approaches, and compare four families of solutions, applicable in different settings. One of them is the minimum variance unbiased gradient estimator for stochatic binary neurons (a special case of the REINFORCE algorithm). A second approach, introduced here, decomposes the operation of a binary stochastic neuron into a stochastic binary part and a smooth differentiable part, which approximates the expected effect of the pure stochatic binary neuron to first order. A third approach involves the injection of additive or multiplicative noise in a computational graph that is otherwise differentiable. A fourth approach heuristically copies the gradient with respect to the stochastic output directly as an estimator of the gradient with respect to the sigmoid argument (we call this the straight-through estimator). To explore a context where these estimators are useful, we consider a small-scale version of {\em conditional computation}, where sparse stochastic units form a distributed representation of gaters that can turn off in combinatorially many ways large chunks of the computation performed in the rest of the neural network. In this case, it is important that the gating units produce an actual 0 most of the time. The resulting sparsity can be potentially be exploited to greatly reduce the computational cost of large deep networks for which conditional computation would be useful.
3,392
3,392
Computational Rationalization: The Inverse Equilibrium Problem
Modeling the purposeful behavior of imperfect agents from a small number of observations is a challenging task. When restricted to the single-agent decision-theoretic setting, inverse optimal control techniques assume that observed behavior is an approximately optimal solution to an unknown decision problem. These techniques learn a utility function that explains the example behavior and can then be used to accurately predict or imitate future behavior in similar observed or unobserved situations. In this work, we consider similar tasks in competitive and cooperative multi-agent domains. Here, unlike single-agent settings, a player cannot myopically maximize its reward; it must speculate on how the other agents may act to influence the game's outcome. Employing the game-theoretic notion of regret and the principle of maximum entropy, we introduce a technique for predicting and generalizing behavior.
3,393
3,393
Stochastic Optimization for Machine Learning
It has been found that stochastic algorithms often find good solutions much more rapidly than inherently-batch approaches. Indeed, a very useful rule of thumb is that often, when solving a machine learning problem, an iterative technique which relies on performing a very large number of relatively-inexpensive updates will often outperform one which performs a smaller number of much "smarter" but computationally-expensive updates. In this thesis, we will consider the application of stochastic algorithms to two of the most important machine learning problems. Part i is concerned with the supervised problem of binary classification using kernelized linear classifiers, for which the data have labels belonging to exactly two classes (e.g. "has cancer" or "doesn't have cancer"), and the learning problem is to find a linear classifier which is best at predicting the label. In Part ii, we will consider the unsupervised problem of Principal Component Analysis, for which the learning task is to find the directions which contain most of the variance of the data distribution. Our goal is to present stochastic algorithms for both problems which are, above all, practical--they work well on real-world data, in some cases better than all known competing algorithms. A secondary, but still very important, goal is to derive theoretical bounds on the performance of these algorithms which are at least competitive with, and often better than, those known for other approaches.
3,394
3,394
Hidden Parameter Markov Decision Processes: A Semiparametric Regression Approach for Discovering Latent Task Parametrizations
Control applications often feature tasks with similar, but not identical, dynamics. We introduce the Hidden Parameter Markov Decision Process (HiP-MDP), a framework that parametrizes a family of related dynamical systems with a low-dimensional set of latent factors, and introduce a semiparametric regression approach for learning its structure from data. In the control setting, we show that a learned HiP-MDP rapidly identifies the dynamics of a new task instance, allowing an agent to flexibly adapt to task variations.
3,395
3,395
Knapsack Constrained Contextual Submodular List Prediction with Application to Multi-document Summarization
We study the problem of predicting a set or list of options under knapsack constraint. The quality of such lists are evaluated by a submodular reward function that measures both quality and diversity. Similar to DAgger (Ross et al., 2010), by a reduction to online learning, we show how to adapt two sequence prediction models to imitate greedy maximization under knapsack constraint problems: CONSEQOPT (Dey et al., 2012) and SCP (Ross et al., 2013). Experiments on extractive multi-document summarization show that our approach outperforms existing state-of-the-art methods.
3,396
3,396
Fast Stochastic Alternating Direction Method of Multipliers
In this paper, we propose a new stochastic alternating direction method of multipliers (ADMM) algorithm, which incrementally approximates the full gradient in the linearized ADMM formulation. Besides having a low per-iteration complexity as existing stochastic ADMM algorithms, the proposed algorithm improves the convergence rate on convex problems from $O(\frac 1 {\sqrt{T}})$ to $O(\frac 1 T)$, where $T$ is the number of iterations. This matches the convergence rate of the batch ADMM algorithm, but without the need to visit all the samples in each iteration. Experiments on the graph-guided fused lasso demonstrate that the new algorithm is significantly faster than state-of-the-art stochastic and batch ADMM algorithms.
3,397
3,397
Standardizing Interestingness Measures for Association Rules
Interestingness measures provide information that can be used to prune or select association rules. A given value of an interestingness measure is often interpreted relative to the overall range of the values that the interestingness measure can take. However, properties of individual association rules restrict the values an interestingness measure can achieve. An interesting measure can be standardized to take this into account, but this has only been done for one interestingness measure to date, i.e., the lift. Standardization provides greater insight than the raw value and may even alter researchers' perception of the data. We derive standardized analogues of three interestingness measures and use real and simulated data to compare them to their raw versions, each other, and the standardized lift.
3,398
3,398
Comment on "robustness and regularization of support vector machines" by H. Xu, et al., (Journal of Machine Learning Research, vol. 10, pp. 1485-1510, 2009, arXiv:0803.3490)
This paper comments on the published work dealing with robustness and regularization of support vector machines (Journal of Machine Learning Research, vol. 10, pp. 1485-1510, 2009) [arXiv:0803.3490] by H. Xu, etc. They proposed a theorem to show that it is possible to relate robustness in the feature space and robustness in the sample space directly. In this paper, we propose a counter example that rejects their theorem.
3,399
3,399
Reference Distance Estimator
A theoretical study is presented for a simple linear classifier called reference distance estimator (RDE), which assigns the weight of each feature j as P(r|j)-P(r), where r is a reference feature relevant to the target class y. The analysis shows that if r performs better than random guess in predicting y and is conditionally independent with each feature j, the RDE will have the same classification performance as that from P(y|j)-P(y), a classifier trained with the gold standard y. Since the estimation of P(r|j)-P(r) does not require labeled data, under the assumption above, RDE trained with a large number of unlabeled examples would be close to that trained with infinite labeled examples. For the case the assumption does not hold, we theoretically analyze the factors that influence the closeness of the RDE to the perfect one under the assumption, and present an algorithm to select reference features and combine multiple RDEs from different reference features using both labeled and unlabeled data. The experimental results on 10 text classification tasks show that the semi-supervised learning method improves supervised methods using 5,000 labeled examples and 13 million unlabeled ones, and in many tasks, its performance is even close to a classifier trained with 13 million labeled examples. In addition, the bounds in the theorems provide good estimation of the classification performance and can be useful for new algorithm design.