Unnamed: 0.1
int64
0
113k
Unnamed: 0
float64
0
113k
title
stringlengths
7
246
abstract
stringlengths
6
3.31k
2,300
2,300
LSBN: A Large-Scale Bayesian Structure Learning Framework for Model Averaging
The motivation for this paper is to apply Bayesian structure learning using Model Averaging in large-scale networks. Currently, Bayesian model averaging algorithm is applicable to networks with only tens of variables, restrained by its super-exponential complexity. We present a novel framework, called LSBN(Large-Scale Bayesian Network), making it possible to handle networks with infinite size by following the principle of divide-and-conquer. The method of LSBN comprises three steps. In general, LSBN first performs the partition by using a second-order partition strategy, which achieves more robust results. LSBN conducts sampling and structure learning within each overlapping community after the community is isolated from other variables by Markov Blanket. Finally LSBN employs an efficient algorithm, to merge structures of overlapping communities into a whole. In comparison with other four state-of-art large-scale network structure learning algorithms such as ARACNE, PC, Greedy Search and MMHC, LSBN shows comparable results in five common benchmark datasets, evaluated by precision, recall and f-score. What's more, LSBN makes it possible to learn large-scale Bayesian structure by Model Averaging which used to be intractable. In summary, LSBN provides an scalable and parallel framework for the reconstruction of network structures. Besides, the complete information of overlapping communities serves as the byproduct, which could be used to mine meaningful clusters in biological networks, such as protein-protein-interaction network or gene regulatory network, as well as in social network.
2,301
2,301
Matrix reconstruction with the local max norm
We introduce a new family of matrix norms, the "local max" norms, generalizing existing methods such as the max norm, the trace norm (nuclear norm), and the weighted or smoothed weighted trace norms, which have been extensively used in the literature as regularizers for matrix reconstruction problems. We show that this new family can be used to interpolate between the (weighted or unweighted) trace norm and the more conservative max norm. We test this interpolation on simulated data and on the large-scale Netflix and MovieLens ratings data, and find improved accuracy relative to the existing matrix norms. We also provide theoretical results showing learning guarantees for some of the new norms.
2,302
2,302
The performance of orthogonal multi-matching pursuit under RIP
The orthogonal multi-matching pursuit (OMMP) is a natural extension of orthogonal matching pursuit (OMP). We denote the OMMP with the parameter $M$ as OMMP(M) where $M\geq 1$ is an integer. The main difference between OMP and OMMP(M) is that OMMP(M) selects $M$ atoms per iteration, while OMP only adds one atom to the optimal atom set. In this paper, we study the performance of orthogonal multi-matching pursuit (OMMP) under RIP. In particular, we show that, when the measurement matrix A satisfies $(9s, 1/10)$-RIP, there exists an absolutely constant $M_0\leq 8$ so that OMMP(M_0) can recover $s$-sparse signal within $s$ iterations. We furthermore prove that, for slowly-decaying $s$-sparse signal, OMMP(M) can recover s-sparse signal within $O(\frac{s}{M})$ iterations for a large class of $M$. In particular, for $M=s^a$ with $a\in [0,1/2]$, OMMP(M) can recover slowly-decaying $s$-sparse signal within $O(s^{1-a})$ iterations. The result implies that OMMP can reduce the computational complexity heavily.
2,303
2,303
Pairwise MRF Calibration by Perturbation of the Bethe Reference Point
We investigate different ways of generating approximate solutions to the pairwise Markov random field (MRF) selection problem. We focus mainly on the inverse Ising problem, but discuss also the somewhat related inverse Gaussian problem because both types of MRF are suitable for inference tasks with the belief propagation algorithm (BP) under certain conditions. Our approach consists in to take a Bethe mean-field solution obtained with a maximum spanning tree (MST) of pairwise mutual information, referred to as the \emph{Bethe reference point}, for further perturbation procedures. We consider three different ways following this idea: in the first one, we select and calibrate iteratively the optimal links to be added starting from the Bethe reference point; the second one is based on the observation that the natural gradient can be computed analytically at the Bethe point; in the third one, assuming no local field and using low temperature expansion we develop a dual loop joint model based on a well chosen fundamental cycle basis. We indeed identify a subclass of planar models, which we refer to as \emph{Bethe-dual graph models}, having possibly many loops, but characterized by a singly connected dual factor graph, for which the partition function and the linear response can be computed exactly in respectively O(N) and $O(N^2)$ operations, thanks to a dual weight propagation (DWP) message passing procedure that we set up. When restricted to this subclass of models, the inverse Ising problem being convex, becomes tractable at any temperature. Experimental tests on various datasets with refined $L_0$ or $L_1$ regularization procedures indicate that these approaches may be competitive and useful alternatives to existing ones.
2,304
2,304
Bayesian Estimation for Continuous-Time Sparse Stochastic Processes
We consider continuous-time sparse stochastic processes from which we have only a finite number of noisy/noiseless samples. Our goal is to estimate the noiseless samples (denoising) and the signal in-between (interpolation problem). By relying on tools from the theory of splines, we derive the joint a priori distribution of the samples and show how this probability density function can be factorized. The factorization enables us to tractably implement the maximum a posteriori and minimum mean-square error (MMSE) criteria as two statistical approaches for estimating the unknowns. We compare the derived statistical methods with well-known techniques for the recovery of sparse signals, such as the $\ell_1$ norm and Log ($\ell_1$-$\ell_0$ relaxation) regularization methods. The simulation results show that, under certain conditions, the performance of the regularization techniques can be very close to that of the MMSE estimator.
2,305
2,305
Disentangling Factors of Variation via Generative Entangling
Here we propose a novel model family with the objective of learning to disentangle the factors of variation in data. Our approach is based on the spike-and-slab restricted Boltzmann machine which we generalize to include higher-order interactions among multiple latent variables. Seen from a generative perspective, the multiplicative interactions emulates the entangling of factors of variation. Inference in the model can be seen as disentangling these generative factors. Unlike previous attempts at disentangling latent factors, the proposed model is trained using no supervised information regarding the latent factors. We apply our model to the task of facial expression classification.
2,306
2,306
Online Learning in Decentralized Multiuser Resource Sharing Problems
In this paper, we consider the general scenario of resource sharing in a decentralized system when the resource rewards/qualities are time-varying and unknown to the users, and using the same resource by multiple users leads to reduced quality due to resource sharing. Firstly, we consider a user-independent reward model with no communication between the users, where a user gets feedback about the congestion level in the resource it uses. Secondly, we consider user-specific rewards and allow costly communication between the users. The users have a cooperative goal of achieving the highest system utility. There are multiple obstacles in achieving this goal such as the decentralized nature of the system, unknown resource qualities, communication, computation and switching costs. We propose distributed learning algorithms with logarithmic regret with respect to the optimal allocation. Our logarithmic regret result holds under both i.i.d. and Markovian reward models, as well as under communication, computation and switching costs.
2,307
2,307
Content-boosted Matrix Factorization Techniques for Recommender Systems
Many businesses are using recommender systems for marketing outreach. Recommendation algorithms can be either based on content or driven by collaborative filtering. We study different ways to incorporate content information directly into the matrix factorization approach of collaborative filtering. These content-boosted matrix factorization algorithms not only improve recommendation accuracy, but also provide useful insights about the contents, as well as make recommendations more easily interpretable.
2,308
2,308
Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials
Most state-of-the-art techniques for multi-class image segmentation and labeling use conditional random fields defined over pixels or image regions. While region-level models often feature dense pairwise connectivity, pixel-level models are considerably larger and have only permitted sparse graph structures. In this paper, we consider fully connected CRF models defined on the complete set of pixels in an image. The resulting graphs have billions of edges, making traditional inference algorithms impractical. Our main contribution is a highly efficient approximate inference algorithm for fully connected CRF models in which the pairwise edge potentials are defined by a linear combination of Gaussian kernels. Our experiments demonstrate that dense connectivity at the pixel level substantially improves segmentation and labeling accuracy.
2,309
2,309
Choice of V for V-Fold Cross-Validation in Least-Squares Density Estimation
This paper studies V-fold cross-validation for model selection in least-squares density estimation. The goal is to provide theoretical grounds for choosing V in order to minimize the least-squares loss of the selected estimator. We first prove a non-asymptotic oracle inequality for V-fold cross-validation and its bias-corrected version (V-fold penalization). In particular, this result implies that V-fold penalization is asymptotically optimal in the nonparametric case. Then, we compute the variance of V-fold cross-validation and related criteria, as well as the variance of key quantities for model selection performance. We show that these variances depend on V like 1+4/(V-1), at least in some particular cases, suggesting that the performance increases much from V=2 to V=5 or 10, and then is almost constant. Overall, this can explain the common advice to take V=5---at least in our setting and when the computational power is limited---, as supported by some simulation experiments. An oracle inequality and exact formulas for the variance are also proved for Monte-Carlo cross-validation, also known as repeated cross-validation, where the parameter V is replaced by the number B of random splits of the data.
2,310
2,310
Supervised Learning with Similarity Functions
We address the problem of general supervised learning when data can only be accessed through an (indefinite) similarity function between data points. Existing work on learning with indefinite kernels has concentrated solely on binary/multi-class classification problems. We propose a model that is generic enough to handle any supervised learning task and also subsumes the model previously proposed for classification. We give a "goodness" criterion for similarity functions w.r.t. a given supervised learning task and then adapt a well-known landmarking technique to provide efficient algorithms for supervised learning using "good" similarity functions. We demonstrate the effectiveness of our model on three important super-vised learning problems: a) real-valued regression, b) ordinal regression and c) ranking where we show that our method guarantees bounded generalization error. Furthermore, for the case of real-valued regression, we give a natural goodness definition that, when used in conjunction with a recent result in sparse vector recovery, guarantees a sparse predictor with bounded generalization error. Finally, we report results of our learning algorithms on regression and ordinal regression tasks using non-PSD similarity functions and demonstrate the effectiveness of our algorithms, especially that of the sparse landmark selection algorithm that achieves significantly higher accuracies than the baseline methods while offering reduced computational costs.
2,311
2,311
Initialization of Self-Organizing Maps: Principal Components Versus Random Initialization. A Case Study
The performance of the Self-Organizing Map (SOM) algorithm is dependent on the initial weights of the map. The different initialization methods can broadly be classified into random and data analysis based initialization approach. In this paper, the performance of random initialization (RI) approach is compared to that of principal component initialization (PCI) in which the initial map weights are chosen from the space of the principal component. Performance is evaluated by the fraction of variance unexplained (FVU). Datasets were classified into quasi-linear and non-linear and it was observed that RI performed better for non-linear datasets; however the performance of PCI approach remains inconclusive for quasi-linear datasets.
2,312
2,312
Reducing statistical time-series problems to binary classification
We show how binary classification methods developed to work on i.i.d. data can be used for solving statistical problems that are seemingly unrelated to classification and concern highly-dependent time series. Specifically, the problems of time-series clustering, homogeneity testing and the three-sample problem are addressed. The algorithms that we construct for solving these problems are based on a new metric between time-series distributions, which can be evaluated using binary classification methods. Universal consistency of the proposed algorithms is proven under most general assumptions. The theoretical results are illustrated with experiments on synthetic and real-world data.
2,313
2,313
Fast Exact Max-Kernel Search
The wide applicability of kernels makes the problem of max-kernel search ubiquitous and more general than the usual similarity search in metric spaces. We focus on solving this problem efficiently. We begin by characterizing the inherent hardness of the max-kernel search problem with a novel notion of directional concentration. Following that, we present a method to use an $O(n \log n)$ algorithm to index any set of objects (points in $\Real^\dims$ or abstract objects) directly in the Hilbert space without any explicit feature representations of the objects in this space. We present the first provably $O(\log n)$ algorithm for exact max-kernel search using this index. Empirical results for a variety of data sets as well as abstract objects demonstrate up to 4 orders of magnitude speedup in some cases. Extensions for approximate max-kernel search are also presented.
2,314
2,314
A density-sensitive hierarchical clustering method
We define a hierarchical clustering method: $\alpha$-unchaining single linkage or $SL(\alpha)$. The input of this algorithm is a finite metric space and a certain parameter $\alpha$. This method is sensitive to the density of the distribution and offers some solution to the so called chaining effect. We also define a modified version, $SL^*(\alpha)$, to treat the chaining through points or small blocks. We study the theoretical properties of these methods and offer some theoretical background for the treatment of chaining effects.
2,315
2,315
MLPACK: A Scalable C++ Machine Learning Library
MLPACK is a state-of-the-art, scalable, multi-platform C++ machine learning library released in late 2011 offering both a simple, consistent API accessible to novice users and high performance and flexibility to expert users by leveraging modern features of C++. MLPACK provides cutting-edge algorithms whose benchmarks exhibit far better performance than other leading machine learning libraries. MLPACK version 1.0.3, licensed under the LGPL, is available at http://www.mlpack.org.
2,316
2,316
High quality topic extraction from business news explains abnormal financial market volatility
Understanding the mutual relationships between information flows and social activity in society today is one of the cornerstones of the social sciences. In financial economics, the key issue in this regard is understanding and quantifying how news of all possible types (geopolitical, environmental, social, financial, economic, etc.) affect trading and the pricing of firms in organized stock markets. In this article, we seek to address this issue by performing an analysis of more than 24 million news records provided by Thompson Reuters and of their relationship with trading activity for 206 major stocks in the S&P US stock index. We show that the whole landscape of news that affect stock price movements can be automatically summarized via simple regularized regressions between trading activity and news information pieces decomposed, with the help of simple topic modeling techniques, into their "thematic" features. Using these methods, we are able to estimate and quantify the impacts of news on trading. We introduce network-based visualization techniques to represent the whole landscape of news information associated with a basket of stocks. The examination of the words that are representative of the topic distributions confirms that our method is able to extract the significant pieces of information influencing the stock market. Our results show that one of the most puzzling stylized fact in financial economies, namely that at certain times trading volumes appear to be "abnormally large," can be partially explained by the flow of news. In this sense, our results prove that there is no "excess trading," when restricting to times when news are genuinely novel and provide relevant financial information.
2,317
2,317
Topic-Level Opinion Influence Model(TOIM): An Investigation Using Tencent Micro-Blogging
Mining user opinion from Micro-Blogging has been extensively studied on the most popular social networking sites such as Twitter and Facebook in the U.S., but few studies have been done on Micro-Blogging websites in other countries (e.g. China). In this paper, we analyze the social opinion influence on Tencent, one of the largest Micro-Blogging websites in China, endeavoring to unveil the behavior patterns of Chinese Micro-Blogging users. This paper proposes a Topic-Level Opinion Influence Model (TOIM) that simultaneously incorporates topic factor and social direct influence in a unified probabilistic framework. Based on TOIM, two topic level opinion influence propagation and aggregation algorithms are developed to consider the indirect influence: CP (Conservative Propagation) and NCP (None Conservative Propagation). Users' historical social interaction records are leveraged by TOIM to construct their progressive opinions and neighbors' opinion influence through a statistical learning process, which can be further utilized to predict users' future opinions on some specific topics. To evaluate and test this proposed model, an experiment was designed and a sub-dataset from Tencent Micro-Blogging was used. The experimental results show that TOIM outperforms baseline methods on predicting users' opinion. The applications of CP and NCP have no significant differences and could significantly improve recall and F1-measure of TOIM.
2,318
2,318
Neural Networks for Complex Data
Artificial neural networks are simple and efficient machine learning tools. Defined originally in the traditional setting of simple vector data, neural network models have evolved to address more and more difficulties of complex real world problems, ranging from time evolving data to sophisticated data structures such as graphs and functions. This paper summarizes advances on those themes from the last decade, with a focus on results obtained by members of the SAMM team of Universit\'e Paris 1
2,319
2,319
Clustering hidden Markov models with variational HEM
The hidden Markov model (HMM) is a widely-used generative model that copes with sequential data, assuming that each observation is conditioned on the state of a hidden Markov chain. In this paper, we derive a novel algorithm to cluster HMMs based on the hierarchical EM (HEM) algorithm. The proposed algorithm i) clusters a given collection of HMMs into groups of HMMs that are similar, in terms of the distributions they represent, and ii) characterizes each group by a "cluster center", i.e., a novel HMM that is representative for the group, in a manner that is consistent with the underlying generative model of the HMM. To cope with intractable inference in the E-step, the HEM algorithm is formulated as a variational optimization problem, and efficiently solved for the HMM case by leveraging an appropriate variational approximation. The benefits of the proposed algorithm, which we call variational HEM (VHEM), are demonstrated on several tasks involving time-series data, such as hierarchical clustering of motion capture sequences, and automatic annotation and retrieval of music and of online hand-writing data, showing improvements over current methods. In particular, our variational HEM algorithm effectively leverages large amounts of data when learning annotation models by using an efficient hierarchical estimation procedure, which reduces learning times and memory requirements, while improving model robustness through better regularization.
2,320
2,320
Nested Hierarchical Dirichlet Processes
We develop a nested hierarchical Dirichlet process (nHDP) for hierarchical topic modeling. The nHDP is a generalization of the nested Chinese restaurant process (nCRP) that allows each word to follow its own path to a topic node according to a document-specific distribution on a shared tree. This alleviates the rigid, single-path formulation of the nCRP, allowing a document to more easily express thematic borrowings as a random effect. We derive a stochastic variational inference algorithm for the model, in addition to a greedy subtree selection method for each document, which allows for efficient inference using massive collections of text documents. We demonstrate our algorithm on 1.8 million documents from The New York Times and 3.3 million documents from Wikipedia.
2,321
2,321
Structured Sparsity Models for Multiparty Speech Recovery from Reverberant Recordings
We tackle the multi-party speech recovery problem through modeling the acoustic of the reverberant chambers. Our approach exploits structured sparsity models to perform room modeling and speech recovery. We propose a scheme for characterizing the room acoustic from the unknown competing speech sources relying on localization of the early images of the speakers by sparse approximation of the spatial spectra of the virtual sources in a free-space model. The images are then clustered exploiting the low-rank structure of the spectro-temporal components belonging to each source. This enables us to identify the early support of the room impulse response function and its unique map to the room geometry. To further tackle the ambiguity of the reflection ratios, we propose a novel formulation of the reverberation model and estimate the absorption coefficients through a convex optimization exploiting joint sparsity model formulated upon spatio-spectral sparsity of concurrent speech representation. The acoustic parameters are then incorporated for separating individual speech signals through either structured sparse recovery or inverse filtering the acoustic channels. The experiments conducted on real data recordings demonstrate the effectiveness of the proposed approach for multi-party speech recovery and recognition.
2,322
2,322
Predicting Near-Future Churners and Win-Backs in the Telecommunications Industry
In this work, we presented the strategies and techniques that we have developed for predicting the near-future churners and win-backs for a telecom company. On a large-scale and real-world database containing customer profiles and some transaction data from a telecom company, we first analyzed the data schema, developed feature computation strategies and then extracted a large set of relevant features that can be associated with the customer churning and returning behaviors. Our features include both the original driver factors as well as some derived features. We evaluated our features on the imbalance corrected dataset, i.e. under-sampled dataset and compare a large number of existing machine learning tools, especially decision tree-based classifiers, for predicting the churners and win-backs. In general, we find RandomForest and SimpleCart learning algorithms generally perform well and tend to provide us with highly competitive prediction performance. Among the top-15 driver factors that signal the churn behavior, we find that the service utilization, e.g. last two months' download and upload volume, last three months' average upload and download, and the payment related factors are the most indicative features for predicting if churn will happen soon. Such features can collectively tell discrepancies between the service plans, payments and the dynamically changing utilization needs of the customers. Our proposed features and their computational strategy exhibit reasonable precision performance to predict churn behavior in near future.
2,323
2,323
Enhancing the functional content of protein interaction networks
Protein interaction networks are a promising type of data for studying complex biological systems. However, despite the rich information embedded in these networks, they face important data quality challenges of noise and incompleteness that adversely affect the results obtained from their analysis. Here, we explore the use of the concept of common neighborhood similarity (CNS), which is a form of local structure in networks, to address these issues. Although several CNS measures have been proposed in the literature, an understanding of their relative efficacies for the analysis of interaction networks has been lacking. We follow the framework of graph transformation to convert the given interaction network into a transformed network corresponding to a variety of CNS measures evaluated. The effectiveness of each measure is then estimated by comparing the quality of protein function predictions obtained from its corresponding transformed network with those from the original network. Using a large set of S. cerevisiae interactions, and a set of 136 GO terms, we find that several of the transformed networks produce more accurate predictions than those obtained from the original network. In particular, the $HC.cont$ measure proposed here performs particularly well for this task. Further investigation reveals that the two major factors contributing to this improvement are the abilities of CNS measures, especially $HC.cont$, to prune out noisy edges and introduce new links between functionally related proteins.
2,324
2,324
User-level Weibo Recommendation incorporating Social Influence based on Semi-Supervised Algorithm
Tencent Weibo, as one of the most popular micro-blogging services in China, has attracted millions of users, producing 30-60 millions of weibo (similar as tweet in Twitter) daily. With the overload problem of user generate content, Tencent users find it is more and more hard to browse and find valuable information at the first time. In this paper, we propose a Factor Graph based weibo recommendation algorithm TSI-WR (Topic-Level Social Influence based Weibo Recommendation), which could help Tencent users to find most suitable information. The main innovation is that we consider both direct and indirect social influence from topic level based on social balance theory. The main advantages of adopting this strategy are that it could first build a more accurate description of latent relationship between two users with weak connections, which could help to solve the data sparsity problem; second provide a more accurate recommendation for a certain user from a wider range. Other meaningful contextual information is also combined into our model, which include: Users profile, Users influence, Content of weibos, Topic information of weibos and etc. We also design a semi-supervised algorithm to further reduce the influence of data sparisty. The experiments show that all the selected variables are important and the proposed model outperforms several baseline methods.
2,325
2,325
Large-Scale Sparse Principal Component Analysis with Application to Text Data
Sparse PCA provides a linear combination of small number of features that maximizes variance across data. Although Sparse PCA has apparent advantages compared to PCA, such as better interpretability, it is generally thought to be computationally much more expensive. In this paper, we demonstrate the surprising fact that sparse PCA can be easier than PCA in practice, and that it can be reliably applied to very large data sets. This comes from a rigorous feature elimination pre-processing result, coupled with the favorable fact that features in real-life data typically have exponentially decreasing variances, which allows for many features to be eliminated. We introduce a fast block coordinate ascent algorithm with much better computational complexity than the existing first-order ones. We provide experimental results obtained on text corpora involving millions of documents and hundreds of thousands of features. These results illustrate how Sparse PCA can help organize a large corpus of text data in a user-interpretable way, providing an attractive alternative approach to topic models.
2,326
2,326
Selective Transfer Learning for Cross Domain Recommendation
Collaborative filtering (CF) aims to predict users' ratings on items according to historical user-item preference data. In many real-world applications, preference data are usually sparse, which would make models overfit and fail to give accurate predictions. Recently, several research works show that by transferring knowledge from some manually selected source domains, the data sparseness problem could be mitigated. However for most cases, parts of source domain data are not consistent with the observations in the target domain, which may misguide the target domain model building. In this paper, we propose a novel criterion based on empirical prediction error and its variance to better capture the consistency across domains in CF settings. Consequently, we embed this criterion into a boosting framework to perform selective knowledge transfer. Comparing to several state-of-the-art methods, we show that our proposed selective transfer learning framework can significantly improve the accuracy of rating prediction tasks on several real-world recommendation tasks.
2,327
2,327
A Multiscale Framework for Challenging Discrete Optimization
Current state-of-the-art discrete optimization methods struggle behind when it comes to challenging contrast-enhancing discrete energies (i.e., favoring different labels for neighboring variables). This work suggests a multiscale approach for these challenging problems. Deriving an algebraic representation allows us to coarsen any pair-wise energy using any interpolation in a principled algebraic manner. Furthermore, we propose an energy-aware interpolation operator that efficiently exposes the multiscale landscape of the energy yielding an effective coarse-to-fine optimization scheme. Results on challenging contrast-enhancing energies show significant improvement over state-of-the-art methods.
2,328
2,328
Discrete Energy Minimization, beyond Submodularity: Applications and Approximations
In this thesis I explore challenging discrete energy minimization problems that arise mainly in the context of computer vision tasks. This work motivates the use of such "hard-to-optimize" non-submodular functionals, and proposes methods and algorithms to cope with the NP-hardness of their optimization. Consequently, this thesis revolves around two axes: applications and approximations. The applications axis motivates the use of such "hard-to-optimize" energies by introducing new tasks. As the energies become less constrained and structured one gains more expressive power for the objective function achieving more accurate models. Results show how challenging, hard-to-optimize, energies are more adequate for certain computer vision applications. To overcome the resulting challenging optimization tasks the second axis of this thesis proposes approximation algorithms to cope with the NP-hardness of the optimization. Experiments show that these new methods yield good results for representative challenging problems.
2,329
2,329
Recognizing Static Signs from the Brazilian Sign Language: Comparing Large-Margin Decision Directed Acyclic Graphs, Voting Support Vector Machines and Artificial Neural Networks
In this paper, we explore and detail our experiments in a high-dimensionality, multi-class image classification problem often found in the automatic recognition of Sign Languages. Here, our efforts are directed towards comparing the characteristics, advantages and drawbacks of creating and training Support Vector Machines disposed in a Directed Acyclic Graph and Artificial Neural Networks to classify signs from the Brazilian Sign Language (LIBRAS). We explore how the different heuristics, hyperparameters and multi-class decision schemes affect the performance, efficiency and ease of use for each classifier. We provide hyperparameter surface maps capturing accuracy and efficiency, comparisons between DDAGs and 1-vs-1 SVMs, and effects of heuristics when training ANNs with Resilient Backpropagation. We report statistically significant results using Cohen's Kappa statistic for contingency tables.
2,330
2,330
Tensor decompositions for learning latent variable models
This work considers a computationally and statistically efficient parameter estimation method for a wide class of latent variable models---including Gaussian mixture models, hidden Markov models, and latent Dirichlet allocation---which exploits a certain tensor structure in their low-order observable moments (typically, of second- and third-order). Specifically, parameter estimation is reduced to the problem of extracting a certain (orthogonal) decomposition of a symmetric tensor derived from the moments; this decomposition can be viewed as a natural generalization of the singular value decomposition for matrices. Although tensor decompositions are generally intractable to compute, the decomposition of these specially structured tensors can be efficiently obtained by a variety of approaches, including power iterations and maximization approaches (similar to the case of matrices). A detailed analysis of a robust tensor power method is provided, establishing an analogue of Wedin's perturbation theorem for the singular vectors of matrices. This implies a robust and computationally tractable estimation approach for several popular latent variable models.
2,331
2,331
Text Classification with Compression Algorithms
This work concerns a comparison of SVM kernel methods in text categorization tasks. In particular I define a kernel function that estimates the similarity between two objects computing by their compressed lengths. In fact, compression algorithms can detect arbitrarily long dependencies within the text strings. Data text vectorization looses information in feature extractions and is highly sensitive by textual language. Furthermore, these methods are language independent and require no text preprocessing. Moreover, the accuracy computed on the datasets (Web-KB, 20ng and Reuters-21578), in some case, is greater than Gaussian, linear and polynomial kernels. The method limits are represented by computational time complexity of the Gram matrix and by very poor performance on non-textual datasets.
2,332
2,332
Learning in the Model Space for Fault Diagnosis
The emergence of large scaled sensor networks facilitates the collection of large amounts of real-time data to monitor and control complex engineering systems. However, in many cases the collected data may be incomplete or inconsistent, while the underlying environment may be time-varying or un-formulated. In this paper, we have developed an innovative cognitive fault diagnosis framework that tackles the above challenges. This framework investigates fault diagnosis in the model space instead of in the signal space. Learning in the model space is implemented by fitting a series of models using a series of signal segments selected with a rolling window. By investigating the learning techniques in the fitted model space, faulty models can be discriminated from healthy models using one-class learning algorithm. The framework enables us to construct fault library when unknown faults occur, which can be regarded as cognitive fault isolation. This paper also theoretically investigates how to measure the pairwise distance between two models in the model space and incorporates the model distance into the learning algorithm in the model space. The results on three benchmark applications and one simulated model for the Barcelona water distribution network have confirmed the effectiveness of the proposed framework.
2,333
2,333
Temporal Autoencoding Restricted Boltzmann Machine
Much work has been done refining and characterizing the receptive fields learned by deep learning algorithms. A lot of this work has focused on the development of Gabor-like filters learned when enforcing sparsity constraints on a natural image dataset. Little work however has investigated how these filters might expand to the temporal domain, namely through training on natural movies. Here we investigate exactly this problem in established temporal deep learning algorithms as well as a new learning paradigm suggested here, the Temporal Autoencoding Restricted Boltzmann Machine (TARBM).
2,334
2,334
First Experiments with PowerPlay
Like a scientist or a playing child, PowerPlay not only learns new skills to solve given problems, but also invents new interesting problems by itself. By design, it continually comes up with the fastest to find, initially novel, but eventually solvable tasks. It also continually simplifies or compresses or speeds up solutions to previous tasks. Here we describe first experiments with PowerPlay. A self-delimiting recurrent neural network SLIM RNN is used as a general computational problem solving architecture. Its connection weights can encode arbitrary, self-delimiting, halting or non-halting programs affecting both environment (through effectors) and internal states encoding abstractions of event sequences. Our PowerPlay-driven SLIM RNN learns to become an increasingly general solver of self-invented problems, continually adding new problem solving procedures to its growing skill repertoire. Extending a recent conference paper, we identify interesting, emerging, developmental stages of our open-ended system. We also show how it automatically self-modularizes, frequently re-using code for previously invented skills, always trying to invent novel tasks that can be quickly validated because they do not require too many weight changes affecting too many previous tasks.
2,335
2,335
Venn-Abers predictors
This paper continues study, both theoretical and empirical, of the method of Venn prediction, concentrating on binary prediction problems. Venn predictors produce probability-type predictions for the labels of test objects which are guaranteed to be well calibrated under the standard assumption that the observations are generated independently from the same distribution. We give a simple formalization and proof of this property. We also introduce Venn-Abers predictors, a new class of Venn predictors based on the idea of isotonic regression, and report promising empirical results both for Venn-Abers predictors and for their more computationally efficient simplified version.
2,336
2,336
Understanding the Interaction between Interests, Conversations and Friendships in Facebook
In this paper, we explore salient questions about user interests, conversations and friendships in the Facebook social network, using a novel latent space model that integrates several data types. A key challenge of studying Facebook's data is the wide range of data modalities such as text, network links, and categorical labels. Our latent space model seamlessly combines all three data modalities over millions of users, allowing us to study the interplay between user friendships, interests, and higher-order network-wide social trends on Facebook. The recovered insights not only answer our initial questions, but also reveal surprising facts about user interests in the context of Facebook's ecosystem. We also confirm that our results are significant with respect to evidential information from the study subjects.
2,337
2,337
The Emerging Field of Signal Processing on Graphs: Extending High-Dimensional Data Analysis to Networks and Other Irregular Domains
In applications such as social, energy, transportation, sensor, and neuronal networks, high-dimensional data naturally reside on the vertices of weighted graphs. The emerging field of signal processing on graphs merges algebraic and spectral graph theoretic concepts with computational harmonic analysis to process such signals on graphs. In this tutorial overview, we outline the main challenges of the area, discuss different ways to define graph spectral domains, which are the analogues to the classical frequency domain, and highlight the importance of incorporating the irregular structures of graph data domains when processing signals on graphs. We then review methods to generalize fundamental operations such as filtering, translation, modulation, dilation, and downsampling to the graph setting, and survey the localized, multiscale transforms that have been proposed to efficiently extract information from high-dimensional data on graphs. We conclude with a brief discussion of open issues and possible extensions.
2,338
2,338
Iterative Hard Thresholding Methods for $l_0$ Regularized Convex Cone Programming
In this paper we consider $l_0$ regularized convex cone programming problems. In particular, we first propose an iterative hard thresholding (IHT) method and its variant for solving $l_0$ regularized box constrained convex programming. We show that the sequence generated by these methods converges to a local minimizer. Also, we establish the iteration complexity of the IHT method for finding an $\epsilon$-local-optimal solution. We then propose a method for solving $l_0$ regularized convex cone programming by applying the IHT method to its quadratic penalty relaxation and establish its iteration complexity for finding an $\epsilon$-approximate local minimizer. Finally, we propose a variant of this method in which the associated penalty parameter is dynamically updated, and show that every accumulation point is a local minimizer of the problem.
2,339
2,339
Extension of TSVM to Multi-Class and Hierarchical Text Classification Problems With General Losses
Transductive SVM (TSVM) is a well known semi-supervised large margin learning method for binary text classification. In this paper we extend this method to multi-class and hierarchical classification problems. We point out that the determination of labels of unlabeled examples with fixed classifier weights is a linear programming problem. We devise an efficient technique for solving it. The method is applicable to general loss functions. We demonstrate the value of the new method using large margin loss on a number of multi-class and hierarchical classification datasets. For maxent loss we show empirically that our method is better than expectation regularization/constraint and posterior regularization methods, and competitive with the version of entropy regularization method which uses label constraints.
2,340
2,340
Deep Gaussian Processes
In this paper we introduce deep Gaussian process (GP) models. Deep GPs are a deep belief network based on Gaussian process mappings. The data is modeled as the output of a multivariate GP. The inputs to that Gaussian process are then governed by another GP. A single layer model is equivalent to a standard GP or the GP latent variable model (GP-LVM). We perform inference in the model by approximate variational marginalization. This results in a strict lower bound on the marginal likelihood of the model which we use for model selection (number of layers and nodes per layer). Deep belief networks are typically applied to relatively large data sets using stochastic gradient descent for optimization. Our fully Bayesian treatment allows for the application of deep models even when data is scarce. Model selection by our variational bound shows that a five layer hierarchy is justified even when modelling a digit data set containing only 150 examples.
2,341
2,341
Learning curves for multi-task Gaussian process regression
We study the average case performance of multi-task Gaussian process (GP) regression as captured in the learning curve, i.e. the average Bayes error for a chosen task versus the total number of examples $n$ for all tasks. For GP covariances that are the product of an input-dependent covariance function and a free-form inter-task covariance matrix, we show that accurate approximations for the learning curve can be obtained for an arbitrary number of tasks $T$. We use these to study the asymptotic learning behaviour for large $n$. Surprisingly, multi-task learning can be asymptotically essentially useless, in the sense that examples from other tasks help only when the degree of inter-task correlation, $\rho$, is near its maximal value $\rho=1$. This effect is most extreme for learning of smooth target functions as described by e.g. squared exponential kernels. We also demonstrate that when learning many tasks, the learning curves separate into an initial phase, where the Bayes error on each task is reduced down to a plateau value by "collective learning" even though most tasks have not seen examples, and a final decay that occurs once the number of examples is proportional to the number of tasks.
2,342
2,342
Ordinal Rating of Network Performance and Inference by Matrix Completion
This paper addresses the large-scale acquisition of end-to-end network performance. We made two distinct contributions: ordinal rating of network performance and inference by matrix completion. The former reduces measurement costs and unifies various metrics which eases their processing in applications. The latter enables scalable and accurate inference with no requirement of structural information of the network nor geometric constraints. By combining both, the acquisition problem bears strong similarities to recommender systems. This paper investigates the applicability of various matrix factorization models used in recommender systems. We found that the simple regularized matrix factorization is not only practical but also produces accurate results that are beneficial for peer selection.
2,343
2,343
Partition Tree Weighting
This paper introduces the Partition Tree Weighting technique, an efficient meta-algorithm for piecewise stationary sources. The technique works by performing Bayesian model averaging over a large class of possible partitions of the data into locally stationary segments. It uses a prior, closely related to the Context Tree Weighting technique of Willems, that is well suited to data compression applications. Our technique can be applied to any coding distribution at an additional time and space cost only logarithmic in the sequence length. We provide a competitive analysis of the redundancy of our method, and explore its application in a variety of settings. The order of the redundancy and the complexity of our algorithm matches those of the best competitors available in the literature, and the new algorithm exhibits a superior complexity-performance trade-off in our experiments.
2,344
2,344
The complexity of learning halfspaces using generalized linear methods
Many popular learning algorithms (E.g. Regression, Fourier-Transform based algorithms, Kernel SVM and Kernel ridge regression) operate by reducing the problem to a convex optimization problem over a vector space of functions. These methods offer the currently best approach to several central problems such as learning half spaces and learning DNF's. In addition they are widely used in numerous application domains. Despite their importance, there are still very few proof techniques to show limits on the power of these algorithms. We study the performance of this approach in the problem of (agnostically and improperly) learning halfspaces with margin $\gamma$. Let $\mathcal{D}$ be a distribution over labeled examples. The $\gamma$-margin error of a hyperplane $h$ is the probability of an example to fall on the wrong side of $h$ or at a distance $\le\gamma$ from it. The $\gamma$-margin error of the best $h$ is denoted $\mathrm{Err}_\gamma(\mathcal{D})$. An $\alpha(\gamma)$-approximation algorithm receives $\gamma,\epsilon$ as input and, using i.i.d. samples of $\mathcal{D}$, outputs a classifier with error rate $\le \alpha(\gamma)\mathrm{Err}_\gamma(\mathcal{D}) + \epsilon$. Such an algorithm is efficient if it uses $\mathrm{poly}(\frac{1}{\gamma},\frac{1}{\epsilon})$ samples and runs in time polynomial in the sample size. The best approximation ratio achievable by an efficient algorithm is $O\left(\frac{1/\gamma}{\sqrt{\log(1/\gamma)}}\right)$ and is achieved using an algorithm from the above class. Our main result shows that the approximation ratio of every efficient algorithm from this family must be $\ge \Omega\left(\frac{1/\gamma}{\mathrm{poly}\left(\log\left(1/\gamma\right)\right)}\right)$, essentially matching the best known upper bound.
2,345
2,345
Stochastic ADMM for Nonsmooth Optimization
We present a stochastic setting for optimization problems with nonsmooth convex separable objective functions over linear equality constraints. To solve such problems, we propose a stochastic Alternating Direction Method of Multipliers (ADMM) algorithm. Our algorithm applies to a more general class of nonsmooth convex functions that does not necessarily have a closed-form solution by minimizing the augmented function directly. We also demonstrate the rates of convergence for our algorithm under various structural assumptions of the stochastic functions: $O(1/\sqrt{t})$ for convex functions and $O(\log t/t)$ for strongly convex functions. Compared to previous literature, we establish the convergence rate of ADMM algorithm, for the first time, in terms of both the objective value and the feasibility violation.
2,346
2,346
Discussion: Latent variable graphical model selection via convex optimization
Discussion of "Latent variable graphical model selection via convex optimization" by Venkat Chandrasekaran, Pablo A. Parrilo and Alan S. Willsky [arXiv:1008.1290].
2,347
2,347
Discussion: Latent variable graphical model selection via convex optimization
Discussion of "Latent variable graphical model selection via convex optimization" by Venkat Chandrasekaran, Pablo A. Parrilo and Alan S. Willsky [arXiv:1008.1290].
2,348
2,348
Discussion: Latent variable graphical model selection via convex optimization
Discussion of "Latent variable graphical model selection via convex optimization" by Venkat Chandrasekaran, Pablo A. Parrilo and Alan S. Willsky [arXiv:1008.1290].
2,349
2,349
Discussion: Latent variable graphical model selection via convex optimization
Discussion of "Latent variable graphical model selection via convex optimization" by Venkat Chandrasekaran, Pablo A. Parrilo and Alan S. Willsky [arXiv:1008.1290].
2,350
2,350
Rejoinder: Latent variable graphical model selection via convex optimization
Rejoinder to "Latent variable graphical model selection via convex optimization" by Venkat Chandrasekaran, Pablo A. Parrilo and Alan S. Willsky [arXiv:1008.1290].
2,351
2,351
Comparing K-Nearest Neighbors and Potential Energy Method in classification problem. A case study using KNN applet by E.M. Mirkes and real life benchmark data sets
K-nearest neighbors (KNN) method is used in many supervised learning classification problems. Potential Energy (PE) method is also developed for classification problems based on its physical metaphor. The energy potential used in the experiments are Yukawa potential and Gaussian Potential. In this paper, I use both applet and MATLAB program with real life benchmark data to analyze the performances of KNN and PE method in classification problems. The results show that in general, KNN and PE methods have similar performance. In particular, PE with Yukawa potential has worse performance than KNN when the density of the data is higher in the distribution of the database. When the Gaussian potential is applied, the results from PE and KNN have similar behavior. The indicators used are correlation coefficients and information gain.
2,352
2,352
APPLE: Approximate Path for Penalized Likelihood Estimators
In high-dimensional data analysis, penalized likelihood estimators are shown to provide superior results in both variable selection and parameter estimation. A new algorithm, APPLE, is proposed for calculating the Approximate Path for Penalized Likelihood Estimators. Both the convex penalty (such as LASSO) and the nonconvex penalty (such as SCAD and MCP) cases are considered. The APPLE efficiently computes the solution path for the penalized likelihood estimator using a hybrid of the modified predictor-corrector method and the coordinate-descent algorithm. APPLE is compared with several well-known packages via simulation and analysis of two gene expression data sets.
2,353
2,353
Algorithm Runtime Prediction: Methods & Evaluation
Perhaps surprisingly, it is possible to predict how long an algorithm will take to run on a previously unseen input, using machine learning techniques to build a model of the algorithm's runtime as a function of problem-specific instance features. Such models have important applications to algorithm analysis, portfolio-based algorithm selection, and the automatic configuration of parameterized algorithms. Over the past decade, a wide variety of techniques have been studied for building such models. Here, we describe extensions and improvements of existing models, new families of models, and -- perhaps most importantly -- a much more thorough treatment of algorithm parameters as model inputs. We also comprehensively describe new and existing features for predicting algorithm runtime for propositional satisfiability (SAT), travelling salesperson (TSP) and mixed integer programming (MIP) problems. We evaluate these innovations through the largest empirical analysis of its kind, comparing to a wide range of runtime modelling techniques from the literature. Our experiments consider 11 algorithms and 35 instance distributions; they also span a very wide range of SAT, MIP, and TSP instances, with the least structured having been generated uniformly at random and the most structured having emerged from real industrial applications. Overall, we demonstrate that our new models yield substantially better runtime predictions than previous approaches in terms of their generalization to new problem instances, to new algorithms from a parameterized space, and to both simultaneously.
2,354
2,354
Learning using Local Membership Queries
We introduce a new model of membership query (MQ) learning, where the learning algorithm is restricted to query points that are \emph{close} to random examples drawn from the underlying distribution. The learning model is intermediate between the PAC model (Valiant, 1984) and the PAC+MQ model (where the queries are allowed to be arbitrary points). Membership query algorithms are not popular among machine learning practitioners. Apart from the obvious difficulty of adaptively querying labelers, it has also been observed that querying \emph{unnatural} points leads to increased noise from human labelers (Lang and Baum, 1992). This motivates our study of learning algorithms that make queries that are close to examples generated from the data distribution. We restrict our attention to functions defined on the $n$-dimensional Boolean hypercube and say that a membership query is local if its Hamming distance from some example in the (random) training data is at most $O(\log(n))$. We show the following results in this model: (i) The class of sparse polynomials (with coefficients in R) over $\{0,1\}^n$ is polynomial time learnable under a large class of \emph{locally smooth} distributions using $O(\log(n))$-local queries. This class also includes the class of $O(\log(n))$-depth decision trees. (ii) The class of polynomial-sized decision trees is polynomial time learnable under product distributions using $O(\log(n))$-local queries. (iii) The class of polynomial size DNF formulas is learnable under the uniform distribution using $O(\log(n))$-local queries in time $n^{O(\log(\log(n)))}$. (iv) In addition we prove a number of results relating the proposed model to the traditional PAC model and the PAC+MQ model.
2,355
2,355
Algorithms and Hardness for Robust Subspace Recovery
We consider a fundamental problem in unsupervised learning called \emph{subspace recovery}: given a collection of $m$ points in $\mathbb{R}^n$, if many but not necessarily all of these points are contained in a $d$-dimensional subspace $T$ can we find it? The points contained in $T$ are called {\em inliers} and the remaining points are {\em outliers}. This problem has received considerable attention in computer science and in statistics. Yet efficient algorithms from computer science are not robust to {\em adversarial} outliers, and the estimators from robust statistics are hard to compute in high dimensions. Are there algorithms for subspace recovery that are both robust to outliers and efficient? We give an algorithm that finds $T$ when it contains more than a $\frac{d}{n}$ fraction of the points. Hence, for say $d = n/2$ this estimator is both easy to compute and well-behaved when there are a constant fraction of outliers. We prove that it is Small Set Expansion hard to find $T$ when the fraction of errors is any larger, thus giving evidence that our estimator is an {\em optimal} compromise between efficiency and robustness. As it turns out, this basic problem has a surprising number of connections to other areas including small set expansion, matroid theory and functional analysis that we make use of here.
2,356
2,356
Soft (Gaussian CDE) regression models and loss functions
Regression, unlike classification, has lacked a comprehensive and effective approach to deal with cost-sensitive problems by the reuse (and not a re-training) of general regression models. In this paper, a wide variety of cost-sensitive problems in regression (such as bids, asymmetric losses and rejection rules) can be solved effectively by a lightweight but powerful approach, consisting of: (1) the conversion of any traditional one-parameter crisp regression model into a two-parameter soft regression model, seen as a normal conditional density estimator, by the use of newly-introduced enrichment methods; and (2) the reframing of an enriched soft regression model to new contexts by an instance-dependent optimisation of the expected loss derived from the conditional normal distribution.
2,357
2,357
Active and passive learning of linear separators under log-concave distributions
We provide new results concerning label efficient, polynomial time, passive and active learning of linear separators. We prove that active learning provides an exponential improvement over PAC (passive) learning of homogeneous linear separators under nearly log-concave distributions. Building on this, we provide a computationally efficient PAC algorithm with optimal (up to a constant factor) sample complexity for such problems. This resolves an open question concerning the sample complexity of efficient PAC algorithms under the uniform distribution in the unit ball. Moreover, it provides the first bound for a polynomial-time PAC algorithm that is tight for an interesting infinite class of hypothesis functions under a general and natural class of data-distributions, providing significant progress towards a longstanding open question. We also provide new bounds for active and passive learning in the case that the data might not be linearly separable, both in the agnostic case and and under the Tsybakov low-noise condition. To derive our results, we provide new structural results for (nearly) log-concave distributions, which might be of independent interest as well.
2,358
2,358
Visual Transfer Learning: Informal Introduction and Literature Overview
Transfer learning techniques are important to handle small training sets and to allow for quick generalization even from only a few examples. The following paper is the introduction as well as the literature overview part of my thesis related to the topic of transfer learning for visual recognition problems.
2,359
2,359
Handwritten digit recognition by bio-inspired hierarchical networks
The human brain processes information showing learning and prediction abilities but the underlying neuronal mechanisms still remain unknown. Recently, many studies prove that neuronal networks are able of both generalizations and associations of sensory inputs. In this paper, following a set of neurophysiological evidences, we propose a learning framework with a strong biological plausibility that mimics prominent functions of cortical circuitries. We developed the Inductive Conceptual Network (ICN), that is a hierarchical bio-inspired network, able to learn invariant patterns by Variable-order Markov Models implemented in its nodes. The outputs of the top-most node of ICN hierarchy, representing the highest input generalization, allow for automatic classification of inputs. We found that the ICN clusterized MNIST images with an error of 5.73% and USPS images with an error of 12.56%.
2,360
2,360
Random walk kernels and learning curves for Gaussian process regression on random graphs
We consider learning on graphs, guided by kernels that encode similarity between vertices. Our focus is on random walk kernels, the analogues of squared exponential kernels in Euclidean spaces. We show that on large, locally treelike, graphs these have some counter-intuitive properties, specifically in the limit of large kernel lengthscales. We consider using these kernels as covariance matrices of e.g.\ Gaussian processes (GPs). In this situation one typically scales the prior globally to normalise the average of the prior variance across vertices. We demonstrate that, in contrast to the Euclidean case, this generically leads to significant variation in the prior variance across vertices, which is undesirable from the probabilistic modelling point of view. We suggest the random walk kernel should be normalised locally, so that each vertex has the same prior variance, and analyse the consequences of this by studying learning curves for Gaussian process regression. Numerical calculations as well as novel theoretical predictions for the learning curves using belief propagation make it clear that one obtains distinctly different probabilistic models depending on the choice of normalisation. Our method for predicting the learning curves using belief propagation is significantly more accurate than previous approximations and should become exact in the limit of large random graphs.
2,361
2,361
K-Plane Regression
In this paper, we present a novel algorithm for piecewise linear regression which can learn continuous as well as discontinuous piecewise linear functions. The main idea is to repeatedly partition the data and learn a liner model in in each partition. While a simple algorithm incorporating this idea does not work well, an interesting modification results in a good algorithm. The proposed algorithm is similar in spirit to $k$-means clustering algorithm. We show that our algorithm can also be viewed as an EM algorithm for maximum likelihood estimation of parameters under a reasonable probability model. We empirically demonstrate the effectiveness of our approach by comparing its performance with the state of art regression learning algorithms on some real world datasets.
2,362
2,362
Explosion prediction of oil gas using SVM and Logistic Regression
The prevention of dangerous chemical accidents is a primary problem of industrial manufacturing. In the accidents of dangerous chemicals, the oil gas explosion plays an important role. The essential task of the explosion prevention is to estimate the better explosion limit of a given oil gas. In this paper, Support Vector Machines (SVM) and Logistic Regression (LR) are used to predict the explosion of oil gas. LR can get the explicit probability formula of explosion, and the explosive range of the concentrations of oil gas according to the concentration of oxygen. Meanwhile, SVM gives higher accuracy of prediction. Furthermore, considering the practical requirements, the effects of penalty parameter on the distribution of two types of errors are discussed.
2,363
2,363
Image denoising with multi-layer perceptrons, part 1: comparison with existing algorithms and with bounds
Image denoising can be described as the problem of mapping from a noisy image to a noise-free image. The best currently available denoising methods approximate this mapping with cleverly engineered algorithms. In this work we attempt to learn this mapping directly with plain multi layer perceptrons (MLP) applied to image patches. We will show that by training on large image databases we are able to outperform the current state-of-the-art image denoising methods. In addition, our method achieves results that are superior to one type of theoretical bound and goes a large way toward closing the gap with a second type of theoretical bound. Our approach is easily adapted to less extensively studied types of noise, such as mixed Poisson-Gaussian noise, JPEG artifacts, salt-and-pepper noise and noise resembling stripes, for which we achieve excellent results as well. We will show that combining a block-matching procedure with MLPs can further improve the results on certain images. In a second paper, we detail the training trade-offs and the inner mechanisms of our MLPs.
2,364
2,364
A Riemannian geometry for low-rank matrix completion
We propose a new Riemannian geometry for fixed-rank matrices that is specifically tailored to the low-rank matrix completion problem. Exploiting the degree of freedom of a quotient space, we tune the metric on our search space to the particular least square cost function. At one level, it illustrates in a novel way how to exploit the versatile framework of optimization on quotient manifold. At another level, our algorithm can be considered as an improved version of LMaFit, the state-of-the-art Gauss-Seidel algorithm. We develop necessary tools needed to perform both first-order and second-order optimization. In particular, we propose gradient descent schemes (steepest descent and conjugate gradient) and trust-region algorithms. We also show that, thanks to the simplicity of the cost function, it is numerically cheap to perform an exact linesearch given a search direction, which makes our algorithms competitive with the state-of-the-art on standard low-rank matrix completion instances.
2,365
2,365
Image denoising with multi-layer perceptrons, part 2: training trade-offs and analysis of their mechanisms
Image denoising can be described as the problem of mapping from a noisy image to a noise-free image. In another paper, we show that multi-layer perceptrons can achieve outstanding image denoising performance for various types of noise (additive white Gaussian noise, mixed Poisson-Gaussian noise, JPEG artifacts, salt-and-pepper noise and noise resembling stripes). In this work we discuss in detail which trade-offs have to be considered during the training procedure. We will show how to achieve good results and which pitfalls to avoid. By analysing the activation patterns of the hidden units we are able to make observations regarding the functioning principle of multi-layer perceptrons trained for image denoising.
2,366
2,366
Learning Monocular Reactive UAV Control in Cluttered Natural Environments
Autonomous navigation for large Unmanned Aerial Vehicles (UAVs) is fairly straight-forward, as expensive sensors and monitoring devices can be employed. In contrast, obstacle avoidance remains a challenging task for Micro Aerial Vehicles (MAVs) which operate at low altitude in cluttered environments. Unlike large vehicles, MAVs can only carry very light sensors, such as cameras, making autonomous navigation through obstacles much more challenging. In this paper, we describe a system that navigates a small quadrotor helicopter autonomously at low altitude through natural forest environments. Using only a single cheap camera to perceive the environment, we are able to maintain a constant velocity of up to 1.5m/s. Given a small set of human pilot demonstrations, we use recent state-of-the-art imitation learning techniques to train a controller that can avoid trees by adapting the MAVs heading. We demonstrate the performance of our system in a more controlled environment indoors, and in real natural forest environments outdoors.
2,367
2,367
Blind Signal Separation in the Presence of Gaussian Noise
A prototypical blind signal separation problem is the so-called cocktail party problem, with n people talking simultaneously and n different microphones within a room. The goal is to recover each speech signal from the microphone inputs. Mathematically this can be modeled by assuming that we are given samples from an n-dimensional random variable X=AS, where S is a vector whose coordinates are independent random variables corresponding to each speaker. The objective is to recover the matrix A^{-1} given random samples from X. A range of techniques collectively known as Independent Component Analysis (ICA) have been proposed to address this problem in the signal processing and machine learning literature. Many of these techniques are based on using the kurtosis or other cumulants to recover the components. In this paper we propose a new algorithm for solving the blind signal separation problem in the presence of additive Gaussian noise, when we are given samples from X=AS+\eta, where \eta is drawn from an unknown, not necessarily spherical n-dimensional Gaussian distribution. Our approach is based on a method for decorrelating a sample with additive Gaussian noise under the assumption that the underlying distribution is a linear transformation of a distribution with independent components. Our decorrelation routine is based on the properties of cumulant tensors and can be combined with any standard cumulant-based method for ICA to get an algorithm that is provably robust in the presence of Gaussian noise. We derive polynomial bounds for the sample complexity and error propagation of our method.
2,368
2,368
Inverse problems in approximate uniform generation
We initiate the study of \emph{inverse} problems in approximate uniform generation, focusing on uniform generation of satisfying assignments of various types of Boolean functions. In such an inverse problem, the algorithm is given uniform random satisfying assignments of an unknown function $f$ belonging to a class $\C$ of Boolean functions, and the goal is to output a probability distribution $D$ which is $\epsilon$-close, in total variation distance, to the uniform distribution over $f^{-1}(1)$. Positive results: We prove a general positive result establishing sufficient conditions for efficient inverse approximate uniform generation for a class $\C$. We define a new type of algorithm called a \emph{densifier} for $\C$, and show (roughly speaking) how to combine (i) a densifier, (ii) an approximate counting / uniform generation algorithm, and (iii) a Statistical Query learning algorithm, to obtain an inverse approximate uniform generation algorithm. We apply this general result to obtain a poly$(n,1/\eps)$-time algorithm for the class of halfspaces; and a quasipoly$(n,1/\eps)$-time algorithm for the class of $\poly(n)$-size DNF formulas. Negative results: We prove a general negative result establishing that the existence of certain types of signature schemes in cryptography implies the hardness of certain inverse approximate uniform generation problems. This implies that there are no {subexponential}-time inverse approximate uniform generation algorithms for 3-CNF formulas; for intersections of two halfspaces; for degree-2 polynomial threshold functions; and for monotone 2-CNF formulas. Finally, we show that there is no general relationship between the complexity of the "forward" approximate uniform generation problem and the complexity of the inverse problem for a class $\C$ -- it is possible for either one to be easy while the other is hard.
2,369
2,369
Algorithm for Missing Values Imputation in Categorical Data with Use of Association Rules
This paper presents algorithm for missing values imputation in categorical data. The algorithm is based on using association rules and is presented in three variants. Experimental shows better accuracy of missing values imputation using the algorithm then using most common attribute value.
2,370
2,370
Tangent-based manifold approximation with locally linear models
In this paper, we consider the problem of manifold approximation with affine subspaces. Our objective is to discover a set of low dimensional affine subspaces that represents manifold data accurately while preserving the manifold's structure. For this purpose, we employ a greedy technique that partitions manifold samples into groups that can be each approximated by a low dimensional subspace. We start by considering each manifold sample as a different group and we use the difference of tangents to determine appropriate group mergings. We repeat this procedure until we reach the desired number of sample groups. The best low dimensional affine subspaces corresponding to the final groups constitute our approximate manifold representation. Our experiments verify the effectiveness of the proposed scheme and show its superior performance compared to state-of-the-art methods for manifold approximation.
2,371
2,371
LAGE: A Java Framework to reconstruct Gene Regulatory Networks from Large-Scale Continues Expression Data
LAGE is a systematic framework developed in Java. The motivation of LAGE is to provide a scalable and parallel solution to reconstruct Gene Regulatory Networks (GRNs) from continuous gene expression data for very large amount of genes. The basic idea of our framework is motivated by the philosophy of divideand-conquer. Specifically, LAGE recursively partitions genes into multiple overlapping communities with much smaller sizes, learns intra-community GRNs respectively before merge them altogether. Besides, the complete information of overlapping communities serves as the byproduct, which could be used to mine meaningful functional modules in biological networks.
2,372
2,372
Efficient Monte Carlo Methods for Multi-Dimensional Learning with Classifier Chains
Multi-dimensional classification (MDC) is the supervised learning problem where an instance is associated with multiple classes, rather than with a single class, as in traditional classification problems. Since these classes are often strongly correlated, modeling the dependencies between them allows MDC methods to improve their performance - at the expense of an increased computational cost. In this paper we focus on the classifier chains (CC) approach for modeling dependencies, one of the most popular and highest- performing methods for multi-label classification (MLC), a particular case of MDC which involves only binary classes (i.e., labels). The original CC algorithm makes a greedy approximation, and is fast but tends to propagate errors along the chain. Here we present novel Monte Carlo schemes, both for finding a good chain sequence and performing efficient inference. Our algorithms remain tractable for high-dimensional data sets and obtain the best predictive performance across several real data sets.
2,373
2,373
Efficient learning of simplices
We show an efficient algorithm for the following problem: Given uniformly random points from an arbitrary n-dimensional simplex, estimate the simplex. The size of the sample and the number of arithmetic operations of our algorithm are polynomial in n. This answers a question of Frieze, Jerrum and Kannan [FJK]. Our result can also be interpreted as efficiently learning the intersection of n+1 half-spaces in R^n in the model where the intersection is bounded and we are given polynomially many uniform samples from it. Our proof uses the local search technique from Independent Component Analysis (ICA), also used by [FJK]. Unlike these previous algorithms, which were based on analyzing the fourth moment, ours is based on the third moment. We also show a direct connection between the problem of learning a simplex and ICA: a simple randomized reduction to ICA from the problem of learning a simplex. The connection is based on a known representation of the uniform measure on a simplex. Similar representations lead to a reduction from the problem of learning an affine transformation of an n-dimensional l_p ball to ICA.
2,374
2,374
No-Regret Algorithms for Unconstrained Online Convex Optimization
Some of the most compelling applications of online convex optimization, including online prediction and classification, are unconstrained: the natural feasible set is R^n. Existing algorithms fail to achieve sub-linear regret in this setting unless constraints on the comparator point x^* are known in advance. We present algorithms that, without such prior knowledge, offer near-optimal regret bounds with respect to any choice of x^*. In particular, regret with respect to x^* = 0 is constant. We then prove lower bounds showing that our guarantees are near-optimal in this setting.
2,375
2,375
Probabilistic Combination of Classifier and Cluster Ensembles for Non-transductive Learning
Unsupervised models can provide supplementary soft constraints to help classify new target data under the assumption that similar objects in the target set are more likely to share the same class label. Such models can also help detect possible differences between training and target distributions, which is useful in applications where concept drift may take place. This paper describes a Bayesian framework that takes as input class labels from existing classifiers (designed based on labeled data from the source domain), as well as cluster labels from a cluster ensemble operating solely on the target data to be classified, and yields a consensus labeling of the target data. This framework is particularly useful when the statistics of the target data drift or change from those of the training data. We also show that the proposed framework is privacy-aware and allows performing distributed learning when data/models have sharing restrictions. Experiments show that our framework can yield superior results to those provided by applying classifier ensembles only.
2,376
2,376
Hybrid methodology for hourly global radiation forecasting in Mediterranean area
The renewable energies prediction and particularly global radiation forecasting is a challenge studied by a growing number of research teams. This paper proposes an original technique to model the insolation time series based on combining Artificial Neural Network (ANN) and Auto-Regressive and Moving Average (ARMA) model. While ANN by its non-linear nature is effective to predict cloudy days, ARMA techniques are more dedicated to sunny days without cloud occurrences. Thus, three hybrids models are suggested: the first proposes simply to use ARMA for 6 months in spring and summer and to use an optimized ANN for the other part of the year; the second model is equivalent to the first but with a seasonal learning; the last model depends on the error occurred the previous hour. These models were used to forecast the hourly global radiation for five places in Mediterranean area. The forecasting performance was compared among several models: the 3 above mentioned models, the best ANN and ARMA for each location. In the best configuration, the coupling of ANN and ARMA allows an improvement of more than 1%, with a maximum in autumn (3.4%) and a minimum in winter (0.9%) where ANN alone is the best.
2,377
2,377
Measures of Entropy from Data Using Infinitely Divisible Kernels
Information theory provides principled ways to analyze different inference and learning problems such as hypothesis testing, clustering, dimensionality reduction, classification, among others. However, the use of information theoretic quantities as test statistics, that is, as quantities obtained from empirical data, poses a challenging estimation problem that often leads to strong simplifications such as Gaussian models, or the use of plug in density estimators that are restricted to certain representation of the data. In this paper, a framework to non-parametrically obtain measures of entropy directly from data using operators in reproducing kernel Hilbert spaces defined by infinitely divisible kernels is presented. The entropy functionals, which bear resemblance with quantum entropies, are defined on positive definite matrices and satisfy similar axioms to those of Renyi's definition of entropy. Convergence of the proposed estimators follows from concentration results on the difference between the ordered spectrum of the Gram matrices and the integral operators associated to the population quantities. In this way, capitalizing on both the axiomatic definition of entropy and on the representation power of positive definite kernels, the proposed measure of entropy avoids the estimation of the probability distribution underlying the data. Moreover, estimators of kernel-based conditional entropy and mutual information are also defined. Numerical experiments on independence tests compare favourably with state of the art.
2,378
2,378
Random Utility Theory for Social Choice
Random utility theory models an agent's preferences on alternatives by drawing a real-valued score on each alternative (typically independently) from a parameterized distribution, and then ranking the alternatives according to scores. A special case that has received significant attention is the Plackett-Luce model, for which fast inference methods for maximum likelihood estimators are available. This paper develops conditions on general random utility models that enable fast inference within a Bayesian framework through MC-EM, providing concave loglikelihood functions and bounded sets of global maxima solutions. Results on both real-world and simulated data provide support for the scalability of the approach and capability for model selection among general random utility models including Plackett-Luce.
2,379
2,379
Minimal cost feature selection of data with normal distribution measurement errors
Minimal cost feature selection is devoted to obtain a trade-off between test costs and misclassification costs. This issue has been addressed recently on nominal data. In this paper, we consider numerical data with measurement errors and study minimal cost feature selection in this model. First, we build a data model with normal distribution measurement errors. Second, the neighborhood of each data item is constructed through the confidence interval. Comparing with discretized intervals, neighborhoods are more reasonable to maintain the information of data. Third, we define a new minimal total cost feature selection problem through considering the trade-off between test costs and misclassification costs. Fourth, we proposed a backtracking algorithm with three effective pruning techniques to deal with this problem. The algorithm is tested on four UCI data sets. Experimental results indicate that the pruning techniques are effective, and the algorithm is efficient for data sets with nearly one thousand objects.
2,380
2,380
Iterative Thresholding Algorithm for Sparse Inverse Covariance Estimation
The L1-regularized maximum likelihood estimation problem has recently become a topic of great interest within the machine learning, statistics, and optimization communities as a method for producing sparse inverse covariance estimators. In this paper, a proximal gradient method (G-ISTA) for performing L1-regularized covariance matrix estimation is presented. Although numerous algorithms have been proposed for solving this problem, this simple proximal gradient method is found to have attractive theoretical and numerical properties. G-ISTA has a linear rate of convergence, resulting in an O(log e) iteration complexity to reach a tolerance of e. This paper gives eigenvalue bounds for the G-ISTA iterates, providing a closed-form linear convergence rate. The rate is shown to be closely related to the condition number of the optimal point. Numerical convergence results and timing comparisons for the proposed method are presented. G-ISTA is shown to perform very well, especially when the optimal point is well-conditioned.
2,381
2,381
A Comparative Study of Gaussian Mixture Model and Radial Basis Function for Voice Recognition
A comparative study of the application of Gaussian Mixture Model (GMM) and Radial Basis Function (RBF) in biometric recognition of voice has been carried out and presented. The application of machine learning techniques to biometric authentication and recognition problems has gained a widespread acceptance. In this research, a GMM model was trained, using Expectation Maximization (EM) algorithm, on a dataset containing 10 classes of vowels and the model was used to predict the appropriate classes using a validation dataset. For experimental validity, the model was compared to the performance of two different versions of RBF model using the same learning and validation datasets. The results showed very close recognition accuracy between the GMM and the standard RBF model, but with GMM performing better than the standard RBF by less than 1% and the two models outperformed similar models reported in literature. The DTREG version of RBF outperformed the other two models by producing 94.8% recognition accuracy. In terms of recognition time, the standard RBF was found to be the fastest among the three models.
2,382
2,382
Proximal Stochastic Dual Coordinate Ascent
We introduce a proximal version of dual coordinate ascent method. We demonstrate how the derived algorithmic framework can be used for numerous regularized loss minimization problems, including $\ell_1$ regularization and structured output SVM. The convergence rates we obtain match, and sometimes improve, state-of-the-art results.
2,383
2,383
Deep Attribute Networks
Obtaining compact and discriminative features is one of the major challenges in many of the real-world image classification tasks such as face verification and object recognition. One possible approach is to represent input image on the basis of high-level features that carry semantic meaning which humans can understand. In this paper, a model coined deep attribute network (DAN) is proposed to address this issue. For an input image, the model outputs the attributes of the input image without performing any classification. The efficacy of the proposed model is evaluated on unconstrained face verification and real-world object recognition tasks using the LFW and the a-PASCAL datasets. We demonstrate the potential of deep learning for attribute-based classification by showing comparable results with existing state-of-the-art results. Once properly trained, the DAN is fast and does away with calculating low-level features which are maybe unreliable and computationally expensive.
2,384
2,384
Boosting Simple Collaborative Filtering Models Using Ensemble Methods
In this paper we examine the effect of applying ensemble learning to the performance of collaborative filtering methods. We present several systematic approaches for generating an ensemble of collaborative filtering models based on a single collaborative filtering algorithm (single-model or homogeneous ensemble). We present an adaptation of several popular ensemble techniques in machine learning for the collaborative filtering domain, including bagging, boosting, fusion and randomness injection. We evaluate the proposed approach on several types of collaborative filtering base models: k- NN, matrix factorization and a neighborhood matrix factorization model. Empirical evaluation shows a prediction improvement compared to all base CF algorithms. In particular, we show that the performance of an ensemble of simple (weak) CF models such as k-NN is competitive compared with a single strong CF model (such as matrix factorization) while requiring an order of magnitude less computational cost.
2,385
2,385
Shattering-Extremal Systems
The Shatters relation and the VC dimension have been investigated since the early seventies. These concepts have found numerous applications in statistics, combinatorics, learning theory and computational geometry. Shattering extremal systems are set-systems with a very rich structure and many different characterizations. The goal of this thesis is to elaborate on the structure of these systems.
2,386
2,386
Time-series Scenario Forecasting
Many applications require the ability to judge uncertainty of time-series forecasts. Uncertainty is often specified as point-wise error bars around a mean or median forecast. Due to temporal dependencies, such a method obscures some information. We would ideally have a way to query the posterior probability of the entire time-series given the predictive variables, or at a minimum, be able to draw samples from this distribution. We use a Bayesian dictionary learning algorithm to statistically generate an ensemble of forecasts. We show that the algorithm performs as well as a physics-based ensemble method for temperature forecasts for Houston. We conclude that the method shows promise for scenario forecasting where physics-based methods are absent.
2,387
2,387
Recovering the Optimal Solution by Dual Random Projection
Random projection has been widely used in data classification. It maps high-dimensional data into a low-dimensional subspace in order to reduce the computational cost in solving the related optimization problem. While previous studies are focused on analyzing the classification performance of using random projection, in this work, we consider the recovery problem, i.e., how to accurately recover the optimal solution to the original optimization problem in the high-dimensional space based on the solution learned from the subspace spanned by random projections. We present a simple algorithm, termed Dual Random Projection, that uses the dual solution of the low-dimensional optimization problem to recover the optimal solution to the original problem. Our theoretical analysis shows that with a high probability, the proposed algorithm is able to accurately recover the optimal solution to the original problem, provided that the data matrix is of low rank or can be well approximated by a low rank matrix.
2,388
2,388
Distributed Non-Stochastic Experts
We consider the online distributed non-stochastic experts problem, where the distributed system consists of one coordinator node that is connected to $k$ sites, and the sites are required to communicate with each other via the coordinator. At each time-step $t$, one of the $k$ site nodes has to pick an expert from the set ${1, ..., n}$, and the same site receives information about payoffs of all experts for that round. The goal of the distributed system is to minimize regret at time horizon $T$, while simultaneously keeping communication to a minimum. The two extreme solutions to this problem are: (i) Full communication: This essentially simulates the non-distributed setting to obtain the optimal $O(\sqrt{\log(n)T})$ regret bound at the cost of $T$ communication. (ii) No communication: Each site runs an independent copy : the regret is $O(\sqrt{log(n)kT})$ and the communication is 0. This paper shows the difficulty of simultaneously achieving regret asymptotically better than $\sqrt{kT}$ and communication better than $T$. We give a novel algorithm that for an oblivious adversary achieves a non-trivial trade-off: regret $O(\sqrt{k^{5(1+\epsilon)/6} T})$ and communication $O(T/k^{\epsilon})$, for any value of $\epsilon \in (0, 1/5)$. We also consider a variant of the model, where the coordinator picks the expert. In this model, we show that the label-efficient forecaster of Cesa-Bianchi et al. (2005) already gives us strategy that is near optimal in regret vs communication trade-off.
2,389
2,389
Order-independent constraint-based causal structure learning
We consider constraint-based methods for causal structure learning, such as the PC-, FCI-, RFCI- and CCD- algorithms (Spirtes et al. (2000, 1993), Richardson (1996), Colombo et al. (2012), Claassen et al. (2013)). The first step of all these algorithms consists of the PC-algorithm. This algorithm is known to be order-dependent, in the sense that the output can depend on the order in which the variables are given. This order-dependence is a minor issue in low-dimensional settings. We show, however, that it can be very pronounced in high-dimensional settings, where it can lead to highly variable results. We propose several modifications of the PC-algorithm (and hence also of the other algorithms) that remove part or all of this order-dependence. All proposed modifications are consistent in high-dimensional settings under the same conditions as their original counterparts. We compare the PC-, FCI-, and RFCI-algorithms and their modifications in simulation studies and on a yeast gene expression data set. We show that our modifications yield similar performance in low-dimensional settings and improved performance in high-dimensional settings. All software is implemented in the R-package pcalg.
2,390
2,390
Network Sampling: From Static to Streaming Graphs
Network sampling is integral to the analysis of social, information, and biological networks. Since many real-world networks are massive in size, continuously evolving, and/or distributed in nature, the network structure is often sampled in order to facilitate study. For these reasons, a more thorough and complete understanding of network sampling is critical to support the field of network science. In this paper, we outline a framework for the general problem of network sampling, by highlighting the different objectives, population and units of interest, and classes of network sampling methods. In addition, we propose a spectrum of computational models for network sampling methods, ranging from the traditionally studied model based on the assumption of a static domain to a more challenging model that is appropriate for streaming domains. We design a family of sampling methods based on the concept of graph induction that generalize across the full spectrum of computational models (from static to streaming) while efficiently preserving many of the topological properties of the input graphs. Furthermore, we demonstrate how traditional static sampling algorithms can be modified for graph streams for each of the three main classes of sampling methods: node, edge, and topology-based sampling. Our experimental results indicate that our proposed family of sampling methods more accurately preserves the underlying properties of the graph for both static and streaming graphs. Finally, we study the impact of network sampling algorithms on the parameter estimation and performance evaluation of relational classification algorithms.
2,391
2,391
Spectral Clustering: An empirical study of Approximation Algorithms and its Application to the Attrition Problem
Clustering is the problem of separating a set of objects into groups (called clusters) so that objects within the same cluster are more similar to each other than to those in different clusters. Spectral clustering is a now well-known method for clustering which utilizes the spectrum of the data similarity matrix to perform this separation. Since the method relies on solving an eigenvector problem, it is computationally expensive for large datasets. To overcome this constraint, approximation methods have been developed which aim to reduce running time while maintaining accurate classification. In this article, we summarize and experimentally evaluate several approximation methods for spectral clustering. From an applications standpoint, we employ spectral clustering to solve the so-called attrition problem, where one aims to identify from a set of employees those who are likely to voluntarily leave the company from those who are not. Our study sheds light on the empirical performance of existing approximate spectral clustering methods and shows the applicability of these methods in an important business optimization related problem.
2,392
2,392
Accelerated Canonical Polyadic Decomposition by Using Mode Reduction
Canonical Polyadic (or CANDECOMP/PARAFAC, CP) decompositions (CPD) are widely applied to analyze high order tensors. Existing CPD methods use alternating least square (ALS) iterations and hence need to unfold tensors to each of the $N$ modes frequently, which is one major bottleneck of efficiency for large-scale data and especially when $N$ is large. To overcome this problem, in this paper we proposed a new CPD method which converts the original $N$th ($N>3$) order tensor to a 3rd-order tensor first. Then the full CPD is realized by decomposing this mode reduced tensor followed by a Khatri-Rao product projection procedure. This way is quite efficient as unfolding to each of the $N$ modes are avoided, and dimensionality reduction can also be easily incorporated to further improve the efficiency. We show that, under mild conditions, any $N$th-order CPD can be converted into a 3rd-order case but without destroying the essential uniqueness, and theoretically gives the same results as direct $N$-way CPD methods. Simulations show that, compared with state-of-the-art CPD methods, the proposed method is more efficient and escape from local solutions more easily.
2,393
2,393
Sequence Transduction with Recurrent Neural Networks
Many machine learning tasks can be expressed as the transformation---or \emph{transduction}---of input sequences into output sequences: speech recognition, machine translation, protein secondary structure prediction and text-to-speech to name but a few. One of the key challenges in sequence transduction is learning to represent both the input and output sequences in a way that is invariant to sequential distortions such as shrinking, stretching and translating. Recurrent neural networks (RNNs) are a powerful sequence learning architecture that has proven capable of learning such representations. However RNNs traditionally require a pre-defined alignment between the input and output sequences to perform transduction. This is a severe limitation since \emph{finding} the alignment is the most difficult aspect of many sequence transduction problems. Indeed, even determining the length of the output sequence is often challenging. This paper introduces an end-to-end, probabilistic sequence transduction system, based entirely on RNNs, that is in principle able to transform any input sequence into any finite, discrete output sequence. Experimental results for phoneme recognition are provided on the TIMIT speech corpus.
2,394
2,394
Objective Improvement in Information-Geometric Optimization
Information-Geometric Optimization (IGO) is a unified framework of stochastic algorithms for optimization problems. Given a family of probability distributions, IGO turns the original optimization problem into a new maximization problem on the parameter space of the probability distributions. IGO updates the parameter of the probability distribution along the natural gradient, taken with respect to the Fisher metric on the parameter manifold, aiming at maximizing an adaptive transform of the objective function. IGO recovers several known algorithms as particular instances: for the family of Bernoulli distributions IGO recovers PBIL, for the family of Gaussian distributions the pure rank-mu CMA-ES update is recovered, and for exponential families in expectation parametrization the cross-entropy/ML method is recovered. This article provides a theoretical justification for the IGO framework, by proving that any step size not greater than 1 guarantees monotone improvement over the course of optimization, in terms of q-quantile values of the objective function f. The range of admissible step sizes is independent of f and its domain. We extend the result to cover the case of different step sizes for blocks of the parameters in the IGO algorithm. Moreover, we prove that expected fitness improves over time when fitness-proportional selection is applied, in which case the RPP algorithm is recovered.
2,395
2,395
On Calibrated Predictions for Auction Selection Mechanisms
Calibration is a basic property for prediction systems, and algorithms for achieving it are well-studied in both statistics and machine learning. In many applications, however, the predictions are used to make decisions that select which observations are made. This makes calibration difficult, as adjusting predictions to achieve calibration changes future data. We focus on click-through-rate (CTR) prediction for search ad auctions. Here, CTR predictions are used by an auction that determines which ads are shown, and we want to maximize the value generated by the auction. We show that certain natural notions of calibration can be impossible to achieve, depending on the details of the auction. We also show that it can be impossible to maximize auction efficiency while using calibrated predictions. Finally, we give conditions under which calibration is achievable and simultaneously maximizes auction efficiency: roughly speaking, bids and queries must not contain information about CTRs that is not already captured by the predictions.
2,396
2,396
Lasso Screening Rules via Dual Polytope Projection
Lasso is a widely used regression technique to find sparse representations. When the dimension of the feature space and the number of samples are extremely large, solving the Lasso problem remains challenging. To improve the efficiency of solving large-scale Lasso problems, El Ghaoui and his colleagues have proposed the SAFE rules which are able to quickly identify the inactive predictors, i.e., predictors that have $0$ components in the solution vector. Then, the inactive predictors or features can be removed from the optimization problem to reduce its scale. By transforming the standard Lasso to its dual form, it can be shown that the inactive predictors include the set of inactive constraints on the optimal dual solution. In this paper, we propose an efficient and effective screening rule via Dual Polytope Projections (DPP), which is mainly based on the uniqueness and nonexpansiveness of the optimal dual solution due to the fact that the feasible set in the dual space is a convex and closed polytope. Moreover, we show that our screening rule can be extended to identify inactive groups in group Lasso. To the best of our knowledge, there is currently no "exact" screening rule for group Lasso. We have evaluated our screening rule using synthetic and real data sets. Results show that our rule is more effective in identifying inactive predictors than existing state-of-the-art screening rules for Lasso.
2,397
2,397
The Algebraic Combinatorial Approach for Low-Rank Matrix Completion
We present a novel algebraic combinatorial view on low-rank matrix completion based on studying relations between a few entries with tools from algebraic geometry and matroid theory. The intrinsic locality of the approach allows for the treatment of single entries in a closed theoretical and practical framework. More specifically, apart from introducing an algebraic combinatorial theory of low-rank matrix completion, we present probability-one algorithms to decide whether a particular entry of the matrix can be completed. We also describe methods to complete that entry from a few others, and to estimate the error which is incurred by any method completing that entry. Furthermore, we show how known results on matrix completion and their sampling assumptions can be related to our new perspective and interpreted in terms of a completability phase transition.
2,398
2,398
Data Clustering via Principal Direction Gap Partitioning
We explore the geometrical interpretation of the PCA based clustering algorithm Principal Direction Divisive Partitioning (PDDP). We give several examples where this algorithm breaks down, and suggest a new method, gap partitioning, which takes into account natural gaps in the data between clusters. Geometric features of the PCA space are derived and illustrated and experimental results are given which show our method is comparable on the datasets used in the original paper on PDDP.
2,399
2,399
Efficiently Learning from Revealed Preference
In this paper, we consider the revealed preferences problem from a learning perspective. Every day, a price vector and a budget is drawn from an unknown distribution, and a rational agent buys his most preferred bundle according to some unknown utility function, subject to the given prices and budget constraint. We wish not only to find a utility function which rationalizes a finite set of observations, but to produce a hypothesis valuation function which accurately predicts the behavior of the agent in the future. We give efficient algorithms with polynomial sample-complexity for agents with linear valuation functions, as well as for agents with linearly separable, concave valuation functions with bounded second derivative.