Unnamed: 0.1
int64
0
113k
Unnamed: 0
float64
0
113k
title
stringlengths
7
246
abstract
stringlengths
6
3.31k
2,100
2,100
Learning pseudo-Boolean k-DNF and Submodular Functions
We prove that any submodular function f: {0,1}^n -> {0,1,...,k} can be represented as a pseudo-Boolean 2k-DNF formula. Pseudo-Boolean DNFs are a natural generalization of DNF representation for functions with integer range. Each term in such a formula has an associated integral constant. We show that an analog of Hastad's switching lemma holds for pseudo-Boolean k-DNFs if all constants associated with the terms of the formula are bounded. This allows us to generalize Mansour's PAC-learning algorithm for k-DNFs to pseudo-Boolean k-DNFs, and hence gives a PAC-learning algorithm with membership queries under the uniform distribution for submodular functions of the form f:{0,1}^n -> {0,1,...,k}. Our algorithm runs in time polynomial in n, k^{O(k \log k / \epsilon)}, 1/\epsilon and log(1/\delta) and works even in the agnostic setting. The line of previous work on learning submodular functions [Balcan, Harvey (STOC '11), Gupta, Hardt, Roth, Ullman (STOC '11), Cheraghchi, Klivans, Kothari, Lee (SODA '12)] implies only n^{O(k)} query complexity for learning submodular functions in this setting, for fixed epsilon and delta. Our learning algorithm implies a property tester for submodularity of functions f:{0,1}^n -> {0, ..., k} with query complexity polynomial in n for k=O((\log n/ \loglog n)^{1/2}) and constant proximity parameter \epsilon.
2,101
2,101
How to sample if you must: on optimal functional sampling
We examine a fundamental problem that models various active sampling setups, such as network tomography. We analyze sampling of a multivariate normal distribution with an unknown expectation that needs to be estimated: in our setup it is possible to sample the distribution from a given set of linear functionals, and the difficulty addressed is how to optimally select the combinations to achieve low estimation error. Although this problem is in the heart of the field of optimal design, no efficient solutions for the case with many functionals exist. We present some bounds and an efficient sub-optimal solution for this problem for more structured sets such as binary functionals that are induced by graph walks.
2,102
2,102
Path Integral Control by Reproducing Kernel Hilbert Space Embedding
We present an embedding of stochastic optimal control problems, of the so called path integral form, into reproducing kernel Hilbert spaces. Using consistent, sample based estimates of the embedding leads to a model free, non-parametric approach for calculation of an approximate solution to the control problem. This formulation admits a decomposition of the problem into an invariant and task dependent component. Consequently, we make much more efficient use of the sample data compared to previous sample based approaches in this domain, e.g., by allowing sample re-use across tasks. Numerical examples on test problems, which illustrate the sample efficiency, are provided.
2,103
2,103
Nonparametric sparsity and regularization
In this work we are interested in the problems of supervised learning and variable selection when the input-output dependence is described by a nonlinear function depending on a few variables. Our goal is to consider a sparse nonparametric model, hence avoiding linear or additive models. The key idea is to measure the importance of each variable in the model by making use of partial derivatives. Based on this intuition we propose a new notion of nonparametric sparsity and a corresponding least squares regularization scheme. Using concepts and results from the theory of reproducing kernel Hilbert spaces and proximal methods, we show that the proposed learning algorithm corresponds to a minimization problem which can be provably solved by an iterative procedure. The consistency properties of the obtained estimator are studied both in terms of prediction and selection performance. An extensive empirical analysis shows that the proposed method performs favorably with respect to the state-of-the-art methods.
2,104
2,104
Analysis of a Statistical Hypothesis Based Learning Mechanism for Faster crawling
The growth of world-wide-web (WWW) spreads its wings from an intangible quantities of web-pages to a gigantic hub of web information which gradually increases the complexity of crawling process in a search engine. A search engine handles a lot of queries from various parts of this world, and the answers of it solely depend on the knowledge that it gathers by means of crawling. The information sharing becomes a most common habit of the society, and it is done by means of publishing structured, semi-structured and unstructured resources on the web. This social practice leads to an exponential growth of web-resource, and hence it became essential to crawl for continuous updating of web-knowledge and modification of several existing resources in any situation. In this paper one statistical hypothesis based learning mechanism is incorporated for learning the behavior of crawling speed in different environment of network, and for intelligently control of the speed of crawler. The scaling technique is used to compare the performance proposed method with the standard crawler. The high speed performance is observed after scaling, and the retrieval of relevant web-resource in such a high speed is analyzed.
2,105
2,105
Detecting Events and Patterns in Large-Scale User Generated Textual Streams with Statistical Learning Methods
A vast amount of textual web streams is influenced by events or phenomena emerging in the real world. The social web forms an excellent modern paradigm, where unstructured user generated content is published on a regular basis and in most occasions is freely distributed. The present Ph.D. Thesis deals with the problem of inferring information - or patterns in general - about events emerging in real life based on the contents of this textual stream. We show that it is possible to extract valuable information about social phenomena, such as an epidemic or even rainfall rates, by automatic analysis of the content published in Social Media, and in particular Twitter, using Statistical Machine Learning methods. An important intermediate task regards the formation and identification of features which characterise a target event; we select and use those textual features in several linear, non-linear and hybrid inference approaches achieving a significantly good performance in terms of the applied loss function. By examining further this rich data set, we also propose methods for extracting various types of mood signals revealing how affective norms - at least within the social web's population - evolve during the day and how significant events emerging in the real world are influencing them. Lastly, we present some preliminary findings showing several spatiotemporal characteristics of this textual information as well as the potential of using it to tackle tasks such as the prediction of voting intentions.
2,106
2,106
Using Program Synthesis for Social Recommendations
This paper presents a new approach to select events of interest to a user in a social media setting where events are generated by the activities of the user's friends through their mobile devices. We argue that given the unique requirements of the social media setting, the problem is best viewed as an inductive learning problem, where the goal is to first generalize from the users' expressed "likes" and "dislikes" of specific events, then to produce a program that can be manipulated by the system and distributed to the collection devices to collect only data of interest. The key contribution of this paper is a new algorithm that combines existing machine learning techniques with new program synthesis technology to learn users' preferences. We show that when compared with the more standard approaches, our new algorithm provides up to order-of-magnitude reductions in model training time, and significantly higher prediction accuracies for our target application. The approach also improves on standard machine learning techniques in that it produces clear programs that can be manipulated to optimize data collection and filtering.
2,107
2,107
Asymptotic Generalization Bound of Fisher's Linear Discriminant Analysis
Fisher's linear discriminant analysis (FLDA) is an important dimension reduction method in statistical pattern recognition. It has been shown that FLDA is asymptotically Bayes optimal under the homoscedastic Gaussian assumption. However, this classical result has the following two major limitations: 1) it holds only for a fixed dimensionality $D$, and thus does not apply when $D$ and the training sample size $N$ are proportionally large; 2) it does not provide a quantitative description on how the generalization ability of FLDA is affected by $D$ and $N$. In this paper, we present an asymptotic generalization analysis of FLDA based on random matrix theory, in a setting where both $D$ and $N$ increase and $D/N\longrightarrow\gamma\in[0,1)$. The obtained lower bound of the generalization discrimination power overcomes both limitations of the classical result, i.e., it is applicable when $D$ and $N$ are proportionally large and provides a quantitative description of the generalization ability of FLDA in terms of the ratio $\gamma=D/N$ and the population discrimination power. Besides, the discrimination power bound also leads to an upper bound on the generalization error of binary-classification with FLDA.
2,108
2,108
Metric distances derived from cosine similarity and Pearson and Spearman correlations
We investigate two classes of transformations of cosine similarity and Pearson and Spearman correlations into metric distances, utilising the simple tool of metric-preserving functions. The first class puts anti-correlated objects maximally far apart. Previously known transforms fall within this class. The second class collates correlated and anti-correlated objects. An example of such a transformation that yields a metric distance is the sine function when applied to centered data.
2,109
2,109
Structured Prediction Cascades
Structured prediction tasks pose a fundamental trade-off between the need for model complexity to increase predictive power and the limited computational resources for inference in the exponentially-sized output spaces such models require. We formulate and develop the Structured Prediction Cascade architecture: a sequence of increasingly complex models that progressively filter the space of possible outputs. The key principle of our approach is that each model in the cascade is optimized to accurately filter and refine the structured output state space of the next model, speeding up both learning and inference in the next layer of the cascade. We learn cascades by optimizing a novel convex loss function that controls the trade-off between the filtering efficiency and the accuracy of the cascade, and provide generalization bounds for both accuracy and efficiency. We also extend our approach to intractable models using tree-decomposition ensembles, and provide algorithms and theory for this setting. We evaluate our approach on several large-scale problems, achieving state-of-the-art performance in handwriting recognition and human pose recognition. We find that structured prediction cascades allow tremendous speedups and the use of previously intractable features and models in both settings.
2,110
2,110
Distance Metric Learning for Kernel Machines
Recent work in metric learning has significantly improved the state-of-the-art in k-nearest neighbor classification. Support vector machines (SVM), particularly with RBF kernels, are amongst the most popular classification algorithms that uses distance metrics to compare examples. This paper provides an empirical analysis of the efficacy of three of the most popular Mahalanobis metric learning algorithms as pre-processing for SVM training. We show that none of these algorithms generate metrics that lead to particularly satisfying improvements for SVM-RBF classification. As a remedy we introduce support vector metric learning (SVML), a novel algorithm that seamlessly combines the learning of a Mahalanobis metric with the training of the RBF-SVM parameters. We demonstrate the capabilities of SVML on nine benchmark data sets of varying sizes and difficulties. In our study, SVML outperforms all alternative state-of-the-art metric learning algorithms in terms of accuracy and establishes itself as a serious alternative to the standard Euclidean metric with model selection by cross validation.
2,111
2,111
Efficient Active Learning of Halfspaces: an Aggressive Approach
We study pool-based active learning of half-spaces. We revisit the aggressive approach for active learning in the realizable case, and show that it can be made efficient and practical, while also having theoretical guarantees under reasonable assumptions. We further show, both theoretically and experimentally, that it can be preferable to mellow approaches. Our efficient aggressive active learner of half-spaces has formal approximation guarantees that hold when the pool is separable with a margin. While our analysis is focused on the realizable setting, we show that a simple heuristic allows using the same algorithm successfully for pools with low error as well. We further compare the aggressive approach to the mellow approach, and prove that there are cases in which the aggressive approach results in significantly better label complexity compared to the mellow approach. We demonstrate experimentally that substantial improvements in label complexity can be achieved using the aggressive approach, for both realizable and low-error settings.
2,112
2,112
An improvement direction for filter selection techniques using information theory measures and quadratic optimization
Filter selection techniques are known for their simplicity and efficiency. However this kind of methods doesn't take into consideration the features inter-redundancy. Consequently the un-removed redundant features remain in the final classification model, giving lower generalization performance. In this paper we propose to use a mathematical optimization method that reduces inter-features redundancy and maximize relevance between each feature and the target variable.
2,113
2,113
Auto-WEKA: Combined Selection and Hyperparameter Optimization of Classification Algorithms
Many different machine learning algorithms exist; taking into account each algorithm's hyperparameters, there is a staggeringly large number of possible alternatives overall. We consider the problem of simultaneously selecting a learning algorithm and setting its hyperparameters, going beyond previous work that addresses these issues in isolation. We show that this problem can be addressed by a fully automated approach, leveraging recent innovations in Bayesian optimization. Specifically, we consider a wide range of feature selection techniques (combining 3 search and 8 evaluator methods) and all classification approaches implemented in WEKA, spanning 2 ensemble methods, 10 meta-methods, 27 base classifiers, and hyperparameter settings for each classifier. On each of 21 popular datasets from the UCI repository, the KDD Cup 09, variants of the MNIST dataset and CIFAR-10, we show classification performance often much better than using standard selection/hyperparameter optimization methods. We hope that our approach will help non-expert users to more effectively identify machine learning algorithms and hyperparameter settings appropriate to their applications, and hence to achieve improved performance.
2,114
2,114
Online Learning with Predictable Sequences
We present methods for online linear optimization that take advantage of benign (as opposed to worst-case) sequences. Specifically if the sequence encountered by the learner is described well by a known "predictable process", the algorithms presented enjoy tighter bounds as compared to the typical worst case bounds. Additionally, the methods achieve the usual worst-case regret bounds if the sequence is not benign. Our approach can be seen as a way of adding prior knowledge about the sequence within the paradigm of online learning. The setting is shown to encompass partial and side information. Variance and path-length bounds can be seen as particular examples of online learning with simple predictable sequences. We further extend our methods and results to include competing with a set of possible predictable processes (models), that is "learning" the predictable process itself concurrently with using it to obtain better regret guarantees. We show that such model selection is possible under various assumptions on the available feedback. Our results suggest a promising direction of further research with potential applications to stock market and time series prediction.
2,115
2,115
Multiple graph regularized protein domain ranking
Background Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods. Results To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG- Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an ob- jective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods. Conclusion The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications.
2,116
2,116
Discriminative Sparse Coding on Multi-Manifold for Data Representation and Classification
Sparse coding has been popularly used as an effective data representation method in various applications, such as computer vision, medical imaging and bioinformatics, etc. However, the conventional sparse coding algorithms and its manifold regularized variants (graph sparse coding and Laplacian sparse coding), learn the codebook and codes in a unsupervised manner and neglect the class information available in the training set. To address this problem, in this paper we propose a novel discriminative sparse coding method based on multi-manifold, by learning discriminative class-conditional codebooks and sparse codes from both data feature space and class labels. First, the entire training set is partitioned into multiple manifolds according to the class labels. Then, we formulate the sparse coding as a manifold-manifold matching problem and learn class-conditional codebooks and codes to maximize the manifold margins of different classes. Lastly, we present a data point-manifold matching error based strategy to classify the unlabeled data point. Experimental results on somatic mutations identification and breast tumors classification in ultrasonic images tasks demonstrate the efficacy of the proposed data representation-classification approach.
2,117
2,117
Adaptive Graph via Multiple Kernel Learning for Nonnegative Matrix Factorization
Nonnegative Matrix Factorization (NMF) has been continuously evolving in several areas like pattern recognition and information retrieval methods. It factorizes a matrix into a product of 2 low-rank non-negative matrices that will define parts-based, and linear representation of nonnegative data. Recently, Graph regularized NMF (GrNMF) is proposed to find a compact representation,which uncovers the hidden semantics and simultaneously respects the intrinsic geometric structure. In GNMF, an affinity graph is constructed from the original data space to encode the geometrical information. In this paper, we propose a novel idea which engages a Multiple Kernel Learning approach into refining the graph structure that reflects the factorization of the matrix and the new data space. The GrNMF is improved by utilizing the graph refined by the kernel learning, and then a novel kernel learning method is introduced under the GrNMF framework. Our approach shows encouraging results of the proposed algorithm in comparison to the state-of-the-art clustering algorithms like NMF, GrNMF, SVD etc.
2,118
2,118
Performance Tuning Of J48 Algorithm For Prediction Of Soil Fertility
Data mining involves the systematic analysis of large data sets, and data mining in agricultural soil datasets is exciting and modern research area. The productive capacity of a soil depends on soil fertility. Achieving and maintaining appropriate levels of soil fertility, is of utmost importance if agricultural land is to remain capable of nourishing crop production. In this research, Steps for building a predictive model of soil fertility have been explained. This paper aims at predicting soil fertility class using decision tree algorithms in data mining . Further, it focuses on performance tuning of J48 decision tree algorithm with the help of meta-techniques such as attribute selection and boosting.
2,119
2,119
Semi-supervised Clustering Ensemble by Voting
Clustering ensemble is one of the most recent advances in unsupervised learning. It aims to combine the clustering results obtained using different algorithms or from different runs of the same clustering algorithm for the same data set, this is accomplished using on a consensus function, the efficiency and accuracy of this method has been proven in many works in literature. In the first part of this paper we make a comparison among current approaches to clustering ensemble in literature. All of these approaches consist of two main steps: the ensemble generation and consensus function. In the second part of the paper, we suggest engaging supervision in the clustering ensemble procedure to get more enhancements on the clustering results. Supervision can be applied in two places: either by using semi-supervised algorithms in the clustering ensemble generation step or in the form of a feedback used by the consensus function stage. Also, we introduce a flexible two parameter weighting mechanism, the first parameter describes the compatibility between the datasets under study and the semi-supervised clustering algorithms used to generate the base partitions, the second parameter is used to provide the user feedback on the these partitions. The two parameters are engaged in a "relabeling and voting" based consensus function to produce the final clustering.
2,120
2,120
Generating ordered list of Recommended Items: a Hybrid Recommender System of Microblog
Precise recommendation of followers helps in improving the user experience and maintaining the prosperity of twitter and microblog platforms. In this paper, we design a hybrid recommender system of microblog as a solution of KDD Cup 2012, track 1 task, which requires predicting users a user might follow in Tencent Microblog. We describe the background of the problem and present the algorithm consisting of keyword analysis, user taxonomy, (potential)interests extraction and item recommendation. Experimental result shows the high performance of our algorithm. Some possible improvements are discussed, which leads to further study.
2,121
2,121
A Learning Theoretic Approach to Energy Harvesting Communication System Optimization
A point-to-point wireless communication system in which the transmitter is equipped with an energy harvesting device and a rechargeable battery, is studied. Both the energy and the data arrivals at the transmitter are modeled as Markov processes. Delay-limited communication is considered assuming that the underlying channel is block fading with memory, and the instantaneous channel state information is available at both the transmitter and the receiver. The expected total transmitted data during the transmitter's activation time is maximized under three different sets of assumptions regarding the information available at the transmitter about the underlying stochastic processes. A learning theoretic approach is introduced, which does not assume any a priori information on the Markov processes governing the communication system. In addition, online and offline optimization problems are studied for the same setting. Full statistical knowledge and causal information on the realizations of the underlying stochastic processes are assumed in the online optimization problem, while the offline optimization problem assumes non-causal knowledge of the realizations in advance. Comparing the optimal solutions in all three frameworks, the performance loss due to the lack of the transmitter's information regarding the behaviors of the underlying Markov processes is quantified.
2,122
2,122
Optimized Look-Ahead Tree Policies: A Bridge Between Look-Ahead Tree Policies and Direct Policy Search
Direct policy search (DPS) and look-ahead tree (LT) policies are two widely used classes of techniques to produce high performance policies for sequential decision-making problems. To make DPS approaches work well, one crucial issue is to select an appropriate space of parameterized policies with respect to the targeted problem. A fundamental issue in LT approaches is that, to take good decisions, such policies must develop very large look-ahead trees which may require excessive online computational resources. In this paper, we propose a new hybrid policy learning scheme that lies at the intersection of DPS and LT, in which the policy is an algorithm that develops a small look-ahead tree in a directed way, guided by a node scoring function that is learned through DPS. The LT-based representation is shown to be a versatile way of representing policies in a DPS scheme, while at the same time, DPS enables to significantly reduce the size of the look-ahead trees that are required to take high-quality decisions. We experimentally compare our method with two other state-of-the-art DPS techniques and four common LT policies on four benchmark domains and show that it combines the advantages of the two techniques from which it originates. In particular, we show that our method: (1) produces overall better performing policies than both pure DPS and pure LT policies, (2) requires a substantially smaller number of policy evaluations than other DPS techniques, (3) is easy to tune and (4) results in policies that are quite robust with respect to perturbations of the initial conditions.
2,123
2,123
Identification of Probabilities of Languages
We consider the problem of inferring the probability distribution associated with a language, given data consisting of an infinite sequence of elements of the languge. We do this under two assumptions on the algorithms concerned: (i) like a real-life algorothm it has round-off errors, and (ii) it has no round-off errors. Assuming (i) we (a) consider a probability mass function of the elements of the language if the data are drawn independent identically distributed (i.i.d.), provided the probability mass function is computable and has a finite expectation. We give an effective procedure to almost surely identify in the limit the target probability mass function using the Strong Law of Large Numbers. Second (b) we treat the case of possibly incomputable probabilistic mass functions in the above setting. In this case we can only pointswize converge to the target probability mass function almost surely. Third (c) we consider the case where the data are dependent assuming they are typical for at least one computable measure and the language is finite. There is an effective procedure to identify by infinite recurrence a nonempty subset of the computable measures according to which the data is typical. Here we use the theory of Kolmogorov complexity. Assuming (ii) we obtain the weaker result for (a) that the target distribution is identified by infinite recurrence almost surely; (b) stays the same as under assumption (i). We consider the associated predictions.
2,124
2,124
Changepoint detection for high-dimensional time series with missing data
This paper describes a novel approach to change-point detection when the observed high-dimensional data may have missing elements. The performance of classical methods for change-point detection typically scales poorly with the dimensionality of the data, so that a large number of observations are collected after the true change-point before it can be reliably detected. Furthermore, missing components in the observed data handicap conventional approaches. The proposed method addresses these challenges by modeling the dynamic distribution underlying the data as lying close to a time-varying low-dimensional submanifold embedded within the ambient observation space. Specifically, streaming data is used to track a submanifold approximation, measure deviations from this approximation, and calculate a series of statistics of the deviations for detecting when the underlying manifold has changed in a sharp or unexpected manner. The approach described in this paper leverages several recent results in the field of high-dimensional data analysis, including subspace tracking with missing data, multiscale analysis techniques for point clouds, online optimization, and change-point detection performance analysis. Simulations and experiments highlight the robustness and efficacy of the proposed approach in detecting an abrupt change in an otherwise slowly varying low-dimensional manifold.
2,125
2,125
Vector Field k-Means: Clustering Trajectories by Fitting Multiple Vector Fields
Scientists study trajectory data to understand trends in movement patterns, such as human mobility for traffic analysis and urban planning. There is a pressing need for scalable and efficient techniques for analyzing this data and discovering the underlying patterns. In this paper, we introduce a novel technique which we call vector-field $k$-means. The central idea of our approach is to use vector fields to induce a similarity notion between trajectories. Other clustering algorithms seek a representative trajectory that best describes each cluster, much like $k$-means identifies a representative "center" for each cluster. Vector-field $k$-means, on the other hand, recognizes that in all but the simplest examples, no single trajectory adequately describes a cluster. Our approach is based on the premise that movement trends in trajectory data can be modeled as flows within multiple vector fields, and the vector field itself is what defines each of the clusters. We also show how vector-field $k$-means connects techniques for scalar field design on meshes and $k$-means clustering. We present an algorithm that finds a locally optimal clustering of trajectories into vector fields, and demonstrate how vector-field $k$-means can be used to mine patterns from trajectory data. We present experimental evidence of its effectiveness and efficiency using several datasets, including historical hurricane data, GPS tracks of people and vehicles, and anonymous call records from a large phone company. We compare our results to previous trajectory clustering techniques, and find that our algorithm performs faster in practice than the current state-of-the-art in trajectory clustering, in some examples by a large margin.
2,126
2,126
Link Prediction via Generalized Coupled Tensor Factorisation
This study deals with the missing link prediction problem: the problem of predicting the existence of missing connections between entities of interest. We address link prediction using coupled analysis of relational datasets represented as heterogeneous data, i.e., datasets in the form of matrices and higher-order tensors. We propose to use an approach based on probabilistic interpretation of tensor factorisation models, i.e., Generalised Coupled Tensor Factorisation, which can simultaneously fit a large class of tensor models to higher-order tensors/matrices with com- mon latent factors using different loss functions. Numerical experiments demonstrate that joint analysis of data from multiple sources via coupled factorisation improves the link prediction performance and the selection of right loss function and tensor model is crucial for accurately predicting missing links.
2,127
2,127
Automated Marble Plate Classification System Based On Different Neural Network Input Training Sets and PLC Implementation
The process of sorting marble plates according to their surface texture is an important task in the automated marble plate production. Nowadays some inspection systems in marble industry that automate the classification tasks are too expensive and are compatible only with specific technological equipment in the plant. In this paper a new approach to the design of an Automated Marble Plate Classification System (AMPCS),based on different neural network input training sets is proposed, aiming at high classification accuracy using simple processing and application of only standard devices. It is based on training a classification MLP neural network with three different input training sets: extracted texture histograms, Discrete Cosine and Wavelet Transform over the histograms. The algorithm is implemented in a PLC for real-time operation. The performance of the system is assessed with each one of the input training sets. The experimental test results regarding classification accuracy and quick operation are represented and discussed.
2,128
2,128
Comparative Study and Optimization of Feature-Extraction Techniques for Content based Image Retrieval
The aim of a Content-Based Image Retrieval (CBIR) system, also known as Query by Image Content (QBIC), is to help users to retrieve relevant images based on their contents. CBIR technologies provide a method to find images in large databases by using unique descriptors from a trained image. The image descriptors include texture, color, intensity and shape of the object inside an image. Several feature-extraction techniques viz., Average RGB, Color Moments, Co-occurrence, Local Color Histogram, Global Color Histogram and Geometric Moment have been critically compared in this paper. However, individually these techniques result in poor performance. So, combinations of these techniques have also been evaluated and results for the most efficient combination of techniques have been presented and optimized for each class of image query. We also propose an improvement in image retrieval performance by introducing the idea of Query modification through image cropping. It enables the user to identify a region of interest and modify the initial query to refine and personalize the image retrieval results.
2,129
2,129
A Widely Applicable Bayesian Information Criterion
A statistical model or a learning machine is called regular if the map taking a parameter to a probability distribution is one-to-one and if its Fisher information matrix is always positive definite. If otherwise, it is called singular. In regular statistical models, the Bayes free energy, which is defined by the minus logarithm of Bayes marginal likelihood, can be asymptotically approximated by the Schwarz Bayes information criterion (BIC), whereas in singular models such approximation does not hold. Recently, it was proved that the Bayes free energy of a singular model is asymptotically given by a generalized formula using a birational invariant, the real log canonical threshold (RLCT), instead of half the number of parameters in BIC. Theoretical values of RLCTs in several statistical models are now being discovered based on algebraic geometrical methodology. However, it has been difficult to estimate the Bayes free energy using only training samples, because an RLCT depends on an unknown true distribution. In the present paper, we define a widely applicable Bayesian information criterion (WBIC) by the average log likelihood function over the posterior distribution with the inverse temperature $1/\log n$, where $n$ is the number of training samples. We mathematically prove that WBIC has the same asymptotic expansion as the Bayes free energy, even if a statistical model is singular for and unrealizable by a statistical model. Since WBIC can be numerically calculated without any information about a true distribution, it is a generalized version of BIC onto singular statistical models.
2,130
2,130
An Improved Bound for the Nystrom Method for Large Eigengap
We develop an improved bound for the approximation error of the Nystr\"{o}m method under the assumption that there is a large eigengap in the spectrum of kernel matrix. This is based on the empirical observation that the eigengap has a significant impact on the approximation error of the Nystr\"{o}m method. Our approach is based on the concentration inequality of integral operator and the theory of matrix perturbation. Our analysis shows that when there is a large eigengap, we can improve the approximation error of the Nystr\"{o}m method from $O(N/m^{1/4})$ to $O(N/m^{1/2})$ when measured in Frobenius norm, where $N$ is the size of the kernel matrix, and $m$ is the number of sampled columns.
2,131
2,131
Statistically adaptive learning for a general class of cost functions (SA L-BFGS)
We present a system that enables rapid model experimentation for tera-scale machine learning with trillions of non-zero features, billions of training examples, and millions of parameters. Our contribution to the literature is a new method (SA L-BFGS) for changing batch L-BFGS to perform in near real-time by using statistical tools to balance the contributions of previous weights, old training examples, and new training examples to achieve fast convergence with few iterations. The result is, to our knowledge, the most scalable and flexible linear learning system reported in the literature, beating standard practice with the current best system (Vowpal Wabbit and AllReduce). Using the KDD Cup 2012 data set from Tencent, Inc. we provide experimental results to verify the performance of this method.
2,132
2,132
Learning implicitly in reasoning in PAC-Semantics
We consider the problem of answering queries about formulas of propositional logic based on background knowledge partially represented explicitly as other formulas, and partially represented as partially obscured examples independently drawn from a fixed probability distribution, where the queries are answered with respect to a weaker semantics than usual -- PAC-Semantics, introduced by Valiant (2000) -- that is defined using the distribution of examples. We describe a fairly general, efficient reduction to limited versions of the decision problem for a proof system (e.g., bounded space treelike resolution, bounded degree polynomial calculus, etc.) from corresponding versions of the reasoning problem where some of the background knowledge is not explicitly given as formulas, only learnable from the examples. Crucially, we do not generate an explicit representation of the knowledge extracted from the examples, and so the "learning" of the background knowledge is only done implicitly. As a consequence, this approach can utilize formulas as background knowledge that are not perfectly valid over the distribution---essentially the analogue of agnostic learning here.
2,133
2,133
Estimating the historical and future probabilities of large terrorist events
Quantities with right-skewed distributions are ubiquitous in complex social systems, including political conflict, economics and social networks, and these systems sometimes produce extremely large events. For instance, the 9/11 terrorist events produced nearly 3000 fatalities, nearly six times more than the next largest event. But, was this enormous loss of life statistically unlikely given modern terrorism's historical record? Accurately estimating the probability of such an event is complicated by the large fluctuations in the empirical distribution's upper tail. We present a generic statistical algorithm for making such estimates, which combines semi-parametric models of tail behavior and a nonparametric bootstrap. Applied to a global database of terrorist events, we estimate the worldwide historical probability of observing at least one 9/11-sized or larger event since 1968 to be 11-35%. These results are robust to conditioning on global variations in economic development, domestic versus international events, the type of weapon used and a truncated history that stops at 1998. We then use this procedure to make a data-driven statistical forecast of at least one similar event over the next decade.
2,134
2,134
A History of Cluster Analysis Using the Classification Society's Bibliography Over Four Decades
The Classification Literature Automated Search Service, an annual bibliography based on citation of one or more of a set of around 80 book or journal publications, ran from 1972 to 2012. We analyze here the years 1994 to 2011. The Classification Society's Service, as it was termed, has been produced by the Classification Society. In earlier decades it was distributed as a diskette or CD with the Journal of Classification. Among our findings are the following: an enormous increase in scholarly production post approximately 2000; a very major increase in quantity, coupled with work in different disciplines, from approximately 2004; and a major shift also from cluster analysis in earlier times having mathematics and psychology as disciplines of the journals published in, and affiliations of authors, contrasted with, in more recent times, a "centre of gravity" in management and engineering.
2,135
2,135
Autoregressive short-term prediction of turning points using support vector regression
This work is concerned with autoregressive prediction of turning points in financial price sequences. Such turning points are critical local extrema points along a series, which mark the start of new swings. Predicting the future time of such turning points or even their early or late identification slightly before or after the fact has useful applications in economics and finance. Building on recently proposed neural network model for turning point prediction, we propose and study a new autoregressive model for predicting turning points of small swings. Our method relies on a known turning point indicator, a Fourier enriched representation of price histories, and support vector regression. We empirically examine the performance of the proposed method over a long history of the Dow Jones Industrial average. Our study shows that the proposed method is superior to the previous neural network model, in terms of trading performance of a simple trading application and also exhibits a quantifiable advantage over the buy-and-hold benchmark.
2,136
2,136
Proximal methods for the latent group lasso penalty
We consider a regularized least squares problem, with regularization by structured sparsity-inducing norms, which extend the usual $\ell_1$ and the group lasso penalty, by allowing the subsets to overlap. Such regularizations lead to nonsmooth problems that are difficult to optimize, and we propose in this paper a suitable version of an accelerated proximal method to solve them. We prove convergence of a nested procedure, obtained composing an accelerated proximal method with an inner algorithm for computing the proximity operator. By exploiting the geometrical properties of the penalty, we devise a new active set strategy, thanks to which the inner iteration is relatively fast, thus guaranteeing good computational performances of the overall algorithm. Our approach allows to deal with high dimensional problems without pre-processing for dimensionality reduction, leading to better computational and prediction performances with respect to the state-of-the art methods, as shown empirically both on toy and real data.
2,137
2,137
Fixed-rank matrix factorizations and Riemannian low-rank optimization
Motivated by the problem of learning a linear regression model whose parameter is a large fixed-rank non-symmetric matrix, we consider the optimization of a smooth cost function defined on the set of fixed-rank matrices. We adopt the geometric framework of optimization on Riemannian quotient manifolds. We study the underlying geometries of several well-known fixed-rank matrix factorizations and then exploit the Riemannian quotient geometry of the search space in the design of a class of gradient descent and trust-region algorithms. The proposed algorithms generalize our previous results on fixed-rank symmetric positive semidefinite matrices, apply to a broad range of applications, scale to high-dimensional problems and confer a geometric basis to recent contributions on the learning of fixed-rank non-symmetric matrices. We make connections with existing algorithms in the context of low-rank matrix completion and discuss relative usefulness of the proposed framework. Numerical experiments suggest that the proposed algorithms compete with the state-of-the-art and that manifold optimization offers an effective and versatile framework for the design of machine learning algorithms that learn a fixed-rank matrix.
2,138
2,138
Efficient EM Training of Gaussian Mixtures with Missing Data
In data-mining applications, we are frequently faced with a large fraction of missing entries in the data matrix, which is problematic for most discriminant machine learning algorithms. A solution that we explore in this paper is the use of a generative model (a mixture of Gaussians) to compute the conditional expectation of the missing variables given the observed variables. Since training a Gaussian mixture with many different patterns of missing values can be computationally very expensive, we introduce a spanning-tree based algorithm that significantly speeds up training in these conditions. We also observe that good results can be obtained by using the generative model to fill-in the missing values for a separate discriminant learning algorithm.
2,139
2,139
Sparse coding for multitask and transfer learning
We investigate the use of sparse coding and dictionary learning in the context of multitask and transfer learning. The central assumption of our learning method is that the tasks parameters are well approximated by sparse linear combinations of the atoms of a dictionary on a high or infinite dimensional space. This assumption, together with the large quantity of available data in the multitask and transfer learning settings, allows a principled choice of the dictionary. We provide bounds on the generalization error of this approach, for both settings. Numerical experiments on one synthetic and two real datasets show the advantage of our method over single task learning, a previous method based on orthogonal and dense representation of the tasks and a related method learning task grouping.
2,140
2,140
Improving the K-means algorithm using improved downhill simplex search
The k-means algorithm is one of the well-known and most popular clustering algorithms. K-means seeks an optimal partition of the data by minimizing the sum of squared error with an iterative optimization procedure, which belongs to the category of hill climbing algorithms. As we know hill climbing searches are famous for converging to local optimums. Since k-means can converge to a local optimum, different initial points generally lead to different convergence cancroids, which makes it important to start with a reasonable initial partition in order to achieve high quality clustering solutions. However, in theory, there exist no efficient and universal methods for determining such initial partitions. In this paper we tried to find an optimum initial partitioning for k-means algorithm. To achieve this goal we proposed a new improved version of downhill simplex search, and then we used it in order to find an optimal result for clustering approach and then compare this algorithm with Genetic Algorithm base (GA), Genetic K-Means (GKM), Improved Genetic K-Means (IGKM) and k-means algorithms.
2,141
2,141
Structuring Relevant Feature Sets with Multiple Model Learning
Feature selection is one of the most prominent learning tasks, especially in high-dimensional datasets in which the goal is to understand the mechanisms that underly the learning dataset. However most of them typically deliver just a flat set of relevant features and provide no further information on what kind of structures, e.g. feature groupings, might underly the set of relevant features. In this paper we propose a new learning paradigm in which our goal is to uncover the structures that underly the set of relevant features for a given learning problem. We uncover two types of features sets, non-replaceable features that contain important information about the target variable and cannot be replaced by other features, and functionally similar features sets that can be used interchangeably in learned models, given the presence of the non-replaceable features, with no change in the predictive performance. To do so we propose a new learning algorithm that learns a number of disjoint models using a model disjointness regularization constraint together with a constraint on the predictive agreement of the disjoint models. We explore the behavior of our approach on a number of high-dimensional datasets, and show that, as expected by their construction, these satisfy a number of properties. Namely, model disjointness, a high predictive agreement, and a similar predictive performance to models learned on the full set of relevant features. The ability to structure the set of relevant features in such a manner can become a valuable tool in different applications of scientific knowledge discovery.
2,142
2,142
The Annealing Sparse Bayesian Learning Algorithm
In this paper we propose a two-level hierarchical Bayesian model and an annealing schedule to re-enable the noise variance learning capability of the fast marginalized Sparse Bayesian Learning Algorithms. The performance such as NMSE and F-measure can be greatly improved due to the annealing technique. This algorithm tends to produce the most sparse solution under moderate SNR scenarios and can outperform most concurrent SBL algorithms while pertains small computational load.
2,143
2,143
Learning Probability Measures with respect to Optimal Transport Metrics
We study the problem of estimating, in the sense of optimal transport metrics, a measure which is assumed supported on a manifold embedded in a Hilbert space. By establishing a precise connection between optimal transport metrics, optimal quantization, and learning theory, we derive new probabilistic bounds for the performance of a classic algorithm in unsupervised learning (k-means), when used to produce a probability measure derived from the data. In the course of the analysis, we arrive at new lower bounds, as well as probabilistic upper bounds on the convergence rate of the empirical law of large numbers, which, unlike existing bounds, are applicable to a wide class of measures.
2,144
2,144
Robustness and Generalization for Metric Learning
Metric learning has attracted a lot of interest over the last decade, but the generalization ability of such methods has not been thoroughly studied. In this paper, we introduce an adaptation of the notion of algorithmic robustness (previously introduced by Xu and Mannor) that can be used to derive generalization bounds for metric learning. We further show that a weak notion of robustness is in fact a necessary and sufficient condition for a metric learning algorithm to generalize. To illustrate the applicability of the proposed framework, we derive generalization results for a large family of existing metric learning algorithms, including some sparse formulations that are not covered by previous results.
2,145
2,145
Learning Manifolds with K-Means and K-Flats
We study the problem of estimating a manifold from random samples. In particular, we consider piecewise constant and piecewise linear estimators induced by k-means and k-flats, and analyze their performance. We extend previous results for k-means in two separate directions. First, we provide new results for k-means reconstruction on manifolds and, secondly, we prove reconstruction bounds for higher-order approximation (k-flats), for which no known results were previously available. While the results for k-means are novel, some of the technical tools are well-established in the literature. In the case of k-flats, both the results and the mathematical tools are new.
2,146
2,146
Multiclass Learning with Simplex Coding
In this paper we discuss a novel framework for multiclass learning, defined by a suitable coding/decoding strategy, namely the simplex coding, that allows to generalize to multiple classes a relaxation approach commonly used in binary classification. In this framework, a relaxation error analysis can be developed avoiding constraints on the considered hypotheses class. Moreover, we show that in this setting it is possible to derive the first provably consistent regularized method with training/tuning complexity which is independent to the number of classes. Tools from convex analysis are introduced that can be used beyond the scope of this paper.
2,147
2,147
On spatial selectivity and prediction across conditions with fMRI
Researchers in functional neuroimaging mostly use activation coordinates to formulate their hypotheses. Instead, we propose to use the full statistical images to define regions of interest (ROIs). This paper presents two machine learning approaches, transfer learning and selection transfer, that are compared upon their ability to identify the common patterns between brain activation maps related to two functional tasks. We provide some preliminary quantification of these similarities, and show that selection transfer makes it possible to set a spatial scale yielding ROIs that are more specific to the context of interest than with transfer learning. In particular, selection transfer outlines well known regions such as the Visual Word Form Area when discriminating between different visual tasks.
2,148
2,148
Learning Model-Based Sparsity via Projected Gradient Descent
Several convex formulation methods have been proposed previously for statistical estimation with structured sparsity as the prior. These methods often require a carefully tuned regularization parameter, often a cumbersome or heuristic exercise. Furthermore, the estimate that these methods produce might not belong to the desired sparsity model, albeit accurately approximating the true parameter. Therefore, greedy-type algorithms could often be more desirable in estimating structured-sparse parameters. So far, these greedy methods have mostly focused on linear statistical models. In this paper we study the projected gradient descent with non-convex structured-sparse parameter model as the constraint set. Should the cost function have a Stable Model-Restricted Hessian the algorithm produces an approximation for the desired minimizer. As an example we elaborate on application of the main results to estimation in Generalized Linear Model.
2,149
2,149
Rank Centrality: Ranking from Pair-wise Comparisons
The question of aggregating pair-wise comparisons to obtain a global ranking over a collection of objects has been of interest for a very long time: be it ranking of online gamers (e.g. MSR's TrueSkill system) and chess players, aggregating social opinions, or deciding which product to sell based on transactions. In most settings, in addition to obtaining a ranking, finding `scores' for each object (e.g. player's rating) is of interest for understanding the intensity of the preferences. In this paper, we propose Rank Centrality, an iterative rank aggregation algorithm for discovering scores for objects (or items) from pair-wise comparisons. The algorithm has a natural random walk interpretation over the graph of objects with an edge present between a pair of objects if they are compared; the score, which we call Rank Centrality, of an object turns out to be its stationary probability under this random walk. To study the efficacy of the algorithm, we consider the popular Bradley-Terry-Luce (BTL) model (equivalent to the Multinomial Logit (MNL) for pair-wise comparisons) in which each object has an associated score which determines the probabilistic outcomes of pair-wise comparisons between objects. In terms of the pair-wise marginal probabilities, which is the main subject of this paper, the MNL model and the BTL model are identical. We bound the finite sample error rates between the scores assumed by the BTL model and those estimated by our algorithm. In particular, the number of samples required to learn the score well with high probability depends on the structure of the comparison graph. When the Laplacian of the comparison graph has a strictly positive spectral gap, e.g. each item is compared to a subset of randomly chosen items, this leads to dependence on the number of samples that is nearly order-optimal.
2,150
2,150
Bandits with heavy tail
The stochastic multi-armed bandit problem is well understood when the reward distributions are sub-Gaussian. In this paper we examine the bandit problem under the weaker assumption that the distributions have moments of order 1+\epsilon, for some $\epsilon \in (0,1]$. Surprisingly, moments of order 2 (i.e., finite variance) are sufficient to obtain regret bounds of the same order as under sub-Gaussian reward distributions. In order to achieve such regret, we define sampling strategies based on refined estimators of the mean such as the truncated empirical mean, Catoni's M-estimator, and the median-of-means estimator. We also derive matching lower bounds that also show that the best achievable regret deteriorates when \epsilon <1.
2,151
2,151
Design of Spectrum Sensing Policy for Multi-user Multi-band Cognitive Radio Network
Finding an optimal sensing policy for a particular access policy and sensing scheme is a laborious combinatorial problem that requires the system model parameters to be known. In practise the parameters or the model itself may not be completely known making reinforcement learning methods appealing. In this paper a non-parametric reinforcement learning-based method is developed for sensing and accessing multi-band radio spectrum in multi-user cognitive radio networks. A suboptimal sensing policy search algorithm is proposed for a particular multi-user multi-band access policy and the randomized Chair-Varshney rule. The randomized Chair-Varshney rule is used to reduce the probability of false alarms under a constraint on the probability of detection that protects the primary user. The simulation results show that the proposed method achieves a sum profit (e.g. data rate) close to the optimal sensing policy while achieving the desired probability of detection.
2,152
2,152
Securing Your Transactions: Detecting Anomalous Patterns In XML Documents
XML transactions are used in many information systems to store data and interact with other systems. Abnormal transactions, the result of either an on-going cyber attack or the actions of a benign user, can potentially harm the interacting systems and therefore they are regarded as a threat. In this paper we address the problem of anomaly detection and localization in XML transactions using machine learning techniques. We present a new XML anomaly detection framework, XML-AD. Within this framework, an automatic method for extracting features from XML transactions was developed as well as a practical method for transforming XML features into vectors of fixed dimensionality. With these two methods in place, the XML-AD framework makes it possible to utilize general learning algorithms for anomaly detection. Central to the functioning of the framework is a novel multi-univariate anomaly detection algorithm, ADIFA. The framework was evaluated on four XML transactions datasets, captured from real information systems, in which it achieved over 89% true positive detection rate with less than a 0.2% false positive rate.
2,153
2,153
An Empirical Study of MAUC in Multi-class Problems with Uncertain Cost Matrices
Cost-sensitive learning relies on the availability of a known and fixed cost matrix. However, in some scenarios, the cost matrix is uncertain during training, and re-train a classifier after the cost matrix is specified would not be an option. For binary classification, this issue can be successfully addressed by methods maximizing the Area Under the ROC Curve (AUC) metric. Since the AUC can measure performance of base classifiers independent of cost during training, and a larger AUC is more likely to lead to a smaller total cost in testing using the threshold moving method. As an extension of AUC to multi-class problems, MAUC has attracted lots of attentions and been widely used. Although MAUC also measures performance of base classifiers independent of cost, it is unclear whether a larger MAUC of classifiers is more likely to lead to a smaller total cost. In fact, it is also unclear what kinds of post-processing methods should be used in multi-class problems to convert base classifiers into discrete classifiers such that the total cost is as small as possible. In the paper, we empirically explore the relationship between MAUC and the total cost of classifiers by applying two categories of post-processing methods. Our results suggest that a larger MAUC is also beneficial. Interestingly, simple calibration methods that convert the output matrix into posterior probabilities perform better than existing sophisticated post re-optimization methods.
2,154
2,154
Stochastic Dual Coordinate Ascent Methods for Regularized Loss Minimization
Stochastic Gradient Descent (SGD) has become popular for solving large scale supervised machine learning optimization problems such as SVM, due to their strong theoretical guarantees. While the closely related Dual Coordinate Ascent (DCA) method has been implemented in various software packages, it has so far lacked good convergence analysis. This paper presents a new analysis of Stochastic Dual Coordinate Ascent (SDCA) showing that this class of methods enjoy strong theoretical guarantees that are comparable or better than SGD. This analysis justifies the effectiveness of SDCA for practical applications.
2,155
2,155
A Comparative Study of Efficient Initialization Methods for the K-Means Clustering Algorithm
K-means is undoubtedly the most widely used partitional clustering algorithm. Unfortunately, due to its gradient descent nature, this algorithm is highly sensitive to the initial placement of the cluster centers. Numerous initialization methods have been proposed to address this problem. In this paper, we first present an overview of these methods with an emphasis on their computational efficiency. We then compare eight commonly used linear time complexity initialization methods on a large and diverse collection of data sets using various performance criteria. Finally, we analyze the experimental results using non-parametric statistical tests and provide recommendations for practitioners. We demonstrate that popular initialization methods often perform poorly and that there are in fact strong alternatives to these methods.
2,156
2,156
Fused Multiple Graphical Lasso
In this paper, we consider the problem of estimating multiple graphical models simultaneously using the fused lasso penalty, which encourages adjacent graphs to share similar structures. A motivating example is the analysis of brain networks of Alzheimer's disease using neuroimaging data. Specifically, we may wish to estimate a brain network for the normal controls (NC), a brain network for the patients with mild cognitive impairment (MCI), and a brain network for Alzheimer's patients (AD). We expect the two brain networks for NC and MCI to share common structures but not to be identical to each other; similarly for the two brain networks for MCI and AD. The proposed formulation can be solved using a second-order method. Our key technical contribution is to establish the necessary and sufficient condition for the graphs to be decomposable. Based on this key property, a simple screening rule is presented, which decomposes the large graphs into small subgraphs and allows an efficient estimation of multiple independent (small) subgraphs, dramatically reducing the computational cost. We perform experiments on both synthetic and real data; our results demonstrate the effectiveness and efficiency of the proposed approach.
2,157
2,157
Cooperative learning in multi-agent systems from intermittent measurements
Motivated by the problem of tracking a direction in a decentralized way, we consider the general problem of cooperative learning in multi-agent systems with time-varying connectivity and intermittent measurements. We propose a distributed learning protocol capable of learning an unknown vector $\mu$ from noisy measurements made independently by autonomous nodes. Our protocol is completely distributed and able to cope with the time-varying, unpredictable, and noisy nature of inter-agent communication, and intermittent noisy measurements of $\mu$. Our main result bounds the learning speed of our protocol in terms of the size and combinatorial features of the (time-varying) networks connecting the nodes.
2,158
2,158
Counterfactual Reasoning and Learning Systems
This work shows how to leverage causal inference to understand the behavior of complex learning systems interacting with their environment and predict the consequences of changes to the system. Such predictions allow both humans and algorithms to select changes that improve both the short-term and long-term performance of such systems. This work is illustrated by experiments carried out on the ad placement system associated with the Bing search engine.
2,159
2,159
On the Complexity of Bandit and Derivative-Free Stochastic Convex Optimization
The problem of stochastic convex optimization with bandit feedback (in the learning community) or without knowledge of gradients (in the optimization community) has received much attention in recent years, in the form of algorithms and performance upper bounds. However, much less is known about the inherent complexity of these problems, and there are few lower bounds in the literature, especially for nonlinear functions. In this paper, we investigate the attainable error/regret in the bandit and derivative-free settings, as a function of the dimension d and the available number of queries T. We provide a precise characterization of the attainable performance for strongly-convex and smooth functions, which also imply a non-trivial lower bound for more general problems. Moreover, we prove that in both the bandit and derivative-free setting, the required number of queries must scale at least quadratically with the dimension. Finally, we show that on the natural class of quadratic functions, it is possible to obtain a "fast" O(1/T) error rate in terms of T, under mild assumptions, even without having access to gradients. To the best of our knowledge, this is the first such rate in a derivative-free stochastic setting, and holds despite previous results which seem to imply the contrary.
2,160
2,160
Query Complexity of Derivative-Free Optimization
This paper provides lower bounds on the convergence rate of Derivative Free Optimization (DFO) with noisy function evaluations, exposing a fundamental and unavoidable gap between the performance of algorithms with access to gradients and those with access to only function evaluations. However, there are situations in which DFO is unavoidable, and for such situations we propose a new DFO algorithm that is proved to be near optimal for the class of strongly convex objective functions. A distinctive feature of the algorithm is that it uses only Boolean-valued function comparisons, rather than function evaluations. This makes the algorithm useful in an even wider range of applications, such as optimization based on paired comparisons from human subjects, for example. We also show that regardless of whether DFO is based on noisy function evaluations or Boolean-valued function comparisons, the convergence rate is the same.
2,161
2,161
Performance Evaluation of Predictive Classifiers For Knowledge Discovery From Engineering Materials Data Sets
In this paper, naive Bayesian and C4.5 Decision Tree Classifiers(DTC) are successively applied on materials informatics to classify the engineering materials into different classes for the selection of materials that suit the input design specifications. Here, the classifiers are analyzed individually and their performance evaluation is analyzed with confusion matrix predictive parameters and standard measures, the classification results are analyzed on different class of materials. Comparison of classifiers has found that naive Bayesian classifier is more accurate and better than the C4.5 DTC. The knowledge discovered by the naive bayesian classifier can be employed for decision making in materials selection in manufacturing industries.
2,162
2,162
Probabilities on Sentences in an Expressive Logic
Automated reasoning about uncertain knowledge has many applications. One difficulty when developing such systems is the lack of a completely satisfactory integration of logic and probability. We address this problem directly. Expressive languages like higher-order logic are ideally suited for representing and reasoning about structured knowledge. Uncertain knowledge can be modeled by using graded probabilities rather than binary truth-values. The main technical problem studied in this paper is the following: Given a set of sentences, each having some probability of being true, what probability should be ascribed to other (query) sentences? A natural wish-list, among others, is that the probability distribution (i) is consistent with the knowledge base, (ii) allows for a consistent inference procedure and in particular (iii) reduces to deductive logic in the limit of probabilities being 0 and 1, (iv) allows (Bayesian) inductive reasoning and (v) learning in the limit and in particular (vi) allows confirmation of universally quantified hypotheses/sentences. We translate this wish-list into technical requirements for a prior probability and show that probabilities satisfying all our criteria exist. We also give explicit constructions and several general characterizations of probabilities that satisfy some or all of the criteria and various (counter) examples. We also derive necessary and sufficient conditions for extending beliefs about finitely many sentences to suitable probabilities over all sentences, and in particular least dogmatic or least biased ones. We conclude with a brief outlook on how the developed theory might be used and approximated in autonomous reasoning agents. Our theory is a step towards a globally consistent and empirically satisfactory unification of probability and logic.
2,163
2,163
Conditional validity of inductive conformal predictors
Conformal predictors are set predictors that are automatically valid in the sense of having coverage probability equal to or exceeding a given confidence level. Inductive conformal predictors are a computationally efficient version of conformal predictors satisfying the same property of validity. However, inductive conformal predictors have been only known to control unconditional coverage probability. This paper explores various versions of conditional validity and various ways to achieve them using inductive conformal predictors and their modifications.
2,164
2,164
Regret Bounds for Restless Markov Bandits
We consider the restless Markov bandit problem, in which the state of each arm evolves according to a Markov process independently of the learner's actions. We suggest an algorithm that after $T$ steps achieves $\tilde{O}(\sqrt{T})$ regret with respect to the best policy that knows the distributions of all arms. No assumptions on the Markov chains are made except that they are irreducible. In addition, we show that index-based policies are necessarily suboptimal for the considered problem.
2,165
2,165
Multi-track Map Matching
We study algorithms for matching user tracks, consisting of time-ordered location points, to paths in the road network. Previous work has focused on the scenario where the location data is linearly ordered and consists of fairly dense and regular samples. In this work, we consider the \emph{multi-track map matching}, where the location data comes from different trips on the same route, each with very sparse samples. This captures the realistic scenario where users repeatedly travel on regular routes and samples are sparsely collected, either due to energy consumption constraints or because samples are only collected when the user actively uses a service. In the multi-track problem, the total set of combined locations is only partially ordered, rather than globally ordered as required by previous map-matching algorithms. We propose two methods, the iterative projection scheme and the graph Laplacian scheme, to solve the multi-track problem by using a single-track map-matching subroutine. We also propose a boosting technique which may be applied to either approach to improve the accuracy of the estimated paths. In addition, in order to deal with variable sampling rates in single-track map matching, we propose a method based on a particular regularized cost function that can be adapted for different sampling rates and measurement errors. We evaluate the effectiveness of our techniques for reconstructing tracks under several different configurations of sampling error and sampling rate.
2,166
2,166
Minimax Multi-Task Learning and a Generalized Loss-Compositional Paradigm for MTL
Since its inception, the modus operandi of multi-task learning (MTL) has been to minimize the task-wise mean of the empirical risks. We introduce a generalized loss-compositional paradigm for MTL that includes a spectrum of formulations as a subfamily. One endpoint of this spectrum is minimax MTL: a new MTL formulation that minimizes the maximum of the tasks' empirical risks. Via a certain relaxation of minimax MTL, we obtain a continuum of MTL formulations spanning minimax MTL and classical MTL. The full paradigm itself is loss-compositional, operating on the vector of empirical risks. It incorporates minimax MTL, its relaxations, and many new MTL formulations as special cases. We show theoretically that minimax MTL tends to avoid worst case outcomes on newly drawn test tasks in the learning to learn (LTL) test setting. The results of several MTL formulations on synthetic and real problems in the MTL and LTL test settings are encouraging.
2,167
2,167
Improving Energy Efficiency in Femtocell Networks: A Hierarchical Reinforcement Learning Framework
This paper investigates energy efficiency for two-tier femtocell networks through combining game theory and stochastic learning. With the Stackelberg game formulation, a hierarchical reinforcement learning framework is applied to study the joint average utility maximization of macrocells and femtocells subject to the minimum signal-to-interference-plus-noise-ratio requirements. The macrocells behave as the leaders and the femtocells are followers during the learning procedure. At each time step, the leaders commit to dynamic strategies based on the best responses of the followers, while the followers compete against each other with no further information but the leaders' strategy information. In this paper, we propose two learning algorithms to schedule each cell's stochastic power levels, leading by the macrocells. Numerical experiments are presented to validate the proposed studies and show that the two learning algorithms substantially improve the energy efficiency of the femtocell networks.
2,168
2,168
Community Detection in the Labelled Stochastic Block Model
We consider the problem of community detection from observed interactions between individuals, in the context where multiple types of interaction are possible. We use labelled stochastic block models to represent the observed data, where labels correspond to interaction types. Focusing on a two-community scenario, we conjecture a threshold for the problem of reconstructing the hidden communities in a way that is correlated with the true partition. To substantiate the conjecture, we prove that the given threshold correctly identifies a transition on the behaviour of belief propagation from insensitive to sensitive. We further prove that the same threshold corresponds to the transition in a related inference problem on a tree model from infeasible to feasible. Finally, numerical results using belief propagation for community detection give further support to the conjecture.
2,169
2,169
Parametric Local Metric Learning for Nearest Neighbor Classification
We study the problem of learning local metrics for nearest neighbor classification. Most previous works on local metric learning learn a number of local unrelated metrics. While this "independence" approach delivers an increased flexibility its downside is the considerable risk of overfitting. We present a new parametric local metric learning method in which we learn a smooth metric matrix function over the data manifold. Using an approximation error bound of the metric matrix function we learn local metrics as linear combinations of basis metrics defined on anchor points over different regions of the instance space. We constrain the metric matrix function by imposing on the linear combinations manifold regularization which makes the learned metric matrix function vary smoothly along the geodesics of the data manifold. Our metric learning method has excellent performance both in terms of predictive power and scalability. We experimented with several large-scale classification problems, tens of thousands of instances, and compared it with several state of the art metric learning methods, both global and local, as well as to SVM with automatic kernel selection, all of which it outperforms in a significant manner.
2,170
2,170
Analog readout for optical reservoir computers
Reservoir computing is a new, powerful and flexible machine learning technique that is easily implemented in hardware. Recently, by using a time-multiplexed architecture, hardware reservoir computers have reached performance comparable to digital implementations. Operating speeds allowing for real time information operation have been reached using optoelectronic systems. At present the main performance bottleneck is the readout layer which uses slow, digital postprocessing. We have designed an analog readout suitable for time-multiplexed optoelectronic reservoir computers, capable of working in real time. The readout has been built and tested experimentally on a standard benchmark task. Its performance is better than non-reservoir methods, with ample room for further improvement. The present work thereby overcomes one of the major limitations for the future development of hardware reservoir computers.
2,171
2,171
Thompson Sampling for Contextual Bandits with Linear Payoffs
Thompson Sampling is one of the oldest heuristics for multi-armed bandit problems. It is a randomized algorithm based on Bayesian ideas, and has recently generated significant interest after several studies demonstrated it to have better empirical performance compared to the state-of-the-art methods. However, many questions regarding its theoretical performance remained open. In this paper, we design and analyze a generalization of Thompson Sampling algorithm for the stochastic contextual multi-armed bandit problem with linear payoff functions, when the contexts are provided by an adaptive adversary. This is among the most important and widely studied versions of the contextual bandits problem. We provide the first theoretical guarantees for the contextual version of Thompson Sampling. We prove a high probability regret bound of $\tilde{O}(d^{3/2}\sqrt{T})$ (or $\tilde{O}(d\sqrt{T \log(N)})$), which is the best regret bound achieved by any computationally efficient algorithm available for this problem in the current literature, and is within a factor of $\sqrt{d}$ (or $\sqrt{\log(N)}$) of the information-theoretic lower bound for this problem.
2,172
2,172
Further Optimal Regret Bounds for Thompson Sampling
Thompson Sampling is one of the oldest heuristics for multi-armed bandit problems. It is a randomized algorithm based on Bayesian ideas, and has recently generated significant interest after several studies demonstrated it to have better empirical performance compared to the state of the art methods. In this paper, we provide a novel regret analysis for Thompson Sampling that simultaneously proves both the optimal problem-dependent bound of $(1+\epsilon)\sum_i \frac{\ln T}{\Delta_i}+O(\frac{N}{\epsilon^2})$ and the first near-optimal problem-independent bound of $O(\sqrt{NT\ln T})$ on the expected regret of this algorithm. Our near-optimal problem-independent bound solves a COLT 2012 open problem of Chapelle and Li. The optimal problem-dependent regret bound for this problem was first proven recently by Kaufmann et al. [ALT 2012]. Our novel martingale-based analysis techniques are conceptually simple, easily extend to distributions other than the Beta distribution, and also extend to the more general contextual bandits setting [Manuscript, Agrawal and Goyal, 2012].
2,173
2,173
A Hajj And Umrah Location Classification System For Video Crowded Scenes
In this paper, a new automatic system for classifying ritual locations in diverse Hajj and Umrah video scenes is investigated. This challenging subject has mostly been ignored in the past due to several problems one of which is the lack of realistic annotated video datasets. HUER Dataset is defined to model six different Hajj and Umrah ritual locations[26]. The proposed Hajj and Umrah ritual location classifying system consists of four main phases: Preprocessing, segmentation, feature extraction, and location classification phases. The shot boundary detection and background/foregroud segmentation algorithms are applied to prepare the input video scenes into the KNN, ANN, and SVM classifiers. The system improves the state of art results on Hajj and Umrah location classifications, and successfully recognizes the six Hajj rituals with more than 90% accuracy. The various demonstrated experiments show the promising results.
2,174
2,174
Active Learning for Crowd-Sourced Databases
Crowd-sourcing has become a popular means of acquiring labeled data for a wide variety of tasks where humans are more accurate than computers, e.g., labeling images, matching objects, or analyzing sentiment. However, relying solely on the crowd is often impractical even for data sets with thousands of items, due to time and cost constraints of acquiring human input (which cost pennies and minutes per label). In this paper, we propose algorithms for integrating machine learning into crowd-sourced databases, with the goal of allowing crowd-sourcing applications to scale, i.e., to handle larger datasets at lower costs. The key observation is that, in many of the above tasks, humans and machine learning algorithms can be complementary, as humans are often more accurate but slow and expensive, while algorithms are usually less accurate, but faster and cheaper. Based on this observation, we present two new active learning algorithms to combine humans and algorithms together in a crowd-sourced database. Our algorithms are based on the theory of non-parametric bootstrap, which makes our results applicable to a broad class of machine learning models. Our results, on three real-life datasets collected with Amazon's Mechanical Turk, and on 15 well-known UCI data sets, show that our methods on average ask humans to label one to two orders of magnitude fewer items to achieve the same accuracy as a baseline that labels random images, and two to eight times fewer questions than previous active learning schemes.
2,175
2,175
Submodularity in Batch Active Learning and Survey Problems on Gaussian Random Fields
Many real-world datasets can be represented in the form of a graph whose edge weights designate similarities between instances. A discrete Gaussian random field (GRF) model is a finite-dimensional Gaussian process (GP) whose prior covariance is the inverse of a graph Laplacian. Minimizing the trace of the predictive covariance Sigma (V-optimality) on GRFs has proven successful in batch active learning classification problems with budget constraints. However, its worst-case bound has been missing. We show that the V-optimality on GRFs as a function of the batch query set is submodular and hence its greedy selection algorithm guarantees an (1-1/e) approximation ratio. Moreover, GRF models have the absence-of-suppressor (AofS) condition. For active survey problems, we propose a similar survey criterion which minimizes 1'(Sigma)1. In practice, V-optimality criterion performs better than GPs with mutual information gain criteria and allows nonuniform costs for different nodes.
2,176
2,176
Generalized Canonical Correlation Analysis for Disparate Data Fusion
Manifold matching works to identify embeddings of multiple disparate data spaces into the same low-dimensional space, where joint inference can be pursued. It is an enabling methodology for fusion and inference from multiple and massive disparate data sources. In this paper we focus on a method called Canonical Correlation Analysis (CCA) and its generalization Generalized Canonical Correlation Analysis (GCCA), which belong to the more general Reduced Rank Regression (RRR) framework. We present an efficiency investigation of CCA and GCCA under different training conditions for a particular text document classification task.
2,177
2,177
Evolution and the structure of learning agents
This paper presents the thesis that all learning agents of finite information size are limited by their informational structure in what goals they can efficiently learn to achieve in a complex environment. Evolutionary change is critical for creating the required structure for all learning agents in any complex environment. The thesis implies that there is no efficient universal learning algorithm. An agent can go past the learning limits imposed by its structure only by slow evolutionary change or blind search which in a very complex environment can only give an agent an inefficient universal learning capability that can work only in evolutionary timescales or improbable luck.
2,178
2,178
Transferring Subspaces Between Subjects in Brain-Computer Interfacing
Compensating changes between a subjects' training and testing session in Brain Computer Interfacing (BCI) is challenging but of great importance for a robust BCI operation. We show that such changes are very similar between subjects, thus can be reliably estimated using data from other users and utilized to construct an invariant feature space. This novel approach to learning from other subjects aims to reduce the adverse effects of common non-stationarities, but does not transfer discriminative information. This is an important conceptual difference to standard multi-subject methods that e.g. improve the covariance matrix estimation by shrinking it towards the average of other users or construct a global feature space. These methods do not reduces the shift between training and test data and may produce poor results when subjects have very different signal characteristics. In this paper we compare our approach to two state-of-the-art multi-subject methods on toy data and two data sets of EEG recordings from subjects performing motor imagery. We show that it can not only achieve a significant increase in performance, but also that the extracted change patterns allow for a neurophysiologically meaningful interpretation.
2,179
2,179
Comunication-Efficient Algorithms for Statistical Optimization
We analyze two communication-efficient algorithms for distributed statistical optimization on large-scale data sets. The first algorithm is a standard averaging method that distributes the $N$ data samples evenly to $\nummac$ machines, performs separate minimization on each subset, and then averages the estimates. We provide a sharp analysis of this average mixture algorithm, showing that under a reasonable set of conditions, the combined parameter achieves mean-squared error that decays as $\order(N^{-1}+(N/m)^{-2})$. Whenever $m \le \sqrt{N}$, this guarantee matches the best possible rate achievable by a centralized algorithm having access to all $\totalnumobs$ samples. The second algorithm is a novel method, based on an appropriate form of bootstrap subsampling. Requiring only a single round of communication, it has mean-squared error that decays as $\order(N^{-1} + (N/m)^{-3})$, and so is more robust to the amount of parallelization. In addition, we show that a stochastic gradient-based method attains mean-squared error decaying as $O(N^{-1} + (N/ m)^{-3/2})$, easing computation at the expense of penalties in the rate of convergence. We also provide experimental evaluation of our methods, investigating their performance both on simulated data and on a large-scale regression problem from the internet search domain. In particular, we show that our methods can be used to efficiently solve an advertisement prediction problem from the Chinese SoSo Search Engine, which involves logistic regression with $N \approx 2.4 \times 10^8$ samples and $d \approx 740,000$ covariates.
2,180
2,180
Efficient Regularized Least-Squares Algorithms for Conditional Ranking on Relational Data
In domains like bioinformatics, information retrieval and social network analysis, one can find learning tasks where the goal consists of inferring a ranking of objects, conditioned on a particular target object. We present a general kernel framework for learning conditional rankings from various types of relational data, where rankings can be conditioned on unseen data objects. We propose efficient algorithms for conditional ranking by optimizing squared regression and ranking loss functions. We show theoretically, that learning with the ranking loss is likely to generalize better than with the regression loss. Further, we prove that symmetry or reciprocity properties of relations can be efficiently enforced in the learned models. Experiments on synthetic and real-world data illustrate that the proposed methods deliver state-of-the-art performance in terms of predictive power and computational efficiency. Moreover, we also show empirically that incorporating symmetry or reciprocity properties can improve the generalization performance.
2,181
2,181
On the Sensitivity of Shape Fitting Problems
In this article, we study shape fitting problems, $\epsilon$-coresets, and total sensitivity. We focus on the $(j,k)$-projective clustering problems, including $k$-median/$k$-means, $k$-line clustering, $j$-subspace approximation, and the integer $(j,k)$-projective clustering problem. We derive upper bounds of total sensitivities for these problems, and obtain $\epsilon$-coresets using these upper bounds. Using a dimension-reduction type argument, we are able to greatly simplify earlier results on total sensitivity for the $k$-median/$k$-means clustering problems, and obtain positively-weighted $\epsilon$-coresets for several variants of the $(j,k)$-projective clustering problem. We also extend an earlier result on $\epsilon$-coresets for the integer $(j,k)$-projective clustering problem in fixed dimension to the case of high dimension.
2,182
2,182
An efficient model-free estimation of multiclass conditional probability
Conventional multiclass conditional probability estimation methods, such as Fisher's discriminate analysis and logistic regression, often require restrictive distributional model assumption. In this paper, a model-free estimation method is proposed to estimate multiclass conditional probability through a series of conditional quantile regression functions. Specifically, the conditional class probability is formulated as difference of corresponding cumulative distribution functions, where the cumulative distribution functions can be converted from the estimated conditional quantile regression functions. The proposed estimation method is also efficient as its computation cost does not increase exponentially with the number of classes. The theoretical and numerical studies demonstrate that the proposed estimation method is highly competitive against the existing competitors, especially when the number of classes is relatively large.
2,183
2,183
A Bayesian Nonparametric Approach to Image Super-resolution
Super-resolution methods form high-resolution images from low-resolution images. In this paper, we develop a new Bayesian nonparametric model for super-resolution. Our method uses a beta-Bernoulli process to learn a set of recurring visual patterns, called dictionary elements, from the data. Because it is nonparametric, the number of elements found is also determined from the data. We test the results on both benchmark and natural images, comparing with several other models from the research literature. We perform large-scale human evaluation experiments to assess the visual quality of the results. In a first implementation, we use Gibbs sampling to approximate the posterior. However, this algorithm is not feasible for large-scale data. To circumvent this, we then develop an online variational Bayes (VB) algorithm. This algorithm finds high quality dictionaries in a fraction of the time needed by the Gibbs sampler.
2,184
2,184
Fast Randomized Model Generation for Shapelet-Based Time Series Classification
Time series classification is a field which has drawn much attention over the past decade. A new approach for classification of time series uses classification trees based on shapelets. A shapelet is a subsequence extracted from one of the time series in the dataset. A disadvantage of this approach is the time required for building the shapelet-based classification tree. The search for the best shapelet requires examining all subsequences of all lengths from all time series in the training set. A key goal of this work was to find an evaluation order of the shapelets space which enables fast convergence to an accurate model. The comparative analysis we conducted clearly indicates that a random evaluation order yields the best results. Our empirical analysis of the distribution of high-quality shapelets within the shapelets space provides insights into why randomized shapelets sampling is superior to alternative evaluation orders. We present an algorithm for randomized model generation for shapelet-based classification that converges extremely quickly to a model with surprisingly high accuracy after evaluating only an exceedingly small fraction of the shapelets space.
2,185
2,185
On Move Pattern Trends in a Large Go Games Corpus
We process a large corpus of game records of the board game of Go and propose a way of extracting summary information on played moves. We then apply several basic data-mining methods on the summary information to identify the most differentiating features within the summary information, and discuss their correspondence with traditional Go knowledge. We show statistically significant mappings of the features to player attributes such as playing strength or informally perceived "playing style" (e.g. territoriality or aggressivity), describe accurate classifiers for these attributes, and propose applications including seeding real-work ranks of internet players, aiding in Go study and tuning of Go-playing programs, or contribution to Go-theoretical discussion on the scope of "playing style".
2,186
2,186
Towards Ultrahigh Dimensional Feature Selection for Big Data
In this paper, we present a new adaptive feature scaling scheme for ultrahigh-dimensional feature selection on Big Data. To solve this problem effectively, we first reformulate it as a convex semi-infinite programming (SIP) problem and then propose an efficient \emph{feature generating paradigm}. In contrast with traditional gradient-based approaches that conduct optimization on all input features, the proposed method iteratively activates a group of features and solves a sequence of multiple kernel learning (MKL) subproblems of much reduced scale. To further speed up the training, we propose to solve the MKL subproblems in their primal forms through a modified accelerated proximal gradient approach. Due to such an optimization scheme, some efficient cache techniques are also developed. The feature generating paradigm can guarantee that the solution converges globally under mild conditions and achieve lower feature selection bias. Moreover, the proposed method can tackle two challenging tasks in feature selection: 1) group-based feature selection with complex structures and 2) nonlinear feature selection with explicit feature mappings. Comprehensive experiments on a wide range of synthetic and real-world datasets containing tens of million data points with $O(10^{14})$ features demonstrate the competitive performance of the proposed method over state-of-the-art feature selection methods in terms of generalization performance and training efficiency.
2,187
2,187
BPRS: Belief Propagation Based Iterative Recommender System
In this paper we introduce the first application of the Belief Propagation (BP) algorithm in the design of recommender systems. We formulate the recommendation problem as an inference problem and aim to compute the marginal probability distributions of the variables which represent the ratings to be predicted. However, computing these marginal probability functions is computationally prohibitive for large-scale systems. Therefore, we utilize the BP algorithm to efficiently compute these functions. Recommendations for each active user are then iteratively computed by probabilistic message passing. As opposed to the previous recommender algorithms, BPRS does not require solving the recommendation problem for all the users if it wishes to update the recommendations for only a single active. Further, BPRS computes the recommendations for each user with linear complexity and without requiring a training period. Via computer simulations (using the 100K MovieLens dataset), we verify that BPRS iteratively reduces the error in the predicted ratings of the users until it converges. Finally, we confirm that BPRS is comparable to the state of art methods such as Correlation-based neighborhood model (CorNgbr) and Singular Value Decomposition (SVD) in terms of rating and precision accuracy. Therefore, we believe that the BP-based recommendation algorithm is a new promising approach which offers a significant advantage on scalability while providing competitive accuracy for the recommender systems.
2,188
2,188
Learning Topic Models and Latent Bayesian Networks Under Expansion Constraints
Unsupervised estimation of latent variable models is a fundamental problem central to numerous applications of machine learning and statistics. This work presents a principled approach for estimating broad classes of such models, including probabilistic topic models and latent linear Bayesian networks, using only second-order observed moments. The sufficient conditions for identifiability of these models are primarily based on weak expansion constraints on the topic-word matrix, for topic models, and on the directed acyclic graph, for Bayesian networks. Because no assumptions are made on the distribution among the latent variables, the approach can handle arbitrary correlations among the topics or latent factors. In addition, a tractable learning method via $\ell_1$ optimization is proposed and studied in numerical experiments.
2,189
2,189
Minimizing inter-subject variability in fNIRS based Brain Computer Interfaces via multiple-kernel support vector learning
Brain signal variability in the measurements obtained from different subjects during different sessions significantly deteriorates the accuracy of most brain-computer interface (BCI) systems. Moreover these variabilities, also known as inter-subject or inter-session variabilities, require lengthy calibration sessions before the BCI system can be used. Furthermore, the calibration session has to be repeated for each subject independently and before use of the BCI due to the inter-session variability. In this study, we present an algorithm in order to minimize the above-mentioned variabilities and to overcome the time-consuming and usually error-prone calibration time. Our algorithm is based on linear programming support-vector machines and their extensions to a multiple kernel learning framework. We tackle the inter-subject or -session variability in the feature spaces of the classifiers. This is done by incorporating each subject- or session-specific feature spaces into much richer feature spaces with a set of optimal decision boundaries. Each decision boundary represents the subject- or a session specific spatio-temporal variabilities of neural signals. Consequently, a single classifier with multiple feature spaces will generalize well to new unseen test patterns even without the calibration steps. We demonstrate that classifiers maintain good performances even under the presence of a large degree of BCI variability. The present study analyzes BCI variability related to oxy-hemoglobin neural signals measured using a functional near-infrared spectroscopy.
2,190
2,190
Optimal Weighting of Multi-View Data with Low Dimensional Hidden States
In Natural Language Processing (NLP) tasks, data often has the following two properties: First, data can be chopped into multi-views which has been successfully used for dimension reduction purposes. For example, in topic classification, every paper can be chopped into the title, the main text and the references. However, it is common that some of the views are less noisier than other views for supervised learning problems. Second, unlabeled data are easy to obtain while labeled data are relatively rare. For example, articles occurred on New York Times in recent 10 years are easy to grab but having them classified as 'Politics', 'Finance' or 'Sports' need human labor. Hence less noisy features are preferred before running supervised learning methods. In this paper we propose an unsupervised algorithm which optimally weights features from different views when these views are generated from a low dimensional hidden state, which occurs in widely used models like Mixture Gaussian Model, Hidden Markov Model (HMM) and Latent Dirichlet Allocation (LDA).
2,191
2,191
Towards a learning-theoretic analysis of spike-timing dependent plasticity
This paper suggests a learning-theoretic perspective on how synaptic plasticity benefits global brain functioning. We introduce a model, the selectron, that (i) arises as the fast time constant limit of leaky integrate-and-fire neurons equipped with spiking timing dependent plasticity (STDP) and (ii) is amenable to theoretical analysis. We show that the selectron encodes reward estimates into spikes and that an error bound on spikes is controlled by a spiking margin and the sum of synaptic weights. Moreover, the efficacy of spikes (their usefulness to other reward maximizing selectrons) also depends on total synaptic strength. Finally, based on our analysis, we propose a regularized version of STDP, and show the regularization improves the robustness of neuronal learning when faced with multiple stimuli.
2,192
2,192
Supervised Blockmodelling
Collective classification models attempt to improve classification performance by taking into account the class labels of related instances. However, they tend not to learn patterns of interactions between classes and/or make the assumption that instances of the same class link to each other (assortativity assumption). Blockmodels provide a solution to these issues, being capable of modelling assortative and disassortative interactions, and learning the pattern of interactions in the form of a summary network. The Supervised Blockmodel provides good classification performance using link structure alone, whilst simultaneously providing an interpretable summary of network interactions to allow a better understanding of the data. This work explores three variants of supervised blockmodels of varying complexity and tests them on four structurally different real world networks.
2,193
2,193
Feature selection with test cost constraint
Feature selection is an important preprocessing step in machine learning and data mining. In real-world applications, costs, including money, time and other resources, are required to acquire the features. In some cases, there is a test cost constraint due to limited resources. We shall deliberately select an informative and cheap feature subset for classification. This paper proposes the feature selection with test cost constraint problem for this issue. The new problem has a simple form while described as a constraint satisfaction problem (CSP). Backtracking is a general algorithm for CSP, and it is efficient in solving the new problem on medium-sized data. As the backtracking algorithm is not scalable to large datasets, a heuristic algorithm is also developed. Experimental results show that the heuristic algorithm can find the optimal solution in most cases. We also redefine some existing feature selection problems in rough sets, especially in decision-theoretic rough sets, from the viewpoint of CSP. These new definitions provide insight to some new research directions.
2,194
2,194
Locality-Sensitive Hashing with Margin Based Feature Selection
We propose a learning method with feature selection for Locality-Sensitive Hashing. Locality-Sensitive Hashing converts feature vectors into bit arrays. These bit arrays can be used to perform similarity searches and personal authentication. The proposed method uses bit arrays longer than those used in the end for similarity and other searches and by learning selects the bits that will be used. We demonstrated this method can effectively perform optimization for cases such as fingerprint images with a large number of labels and extremely few data that share the same labels, as well as verifying that it is also effective for natural images, handwritten digits, and speech features.
2,195
2,195
Subset Selection for Gaussian Markov Random Fields
Given a Gaussian Markov random field, we consider the problem of selecting a subset of variables to observe which minimizes the total expected squared prediction error of the unobserved variables. We first show that finding an exact solution is NP-hard even for a restricted class of Gaussian Markov random fields, called Gaussian free fields, which arise in semi-supervised learning and computer vision. We then give a simple greedy approximation algorithm for Gaussian free fields on arbitrary graphs. Finally, we give a message passing algorithm for general Gaussian Markov random fields on bounded tree-width graphs.
2,196
2,196
Bayesian Mixture Models for Frequent Itemset Discovery
In binary-transaction data-mining, traditional frequent itemset mining often produces results which are not straightforward to interpret. To overcome this problem, probability models are often used to produce more compact and conclusive results, albeit with some loss of accuracy. Bayesian statistics have been widely used in the development of probability models in machine learning in recent years and these methods have many advantages, including their abilities to avoid overfitting. In this paper, we develop two Bayesian mixture models with the Dirichlet distribution prior and the Dirichlet process (DP) prior to improve the previous non-Bayesian mixture model developed for transaction dataset mining. We implement the inference of both mixture models using two methods: a collapsed Gibbs sampling scheme and a variational approximation algorithm. Experiments in several benchmark problems have shown that both mixture models achieve better performance than a non-Bayesian mixture model. The variational algorithm is the faster of the two approaches while the Gibbs sampling method achieves a more accurate results. The Dirichlet process mixture model can automatically grow to a proper complexity for a better approximation. Once the model is built, it can be very fast to query and run analysis on (typically 10 times faster than Eclat, as we will show in the experiment section). However, these approaches also show that mixture models underestimate the probabilities of frequent itemsets. Consequently, these models have a higher sensitivity but a lower specificity.
2,197
2,197
The Issue-Adjusted Ideal Point Model
We develop a model of issue-specific voting behavior. This model can be used to explore lawmakers' personal voting patterns of voting by issue area, providing an exploratory window into how the language of the law is correlated with political support. We derive approximate posterior inference algorithms based on variational methods. Across 12 years of legislative data, we demonstrate both improvement in heldout prediction performance and the model's utility in interpreting an inherently multi-dimensional space.
2,198
2,198
Movie Popularity Classification based on Inherent Movie Attributes using C4.5,PART and Correlation Coefficient
Abundance of movie data across the internet makes it an obvious candidate for machine learning and knowledge discovery. But most researches are directed towards bi-polar classification of movie or generation of a movie recommendation system based on reviews given by viewers on various internet sites. Classification of movie popularity based solely on attributes of a movie i.e. actor, actress, director rating, language, country and budget etc. has been less highlighted due to large number of attributes that are associated with each movie and their differences in dimensions. In this paper, we propose classification scheme of pre-release movie popularity based on inherent attributes using C4.5 and PART classifier algorithm and define the relation between attributes of post release movies using correlation coefficient.
2,199
2,199
More Is Better: Large Scale Partially-supervised Sentiment Classification - Appendix
We describe a bootstrapping algorithm to learn from partially labeled data, and the results of an empirical study for using it to improve performance of sentiment classification using up to 15 million unlabeled Amazon product reviews. Our experiments cover semi-supervised learning, domain adaptation and weakly supervised learning. In some cases our methods were able to reduce test error by more than half using such large amount of data. NOTICE: This is only the supplementary material.