Unnamed: 0.1
int64
0
113k
Unnamed: 0
float64
0
113k
title
stringlengths
7
246
abstract
stringlengths
6
3.31k
109,800
109,800
FreDo: Frequency Domain-based Long-Term Time Series Forecasting
The ability to forecast far into the future is highly beneficial to many applications, including but not limited to climatology, energy consumption, and logistics. However, due to noise or measurement error, it is questionable how far into the future one can reasonably predict. In this paper, we first mathematically show that due to error accumulation, sophisticated models might not outperform baseline models for long-term forecasting. To demonstrate, we show that a non-parametric baseline model based on periodicity can actually achieve comparable performance to a state-of-the-art Transformer-based model on various datasets. We further propose FreDo, a frequency domain-based neural network model that is built on top of the baseline model to enhance its performance and which greatly outperforms the state-of-the-art model. Finally, we validate that the frequency domain is indeed better by comparing univariate models trained in the frequency v.s. time domain.
109,801
109,801
Fast & Furious: Modelling Malware Detection as Evolving Data Streams
Malware is a major threat to computer systems and imposes many challenges to cyber security. Targeted threats, such as ransomware, cause millions of dollars in losses every year. The constant increase of malware infections has been motivating popular antiviruses (AVs) to develop dedicated detection strategies, which include meticulously crafted machine learning (ML) pipelines. However, malware developers unceasingly change their samples features to bypass detection. This constant evolution of malware samples causes changes to the data distribution (i.e., concept drifts) that directly affect ML model detection rates. In this work, we evaluate the impact of concept drift on malware classifiers for two Android datasets: DREBIN (~130K apps) and AndroZoo (~350K apps). Android is a ubiquitous operating system for smartphones, which stimulates attackers to regularly create and update malware to the platform. We conducted a longitudinal evaluation by (i) classifying malware samples collected over nine years (2009-2018), (ii) reviewing concept drift detection algorithms to attest its pervasiveness, (iii) comparing distinct ML approaches to mitigate the issue, and (iv) proposing an ML data stream pipeline that outperformed literature approaches. As a result, we observed that updating every component of the pipeline in response to concept drifts allows the classification model to achieve increasing detection rates as the data representation (extracted features) is updated. Furthermore, we discuss the impact of the changes on the classification models by comparing the variations in the extracted features.
109,802
109,802
ColdGuess: A General and Effective Relational Graph Convolutional Network to Tackle Cold Start Cases
Low-quality listings and bad actor behavior in online retail websites threatens e-commerce business as these result in sub-optimal buying experience and erode customer trust. When a new listing is created, how to tell it has good-quality? Is the method effective, fast, and scalable? Previous approaches often have three limitations/challenges: (1) unable to handle cold start problems where new sellers/listings lack sufficient selling histories. (2) inability of scoring hundreds of millions of listings at scale, or compromise performance for scalability. (3) has space challenges from large-scale graph with giant e-commerce business size. To overcome these limitations/challenges, we proposed ColdGuess, an inductive graph-based risk predictor built upon a heterogeneous seller product graph, which effectively identifies risky seller/product/listings at scale. ColdGuess tackles the large-scale graph by consolidated nodes, and addresses the cold start problems using homogeneous influence1. The evaluation on real data demonstrates that ColdGuess has stable performance as the number of unknown features increases. It outperforms the lightgbm2 by up to 34 pcp ROC-AUC in a cold start case when a new seller sells a new product . The resulting system, ColdGuess, is effective, adaptable to changing risky seller behavior, and is already in production
109,803
109,803
Beyond Impossibility: Balancing Sufficiency, Separation and Accuracy
Among the various aspects of algorithmic fairness studied in recent years, the tension between satisfying both \textit{sufficiency} and \textit{separation} -- e.g. the ratios of positive or negative predictive values, and false positive or false negative rates across groups -- has received much attention. Following a debate sparked by COMPAS, a criminal justice predictive system, the academic community has responded by laying out important theoretical understanding, showing that one cannot achieve both with an imperfect predictor when there is no equal distribution of labels across the groups. In this paper, we shed more light on what might be still possible beyond the impossibility -- the existence of a trade-off means we should aim to find a good balance within it. After refining the existing theoretical result, we propose an objective that aims to balance \textit{sufficiency} and \textit{separation} measures, while maintaining similar accuracy levels. We show the use of such an objective in two empirical case studies, one involving a multi-objective framework, and the other fine-tuning of a model pre-trained for accuracy. We show promising results, where better trade-offs are achieved compared to existing alternatives.
109,804
109,804
Certified Robustness Against Natural Language Attacks by Causal Intervention
Deep learning models have achieved great success in many fields, yet they are vulnerable to adversarial examples. This paper follows a causal perspective to look into the adversarial vulnerability and proposes Causal Intervention by Semantic Smoothing (CISS), a novel framework towards robustness against natural language attacks. Instead of merely fitting observational data, CISS learns causal effects p(y|do(x)) by smoothing in the latent semantic space to make robust predictions, which scales to deep architectures and avoids tedious construction of noise customized for specific attacks. CISS is provably robust against word substitution attacks, as well as empirically robust even when perturbations are strengthened by unknown attack algorithms. For example, on YELP, CISS surpasses the runner-up by 6.7% in terms of certified robustness against word substitutions, and achieves 79.4% empirical robustness when syntactic attacks are integrated.
109,805
109,805
K-12BERT: BERT for K-12 education
Online education platforms are powered by various NLP pipelines, which utilize models like BERT to aid in content curation. Since the inception of the pre-trained language models like BERT, there have also been many efforts toward adapting these pre-trained models to specific domains. However, there has not been a model specifically adapted for the education domain (particularly K-12) across subjects to the best of our knowledge. In this work, we propose to train a language model on a corpus of data curated by us across multiple subjects from various sources for K-12 education. We also evaluate our model, K12-BERT, on downstream tasks like hierarchical taxonomy tagging.
109,806
109,806
Women, artificial intelligence, and key positions in collaboration networks: Towards a more equal scientific ecosystem
Scientific collaboration in almost every discipline is mainly driven by the need of sharing knowledge, expertise, and pooled resources. Science is becoming more complex which has encouraged scientists to involve more in collaborative research projects in order to better address the challenges. As a highly interdisciplinary field with a rapidly evolving scientific landscape, artificial intelligence calls for researchers with special profiles covering a diverse set of skills and expertise. Understanding gender aspects of scientific collaboration is of paramount importance, especially in a field such as artificial intelligence that has been attracting large investments. Using social network analysis, natural language processing, and machine learning and focusing on artificial intelligence publications for the period from 2000 to 2019, in this work, we comprehensively investigated the effects of several driving factors on acquiring key positions in scientific collaboration networks through a gender lens. It was found that, regardless of gender, scientific performance in terms of quantity and impact plays a crucial in possessing the "social researcher" in the network. However, subtle differences were observed between female and male researchers in acquiring the "local influencer" role.
109,807
109,807
Low-rank Optimal Transport: Approximation, Statistics and Debiasing
The matching principles behind optimal transport (OT) play an increasingly important role in machine learning, a trend which can be observed when OT is used to disambiguate datasets in applications (e.g. single-cell genomics) or used to improve more complex methods (e.g. balanced attention in transformers or self-supervised learning). To scale to more challenging problems, there is a growing consensus that OT requires solvers that can operate on millions, not thousands, of points. The low-rank optimal transport (LOT) approach advocated in \cite{scetbon2021lowrank} holds several promises in that regard, and was shown to complement more established entropic regularization approaches, being able to insert itself in more complex pipelines, such as quadratic OT. LOT restricts the search for low-cost couplings to those that have a low-nonnegative rank, yielding linear time algorithms in cases of interest. However, these promises can only be fulfilled if the LOT approach is seen as a legitimate contender to entropic regularization when compared on properties of interest, where the scorecard typically includes theoretical properties (statistical bounds, relation to other methods) or practical aspects (debiasing, hyperparameter tuning, initialization). We target each of these areas in this paper in order to cement the impact of low-rank approaches in computational OT.
109,808
109,808
TorchNTK: A Library for Calculation of Neural Tangent Kernels of PyTorch Models
We introduce torchNTK, a python library to calculate the empirical neural tangent kernel (NTK) of neural network models in the PyTorch framework. We provide an efficient method to calculate the NTK of multilayer perceptrons. We compare the explicit differentiation implementation against autodifferentiation implementations, which have the benefit of extending the utility of the library to any architecture supported by PyTorch, such as convolutional networks. A feature of the library is that we expose the user to layerwise NTK components, and show that in some regimes a layerwise calculation is more memory efficient. We conduct preliminary experiments to demonstrate use cases for the software and probe the NTK.
109,809
109,809
Learning to Model Editing Processes
Most existing sequence generation models produce outputs in one pass, usually left-to-right. However, this is in contrast with a more natural approach that humans use in generating content; iterative refinement and editing. Recent work has introduced edit-based models for various tasks (such as neural machine translation and text style transfer), but these generally model a single edit step. In this work, we propose modeling editing processes, modeling the whole process of iteratively generating sequences. We form a conceptual framework to describe the likelihood of multi-step edits, and describe neural models that can learn a generative model of sequences based on these multistep edits. We introduce baseline results and metrics on this task, finding that modeling editing processes improves performance on a variety of axes on both our proposed task and related downstream tasks compared to previous single-step models of edits.
109,810
109,810
Hardness of Maximum Likelihood Learning of DPPs
Determinantal Point Processes (DPPs) are a widely used probabilistic model for negatively correlated sets. DPPs have been successfully employed in Machine Learning applications to select a diverse, yet representative subset of data. In seminal work on DPPs in Machine Learning, Kulesza conjectured in his PhD Thesis (2011) that the problem of finding a maximum likelihood DPP model for a given data set is NP-complete. In this work we prove Kulesza's conjecture. In fact, we prove the following stronger hardness of approximation result: even computing a $\left(1-O(\frac{1}{\log^9{N}})\right)$-approximation to the maximum log-likelihood of a DPP on a ground set of $N$ elements is NP-complete. At the same time, we also obtain the first polynomial-time algorithm that achieves a nontrivial worst-case approximation to the optimal log-likelihood: the approximation factor is $\frac{1}{(1+o(1))\log{m}}$ unconditionally (for data sets that consist of $m$ subsets), and can be improved to $1-\frac{1+o(1)}{\log N}$ if all $N$ elements appear in a $O(1/N)$-fraction of the subsets. In terms of techniques, we reduce approximating the maximum log-likelihood of DPPs on a data set to solving a gap instance of a "vector coloring" problem on a hypergraph. Such a hypergraph is built on a bounded-degree graph construction of Bogdanov, Obata and Trevisan (FOCS 2002), and is further enhanced by the strong expanders of Alon and Capalbo (FOCS 2007) to serve our purposes.
109,811
109,811
Imposing Gaussian Pre-Activations in a Neural Network
The goal of the present work is to propose a way to modify both the initialization distribution of the weights of a neural network and its activation function, such that all pre-activations are Gaussian. We propose a family of pairs initialization/activation, where the activation functions span a continuum from bounded functions (such as Heaviside or tanh) to the identity function. This work is motivated by the contradiction between existing works dealing with Gaussian pre-activations: on one side, the works in the line of the Neural Tangent Kernels and the Edge of Chaos are assuming it, while on the other side, theoretical and experimental results challenge this hypothesis. The family of pairs initialization/activation we are proposing will help us to answer this hot question: is it desirable to have Gaussian pre-activations in a neural network?
109,812
109,812
First Contact: Unsupervised Human-Machine Co-Adaptation via Mutual Information Maximization
How can we train an assistive human-machine interface (e.g., an electromyography-based limb prosthesis) to translate a user's raw command signals into the actions of a robot or computer when there is no prior mapping, we cannot ask the user for supervision in the form of action labels or reward feedback, and we do not have prior knowledge of the tasks the user is trying to accomplish? The key idea in this paper is that, regardless of the task, when an interface is more intuitive, the user's commands are less noisy. We formalize this idea as a completely unsupervised objective for optimizing interfaces: the mutual information between the user's command signals and the induced state transitions in the environment. To evaluate whether this mutual information score can distinguish between effective and ineffective interfaces, we conduct an observational study on 540K examples of users operating various keyboard and eye gaze interfaces for typing, controlling simulated robots, and playing video games. The results show that our mutual information scores are predictive of the ground-truth task completion metrics in a variety of domains, with an average Spearman's rank correlation of 0.43. In addition to offline evaluation of existing interfaces, we use our unsupervised objective to learn an interface from scratch: we randomly initialize the interface, have the user attempt to perform their desired tasks using the interface, measure the mutual information score, and update the interface to maximize mutual information through reinforcement learning. We evaluate our method through a user study with 12 participants who perform a 2D cursor control task using a perturbed mouse, and an experiment with one user playing the Lunar Lander game using hand gestures. The results show that we can learn an interface from scratch, without any user supervision or prior knowledge of tasks, in under 30 minutes.
109,813
109,813
PLAtE: A Large-scale Dataset for List Page Web Extraction
Recently, neural models have been leveraged to significantly improve the performance of information extraction from semi-structured websites. However, a barrier for continued progress is the small number of datasets large enough to train these models. In this work, we introduce the PLAtE (Pages of Lists Attribute Extraction) dataset as a challenging new web extraction task. PLAtE focuses on shopping data, specifically extractions from product review pages with multiple items. PLAtE encompasses both the tasks of: (1) finding product-list segmentation boundaries and (2) extracting attributes for each product. PLAtE is composed of 53, 905 items from 6, 810 pages, making it the first large-scale list page web extraction dataset. We construct PLAtE by collecting list pages from Common Crawl, then annotating them on Mechanical Turk. Quantitative and qualitative analyses are performed to demonstrate PLAtE has high-quality annotations. We establish strong baseline performance on PLAtE with a SOTA model achieving an F1-score of 0.750 for attribute classification and 0.915 for segmentation, indicating opportunities for future research innovations in web extraction.
109,814
109,814
Recipe2Vec: Multi-modal Recipe Representation Learning with Graph Neural Networks
Learning effective recipe representations is essential in food studies. Unlike what has been developed for image-based recipe retrieval or learning structural text embeddings, the combined effect of multi-modal information (i.e., recipe images, text, and relation data) receives less attention. In this paper, we formalize the problem of multi-modal recipe representation learning to integrate the visual, textual, and relational information into recipe embeddings. In particular, we first present Large-RG, a new recipe graph data with over half a million nodes, making it the largest recipe graph to date. We then propose Recipe2Vec, a novel graph neural network based recipe embedding model to capture multi-modal information. Additionally, we introduce an adversarial attack strategy to ensure stable learning and improve performance. Finally, we design a joint objective function of node classification and adversarial learning to optimize the model. Extensive experiments demonstrate that Recipe2Vec outperforms state-of-the-art baselines on two classic food study tasks, i.e., cuisine category classification and region prediction. Dataset and codes are available at https://github.com/meettyj/Recipe2Vec.
109,815
109,815
Sparse Mixers: Combining MoE and Mixing to build a more efficient BERT
We combine the capacity of sparsely gated Mixture-of-Experts (MoE) with the speed and stability of linear, mixing transformations to design the Sparse Mixer encoder model. The Sparse Mixer slightly outperforms (<1%) BERT on GLUE and SuperGLUE, but more importantly trains 65% faster and runs inference 61% faster. We also present a faster variant, prosaically named Fast Sparse Mixer, that marginally underperforms (<0.2%) BERT on SuperGLUE, but trains and runs nearly twice as fast: 89% faster training and 98% faster inference. We justify the design of these two models by carefully ablating through various mixing mechanisms, MoE configurations and model hyperparameters. The Sparse Mixer overcomes many of the latency and stability concerns of MoE models and offers the prospect of serving sparse student models, without resorting to distilling them to dense variants.
109,816
109,816
Reward Uncertainty for Exploration in Preference-based Reinforcement Learning
Conveying complex objectives to reinforcement learning (RL) agents often requires meticulous reward engineering. Preference-based RL methods are able to learn a more flexible reward model based on human preferences by actively incorporating human feedback, i.e. teacher's preferences between two clips of behaviors. However, poor feedback-efficiency still remains a problem in current preference-based RL algorithms, as tailored human feedback is very expensive. To handle this issue, previous methods have mainly focused on improving query selection and policy initialization. At the same time, recent exploration methods have proven to be a recipe for improving sample-efficiency in RL. We present an exploration method specifically for preference-based RL algorithms. Our main idea is to design an intrinsic reward by measuring the novelty based on learned reward. Specifically, we utilize disagreement across ensemble of learned reward models. Our intuition is that disagreement in learned reward model reflects uncertainty in tailored human feedback and could be useful for exploration. Our experiments show that exploration bonus from uncertainty in learned reward improves both feedback- and sample-efficiency of preference-based RL algorithms on complex robot manipulation tasks from MetaWorld benchmarks, compared with other existing exploration methods that measure the novelty of state visitation.
109,817
109,817
Multi-Head Online Learning for Delayed Feedback Modeling
In online advertising, it is highly important to predict the probability and the value of a conversion (e.g., a purchase). It not only impacts user experience by showing relevant ads, but also affects ROI of advertisers and revenue of marketplaces. Unlike clicks, which often occur within minutes after impressions, conversions are expected to happen over a long period of time (e.g., 30 days for online shopping). It creates a challenge, as the true labels are only available after the long delays. Either inaccurate labels (partial conversions) are used, or models are trained on stale data (e.g., from 30 days ago). The problem is more eminent in online learning, which focuses on the live performance on the latest data. In this paper, a novel solution is presented to address this challenge using multi-head modeling. Unlike traditional methods, it directly quantizes conversions into multiple windows, such as day 1, day 2, day 3-7, and day 8-30. A sub-model is trained specifically on conversions within each window. Label freshness is maximally preserved in early models (e.g., day 1 and day 2), while late conversions are accurately utilized in models with longer delays (e.g., day 8-30). It is shown to greatly exceed the performance of known methods in online learning experiments for both conversion rate (CVR) and value per click (VPC) predictions. Lastly, as a general method for delayed feedback modeling, it can be combined with any advanced ML techniques to further improve the performance.
109,818
109,818
Convolutional Neural Processes for Inpainting Satellite Images
The widespread availability of satellite images has allowed researchers to model complex systems such as disease dynamics. However, many satellite images have missing values due to measurement defects, which render them unusable without data imputation. For example, the scanline corrector for the LANDSAT 7 satellite broke down in 2003, resulting in a loss of around 20\% of its data. Inpainting involves predicting what is missing based on the known pixels and is an old problem in image processing, classically based on PDEs or interpolation methods, but recent deep learning approaches have shown promise. However, many of these methods do not explicitly take into account the inherent spatiotemporal structure of satellite images. In this work, we cast satellite image inpainting as a natural meta-learning problem, and propose using convolutional neural processes (ConvNPs) where we frame each satellite image as its own task or 2D regression problem. We show ConvNPs can outperform classical methods and state-of-the-art deep learning inpainting models on a scanline inpainting problem for LANDSAT 7 satellite images, assessed on a variety of in and out-of-distribution images.
109,819
109,819
AdaMix: Mixture-of-Adapter for Parameter-efficient Tuning of Large Language Models
Fine-tuning large-scale pre-trained language models to downstream tasks require updating hundreds of millions of parameters. This not only increases the serving cost to store a large copy of the model weights for every task, but also exhibits instability during few-shot task adaptation. Parameter-efficient techniques have been developed that tune small trainable components (e.g., adapters) injected in the large model while keeping most of the model weights frozen. The prevalent mechanism to increase adapter capacity is to increase the bottleneck dimension which increases the adapter parameters. In this work, we introduce a new mechanism to improve adapter capacity without increasing parameters or computational cost by two key techniques. (i) We introduce multiple shared adapter components in each layer of the Transformer architecture. We leverage sparse learning via random routing to update the adapter parameters (encoder is kept frozen) resulting in the same amount of computational cost (FLOPs) as that of training a single adapter. (ii) We propose a simple merging mechanism to average the weights of multiple adapter components to collapse to a single adapter in each Transformer layer, thereby, keeping the overall parameters also the same but with significant performance improvement. We demonstrate these techniques to work well across multiple task settings including fully supervised and few-shot Natural Language Understanding tasks. By only tuning 0.23% of a pre-trained language model's parameters, our model outperforms the full model fine-tuning performance and several competing methods.
109,820
109,820
Linear Connectivity Reveals Generalization Strategies
It is widely accepted in the mode connectivity literature that when two neural networks are trained similarly on the same data, they are connected by a path through parameter space over which test set accuracy is maintained. Under some circumstances, including transfer learning from pretrained models, these paths are presumed to be linear. In contrast to existing results, we find that among text classifiers (trained on MNLI, QQP, and CoLA), some pairs of finetuned models have large barriers of increasing loss on the linear paths between them. On each task, we find distinct clusters of models which are linearly connected on the test loss surface, but are disconnected from models outside the cluster -- models that occupy separate basins on the surface. By measuring performance on specially-crafted diagnostic datasets, we find that these clusters correspond to different generalization strategies: one cluster behaves like a bag of words model under domain shift, while another cluster uses syntactic heuristics. Our work demonstrates how the geometry of the loss surface can guide models towards different heuristic functions.
109,821
109,821
Differentially Private AUC Computation in Vertical Federated Learning
Federated learning has gained great attention recently as a privacy-enhancing tool to jointly train a machine learning model by multiple parties. As a sub-category, vertical federated learning (vFL) focuses on the scenario where features and labels are split into different parties. The prior work on vFL has mostly studied how to protect label privacy during model training. However, model evaluation in vFL might also lead to potential leakage of private label information. One mitigation strategy is to apply label differential privacy (DP) but it gives bad estimations of the true (non-private) metrics. In this work, we propose two evaluation algorithms that can more accurately compute the widely used AUC (area under curve) metric when using label DP in vFL. Through extensive experiments, we show our algorithms can achieve more accurate AUCs compared to the baselines.
109,822
109,822
Tiered Reinforcement Learning: Pessimism in the Face of Uncertainty and Constant Regret
We propose a new learning framework that captures the tiered structure of many real-world user-interaction applications, where the users can be divided into two groups based on their different tolerance on exploration risks and should be treated separately. In this setting, we simultaneously maintain two policies $\pi^{\text{O}}$ and $\pi^{\text{E}}$: $\pi^{\text{O}}$ ("O" for "online") interacts with more risk-tolerant users from the first tier and minimizes regret by balancing exploration and exploitation as usual, while $\pi^{\text{E}}$ ("E" for "exploit") exclusively focuses on exploitation for risk-averse users from the second tier utilizing the data collected so far. An important question is whether such a separation yields advantages over the standard online setting (i.e., $\pi^{\text{E}}=\pi^{\text{O}}$) for the risk-averse users. We individually consider the gap-independent vs.~gap-dependent settings. For the former, we prove that the separation is indeed not beneficial from a minimax perspective. For the latter, we show that if choosing Pessimistic Value Iteration as the exploitation algorithm to produce $\pi^{\text{E}}$, we can achieve a constant regret for risk-averse users independent of the number of episodes $K$, which is in sharp contrast to the $\Omega(\log K)$ regret for any online RL algorithms in the same setting, while the regret of $\pi^{\text{O}}$ (almost) maintains its online regret optimality and does not need to compromise for the success of $\pi^{\text{E}}$.
109,823
109,823
Physics Guided Machine Learning for Variational Multiscale Reduced Order Modeling
We propose a new physics guided machine learning (PGML) paradigm that leverages the variational multiscale (VMS) framework and available data to dramatically increase the accuracy of reduced order models (ROMs) at a modest computational cost. The hierarchical structure of the ROM basis and the VMS framework enable a natural separation of the resolved and unresolved ROM spatial scales. Modern PGML algorithms are used to construct novel models for the interaction among the resolved and unresolved ROM scales. Specifically, the new framework builds ROM operators that are closest to the true interaction terms in the VMS framework. Finally, machine learning is used to reduce the projection error and further increase the ROM accuracy. Our numerical experiments for a two-dimensional vorticity transport problem show that the novel PGML-VMS-ROM paradigm maintains the low computational cost of current ROMs, while significantly increasing the ROM accuracy.
109,824
109,824
Deletion and Insertion Tests in Regression Models
A basic task in explainable AI (XAI) is to identify the most important features behind a prediction made by a black box function $f$. The insertion and deletion tests of \cite{petsiuk2018rise} are used to judge the quality of algorithms that rank pixels from most to least important for a classification. Motivated by regression problems we establish a formula for their area under the curve (AUC) criteria in terms of certain main effects and interactions in an anchored decomposition of $f$. We find an expression for the expected value of the AUC under a random ordering of inputs to $f$ and propose an alternative area above a straight line for the regression setting. We use this criterion to compare feature importances computed by integrated gradients (IG) to those computed by Kernel SHAP (KS). Exact computation of KS grows exponentially with dimension, while that of IG grows linearly with dimension. In two data sets including binary variables we find that KS is superior to IG in insertion and deletion tests, but only by a very small amount. Our comparison problems include some binary inputs that pose a challenge to IG because it must use values between the possible variable levels. We show that IG will match KS when $f$ is an additive function plus a multilinear function of the variables. This includes a multilinear interpolation over the binary variables that would cause IG to have exponential cost in a naive implementation.
109,825
109,825
VulBERTa: Simplified Source Code Pre-Training for Vulnerability Detection
This paper presents VulBERTa, a deep learning approach to detect security vulnerabilities in source code. Our approach pre-trains a RoBERTa model with a custom tokenisation pipeline on real-world code from open-source C/C++ projects. The model learns a deep knowledge representation of the code syntax and semantics, which we leverage to train vulnerability detection classifiers. We evaluate our approach on binary and multi-class vulnerability detection tasks across several datasets (Vuldeepecker, Draper, REVEAL and muVuldeepecker) and benchmarks (CodeXGLUE and D2A). The evaluation results show that VulBERTa achieves state-of-the-art performance and outperforms existing approaches across different datasets, despite its conceptual simplicity, and limited cost in terms of size of training data and number of model parameters.
109,826
109,826
Non-stationary Bandits with Knapsacks
In this paper, we study the problem of bandits with knapsacks (BwK) in a non-stationary environment. The BwK problem generalizes the multi-arm bandit (MAB) problem to model the resource consumption associated with playing each arm. At each time, the decision maker/player chooses to play an arm, and s/he will receive a reward and consume certain amount of resource from each of the multiple resource types. The objective is to maximize the cumulative reward over a finite horizon subject to some knapsack constraints on the resources. Existing works study the BwK problem under either a stochastic or adversarial environment. Our paper considers a non-stationary environment which continuously interpolates between these two extremes. We first show that the traditional notion of variation budget is insufficient to characterize the non-stationarity of the BwK problem for a sublinear regret due to the presence of the constraints, and then we propose a new notion of global non-stationarity measure. We employ both non-stationarity measures to derive upper and lower bounds for the problem. Our results are based on a primal-dual analysis of the underlying linear programs and highlight the interplay between the constraints and the non-stationarity. Finally, we also extend the non-stationarity measure to the problem of online convex optimization with constraints and obtain new regret bounds accordingly.
109,827
109,827
Towards Understanding Label Regularization for Fine-tuning Pre-trained Language Models
Knowledge Distillation (KD) is a prominent neural model compression technique which heavily relies on teacher network predictions to guide the training of a student model. Considering the ever-growing size of pre-trained language models (PLMs), KD is often adopted in many NLP tasks involving PLMs. However, it is evident that in KD, deploying the teacher network during training adds to the memory and computational requirements of training. In the computer vision literature, the necessity of the teacher network is put under scrutiny by showing that KD is a label regularization technique that can be replaced with lighter teacher-free variants such as the label-smoothing technique. However, to the best of our knowledge, this issue is not investigated in NLP. Therefore, this work concerns studying different label regularization techniques and whether we actually need the teacher labels to fine-tune smaller PLM student networks on downstream tasks. In this regard, we did a comprehensive set of experiments on different PLMs such as BERT, RoBERTa, and GPT with more than 600 distinct trials and ran each configuration five times. This investigation led to a surprising observation that KD and other label regularization techniques do not play any meaningful role over regular fine-tuning when the student model is pre-trained. We further explore this phenomenon in different settings of NLP and computer vision tasks and demonstrate that pre-training itself acts as a kind of regularization, and additional label regularization is unnecessary.
109,828
109,828
Additive Logistic Mechanism for Privacy-Preserving Self-Supervised Learning
We study the privacy risks that are associated with training a neural network's weights with self-supervised learning algorithms. Through empirical evidence, we show that the fine-tuning stage, in which the network weights are updated with an informative and often private dataset, is vulnerable to privacy attacks. To address the vulnerabilities, we design a post-training privacy-protection algorithm that adds noise to the fine-tuned weights and propose a novel differential privacy mechanism that samples noise from the logistic distribution. Compared to the two conventional additive noise mechanisms, namely the Laplace and the Gaussian mechanisms, the proposed mechanism uses a bell-shaped distribution that resembles the distribution of the Gaussian mechanism, and it satisfies pure $\epsilon$-differential privacy similar to the Laplace mechanism. We apply membership inference attacks on both unprotected and protected models to quantify the trade-off between the models' privacy and performance. We show that the proposed protection algorithm can effectively reduce the attack accuracy to roughly 50\%-equivalent to random guessing-while maintaining a performance loss below 5\%.
109,829
109,829
Lyapunov function approach for approximation algorithm design and analysis: with applications in submodular maximization
We propose a two-phase systematical framework for approximation algorithm design and analysis via Lyapunov function. The first phase consists of using Lyapunov function as an input and outputs a continuous-time approximation algorithm with a provable approximation ratio. The second phase then converts this continuous-time algorithm to a discrete-time algorithm with almost the same approximation ratio along with provable time complexity. One distinctive feature of our framework is that we only need to know the parametric form of the Lyapunov function whose complete specification will not be decided until the end of the first phase by maximizing the approximation ratio of the continuous-time algorithm. Some immediate benefits of the Lyapunov function approach include: (i) unifying many existing algorithms; (ii) providing a guideline to design and analyze new algorithms; and (iii) offering new perspectives to potentially improve existing algorithms. We use various submodular maximization problems as running examples to illustrate our framework.
109,830
109,830
Generating Natural Language Proofs with Verifier-Guided Search
Deductive reasoning (drawing conclusions from assumptions) is a challenging problem in NLP. In this work, we focus on proof generation: given a hypothesis and a set of supporting facts in natural language, the model generates a proof tree indicating how to deduce the hypothesis from supporting facts. Instead of generating the entire proof in one shot, prior work has demonstrated the promise of stepwise generation but achieved limited success on real-world data. Existing stepwise methods struggle to generate proof steps that are both valid and relevant. In this paper, we present a novel stepwise method NLProofS (Natural Language Proof Search), which learns to generate relevant steps conditioning on the hypothesis. At the core of our approach, we train an independent verifier to check the validity of proof steps. Instead of generating steps greedily, we search for proofs maximizing a global proof score judged by the verifier. NLProofS achieves state-of-the-art performance on EntailmentBank and RuleTaker. For example, it improves the percentage of correctly predicted proofs from 20.9% to 33.3% in the distractor setting of EntailmentBank. This is the first time stepwise methods have led to better generation of challenging human-authored proofs.
109,831
109,831
Over-the-Air Design of GAN Training for mmWave MIMO Channel Estimation
Future wireless systems are trending towards higher carrier frequencies that offer larger communication bandwidth but necessitate the use of large antenna arrays. Existing signal processing techniques for channel estimation do not scale well to this "high-dimensional" regime in terms of performance and pilot overhead. Meanwhile, training deep learning based approaches for channel estimation requires large labeled datasets mapping pilot measurements to clean channel realizations, which can only be generated offline using simulated channels. In this paper, we develop a novel unsupervised over-the-air (OTA) algorithm that utilizes noisy received pilot measurements to train a deep generative model to output beamspace MIMO channel realizations. Our approach leverages Generative Adversarial Networks (GAN), while using a conditional input to distinguish between Line-of-Sight (LOS) and Non-Line-of-Sight (NLOS) channel realizations. We also present a federated implementation of the OTA algorithm that distributes the GAN training over multiple users and greatly reduces the user side computation. We then formulate channel estimation from a limited number of pilot measurements as an inverse problem and reconstruct the channel by optimizing the input vector of the trained generative model. Our proposed approach significantly outperforms Orthogonal Matching Pursuit on both LOS and NLOS channel models, and EM-GM-AMP -- an Approximate Message Passing algorithm -- on LOS channel models, while achieving comparable performance on NLOS channel models in terms of the normalized channel reconstruction error. More importantly, our proposed framework has the potential to be trained online using real noisy pilot measurements, is not restricted to a specific channel model and can even be utilized for a federated OTA design of a dataset generator from noisy data.
109,832
109,832
FLEURS: Few-shot Learning Evaluation of Universal Representations of Speech
We introduce FLEURS, the Few-shot Learning Evaluation of Universal Representations of Speech benchmark. FLEURS is an n-way parallel speech dataset in 102 languages built on top of the machine translation FLoRes-101 benchmark, with approximately 12 hours of speech supervision per language. FLEURS can be used for a variety of speech tasks, including Automatic Speech Recognition (ASR), Speech Language Identification (Speech LangID), Translation and Retrieval. In this paper, we provide baselines for the tasks based on multilingual pre-trained models like mSLAM. The goal of FLEURS is to enable speech technology in more languages and catalyze research in low-resource speech understanding.
109,833
109,833
Transportation-Inequalities, Lyapunov Stability and Sampling for Dynamical Systems on Continuous State Space
We study the concentration phenomenon for discrete-time random dynamical systems with an unbounded state space. We develop a heuristic approach towards obtaining exponential concentration inequalities for dynamical systems using an entirely functional analytic framework. We also show that existence of exponential-type Lyapunov function, compared to the purely deterministic setting, not only implies stability but also exponential concentration inequalities for sampling from the stationary distribution, via \emph{transport-entropy inequality} (T-E). These results have significant impact in \emph{reinforcement learning} (RL) and \emph{controls}, leading to exponential concentration inequalities even for unbounded observables, while neither assuming reversibility nor exact knowledge of random dynamical system (assumptions at heart of concentration inequalities in statistical mechanics and Markov diffusion processes).
109,834
109,834
MAVIPER: Learning Decision Tree Policies for Interpretable Multi-Agent Reinforcement Learning
Many recent breakthroughs in multi-agent reinforcement learning (MARL) require the use of deep neural networks, which are challenging for human experts to interpret and understand. On the other hand, existing work on interpretable RL has shown promise in extracting more interpretable decision tree-based policies, but only in the single-agent setting. To fill this gap, we propose the first set of interpretable MARL algorithms that extract decision-tree policies from neural networks trained with MARL. The first algorithm, IVIPER, extends VIPER, a recent method for single-agent interpretable RL, to the multi-agent setting. We demonstrate that IVIPER can learn high-quality decision-tree policies for each agent. To better capture coordination between agents, we propose a novel centralized decision-tree training algorithm, MAVIPER. MAVIPER jointly grows the trees of each agent by predicting the behavior of the other agents using their anticipated trees, and uses resampling to focus on states that are critical for its interactions with other agents. We show that both algorithms generally outperform the baselines and that MAVIPER-trained agents achieve better-coordinated performance than IVIPER-trained agents on three different multi-agent particle-world environments.
109,835
109,835
Recipe for a General, Powerful, Scalable Graph Transformer
We propose a recipe on how to build a general, powerful, scalable (GPS) graph Transformer with linear complexity and state-of-the-art results on a diverse set of benchmarks. Graph Transformers (GTs) have gained popularity in the field of graph representation learning with a variety of recent publications but they lack a common foundation about what constitutes a good positional or structural encoding, and what differentiates them. In this paper, we summarize the different types of encodings with a clearer definition and categorize them as being $\textit{local}$, $\textit{global}$ or $\textit{relative}$. Further, GTs remain constrained to small graphs with few hundred nodes, and we propose the first architecture with a complexity linear to the number of nodes and edges $O(N+E)$ by decoupling the local real-edge aggregation from the fully-connected Transformer. We argue that this decoupling does not negatively affect the expressivity, with our architecture being a universal function approximator for graphs. Our GPS recipe consists of choosing 3 main ingredients: (i) positional/structural encoding, (ii) local message-passing mechanism, and (iii) global attention mechanism. We build and open-source a modular framework $\textit{GraphGPS}$ that supports multiple types of encodings and that provides efficiency and scalability both in small and large graphs. We test our architecture on 11 benchmarks and show very competitive results on all of them, show-casing the empirical benefits gained by the modularity and the combination of different strategies.
109,836
109,836
Investigating Information Inconsistency in Multilingual Open-Domain Question Answering
Retrieval based open-domain QA systems use retrieved documents and answer-span selection over retrieved documents to find best-answer candidates. We hypothesize that multilingual Question Answering (QA) systems are prone to information inconsistency when it comes to documents written in different languages, because these documents tend to provide a model with varying information about the same topic. To understand the effects of the biased availability of information and cultural influence, we analyze the behavior of multilingual open-domain question answering models with a focus on retrieval bias. We analyze if different retriever models present different passages given the same question in different languages on TyDi QA and XOR-TyDi QA, two multilingualQA datasets. We speculate that the content differences in documents across languages might reflect cultural divergences and/or social biases.
109,837
109,837
Linear Algorithms for Nonparametric Multiclass Probability Estimation
Multiclass probability estimation is the problem of estimating conditional probabilities of a data point belonging to a class given its covariate information. It has broad applications in statistical analysis and data science. Recently a class of weighted Support Vector Machines (wSVMs) has been developed to estimate class probabilities through ensemble learning for $K$-class problems (Wu, Zhang and Liu, 2010; Wang, Zhang and Wu, 2019), where $K$ is the number of classes. The estimators are robust and achieve high accuracy for probability estimation, but their learning is implemented through pairwise coupling, which demands polynomial time in $K$. In this paper, we propose two new learning schemes, the baseline learning and the One-vs-All (OVA) learning, to further improve wSVMs in terms of computational efficiency and estimation accuracy. In particular, the baseline learning has optimal computational complexity in the sense that it is linear in $K$. Though not being most efficient in computation, the OVA offers the best estimation accuracy among all the procedures under comparison. The resulting estimators are distribution-free and shown to be consistent. We further conduct extensive numerical experiments to demonstrate finite sample performance.
109,838
109,838
Augmentation-induced Consistency Regularization for Classification
Deep neural networks have become popular in many supervised learning tasks, but they may suffer from overfitting when the training dataset is limited. To mitigate this, many researchers use data augmentation, which is a widely used and effective method for increasing the variety of datasets. However, the randomness introduced by data augmentation causes inevitable inconsistency between training and inference, which leads to poor improvement. In this paper, we propose a consistency regularization framework based on data augmentation, called CR-Aug, which forces the output distributions of different sub models generated by data augmentation to be consistent with each other. Specifically, CR-Aug evaluates the discrepancy between the output distributions of two augmented versions of each sample, and it utilizes a stop-gradient operation to minimize the consistency loss. We implement CR-Aug to image and audio classification tasks and conduct extensive experiments to verify its effectiveness in improving the generalization ability of classifiers. Our CR-Aug framework is ready-to-use, it can be easily adapted to many state-of-the-art network architectures. Our empirical results show that CR-Aug outperforms baseline methods by a significant margin.
109,839
109,839
sat2pc: Estimating Point Cloud of Building Roofs from 2D Satellite Images
Three-dimensional (3D) urban models have gained interest because of their applications in many use-cases such as urban planning and virtual reality. However, generating these 3D representations requires LiDAR data, which are not always readily available. Thus, the applicability of automated 3D model generation algorithms is limited to a few locations. In this paper, we propose sat2pc, a deep learning architecture that predicts the point cloud of a building roof from a single 2D satellite image. Our architecture combines Chamfer distance and EMD loss, resulting in better 2D to 3D performance. We extensively evaluate our model and perform ablation studies on a building roof dataset. Our results show that sat2pc was able to outperform existing baselines by at least 18.6%. Further, we show that the predicted point cloud captures more detail and geometric characteristics than other baselines.
109,840
109,840
FBNETGEN: Task-aware GNN-based fMRI Analysis via Functional Brain Network Generation
Functional magnetic resonance imaging (fMRI) is one of the most common imaging modalities to investigate brain functions. Recent studies in neuroscience stress the great potential of functional brain networks constructed from fMRI data for clinical predictions. Traditional functional brain networks, however, are noisy and unaware of downstream prediction tasks, while also incompatible with the deep graph neural network (GNN) models. In order to fully unleash the power of GNNs in network-based fMRI analysis, we develop FBNETGEN, a task-aware and interpretable fMRI analysis framework via deep brain network generation. In particular, we formulate (1) prominent region of interest (ROI) features extraction, (2) brain networks generation, and (3) clinical predictions with GNNs, in an end-to-end trainable model under the guidance of particular prediction tasks. Along with the process, the key novel component is the graph generator which learns to transform raw time-series features into task-oriented brain networks. Our learnable graphs also provide unique interpretations by highlighting prediction-related brain regions. Comprehensive experiments on two datasets, i.e., the recently released and currently largest publicly available fMRI dataset Adolescent Brain Cognitive Development (ABCD), and the widely-used fMRI dataset PNC, prove the superior effectiveness and interpretability of FBNETGEN. The implementation is available at https://github.com/Wayfear/FBNETGEN.
109,841
109,841
A Convergence Theory for Over-parameterized Variational Quantum Eigensolvers
The Variational Quantum Eigensolver (VQE) is a promising candidate for quantum applications on near-term Noisy Intermediate-Scale Quantum (NISQ) computers. Despite a lot of empirical studies and recent progress in theoretical understanding of VQE's optimization landscape, the convergence for optimizing VQE is far less understood. We provide the first rigorous analysis of the convergence of VQEs in the over-parameterization regime. By connecting the training dynamics with the Riemannian Gradient Flow on the unit-sphere, we establish a threshold on the sufficient number of parameters for efficient convergence, which depends polynomially on the system dimension and the spectral ratio, a property of the problem Hamiltonian, and could be resilient to gradient noise to some extent. We further illustrate that this overparameterization threshold could be vastly reduced for specific VQE instances by establishing an ansatz-dependent threshold paralleling our main result. We showcase that our ansatz-dependent threshold could serve as a proxy of the trainability of different VQE ansatzes without performing empirical experiments, which hence leads to a principled way of evaluating ansatz design. Finally, we conclude with a comprehensive empirical study that supports our theoretical findings.
109,842
109,842
Federated Self-supervised Learning for Heterogeneous Clients
Federated Learning has become an important learning paradigm due to its privacy and computational benefits. As the field advances, two key challenges that still remain to be addressed are: (1) system heterogeneity - variability in the compute and/or data resources present on each client, and (2) lack of labeled data in certain federated settings. Several recent developments have tried to overcome these challenges independently. In this work, we propose a unified and systematic framework, \emph{Heterogeneous Self-supervised Federated Learning} (Hetero-SSFL) for enabling self-supervised learning with federation on heterogeneous clients. The proposed framework allows collaborative representation learning across all the clients without imposing architectural constraints or requiring presence of labeled data. The key idea in Hetero-SSFL is to let each client train its unique self-supervised model and enable the joint learning across clients by aligning the lower dimensional representations on a common dataset. The entire training procedure could be viewed as self and peer-supervised as both the local training and the alignment procedures do not require presence of any labeled data. As in conventional self-supervised learning, the obtained client models are task independent and can be used for varied end-tasks. We provide a convergence guarantee of the proposed framework for non-convex objectives in heterogeneous settings and also empirically demonstrate that our proposed approach outperforms the state of the art methods by a significant margin.
109,843
109,843
The Dialog Must Go On: Improving Visual Dialog via Generative Self-Training
Visual dialog (VisDial) is a task of answering a sequence of questions grounded in an image, using the dialog history as context. Prior work has trained the dialog agents solely on VisDial data via supervised learning or leveraged pre-training on related vision-and-language datasets. This paper presents a semi-supervised learning approach for visually-grounded dialog, called Generative Self-Training (GST), to leverage unlabeled images on the Web. Specifically, GST first retrieves in-domain images through out-of-distribution detection and generates synthetic dialogs regarding the images via multimodal conditional text generation. GST then trains a dialog agent on the synthetic and the original VisDial data. As a result, GST scales the amount of training data up to an order of magnitude that of VisDial (1.2M to 12.9M QA data). For robust training of the generated dialogs, we also propose perplexity-based data selection and multimodal consistency regularization. Evaluation on VisDial v1.0 and v0.9 datasets shows that GST achieves new state-of-the-art results on both datasets. We further observe strong performance gains in the low-data regime (up to 9.35 absolute points on NDCG).
109,844
109,844
Memorization in NLP Fine-tuning Methods
Large language models are shown to present privacy risks through memorization of training data, and several recent works have studied such risks for the pre-training phase. Little attention, however, has been given to the fine-tuning phase and it is not well understood how different fine-tuning methods (such as fine-tuning the full model, the model head, and adapter) compare in terms of memorization risk. This presents increasing concern as the "pre-train and fine-tune" paradigm proliferates. In this paper, we empirically study memorization of fine-tuning methods using membership inference and extraction attacks, and show that their susceptibility to attacks is very different. We observe that fine-tuning the head of the model has the highest susceptibility to attacks, whereas fine-tuning smaller adapters appears to be less vulnerable to known extraction attacks.
109,845
109,845
Exact Phase Transitions in Deep Learning
This work reports deep-learning-unique first-order and second-order phase transitions, whose phenomenology closely follows that in statistical physics. In particular, we prove that the competition between prediction error and model complexity in the training loss leads to the second-order phase transition for nets with one hidden layer and the first-order phase transition for nets with more than one hidden layer. The proposed theory is directly relevant to the optimization of neural networks and points to an origin of the posterior collapse problem in Bayesian deep learning.
109,846
109,846
Toward Discovering Options that Achieve Faster Planning
We propose a new objective for option discovery that emphasizes the computational advantage of using options in planning. For a given set of episodic tasks and a given number of options, the objective prefers options that can be used to achieve a high return by composing few options. By composing few options, fast planning can be achieved. When faced with new tasks similar to the given ones, the discovered options are also expected to accelerate planning. Our objective extends the objective proposed by Harb et al. (2018) for the single-task setting to the multi-task setting. A closer look at Harb et al.'s objective shows that the best options discovered given one task are not likely to be useful for future unseen tasks and that the multi-task setting is indeed necessary for this purpose. In the same paper, Harb et al. also proposed an algorithm to optimize their objective, and the algorithm can be naturally extended to the multi-task setting. We empirically show that in the four-room domain the extension does not achieve a high objective value and propose a new algorithm that better optimizes the proposed objective. In the same four-room domain, we show that 1) a higher objective value is typically associated with options with which fewer planning iterations are needed to achieve near-optimal performance, 2) our new algorithm achieves a high objective value, which is close to the value achieved by a set of human-designed options, 3) the best number of planning iterations given the discovered options is much smaller and matches it obtained given human-designed options, and 4) the options produced by our algorithm also make intuitive sense because they move to and terminate at cells near hallways connecting two neighbor rooms.
109,847
109,847
Skill Machines: Temporal Logic Composition in Reinforcement Learning
A major challenge in reinforcement learning is specifying tasks in a manner that is both interpretable and verifiable. One common approach is to specify tasks through reward machines -- finite state machines that encode the task to be solved. We introduce skill machines, a representation that can be learned directly from these reward machines that encode the solution to such tasks. We propose a framework where an agent first learns a set of base skills in a reward-free setting, and then combines these skills with the learned skill machine to produce composite behaviours specified by any regular language, such as linear temporal logics. This provides the agent with the ability to map from complex logical task specifications to near-optimal behaviours zero-shot. We demonstrate our approach in both a tabular and high-dimensional video game environment, where an agent is faced with several of these complex, long-horizon tasks. Our results indicate that the agent is capable of satisfying extremely complex task specifications, producing near optimal performance with no further learning. Finally, we demonstrate that the performance of skill machines can be improved with regular offline reinforcement learning algorithms when optimal behaviours are desired.
109,848
109,848
Structured Uncertainty in the Observation Space of Variational Autoencoders
Variational autoencoders (VAEs) are a popular class of deep generative models with many variants and a wide range of applications. Improvements upon the standard VAE mostly focus on the modelling of the posterior distribution over the latent space and the properties of the neural network decoder. In contrast, improving the model for the observational distribution is rarely considered and typically defaults to a pixel-wise independent categorical or normal distribution. In image synthesis, sampling from such distributions produces spatially-incoherent results with uncorrelated pixel noise, resulting in only the sample mean being somewhat useful as an output prediction. In this paper, we aim to stay true to VAE theory by improving the samples from the observational distribution. We propose an alternative model for the observation space, encoding spatial dependencies via a low-rank parameterisation. We demonstrate that this new observational distribution has the ability to capture relevant covariance between pixels, resulting in spatially-coherent samples. In contrast to pixel-wise independent distributions, our samples seem to contain semantically meaningful variations from the mean allowing the prediction of multiple plausible outputs with a single forward pass.
109,849
109,849
Is a Question Decomposition Unit All We Need?
Large Language Models (LMs) have achieved state-of-the-art performance on many Natural Language Processing (NLP) benchmarks. With the growing number of new benchmarks, we build bigger and more complex LMs. However, building new LMs may not be an ideal option owing to the cost, time and environmental impact associated with it. We explore an alternative route: can we modify data by expressing it in terms of the model's strengths, so that a question becomes easier for models to answer? We investigate if humans can decompose a hard question into a set of simpler questions that are relatively easier for models to solve. We analyze a range of datasets involving various forms of reasoning and find that it is indeed possible to significantly improve model performance (24% for GPT3 and 29% for RoBERTa-SQuAD along with a symbolic calculator) via decomposition. Our approach provides a viable option to involve people in NLP research in a meaningful way. Our findings indicate that Human-in-the-loop Question Decomposition (HQD) can potentially provide an alternate path to building large LMs.
109,850
109,850
Misleading Deep-Fake Detection with GAN Fingerprints
Generative adversarial networks (GANs) have made remarkable progress in synthesizing realistic-looking images that effectively outsmart even humans. Although several detection methods can recognize these deep fakes by checking for image artifacts from the generation process, multiple counterattacks have demonstrated their limitations. These attacks, however, still require certain conditions to hold, such as interacting with the detection method or adjusting the GAN directly. In this paper, we introduce a novel class of simple counterattacks that overcomes these limitations. In particular, we show that an adversary can remove indicative artifacts, the GAN fingerprint, directly from the frequency spectrum of a generated image. We explore different realizations of this removal, ranging from filtering high frequencies to more nuanced frequency-peak cleansing. We evaluate the performance of our attack with different detection methods, GAN architectures, and datasets. Our results show that an adversary can often remove GAN fingerprints and thus evade the detection of generated images.
109,851
109,851
RLPrompt: Optimizing Discrete Text Prompts With Reinforcement Learning
Prompting has shown impressive success in enabling large pretrained language models (LMs) to perform diverse NLP tasks, especially when only few downstream data are available. Automatically finding the optimal prompt for each task, however, is challenging. Most existing work resorts to tuning soft prompt (e.g., embeddings) which falls short of interpretability, reusability across LMs, and applicability when gradients are not accessible. Discrete prompt, on the other hand, is difficult to optimize, and is often created by "enumeration (e.g., paraphrasing)-then-selection" heuristics that do not explore the prompt space systematically. This paper proposes RLPrompt, an efficient discrete prompt optimization approach with reinforcement learning (RL). RLPrompt formulates a parameter-efficient policy network that generates the desired discrete prompt after training with reward. To overcome the complexity and stochasticity of reward signals by the large LM environment, we incorporate effective reward stabilization that substantially enhances the training efficiency. RLPrompt is flexibly applicable to different types of LMs, such as masked (e.g., BERT) and left-to-right models (e.g., GPTs), for both classification and generation tasks. Experiments on few-shot classification and unsupervised text style transfer show superior performance over a wide range of existing finetuning or prompting methods. Interestingly, the resulting optimized prompts are often ungrammatical gibberish text; and surprisingly, those gibberish prompts are transferrable between different LMs to retain significant performance, indicating LM prompting may not follow human language patterns.
109,852
109,852
Learning from time-dependent streaming data with online stochastic algorithms
We study stochastic algorithms in a streaming framework, trained on samples coming from a dependent data source. In this streaming framework, we analyze the convergence of Stochastic Gradient (SG) methods in a non-asymptotic manner; this includes various SG methods such as the well-known stochastic gradient descent (i.e., Robbins-Monro algorithm), mini-batch SG methods, together with their averaged estimates (i.e., Polyak-Ruppert averaged). Our results form a heuristic by linking the level of dependency and convexity to the rest of the model parameters. This heuristic provides new insights into choosing the optimal learning rate, which can help increase the stability of SGbased methods; these investigations suggest large streaming batches with slow decaying learning rates for highly dependent data sources.
109,853
109,853
Learning dynamics from partial observations with structured neural ODEs
Identifying dynamical systems from experimental data is a notably difficult task. Prior knowledge generally helps, but the extent of this knowledge varies with the application, and customized models are often needed. We propose a flexible framework to incorporate a broad spectrum of physical insight into neural ODE-based system identification, giving physical interpretability to the resulting latent space. This insight is either enforced through hard constraints in the optimization problem or added in its cost function. In order to link the partial and possibly noisy observations to the latent state, we rely on tools from nonlinear observer theory to build a recognition model. We demonstrate the performance of the proposed approach on numerical simulations and on an experimental dataset from a robotic exoskeleton.
109,854
109,854
Towards a Fair Comparison and Realistic Design and Evaluation Framework of Android Malware Detectors
As in other cybersecurity areas, machine learning (ML) techniques have emerged as a promising solution to detect Android malware. In this sense, many proposals employing a variety of algorithms and feature sets have been presented to date, often reporting impresive detection performances. However, the lack of reproducibility and the absence of a standard evaluation framework make these proposals difficult to compare. In this paper, we perform an analysis of 10 influential research works on Android malware detection using a common evaluation framework. We have identified five factors that, if not taken into account when creating datasets and designing detectors, significantly affect the trained ML models and their performances. In particular, we analyze the effect of (1) the presence of duplicated samples, (2) label (goodware/greyware/malware) attribution, (3) class imbalance, (4) the presence of apps that use evasion techniques and, (5) the evolution of apps. Based on this extensive experimentation, we conclude that the studied ML-based detectors have been evaluated optimistically, which justifies the good published results. Our findings also highlight that it is imperative to generate realistic datasets, taking into account the factors mentioned above, to enable the design and evaluation of better solutions for Android malware detection.
109,855
109,855
Heterogeneous Reservoir Computing Models for Persian Speech Recognition
Over the last decade, deep-learning methods have been gradually incorporated into conventional automatic speech recognition (ASR) frameworks to create acoustic, pronunciation, and language models. Although it led to significant improvements in ASRs' recognition accuracy, due to their hard constraints related to hardware requirements (e.g., computing power and memory usage), it is unclear if such approaches are the most computationally- and energy-efficient options for embedded ASR applications. Reservoir computing (RC) models (e.g., echo state networks (ESNs) and liquid state machines (LSMs)), on the other hand, have been proven inexpensive to train, have vastly fewer parameters, and are compatible with emergent hardware technologies. However, their performance in speech processing tasks is relatively inferior to that of the deep-learning-based models. To enhance the accuracy of the RC in ASR applications, we propose heterogeneous single and multi-layer ESNs to create non-linear transformations of the inputs that capture temporal context at different scales. To test our models, we performed a speech recognition task on the Farsdat Persian dataset. Since, to the best of our knowledge, standard RC has not yet been employed to conduct any Persian ASR tasks, we also trained conventional single-layer and deep ESNs to provide baselines for comparison. Besides, we compared the RC performance with a standard long-short-term memory (LSTM) model. Heterogeneous RC models (1) show improved performance to the standard RC models; (2) perform on par in terms of recognition accuracy with the LSTM, and (3) reduce the training time considerably.
109,856
109,856
RobustLR: Evaluating Robustness to Logical Perturbation in Deductive Reasoning
Transformers have been shown to be able to perform deductive reasoning on a logical rulebase containing rules and statements written in English natural language. While the progress is promising, it is currently unclear if these models indeed perform logical reasoning by understanding the underlying logical semantics in the language. To this end, we propose RobustLR, a suite of evaluation datasets that evaluate the robustness of these models to minimal logical edits in rulebases and some standard logical equivalence conditions. In our experiments with RoBERTa and T5, we find that the models trained in prior works do not perform consistently on the different perturbations in RobustLR, thus showing that the models are not robust to the proposed logical perturbations. Further, we find that the models find it especially hard to learn logical negation and disjunction operators. Overall, using our evaluation sets, we demonstrate some shortcomings of the deductive reasoning-based language models, which can eventually help towards designing better models for logical reasoning over natural language.
109,857
109,857
ORCA: Interpreting Prompted Language Models via Locating Supporting Data Evidence in the Ocean of Pretraining Data
Large pretrained language models have been performing increasingly well in a variety of downstream tasks via prompting. However, it remains unclear from where the model learns the task-specific knowledge, especially in a zero-shot setup. In this work, we want to find evidence of the model's task-specific competence from pretraining and are specifically interested in locating a very small subset of pretraining data that directly supports the model in the task. We call such a subset supporting data evidence and propose a novel method ORCA to effectively identify it, by iteratively using gradient information related to the downstream task. This supporting data evidence offers interesting insights about the prompted language models: in the tasks of sentiment analysis and textual entailment, BERT shows a substantial reliance on BookCorpus, the smaller corpus of BERT's two pretraining corpora, as well as on pretraining examples that mask out synonyms to the task verbalizers.
109,858
109,858
Learning Distributions by Generative Adversarial Networks: Approximation and Generalization
We study how well generative adversarial networks (GAN) learn probability distributions from finite samples by analyzing the convergence rates of these models. Our analysis is based on a new oracle inequality that decomposes the estimation error of GAN into the discriminator and generator approximation errors, generalization error and optimization error. To estimate the discriminator approximation error, we establish error bounds on approximating H\"older functions by ReLU neural networks, with explicit upper bounds on the Lipschitz constant of the network or norm constraint on the weights. For generator approximation error, we show that neural network can approximately transform a low-dimensional source distribution to a high-dimensional target distribution and bound such approximation error by the width and depth of neural network. Combining the approximation results with generalization bounds of neural networks from statistical learning theory, we establish the convergence rates of GANs in various settings, when the error is measured by a collection of integral probability metrics defined through H\"older classes, including the Wasserstein distance as a special case. In particular, for distributions concentrated around a low-dimensional set, we show that the convergence rates of GANs do not depend on the high ambient dimension, but on the lower intrinsic dimension.
109,859
109,859
Deep Aesthetic Assessment and Retrieval of Breast Cancer Treatment Outcomes
Treatments for breast cancer have continued to evolve and improve in recent years, resulting in a substantial increase in survival rates, with approximately 80\% of patients having a 10-year survival period. Given the serious impact that breast cancer treatments can have on a patient's body image, consequently affecting her self-confidence and sexual and intimate relationships, it is paramount to ensure that women receive the treatment that optimizes both survival and aesthetic outcomes. Currently, there is no gold standard for evaluating the aesthetic outcome of breast cancer treatment. In addition, there is no standard way to show patients the potential outcome of surgery. The presentation of similar cases from the past would be extremely important to manage women's expectations of the possible outcome. In this work, we propose a deep neural network to perform the aesthetic evaluation. As a proof-of-concept, we focus on a binary aesthetic evaluation. Besides its use for classification, this deep neural network can also be used to find the most similar past cases by searching for nearest neighbours in the highly semantic space before classification. We performed the experiments on a dataset consisting of 143 photos of women after conservative treatment for breast cancer. The results for accuracy and balanced accuracy showed the superior performance of our proposed model compared to the state of the art in aesthetic evaluation of breast cancer treatments. In addition, the model showed a good ability to retrieve similar previous cases, with the retrieved cases having the same or adjacent class (in the 4-class setting) and having similar types of asymmetry. Finally, a qualitative interpretability assessment was also performed to analyse the robustness and trustworthiness of the model.
109,860
109,860
Autoformalization with Large Language Models
Autoformalization is the process of automatically translating from natural language mathematics to formal specifications and proofs. A successful autoformalization system could advance the fields of formal verification, program synthesis, and artificial intelligence. While the long-term goal of autoformalization seemed elusive for a long time, we show large language models provide new prospects towards this goal. We make the surprising observation that LLMs can correctly translate a significant portion ($25.3\%$) of mathematical competition problems perfectly to formal specifications in Isabelle/HOL. We demonstrate the usefulness of this process by improving a previously introduced neural theorem prover via training on these autoformalized theorems. Our methodology results in a new state-of-the-art result on the MiniF2F theorem proving benchmark, improving the proof rate from $29.6\%$ to $35.2\%$.
109,861
109,861
On the Interpretability of Regularisation for Neural Networks Through Model Gradient Similarity
Most complex machine learning and modelling techniques are prone to over-fitting and may subsequently generalise poorly to future data. Artificial neural networks are no different in this regard and, despite having a level of implicit regularisation when trained with gradient descent, often require the aid of explicit regularisers. We introduce a new framework, Model Gradient Similarity (MGS), that (1) serves as a metric of regularisation, which can be used to monitor neural network training, (2) adds insight into how explicit regularisers, while derived from widely different principles, operate via the same mechanism underneath by increasing MGS, and (3) provides the basis for a new regularisation scheme which exhibits excellent performance, especially in challenging settings such as high levels of label noise or limited sample sizes.
109,862
109,862
Fast Inference and Transfer of Compositional Task Structures for Few-shot Task Generalization
We tackle real-world problems with complex structures beyond the pixel-based game or simulator. We formulate it as a few-shot reinforcement learning problem where a task is characterized by a subtask graph that defines a set of subtasks and their dependencies that are unknown to the agent. Different from the previous meta-rl methods trying to directly infer the unstructured task embedding, our multi-task subtask graph inferencer (MTSGI) first infers the common high-level task structure in terms of the subtask graph from the training tasks, and use it as a prior to improve the task inference in testing. Our experiment results on 2D grid-world and complex web navigation domains show that the proposed method can learn and leverage the common underlying structure of the tasks for faster adaptation to the unseen tasks than various existing algorithms such as meta reinforcement learning, hierarchical reinforcement learning, and other heuristic agents.
109,863
109,863
MAPLE-X: Latency Prediction with Explicit Microprocessor Prior Knowledge
Deep neural network (DNN) latency characterization is a time-consuming process and adds significant cost to Neural Architecture Search (NAS) processes when searching for efficient convolutional neural networks for embedded vision applications. DNN Latency is a hardware dependent metric and requires direct measurement or inference on target hardware. A recently introduced latency estimation technique known as MAPLE predicts DNN execution time on previously unseen hardware devices by using hardware performance counters. Leveraging these hardware counters in the form of an implicit prior, MAPLE achieves state-of-the-art performance in latency prediction. Here, we propose MAPLE-X which extends MAPLE by incorporating explicit prior knowledge of hardware devices and DNN architecture latency to better account for model stability and robustness. First, by identifying DNN architectures that exhibit a similar latency to each other, we can generate multiple virtual examples to significantly improve the accuracy over MAPLE. Secondly, the hardware specifications are used to determine the similarity between training and test hardware to emphasize training samples captured from comparable devices (domains) and encourages improved domain alignment. Experimental results using a convolution neural network NAS benchmark across different types of devices, including an Intel processor that is now used for embedded vision applications, demonstrate a 5% improvement over MAPLE and 9% over HELP. Furthermore, we include ablation studies to independently assess the benefits of virtual examples and hardware-based sample importance.
109,864
109,864
Training Language Models with Memory Augmentation
Recent work has improved language models remarkably by equipping them with a non-parametric memory component. However, most existing approaches only introduce memories at testing time, or represent them using a separately trained encoder -- resulting in sub-optimal training of the language model. In this work, we present TRIME, a novel yet simple training approach designed for training language models with memory augmentation. Our approach uses a training objective that directly takes in-batch examples as accessible memory. We also present new methods for memory construction and data batching, which are used for adapting to different sets of memories -- local, long-term, and external memory -- at testing time. We evaluate our approach on multiple language modeling and machine translation benchmarks. We find that simply replacing the vanilla language modeling objective by ours greatly reduces the perplexity, without modifying the model architecture or incorporating extra context (e.g., 18.70 $\to$ 17.76 on WikiText-103). We further augment language models with long-range contexts and external knowledge and demonstrate significant gains over previous memory-augmented approaches.
109,865
109,865
Rethinking Fano's Inequality in Ensemble Learning
We propose a fundamental theory on ensemble learning that evaluates a given ensemble system by a well-grounded set of metrics. Previous studies used a variant of Fano's inequality of information theory and derived a lower bound of the classification error rate on the basis of the accuracy and diversity of models. We revisit the original Fano's inequality and argue that the studies did not take into account the information lost when multiple model predictions are combined into a final prediction. To address this issue, we generalize the previous theory to incorporate the information loss. Further, we empirically validate and demonstrate the proposed theory through extensive experiments on actual systems. The theory reveals the strengths and weaknesses of systems on each metric, which will push the theoretical understanding of ensemble learning and give us insights into designing systems.
109,866
109,866
Ground-Truth Labels Matter: A Deeper Look into Input-Label Demonstrations
Despite recent explosion in research interests, in-context learning and the precise impact of the quality of demonstrations remain elusive. While, based on current literature, it is expected that in-context learning shares a similar mechanism to supervised learning, Min et al. (2022) recently reported that, surprisingly, input-label correspondence is less important than other aspects of prompt demonstrations. Inspired by this counter-intuitive observation, we re-examine the importance of ground truth labels on in-context learning from diverse and statistical points of view. With the aid of the newly introduced metrics, i.e., Ground-truth Label Effect Ratio (GLER), demo-gain, and label sensitivity, we find that the impact of the correct input-label matching can vary according to different configurations. Expanding upon the previous key finding on the role of demonstrations, the complementary and contrastive results suggest that one might need to take more care when estimating the impact of each component in in-context learning demonstrations.
109,867
109,867
Train Flat, Then Compress: Sharpness-Aware Minimization Learns More Compressible Models
Model compression by way of parameter pruning, quantization, or distillation has recently gained popularity as an approach for reducing the computational requirements of modern deep neural network models for NLP. Pruning unnecessary parameters has emerged as a simple and effective method for compressing large models that is compatible with a wide variety of contemporary off-the-shelf hardware (unlike quantization), and that requires little additional training (unlike distillation). Pruning approaches typically take a large, accurate model as input, then attempt to discover a smaller subnetwork of that model capable of achieving end-task accuracy comparable to the full model. Inspired by previous work suggesting a connection between simpler, more generalizable models and those that lie within flat basins in the loss landscape, we propose to directly optimize for flat minima while performing task-specific pruning, which we hypothesize should lead to simpler parameterizations and thus more compressible models. In experiments combining sharpness-aware minimization with both iterative magnitude pruning and structured pruning approaches, we show that optimizing for flat minima consistently leads to greater compressibility of parameters compared to standard Adam optimization when fine-tuning BERT models, leading to higher rates of compression with little to no loss in accuracy on the GLUE classification benchmark.
109,868
109,868
Surprises in adversarially-trained linear regression
State-of-the-art machine learning models can be vulnerable to very small input perturbations that are adversarially constructed. Adversarial training is one of the most effective approaches to defend against such examples. We show that for linear regression problems, adversarial training can be formulated as a convex problem. This fact is then used to show that $\ell_\infty$-adversarial training produces sparse solutions and has many similarities to the lasso method. Similarly, $\ell_2$-adversarial training has similarities with ridge regression. We use a robust regression framework to analyze and understand these similarities and also point to some differences. Finally, we show how adversarial training behaves differently from other regularization methods when estimating overparameterized models (i.e., models with more parameters than datapoints). It minimizes a sum of three terms which regularizes the solution, but unlike lasso and ridge regression, it can sharply transition into an interpolation mode. We show that for sufficiently many features or sufficiently small regularization parameters, the learned model perfectly interpolates the training data while still exhibiting good out-of-sample performance.
109,869
109,869
Eliciting Transferability in Multi-task Learning with Task-level Mixture-of-Experts
Recent work suggests that transformer models are capable of multi-task learning on diverse NLP tasks. However, the potential of these models may be limited as they use the same set of parameters for all tasks. In contrast, humans tackle tasks in a more flexible way, by making proper presumptions on what skills and knowledge are relevant and executing only the necessary computations. Inspired by this, we propose to use task-level mixture-of-expert models, which has a collection of transformer layers (i.e., experts) and a router component to choose among these experts dynamically and flexibly. We show that the learned routing decisions and experts partially rediscover human categorization of NLP tasks -- certain experts are strongly associated with extractive tasks, some with classification tasks, and some with tasks requiring world knowledge.
109,870
109,870
Scalable Online Change Detection for High-dimensional Data Streams
Detecting changes in data streams is a core objective in their analysis and has applications in, say, predictive maintenance, fraud detection, and medicine. A principled approach to detect changes is to compare distributions observed within the stream to each other. However, data streams often are high-dimensional, and changes can be complex, e.g., only manifest themselves in higher moments. The streaming setting also imposes heavy memory and computation restrictions. We propose an algorithm, Maximum Mean Discrepancy Adaptive Windowing (MMDAW), which leverages the well-known Maximum Mean Discrepancy (MMD) two-sample test, and facilitates its efficient online computation on windows whose size it flexibly adapts. As MMD is sensitive to any change in the underlying distribution, our algorithm is a general-purpose non-parametric change detector that fulfills the requirements imposed by the streaming setting. Our experiments show that MMDAW achieves better detection quality than state-of-the-art competitors.
109,871
109,871
VeriFi: Towards Verifiable Federated Unlearning
Federated learning (FL) is a collaborative learning paradigm where participants jointly train a powerful model without sharing their private data. One desirable property for FL is the implementation of the right to be forgotten (RTBF), i.e., a leaving participant has the right to request to delete its private data from the global model. However, unlearning itself may not be enough to implement RTBF unless the unlearning effect can be independently verified, an important aspect that has been overlooked in the current literature. In this paper, we prompt the concept of verifiable federated unlearning, and propose VeriFi, a unified framework integrating federated unlearning and verification that allows systematic analysis of the unlearning and quantification of its effect, with different combinations of multiple unlearning and verification methods. In VeriFi, the leaving participant is granted the right to verify (RTV), that is, the participant notifies the server before leaving, then actively verifies the unlearning effect in the next few communication rounds. The unlearning is done at the server side immediately after receiving the leaving notification, while the verification is done locally by the leaving participant via two steps: marking (injecting carefully-designed markers to fingerprint the leaver) and checking (examining the change of the global model's performance on the markers). Based on VeriFi, we conduct the first systematic and large-scale study for verifiable federated unlearning, considering 7 unlearning methods and 5 verification methods. Particularly, we propose a more efficient and FL-friendly unlearning method, and two more effective and robust non-invasive-verification methods. We extensively evaluate VeriFi on 7 datasets and 4 types of deep learning models. Our analysis establishes important empirical understandings for more trustworthy federated unlearning.
109,872
109,872
Service Discovery in Social Internet of Things using Graph Neural Networks
Internet-of-Things (IoT) networks intelligently connect thousands of physical entities to provide various services for the community. It is witnessing an exponential expansion, which is complicating the process of discovering IoT devices existing in the network and requesting corresponding services from them. As the highly dynamic nature of the IoT environment hinders the use of traditional solutions of service discovery, we aim, in this paper, to address this issue by proposing a scalable resource allocation neural model adequate for heterogeneous large-scale IoT networks. We devise a Graph Neural Network (GNN) approach that utilizes the social relationships formed between the devices in the IoT network to reduce the search space of any entity lookup and acquire a service from another device in the network. This proposed resource allocation approach surpasses standardization issues and embeds the structure and characteristics of the social IoT graph, by the means of GNNs, for eventual clustering analysis process. Simulation results applied on a real-world dataset illustrate the performance of this solution and its significant efficiency to operate on large-scale IoT networks.
109,873
109,873
DPSNN: A Differentially Private Spiking Neural Network
Privacy-preserving is a key problem for the machine learning algorithm. Spiking neural network (SNN) plays an important role in many domains, such as image classification, object detection, and speech recognition, but the study on the privacy protection of SNN is urgently needed. This study combines the differential privacy (DP) algorithm and SNN and proposes differentially private spiking neural network (DPSNN). DP injects noise into the gradient, and SNN transmits information in discrete spike trains so that our differentially private SNN can maintain strong privacy protection while still ensuring high accuracy. We conducted experiments on MNIST, Fashion-MNIST, and the face recognition dataset Extended YaleB. When the privacy protection is improved, the accuracy of the artificial neural network(ANN) drops significantly, but our algorithm shows little change in performance. Meanwhile, we analyzed different factors that affect the privacy protection of SNN. Firstly, the less precise the surrogate gradient is, the better the privacy protection of the SNN. Secondly, the Integrate-And-Fire (IF) neurons perform better than leaky Integrate-And-Fire (LIF) neurons. Thirdly, a large time window contributes more to privacy protection and performance.
109,874
109,874
Mathematical Models of Human Drivers Using Artificial Risk Fields
In this paper, we use the concept of artificial risk fields to predict how human operators control a vehicle in response to upcoming road situations. A risk field assigns a non-negative risk measure to the state of the system in order to model how close that state is to violating a safety property, such as hitting an obstacle or exiting the road. Using risk fields, we construct a stochastic model of the operator that maps from states to likely actions. We demonstrate our approach on a driving task wherein human subjects are asked to drive a car inside a realistic driving simulator while avoiding obstacles placed on the road. We show that the most likely risk field given the driving data is obtained by solving a convex optimization problem. Next, we apply the inferred risk fields to generate distinct driving behaviors while comparing predicted trajectories against ground truth measurements. We observe that the risk fields are excellent at predicting future trajectory distributions with high prediction accuracy for up to twenty seconds prediction horizons. At the same time, we observe some challenges such as the inability to account for how drivers choose to accelerate/decelerate based on the road conditions.
109,875
109,875
Interpretable Feature Engineering for Time Series Predictors using Attention Networks
Regression problems with time-series predictors are common in banking and many other areas of application. In this paper, we use multi-head attention networks to develop interpretable features and use them to achieve good predictive performance. The customized attention layer explicitly uses multiplicative interactions and builds feature-engineering heads that capture temporal dynamics in a parsimonious manner. Convolutional layers are used to combine multivariate time series. We also discuss methods for handling static covariates in the modeling process. Visualization and explanation tools are used to interpret the results and explain the relationship between the inputs and the extracted features. Both simulation and real dataset are used to illustrate the usefulness of the methodology. Keyword: Attention heads, Deep neural networks, Interpretable feature engineering
109,876
109,876
Deep interpretable ensembles
Ensembles improve prediction performance and allow uncertainty quantification by aggregating predictions from multiple models. In deep ensembling, the individual models are usually black box neural networks, or recently, partially interpretable semi-structured deep transformation models. However, interpretability of the ensemble members is generally lost upon aggregation. This is a crucial drawback of deep ensembles in high-stake decision fields, in which interpretable models are desired. We propose a novel transformation ensemble which aggregates probabilistic predictions with the guarantee to preserve interpretability and yield uniformly better predictions than the ensemble members on average. Transformation ensembles are tailored towards interpretable deep transformation models but are applicable to a wider range of probabilistic neural networks. In experiments on several publicly available data sets, we demonstrate that transformation ensembles perform on par with classical deep ensembles in terms of prediction performance, discrimination, and calibration. In addition, we demonstrate how transformation ensembles quantify both aleatoric and epistemic uncertainty, and produce minimax optimal predictions under certain conditions.
109,877
109,877
Uncertainty Quantification for Transport in Porous media using Parameterized Physics Informed neural Networks
We present a Parametrization of the Physics Informed Neural Network (P-PINN) approach to tackle the problem of uncertainty quantification in reservoir engineering problems. We demonstrate the approach with the immiscible two phase flow displacement (Buckley-Leverett problem) in heterogeneous porous medium. The reservoir properties (porosity, permeability) are treated as random variables. The distribution of these properties can affect dynamic properties such as the fluids saturation, front propagation speed or breakthrough time. We explore and use to our advantage the ability of networks to interpolate complex high dimensional functions. We observe that the additional dimensions resulting from a stochastic treatment of the partial differential equations tend to produce smoother solutions on quantities of interest (distributions parameters) which is shown to improve the performance of PINNS. We show that provided a proper parameterization of the uncertainty space, PINN can produce solutions that match closely both the ensemble realizations and the stochastic moments. We demonstrate applications for both homogeneous and heterogeneous fields of properties. We are able to solve problems that can be challenging for classical methods. This approach gives rise to trained models that are both more robust to variations in the input space and can compete in performance with traditional stochastic sampling methods.
109,878
109,878
Machine learning methods for Schlieren imaging of a plasma channel in tenuous atomic vapor
We investigate the usage of a Schlieren imaging setup to measure the geometrical dimensions of a plasma channel in atomic vapor. Near resonant probe light is used to image the plasma channel in a tenuous vapor and machine learning techniques are tested for extracting quantitative information from the images. By building a database of simulated signals with a range of plasma parameters for training Deep Neural Networks, we demonstrate that they can extract from the Schlieren images reliably and with high accuracy the location, the radius and the maximum ionization fraction of the plasma channel as well as the width of the transition region between the core of the plasma channel and the unionized vapor. We test several different neural network architectures with supervised learning and show that the parameter estimations supplied by the networks are resilient with respect to slight changes of the experimental parameters that may occur in the course of a measurement.
109,879
109,879
Global geomagnetic perturbation forecasting using Deep Learning
Geomagnetically Induced Currents (GICs) arise from spatio-temporal changes to Earth's magnetic field which arise from the interaction of the solar wind with Earth's magnetosphere, and drive catastrophic destruction to our technologically dependent society. Hence, computational models to forecast GICs globally with large forecast horizon, high spatial resolution and temporal cadence are of increasing importance to perform prompt necessary mitigation. Since GIC data is proprietary, the time variability of horizontal component of the magnetic field perturbation (dB/dt) is used as a proxy for GICs. In this work, we develop a fast, global dB/dt forecasting model, which forecasts 30 minutes into the future using only solar wind measurements as input. The model summarizes 2 hours of solar wind measurement using a Gated Recurrent Unit, and generates forecasts of coefficients which are folded with a spherical harmonic basis to enable global forecasts. When deployed, our model produces results in under a second, and generates global forecasts for horizontal magnetic perturbation components at 1-minute cadence. We evaluate our model across models in literature for two specific storms of 5 August 2011 and 17 March 2015, while having a self-consistent benchmark model set. Our model outperforms, or has consistent performance with state-of-the-practice high time cadence local and low time cadence global models, while also outperforming/having comparable performance with the benchmark models. Such quick inferences at high temporal cadence and arbitrary spatial resolutions may ultimately enable accurate forewarning of dB/dt for any place on Earth, resulting in precautionary measures to be taken in an informed manner.
109,880
109,880
Machine learning method for return direction forecasting of Exchange Traded Funds using classification and regression models
This article aims to propose and apply a machine learning method to analyze the direction of returns from Exchange Traded Funds (ETFs) using the historical return data of its components, helping to make investment strategy decisions through a trading algorithm. In methodological terms, regression and classification models were applied, using standard datasets from Brazilian and American markets, in addition to algorithmic error metrics. In terms of research results, they were analyzed and compared to those of the Na\"ive forecast and the returns obtained by the buy & hold technique in the same period of time. In terms of risk and return, the models mostly performed better than the control metrics, with emphasis on the linear regression model and the classification models by logistic regression, support vector machine (using the LinearSVC model), Gaussian Naive Bayes and K-Nearest Neighbors, where in certain datasets the returns exceeded by two times and the Sharpe ratio by up to four times those of the buy & hold control model.
109,881
109,881
Fast Stochastic Composite Minimization and an Accelerated Frank-Wolfe Algorithm under Parallelization
We consider the problem of minimizing the sum of two convex functions. One of those functions has Lipschitz-continuous gradients, and can be accessed via stochastic oracles, whereas the other is "simple". We provide a Bregman-type algorithm with accelerated convergence in function values to a ball containing the minimum. The radius of this ball depends on problem-dependent constants, including the variance of the stochastic oracle. We further show that this algorithmic setup naturally leads to a variant of Frank-Wolfe achieving acceleration under parallelization. More precisely, when minimizing a smooth convex function on a bounded domain, we show that one can achieve an $\epsilon$ primal-dual gap (in expectation) in $\tilde{O}(1/ \sqrt{\epsilon})$ iterations, by only accessing gradients of the original function and a linear maximization oracle with $O(1/\sqrt{\epsilon})$ computing units in parallel. We illustrate this fast convergence on synthetic numerical experiments.
109,882
109,882
NECA: Network-Embedded Deep Representation Learning for Categorical Data
We propose NECA, a deep representation learning method for categorical data. Built upon the foundations of network embedding and deep unsupervised representation learning, NECA deeply embeds the intrinsic relationship among attribute values and explicitly expresses data objects with numeric vector representations. Designed specifically for categorical data, NECA can support important downstream data mining tasks, such as clustering. Extensive experimental analysis demonstrated the effectiveness of NECA.
109,883
109,883
An Empirical Study on Distribution Shift Robustness From the Perspective of Pre-Training and Data Augmentation
The performance of machine learning models under distribution shift has been the focus of the community in recent years. Most of current methods have been proposed to improve the robustness to distribution shift from the algorithmic perspective, i.e., designing better training algorithms to help the generalization in shifted test distributions. This paper studies the distribution shift problem from the perspective of pre-training and data augmentation, two important factors in the practice of deep learning that have not been systematically investigated by existing work. By evaluating seven pre-trained models, including ResNets and ViT's with self-supervision and supervision mode, on five important distribution-shift datasets, from WILDS and DomainBed benchmarks, with five different learning algorithms, we provide the first comprehensive empirical study focusing on pre-training and data augmentation. With our empirical result obtained from 1,330 models, we provide the following main observations: 1) ERM combined with data augmentation can achieve state-of-the-art performance if we choose a proper pre-trained model respecting the data property; 2) specialized algorithms further improve the robustness on top of ERM when handling a specific type of distribution shift, e.g., GroupDRO for spurious correlation and CORAL for large-scale out-of-distribution data; 3) Comparing different pre-training modes, architectures and data sizes, we provide novel observations about pre-training on distribution shift, which sheds light on designing or selecting pre-training strategy for different kinds of distribution shifts. In summary, our empirical study provides a comprehensive baseline for a wide range of pre-training models fine-tuned with data augmentation, which potentially inspires research exploiting the power of pre-training and data augmentation in the future of distribution shift study.
109,884
109,884
An Evolutionary Approach to Dynamic Introduction of Tasks in Large-scale Multitask Learning Systems
Multitask learning assumes that models capable of learning from multiple tasks can achieve better quality and efficiency via knowledge transfer, a key feature of human learning. Though, state of the art ML models rely on high customization for each task and leverage size and data scale rather than scaling the number of tasks. Also, continual learning, that adds the temporal aspect to multitask, is often focused to the study of common pitfalls such as catastrophic forgetting instead of being studied at a large scale as a critical component to build the next generation artificial intelligence. We propose an evolutionary method that can generate a large scale multitask model, and can support the dynamic and continuous addition of new tasks. The generated multitask model is sparsely activated and integrates a task-based routing that guarantees bounded compute cost and fewer added parameters per task as the model expands. The proposed method relies on a knowledge compartmentalization technique to achieve immunity against catastrophic forgetting and other common pitfalls such as gradient interference and negative transfer. We empirically show that the proposed method can jointly solve and achieve competitive results on 69image classification tasks, for example achieving the best test accuracy reported fora model trained only on public data for competitive tasks such as cifar10: 99.43%.
109,885
109,885
An Experimental Comparison Between Temporal Difference and Residual Gradient with Neural Network Approximation
Gradient descent or its variants are popular in training neural networks. However, in deep Q-learning with neural network approximation, a type of reinforcement learning, gradient descent (also known as Residual Gradient (RG)) is barely used to solve Bellman residual minimization problem. On the contrary, Temporal Difference (TD), an incomplete gradient descent method prevails. In this work, we perform extensive experiments to show that TD outperforms RG, that is, when the training leads to a small Bellman residual error, the solution found by TD has a better policy and is more robust against the perturbation of neural network parameters. We further use experiments to reveal a key difference between reinforcement learning and supervised learning, that is, a small Bellman residual error can correspond to a bad policy in reinforcement learning while the test loss function in supervised learning is a standard index to indicate the performance. We also empirically examine that the missing term in TD is a key reason why RG performs badly. Our work shows that the performance of a deep Q-learning solution is closely related to the training dynamics and how an incomplete gradient descent method can find a good policy is interesting for future study.
109,886
109,886
Residual-Concatenate Neural Network with Deep Regularization Layers for Binary Classification
Many complex Deep Learning models are used with different variations for various prognostication tasks. The higher learning parameters not necessarily ensure great accuracy. This can be solved by considering changes in very deep models with many regularization based techniques. In this paper we train a deep neural network that uses many regularization layers with residual and concatenation process for best fit with Polycystic Ovary Syndrome Diagnosis prognostication. The network was built with improvements from every step of failure to meet the needs of the data and achieves an accuracy of 99.3% seamlessly.
109,887
109,887
Ultra-compact Binary Neural Networks for Human Activity Recognition on RISC-V Processors
Human Activity Recognition (HAR) is a relevant inference task in many mobile applications. State-of-the-art HAR at the edge is typically achieved with lightweight machine learning models such as decision trees and Random Forests (RFs), whereas deep learning is less common due to its high computational complexity. In this work, we propose a novel implementation of HAR based on deep neural networks, and precisely on Binary Neural Networks (BNNs), targeting low-power general purpose processors with a RISC-V instruction set. BNNs yield very small memory footprints and low inference complexity, thanks to the replacement of arithmetic operations with bit-wise ones. However, existing BNN implementations on general purpose processors impose constraints tailored to complex computer vision tasks, which result in over-parametrized models for simpler problems like HAR. Therefore, we also introduce a new BNN inference library, which targets ultra-compact models explicitly. With experiments on a single-core RISC-V processor, we show that BNNs trained on two HAR datasets obtain higher classification accuracy compared to a state-of-the-art baseline based on RFs. Furthermore, our BNN reaches the same accuracy of a RF with either less memory (up to 91%) or more energy-efficiency (up to 70%), depending on the complexity of the features extracted by the RF.
109,888
109,888
TrustGNN: Graph Neural Network based Trust Evaluation via Learnable Propagative and Composable Nature
Trust evaluation is critical for many applications such as cyber security, social communication and recommender systems. Users and trust relationships among them can be seen as a graph. Graph neural networks (GNNs) show their powerful ability for analyzing graph-structural data. Very recently, existing work attempted to introduce the attributes and asymmetry of edges into GNNs for trust evaluation, while failed to capture some essential properties (e.g., the propagative and composable nature) of trust graphs. In this work, we propose a new GNN based trust evaluation method named TrustGNN, which integrates smartly the propagative and composable nature of trust graphs into a GNN framework for better trust evaluation. Specifically, TrustGNN designs specific propagative patterns for different propagative processes of trust, and distinguishes the contribution of different propagative processes to create new trust. Thus, TrustGNN can learn comprehensive node embeddings and predict trust relationships based on these embeddings. Experiments on some widely-used real-world datasets indicate that TrustGNN significantly outperforms the state-of-the-art methods. We further perform analytical experiments to demonstrate the effectiveness of the key designs in TrustGNN.
109,889
109,889
Impartial Games: A Challenge for Reinforcement Learning
The AlphaZero algorithm and its successor MuZero have revolutionised several competitive strategy games, including chess, Go, and shogi and video games like Atari, by learning to play these games better than any human and any specialised computer program. Aside from knowing the rules, AlphaZero had no prior knowledge of each game. This dramatically advanced progress on a long-standing AI challenge to create programs that can learn for themselves from first principles. Theoretically, there are well-known limits to the power of deep learning for strategy games like chess, Go, and shogi, as they are known to be NEXPTIME hard. Some papers have argued that the AlphaZero methodology has limitations and is unsuitable for general AI. However, none of these works has suggested any specific limits for any particular game. In this paper, we provide more powerful bottlenecks than previously suggested. We present the first concrete example of a game - namely the (children) game of nim - and other impartial games that seem to be a stumbling block for AlphaZero and similar reinforcement learning algorithms. We show experimentally that the bottlenecks apply to both the policy and value networks. Since solving nim can be done in linear time using logarithmic space i.e. has very low-complexity, our experimental results supersede known theoretical limits based on many games' PSPACE (and NEXPTIME) completeness. We show that nim can be learned on small boards, but when the board size increases, AlphaZero style algorithms rapidly fail to improve. We quantify the difficulties for various setups, parameter settings and computational resources. Our results might help expand the AlphaZero self-play paradigm by allowing it to use meta-actions during training and/or actual game play like applying abstract transformations, or reading and writing to an external memory.
109,890
109,890
Gradient-based explanations for Gaussian Process regression and classification models
Gaussian Processes (GPs) have proven themselves as a reliable and effective method in probabilistic Machine Learning. Thanks to recent and current advances, modeling complex data with GPs is becoming more and more feasible. Thus, these types of models are, nowadays, an interesting alternative to Neural and Deep Learning methods, which are arguably the current state-of-the-art in Machine Learning. For the latter, we see an increasing interest in so-called explainable approaches - in essence methods that aim to make a Machine Learning model's decision process transparent to humans. Such methods are particularly needed when illogical or biased reasoning can lead to actual disadvantageous consequences for humans. Ideally, explainable Machine Learning should help detect such flaws in a model and aid a subsequent debugging process. One active line of research in Machine Learning explainability are gradient-based methods, which have been successfully applied to complex neural networks. Given that GPs are closed under differentiation, gradient-based explainability for GPs appears as a promising field of research. This paper is primarily focused on explaining GP classifiers via gradients where, contrary to GP regression, derivative GPs are not straightforward to obtain.
109,891
109,891
Mirror Descent Maximizes Generalized Margin and Can Be Implemented Efficiently
Driven by the empirical success and wide use of deep neural networks, understanding the generalization performance of overparameterized models has become an increasingly popular question. To this end, there has been substantial effort to characterize the implicit bias of the optimization algorithms used, such as gradient descent (GD), and the structural properties of their preferred solutions. This paper answers an open question in this literature: For the classification setting, what solution does mirror descent (MD) converge to? Specifically, motivated by its efficient implementation, we consider the family of mirror descent algorithms with potential function chosen as the $p$-th power of the $\ell_p$-norm, which is an important generalization of GD. We call this algorithm $p$-$\textsf{GD}$. For this family, we characterize the solutions it obtains and show that it converges in direction to a generalized maximum-margin solution with respect to the $\ell_p$-norm for linearly separable classification. While the MD update rule is in general expensive to compute and perhaps not suitable for deep learning, $p$-$\textsf{GD}$ is fully parallelizable in the same manner as SGD and can be used to train deep neural networks with virtually no additional computational overhead. Using comprehensive experiments with both linear and deep neural network models, we demonstrate that $p$-$\textsf{GD}$ can noticeably affect the structure and the generalization performance of the learned models.
109,892
109,892
Removing the fat from your posterior samples with margarine
Bayesian workflows often require the introduction of nuisance parameters, yet for core science modelling one needs access to a marginal posterior density. In this work we use masked autoregressive flows and kernel density estimators to encapsulate the marginal posterior, allowing us to compute marginal Kullback-Leibler divergences and marginal Bayesian model dimensionalities in addition to generating samples and computing marginal log probabilities. We demonstrate this in application to topical cosmological examples of the Dark Energy Survey, and global 21cm signal experiments. In addition to the computation of marginal Bayesian statistics, this work is important for further applications in Bayesian experimental design, complex prior modelling and likelihood emulation. This technique is made publicly available in the pip-installable code margarine.
109,893
109,893
A Universal Error Measure for Input Predictions Applied to Online Graph Problems
We introduce a novel measure for quantifying the error in input predictions. The error is based on a minimum-cost hyperedge cover in a suitably defined hypergraph and provides a general template which we apply to online graph problems. The measure captures errors due to absent predicted requests as well as unpredicted actual requests; hence, predicted and actual inputs can be of arbitrary size. We achieve refined performance guarantees for previously studied network design problems in the online-list model, such as Steiner tree and facility location. Further, we initiate the study of learning-augmented algorithms for online routing problems, such as the traveling salesperson problem and dial-a-ride problem, where (transportation) requests arrive over time (online-time model). We provide a general algorithmic framework and we give error-dependent performance bounds that improve upon known worst-case barriers, when given accurate predictions, at the cost of slightly increased worst-case bounds when given predictions of arbitrary quality.
109,894
109,894
Stochastic Second-Order Methods Provably Beat SGD For Gradient-Dominated Functions
We study the performance of Stochastic Cubic Regularized Newton (SCRN) on a class of functions satisfying gradient dominance property which holds in a wide range of applications in machine learning and signal processing. This condition ensures that any first-order stationary point is a global optimum. We prove that SCRN improves the best-known sample complexity of stochastic gradient descent in achieving $\epsilon$-global optimum by a factor of $\mathcal{O}(\epsilon^{-1/2})$. Even under a weak version of gradient dominance property, which is applicable to policy-based reinforcement learning (RL), SCRN achieves the same improvement over stochastic policy gradient methods. Additionally, we show that the sample complexity of SCRN can be improved by a factor of ${\mathcal{O}}(\epsilon^{-1/2})$ using a variance reduction method with time-varying batch sizes. Experimental results in various RL settings showcase the remarkable performance of SCRN compared to first-order methods.
109,895
109,895
Image Colorization using U-Net with Skip Connections and Fusion Layer on Landscape Images
We present a novel technique to automatically colorize grayscale images that combine the U-Net model and Fusion Layer features. This approach allows the model to learn the colorization of images from pre-trained U-Net. Moreover, the Fusion layer is applied to merge local information results dependent on small image patches with global priors of an entire image on each class, forming visually more compelling colorization results. Finally, we validate our approach with a user study evaluation and compare it against state-of-the-art, resulting in improvements.
109,896
109,896
Understanding Programmatic Weak Supervision via Source-aware Influence Function
Programmatic Weak Supervision (PWS) aggregates the source votes of multiple weak supervision sources into probabilistic training labels, which are in turn used to train an end model. With its increasing popularity, it is critical to have some tool for users to understand the influence of each component (e.g., the source vote or training data) in the pipeline and interpret the end model behavior. To achieve this, we build on Influence Function (IF) and propose source-aware IF, which leverages the generation process of the probabilistic labels to decompose the end model's training objective and then calculate the influence associated with each (data, source, class) tuple. These primitive influence score can then be used to estimate the influence of individual component of PWS, such as source vote, supervision source, and training data. On datasets of diverse domains, we demonstrate multiple use cases: (1) interpreting incorrect predictions from multiple angles that reveals insights for debugging the PWS pipeline, (2) identifying mislabeling of sources with a gain of 9%-37% over baselines, and (3) improving the end model's generalization performance by removing harmful components in the training objective (13%-24% better than ordinary IF).
109,897
109,897
Trust-based Consensus in Multi-Agent Reinforcement Learning Systems
An often neglected issue in multi-agent reinforcement learning (MARL) is the potential presence of unreliable agents in the environment whose deviations from expected behavior can prevent a system from accomplishing its intended tasks. In particular, consensus is a fundamental underpinning problem of cooperative distributed multi-agent systems. Consensus requires different agents, situated in a decentralized communication network, to reach an agreement out of a set of initial proposals that they put forward. Learning-based agents should adopt a protocol that allows them to reach consensus despite having one or more unreliable agents in the system. This paper investigates the problem of unreliable agents in MARL, considering consensus as case study. Echoing established results in the distributed systems literature, our experiments show that even a moderate fraction of such agents can greatly impact the ability of reaching consensus in a networked environment. We propose Reinforcement Learning-based Trusted Consensus (RLTC), a decentralized trust mechanism, in which agents can independently decide which neighbors to communicate with. We empirically demonstrate that our trust mechanism is able to deal with unreliable agents effectively, as evidenced by higher consensus success rates.
109,898
109,898
Robust Reinforcement Learning on Graphs for Logistics optimization
Logistics optimization nowadays is becoming one of the hottest areas in the AI community. In the past year, significant advancements in the domain were achieved by representing the problem in a form of graph. Another promising area of research was to apply reinforcement learning algorithms to the above task. In our work, we made advantage of using both approaches and apply reinforcement learning on a graph. To do that, we have analyzed the most recent results in both fields and selected SOTA algorithms both from graph neural networks and reinforcement learning. Then, we combined selected models on the problem of AMOD systems optimization for the transportation network of New York city. Our team compared three algorithms - GAT, Pro-CNN and PTDNet - to bring to the fore the important nodes on a graph representation. Finally, we achieved SOTA results on AMOD systems optimization problem employing PTDNet with GNN and training them in reinforcement fashion. Keywords: Graph Neural Network (GNN), Logistics optimization, Reinforcement Learning
109,899
109,899
Differentially Private Data Generation Needs Better Features
Training even moderately-sized generative models with differentially-private stochastic gradient descent (DP-SGD) is difficult: the required level of noise for reasonable levels of privacy is simply too large. We advocate instead building off a good, relevant representation on public data, then using private data only for "transfer learning." In particular, we minimize the maximum mean discrepancy (MMD) between private target data and the generated distribution, using a kernel based on perceptual features from a public dataset. With the MMD, we can simply privatize the data-dependent term once and for all, rather than introducing noise at each step of optimization as in DP-SGD. Our algorithm allows us to generate CIFAR10-level images faithfully with $\varepsilon \approx 2$, far surpassing the current state of the art, which only models MNIST and FashionMNIST at $\varepsilon \approx 10$. Our work introduces simple yet powerful foundations for reducing the gap between private and non-private deep generative models.