Unnamed: 0.1
int64
0
113k
Unnamed: 0
float64
0
113k
title
stringlengths
7
246
abstract
stringlengths
6
3.31k
109,900
109,900
RADNet: Ensemble Model for Robust Glaucoma Classification in Color Fundus Images
Glaucoma is one of the most severe eye diseases, characterized by rapid progression and leading to irreversible blindness. It is often the case that pathology diagnostics is carried out when the one's sight has already significantly degraded due to the lack of noticeable symptoms at early stage of the disease. Regular glaucoma screenings of the population shall improve early-stage detection, however the desirable frequency of etymological checkups is often not feasible due to excessive load imposed by manual diagnostics on limited number of specialists. Considering the basic methodology to detect glaucoma is to analyze fundus images for the \textit{optic-disc-to-optic-cup ratio}, Machine Learning domain can offer sophisticated tooling for image processing and classification. In our work, we propose an advanced image pre-processing technique combined with an ensemble of deep classification networks. Our \textit{Retinal Auto Detection (RADNet)} model has been successfully tested on Rotterdam EyePACS AIROGS train dataset with AUC of 0.92, and then additionally finetuned and tested on a fraction of RIM-ONE DL dataset with AUC of 0.91.
109,901
109,901
A Neural Tangent Kernel Formula for Ensembles of Soft Trees with Arbitrary Architectures
A soft tree is an actively studied variant of a decision tree that updates splitting rules using the gradient method. Although it can have various tree architectures, the theoretical properties of their impact are not well known. In this paper, we formulate and analyze the Neural Tangent Kernel (NTK) induced by soft tree ensembles for arbitrary tree architectures. This kernel leads to the remarkable finding that only the number of leaves at each depth is relevant for the tree architecture in ensemble learning with infinitely many trees. In other words, if the number of leaves at each depth is fixed, the training behavior in function space and the generalization performance are exactly the same across different tree architectures, even if they are not isomorphic. We also show that the NTK of asymmetric trees like decision lists does not degenerate when they get infinitely deep. This is in contrast to the perfect binary trees, whose NTK is known to degenerate and leads to worse generalization performance for deeper trees.
109,902
109,902
Analytics of Business Time Series Using Machine Learning and Bayesian Inference
In the survey we consider the case studies on sales time series forecasting, the deep learning approach for forecasting non-stationary time series using time trend correction, dynamic price and supply optimization using Q-learning, Bitcoin price modeling, COVID-19 spread impact on stock market, using social networks signals in analytics. The use of machine learning and Bayesian inference in predictive analytics has been analyzed.
109,903
109,903
Boosting Tail Neural Network for Realtime Custom Keyword Spotting
In this paper, we propose a Boosting Tail Neural Network (BTNN) for improving the performance of Realtime Custom Keyword Spotting (RCKS) that is still an industrial challenge for demanding powerful classification ability with limited computation resources. Inspired by Brain Science that a brain is only partly activated for a nerve simulation and numerous machine learning algorithms are developed to use a batch of weak classifiers to resolve arduous problems, which are often proved to be effective. We show that this method is helpful to the RCKS problem. The proposed approach achieve better performances in terms of wakeup rate and false alarm. In our experiments compared with those traditional algorithms that use only one strong classifier, it gets 18\% relative improvement. We also point out that this approach may be promising in future ASR exploration.
109,904
109,904
Amortized Inference for Causal Structure Learning
Learning causal structure poses a combinatorial search problem that typically involves evaluating structures using a score or independence test. The resulting search is costly, and designing suitable scores or tests that capture prior knowledge is difficult. In this work, we propose to amortize the process of causal structure learning. Rather than searching over causal structures directly, we train a variational inference model to predict the causal structure from observational/interventional data. Our inference model acquires domain-specific inductive bias for causal discovery solely from data generated by a simulator. This allows us to bypass both the search over graphs and the hand-engineering of suitable score functions. Moreover, the architecture of our inference model is permutation invariant w.r.t. the data points and permutation equivariant w.r.t. the variables, facilitating generalization to significantly larger problem instances than seen during training. On synthetic data and semi-synthetic gene expression data, our models exhibit robust generalization capabilities under substantial distribution shift and significantly outperform existing algorithms, especially in the challenging genomics domain.
109,905
109,905
Mitigating multiple descents: A model-agnostic framework for risk monotonization
Recent empirical and theoretical analyses of several commonly used prediction procedures reveal a peculiar risk behavior in high dimensions, referred to as double/multiple descent, in which the asymptotic risk is a non-monotonic function of the limiting aspect ratio of the number of features or parameters to the sample size. To mitigate this undesirable behavior, we develop a general framework for risk monotonization based on cross-validation that takes as input a generic prediction procedure and returns a modified procedure whose out-of-sample prediction risk is, asymptotically, monotonic in the limiting aspect ratio. As part of our framework, we propose two data-driven methodologies, namely zero- and one-step, that are akin to bagging and boosting, respectively, and show that, under very mild assumptions, they provably achieve monotonic asymptotic risk behavior. Our results are applicable to a broad variety of prediction procedures and loss functions, and do not require a well-specified (parametric) model. We exemplify our framework with concrete analyses of the minimum $\ell_2$, $\ell_1$-norm least squares prediction procedures. As one of the ingredients in our analysis, we also derive novel additive and multiplicative forms of oracle risk inequalities for split cross-validation that are of independent interest.
109,906
109,906
Conformal Prediction Intervals with Temporal Dependence
Cross-sectional prediction is common in many domains such as healthcare, including forecasting tasks using electronic health records, where different patients form a cross-section. We focus on the task of constructing valid prediction intervals (PIs) in time-series regression with a cross-section. A prediction interval is considered valid if it covers the true response with (a pre-specified) high probability. We first distinguish between two notions of validity in such a setting: cross-sectional and longitudinal. Cross-sectional validity is concerned with validity across the cross-section of the time series data, while longitudinal validity accounts for the temporal dimension. Coverage guarantees along both these dimensions are ideally desirable; however, we show that distribution-free longitudinal validity is theoretically impossible. Despite this limitation, we propose Conformal Prediction with Temporal Dependence (CPTD), a procedure which is able to maintain strict cross-sectional validity while improving longitudinal coverage. CPTD is post-hoc and light-weight, and can easily be used in conjunction with any prediction model as long as a calibration set is available. We focus on neural networks due to their ability to model complicated data such as diagnosis codes for time-series regression, and perform extensive experimental validation to verify the efficacy of our approach. We find that CPTD outperforms baselines on a variety of datasets by improving longitudinal coverage and often providing more efficient (narrower) PIs.
109,907
109,907
Learning Mean Field Games: A Survey
Non-cooperative and cooperative games with a very large number of players have many applications but remain generally intractable when the number of players increases. Introduced by Lasry and Lions, and Huang, Caines and Malham\'e, Mean Field Games (MFGs) rely on a mean-field approximation to allow the number of players to grow to infinity. Traditional methods for solving these games generally rely on solving partial or stochastic differential equations with a full knowledge of the model. Recently, Reinforcement Learning (RL) has appeared promising to solve complex problems. By combining MFGs and RL, we hope to solve games at a very large scale both in terms of population size and environment complexity. In this survey, we review the quickly growing recent literature on RL methods to learn Nash equilibria in MFGs. We first identify the most common settings (static, stationary, and evolutive). We then present a general framework for classical iterative methods (based on best-response computation or policy evaluation) to solve MFGs in an exact way. Building on these algorithms and the connection with Markov Decision Processes, we explain how RL can be used to learn MFG solutions in a model-free way. Last, we present numerical illustrations on a benchmark problem, and conclude with some perspectives.
109,908
109,908
Inception Transformer
Recent studies show that Transformer has strong capability of building long-range dependencies, yet is incompetent in capturing high frequencies that predominantly convey local information. To tackle this issue, we present a novel and general-purpose Inception Transformer, or iFormer for short, that effectively learns comprehensive features with both high- and low-frequency information in visual data. Specifically, we design an Inception mixer to explicitly graft the advantages of convolution and max-pooling for capturing the high-frequency information to Transformers. Different from recent hybrid frameworks, the Inception mixer brings greater efficiency through a channel splitting mechanism to adopt parallel convolution/max-pooling path and self-attention path as high- and low-frequency mixers, while having the flexibility to model discriminative information scattered within a wide frequency range. Considering that bottom layers play more roles in capturing high-frequency details while top layers more in modeling low-frequency global information, we further introduce a frequency ramp structure, i.e. gradually decreasing the dimensions fed to the high-frequency mixer and increasing those to the low-frequency mixer, which can effectively trade-off high- and low-frequency components across different layers. We benchmark the iFormer on a series of vision tasks, and showcase that it achieves impressive performance on image classification, COCO detection and ADE20K segmentation. For example, our iFormer-S hits the top-1 accuracy of 83.4% on ImageNet-1K, much higher than DeiT-S by 3.6%, and even slightly better than much bigger model Swin-B (83.3%) with only 1/4 parameters and 1/3 FLOPs. Code and models will be released at https://github.com/sail-sg/iFormer.
109,909
109,909
Uniform Generalization Bound on Time and Inverse Temperature for Gradient Descent Algorithm and its Application to Analysis of Simulated Annealing
In this paper, we propose a novel uniform generalization bound on the time and inverse temperature for stochastic gradient Langevin dynamics (SGLD) in a non-convex setting. While previous works derive their generalization bounds by uniform stability, we use Rademacher complexity to make our generalization bound independent of the time and inverse temperature. Using Rademacher complexity, we can reduce the problem to derive a generalization bound on the whole space to that on a bounded region and therefore can remove the effect of the time and inverse temperature from our generalization bound. As an application of our generalization bound, an evaluation on the effectiveness of the simulated annealing in a non-convex setting is also described. For the sample size $n$ and time $s$, we derive evaluations with orders $\sqrt{n^{-1} \log (n+1)}$ and $|(\log)^4(s)|^{-1}$, respectively. Here, $(\log)^4$ denotes the $4$ times composition of the logarithmic function.
109,910
109,910
Towards Symbolic Time Series Representation Improved by Kernel Density Estimators
This paper deals with symbolic time series representation. It builds up on the popular mapping technique Symbolic Aggregate approXimation algorithm (SAX), which is extensively utilized in sequence classification, pattern mining, anomaly detection, time series indexing and other data mining tasks. However, the disadvantage of this method is, that it works reliably only for time series with Gaussian-like distribution. In our previous work we have proposed an improvement of SAX, called dwSAX, which can deal with Gaussian as well as non-Gaussian data distribution. Recently we have made further progress in our solution - edwSAX. Our goal was to optimally cover the information space by means of sufficient alphabet utilization; and to satisfy lower bounding criterion as tight as possible. We describe here our approach, including evaluation on commonly employed tasks such as time series reconstruction error and Euclidean distance lower bounding with promising improvements over SAX.
109,911
109,911
Towards Green AI with tensor networks -- Sustainability and innovation enabled by efficient algorithms
The current standard to compare the performance of AI algorithms is mainly based on one criterion: the model's accuracy. In this context, algorithms with a higher accuracy (or similar measures) are considered as better. To achieve new state-of-the-art results, algorithmic development is accompanied by an exponentially increasing amount of compute. While this has enabled AI research to achieve remarkable results, AI progress comes at a cost: it is unsustainable. In this paper, we present a promising tool for sustainable and thus Green AI: tensor networks (TNs). Being an established tool from multilinear algebra, TNs have the capability to improve efficiency without compromising accuracy. Since they can reduce compute significantly, we would like to highlight their potential for Green AI. We elaborate in both a kernel machine and deep learning setting how efficiency gains can be achieved with TNs. Furthermore, we argue that better algorithms should be evaluated in terms of both accuracy and efficiency. To that end, we discuss different efficiency criteria and analyze efficiency in an exemplifying experimental setting for kernel ridge regression. With this paper, we want to raise awareness about Green AI and showcase its positive impact on sustainability and AI research. Our key contribution is to demonstrate that TNs enable efficient algorithms and therefore contribute towards Green AI. In this sense, TNs pave the way for better algorithms in AI.
109,912
109,912
QGNN: Value Function Factorisation with Graph Neural Networks
In multi-agent reinforcement learning, the use of a global objective is a powerful tool for incentivising cooperation. Unfortunately, it is not sample-efficient to train individual agents with a global reward, because it does not necessarily correlate with an agent's individual actions. This problem can be solved by factorising the global value function into local value functions. Early work in this domain performed factorisation by conditioning local value functions purely on local information. Recently, it has been shown that providing both local information and an encoding of the global state can promote cooperative behaviour. In this paper we propose QGNN, the first value factorisation method to use a graph neural network (GNN) based model. The multi-layer message passing architecture of QGNN provides more representational complexity than models in prior work, allowing it to produce a more effective factorisation. QGNN also introduces a permutation invariant mixer which is able to match the performance of other methods, even with significantly fewer parameters. We evaluate our method against several baselines, including QMIX-Att, GraphMIX, QMIX, VDN, and hybrid architectures. Our experiments include Starcraft, the standard benchmark for credit assignment; Estimate Game, a custom environment that explicitly models inter-agent dependencies; and Coalition Structure Generation, a foundational problem with real-world applications. The results show that QGNN outperforms state-of-the-art value factorisation baselines consistently.
109,913
109,913
TSEM: Temporally Weighted Spatiotemporal Explainable Neural Network for Multivariate Time Series
Deep learning has become a one-size-fits-all solution for technical and business domains thanks to its flexibility and adaptability. It is implemented using opaque models, which unfortunately undermines the outcome trustworthiness. In order to have a better understanding of the behavior of a system, particularly one driven by time series, a look inside a deep learning model so-called posthoc eXplainable Artificial Intelligence (XAI) approaches, is important. There are two major types of XAI for time series data, namely model-agnostic and model-specific. Model-specific approach is considered in this work. While other approaches employ either Class Activation Mapping (CAM) or Attention Mechanism, we merge the two strategies into a single system, simply called the Temporally Weighted Spatiotemporal Explainable Neural Network for Multivariate Time Series (TSEM). TSEM combines the capabilities of RNN and CNN models in such a way that RNN hidden units are employed as attention weights for the CNN feature maps temporal axis. The result shows that TSEM outperforms XCM. It is similar to STAM in terms of accuracy, while also satisfying a number of interpretability criteria, including causality, fidelity, and spatiotemporality.
109,914
109,914
BiT: Robustly Binarized Multi-distilled Transformer
Modern pre-trained transformers have rapidly advanced the state-of-the-art in machine learning, but have also grown in parameters and computational complexity, making them increasingly difficult to deploy in resource-constrained environments. Binarization of the weights and activations of the network can significantly alleviate these issues, however is technically challenging from an optimization perspective. In this work, we identify a series of improvements which enables binary transformers at a much higher accuracy than what was possible previously. These include a two-set binarization scheme, a novel elastic binary activation function with learned parameters, and a method to quantize a network to its limit by successively distilling higher precision models into lower precision students. These approaches allow for the first time, fully binarized transformer models that are at a practical level of accuracy, approaching a full-precision BERT baseline on the GLUE language understanding benchmark within as little as 5.9%.
109,915
109,915
People counting system for retail analytics using edge AI
Developments in IoT applications are playing an important role in our day-to-day life, starting from business predictions to self driving cars. One of the area, most influenced by the field of AI and IoT is retail analytics. In Retail Analytics, Conversion Rates - a metric which is most often used by retail stores to measure how many people have visited the store and how many purchases has happened. This retail conversion rate assess the marketing operations, increasing stock, store outlet and running promotions ..etc. Our project intends to build a cost-effective people counting system with AI at Edge, where it calculates Conversion rates using total number of people counted by the system and number of transactions for the day, which helps in providing analytical insights for retail store optimization with a very minimum hardware requirements.
109,916
109,916
Preference Dynamics Under Personalized Recommendations
Many projects (both practical and academic) have designed algorithms to match users to content they will enjoy under the assumption that user's preferences and opinions do not change with the content they see. Evidence suggests that individuals' preferences are directly shaped by what content they see -- radicalization, rabbit holes, polarization, and boredom are all example phenomena of preferences affected by content. Polarization in particular can occur even in ecosystems with "mass media," where no personalization takes place, as recently explored in a natural model of preference dynamics by~\citet{hkazla2019geometric} and~\citet{gaitonde2021polarization}. If all users' preferences are drawn towards content they already like, or are repelled from content they already dislike, uniform consumption of media leads to a population of heterogeneous preferences converging towards only two poles. In this work, we explore whether some phenomenon akin to polarization occurs when users receive \emph{personalized} content recommendations. We use a similar model of preference dynamics, where an individual's preferences move towards content the consume and enjoy, and away from content they consume and dislike. We show that standard user reward maximization is an almost trivial goal in such an environment (a large class of simple algorithms will achieve only constant regret). A more interesting objective, then, is to understand under what conditions a recommendation algorithm can ensure stationarity of user's preferences. We show how to design a content recommendations which can achieve approximate stationarity, under mild conditions on the set of available content, when a user's preferences are known, and how one can learn enough about a user's preferences to implement such a strategy even when user preferences are initially unknown.
109,917
109,917
Formalizing Preferences Over Runtime Distributions
When trying to solve a computational problem we are often faced with a choice among algorithms that are all guaranteed to return the right answer but that differ in their runtime distributions (e.g., SAT solvers, sorting algorithms). This paper aims to lay theoretical foundations for such choices by formalizing preferences over runtime distributions. It might seem that we should simply prefer the algorithm that minimizes expected runtime. However, such preferences would be driven by exactly how slow our algorithm is on bad inputs, whereas in practice we are typically willing to cut off occasional, sufficiently long runs before they finish. We propose a principled alternative, taking a utility-theoretic approach to characterize the scoring functions that describe preferences over algorithms. These functions depend on the way our value for solving our problem decreases with time and on the distribution from which captimes are drawn. We describe examples of realistic utility functions and show how to leverage a maximum-entropy approach for modeling underspecified captime distributions. Finally, we show how to efficiently estimate an algorithm's expected utility from runtime samples.
109,918
109,918
Concurrent Neural Tree and Data Preprocessing AutoML for Image Classification
Deep Neural Networks (DNN's) are a widely-used solution for a variety of machine learning problems. However, it is often necessary to invest a significant amount of a data scientist's time to pre-process input data, test different neural network architectures, and tune hyper-parameters for optimal performance. Automated machine learning (autoML) methods automatically search the architecture and hyper-parameter space for optimal neural networks. However, current state-of-the-art (SOTA) methods do not include traditional methods for manipulating input data as part of the algorithmic search space. We adapt the Evolutionary Multi-objective Algorithm Design Engine (EMADE), a multi-objective evolutionary search framework for traditional machine learning methods, to perform neural architecture search. We also integrate EMADE's signal processing and image processing primitives. These primitives allow EMADE to manipulate input data before ingestion into the simultaneously evolved DNN. We show that including these methods as part of the search space shows potential to provide benefits to performance on the CIFAR-10 image classification benchmark dataset.
109,919
109,919
EvoVGM: A Deep Variational Generative Model for Evolutionary Parameter Estimation
Most evolutionary-oriented deep generative models do not explicitly consider the underlying evolutionary dynamics of biological sequences as it is performed within the Bayesian phylogenetic inference framework. In this study, we propose a method for a deep variational Bayesian generative model that jointly approximates the true posterior of local biological evolutionary parameters and generates sequence alignments. Moreover, it is instantiated and tuned for continuous-time Markov chain substitution models such as JC69 and GTR. We train the model via a low-variance variational objective function and a gradient ascent algorithm. Here, we show the consistency and effectiveness of the method on synthetic sequence alignments simulated with several evolutionary scenarios and on a real virus sequence alignment.
109,920
109,920
Improving Subgraph Representation Learning via Multi-View Augmentation
Subgraph representation learning based on Graph Neural Network (GNN) has broad applications in chemistry and biology, such as molecule property prediction and gene collaborative function prediction. On the other hand, graph augmentation techniques have shown promising results in improving graph-based and node-based classification tasks but are rarely explored in the GNN-based subgraph representation learning literature. In this work, we developed a novel multiview augmentation mechanism to improve subgraph representation learning and thus the accuracy of downstream prediction tasks. The augmentation technique creates multiple variants of subgraphs and embeds these variants into the original graph to achieve both high training efficiency, scalability, and improved accuracy. Experiments on several real-world subgraph benchmarks demonstrate the superiority of our proposed multi-view augmentation techniques.
109,921
109,921
Near-Optimal Goal-Oriented Reinforcement Learning in Non-Stationary Environments
We initiate the study of dynamic regret minimization for goal-oriented reinforcement learning modeled by a non-stationary stochastic shortest path problem with changing cost and transition functions. We start by establishing a lower bound $\Omega((B_{\star} SAT_{\star}(\Delta_c + B_{\star}^2\Delta_P))^{1/3}K^{2/3})$, where $B_{\star}$ is the maximum expected cost of the optimal policy of any episode starting from any state, $T_{\star}$ is the maximum hitting time of the optimal policy of any episode starting from the initial state, $SA$ is the number of state-action pairs, $\Delta_c$ and $\Delta_P$ are the amount of changes of the cost and transition functions respectively, and $K$ is the number of episodes. The different roles of $\Delta_c$ and $\Delta_P$ in this lower bound inspire us to design algorithms that estimate costs and transitions separately. Specifically, assuming the knowledge of $\Delta_c$ and $\Delta_P$, we develop a simple but sub-optimal algorithm and another more involved minimax optimal algorithm (up to logarithmic terms). These algorithms combine the ideas of finite-horizon approximation [Chen et al., 2022a], special Bernstein-style bonuses of the MVP algorithm [Zhang et al., 2020], adaptive confidence widening [Wei and Luo, 2021], as well as some new techniques such as properly penalizing long-horizon policies. Finally, when $\Delta_c$ and $\Delta_P$ are unknown, we develop a variant of the MASTER algorithm [Wei and Luo, 2021] and integrate the aforementioned ideas into it to achieve $\widetilde{O}(\min\{B_{\star} S\sqrt{ALK}, (B_{\star}^2S^2AT_{\star}(\Delta_c+B_{\star}\Delta_P))^{1/3}K^{2/3}\})$ regret, where $L$ is the unknown number of changes of the environment.
109,922
109,922
QADAM: Quantization-Aware DNN Accelerator Modeling for Pareto-Optimality
As the machine learning and systems communities strive to achieve higher energy-efficiency through custom deep neural network (DNN) accelerators, varied bit precision or quantization levels, there is a need for design space exploration frameworks that incorporate quantization-aware processing elements (PE) into the accelerator design space while having accurate and fast power, performance, and area models. In this work, we present QADAM, a highly parameterized quantization-aware power, performance, and area modeling framework for DNN accelerators. Our framework can facilitate future research on design space exploration and Pareto-efficiency of DNN accelerators for various design choices such as bit precision, PE type, scratchpad sizes of PEs, global buffer size, number of total PEs, and DNN configurations. Our results show that different bit precisions and PE types lead to significant differences in terms of performance per area and energy. Specifically, our framework identifies a wide range of design points where performance per area and energy varies more than 5x and 35x, respectively. We also show that the proposed lightweight processing elements (LightPEs) consistently achieve Pareto-optimal results in terms of accuracy and hardware-efficiency. With the proposed framework, we show that LightPEs achieve on par accuracy results and up to 5.7x more performance per area and energy improvement when compared to the best INT16 based design.
109,923
109,923
Online Deep Equilibrium Learning for Regularization by Denoising
Plug-and-Play Priors (PnP) and Regularization by Denoising (RED) are widely-used frameworks for solving imaging inverse problems by computing fixed-points of operators combining physical measurement models and learned image priors. While traditional PnP/RED formulations have focused on priors specified using image denoisers, there is a growing interest in learning PnP/RED priors that are end-to-end optimal. The recent Deep Equilibrium Models (DEQ) framework has enabled memory-efficient end-to-end learning of PnP/RED priors by implicitly differentiating through the fixed-point equations without storing intermediate activation values. However, the dependence of the computational/memory complexity of the measurement models in PnP/RED on the total number of measurements leaves DEQ impractical for many imaging applications. We propose ODER as a new strategy for improving the efficiency of DEQ through stochastic approximations of the measurement models. We theoretically analyze ODER giving insights into its convergence and ability to approximate the traditional DEQ approach. Our numerical results suggest the potential improvements in training/testing complexity due to ODER on three distinct imaging applications.
109,924
109,924
Scalable and Low-Latency Federated Learning with Cooperative Mobile Edge Networking
Federated learning (FL) enables collaborative model training without centralizing data. However, the traditional FL framework is cloud-based and suffers from high communication latency. On the other hand, the edge-based FL framework that relies on an edge server co-located with access point for model aggregation has low communication latency but suffers from degraded model accuracy due to the limited coverage of edge server. In light of high-accuracy but high-latency cloud-based FL and low-latency but low-accuracy edge-based FL, this paper proposes a new FL framework based on cooperative mobile edge networking called cooperative federated edge learning (CFEL) to enable both high-accuracy and low-latency distributed intelligence at mobile edge networks. Considering the unique two-tier network architecture of CFEL, a novel federated optimization method dubbed cooperative edge-based federated averaging (CE-FedAvg) is further developed, wherein each edge server both coordinates collaborative model training among the devices within its own coverage and cooperates with other edge servers to learn a shared global model through decentralized consensus. Experimental results based on benchmark datasets show that CFEL can largely speed up the convergence speed and reduce the training time to achieve a target model accuracy compared with prior FL frameworks.
109,925
109,925
Efficient and Near-Optimal Smoothed Online Learning for Generalized Linear Functions
Due to the drastic gap in complexity between sequential and batch statistical learning, recent work has studied a smoothed sequential learning setting, where Nature is constrained to select contexts with density bounded by 1/{\sigma} with respect to a known measure {\mu}. Unfortunately, for some function classes, there is an exponential gap between the statistically optimal regret and that which can be achieved efficiently. In this paper, we give a computationally efficient algorithm that is the first to enjoy the statistically optimal log(T/{\sigma}) regret for realizable K-wise linear classification. We extend our results to settings where the true classifier is linear in an over-parameterized polynomial featurization of the contexts, as well as to a realizable piecewise-regression setting assuming access to an appropriate ERM oracle. Somewhat surprisingly, standard disagreement-based analyses are insufficient to achieve regret logarithmic in 1/{\sigma}. Instead, we develop a novel characterization of the geometry of the disagreement region induced by generalized linear classifiers. Along the way, we develop numerous technical tools of independent interest, including a general anti-concentration bound for the determinant of certain matrix averages.
109,926
109,926
Designing an Efficient End-to-end Machine Learning Pipeline for Real-time Empty-shelf Detection
On-Shelf Availability (OSA) of products in retail stores is a critical business criterion in the fast moving consumer goods and retails sector. When a product is out-of-stock (OOS) and a customer cannot find it on its designed shelf, this motivates the customer to store-switching or buying nothing, which causes fall in future sales and demands. Retailers are employing several approaches to detect empty shelves and ensure high OSA of products; however, such methods are generally ineffective and infeasible since they are either manual, expensive or less accurate. Recently machine learning based solutions have been proposed, but they suffer from high computational cost and low accuracy problem due to lack of large annotated datasets of on-shelf products. Here, we present an elegant approach for designing an end-to-end machine learning (ML) pipeline for real-time empty shelf detection. Considering the strong dependency between the quality of ML models and the quality of data, we focus on the importance of proper data collection, cleaning and correct data annotation before delving into modeling. Since an empty-shelf detection solution should be computationally-efficient for real-time predictions, we explore different run-time optimizations to improve the model performance. Our dataset contains 1000 images, collected and annotated by following well-defined guidelines. Our low-latency model achieves a mean average F1-score of 68.5%, and can process up to 67 images/s on Intel Xeon Gold and up to 860 images/s on an A100 GPU.
109,927
109,927
RENs: Relevance Encoding Networks
The manifold assumption for high-dimensional data assumes that the data is generated by varying a set of parameters obtained from a low-dimensional latent space. Deep generative models (DGMs) are widely used to learn data representations in an unsupervised way. DGMs parameterize the underlying low-dimensional manifold in the data space using bottleneck architectures such as variational autoencoders (VAEs). The bottleneck dimension for VAEs is treated as a hyperparameter that depends on the dataset and is fixed at design time after extensive tuning. As the intrinsic dimensionality of most real-world datasets is unknown, often, there is a mismatch between the intrinsic dimensionality and the latent dimensionality chosen as a hyperparameter. This mismatch can negatively contribute to the model performance for representation learning and sample generation tasks. This paper proposes relevance encoding networks (RENs): a novel probabilistic VAE-based framework that uses the automatic relevance determination (ARD) prior in the latent space to learn the data-specific bottleneck dimensionality. The relevance of each latent dimension is directly learned from the data along with the other model parameters using stochastic gradient descent and a reparameterization trick adapted to non-Gaussian priors. We leverage the concept of DeepSets to capture permutation invariant statistical properties in both data and latent spaces for relevance determination. The proposed framework is general and flexible and can be used for the state-of-the-art VAE models that leverage regularizers to impose specific characteristics in the latent space (e.g., disentanglement). With extensive experimentation on synthetic and public image datasets, we show that the proposed model learns the relevant latent bottleneck dimensionality without compromising the representation and generation quality of the samples.
109,928
109,928
Urban Rhapsody: Large-scale exploration of urban soundscapes
Noise is one of the primary quality-of-life issues in urban environments. In addition to annoyance, noise negatively impacts public health and educational performance. While low-cost sensors can be deployed to monitor ambient noise levels at high temporal resolutions, the amount of data they produce and the complexity of these data pose significant analytical challenges. One way to address these challenges is through machine listening techniques, which are used to extract features in attempts to classify the source of noise and understand temporal patterns of a city's noise situation. However, the overwhelming number of noise sources in the urban environment and the scarcity of labeled data makes it nearly impossible to create classification models with large enough vocabularies that capture the true dynamism of urban soundscapes In this paper, we first identify a set of requirements in the yet unexplored domain of urban soundscape exploration. To satisfy the requirements and tackle the identified challenges, we propose Urban Rhapsody, a framework that combines state-of-the-art audio representation, machine learning, and visual analytics to allow users to interactively create classification models, understand noise patterns of a city, and quickly retrieve and label audio excerpts in order to create a large high-precision annotated database of urban sound recordings. We demonstrate the tool's utility through case studies performed by domain experts using data generated over the five-year deployment of a one-of-a-kind sensor network in New York City.
109,929
109,929
Semi-supervised Drifted Stream Learning with Short Lookback
In many scenarios, 1) data streams are generated in real time; 2) labeled data are expensive and only limited labels are available in the beginning; 3) real-world data is not always i.i.d. and data drift over time gradually; 4) the storage of historical streams is limited and model updating can only be achieved based on a very short lookback window. This learning setting limits the applicability and availability of many Machine Learning (ML) algorithms. We generalize the learning task under such setting as a semi-supervised drifted stream learning with short lookback problem (SDSL). SDSL imposes two under-addressed challenges on existing methods in semi-supervised learning, continuous learning, and domain adaptation: 1) robust pseudo-labeling under gradual shifts and 2) anti-forgetting adaptation with short lookback. To tackle these challenges, we propose a principled and generic generation-replay framework to solve SDSL. The framework is able to accomplish: 1) robust pseudo-labeling in the generation step; 2) anti-forgetting adaption in the replay step. To achieve robust pseudo-labeling, we develop a novel pseudo-label classification model to leverage supervised knowledge of previously labeled data, unsupervised knowledge of new data, and, structure knowledge of invariant label semantics. To achieve adaptive anti-forgetting model replay, we propose to view the anti-forgetting adaptation task as a flat region search problem. We propose a novel minimax game-based replay objective function to solve the flat region search problem and develop an effective optimization solver. Finally, we present extensive experiments to demonstrate our framework can effectively address the task of anti-forgetting learning in drifted streams with short lookback.
109,930
109,930
Forecasting Patient Demand at Urgent Care Clinics using Machine Learning
Urgent care clinics and emergency departments around the world periodically suffer from extended wait times beyond patient expectations due to inadequate staffing levels. These delays have been linked with adverse clinical outcomes. Previous research into forecasting demand this domain has mostly used a collection of statistical techniques, with machine learning approaches only now beginning to emerge in recent literature. The forecasting problem for this domain is difficult and has also been complicated by the COVID-19 pandemic which has introduced an additional complexity to this estimation due to typical demand patterns being disrupted. This study explores the ability of machine learning methods to generate accurate patient presentations at two large urgent care clinics located in Auckland, New Zealand. A number of machine learning algorithms were explored in order to determine the most effective technique for this problem domain, with the task of making forecasts of daily patient demand three months in advance. The study also performed an in-depth analysis into the model behaviour in respect to the exploration of which features are most effective at predicting demand and which features are capable of adaptation to the volatility caused by the COVID-19 pandemic lockdowns. The results showed that ensemble-based methods delivered the most accurate and consistent solutions on average, generating improvements in the range of 23%-27% over the existing in-house methods for estimating the daily demand.
109,931
109,931
Tight Lower Bounds on Worst-Case Guarantees for Zero-Shot Learning with Attributes
We develop a rigorous mathematical analysis of zero-shot learning with attributes. In this setting, the goal is to label novel classes with no training data, only detectors for attributes and a description of how those attributes are correlated with the target classes, called the class-attribute matrix. We develop the first non-trivial lower bound on the worst-case error of the best map from attributes to classes for this setting, even with perfect attribute detectors. The lower bound characterizes the theoretical intrinsic difficulty of the zero-shot problem based on the available information -- the class-attribute matrix -- and the bound is practically computable from it. Our lower bound is tight, as we show that we can always find a randomized map from attributes to classes whose expected error is upper bounded by the value of the lower bound. We show that our analysis can be predictive of how standard zero-shot methods behave in practice, including which classes will likely be confused with others.
109,932
109,932
Entropy Maximization with Depth: A Variational Principle for Random Neural Networks
To understand the essential role of depth in neural networks, we investigate a variational principle for depth: Does increasing depth perform an implicit optimization for the representations in neural networks? We prove that random neural networks equipped with batch normalization maximize the differential entropy of representations with depth up to constant factors, assuming that the representations are contractive. Thus, representations inherently obey the \textit{principle of maximum entropy} at initialization, in the absence of information about the learning task. Our variational formulation for neural representations characterizes the interplay between representation entropy and architectural components, including depth, width, and non-linear activations, thereby potentially inspiring the design of neural architectures.
109,933
109,933
Learning to Query Internet Text for Informing Reinforcement Learning Agents
Generalization to out of distribution tasks in reinforcement learning is a challenging problem. One successful approach improves generalization by conditioning policies on task or environment descriptions that provide information about the current transition or reward functions. Previously, these descriptions were often expressed as generated or crowd sourced text. In this work, we begin to tackle the problem of extracting useful information from natural language found in the wild (e.g. internet forums, documentation, and wikis). These natural, pre-existing sources are especially challenging, noisy, and large and present novel challenges compared to previous approaches. We propose to address these challenges by training reinforcement learning agents to learn to query these sources as a human would, and we experiment with how and when an agent should query. To address the \textit{how}, we demonstrate that pretrained QA models perform well at executing zero-shot queries in our target domain. Using information retrieved by a QA model, we train an agent to learn \textit{when} it should execute queries. We show that our method correctly learns to execute queries to maximize reward in a reinforcement learning setting.
109,934
109,934
Factorized Structured Regression for Large-Scale Varying Coefficient Models
Recommender Systems (RS) pervade many aspects of our everyday digital life. Proposed to work at scale, state-of-the-art RS allow the modeling of thousands of interactions and facilitate highly individualized recommendations. Conceptually, many RS can be viewed as instances of statistical regression models that incorporate complex feature effects and potentially non-Gaussian outcomes. Such structured regression models, including time-aware varying coefficients models, are, however, limited in their applicability to categorical effects and inclusion of a large number of interactions. Here, we propose Factorized Structured Regression (FaStR) for scalable varying coefficient models. FaStR overcomes limitations of general regression models for large-scale data by combining structured additive regression and factorization approaches in a neural network-based model implementation. This fusion provides a scalable framework for the estimation of statistical models in previously infeasible data settings. Empirical results confirm that the estimation of varying coefficients of our approach is on par with state-of-the-art regression techniques, while scaling notably better and also being competitive with other time-aware RS in terms of prediction performance. We illustrate FaStR's performance and interpretability on a large-scale behavioral study with smartphone user data.
109,935
109,935
BRIGHT -- Graph Neural Networks in Real-Time Fraud Detection
Detecting fraudulent transactions is an essential component to control risk in e-commerce marketplaces. Apart from rule-based and machine learning filters that are already deployed in production, we want to enable efficient real-time inference with graph neural networks (GNNs), which is useful to catch multihop risk propagation in a transaction graph. However, two challenges arise in the implementation of GNNs in production. First, future information in a dynamic graph should not be considered in message passing to predict the past. Second, the latency of graph query and GNN model inference is usually up to hundreds of milliseconds, which is costly for some critical online services. To tackle these challenges, we propose a Batch and Real-time Inception GrapH Topology (BRIGHT) framework to conduct an end-to-end GNN learning that allows efficient online real-time inference. BRIGHT framework consists of a graph transformation module (Two-Stage Directed Graph) and a corresponding GNN architecture (Lambda Neural Network). The Two-Stage Directed Graph guarantees that the information passed through neighbors is only from the historical payment transactions. It consists of two subgraphs representing historical relationships and real-time links, respectively. The Lambda Neural Network decouples inference into two stages: batch inference of entity embeddings and real-time inference of transaction prediction. Our experiments show that BRIGHT outperforms the baseline models by >2\% in average w.r.t.~precision. Furthermore, BRIGHT is computationally efficient for real-time fraud detection. Regarding end-to-end performance (including neighbor query and inference), BRIGHT can reduce the P99 latency by >75\%. For the inference stage, our speedup is on average 7.8$\times$ compared to the traditional GNN.
109,936
109,936
Identifying Patient-Specific Root Causes with the Heteroscedastic Noise Model
Complex diseases are caused by a multitude of factors that may differ between patients even within the same diagnostic category. A few underlying root causes may nevertheless initiate the development of disease within each patient. We therefore focus on identifying patient-specific root causes of disease, which we equate to the sample-specific predictivity of the exogenous error terms in a structural equation model. We generalize from the linear setting to the heteroscedastic noise model where $Y = m(X) + \varepsilon\sigma(X)$ with non-linear functions $m(X)$ and $\sigma(X)$ representing the conditional mean and mean absolute deviation, respectively. This model preserves identifiability but introduces non-trivial challenges that require a customized algorithm called Generalized Root Causal Inference (GRCI) to extract the error terms correctly. GRCI recovers patient-specific root causes more accurately than existing alternatives.
109,937
109,937
Undersampling is a Minimax Optimal Robustness Intervention in Nonparametric Classification
While a broad range of techniques have been proposed to tackle distribution shift, the simple baseline of training on an $\textit{undersampled}$ dataset often achieves close to state-of-the-art-accuracy across several popular benchmarks. This is rather surprising, since undersampling algorithms discard excess majority group data. To understand this phenomenon, we ask if learning is fundamentally constrained by a lack of minority group samples. We prove that this is indeed the case in the setting of nonparametric binary classification. Our results show that in the worst case, an algorithm cannot outperform undersampling unless there is a high degree of overlap between the train and test distributions (which is unlikely to be the case in real-world datasets), or if the algorithm leverages additional structure about the distribution shift. In particular, in the case of label shift we show that there is always an undersampling algorithm that is minimax optimal. While in the case of group-covariate shift we show that there is an undersampling algorithm that is minimax optimal when the overlap between the group distributions is small. We also perform an experimental case study on a label shift dataset and find that in line with our theory the test accuracy of robust neural network classifiers is constrained by the number of minority samples.
109,938
109,938
Optimal Neural Network Approximation of Wasserstein Gradient Direction via Convex Optimization
The computation of Wasserstein gradient direction is essential for posterior sampling problems and scientific computing. The approximation of the Wasserstein gradient with finite samples requires solving a variational problem. We study the variational problem in the family of two-layer networks with squared-ReLU activations, towards which we derive a semi-definite programming (SDP) relaxation. This SDP can be viewed as an approximation of the Wasserstein gradient in a broader function family including two-layer networks. By solving the convex SDP, we obtain the optimal approximation of the Wasserstein gradient direction in this class of functions. Numerical experiments including PDE-constrained Bayesian inference and parameter estimation in COVID-19 modeling demonstrate the effectiveness of the proposed method.
109,939
109,939
Deep-XFCT: Deep learning 3D-mineral liberation analysis with micro X-ray fluorescence and computed tomography
The rapid development of X-ray micro-computed tomography (micro-CT) opens new opportunities for 3D analysis of particle and grain-size characterisation, determination of particle densities and shape factors, estimation of mineral associations and liberation and locking. Current practices in mineral liberation analysis are based on 2D representations leading to systematic errors in the extrapolation to volumetric properties. New quantitative methods based on tomographic data are therefore urgently required for characterisation of mineral deposits, mineral processing, characterisation of tailings, rock typing, stratigraphic refinement, reservoir characterisation for applications in the resource industry, environmental and material sciences. To date, no simple non-destructive method exists for 3D mineral liberation analysis. We present a new development based on combining micro-CT with micro-X-ray fluorescence (micro-XRF) using deep learning. We demonstrate successful semi-automated multi-modal analysis of a crystalline magmatic rock where the new technique overcomes the difficult task of differentiating feldspar from quartz in micro-CT data set. The approach is universal and can be extended to any multi-modal and multi-instrument analysis for further refinement. We conclude that the combination of micro-CT and micro-XRF already provides a new opportunity for robust 3D mineral liberation analysis in both field and laboratory applications.
109,940
109,940
Trainable Weight Averaging for Fast Convergence and Better Generalization
Stochastic gradient descent (SGD) and its variants are commonly considered as the de-facto methods to train deep neural networks (DNNs). While recent improvements to SGD mainly focus on the descent algorithm itself, few works pay attention to utilizing the historical solutions -- as an iterative method, SGD has actually gone through substantial explorations before its final convergence. Recently, an interesting attempt is stochastic weight averaging (SWA), which significantly improves the generalization by simply averaging the solutions at the tail stage of training. In this paper, we propose to optimize the averaging coefficients, leading to our Trainable Weight Averaging (TWA), essentially a novel training method in a reduced subspace spanned by historical solutions. TWA is quite efficient and has good generalization capability as the degree of freedom for training is small. It largely reduces the estimation error from SWA, making it not only further improve the SWA solutions but also take full advantage of the solutions generated in the head of training where SWA fails. In the extensive numerical experiments, (i) TWA achieves consistent improvements over SWA with less sensitivity to learning rate; (ii) applying TWA in the head stage of training largely speeds up the convergence, resulting in over 40% time saving on CIFAR and 30% on ImageNet with improved generalization compared with regular training. The code is released at https://github.com/nblt/TWA.
109,941
109,941
Learning to segment with limited annotations: Self-supervised pretraining with regression and contrastive loss in MRI
Obtaining manual annotations for large datasets for supervised training of deep learning (DL) models is challenging. The availability of large unlabeled datasets compared to labeled ones motivate the use of self-supervised pretraining to initialize DL models for subsequent segmentation tasks. In this work, we consider two pre-training approaches for driving a DL model to learn different representations using: a) regression loss that exploits spatial dependencies within an image and b) contrastive loss that exploits semantic similarity between pairs of images. The effect of pretraining techniques is evaluated in two downstream segmentation applications using Magnetic Resonance (MR) images: a) liver segmentation in abdominal T2-weighted MR images and b) prostate segmentation in T2-weighted MR images of the prostate. We observed that DL models pretrained using self-supervision can be finetuned for comparable performance with fewer labeled datasets. Additionally, we also observed that initializing the DL model using contrastive loss based pretraining performed better than the regression loss.
109,942
109,942
Contextual Pandora's Box
Pandora's Box is a fundamental stochastic optimization problem, where the decision-maker must find a good alternative while minimizing the search cost of exploring the value of each alternative. In the original formulation, it is assumed that accurate priors are given for the values of all the alternatives, while recent work studies the online variant of Pandora's Box where priors are originally unknown. In this work, we extend Pandora's Box to the online setting, while incorporating context. At every round, we are presented with a number of alternatives each having a context, an exploration cost and an unknown value drawn from an unknown prior distribution that may change at every round. Our main result is a no-regret algorithm that performs comparably well to the optimal algorithm which knows all prior distributions exactly. Our algorithm works even in the bandit setting where the algorithm never learns the values of the alternatives that were not explored. The key technique that enables our result is novel a modification of the realizability condition in contextual bandits that connects a context to the reservation value of the corresponding distribution rather than its mean
109,943
109,943
GraphPMU: Event Clustering via Graph Representation Learning Using Locationally-Scarce Distribution-Level Fundamental and Harmonic PMU Measurements
This paper is concerned with the complex task of identifying the type and cause of the events that are captured by distribution-level phasor measurement units (D-PMUs) in order to enhance situational awareness in power distribution systems. Our goal is to address two fundamental challenges in this field: a) scarcity in measurement locations due to the high cost of purchasing, installing, and streaming data from D-PMUs; b) limited prior knowledge about the event signatures due to the fact that the events are diverse, infrequent, and inherently unscheduled. To tackle these challenges, we propose an unsupervised graph-representation learning method, called GraphPMU, to significantly improve the performance in event clustering under locationally-scarce data availability by proposing the following two new directions: 1) using the topological information about the relative location of the few available phasor measurement units on the graph of the power distribution network; 2) utilizing not only the commonly used fundamental phasor measurements, bus also the less explored harmonic phasor measurements in the process of analyzing the signatures of various events. Through a detailed analysis of several case studies, we show that GraphPMU can highly outperform the prevalent methods in the literature.
109,944
109,944
Understanding Metrics for Paraphrasing
Paraphrase generation is a difficult problem. This is not only because of the limitations in text generation capabilities but also due that to the lack of a proper definition of what qualifies as a paraphrase and corresponding metrics to measure how good it is. Metrics for evaluation of paraphrasing quality is an on going research problem. Most of the existing metrics in use having been borrowed from other tasks do not capture the complete essence of a good paraphrase, and often fail at borderline-cases. In this work, we propose a novel metric $ROUGE_P$ to measure the quality of paraphrases along the dimensions of adequacy, novelty and fluency. We also provide empirical evidence to show that the current natural language generation metrics are insufficient to measure these desired properties of a good paraphrase. We look at paraphrase model fine-tuning and generation from the lens of metrics to gain a deeper understanding of what it takes to generate and evaluate a good paraphrase.
109,945
109,945
Cali3F: Calibrated Fast Fair Federated Recommendation System
The increasingly stringent regulations on privacy protection have sparked interest in federated learning. As a distributed machine learning framework, it bridges isolated data islands by training a global model over devices while keeping data localized. Specific to recommendation systems, many federated recommendation algorithms have been proposed to realize the privacy-preserving collaborative recommendation. However, several constraints remain largely unexplored. One big concern is how to ensure fairness between participants of federated learning, that is, to maintain the uniformity of recommendation performance across devices. On the other hand, due to data heterogeneity and limited networks, additional challenges occur in the convergence speed. To address these problems, in this paper, we first propose a personalized federated recommendation system training algorithm to improve the recommendation performance fairness. Then we adopt a clustering-based aggregation method to accelerate the training process. Combining the two components, we proposed Cali3F, a calibrated fast and fair federated recommendation framework. Cali3F not only addresses the convergence problem by a within-cluster parameter sharing approach but also significantly boosts fairness by calibrating local models with the global model. We demonstrate the performance of Cali3F across standard benchmark datasets and explore the efficacy in comparison to traditional aggregation approaches.
109,946
109,946
RACE: A Reinforcement Learning Framework for Improved Adaptive Control of NoC Channel Buffers
Network-on-chip (NoC) architectures rely on buffers to store flits to cope with contention for router resources during packet switching. Recently, reversible multi-function channel (RMC) buffers have been proposed to simultaneously reduce power and enable adaptive NoC buffering between adjacent routers. While adaptive buffering can improve NoC performance by maximizing buffer utilization, controlling the RMC buffer allocations requires a congestion-aware, scalable, and proactive policy. In this work, we present RACE, a novel reinforcement learning (RL) framework that utilizes better awareness of network congestion and a new reward metric ("falsefulls") to help guide the RL agent towards better RMC buffer control decisions. We show that RACE reduces NoC latency by up to 48.9%, and energy consumption by up to 47.1% against state-of-the-art NoC buffer control policies.
109,947
109,947
On the Evolution of A.I. and Machine Learning: Towards Measuring and Understanding Impact, Influence, and Leadership at Premier A.I. Conferences
Artificial Intelligence is now recognized as a general-purpose technology with ample impact on human life. In this work, we aim to understand the evolution of AI and Machine learning over the years by analyzing researchers' impact, influence, and leadership over the last decades. This work also intends to shed new light on the history and evolution of AI by exploring the dynamics involved in the field's evolution through the lenses of the papers published on AI conferences since the first International Joint Conference on Artificial Intelligence (IJCAI) in 1969. AI development and evolution have led to increasing research output, reflected in the number of articles published over the last sixty years. We construct comprehensive citation-collaboration and paper-author datasets and compute corresponding centrality measures to carry out our analyses. These analyses allow a better understanding of how AI has reached its current state of affairs in research. Throughout the process, we correlate these datasets with the work of the ACM Turing Award winners and the so-called two AI winters the field has gone through. We also look at self-citation trends and new authors' behaviors. Finally, we present a novel way to infer the country of affiliation of a paper from its organization. Therefore, this work provides a deep analysis of Artificial Intelligence history from information gathered and analyzed from large technical venues datasets and suggests novel insights that can contribute to understanding and measuring AI's evolution.
109,948
109,948
Symbolic Physics Learner: Discovering governing equations via Monte Carlo tree search
Nonlinear dynamics is ubiquitous in nature and commonly seen in various science and engineering disciplines. Distilling analytical expressions that govern nonlinear dynamics from limited data remains vital but challenging. To tackle this fundamental issue, we propose a novel Symbolic Physics Learner (SPL) machine to discover the mathematical structure of nonlinear dynamics. The key concept is to interpret mathematical operations and system state variables by computational rules and symbols, establish symbolic reasoning of mathematical formulas via expression trees, and employ a Monte Carlo tree search (MCTS) agent to explore optimal expression trees based on measurement data. The MCTS agent obtains an optimistic selection policy through the traversal of expression trees, featuring the one that maps to the arithmetic expression of underlying physics. Salient features of the proposed framework include search flexibility and enforcement of parsimony for discovered equations. The efficacy and superiority of the PSL machine are demonstrated by numerical examples, compared with state-of-the-art baselines.
109,949
109,949
Unsupervised Reinforcement Adaptation for Class-Imbalanced Text Classification
Class imbalance naturally exists when train and test models in different domains. Unsupervised domain adaptation (UDA) augments model performance with only accessible annotations from the source domain and unlabeled data from the target domain. However, existing state-of-the-art UDA models learn domain-invariant representations and evaluate primarily on class-balanced data across domains. In this work, we propose an unsupervised domain adaptation approach via reinforcement learning that jointly leverages feature variants and imbalanced labels across domains. We experiment with the text classification task for its easily accessible datasets and compare the proposed method with five baselines. Experiments on three datasets prove that our proposed method can effectively learn robust domain-invariant representations and successfully adapt text classifiers on imbalanced classes over domains. The code is available at https://github.com/woqingdoua/ImbalanceClass.
109,950
109,950
Matryoshka Representations for Adaptive Deployment
Learned representations are a central component in modern ML systems, serving a multitude of downstream tasks. When training such representations, it is often the case that computational and statistical constraints for each downstream task are unknown. In this context rigid, fixed capacity representations can be either over or under-accommodating to the task at hand. This leads us to ask: can we design a flexible representation that can adapt to multiple downstream tasks with varying computational resources? Our main contribution is Matryoshka Representation Learning (MRL) which encodes information at different granularities and allows a single embedding to adapt to the computational constraints of downstream tasks. MRL minimally modifies existing representation learning pipelines and imposes no additional cost during inference and deployment. MRL learns coarse-to-fine representations that are at least as accurate and rich as independently trained low-dimensional representations. The flexibility within the learned Matryoshka Representations offer: (a) up to 14x smaller embedding size for ImageNet-1K classification at the same level of accuracy; (b) up to 14x real-world speed-ups for large-scale retrieval on ImageNet-1K and 4K; and (c) up to 2% accuracy improvements for long-tail few-shot classification, all while being as robust as the original representations. Finally, we show that MRL extends seamlessly to web-scale datasets (ImageNet, JFT) across various modalities -- vision (ViT, ResNet), vision + language (ALIGN) and language (BERT). MRL code and pretrained models are open-sourced at https://github.com/RAIVNLab/MRL.
109,951
109,951
Grammar Detection for Sentiment Analysis through Improved Viterbi Algorithm
Grammar Detection, also referred to as Parts of Speech Tagging of raw text, is considered an underlying building block of the various Natural Language Processing pipelines like named entity recognition, question answering, and sentiment analysis. In short, forgiven a sentence, Parts of Speech tagging is the task of specifying and tagging each word of a sentence with nouns, verbs, adjectives, adverbs, and more. Sentiment Analysis may well be a procedure accustomed to determining if a given sentence's emotional tone is neutral, positive or negative. To assign polarity scores to the thesis or entities within phrase, in-text analysis and analytics, machine learning and natural language processing, approaches are incorporated. This Sentiment Analysis using POS tagger helps us urge a summary of the broader public over a specific topic. For this, we are using the Viterbi algorithm, Hidden Markov Model, Constraint based Viterbi algorithm for POS tagging. By comparing the accuracies, we select the foremost accurate result of the model for Sentiment Analysis for determining the character of the sentence.
109,952
109,952
Transferable Adversarial Attack based on Integrated Gradients
The vulnerability of deep neural networks to adversarial examples has drawn tremendous attention from the community. Three approaches, optimizing standard objective functions, exploiting attention maps, and smoothing decision surfaces, are commonly used to craft adversarial examples. By tightly integrating the three approaches, we propose a new and simple algorithm named Transferable Attack based on Integrated Gradients (TAIG) in this paper, which can find highly transferable adversarial examples for black-box attacks. Unlike previous methods using multiple computational terms or combining with other methods, TAIG integrates the three approaches into one single term. Two versions of TAIG that compute their integrated gradients on a straight-line path and a random piecewise linear path are studied. Both versions offer strong transferability and can seamlessly work together with the previous methods. Experimental results demonstrate that TAIG outperforms the state-of-the-art methods. The code will available at https://github.com/yihuang2016/TAIG
109,953
109,953
Cost-efficient Gaussian Tensor Network Embeddings for Tensor-structured Inputs
This work discusses tensor network embeddings, which are random matrices ($S$) with tensor network structure. These embeddings have been used to perform dimensionality reduction of tensor network structured inputs $x$ and accelerate applications such as tensor decomposition and kernel regression. Existing works have designed embeddings for inputs $x$ with specific structures, such that the computational cost for calculating $Sx$ is efficient. We provide a systematic way to design tensor network embeddings consisting of Gaussian random tensors, such that for inputs with more general tensor network structures, both the sketch size (row size of $S$) and the sketching computational cost are low. We analyze general tensor network embeddings that can be reduced to a sequence of sketching matrices. We provide a sufficient condition to quantify the accuracy of such embeddings and derive sketching asymptotic cost lower bounds using embeddings that satisfy this condition and have a sketch size lower than any input dimension. We then provide an algorithm to efficiently sketch input data using such embeddings. The sketch size of the embedding used in the algorithm has a linear dependence on the number of sketching dimensions of the input. Assuming tensor contractions are performed with classical dense matrix multiplication algorithms, this algorithm achieves asymptotic cost within a factor of $O(\sqrt{m})$ of our cost lower bound, where $m$ is the sketch size. Further, when each tensor in the input has a dimension that needs to be sketched, this algorithm yields the optimal sketching asymptotic cost. We apply our sketching analysis to inexact tensor decomposition optimization algorithms. We provide a sketching algorithm for CP decomposition that is asymptotically faster than existing work in multiple regimes, and show optimality of an existing algorithm for tensor train rounding.
109,954
109,954
Leveraging Dependency Grammar for Fine-Grained Offensive Language Detection using Graph Convolutional Networks
The last few years have witnessed an exponential rise in the propagation of offensive text on social media. Identification of this text with high precision is crucial for the well-being of society. Most of the existing approaches tend to give high toxicity scores to innocuous statements (e.g., "I am a gay man"). These false positives result from over-generalization on the training data where specific terms in the statement may have been used in a pejorative sense (e.g., "gay"). Emphasis on such words alone can lead to discrimination against the classes these systems are designed to protect. In this paper, we address the problem of offensive language detection on Twitter, while also detecting the type and the target of the offence. We propose a novel approach called SyLSTM, which integrates syntactic features in the form of the dependency parse tree of a sentence and semantic features in the form of word embeddings into a deep learning architecture using a Graph Convolutional Network. Results show that the proposed approach significantly outperforms the state-of-the-art BERT model with orders of magnitude fewer number of parameters.
109,955
109,955
On Learning Mixture of Linear Regressions in the Non-Realizable Setting
While mixture of linear regressions (MLR) is a well-studied topic, prior works usually do not analyze such models for prediction error. In fact, {\em prediction} and {\em loss} are not well-defined in the context of mixtures. In this paper, first we show that MLR can be used for prediction where instead of predicting a label, the model predicts a list of values (also known as {\em list-decoding}). The list size is equal to the number of components in the mixture, and the loss function is defined to be minimum among the losses resulted by all the component models. We show that with this definition, a solution of the empirical risk minimization (ERM) achieves small probability of prediction error. This begs for an algorithm to minimize the empirical risk for MLR, which is known to be computationally hard. Prior algorithmic works in MLR focus on the {\em realizable} setting, i.e., recovery of parameters when data is probabilistically generated by a mixed linear (noisy) model. In this paper we show that a version of the popular alternating minimization (AM) algorithm finds the best fit lines in a dataset even when a realizable model is not assumed, under some regularity conditions on the dataset and the initial points, and thereby provides a solution for the ERM. We further provide an algorithm that runs in polynomial time in the number of datapoints, and recovers a good approximation of the best fit lines. The two algorithms are experimentally compared.
109,956
109,956
Distributed Contextual Linear Bandits with Minimax Optimal Communication Cost
We study distributed contextual linear bandits with stochastic contexts, where $N$ agents act cooperatively to solve a linear bandit-optimization problem with $d$-dimensional features. For this problem, we propose a distributed batch elimination version of the LinUCB algorithm, DisBE-LUCB, where the agents share information among each other through a central server. We prove that over $T$ rounds ($NT$ actions in total) the communication cost of DisBE-LUCB is only $\tilde{\mathcal{O}}(dN)$ and its regret is at most $\tilde{\mathcal{O}}(\sqrt{dNT})$, which is of the same order as that incurred by an optimal single-agent algorithm for $NT$ rounds. Remarkably, we derive an information-theoretic lower bound on the communication cost of the distributed contextual linear bandit problem with stochastic contexts, and prove that our proposed algorithm is nearly minimax optimal in terms of \emph{both regret and communication cost}. Finally, we propose DecBE-LUCB, a fully decentralized version of DisBE-LUCB, which operates without a central server, where agents share information with their \emph{immediate neighbors} through a carefully designed consensus procedure.
109,957
109,957
AI for Porosity and Permeability Prediction from Geologic Core X-Ray Micro-Tomography
Geologic cores are rock samples that are extracted from deep under the ground during the well drilling process. They are used for petroleum reservoirs' performance characterization. Traditionally, physical studies of cores are carried out by the means of manual time-consuming experiments. With the development of deep learning, scientists actively started working on developing machine-learning-based approaches to identify physical properties without any manual experiments. Several previous works used machine learning to determine the porosity and permeability of the rocks, but either method was inaccurate or computationally expensive. We are proposing to use self-supervised pretraining of the very small CNN-transformer-based model to predict the physical properties of the rocks with high accuracy in a time-efficient manner. We show that this technique prevents overfitting even for extremely small datasets.
109,958
109,958
Orthogonal Stochastic Configuration Networks with Adaptive Construction Parameter for Data Analytics
As a randomized learner model, SCNs are remarkable that the random weights and biases are assigned employing a supervisory mechanism to ensure universal approximation and fast learning. However, the randomness makes SCNs more likely to generate approximate linear correlative nodes that are redundant and low quality, thereby resulting in non-compact network structure. In the light of a fundamental principle in machine learning, that is, a model with fewer parameters holds improved generalization. This paper proposes orthogonal SCN, termed OSCN, to filtrate out the low-quality hidden nodes for network structure reduction by incorporating Gram-Schmidt orthogonalization technology. The universal approximation property of OSCN and an adaptive setting for the key construction parameters have been presented in details. In addition, an incremental updating scheme is developed to dynamically determine the output weights, contributing to improved computational efficiency. Finally, experimental results on two numerical examples and several real-world regression and classification datasets substantiate the effectiveness and feasibility of the proposed approach.
109,959
109,959
More Recent Advances in (Hyper)Graph Partitioning
In recent years, significant advances have been made in the design and evaluation of balanced (hyper)graph partitioning algorithms. We survey trends of the last decade in practical algorithms for balanced (hyper)graph partitioning together with future research directions. Our work serves as an update to a previous survey on the topic. In particular, the survey extends the previous survey by also covering hypergraph partitioning and streaming algorithms, and has an additional focus on parallel algorithms.
109,960
109,960
$O(N^2)$ Universal Antisymmetry in Fermionic Neural Networks
Fermionic neural network (FermiNet) is a recently proposed wavefunction Ansatz, which is used in variational Monte Carlo (VMC) methods to solve the many-electron Schr\"{o}dinger equation. FermiNet proposes permutation-equivariant architectures, on which a Slater determinant is applied to induce antisymmetry. FermiNet is proved to have universal approximation capability with a single determinant, namely, it suffices to represent any antisymmetric function given sufficient parameters. However, the asymptotic computational bottleneck comes from the Slater determinant, which scales with $O(N^3)$ for $N$ electrons. In this paper, we substitute the Slater determinant with a pairwise antisymmetry construction, which is easy to implement and can reduce the computational cost to $O(N^2)$. We formally prove that the pairwise construction built upon permutation-equivariant architectures can universally represent any antisymmetric function. Besides, this universality can be achieved via continuous approximators when we aim to represent ground-state wavefunctions.
109,961
109,961
Sym-NCO: Leveraging Symmetricity for Neural Combinatorial Optimization
Deep reinforcement learning (DRL)-based combinatorial optimization (CO) methods (i.e., DRL-NCO) have shown significant merit over the conventional CO solvers as DRL-NCO is capable of learning CO solvers without supervised labels attained from the verified solver. This paper presents a novel training scheme, Sym-NCO, that achieves significant performance increments to existing DRL-NCO methods. Sym-NCO is a regularizer-based training scheme that leverages universal symmetricities in various CO problems and solutions. Imposing symmetricities such as rotational and reflectional invariance can greatly improve generalization capability of DRL-NCO as symmetricities are invariant features shared by certain CO tasks. Our experimental results verify that our Sym-NCO greatly improves the performance of DRL-NCO methods in four CO tasks, including traveling salesman problem (TSP), capacitated vehicle routing problem (CVRP), prize collecting TSP (PCTSP), and orienteering problem (OP), without employing problem-specific techniques. Remarkably, Sym-NCO outperformed not only the existing DRL-NCO methods but also a competitive conventional solver, the iterative local search (ILS), in PCTSP at 240 times faster speed.
109,962
109,962
Fast Vision Transformers with HiLo Attention
Vision Transformers (ViTs) have triggered the most recent and significant breakthroughs in computer vision. Their efficient designs are mostly guided by the indirect metric of computational complexity, i.e., FLOPs, which however has a clear gap with the direct metric such as throughput. Thus, we propose to use the direct speed evaluation on the target platform as the design principle for efficient ViTs. Particularly, we introduce LITv2, a simple and effective ViT which performs favourably against the existing state-of-the-art methods across a spectrum of different model sizes with faster speed. At the core of LITv2 is a novel self-attention mechanism, which we dub HiLo. HiLo is inspired by the insight that high frequencies in an image capture local fine details and low frequencies focus on global structures, whereas a multi-head self-attention layer neglects the characteristic of different frequencies. Therefore, we propose to disentangle the high/low frequency patterns in an attention layer by separating the heads into two groups, where one group encodes high frequencies via self-attention within each local window, and another group performs the attention to model the global relationship between the average-pooled low-frequency keys from each window and each query position in the input feature map. Benefit from the efficient design for both groups, we show that HiLo is superior to the existing attention mechanisms by comprehensively benchmarking on FLOPs, speed and memory consumption on GPUs. Powered by HiLo, LITv2 serves as a strong backbone for mainstream vision tasks including image classification, dense detection and segmentation. Code is available at https://github.com/zip-group/LITv2.
109,963
109,963
SymNMF-Net for The Symmetric NMF Problem
Recently, many works have demonstrated that Symmetric Non-negative Matrix Factorization~(SymNMF) enjoys a great superiority for various clustering tasks. Although the state-of-the-art algorithms for SymNMF perform well on synthetic data, they cannot consistently obtain satisfactory results with desirable properties and may fail on real-world tasks like clustering. Considering the flexibility and strong representation ability of the neural network, in this paper, we propose a neural network called SymNMF-Net for the Symmetric NMF problem to overcome the shortcomings of traditional optimization algorithms. Each block of SymNMF-Net is a differentiable architecture with an inversion layer, a linear layer and ReLU, which are inspired by a traditional update scheme for SymNMF. We show that the inference of each block corresponds to a single iteration of the optimization. Furthermore, we analyze the constraints of the inversion layer to ensure the output stability of the network to a certain extent. Empirical results on real-world datasets demonstrate the superiority of our SymNMF-Net and confirm the sufficiency of our theoretical analysis.
109,964
109,964
Aggregating Gradients in Encoded Domain for Federated Learning
Malicious attackers and an honest-but-curious server can steal private client data from uploaded gradients in federated learning. Although current protection methods (e.g., additive homomorphic cryptosystem) can guarantee the security of the federated learning system, they bring additional computation and communication costs. To mitigate the cost, we propose the \texttt{FedAGE} framework, which enables the server to aggregate gradients in an encoded domain without accessing raw gradients of any single client. Thus, \texttt{FedAGE} can prevent the curious server from gradient stealing while maintaining the same prediction performance without additional communication costs. Furthermore, we theoretically prove that the proposed encoding-decoding framework is a Gaussian mechanism for differential privacy. Finally, we evaluate \texttt{FedAGE} under several federated settings, and the results have demonstrated the efficacy of the proposed framework.
109,965
109,965
A Model or 603 Exemplars: Towards Memory-Efficient Class-Incremental Learning
Real-world applications require the classification model to adapt to new classes without forgetting old ones. Correspondingly, Class-Incremental Learning (CIL) aims to train a model with limited memory size to meet this requirement. Typical CIL methods tend to save representative exemplars from former classes to resist forgetting, while recent works find that storing models from history can substantially boost the performance. However, the stored models are not counted into the memory budget, which implicitly results in unfair comparisons. We find that when counting the model size into the total budget and comparing methods with aligned memory size, saving models do not consistently work, especially for the case with limited memory budgets. As a result, we need to holistically evaluate different CIL methods at different memory scales and simultaneously consider accuracy and memory size for measurement. On the other hand, we dive deeply into the construction of the memory buffer for memory efficiency. By analyzing the effect of different layers in the network, we find that shallow and deep layers have different characteristics in CIL. Motivated by this, we propose a simple yet effective baseline, denoted as MEMO for Memory-efficient Expandable MOdel. MEMO extends specialized layers based on the shared generalized representations, efficiently extracting diverse representations with modest cost and maintaining representative exemplars. Extensive experiments on benchmark datasets validate MEMO's competitive performance.
109,966
109,966
Penalizing Proposals using Classifiers for Semi-Supervised Object Detection
Obtaining gold standard annotated data for object detection is often costly, involving human-level effort. Semi-supervised object detection algorithms solve the problem with a small amount of gold-standard labels and a large unlabelled dataset used to generate silver-standard labels. But training on the silver standard labels does not produce good results, because they are machine-generated annotations. In this work, we design a modified loss function to train on large silver standard annotated sets generated by a weak annotator. We include a confidence metric associated with the annotation as an additional term in the loss function, signifying the quality of the annotation. We test the effectiveness of our approach on various test sets and use numerous variations to compare the results with some of the current approaches to object detection. In comparison with the baseline where no confidence metric is used, we achieved a 4% gain in mAP with 25% labeled data and 10% gain in mAP with 50% labeled data by using the proposed confidence metric.
109,967
109,967
QSpeech: Low-Qubit Quantum Speech Application Toolkit
Quantum devices with low qubits are common in the Noisy Intermediate-Scale Quantum (NISQ) era. However, Quantum Neural Network (QNN) running on low-qubit quantum devices would be difficult since it is based on Variational Quantum Circuit (VQC), which requires many qubits. Therefore, it is critical to make QNN with VQC run on low-qubit quantum devices. In this study, we propose a novel VQC called the low-qubit VQC. VQC requires numerous qubits based on the input dimension; however, the low-qubit VQC with linear transformation can liberate this condition. Thus, it allows the QNN to run on low-qubit quantum devices for speech applications. Furthermore, as compared to the VQC, our proposed low-qubit VQC can stabilize the training process more. Based on the low-qubit VQC, we implement QSpeech, a library for quick prototyping of hybrid quantum-classical neural networks in the speech field. It has numerous quantum neural layers and QNN models for speech applications. Experiments on Speech Command Recognition and Text-to-Speech show that our proposed low-qubit VQC outperforms VQC and is more stable.
109,968
109,968
Friends to Help: Saving Federated Learning from Client Dropout
Federated learning (FL) is an outstanding distributed machine learning framework due to its benefits on data privacy and communication efficiency. Since full client participation in many cases is infeasible due to constrained resources, partial participation FL algorithms have been investigated that proactively select/sample a subset of clients, aiming to achieve learning performance close to the full participation case. This paper studies a passive partial client participation scenario that is much less well understood, where partial participation is a result of external events, namely client dropout, rather than a decision of the FL algorithm. We cast FL with client dropout as a special case of a larger class of FL problems where clients can submit substitute (possibly inaccurate) local model updates. Based on our convergence analysis, we develop a new algorithm FL-FDMS that discovers friends of clients (i.e., clients whose data distributions are similar) on-the-fly and uses friends' local updates as substitutes for the dropout clients, thereby reducing the substitution error and improving the convergence performance. A complexity reduction mechanism is also incorporated into FL-FDMS, making it both theoretically sound and practically useful. Experiments on MNIST and CIFAR-10 confirmed the superior performance of FL-FDMS in handling client dropout in FL.
109,969
109,969
Collaborative Distillation Meta Learning for Simulation Intensive Hardware Design
This paper proposes a novel collaborative distillation meta learning (CDML) framework for simulation intensive hardware design problems. Deep reinforcement learning (DRL) has shown promising performance in various hardware design problems. However, previous works on DRL-based hardware design only dealt with problems with simplified objectives, which are not practical. In fact, the objective evaluation of real-world electrical performance through simulation is costly in terms of both time and computation, making DRL scheme involving extensive reward calculations not suitable. In this paper, we apply the CDML framework to decoupling capacitor placement problem (DPP), one of the significant simulation intensive hardware design problems. The CDML framework consists of a context-based meta learner and collaborative distillation scheme to produce a reusable solver. The context-based meta learner captures the location of probing port (i.e., target circuit block) and improves generalization capability. The collaborative distillation scheme with equivariant label transformation imposes the action-permutation (AP)-equivariant nature of placement problems, which not only improves sample efficiency but also improves generalization capability. Extensive experimental results verified that our CDML outperforms both neural baselines and iterative conventional design methods in terms of real-world objective, power integrity, with zero-shot transfer-ability.
109,970
109,970
DT+GNN: A Fully Explainable Graph Neural Network using Decision Trees
We propose the fully explainable Decision Tree Graph Neural Network (DT+GNN) architecture. In contrast to existing black-box GNNs and post-hoc explanation methods, the reasoning of DT+GNN can be inspected at every step. To achieve this, we first construct a differentiable GNN layer, which uses a categorical state space for nodes and messages. This allows us to convert the trained MLPs in the GNN into decision trees. These trees are pruned using our newly proposed method to ensure they are small and easy to interpret. We can also use the decision trees to compute traditional explanations. We demonstrate on both real-world datasets and synthetic GNN explainability benchmarks that this architecture works as well as traditional GNNs. Furthermore, we leverage the explainability of DT+GNNs to find interesting insights into many of these datasets, with some surprising results. We also provide an interactive web tool to inspect DT+GNN's decision making.
109,971
109,971
Constrained Reinforcement Learning for Short Video Recommendation
The wide popularity of short videos on social media poses new opportunities and challenges to optimize recommender systems on the video-sharing platforms. Users provide complex and multi-faceted responses towards recommendations, including watch time and various types of interactions with videos. As a result, established recommendation algorithms that concern a single objective are not adequate to meet this new demand of optimizing comprehensive user experiences. In this paper, we formulate the problem of short video recommendation as a constrained Markov Decision Process (MDP), where platforms want to optimize the main goal of user watch time in long term, with the constraint of accommodating the auxiliary responses of user interactions such as sharing/downloading videos. To solve the constrained MDP, we propose a two-stage reinforcement learning approach based on actor-critic framework. At stage one, we learn individual policies to optimize each auxiliary response. At stage two, we learn a policy to (i) optimize the main response and (ii) stay close to policies learned at the first stage, which effectively guarantees the performance of this main policy on the auxiliaries. Through extensive simulations, we demonstrate effectiveness of our approach over alternatives in both optimizing the main goal as well as balancing the others. We further show the advantage of our approach in live experiments of short video recommendations, where it significantly outperforms other baselines in terms of watch time and interactions from video views. Our approach has been fully launched in the production system to optimize user experiences on the platform.
109,972
109,972
DT-SV: A Transformer-based Time-domain Approach for Speaker Verification
Speaker verification (SV) aims to determine whether the speaker's identity of a test utterance is the same as the reference speech. In the past few years, extracting speaker embeddings using deep neural networks for SV systems has gone mainstream. Recently, different attention mechanisms and Transformer networks have been explored widely in SV fields. However, utilizing the original Transformer in SV directly may have frame-level information waste on output features, which could lead to restrictions on capacity and discrimination of speaker embeddings. Therefore, we propose an approach to derive utterance-level speaker embeddings via a Transformer architecture that uses a novel loss function named diffluence loss to integrate the feature information of different Transformer layers. Therein, the diffluence loss aims to aggregate frame-level features into an utterance-level representation, and it could be integrated into the Transformer expediently. Besides, we also introduce a learnable mel-fbank energy feature extractor named time-domain feature extractor that computes the mel-fbank features more precisely and efficiently than the standard mel-fbank extractor. Combining Diffluence loss and Time-domain feature extractor, we propose a novel Transformer-based time-domain SV model (DT-SV) with faster training speed and higher accuracy. Experiments indicate that our proposed model can achieve better performance in comparison with other models.
109,973
109,973
Denial-of-Service Attacks on Learned Image Compression
Deep learning techniques have shown promising results in image compression, with competitive bitrate and image reconstruction quality from compressed latent. However, while image compression has progressed towards higher peak signal-to-noise ratio (PSNR) and fewer bits per pixel (bpp), their robustness to corner-case images has never received deliberation. In this work, we, for the first time, investigate the robustness of image compression systems where imperceptible perturbation of input images can precipitate a significant increase in the bitrate of their compressed latent. To characterize the robustness of state-of-the-art learned image compression, we mount white and black-box attacks. Our results on several image compression models with various bitrate qualities show that they are surprisingly fragile, where the white-box attack achieves up to 56.326x and black-box 1.947x bpp change. To improve robustness, we propose a novel model which incorporates attention modules and a basic factorized entropy model, resulting in a promising trade-off between the PSNR/bpp ratio and robustness to adversarial attacks that surpasses existing learned image compressors.
109,974
109,974
Active Labeling: Streaming Stochastic Gradients
The workhorse of machine learning is stochastic gradient descent. To access stochastic gradients, it is common to consider iteratively input/output pairs of a training dataset. Interestingly, it appears that one does not need full supervision to access stochastic gradients, which is the main motivation of this paper. After formalizing the "active labeling" problem, which generalizes active learning based on partial supervision, we provide a streaming technique that provably minimizes the ratio of generalization error over number of samples. We illustrate our technique in depth for robust regression.
109,975
109,975
Privacy-Preserving Wavelet Neural Network with Fully Homomorphic Encryption
The main aim of Privacy-Preserving Machine Learning (PPML) is to protect the privacy and provide security to the data used in building Machine Learning models. There are various techniques in PPML such as Secure Multi-Party Computation, Differential Privacy, and Homomorphic Encryption (HE). The techniques are combined with various Machine Learning models and even Deep Learning Networks to protect the data privacy as well as the identity of the user. In this paper, we propose a fully homomorphic encrypted wavelet neural network to protect privacy and at the same time not compromise on the efficiency of the model. We tested the effectiveness of the proposed method on seven datasets taken from the finance and healthcare domains. The results show that our proposed model performs similarly to the unencrypted model.
109,976
109,976
Acute Lymphoblastic Leukemia Detection Using Hypercomplex-Valued Convolutional Neural Networks
This paper features convolutional neural networks defined on hypercomplex algebras applied to classify lymphocytes in blood smear digital microscopic images. Such classification is helpful for the diagnosis of acute lymphoblast leukemia (ALL), a type of blood cancer. We perform the classification task using eight hypercomplex-valued convolutional neural networks (HvCNNs) along with real-valued convolutional networks. Our results show that HvCNNs perform better than the real-valued model, showcasing higher accuracy with a much smaller number of parameters. Moreover, we found that HvCNNs based on Clifford algebras processing HSV-encoded images attained the highest observed accuracies. Precisely, our HvCNN yielded an average accuracy rate of 96.6% using the ALL-IDB2 dataset with a 50% train-test split, a value extremely close to the state-of-the-art models but using a much simpler architecture with significantly fewer parameters.
109,977
109,977
Evaluating Multimodal Interactive Agents
Creating agents that can interact naturally with humans is a common goal in artificial intelligence (AI) research. However, evaluating these interactions is challenging: collecting online human-agent interactions is slow and expensive, yet faster proxy metrics often do not correlate well with interactive evaluation. In this paper, we assess the merits of these existing evaluation metrics and present a novel approach to evaluation called the Standardised Test Suite (STS). The STS uses behavioural scenarios mined from real human interaction data. Agents see replayed scenario context, receive an instruction, and are then given control to complete the interaction offline. These agent continuations are recorded and sent to human annotators to mark as success or failure, and agents are ranked according to the proportion of continuations in which they succeed. The resulting STS is fast, controlled, interpretable, and representative of naturalistic interactions. Altogether, the STS consolidates much of what is desirable across many of our standard evaluation metrics, allowing us to accelerate research progress towards producing agents that can interact naturally with humans. https://youtu.be/YR1TngGORGQ
109,978
109,978
Triangular Contrastive Learning on Molecular Graphs
Recent contrastive learning methods have shown to be effective in various tasks, learning generalizable representations invariant to data augmentation thereby leading to state of the art performances. Regarding the multifaceted nature of large unlabeled data used in self-supervised learning while majority of real-word downstream tasks use single format of data, a multimodal framework that can train single modality to learn diverse perspectives from other modalities is an important challenge. In this paper, we propose TriCL (Triangular Contrastive Learning), a universal framework for trimodal contrastive learning. TriCL takes advantage of Triangular Area Loss, a novel intermodal contrastive loss that learns the angular geometry of the embedding space through simultaneously contrasting the area of positive and negative triplets. Systematic observation on embedding space in terms of alignment and uniformity showed that Triangular Area Loss can address the line-collapsing problem by discriminating modalities by angle. Our experimental results also demonstrate the outperformance of TriCL on downstream task of molecular property prediction which implies that the advantages of the embedding space indeed benefits the performance on downstream tasks.
109,979
109,979
On the Eigenvalues of Global Covariance Pooling for Fine-grained Visual Recognition
The Fine-Grained Visual Categorization (FGVC) is challenging because the subtle inter-class variations are difficult to be captured. One notable research line uses the Global Covariance Pooling (GCP) layer to learn powerful representations with second-order statistics, which can effectively model inter-class differences. In our previous conference paper, we show that truncating small eigenvalues of the GCP covariance can attain smoother gradient and improve the performance on large-scale benchmarks. However, on fine-grained datasets, truncating the small eigenvalues would make the model fail to converge. This observation contradicts the common assumption that the small eigenvalues merely correspond to the noisy and unimportant information. Consequently, ignoring them should have little influence on the performance. To diagnose this peculiar behavior, we propose two attribution methods whose visualizations demonstrate that the seemingly unimportant small eigenvalues are crucial as they are in charge of extracting the discriminative class-specific features. Inspired by this observation, we propose a network branch dedicated to magnifying the importance of small eigenvalues. Without introducing any additional parameters, this branch simply amplifies the small eigenvalues and achieves state-of-the-art performances of GCP methods on three fine-grained benchmarks. Furthermore, the performance is also competitive against other FGVC approaches on larger datasets. Code is available at \href{https://github.com/KingJamesSong/DifferentiableSVD}{https://github.com/KingJamesSong/DifferentiableSVD}.
109,980
109,980
Embedding Principle in Depth for the Loss Landscape Analysis of Deep Neural Networks
Unraveling the general structure underlying the loss landscapes of deep neural networks (DNNs) is important for the theoretical study of deep learning. Inspired by the embedding principle of DNN loss landscape, we prove in this work an embedding principle in depth that loss landscape of an NN "contains" all critical points of the loss landscapes for shallower NNs. Specifically, we propose a critical lifting operator that any critical point of a shallower network can be lifted to a critical manifold of the target network while preserving the outputs. Through lifting, local minimum of an NN can become a strict saddle point of a deeper NN, which can be easily escaped by first-order methods. The embedding principle in depth reveals a large family of critical points in which layer linearization happens, i.e., computation of certain layers is effectively linear for the training inputs. We empirically demonstrate that, through suppressing layer linearization, batch normalization helps avoid the lifted critical manifolds, resulting in a faster decay of loss. We also demonstrate that increasing training data reduces the lifted critical manifold thus could accelerate the training. Overall, the embedding principle in depth well complements the embedding principle (in width), resulting in a complete characterization of the hierarchical structure of critical points/manifolds of a DNN loss landscape.
109,981
109,981
DeepTechnome: Mitigating Unknown Bias in Deep Learning Based Assessment of CT Images
Reliably detecting diseases using relevant biological information is crucial for real-world applicability of deep learning techniques in medical imaging. We debias deep learning models during training against unknown bias - without preprocessing/filtering the input beforehand or assuming specific knowledge about its distribution or precise nature in the dataset. We use control regions as surrogates that carry information regarding the bias, employ the classifier model to extract features, and suppress biased intermediate features with our custom, modular DecorreLayer. We evaluate our method on a dataset of 952 lung computed tomography scans by introducing simulated biases w.r.t. reconstruction kernel and noise level and propose including an adversarial test set in evaluations of bias reduction techniques. In a moderately sized model architecture, applying the proposed method to learn from data exhibiting a strong bias, it near-perfectly recovers the classification performance observed when training with corresponding unbiased data.
109,982
109,982
Federated Split BERT for Heterogeneous Text Classification
Pre-trained BERT models have achieved impressive performance in many natural language processing (NLP) tasks. However, in many real-world situations, textual data are usually decentralized over many clients and unable to be uploaded to a central server due to privacy protection and regulations. Federated learning (FL) enables multiple clients collaboratively to train a global model while keeping the local data privacy. A few researches have investigated BERT in federated learning setting, but the problem of performance loss caused by heterogeneous (e.g., non-IID) data over clients remain under-explored. To address this issue, we propose a framework, FedSplitBERT, which handles heterogeneous data and decreases the communication cost by splitting the BERT encoder layers into local part and global part. The local part parameters are trained by the local client only while the global part parameters are trained by aggregating gradients of multiple clients. Due to the sheer size of BERT, we explore a quantization method to further reduce the communication cost with minimal performance loss. Our framework is ready-to-use and compatible to many existing federated learning algorithms, including FedAvg, FedProx and FedAdam. Our experiments verify the effectiveness of the proposed framework, which outperforms baseline methods by a significant margin, while FedSplitBERT with quantization can reduce the communication cost by $11.9\times$.
109,983
109,983
Federated Non-negative Matrix Factorization for Short Texts Topic Modeling with Mutual Information
Non-negative matrix factorization (NMF) based topic modeling is widely used in natural language processing (NLP) to uncover hidden topics of short text documents. Usually, training a high-quality topic model requires large amount of textual data. In many real-world scenarios, customer textual data should be private and sensitive, precluding uploading to data centers. This paper proposes a Federated NMF (FedNMF) framework, which allows multiple clients to collaboratively train a high-quality NMF based topic model with locally stored data. However, standard federated learning will significantly undermine the performance of topic models in downstream tasks (e.g., text classification) when the data distribution over clients is heterogeneous. To alleviate this issue, we further propose FedNMF+MI, which simultaneously maximizes the mutual information (MI) between the count features of local texts and their topic weight vectors to mitigate the performance degradation. Experimental results show that our FedNMF+MI methods outperform Federated Latent Dirichlet Allocation (FedLDA) and the FedNMF without MI methods for short texts by a significant margin on both coherence score and classification F1 score.
109,984
109,984
Gaussian Universality of Linear Classifiers with Random Labels in High-Dimension
While classical in many theoretical settings, the assumption of Gaussian i.i.d. inputs is often perceived as a strong limitation in the analysis of high-dimensional learning. In this study, we redeem this line of work in the case of generalized linear classification with random labels. Our main contribution is a rigorous proof that data coming from a range of generative models in high-dimensions have the same minimum training loss as Gaussian data with corresponding data covariance. In particular, our theorem covers data created by an arbitrary mixture of homogeneous Gaussian clouds, as well as multi-modal generative neural networks. In the limit of vanishing regularization, we further demonstrate that the training loss is independent of the data covariance. Finally, we show that this universality property is observed in practice with real datasets and random labels.
109,985
109,985
SARS-CoV-2 Result Interpretation based on Image Analysis of Lateral Flow Devices
The widely used gene quantisation technique, Lateral Flow Device (LFD), is now commonly used to detect the presence of SARS-CoV-2. It is enabling the control and prevention of the spread of the virus. Depending on the viral load, LFD have different sensitivity and self-test for normal user present additional challenge to interpret the result. With the evolution of machine learning algorithms, image processing and analysis has seen unprecedented growth. In this interdisciplinary study, we employ novel image analysis methods of computer vision and machine learning field to study visual features of the control region of LFD. Here, we automatically derive results for any image containing LFD into positive, negative or inconclusive. This will reduce the burden of human involvement of health workers and perception bias.
109,986
109,986
Fair Representation Learning through Implicit Path Alignment
We consider a fair representation learning perspective, where optimal predictors, on top of the data representation, are ensured to be invariant with respect to different sub-groups. Specifically, we formulate this intuition as a bi-level optimization, where the representation is learned in the outer-loop, and invariant optimal group predictors are updated in the inner-loop. Moreover, the proposed bi-level objective is demonstrated to fulfill the sufficiency rule, which is desirable in various practical scenarios but was not commonly studied in the fair learning. Besides, to avoid the high computational and memory cost of differentiating in the inner-loop of bi-level objective, we propose an implicit path alignment algorithm, which only relies on the solution of inner optimization and the implicit differentiation rather than the exact optimization path. We further analyze the error gap of the implicit approach and empirically validate the proposed method in both classification and regression settings. Experimental results show the consistently better trade-off in prediction performance and fairness measurement.
109,987
109,987
Towards Learning Universal Hyperparameter Optimizers with Transformers
Meta-learning hyperparameter optimization (HPO) algorithms from prior experiments is a promising approach to improve optimization efficiency over objective functions from a similar distribution. However, existing methods are restricted to learning from experiments sharing the same set of hyperparameters. In this paper, we introduce the OptFormer, the first text-based Transformer HPO framework that provides a universal end-to-end interface for jointly learning policy and function prediction when trained on vast tuning data from the wild. Our extensive experiments demonstrate that the OptFormer can imitate at least 7 different HPO algorithms, which can be further improved via its function uncertainty estimates. Compared to a Gaussian Process, the OptFormer also learns a robust prior distribution for hyperparameter response functions, and can thereby provide more accurate and better calibrated predictions. This work paves the path to future extensions for training a Transformer-based model as a general HPO optimizer.
109,988
109,988
The Effect of Task Ordering in Continual Learning
We investigate the effect of task ordering on continual learning performance. We conduct an extensive series of empirical experiments on synthetic and naturalistic datasets and show that reordering tasks significantly affects the amount of catastrophic forgetting. Connecting to the field of curriculum learning, we show that the effect of task ordering can be exploited to modify continual learning performance, and present a simple approach for doing so. Our method computes the distance between all pairs of tasks, where distance is defined as the source task curvature of a gradient step toward the target task. Using statistically rigorous methods and sound experimental design, we show that task ordering is an important aspect of continual learning that can be modified for improved performance.
109,989
109,989
Learning the spatio-temporal relationship between wind and significant wave height using deep learning
Ocean wave climate has a significant impact on near-shore and off-shore human activities, and its characterisation can help in the design of ocean structures such as wave energy converters and sea dikes. Therefore, engineers need long time series of ocean wave parameters. Numerical models are a valuable source of ocean wave data; however, they are computationally expensive. Consequently, statistical and data-driven approaches have gained increasing interest in recent decades. This work investigates the spatio-temporal relationship between North Atlantic wind and significant wave height (Hs) at an off-shore location in the Bay of Biscay, using a two-stage deep learning model. The first step uses convolutional neural networks (CNNs) to extract the spatial features that contribute to Hs. Then, long short-term memory (LSTM) is used to learn the long-term temporal dependencies between wind and waves.
109,990
109,990
How Powerful are K-hop Message Passing Graph Neural Networks
The most popular design paradigm for Graph Neural Networks (GNNs) is 1-hop message passing -- aggregating features from 1-hop neighbors repeatedly. However, the expressive power of 1-hop message passing is bounded by the Weisfeiler-Lehman (1-WL) test. Recently, researchers extended 1-hop message passing to K-hop message passing by aggregating information from K-hop neighbors of nodes simultaneously. However, there is no work on analyzing the expressive power of K-hop message passing. In this work, we theoretically characterize the expressive power of K-hop message passing. Specifically, we first formally differentiate two kinds of kernels of K-hop message passing which are often misused in previous works. We then characterize the expressive power of K-hop message passing by showing that it is more powerful than 1-hop message passing. Despite the higher expressive power, we show that K-hop message passing still cannot distinguish some simple regular graphs. To further enhance its expressive power, we introduce a KP-GNN framework, which improves K-hop message passing by leveraging the peripheral subgraph information in each hop. We prove that KP-GNN can distinguish almost all regular graphs including some distance regular graphs which could not be distinguished by previous distance encoding methods. Experimental results verify the expressive power and effectiveness of KP-GNN. KP-GNN achieves competitive results across all benchmark datasets.
109,991
109,991
TransBoost: Improving the Best ImageNet Performance using Deep Transduction
This paper deals with deep transductive learning, and proposes TransBoost as a procedure for fine-tuning any deep neural model to improve its performance on any (unlabeled) test set provided at training time. TransBoost is inspired by a large margin principle and is efficient and simple to use. The ImageNet classification performance is consistently and significantly improved with TransBoost on many architectures such as ResNets, MobileNetV3-L, EfficientNetB0, ViT-S, and ConvNext-T. Additionally we show that TransBoost is effective on a wide variety of image classification datasets.
109,992
109,992
Deep Active Learning with Noise Stability
Uncertainty estimation for unlabeled data is crucial to active learning. With a deep neural network employed as the backbone model, the data selection process is highly challenging due to the potential over-confidence of the model inference. Existing methods resort to special learning fashions (e.g. adversarial) or auxiliary models to address this challenge. This tends to result in complex and inefficient pipelines, which would render the methods impractical. In this work, we propose a novel algorithm that leverages noise stability to estimate data uncertainty in a Single-Training Multi-Inference fashion. The key idea is to measure the output derivation from the original observation when the model parameters are randomly perturbed by noise. We provide theoretical analyses by leveraging the small Gaussian noise theory and demonstrate that our method favors a subset with large and diverse gradients. Despite its simplicity, our method outperforms the state-of-the-art active learning baselines in various tasks, including computer vision, natural language processing, and structural data analysis.
109,993
109,993
QUIC-FL: Quick Unbiased Compression for Federated Learning
Distributed Mean Estimation (DME) is a fundamental building block in communication efficient federated learning. In DME, clients communicate their lossily compressed gradients to the parameter server, which estimates the average and updates the model. State of the art DME techniques apply either unbiased quantization methods, resulting in large estimation errors, or biased quantization methods, where unbiasing the result requires that the server decodes each gradient individually, which markedly slows the aggregation time. In this paper, we propose QUIC-FL, a DME algorithm that achieves the best of all worlds. QUIC-FL is unbiased, offers fast aggregation time, and is competitive with the most accurate (slow aggregation) DME techniques. To achieve this, we formalize the problem in a novel way that allows us to use standard solvers to design near-optimal unbiased quantization schemes.
109,994
109,994
Transfer and Share: Semi-Supervised Learning from Long-Tailed Data
Long-Tailed Semi-Supervised Learning (LTSSL) aims to learn from class-imbalanced data where only a few samples are annotated. Existing solutions typically require substantial cost to solve complex optimization problems, or class-balanced undersampling which can result in information loss. In this paper, we present the TRAS (TRAnsfer and Share) to effectively utilize long-tailed semi-supervised data. TRAS transforms the imbalanced pseudo-label distribution of a traditional SSL model via a delicate function to enhance the supervisory signals for minority classes. It then transfers the distribution to a target model such that the minority class will receive significant attention. Interestingly, TRAS shows that more balanced pseudo-label distribution can substantially benefit minority-class training, instead of seeking to generate accurate pseudo-labels as in previous works. To simplify the approach, TRAS merges the training of the traditional SSL model and the target model into a single procedure by sharing the feature extractor, where both classifiers help improve the representation learning. According to extensive experiments, TRAS delivers much higher accuracy than state-of-the-art methods in the entire set of classes as well as minority classes.
109,995
109,995
Feature Forgetting in Continual Representation Learning
In continual and lifelong learning, good representation learning can help increase performance and reduce sample complexity when learning new tasks. There is evidence that representations do not suffer from "catastrophic forgetting" even in plain continual learning, but little further fact is known about its characteristics. In this paper, we aim to gain more understanding about representation learning in continual learning, especially on the feature forgetting problem. We devise a protocol for evaluating representation in continual learning, and then use it to present an overview of the basic trends of continual representation learning, showing its consistent deficiency and potential issues. To study the feature forgetting problem, we create a synthetic dataset to identify and visualize the prevalence of feature forgetting in neural networks. Finally, we propose a simple technique using gating adapters to mitigate feature forgetting. We conclude by discussing that improving representation learning benefits both old and new tasks in continual learning.
109,996
109,996
Multi-fidelity power flow solver
We propose a multi-fidelity neural network (MFNN) tailored for rapid high-dimensional grid power flow simulations and contingency analysis with scarce high-fidelity contingency data. The proposed model comprises two networks -- the first one trained on DC approximation as low-fidelity data and coupled to a high-fidelity neural net trained on both low- and high-fidelity power flow data. Each network features a latent module which parametrizes the model by a discrete grid topology vector for generalization (e.g., $n$ power lines with $k$ disconnections or contingencies, if any), and the targeted high-fidelity output is a weighted sum of linear and nonlinear functions. We tested the model on 14- and 118-bus test cases and evaluated its performance based on the $n-k$ power flow prediction accuracy with respect to imbalanced contingency data and high-to-low-fidelity sample ratio. The results presented herein demonstrate MFNN's potential and its limits with up to two orders of magnitude faster and more accurate power flow solutions than DC approximation.
109,997
109,997
A Rotated Hyperbolic Wrapped Normal Distribution for Hierarchical Representation Learning
We present a rotated hyperbolic wrapped normal distribution (RoWN), a simple yet effective alteration of a hyperbolic wrapped normal distribution (HWN). The HWN expands the domain of probabilistic modeling from Euclidean to hyperbolic space, where a tree can be embedded with arbitrary low distortion in theory. In this work, we analyze the geometric properties of the diagonal HWN, a standard choice of distribution in probabilistic modeling. The analysis shows that the distribution is inappropriate to represent the data points at the same hierarchy level through their angular distance with the same norm in the Poincar\'e disk model. We then empirically verify the presence of limitations of HWN, and show how RoWN, the newly proposed distribution, can alleviate the limitations on various hierarchical datasets, including noisy synthetic binary tree, WordNet, and Atari 2600 Breakout.
109,998
109,998
BppAttack: Stealthy and Efficient Trojan Attacks against Deep Neural Networks via Image Quantization and Contrastive Adversarial Learning
Deep neural networks are vulnerable to Trojan attacks. Existing attacks use visible patterns (e.g., a patch or image transformations) as triggers, which are vulnerable to human inspection. In this paper, we propose stealthy and efficient Trojan attacks, BppAttack. Based on existing biology literature on human visual systems, we propose to use image quantization and dithering as the Trojan trigger, making imperceptible changes. It is a stealthy and efficient attack without training auxiliary models. Due to the small changes made to images, it is hard to inject such triggers during training. To alleviate this problem, we propose a contrastive learning based approach that leverages adversarial attacks to generate negative sample pairs so that the learned trigger is precise and accurate. The proposed method achieves high attack success rates on four benchmark datasets, including MNIST, CIFAR-10, GTSRB, and CelebA. It also effectively bypasses existing Trojan defenses and human inspection. Our code can be found in https://github.com/RU-System-Software-and-Security/BppAttack.
109,999
109,999
Looking for Out-of-Distribution Environments in Critical Care: A case study with the eICU Database
Generalizing to new populations and domains in machine learning is still an open problem which has seen increased interest recently. In particular, clinical models show a significant performance drop when tested in settings not seen during training, e.g., new hospitals or population demographics. Recently proposed models for domain generalisation promise to alleviate this problem by learning invariant characteristics across environments, however, there is still scepticism about whether they improve over traditional training. In this work, we take a principled approach to identifying Out of Distribution (OoD) environments, motivated by the problem of cross-hospital generalization in critical care. We propose model-based and heuristic approaches to identify OoD environments and systematically compare models with different levels of held-out information. In particular, based on the assumption that models with access to OoD data should outperform other models, we train models across a range of experimental setups that include leave-one-hospital-out training and cross-sectional feature splits. We find that access to OoD data does not translate to increased performance, pointing to inherent limitations in defining potential OoD environments in the eICU Database potentially due to data harmonisation and sampling. Echoing similar results with other popular clinical benchmarks in the literature, new approaches are required to evaluate robust models in critical care.