Unnamed: 0.1
int64
0
113k
Unnamed: 0
float64
0
113k
title
stringlengths
7
246
abstract
stringlengths
6
3.31k
109,500
109,500
Transformer-based out-of-distribution detection for clinically safe segmentation
In a clinical setting it is essential that deployed image processing systems are robust to the full range of inputs they might encounter and, in particular, do not make confidently wrong predictions. The most popular approach to safe processing is to train networks that can provide a measure of their uncertainty, but these tend to fail for inputs that are far outside the training data distribution. Recently, generative modelling approaches have been proposed as an alternative; these can quantify the likelihood of a data sample explicitly, filtering out any out-of-distribution (OOD) samples before further processing is performed. In this work, we focus on image segmentation and evaluate several approaches to network uncertainty in the far-OOD and near-OOD cases for the task of segmenting haemorrhages in head CTs. We find all of these approaches are unsuitable for safe segmentation as they provide confidently wrong predictions when operating OOD. We propose performing full 3D OOD detection using a VQ-GAN to provide a compressed latent representation of the image and a transformer to estimate the data likelihood. Our approach successfully identifies images in both the far- and near-OOD cases. We find a strong relationship between image likelihood and the quality of a model's segmentation, making this approach viable for filtering images unsuitable for segmentation. To our knowledge, this is the first time transformers have been applied to perform OOD detection on 3D image data.
109,501
109,501
Tensor Shape Search for Optimum Data Compression
Various tensor decomposition methods have been proposed for data compression. In real world applications of the tensor decomposition, selecting the tensor shape for the given data poses a challenge and the shape of the tensor may affect the error and the compression ratio. In this work, we study the effect of the tensor shape on the tensor decomposition and propose an optimization model to find an optimum shape for the tensor train (TT) decomposition. The proposed optimization model maximizes the compression ratio of the TT decomposition given an error bound. We implement a genetic algorithm (GA) linked with the TT-SVD algorithm to solve the optimization model. We apply the proposed method for the compression of RGB images. The results demonstrate the effectiveness of the proposed evolutionary tensor shape search for the TT decomposition.
109,502
109,502
Are Graph Neural Networks Really Helpful for Knowledge Graph Completion?
Knowledge graphs (KGs) facilitate a wide variety of applications due to their ability to store relational knowledge applicable to many areas. Despite great efforts invested in creation and maintenance, even the largest KGs are far from complete. Hence, KG completion (KGC) has become one of the most crucial tasks for KG research. Recently, considerable literature in this space has centered around the use of Graph Neural Networks (GNNs) to learn powerful embeddings which leverage topological structures in the KGs. Specifically, dedicated efforts have been made to extend GNNs, which are commonly designed for simple homogeneous and uni-relational graphs, to the KG context which has diverse and multi-relational connections between entities, by designing more complex aggregation schemes over neighboring nodes (crucial to GNN performance) to appropriately leverage multi-relational information. The success of these methods is naturally attributed to the use of GNNs over simpler multi-layer perceptron (MLP) models, owing to their additional aggregation functionality. In this work, we find that surprisingly, simple MLP models are able to achieve comparable performance to GNNs, suggesting that aggregation may not be as crucial as previously believed. With further exploration, we show careful scoring function and loss function design has a much stronger influence on KGC model performance, and aggregation is not practically required. This suggests a conflation of scoring function design, loss function design, and aggregation in prior work, with promising insights regarding the scalability of state-of-the-art KGC methods today, as well as careful attention to more suitable aggregation designs for KGC tasks tomorrow.
109,503
109,503
Equivariant Mesh Attention Networks
Equivariance to symmetries has proven to be a powerful inductive bias in deep learning research. Recent works on mesh processing have concentrated on various kinds of natural symmetries, including translations, rotations, scaling, node permutations, and gauge transformations. To date, no existing architecture is equivariant to all of these transformations. Moreover, previous implementations have not always applied these symmetry transformations to the test dataset. This inhibits the ability to determine whether the model attains the claimed equivariance properties. In this paper, we present an attention-based architecture for mesh data that is provably equivariant to all transformations mentioned above. We carry out experiments on the FAUST and TOSCA datasets, and apply the mentioned symmetries to the test set only. Our results confirm that our proposed architecture is equivariant, and therefore robust, to these local/global transformations.
109,504
109,504
Temporal Domain Generalization with Drift-Aware Dynamic Neural Network
Temporal domain generalization is a promising yet extremely challenging area where the goal is to learn models under temporally changing data distributions and generalize to unseen data distributions following the trends of the change. The advancement of this area is challenged by: 1) characterizing data distribution drift and its impacts on models, 2) expressiveness in tracking the model dynamics, and 3) theoretical guarantee on the performance. To address them, we propose a Temporal Domain Generalization with Drift-Aware Dynamic Neural Network (DRAIN) framework. Specifically, we formulate the problem into a Bayesian framework that jointly models the relation between data and model dynamics. We then build a recurrent graph generation scenario to characterize the dynamic graph-structured neural networks learned across different time points. It captures the temporal drift of model parameters and data distributions and can predict models in the future without the presence of future data. In addition, we explore theoretical guarantees of the model performance under the challenging temporal DG setting and provide theoretical analysis, including uncertainty and generalization error. Finally, extensive experiments on several real-world benchmarks with temporal drift demonstrate the effectiveness and efficiency of the proposed method.
109,505
109,505
MultiBiSage: A Web-Scale Recommendation System Using Multiple Bipartite Graphs at Pinterest
Graph Convolutional Networks (GCN) can efficiently integrate graph structure and node features to learn high-quality node embeddings. These embeddings can then be used for several tasks such as recommendation and search. At Pinterest, we have developed and deployed PinSage, a data-efficient GCN that learns pin embeddings from the Pin-Board graph. The Pin-Board graph contains pin and board entities and the graph captures the pin belongs to a board interaction. However, there exist several entities at Pinterest such as users, idea pins, creators, and there exist heterogeneous interactions among these entities such as add-to-cart, follow, long-click. In this work, we show that training deep learning models on graphs that captures these diverse interactions would result in learning higher-quality pin embeddings than training PinSage on only the Pin-Board graph. To that end, we model the diverse entities and their diverse interactions through multiple bipartite graphs and propose a novel data-efficient MultiBiSage model. MultiBiSage can capture the graph structure of multiple bipartite graphs to learn high-quality pin embeddings. We take this pragmatic approach as it allows us to utilize the existing infrastructure developed at Pinterest -- such as Pixie system that can perform optimized random-walks on billion node graphs, along with existing training and deployment workflows. We train MultiBiSage on six bipartite graphs including our Pin-Board graph. Our offline metrics show that MultiBiSage significantly outperforms the deployed latest version of PinSage on multiple user engagement metrics.
109,506
109,506
Individual Topology Structure of Eye Movement Trajectories
Traditionally, extracting patterns from eye movement data relies on statistics of different macro-events such as fixations and saccades. This requires an additional preprocessing step to separate the eye movement subtypes, often with a number of parameters on which the classification results depend. Besides that, definitions of such macro events are formulated in different ways by different researchers. We propose an application of a new class of features to the quantitative analysis of personal eye movement trajectories structure. This new class of features based on algebraic topology allows extracting patterns from different modalities of gaze such as time series of coordinates and amplitudes, heatmaps, and point clouds in a unified way at all scales from micro to macro. We experimentally demonstrate the competitiveness of the new class of features with the traditional ones and their significant synergy while being used together for the person authentication task on the recently published eye movement trajectories dataset.
109,507
109,507
Online Coreference Resolution for Dialogue Processing: Improving Mention-Linking on Real-Time Conversations
This paper suggests a direction of coreference resolution for online decoding on actively generated input such as dialogue, where the model accepts an utterance and its past context, then finds mentions in the current utterance as well as their referents, upon each dialogue turn. A baseline and four incremental-updated models adapted from the mention-linking paradigm are proposed for this new setting, which address different aspects including the singletons, speaker-grounded encoding and cross-turn mention contextualization. Our approach is assessed on three datasets: Friends, OntoNotes, and BOLT. Results show that each aspect brings out steady improvement, and our best models outperform the baseline by over 10%, presenting an effective system for this setting. Further analysis highlights the task characteristics, such as the significance of addressing the mention recall.
109,508
109,508
Pessimism for Offline Linear Contextual Bandits using $\ell_p$ Confidence Sets
We present a family $\{\hat{\pi}\}_{p\ge 1}$ of pessimistic learning rules for offline learning of linear contextual bandits, relying on confidence sets with respect to different $\ell_p$ norms, where $\hat{\pi}_2$ corresponds to Bellman-consistent pessimism (BCP), while $\hat{\pi}_\infty$ is a novel generalization of lower confidence bound (LCB) to the linear setting. We show that the novel $\hat{\pi}_\infty$ learning rule is, in a sense, adaptively optimal, as it achieves the minimax performance (up to log factors) against all $\ell_q$-constrained problems, and as such it strictly dominates all other predictors in the family, including $\hat{\pi}_2$.
109,509
109,509
NS3: Neuro-Symbolic Semantic Code Search
Semantic code search is the task of retrieving a code snippet given a textual description of its functionality. Recent work has been focused on using similarity metrics between neural embeddings of text and code. However, current language models are known to struggle with longer, compositional text, and multi-step reasoning. To overcome this limitation, we propose supplementing the query sentence with a layout of its semantic structure. The semantic layout is used to break down the final reasoning decision into a series of lower-level decisions. We use a Neural Module Network architecture to implement this idea. We compare our model - NS3 (Neuro-Symbolic Semantic Search) - to a number of baselines, including state-of-the-art semantic code retrieval methods, and evaluate on two datasets - CodeSearchNet and Code Search and Question Answering. We demonstrate that our approach results in more precise code retrieval, and we study the effectiveness of our modular design when handling compositional queries.
109,510
109,510
On the problem of entity matching and its application in automated settlement of receivables
This paper covers automated settlement of receivables in non-governmental organizations. We tackle the problem with entity matching techniques. We consider setup, where base algorithm is used for preliminary ranking of matches, then we apply several novel methods to increase matching quality of base algorithm: score post processing, cascade model and chain model. The methods presented here contribute to automated settlement of receivables, entity matching and multilabel classification in open-world scenario. We evaluate our approach on real world operational data which come from company providing settlement of receivables as a service: proposed methods boost recall from 78% (base model) to >90% at precision 99%.
109,511
109,511
A Novel Markov Model for Near-Term Railway Delay Prediction
Predicting the near-future delay with accuracy for trains is momentous for railway operations and passengers' traveling experience. This work aims to design prediction models for train delays based on Netherlands Railway data. We first develop a chi-square test to show that the delay evolution over stations follows a first-order Markov chain. We then propose a delay prediction model based on non-homogeneous Markov chains. To deal with the sparsity of the transition matrices of the Markov chains, we propose a novel matrix recovery approach that relies on Gaussian kernel density estimation. Our numerical tests show that this recovery approach outperforms other heuristic approaches in prediction accuracy. The Markov chain model we propose also shows to be better than other widely-used time series models with respect to both interpretability and prediction accuracy. Moreover, our proposed model does not require a complicated training process, which is capable of handling large-scale forecasting problems.
109,512
109,512
Scalable and Efficient Training of Large Convolutional Neural Networks with Differential Privacy
Large convolutional neural networks (CNN) can be difficult to train in the differentially private (DP) regime, since the optimization algorithms require a computationally expensive operation, known as the per-sample gradient clipping. We propose an efficient and scalable implementation of this clipping on convolutional layers, termed as the mixed ghost clipping, that significantly eases the private training in terms of both time and space complexities, without affecting the accuracy. The improvement in efficiency is rigorously studied through the first complexity analysis for the mixed ghost clipping and existing DP training algorithms. Extensive experiments on vision classification tasks, with large ResNet, VGG, and Vision Transformers, demonstrate that DP training with mixed ghost clipping adds $1\sim 10\%$ memory overhead and $<2\times$ slowdown to the standard non-private training. Specifically, when training VGG19 on CIFAR10, the mixed ghost clipping is $3\times$ faster than state-of-the-art Opacus library with $18\times$ larger maximum batch size. To emphasize the significance of efficient DP training on convolutional layers, we achieve 96.7\% accuracy on CIFAR10 and 83.0\% on CIFAR100 at $\epsilon=1$ using BEiT, while the previous best results are 94.8\% and 67.4\%, respectively. We open-source a privacy engine (\url{https://github.com/JialinMao/private_CNN}) that implements DP training of CNN with a few lines of code.
109,513
109,513
Diversity Preference-Aware Link Recommendation for Online Social Networks
Link recommendation, which recommends links to connect unlinked online social network users, is a fundamental social network analytics problem with ample business implications. Existing link recommendation methods tend to recommend similar friends to a user but overlook the user's diversity preference, although social psychology theories suggest the criticality of diversity preference to link recommendation performance. In recommender systems, a field related to link recommendation, a number of diversification methods have been proposed to improve the diversity of recommended items. Nevertheless, diversity preference is distinct from diversity studied by diversification methods. To address these research gaps, we define and operationalize the concept of diversity preference for link recommendation and propose a new link recommendation problem: the diversity preference-aware link recommendation problem. We then analyze key properties of the new link recommendation problem and develop a novel link recommendation method to solve the problem. Using two large-scale online social network data sets, we conduct extensive empirical evaluations to demonstrate the superior performance of our method over representative diversification methods adapted for link recommendation as well as state-of-the-art link recommendation methods.
109,514
109,514
Producing Histopathology Phantom Images using Generative Adversarial Networks to improve Tumor Detection
Advance in medical imaging is an important part in deep learning research. One of the goals of computer vision is development of a holistic, comprehensive model which can identify tumors from histology slides obtained via biopsies. A major problem that stands in the way is lack of data for a few cancer-types. In this paper, we ascertain that data augmentation using GANs can be a viable solution to reduce the unevenness in the distribution of different cancer types in our dataset. Our demonstration showed that a dataset augmented to a 50% increase causes an increase in tumor detection from 80% to 87.5%
109,515
109,515
All You Need Is Logs: Improving Code Completion by Learning from Anonymous IDE Usage Logs
Integrated Development Environments (IDE) are designed to make users more productive, as well as to make their work more comfortable. To achieve this, a lot of diverse tools are embedded into IDEs, and the developers of IDEs can employ anonymous usage logs to collect the data about how they are being used to improve them. A particularly important component that this can be applied to is code completion, since improving code completion using statistical learning techniques is a well-established research area. In this work, we propose an approach for collecting completion usage logs from the users in an IDE and using them to train a machine learning based model for ranking completion candidates. We developed a set of features that describe completion candidates and their context, and deployed their anonymized collection in the Early Access Program of IntelliJ-based IDEs. We used the logs to collect a dataset of code completions from users, and employed it to train a ranking CatBoost model. Then, we evaluated it in two settings: on a held-out set of the collected completions and in a separate A/B test on two different groups of users in the IDE. Our evaluation shows that using a simple ranking model trained on the past user behavior logs significantly improved code completion experience. Compared to the default heuristics-based ranking, our model demonstrated a decrease in the number of typing actions necessary to perform the completion in the IDE from 2.073 to 1.832. The approach adheres to privacy requirements and legal constraints, since it does not require collecting personal information, performing all the necessary anonymization on the client's side. Importantly, it can be improved continuously: implementing new features, collecting new data, and evaluating new models - this way, we have been using it in production since the end of 2020.
109,516
109,516
The Selectively Adaptive Lasso
Machine learning regression methods allow estimation of functions without unrealistic parametric assumptions. Although they can perform exceptionally in prediction error, most lack theoretical convergence rates necessary for semi-parametric efficient estimation (e.g. TMLE, AIPW) of parameters like average treatment effects. The Highly Adaptive Lasso (HAL) is the only regression method proven to converge quickly enough for a meaningfully large class of functions, independent of the dimensionality of the predictors. Unfortunately, HAL is not computationally scalable. In this paper we build upon the theory of HAL to construct the Selectively Adaptive Lasso (SAL), a new algorithm which retains HAL's dimension-free, nonparametric convergence rate but which also scales computationally to massive datasets. To accomplish this, we prove some general theoretical results pertaining to empirical loss minimization in nested Donsker classes. Our resulting algorithm is a form of gradient tree boosting with an adaptive learning rate, which makes it fast and trivial to implement with off-the-shelf software. Finally, we show that our algorithm retains the performance of standard gradient boosting on a diverse group of real-world datasets. SAL makes semi-parametric efficient estimators practically possible and theoretically justifiable in many big data settings.
109,517
109,517
Active Source Free Domain Adaptation
Source free domain adaptation (SFDA) aims to transfer a trained source model to the unlabeled target domain without accessing the source data. However, the SFDA setting faces an effect bottleneck due to the absence of source data and target supervised information, as evidenced by the limited performance gains of newest SFDA methods. In this paper, for the first time, we introduce a more practical scenario called active source free domain adaptation (ASFDA) that permits actively selecting a few target data to be labeled by experts. To achieve that, we first find that those satisfying the properties of neighbor-chaotic, individual-different, and target-like are the best points to select, and we define them as the minimum happy (MH) points. We then propose minimum happy points learning (MHPL) to actively explore and exploit MH points. We design three unique strategies: neighbor ambient uncertainty, neighbor diversity relaxation, and one-shot querying, to explore the MH points. Further, to fully exploit MH points in the learning process, we design a neighbor focal loss that assigns the weighted neighbor purity to the cross-entropy loss of MH points to make the model focus more on them. Extensive experiments verify that MHPL remarkably exceeds the various types of baselines and achieves significant performance gains at a small cost of labeling.
109,518
109,518
Policy-based Primal-Dual Methods for Convex Constrained Markov Decision Processes
We study convex Constrained Markov Decision Processes (CMDPs) in which the objective is concave and the constraints are convex in the state-action visitation distribution. We propose a policy-based primal-dual algorithm that updates the primal variable via policy gradient ascent and updates the dual variable via projected sub-gradient descent. Despite the loss of additivity structure and the nonconvex nature, we establish the global convergence of the proposed algorithm by leveraging a hidden convexity in the problem under the general soft-max parameterization, and prove the $\mathcal{O}\left(T^{-1/3}\right)$ convergence rate in terms of both optimality gap and constraint violation. When the objective is strongly concave in the visitation distribution, we prove an improved convergence rate of $\mathcal{O}\left(T^{-1/2}\right)$. By introducing a pessimistic term to the constraint, we further show that a zero constraint violation can be achieved while preserving the same convergence rate for the optimality gap. This work is the first one in the literature that establishes non-asymptotic convergence guarantees for policy-based primal-dual methods for solving infinite-horizon discounted convex CMDPs.
109,519
109,519
TWEET-FID: An Annotated Dataset for Multiple Foodborne Illness Detection Tasks
Foodborne illness is a serious but preventable public health problem -- with delays in detecting the associated outbreaks resulting in productivity loss, expensive recalls, public safety hazards, and even loss of life. While social media is a promising source for identifying unreported foodborne illnesses, there is a dearth of labeled datasets for developing effective outbreak detection models. To accelerate the development of machine learning-based models for foodborne outbreak detection, we thus present TWEET-FID (TWEET-Foodborne Illness Detection), the first publicly available annotated dataset for multiple foodborne illness incident detection tasks. TWEET-FID collected from Twitter is annotated with three facets: tweet class, entity type, and slot type, with labels produced by experts as well as by crowdsource workers. We introduce several domain tasks leveraging these three facets: text relevance classification (TRC), entity mention detection (EMD), and slot filling (SF). We describe the end-to-end methodology for dataset design, creation, and labeling for supporting model development for these tasks. A comprehensive set of results for these tasks leveraging state-of-the-art single- and multi-task deep learning methods on the TWEET-FID dataset are provided. This dataset opens opportunities for future research in foodborne outbreak detection.
109,520
109,520
Neural Lyapunov Differentiable Predictive Control
We present a learning-based predictive control methodology using the differentiable programming framework with probabilistic Lyapunov-based stability guarantees. The neural Lyapunov differentiable predictive control (NLDPC) learns the policy by constructing a computational graph encompassing the system dynamics, state and input constraints, and the necessary Lyapunov certification constraints, and thereafter using the automatic differentiation to update the neural policy parameters. In conjunction, our approach jointly learns a Lyapunov function that certifies the regions of state-space with stable dynamics. We also provide a sampling-based statistical guarantee for the training of NLDPC from the distribution of initial conditions. Our offline training approach provides a computationally efficient and scalable alternative to classical explicit model predictive control solutions. We substantiate the advantages of the proposed approach with simulations to stabilize the double integrator model and on an example of controlling an aircraft model.
109,521
109,521
Near-Optimal Algorithms for Autonomous Exploration and Multi-Goal Stochastic Shortest Path
We revisit the incremental autonomous exploration problem proposed by Lim & Auer (2012). In this setting, the agent aims to learn a set of near-optimal goal-conditioned policies to reach the $L$-controllable states: states that are incrementally reachable from an initial state $s_0$ within $L$ steps in expectation. We introduce a new algorithm with stronger sample complexity bounds than existing ones. Furthermore, we also prove the first lower bound for the autonomous exploration problem. In particular, the lower bound implies that our proposed algorithm, Value-Aware Autonomous Exploration, is nearly minimax-optimal when the number of $L$-controllable states grows polynomially with respect to $L$. Key in our algorithm design is a connection between autonomous exploration and multi-goal stochastic shortest path, a new problem that naturally generalizes the classical stochastic shortest path problem. This new problem and its connection to autonomous exploration can be of independent interest.
109,522
109,522
Robust Flow-based Conformal Inference (FCI) with Statistical Guarantee
Conformal prediction aims to determine precise levels of confidence in predictions for new objects using past experience. However, the commonly used exchangeable assumptions between the training data and testing data limit its usage in dealing with contaminated testing sets. In this paper, we develop a series of conformal inference methods, including building predictive sets and inferring outliers for complex and high-dimensional data. We leverage ideas from adversarial flow to transfer the input data to a random vector with known distributions, which enable us to construct a non-conformity score for uncertainty quantification. We can further learn the distribution of input data in each class directly through the learned transformation. Therefore, our approach is applicable and more robust when the test data is contaminated. We evaluate our method, robust flow-based conformal inference, on benchmark datasets. We find that it produces effective prediction sets and accurate outlier detection and is more powerful relative to competing approaches.
109,523
109,523
GraB: Finding Provably Better Data Permutations than Random Reshuffling
Random reshuffling, which randomly permutes the dataset each epoch, is widely adopted in model training because it yields faster convergence than with-replacement sampling. Recent studies indicate greedily chosen data orderings can further speed up convergence empirically, at the cost of using more computation and memory. However, greedy ordering lacks theoretical justification and has limited utility due to its non-trivial memory and computation overhead. In this paper, we first formulate an example-ordering framework named herding and answer affirmatively that SGD with herding converges at the rate $O(T^{-2/3})$ on smooth, non-convex objectives, faster than the $O(n^{1/3}T^{-2/3})$ obtained by random reshuffling, where $n$ denotes the number of data points and $T$ denotes the total number of iterations. To reduce the memory overhead, we leverage discrepancy minimization theory to propose an online Gradient Balancing algorithm (GraB) that enjoys the same rate as herding, while reducing the memory usage from $O(nd)$ to just $O(d)$ and computation from $O(n^2)$ to $O(n)$, where $d$ denotes the model dimension. We show empirically on applications including MNIST, CIFAR10, WikiText and GLUE that GraB can outperform random reshuffling in terms of both training and validation performance, and even outperform state-of-the-art greedy ordering while reducing memory usage over $100\times$.
109,524
109,524
Should Models Be Accurate?
Model-based Reinforcement Learning (MBRL) holds promise for data-efficiency by planning with model-generated experience in addition to learning with experience from the environment. However, in complex or changing environments, models in MBRL will inevitably be imperfect, and their detrimental effects on learning can be difficult to mitigate. In this work, we question whether the objective of these models should be the accurate simulation of environment dynamics at all. We focus our investigations on Dyna-style planning in a prediction setting. First, we highlight and support three motivating points: a perfectly accurate model of environment dynamics is not practically achievable, is not necessary, and is not always the most useful anyways. Second, we introduce a meta-learning algorithm for training models with a focus on their usefulness to the learner instead of their accuracy in modelling the environment. Our experiments show that in a simple non-stationary environment, our algorithm enables faster learning than even using an accurate model built with domain-specific knowledge of the non-stationarity.
109,525
109,525
Offline Policy Comparison with Confidence: Benchmarks and Baselines
Decision makers often wish to use offline historical data to compare sequential-action policies at various world states. Importantly, computational tools should produce confidence values for such offline policy comparison (OPC) to account for statistical variance and limited data coverage. Nevertheless, there is little work that directly evaluates the quality of confidence values for OPC. In this work, we address this issue by creating benchmarks for OPC with Confidence (OPCC), derived by adding sets of policy comparison queries to datasets from offline reinforcement learning. In addition, we present an empirical evaluation of the risk versus coverage trade-off for a class of model-based baselines. In particular, the baselines learn ensembles of dynamics models, which are used in various ways to produce simulations for answering queries with confidence values. While our results suggest advantages for certain baseline variations, there appears to be significant room for improvement in future work.
109,526
109,526
Do Deep Learning Models and News Headlines Outperform Conventional Prediction Techniques on Forex Data?
Foreign Exchange (FOREX) is a decentralised global market for exchanging currencies. The Forex market is enormous, and it operates 24 hours a day. Along with country-specific factors, Forex trading is influenced by cross-country ties and a variety of global events. Recent pandemic scenarios such as COVID19 and local elections can also have a significant impact on market pricing. We tested and compared various predictions with external elements such as news items in this work. Additionally, we compared classical machine learning methods to deep learning algorithms. We also added sentiment features from news headlines using NLP-based word embeddings and compared the performance. Our results indicate that simple regression model like linear, SGD, and Bagged performed better than deep learning models such as LSTM and RNN for single-step forecasting like the next two hours, the next day, and seven days. Surprisingly, news articles failed to improve the predictions indicating domain-based and relevant information only adds value. Among the text vectorization techniques, Word2Vec and SentenceBERT perform better.
109,527
109,527
All Birds with One Stone: Multi-task Text Classification for Efficient Inference with One Forward Pass
Multi-Task Learning (MTL) models have shown their robustness, effectiveness, and efficiency for transferring learned knowledge across tasks. In real industrial applications such as web content classification, multiple classification tasks are predicted from the same input text such as a web article. However, at the serving time, the existing multitask transformer models such as prompt or adaptor based approaches need to conduct N forward passes for N tasks with O(N) computation cost. To tackle this problem, we propose a scalable method that can achieve stronger performance with close to O(1) computation cost via only one forward pass. To illustrate real application usage, we release a multitask dataset on news topic and style classification. Our experiments show that our proposed method outperforms strong baselines on both the GLUE benchmark and our news dataset. Our code and dataset are publicly available at https://bit.ly/mtop-code.
109,528
109,528
Multi-Agent Feedback Enabled Neural Networks for Intelligent Communications
In the intelligent communication field, deep learning (DL) has attracted much attention due to its strong fitting ability and data-driven learning capability. Compared with the typical DL feedforward network structures, an enhancement structure with direct data feedback have been studied and proved to have better performance than the feedfoward networks. However, due to the above simple feedback methods lack sufficient analysis and learning ability on the feedback data, it is inadequate to deal with more complicated nonlinear systems and therefore the performance is limited for further improvement. In this paper, a novel multi-agent feedback enabled neural network (MAFENN) framework is proposed, which make the framework have stronger feedback learning capabilities and more intelligence on feature abstraction, denoising or generation, etc. Furthermore, the MAFENN framework is theoretically formulated into a three-player Feedback Stackelberg game, and the game is proved to converge to the Feedback Stackelberg equilibrium. The design of MAFENN framework and algorithm are dedicated to enhance the learning capability of the feedfoward DL networks or their variations with the simple data feedback. To verify the MAFENN framework's feasibility in wireless communications, a multi-agent MAFENN based equalizer (MAFENN-E) is developed for wireless fading channels with inter-symbol interference (ISI). Experimental results show that when the quadrature phase-shift keying (QPSK) modulation scheme is adopted, the SER performance of our proposed method outperforms that of the traditional equalizers by about 2 dB in linear channels. When in nonlinear channels, the SER performance of our proposed method outperforms that of either traditional or DL based equalizers more significantly, which shows the effectiveness and robustness of our proposal in the complex channel environment.
109,529
109,529
Covariance Matrix Adaptation MAP-Annealing
Single-objective optimization algorithms search for the single highest-quality solution with respect to an objective. In contrast, quality diversity (QD) optimization algorithms, such as Covariance Matrix Adaptation MAP-Elites (CMA-ME), search for a collection of solutions that are both high-quality with respect to an objective and diverse with respect to specified measure functions. We propose a new quality diversity algorithm, Covariance Matrix Adaptation MAP-Annealing (CMA-MAE), which bridges the gap between single-objective optimization and QD optimization. We prove that CMA-MAE smoothly blends between the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) single-objective optimizer and CMA-ME by gradually annealing a discount function with a scalar learning rate. We show that CMA-MAE has better performance than the current state-of-the-art QD algorithms on several benchmark domains and that its performance is empirically invariant to the archive resolution and robust to the discount function learning rate.
109,530
109,530
Deep Feature Fusion via Graph Convolutional Network for Intracranial Artery Labeling
Intracranial arteries are critical blood vessels that supply the brain with oxygenated blood. Intracranial artery labels provide valuable guidance and navigation to numerous clinical applications and disease diagnoses. Various machine learning algorithms have been carried out for automation in the anatomical labeling of cerebral arteries. However, the task remains challenging because of the high complexity and variations of intracranial arteries. This study investigates a novel graph convolutional neural network with deep feature fusion for cerebral artery labeling. We introduce stacked graph convolutions in an encoder-core-decoder architecture, extracting high-level representations from graph nodes and their neighbors. Furthermore, we efficiently aggregate intermediate features from different hierarchies to enhance the proposed model's representation capability and labeling performance. We perform extensive experiments on public datasets, in which the results prove the superiority of our approach over baselines by a clear margin.
109,531
109,531
Residual Channel Attention Network for Brain Glioma Segmentation
A glioma is a malignant brain tumor that seriously affects cognitive functions and lowers patients' life quality. Segmentation of brain glioma is challenging because of interclass ambiguities in tumor regions. Recently, deep learning approaches have achieved outstanding performance in the automatic segmentation of brain glioma. However, existing algorithms fail to exploit channel-wise feature interdependence to select semantic attributes for glioma segmentation. In this study, we implement a novel deep neural network that integrates residual channel attention modules to calibrate intermediate features for glioma segmentation. The proposed channel attention mechanism adaptively weights feature channel-wise to optimize the latent representation of gliomas. We evaluate our method on the established dataset BraTS2017. Experimental results indicate the superiority of our method.
109,532
109,532
Sequential/Session-based Recommendations: Challenges, Approaches, Applications and Opportunities
In recent years, sequential recommender systems (SRSs) and session-based recommender systems (SBRSs) have emerged as a new paradigm of RSs to capture users' short-term but dynamic preferences for enabling more timely and accurate recommendations. Although SRSs and SBRSs have been extensively studied, there are many inconsistencies in this area caused by the diverse descriptions, settings, assumptions and application domains. There is no work to provide a unified framework and problem statement to remove the commonly existing and various inconsistencies in the area of SR/SBR. There is a lack of work to provide a comprehensive and systematic demonstration of the data characteristics, key challenges, most representative and state-of-the-art approaches, typical real-world applications and important future research directions in the area. This work aims to fill in these gaps so as to facilitate further research in this exciting and vibrant area.
109,533
109,533
CNNs are Myopic
We claim that Convolutional Neural Networks (CNNs) learn to classify images using only small seemingly unrecognizable tiles. We show experimentally that CNNs trained only using such tiles can match or even surpass the performance of CNNs trained on full images. Conversely, CNNs trained on full images show similar predictions on small tiles. We also propose the first a priori theoretical model for convolutional data sets that seems to explain this behavior. This gives additional support to the long standing suspicion that CNNs do not need to understand the global structure of images to achieve state-of-the-art accuracies. Surprisingly it also suggests that over-fitting is not needed either.
109,534
109,534
How sensitive are translation systems to extra contexts? Mitigating gender bias in Neural Machine Translation models through relevant contexts
Neural Machine Translation systems built on top of Transformer-based architectures are routinely improving the state-of-the-art in translation quality according to word-overlap metrics. However, a growing number of studies also highlight the inherent gender bias that these models incorporate during training, which reflects poorly in their translations. In this work, we investigate whether these models can be instructed to fix their bias during inference using targeted, guided instructions as contexts. By translating relevant contextual sentences during inference along with the input, we observe large improvements in reducing the gender bias in translations, across three popular test suites (WinoMT, BUG, SimpleGen). We further propose a novel metric to assess several large pretrained models (OPUS-MT, M2M-100) on their sensitivity towards using contexts during translation to correct their biases. Our approach requires no fine-tuning, and thus can be used easily in production systems to de-bias translations from stereotypical gender-occupation bias. We hope our method, along with our metric, can be used to build better, bias-free translation systems.
109,535
109,535
A Deep Gradient Correction Method for Iteratively Solving Linear Systems
We present a novel deep learning approach to approximate the solution of large, sparse, symmetric, positive-definite linear systems of equations. These systems arise from many problems in applied science, e.g., in numerical methods for partial differential equations. Algorithms for approximating the solution to these systems are often the bottleneck in problems that require their solution, particularly for modern applications that require many millions of unknowns. Indeed, numerical linear algebra techniques have been investigated for many decades to alleviate this computational burden. Recently, data-driven techniques have also shown promise for these problems. Motivated by the conjugate gradients algorithm that iteratively selects search directions for minimizing the matrix norm of the approximation error, we design an approach that utilizes a deep neural network to accelerate convergence via data-driven improvement of the search directions. Our method leverages a carefully chosen convolutional network to approximate the action of the inverse of the linear operator up to an arbitrary constant. We train the network using unsupervised learning with a loss function equal to the $L^2$ difference between an input and the system matrix times the network evaluation, where the unspecified constant in the approximate inverse is accounted for. We demonstrate the efficacy of our approach on spatially discretized Poisson equations with millions of degrees of freedom arising in computational fluid dynamics applications. Unlike state-of-the-art learning approaches, our algorithm is capable of reducing the linear system residual to a given tolerance in a small number of iterations, independent of the problem size. Moreover, our method generalizes effectively to various systems beyond those encountered during training.
109,536
109,536
Neuro-Symbolic Artificial Intelligence (AI) for Intent based Semantic Communication
Intent-based networks that integrate sophisticated machine reasoning technologies will be a cornerstone of future wireless 6G systems. Intent-based communication requires the network to consider the semantics (meanings) and effectiveness (at end-user) of the data transmission. This is essential if 6G systems are to communicate reliably with fewer bits while simultaneously providing connectivity to heterogeneous users. In this paper, contrary to state of the art, which lacks explainability of data, the framework of neuro-symbolic artificial intelligence (NeSy AI) is proposed as a pillar for learning causal structure behind the observed data. In particular, the emerging concept of generative flow networks (GFlowNet) is leveraged for the first time in a wireless system to learn the probabilistic structure which generates the data. Further, a novel optimization problem for learning the optimal encoding and decoding functions is rigorously formulated with the intent of achieving higher semantic reliability. Novel analytical formulations are developed to define key metrics for semantic message transmission, including semantic distortion, semantic similarity, and semantic reliability. These semantic measure functions rely on the proposed definition of semantic content of the knowledge base and this information measure is reflective of the nodes' reasoning capabilities. Simulation results validate the ability to communicate efficiently (with less bits but same semantics) and significantly better compared to a conventional system which does not exploit the reasoning capabilities.
109,537
109,537
Fast Instrument Learning with Faster Rates
We investigate nonlinear instrumental variable (IV) regression given high-dimensional instruments. We propose a simple algorithm which combines kernelized IV methods and an arbitrary, adaptive regression algorithm, accessed as a black box. Our algorithm enjoys faster-rate convergence and adapts to the dimensionality of informative latent features, while avoiding an expensive minimax optimization procedure, which has been necessary to establish similar guarantees. It further brings the benefit of flexible machine learning models to quasi-Bayesian uncertainty quantification, likelihood-based model selection, and model averaging. Simulation studies demonstrate the competitive performance of our method.
109,538
109,538
A Domain-adaptive Pre-training Approach for Language Bias Detection in News
Media bias is a multi-faceted construct influencing individual behavior and collective decision-making. Slanted news reporting is the result of one-sided and polarized writing which can occur in various forms. In this work, we focus on an important form of media bias, i.e. bias by word choice. Detecting biased word choices is a challenging task due to its linguistic complexity and the lack of representative gold-standard corpora. We present DA-RoBERTa, a new state-of-the-art transformer-based model adapted to the media bias domain which identifies sentence-level bias with an F1 score of 0.814. In addition, we also train, DA-BERT and DA-BART, two more transformer models adapted to the bias domain. Our proposed domain-adapted models outperform prior bias detection approaches on the same data.
109,539
109,539
Sleep Posture One-Shot Learning Framework Using Kinematic Data Augmentation: In-Silico and In-Vivo Case Studies
Sleep posture is linked to several health conditions such as nocturnal cramps and more serious musculoskeletal issues. However, in-clinic sleep assessments are often limited to vital signs (e.g. brain waves). Wearable sensors with embedded inertial measurement units have been used for sleep posture classification; nonetheless, previous works consider only few (commonly four) postures, which are inadequate for advanced clinical assessments. Moreover, posture learning algorithms typically require longitudinal data collection to function reliably, and often operate on raw inertial sensor readings unfamiliar to clinicians. This paper proposes a new framework for sleep posture classification based on a minimal set of joint angle measurements. The proposed framework is validated on a rich set of twelve postures in two experimental pipelines: computer animation to obtain synthetic postural data, and human participant pilot study using custom-made miniature wearable sensors. Through fusing raw geo-inertial sensor measurements to compute a filtered estimate of relative segment orientations across the wrist and ankle joints, the body posture can be characterised in a way comprehensible to medical experts. The proposed sleep posture learning framework offers plug-and-play posture classification by capitalising on a novel kinematic data augmentation method that requires only one training example per posture. Additionally, a new metric together with data visualisations are employed to extract meaningful insights from the postures dataset, demonstrate the added value of the data augmentation method, and explain the classification performance. The proposed framework attained promising overall accuracy as high as 100% on synthetic data and 92.7% on real data, on par with state of the art data-hungry algorithms available in the literature.
109,540
109,540
Data-aided Active User Detection with a User Activity Extraction Network for Grant-free SCMA Systems
In grant-free sparse code multiple access system, joint optimization of contention resources for users and active user detection (AUD) at the receiver is a complex combinatorial problem. To this end, we propose a deep learning-based data-aided AUD scheme which extracts a priori user activity information via a novel user activity extraction network (UAEN). This is enabled by an end-to-end training of an autoencoder (AE), which simultaneously optimizes the contention resources, i.e., preamble sequences, each associated with one of the codebooks, and extraction of user activity information from both preamble and data transmission. Furthermore, we propose self-supervised pre-training scheme for the UAEN, which ensures the convergence of offline end-to-end training. Simulation results demonstrated that the proposed AUD scheme achieved 3 to 5dB gain at a target activity detection error rate of ${{10}^{-3}}$ compared to the state-of-the-art DL-based AUD schemes.
109,541
109,541
A Dirichlet Process Mixture of Robust Task Models for Scalable Lifelong Reinforcement Learning
While reinforcement learning (RL) algorithms are achieving state-of-the-art performance in various challenging tasks, they can easily encounter catastrophic forgetting or interference when faced with lifelong streaming information. In the paper, we propose a scalable lifelong RL method that dynamically expands the network capacity to accommodate new knowledge while preventing past memories from being perturbed. We use a Dirichlet process mixture to model the non-stationary task distribution, which captures task relatedness by estimating the likelihood of task-to-cluster assignments and clusters the task models in a latent space. We formulate the prior distribution of the mixture as a Chinese restaurant process (CRP) that instantiates new mixture components as needed. The update and expansion of the mixture are governed by the Bayesian non-parametric framework with an expectation maximization (EM) procedure, which dynamically adapts the model complexity without explicit task boundaries or heuristics. Moreover, we use the domain randomization technique to train robust prior parameters for the initialization of each task model in the mixture, thus the resulting model can better generalize and adapt to unseen tasks. With extensive experiments conducted on robot navigation and locomotion domains, we show that our method successfully facilitates scalable lifelong RL and outperforms relevant existing methods.
109,542
109,542
PAC-Wrap: Semi-Supervised PAC Anomaly Detection
Anomaly detection is essential for preventing hazardous outcomes for safety-critical applications like autonomous driving. Given their safety-criticality, these applications benefit from provable bounds on various errors in anomaly detection. To achieve this goal in the semi-supervised setting, we propose to provide Probably Approximately Correct (PAC) guarantees on the false negative and false positive detection rates for anomaly detection algorithms. Our method (PAC-Wrap) can wrap around virtually any existing semi-supervised and unsupervised anomaly detection method, endowing it with rigorous guarantees. Our experiments with various anomaly detectors and datasets indicate that PAC-Wrap is broadly effective.
109,543
109,543
Inverse-Inverse Reinforcement Learning. How to Hide Strategy from an Adversarial Inverse Reinforcement Learner
Inverse reinforcement learning (IRL) deals with estimating an agent's utility function from its actions. In this paper, we consider how an agent can hide its strategy and mitigate an adversarial IRL attack; we call this inverse IRL (I-IRL). How should the decision maker choose its response to ensure a poor reconstruction of its strategy by an adversary performing IRL to estimate the agent's strategy? This paper comprises four results: First, we present an adversarial IRL algorithm that estimates the agent's strategy while controlling the agent's utility function. Our second result for I-IRL result spoofs the IRL algorithm used by the adversary. Our I-IRL results are based on revealed preference theory in micro-economics. The key idea is for the agent to deliberately choose sub-optimal responses that sufficiently masks its true strategy. Third, we give a sample complexity result for our main I-IRL result when the agent has noisy estimates of the adversary specified utility function. Finally, we illustrate our I-IRL scheme in a radar problem where a meta-cognitive radar is trying to mitigate an adversarial target.
109,544
109,544
GraphMAE: Self-Supervised Masked Graph Autoencoders
Self-supervised learning (SSL) has been extensively explored in recent years. Particularly, generative SSL has seen emerging success in natural language processing and other fields, such as the wide adoption of BERT and GPT. Despite this, contrastive learning--which heavily relies on structural data augmentation and complicated training strategies--has been the dominant approach in graph SSL, while the progress of generative SSL on graphs, especially graph autoencoders (GAEs), has thus far not reached the potential as promised in other fields. In this paper, we identify and examine the issues that negatively impact the development of GAEs, including their reconstruction objective, training robustness, and error metric. We present a masked graph autoencoder GraphMAE that mitigates these issues for generative self-supervised graph learning. Instead of reconstructing structures, we propose to focus on feature reconstruction with both a masking strategy and scaled cosine error that benefit the robust training of GraphMAE. We conduct extensive experiments on 21 public datasets for three different graph learning tasks. The results manifest that GraphMAE--a simple graph autoencoder with our careful designs--can consistently generate outperformance over both contrastive and generative state-of-the-art baselines. This study provides an understanding of graph autoencoders and demonstrates the potential of generative self-supervised learning on graphs.
109,545
109,545
Deep Learning-Based Synchronization for Uplink NB-IoT
We propose a neural network (NN)-based algorithm for device detection and time of arrival (ToA) and carrier frequency offset (CFO) estimation for the narrowband physical random-access channel (NPRACH) of narrowband internet of things (NB-IoT). The introduced NN architecture leverages residual convolutional networks as well as knowledge of the preamble structure of the 5G New Radio (5G NR) specifications. Benchmarking on a 3rd Generation Partnership Project (3GPP) urban microcell (UMi) channel model with random drops of users against a state-of-the-art baseline shows that the proposed method enables up to 8 dB gains in false negative rate (FNR) as well as significant gains in false positive rate (FPR) and ToA and CFO estimation accuracy. Moreover, our simulations indicate that the proposed algorithm enables gains over a wide range of channel conditions, CFOs, and transmission probabilities. The introduced synchronization method operates at the base station (BS) and, therefore, introduces no additional complexity on the user devices. It could lead to an extension of battery lifetime by reducing the preamble length or the transmit power.
109,546
109,546
Chain of Thought Imitation with Procedure Cloning
Imitation learning aims to extract high-performance policies from logged demonstrations of expert behavior. It is common to frame imitation learning as a supervised learning problem in which one fits a function approximator to the input-output mapping exhibited by the logged demonstrations (input observations to output actions). While the framing of imitation learning as a supervised input-output learning problem allows for applicability in a wide variety of settings, it is also an overly simplistic view of the problem in situations where the expert demonstrations provide much richer insight into expert behavior. For example, applications such as path navigation, robot manipulation, and strategy games acquire expert demonstrations via planning, search, or some other multi-step algorithm, revealing not just the output action to be imitated but also the procedure for how to determine this action. While these intermediate computations may use tools not available to the agent during inference (e.g., environment simulators), they are nevertheless informative as a way to explain an expert's mapping of state to actions. To properly leverage expert procedure information without relying on the privileged tools the expert may have used to perform the procedure, we propose procedure cloning, which applies supervised sequence prediction to imitate the series of expert computations. This way, procedure cloning learns not only what to do (i.e., the output action), but how and why to do it (i.e., the procedure). Through empirical analysis on navigation, simulated robotic manipulation, and game-playing environments, we show that imitating the intermediate computations of an expert's behavior enables procedure cloning to learn policies exhibiting significant generalization to unseen environment configurations, including those configurations for which running the expert's procedure directly is infeasible.
109,547
109,547
A Convolutional Dispersion Relation Preserving Scheme for the Acoustic Wave Equation
We propose an accurate numerical scheme for approximating the solution of the two dimensional acoustic wave problem. We use machine learning to find a stencil suitable even in the presence of high wavenumbers. The proposed scheme incorporates physically informed elements from the field of optimized numerical schemes into a convolutional optimization machine learning algorithm.
109,548
109,548
What Do Compressed Multilingual Machine Translation Models Forget?
Recently, very large pre-trained models achieve state-of-the-art results in various natural language processing (NLP) tasks, but their size makes it more challenging to apply them in resource-constrained environments. Compression techniques allow to drastically reduce the size of the model and therefore its inference time with negligible impact on top-tier metrics. However, the general performance hides a drastic performance drop on under-represented features, which could result in the amplification of biases encoded by the model. In this work, we analyze the impacts of compression methods on Multilingual Neural Machine Translation models (MNMT) for various language groups and semantic features by extensive analysis of compressed models on different NMT benchmarks, e.g. FLORES-101, MT-Gender, and DiBiMT. Our experiments show that the performance of under-represented languages drops significantly, while the average BLEU metric slightly decreases. Interestingly, the removal of noisy memorization with the compression leads to a significant improvement for some medium-resource languages. Finally, we demonstrate that the compression amplifies intrinsic gender and semantic biases, even in high-resource languages.
109,549
109,549
Neural Inverse Kinematics
Inverse kinematic (IK) methods recover the parameters of the joints, given the desired position of selected elements in the kinematic chain. While the problem is well-defined and low-dimensional, it has to be solved rapidly, accounting for multiple possible solutions. In this work, we propose a neural IK method that employs the hierarchical structure of the problem to sequentially sample valid joint angles conditioned on the desired position and on the preceding joints along the chain. In our solution, a hypernetwork $f$ recovers the parameters of multiple primary networks {$g_1,g_2,\dots,g_N$, where $N$ is the number of joints}, such that each $g_i$ outputs a distribution of possible joint angles, and is conditioned on the sampled values obtained from the previous primary networks $g_j, j<i$. The hypernetwork can be trained on readily available pairs of matching joint angles and positions, without observing multiple solutions. At test time, a high-variance joint distribution is presented, by sampling sequentially from the primary networks. We demonstrate the advantage of the proposed method both in comparison to other IK methods for isolated instances of IK and with regard to following the path of the end effector in Cartesian space.
109,550
109,550
Self-supervised U-net for few-shot learning of object segmentation in microscopy images
State-of-the-art segmentation performances are achieved by deep neural networks. Training these networks from only a few training examples is challenging while producing annotated images that provide supervision is tedious. Recently, self-supervision, i.e. designing a neural pipeline providing synthetic or indirect supervision, has proved to significantly increase generalization performances of models trained on few shots. This paper introduces one such neural pipeline in the context of microscopic image segmentation. By leveraging the rather simple content of these images a trainee network can be mentored by a referee network which has been previously trained on synthetically generated pairs of corrupted/correct region masks.
109,551
109,551
Addressing Strategic Manipulation Disparities in Fair Classification
In real-world classification settings, individuals respond to classifier predictions by updating their features to increase their likelihood of receiving a particular (positive) decision (at a certain cost). Yet, when different demographic groups have different feature distributions or different cost functions, prior work has shown that individuals from minority groups often pay a higher cost to update their features. Fair classification aims to address such classifier performance disparities by constraining the classifiers to satisfy statistical fairness properties. However, we show that standard fairness constraints do not guarantee that the constrained classifier reduces the disparity in strategic manipulation cost. To address such biases in strategic settings and provide equal opportunities for strategic manipulation, we propose a constrained optimization framework that constructs classifiers that lower the strategic manipulation cost for the minority groups. We develop our framework by studying theoretical connections between group-specific strategic cost disparity and standard selection rate fairness metrics (e.g., statistical rate and true positive rate). Empirically, we show the efficacy of this approach over multiple real-world datasets.
109,552
109,552
Robust Quantity-Aware Aggregation for Federated Learning
Federated learning (FL) enables multiple clients to collaboratively train models without sharing their local data, and becomes an important privacy-preserving machine learning framework. However, classical FL faces serious security and robustness problem, e.g., malicious clients can poison model updates and at the same time claim large quantities to amplify the impact of their model updates in the model aggregation. Existing defense methods for FL, while all handling malicious model updates, either treat all quantities benign or simply ignore/truncate the quantities of all clients. The former is vulnerable to quantity-enhanced attack, while the latter leads to sub-optimal performance since the local data on different clients is usually in significantly different sizes. In this paper, we propose a robust quantity-aware aggregation algorithm for federated learning, called FedRA, to perform the aggregation with awareness of local data quantities while being able to defend against quantity-enhanced attacks. More specifically, we propose a method to filter malicious clients by jointly considering the uploaded model updates and data quantities from different clients, and performing quantity-aware weighted averaging on model updates from remaining clients. Moreover, as the number of malicious clients participating in the federated learning may dynamically change in different rounds, we also propose a malicious client number estimator to predict how many suspicious clients should be filtered in each round. Experiments on four public datasets demonstrate the effectiveness of our FedRA method in defending FL against quantity-enhanced attacks.
109,553
109,553
RVAE-LAMOL: Residual Variational Autoencoder to Enhance Lifelong Language Learning
Lifelong Language Learning (LLL) aims to train a neural network to learn a stream of NLP tasks while retaining knowledge from previous tasks. However, previous works which followed data-free constraint still suffer from catastrophic forgetting issue, where the model forgets what it just learned from previous tasks. In order to alleviate catastrophic forgetting, we propose the residual variational autoencoder (RVAE) to enhance LAMOL, a recent LLL model, by mapping different tasks into a limited unified semantic space. In this space, previous tasks are easy to be correct to their own distribution by pseudo samples. Furthermore, we propose an identity task to make the model is discriminative to recognize the sample belonging to which task. For training RVAE-LAMOL better, we propose a novel training scheme Alternate Lag Training. In the experiments, we test RVAE-LAMOL on permutations of three datasets from DecaNLP. The experimental results demonstrate that RVAE-LAMOL outperforms na\"ive LAMOL on all permutations and generates more meaningful pseudo-samples.
109,554
109,554
Positioning Fog Computing for Smart Manufacturing
We study machine learning systems for real-time industrial quality control. In many factory systems, production processes must be continuously controlled in order to maintain product quality. Especially challenging are the systems that must balance in real-time between stringent resource consumption constraints and the risk of defective end-product. There is a need for automated quality control systems as human control is tedious and error-prone. We see machine learning as a viable choice for developing automated quality control systems, but integrating such system with existing factory automation remains a challenge. In this paper we propose introducing a new fog computing layer to the standard hierarchy of automation control to meet the needs of machine learning driven quality control.
109,555
109,555
Federated Learning Aggregation: New Robust Algorithms with Guarantees
Federated Learning has been recently proposed for distributed model training at the edge. The principle of this approach is to aggregate models learned on distributed clients to obtain a new more general "average" model (FedAvg). The resulting model is then redistributed to clients for further training. To date, the most popular federated learning algorithm uses coordinate-wise averaging of the model parameters for aggregation. In this paper, we carry out a complete general mathematical convergence analysis to evaluate aggregation strategies in a federated learning framework. From this, we derive novel aggregation algorithms which are able to modify their model architecture by differentiating client contributions according to the value of their losses. Moreover, we go beyond the assumptions introduced in theory, by evaluating the performance of these strategies and by comparing them with the one of FedAvg in classification tasks in both the IID and the Non-IID framework without additional hypothesis.
109,556
109,556
Memory-efficient Reinforcement Learning with Knowledge Consolidation
Artificial neural networks are promising as general function approximators but challenging to train on non-independent and identically distributed data due to catastrophic forgetting. Experience replay, a standard component in deep reinforcement learning, is often used to reduce forgetting and improve sample efficiency by storing experiences in a large buffer and using them for training later. However, a large replay buffer results in a heavy memory burden, especially for onboard and edge devices with limited memory capacities. We propose memory-efficient reinforcement learning algorithms based on the deep Q-network algorithm to alleviate this problem. Our algorithms reduce forgetting and maintain high sample efficiency by consolidating knowledge from the target Q-network to the current Q-network. Compared to baseline methods, our algorithms achieve comparable or better performance on both feature-based and image-based tasks while easing the burden of large experience replay buffers.
109,557
109,557
Fusion Subspace Clustering for Incomplete Data
This paper introduces {\em fusion subspace clustering}, a novel method to learn low-dimensional structures that approximate large scale yet highly incomplete data. The main idea is to assign each datum to a subspace of its own, and minimize the distance between the subspaces of all data, so that subspaces of the same cluster get {\em fused} together. Our method allows low, high, and even full-rank data; it directly accounts for noise, and its sample complexity approaches the information-theoretic limit. In addition, our approach provides a natural model selection {\em clusterpath}, and a direct completion method. We give convergence guarantees, analyze computational complexity, and show through extensive experiments on real and synthetic data that our approach performs comparably to the state-of-the-art with complete data, and dramatically better if data is missing.
109,558
109,558
Fast Gaussian Process Posterior Mean Prediction via Local Cross Validation and Precomputation
Gaussian processes (GPs) are Bayesian non-parametric models useful in a myriad of applications. Despite their popularity, the cost of GP predictions (quadratic storage and cubic complexity with respect to the number of training points) remains a hurdle in applying GPs to large data. We present a fast posterior mean prediction algorithm called FastMuyGPs to address this shortcoming. FastMuyGPs is based upon the MuyGPs hyperparameter estimation algorithm and utilizes a combination of leave-one-out cross-validation, batching, nearest neighbors sparsification, and precomputation to provide scalable, fast GP prediction. We demonstrate several benchmarks wherein FastMuyGPs prediction attains superior accuracy and competitive or superior runtime to both deep neural networks and state-of-the-art scalable GP algorithms.
109,559
109,559
Nonparametric likelihood-free inference with Jensen-Shannon divergence for simulator-based models with categorical output
Likelihood-free inference for simulator-based statistical models has recently attracted a surge of interest, both in the machine learning and statistics communities. The primary focus of these research fields has been to approximate the posterior distribution of model parameters, either by various types of Monte Carlo sampling algorithms or deep neural network -based surrogate models. Frequentist inference for simulator-based models has been given much less attention to date, despite that it would be particularly amenable to applications with big data where implicit asymptotic approximation of the likelihood is expected to be accurate and can leverage computationally efficient strategies. Here we derive a set of theoretical results to enable estimation, hypothesis testing and construction of confidence intervals for model parameters using asymptotic properties of the Jensen--Shannon divergence. Such asymptotic approximation offers a rapid alternative to more computation-intensive approaches and can be attractive for diverse applications of simulator-based models. 61
109,560
109,560
Contextual Information-Directed Sampling
Information-directed sampling (IDS) has recently demonstrated its potential as a data-efficient reinforcement learning algorithm. However, it is still unclear what is the right form of information ratio to optimize when contextual information is available. We investigate the IDS design through two contextual bandit problems: contextual bandits with graph feedback and sparse linear contextual bandits. We provably demonstrate the advantage of contextual IDS over conditional IDS and emphasize the importance of considering the context distribution. The main message is that an intelligent agent should invest more on the actions that are beneficial for the future unseen contexts while the conditional IDS can be myopic. We further propose a computationally-efficient version of contextual IDS based on Actor-Critic and evaluate it empirically on a neural network contextual bandit.
109,561
109,561
Improved Modeling of Persistence Diagram
High-dimensional reduction methods are powerful tools for describing the main patterns in big data. One of these methods is the topological data analysis (TDA), which modeling the shape of the data in terms of topological properties. This method specifically translates the original data into two-dimensional system, which is graphically represented via the 'persistence diagram'. The outliers points on this diagram present the data pattern, whereas the other points behave as a random noise. In order to determine which points are significant outliers, replications of the original data set are needed. Once only one original data is available, replications can be created by fitting a model for the points on the persistence diagram, and then using the MCMC methods. One of such model is the RST (Replicating Statistical Topology). In this paper we suggest a modification of the RST model. Using a simulation study, we show that the modified RST improves the performance of the RST in terms of goodness of fit. We use the MCMC Metropolis-Hastings algorithm for sampling according to the fitted model.
109,562
109,562
Power and accountability in reinforcement learning applications to environmental policy
Machine learning (ML) methods already permeate environmental decision-making, from processing high-dimensional data on earth systems to monitoring compliance with environmental regulations. Of the ML techniques available to address pressing environmental problems (e.g., climate change, biodiversity loss), Reinforcement Learning (RL) may both hold the greatest promise and present the most pressing perils. This paper explores how RL-driven policy refracts existing power relations in the environmental domain while also creating unique challenges to ensuring equitable and accountable environmental decision processes. We leverage examples from RL applications to climate change mitigation and fisheries management to explore how RL technologies shift the distribution of power between resource users, governing bodies, and private industry.
109,563
109,563
Limitations of a proposed correction for slow drifts in decision criterion
Trial history biases in decision-making tasks are thought to reflect systematic updates of decision variables, therefore their precise nature informs conclusions about underlying heuristic strategies and learning processes. However, random drifts in decision variables can corrupt this inference by mimicking the signatures of systematic updates. Hence, identifying the trial-by-trial evolution of decision variables requires methods that can robustly account for such drifts. Recent studies (Lak'20, Mendon\c{c}a'20) have made important advances in this direction, by proposing a convenient method to correct for the influence of slow drifts in decision criterion, a key decision variable. Here we apply this correction to a variety of updating scenarios, and evaluate its performance. We show that the correction fails for a wide range of commonly assumed systematic updating strategies, distorting one's inference away from the veridical strategies towards a narrow subset. To address these limitations, we propose a model-based approach for disambiguating systematic updates from random drifts, and demonstrate its success on real and synthetic datasets. We show that this approach accurately recovers the latent trajectory of drifts in decision criterion as well as the generative systematic updates from simulated data. Our results offer recommendations for methods to account for the interactions between history biases and slow drifts, and highlight the advantages of incorporating assumptions about the generative process directly into models of decision-making.
109,564
109,564
Weisfeiler and Leman Go Walking: Random Walk Kernels Revisited
Random walk kernels have been introduced in seminal work on graph learning and were later largely superseded by kernels based on the Weisfeiler-Leman test for graph isomorphism. We give a unified view on both classes of graph kernels. We study walk-based node refinement methods and formally relate them to several widely-used techniques, including Morgan's algorithm for molecule canonization and the Weisfeiler-Leman test. We define corresponding walk-based kernels on nodes that allow fine-grained parameterized neighborhood comparison, reach Weisfeiler-Leman expressiveness, and are computed using the kernel trick. From this we show that classical random walk kernels with only minor modifications regarding definition and computation are as expressive as the widely-used Weisfeiler-Leman subtree kernel but support non-strict neighborhood comparison. We verify experimentally that walk-based kernels reach or even surpass the accuracy of Weisfeiler-Leman kernels in real-world classification tasks.
109,565
109,565
Test-Time Robust Personalization for Federated Learning
Federated Learning (FL) is a machine learning paradigm where many clients collaboratively learn a shared global model with decentralized training data. Personalization on FL model additionally adapts the global model to different clients, achieving promising results on consistent local training & test distributions. However, for real-world personalized FL applications, it is crucial to go one step further: robustifying FL models under evolving local test set during deployment, where various types of distribution shifts can arise. In this work, we identify the pitfalls of existing works under test-time distribution shifts and propose a novel test-time robust personalization method, namely Federated Test-time Head Ensemble plus tuning (FedTHE+). We illustrate the advancement of FedTHE+ (and its degraded computationally efficient variant FedTHE) over strong competitors, for training various neural architectures (CNN, ResNet, and Transformer) on CIFAR10 and ImageNet and evaluating on diverse test distributions. Along with this, we build a benchmark for assessing performance and robustness of personalized FL methods during deployment.
109,566
109,566
Fast ABC-Boost: A Unified Framework for Selecting the Base Class in Multi-Class Classification
The work in ICML'09 showed that the derivatives of the classical multi-class logistic regression loss function could be re-written in terms of a pre-chosen "base class" and applied the new derivatives in the popular boosting framework. In order to make use of the new derivatives, one must have a strategy to identify/choose the base class at each boosting iteration. The idea of "adaptive base class boost" (ABC-Boost) in ICML'09, adopted a computationally expensive "exhaustive search" strategy for the base class at each iteration. It has been well demonstrated that ABC-Boost, when integrated with trees, can achieve substantial improvements in many multi-class classification tasks. Furthermore, the work in UAI'10 derived the explicit second-order tree split gain formula which typically improved the classification accuracy considerably, compared with using only the fist-order information for tree-splitting, for both multi-class and binary-class classification tasks. In this paper, we develop a unified framework for effectively selecting the base class by introducing a series of ideas to improve the computational efficiency of ABC-Boost. Our framework has parameters $(s,g,w)$. At each boosting iteration, we only search for the "$s$-worst classes" (instead of all classes) to determine the base class. We also allow a "gap" $g$ when conducting the search. That is, we only search for the base class at every $g+1$ iterations. We furthermore allow a "warm up" stage by only starting the search after $w$ boosting iterations. The parameters $s$, $g$, $w$, can be viewed as tunable parameters and certain combinations of $(s,g,w)$ may even lead to better test accuracy than the "exhaustive search" strategy. Overall, our proposed framework provides a robust and reliable scheme for implementing ABC-Boost in practice.
109,567
109,567
Argumentative Explanations for Pattern-Based Text Classifiers
Recent works in Explainable AI mostly address the transparency issue of black-box models or create explanations for any kind of models (i.e., they are model-agnostic), while leaving explanations of interpretable models largely underexplored. In this paper, we fill this gap by focusing on explanations for a specific interpretable model, namely pattern-based logistic regression (PLR) for binary text classification. We do so because, albeit interpretable, PLR is challenging when it comes to explanations. In particular, we found that a standard way to extract explanations from this model does not consider relations among the features, making the explanations hardly plausible to humans. Hence, we propose AXPLR, a novel explanation method using (forms of) computational argumentation to generate explanations (for outputs computed by PLR) which unearth model agreements and disagreements among the features. Specifically, we use computational argumentation as follows: we see features (patterns) in PLR as arguments in a form of quantified bipolar argumentation frameworks (QBAFs) and extract attacks and supports between arguments based on specificity of the arguments; we understand logistic regression as a gradual semantics for these QBAFs, used to determine the arguments' dialectic strength; and we study standard properties of gradual semantics for QBAFs in the context of our argumentative re-interpretation of PLR, sanctioning its suitability for explanatory purposes. We then show how to extract intuitive explanations (for outputs computed by PLR) from the constructed QBAFs. Finally, we conduct an empirical evaluation and two experiments in the context of human-AI collaboration to demonstrate the advantages of our resulting AXPLR method.
109,568
109,568
AutoJoin: Efficient Adversarial Training for Robust Maneuvering via Denoising Autoencoder and Joint Learning
As a result of increasingly adopted machine learning algorithms and ubiquitous sensors, many 'perception-to-control' systems have been deployed in various settings. For these systems to be trustworthy, we need to improve their robustness with adversarial training being one approach. In this work, we propose a gradient-free adversarial training technique, called AutoJoin. AutoJoin is a very simple yet effective and efficient approach to produce robust models for imaged-based autonomous maneuvering. Compared to other SOTA methods with testing on over 5M perturbed and clean images, AutoJoin achieves significant performance increases up to the 40% range under perturbed datasets while improving on clean performance for almost every dataset tested. In particular, AutoJoin can triple the clean performance improvement compared to the SOTA work by Shen et al. Regarding efficiency, AutoJoin demonstrates strong advantages over other SOTA techniques by saving up to 83% time per training epoch and 90% training data. The core idea of AutoJoin is to use a decoder attachment to the original regression model creating a denoising autoencoder within the architecture. This allows the tasks 'steering' and 'denoising sensor input' to be jointly learnt and enable the two tasks to reinforce each other's performance.
109,569
109,569
On Elimination Strategies for Bandit Fixed-Confidence Identification
Elimination algorithms for bandit identification, which prune the plausible correct answers sequentially until only one remains, are computationally convenient since they reduce the problem size over time. However, existing elimination strategies are often not fully adaptive (they update their sampling rule infrequently) and are not easy to extend to combinatorial settings, where the set of answers is exponentially large in the problem dimension. On the other hand, most existing fully-adaptive strategies to tackle general identification problems are computationally demanding since they repeatedly test the correctness of every answer, without ever reducing the problem size. We show that adaptive methods can be modified to use elimination in both their stopping and sampling rules, hence obtaining the best of these two worlds: the algorithms (1) remain fully adaptive, (2) suffer a sample complexity that is never worse of their non-elimination counterpart, and (3) provably eliminate certain wrong answers early. We confirm these benefits experimentally, where elimination improves significantly the computational complexity of adaptive methods on common tasks like best-arm identification in linear bandits.
109,570
109,570
muNet: Evolving Pretrained Deep Neural Networks into Scalable Auto-tuning Multitask Systems
Most uses of machine learning today involve training a model from scratch for a particular task, or sometimes starting with a model pretrained on a related task and then fine-tuning on a downstream task. Both approaches offer limited knowledge transfer between different tasks, time-consuming human-driven customization to individual tasks and high computational costs especially when starting from randomly initialized models. We propose a method that uses the layers of a pretrained deep neural network as building blocks to construct an ML system that can jointly solve an arbitrary number of tasks. The resulting system can leverage cross tasks knowledge transfer, while being immune from common drawbacks of multitask approaches such as catastrophic forgetting, gradients interference and negative transfer. We define an evolutionary approach designed to jointly select the prior knowledge relevant for each task, choose the subset of the model parameters to train and dynamically auto-tune its hyperparameters. Furthermore, a novel scale control method is employed to achieve quality/size trade-offs that outperform common fine-tuning techniques. Compared with standard fine-tuning on a benchmark of 10 diverse image classification tasks, the proposed model improves the average accuracy by 2.39% while using 47% less parameters per task.
109,571
109,571
Toward smart composites: small-scale, untethered prediction and control for soft sensor/actuator systems
We present a suite of algorithms and tools for model-predictive control of sensor/actuator systems with embedded microcontroller units (MCU). These MCUs can be colocated with sensors and actuators, thereby enabling a new class of smart composites capable of autonomous behavior that does not require an external computer. In this approach, kinematics are learned using a neural network model from offline data and compiled into MCU code using nn4mc, an open-source tool. Online Newton-Raphson optimization solves for the control input. Shallow neural network models applied to 1D sensor signals allow for reduced model sizes and increased control loop frequencies. We validate this approach on a simulated mass-spring-damper system and two experimental setups with different sensing, actuation, and computational hardware: a tendon-based platform with embedded optical lace sensors and a HASEL-based platform with magnetic sensors. Experimental results indicate effective high-bandwidth tracking of reference paths (120 Hz and higher) with a small memory footprint (less than or equal to 6.4% of available flash). The measured path following error does not exceed 2 mm in the tendon-based platform, and the predicted path following error does not exceed 1 mm in the HASEL-based platform. This controller code's mean power consumption in an ARM Cortex-M4 computer is 45.4 mW. This control approach is also compatible with Tensorflow Lite models and equivalent compilers. Embedded intelligence in composite materials enables a new class of composites that infuse intelligence into structures and systems, making them capable of responding to environmental stimuli using their proprioception.
109,572
109,572
Deep Discriminative Direct Decoders for High-dimensional Time-series Analysis
Dynamical latent variable modeling has been significantly invested over the last couple of decades with established solutions encompassing generative processes like the state-space model (SSM) and discriminative processes like a recurrent or a deep neural network (DNN). These solutions are powerful tools with promising results; however, surprisingly they were never put together in a unified model to analyze complex multivariate time-series data. A very recent modeling approach, called the direct discriminative decoder (DDD) model, proposes a principal solution to combine SMM and DNN models, with promising results in decoding underlying latent processes, e.g. rat movement trajectory, through high-dimensional neural recordings. The DDD consists of a) a state transition process, as per the classical dynamical models, and b) a discriminative process, like DNN, in which the conditional distribution of states is defined as a function of the current observations and their recent history. Despite promising results of the DDD model, no training solutions, in the context of DNN, have been utilized for this model. Here, we propose how DNN parameters along with an optimal history term can be simultaneously estimated as a part of the DDD model. We use the D4 abbreviation for a DDD with a DNN as its discriminative process. We showed the D4 decoding performance in both simulation and (relatively) high-dimensional neural data. In both datasets, D4 performance surpasses the state-of-art decoding solutions, including those of SSM and DNNs. The key success of DDD and potentially D4 is efficient utilization of the recent history of observation along with the state-process that carries long-term information, which is not addressed in either SSM or DNN solutions. We argue that D4 can be a powerful tool for the analysis of high-dimensional time-series data.
109,573
109,573
Incentivizing Federated Learning
Federated Learning is an emerging distributed collaborative learning paradigm used by many of applications nowadays. The effectiveness of federated learning relies on clients' collective efforts and their willingness to contribute local data. However, due to privacy concerns and the costs of data collection and model training, clients may not always contribute all the data they possess, which would negatively affect the performance of the global model. This paper presents an incentive mechanism that encourages clients to contribute as much data as they can obtain. Unlike previous incentive mechanisms, our approach does not monetize data. Instead, we implicitly use model performance as a reward, i.e., significant contributors are paid off with better models. We theoretically prove that clients will use as much data as they can possibly possess to participate in federated learning under certain conditions with our incentive mechanism
109,574
109,574
Analysis of functional neural codes of deep learning models
Deep neural networks (DNNs), the agents of deep learning (DL), require a massive number of parallel/sequential operations. This makes it extremely challenging to comprehend DNNs' operations and hinders proper diagnosis. Consequently, DNNs cannot be readily used in high-stakes domains, in which incorrect decisions can lead to catastrophic failures. Therefore, to build more reliable DNNs/DL to be deployed in high-stakes real-world problems, it is imperative that we develop proper analysis tools that will allow us to better understand DNNs' internal operations underlying their decision-making. Here, we used the self-organizing map (SOM) to analyze internal codes of DL models associated with their decision-making. Our analyses suggest that hidden layer activation patterns can be mapped onto a finite number of patterns and are correlated with DL predictions, raising the possibility that they could serve as functional codes of DL models. Encouraged by this observation, we further used SOM to estimate input features coded in hidden layers, analyzed the effects of adversarial inputs to better understand characterized internal representations' evolution and adversarial perturbations' propagation in DL models.
109,575
109,575
CYRUS Soccer Simulation 2D Team Description Paper 2022
Soccer Simulation 2D League is one of the major leagues of RoboCup competitions. In a Soccer Simulation 2D (SS2D) game, two teams of 11 players and one coach compete against each other. The players are only allowed to communicate with the server that is called Soccer Simulation Server. This paper introduces the previous and current research of the CYRUS soccer simulation team, the champion of RoboCup 2021. We will present our idea about improving Unmarking Decisioning and Positioning by using Pass Prediction Deep Neural Network. Based on our experimental results, this idea proven to be effective on increasing the winning rate of Cyrus against opponents.
109,576
109,576
Investigating classification learning curves for automatically generated and labelled plant images
In the context of supervised machine learning a learning curve describes how a model's performance on unseen data relates to the amount of samples used to train the model. In this paper we present a dataset of plant images with representatives of crops and weeds common to the Manitoba prairies at different growth stages. We determine the learning curve for a classification task on this data with the ResNet architecture. Our results are in accordance with previous studies and add to the evidence that learning curves are governed by power-law relationships over large scales, applications, and models. We further investigate how label noise and the reduction of trainable parameters impacts the learning curve on this dataset. Both effects lead to the model requiring disproportionally larger training sets to achieve the same classification performance as observed without these effects.
109,577
109,577
Global Extreme Heat Forecasting Using Neural Weather Models
Heat waves are projected to increase in frequency and severity with global warming. Improved warning systems would help reduce the associated loss of lives, wildfires, power disruptions, and reduction in crop yields. In this work, we explore the potential for deep learning systems trained on historical data to forecast extreme heat on short, medium and subseasonal timescales. To this purpose, we train a set of neural weather models (NWMs) with convolutional architectures to forecast surface temperature anomalies globally, 1 to 28 days ahead, at $\sim200~\mathrm{km}$ resolution and on the cubed sphere. The NWMs are trained using the ERA5 reanalysis product and a set of candidate loss functions, including the mean squared error and exponential losses targeting extremes. We find that training models to minimize custom losses tailored to emphasize extremes leads to significant skill improvements in the heat wave prediction task, compared to NWMs trained on the mean squared error loss. This improvement is accomplished with almost no skill reduction in the general temperature prediction task, and it can be efficiently realized through transfer learning, by re-training NWMs with the custom losses for a few epochs. In addition, we find that the use of a symmetric exponential loss reduces the smoothing of NWM forecasts with lead time. Our best NWM is able to outperform persistence in a regressive sense for all lead times and temperature anomaly thresholds considered, and shows positive regressive skill compared to the ECMWF subseasonal-to-seasonal control forecast within the first two forecast days and after two weeks.
109,578
109,578
Data-Efficient Modeling for Precise Power Consumption Estimation of Quadrotor Operations Using Ensemble Learning
Electric Take-Off and Landing (eVTOL) aircraft is considered as the major aircraft type in the emerging urban air mobility. Accurate power consumption estimation is crucial to eVTOL, supporting advanced power management strategies and improving the efficiency and safety performance of flight operations. In this study, a framework for power consumption modeling of eVTOL aircraft was established. We employed an ensemble learning method, namely stacking, to develop a data-driven model using flight records of three different types of quadrotors. Random forest and extreme gradient boosting, showing advantages in prediction, were chosen as base-models, and a linear regression model was used as the meta-model. The established stacking model can accurately estimate the power of a quadrotor. Error analysis shows that about 80% prediction errors fall within one standard deviation interval and less than 0.5% error in the prediction for an entire flight can be expected with a confidence of more than 80%. Our model outperforms the existing models in two aspects: firstly, our model has a better prediction performance, and secondly, our model is more data-efficient, requiring a much smaller dataset. Our model provides a powerful tool for operators of eVTOL aircraft in mission management and contributes to promoting safe and energy-efficient urban air traffic.
109,579
109,579
Semi-Decentralized Federated Learning with Collaborative Relaying
We present a semi-decentralized federated learning algorithm wherein clients collaborate by relaying their neighbors' local updates to a central parameter server (PS). At every communication round to the PS, each client computes a local consensus of the updates from its neighboring clients and eventually transmits a weighted average of its own update and those of its neighbors to the PS. We appropriately optimize these averaging weights to ensure that the global update at the PS is unbiased and to reduce the variance of the global update at the PS, consequently improving the rate of convergence. Numerical simulations substantiate our theoretical claims and demonstrate settings with intermittent connectivity between the clients and the PS, where our proposed algorithm shows an improved convergence rate and accuracy in comparison with the federated averaging algorithm.
109,580
109,580
Nonparametric learning of kernels in nonlocal operators
Nonlocal operators with integral kernels have become a popular tool for designing solution maps between function spaces, due to their efficiency in representing long-range dependence and the attractive feature of being resolution-invariant. In this work, we provide a rigorous identifiability analysis and convergence study for the learning of kernels in nonlocal operators. It is found that the kernel learning is an ill-posed or even ill-defined inverse problem, leading to divergent estimators in the presence of modeling errors or measurement noises. To resolve this issue, we propose a nonparametric regression algorithm with a novel data adaptive RKHS Tikhonov regularization method based on the function space of identifiability. The method yields a noisy-robust convergent estimator of the kernel as the data resolution refines, on both synthetic and real-world datasets. In particular, the method successfully learns a homogenized model for the stress wave propagation in a heterogeneous solid, revealing the unknown governing laws from real-world data at microscale. Our regularization method outperforms baseline methods in robustness, generalizability and accuracy.
109,581
109,581
Efficient Reinforcement Learning from Demonstration Using Local Ensemble and Reparameterization with Split and Merge of Expert Policies
The current work on reinforcement learning (RL) from demonstrations often assumes the demonstrations are samples from an optimal policy, an unrealistic assumption in practice. When demonstrations are generated by sub-optimal policies or have sparse state-action pairs, policy learned from sub-optimal demonstrations may mislead an agent with incorrect or non-local action decisions. We propose a new method called Local Ensemble and Reparameterization with Split and Merge of expert policies (LEARN-SAM) to improve efficiency and make better use of the sub-optimal demonstrations. First, LEARN-SAM employs a new concept, the lambda-function, based on a discrepancy measure between the current state to demonstrated states to "localize" the weights of the expert policies during learning. Second, LEARN-SAM employs a split-and-merge (SAM) mechanism by separating the helpful parts in each expert demonstration and regrouping them into new expert policies to use the demonstrations selectively. Both the lambda-function and SAM mechanism help boost the learning speed. Theoretically, we prove the invariant property of reparameterized policy before and after the SAM mechanism, providing theoretical guarantees for the convergence of the employed policy gradient method. We demonstrate the superiority of the LEARN-SAM method and its robustness with varying demonstration quality and sparsity in six experiments on complex continuous control problems of low to high dimensions, compared to existing methods on RL from demonstration.
109,582
109,582
Flexible and Hierarchical Prior for Bayesian Nonnegative Matrix Factorization
In this paper, we introduce a probabilistic model for learning nonnegative matrix factorization (NMF) that is commonly used for predicting missing values and finding hidden patterns in the data, in which the matrix factors are latent variables associated with each data dimension. The nonnegativity constraint for the latent factors is handled by choosing priors with support on the nonnegative subspace. Bayesian inference procedure based on Gibbs sampling is employed. We evaluate the model on several real-world datasets including MovieLens 100K and MovieLens 1M with different sizes and dimensions and show that the proposed Bayesian NMF GRRN model leads to better predictions and avoids overfitting compared to existing Bayesian NMF approaches.
109,583
109,583
Distance-Sensitive Offline Reinforcement Learning
In offline reinforcement learning (RL), one detrimental issue to policy learning is the error accumulation of deep Q function in out-of-distribution (OOD) areas. Unfortunately, existing offline RL methods are often over-conservative, inevitably hurting generalization performance outside data distribution. In our study, one interesting observation is that deep Q functions approximate well inside the convex hull of training data. Inspired by this, we propose a new method, DOGE (Distance-sensitive Offline RL with better GEneralization). DOGE marries dataset geometry with deep function approximators in offline RL, and enables exploitation in generalizable OOD areas rather than strictly constraining policy within data distribution. Specifically, DOGE trains a state-conditioned distance function that can be readily plugged into standard actor-critic methods as a policy constraint. Simple yet elegant, our algorithm enjoys better generalization compared to state-of-the-art methods on D4RL benchmarks. Theoretical analysis demonstrates the superiority of our approach to existing methods that are solely based on data distribution or support constraints.
109,584
109,584
HessianFR: An Efficient Hessian-based Follow-the-Ridge Algorithm for Minimax Optimization
Wide applications of differentiable two-player sequential games (e.g., image generation by GANs) have raised much interest and attention of researchers to study efficient and fast algorithms. Most of the existing algorithms are developed based on nice properties of simultaneous games, i.e., convex-concave payoff functions, but are not applicable in solving sequential games with different settings. Some conventional gradient descent ascent algorithms theoretically and numerically fail to find the local Nash equilibrium of the simultaneous game or the local minimax (i.e., local Stackelberg equilibrium) of the sequential game. In this paper, we propose the HessianFR, an efficient Hessian-based Follow-the-Ridge algorithm with theoretical guarantees. Furthermore, the convergence of the stochastic algorithm and the approximation of Hessian inverse are exploited to improve algorithm efficiency. A series of experiments of training generative adversarial networks (GANs) have been conducted on both synthetic and real-world large-scale image datasets (e.g. MNIST, CIFAR-10 and CelebA). The experimental results demonstrate that the proposed HessianFR outperforms baselines in terms of convergence and image generation quality.
109,585
109,585
Body Composition Estimation Based on Multimodal Multi-task Deep Neural Network
In addition to body weight and Body Mass Index (BMI), body composition is an essential data point that allows people to understand their overall health and body fitness. However, body composition is largely made up of muscle, fat, bones, and water, which makes estimation not as easy and straightforward as measuring body weight. In this paper, we introduce a multimodal multi-task deep neural network to estimate body fat percentage and skeletal muscle mass by analyzing facial images in addition to a person's height, gender, age, and weight information. Using a dataset representative of demographics in Japan, we confirmed that the proposed approach performed better compared to the existing methods. Moreover, the multi-task approach implemented in this study is also able to grasp the negative correlation between body fat percentage and skeletal muscle mass gain/loss.
109,586
109,586
Augmented Newton Method for Optimization: Global Linear Rate and Momentum Interpretation
We propose two variants of Newton method for solving unconstrained minimization problem. Our method leverages optimization techniques such as penalty and augmented Lagrangian method to generate novel variants of the Newton method namely the Penalty Newton method and the Augmented Newton method. In doing so, we recover several well-known existing Newton method variants such as Damped Newton, Levenberg, and Levenberg-Marquardt methods as special cases. Moreover, the proposed Augmented Newton method can be interpreted as Newton method with adaptive heavy ball momentum. We provide global convergence results for the proposed methods under mild assumptions that hold for a wide variety of problems. The proposed methods can be sought as the penalty and augmented extensions of the results obtained by Karimireddy et. al [24].
109,587
109,587
FLEX: Feature-Logic Embedding Framework for CompleX Knowledge Graph Reasoning
Current best performing models for knowledge graph reasoning (KGR) are based on complex distribution or geometry objects to embed entities and first-order logical (FOL) queries in low-dimensional spaces. They can be summarized as a center-size framework (point/box/cone, Beta/Gaussian distribution, etc.) whose logical reasoning ability is limited by the expressiveness of the relevant mathematical concepts. Because too deeply the center and the size depend on each other, it is difficult to integrate the logical reasoning ability with other models. To address these challenges, we instead propose a novel KGR framework named Feature-Logic Embedding framework, FLEX, which is the first KGR framework that can not only TRULY handle all FOL operations including conjunction, disjunction, negation and so on, but also support various feature spaces. Specifically, the logic part of feature-logic framework is based on vector logic, which naturally models all FOL operations. Experiments demonstrate that FLEX significantly outperforms existing state-of-the-art methods on benchmark datasets.
109,588
109,588
Personalized Federated Learning with Server-Side Information
Personalized Federated Learning (FL) is an emerging research field in FL that learns an easily adaptable global model in the presence of data heterogeneity among clients. However, one of the main challenges for personalized FL is the heavy reliance on clients' computing resources to calculate higher-order gradients since client data is segregated from the server to ensure privacy. To resolve this, we focus on a problem setting where the server may possess its own data independent of clients' data -- a prevalent problem setting in various applications, yet relatively unexplored in existing literature. Specifically, we propose FedSIM, a new method for personalized FL that actively utilizes such server data to improve meta-gradient calculation in the server for increased personalization performance. Experimentally, we demonstrate through various benchmarks and ablations that FedSIM is superior to existing methods in terms of accuracy, more computationally efficient by calculating the full meta-gradients in the server, and converges up to 34.2% faster.
109,589
109,589
GBA: A Tuning-free Approach to Switch between Synchronous and Asynchronous Training for Recommendation Model
High-concurrency asynchronous training upon parameter server (PS) architecture and high-performance synchronous training upon all-reduce (AR) architecture are the most commonly deployed distributed training modes for recommender systems. Although the synchronous AR training is designed to have higher training efficiency, the asynchronous PS training would be a better choice on training speed when there are stragglers (slow workers) in the shared cluster, especially under limited computing resources. To take full advantages of these two training modes, an ideal way is to switch between them upon the cluster status. We find two obstacles to a tuning-free approach: the different distribution of the gradient values and the stale gradients from the stragglers. In this paper, we propose Global Batch gradients Aggregation (GBA) over PS, which aggregates and applies gradients with the same global batch size as the synchronous training. A token-control process is implemented to assemble the gradients and decay the gradients with severe staleness. We provide the convergence analysis to demonstrate the robustness of GBA over the recommendation models against the gradient staleness. Experiments on three industrial-scale recommendation tasks show that GBA is an effective tuning-free approach for switching. Compared to the state-of-the-art derived asynchronous training, GBA achieves up to 0.2% improvement on the AUC metric, which is significant for the recommendation models. Meanwhile, under the strained hardware resource, GBA speeds up at least 2.4x compared to the synchronous training.
109,590
109,590
Flow-based Recurrent Belief State Learning for POMDPs
Partially Observable Markov Decision Process (POMDP) provides a principled and generic framework to model real world sequential decision making processes but yet remains unsolved, especially for high dimensional continuous space and unknown models. The main challenge lies in how to accurately obtain the belief state, which is the probability distribution over the unobservable environment states given historical information. Accurately calculating this belief state is a precondition for obtaining an optimal policy of POMDPs. Recent advances in deep learning techniques show great potential to learn good belief states. However, existing methods can only learn approximated distribution with limited flexibility. In this paper, we introduce the \textbf{F}l\textbf{O}w-based \textbf{R}ecurrent \textbf{BE}lief \textbf{S}tate model (FORBES), which incorporates normalizing flows into the variational inference to learn general continuous belief states for POMDPs. Furthermore, we show that the learned belief states can be plugged into downstream RL algorithms to improve performance. In experiments, we show that our methods successfully capture the complex belief states that enable multi-modal predictions as well as high quality reconstructions, and results on challenging visual-motor control tasks show that our method achieves superior performance and sample efficiency.
109,591
109,591
TempLM: Distilling Language Models into Template-Based Generators
While pretrained language models (PLMs) have greatly improved text generation, they have also been known to produce unfaithful or inappropriate content. In contrast, classic template-based systems provide strong guarantees of faithfulness at the cost of fluency. We propose TempLM, which achieves the best of both worlds by distilling a PLM into a template-based generator. On the E2E and SynthBio data-to-text datasets, we show that TempLM is more faithful than the original PLM and is more fluent than prior template systems. Notably, on an out-of-domain evaluation, TempLM reduces a finetuned BART model's unfaithfulness rate from 83% to 0%. In a human study, we find that TempLM's templates substantially improve upon human-written ones in BERTScore.
109,592
109,592
Falsification of Multiple Requirements for Cyber-Physical Systems Using Online Generative Adversarial Networks and Multi-Armed Bandits
We consider the problem of falsifying safety requirements of Cyber-Physical Systems expressed in signal temporal logic (STL). This problem can be turned into an optimization problem via STL robustness functions. In this paper, our focus is in falsifying systems with multiple requirements. We propose to solve such conjunctive requirements using online generative adversarial networks (GANs) as test generators. Our main contribution is an algorithm which falsifies a conjunctive requirement $\varphi_1 \land \cdots \land \varphi_n$ by using a GAN for each requirement $\varphi_i$ separately. Using ideas from multi-armed bandit algorithms, our algorithm only trains a single GAN at every step, which saves resources. Our experiments indicate that, in addition to saving resources, this multi-armed bandit algorithm can falsify requirements with fewer number of executions on the system under test when compared to (i) an algorithm training a single GAN for the complete conjunctive requirement and (ii) an algorithm always training $n$ GANs at each step.
109,593
109,593
Wasserstein Generative Adversarial Networks for Online Test Generation for Cyber Physical Systems
We propose a novel online test generation algorithm WOGAN based on Wasserstein Generative Adversarial Networks. WOGAN is a general-purpose black-box test generator applicable to any system under test having a fitness function for determining failing tests. As a proof of concept, we evaluate WOGAN by generating roads such that a lane assistance system of a car fails to stay on the designated lane. We find that our algorithm has a competitive performance respect to previously published algorithms.
109,594
109,594
WOGAN at the SBST 2022 CPS Tool Competition
WOGAN is an online test generation algorithm based on Wasserstein generative adversarial networks. In this note, we present how WOGAN works and summarize its performance in the SBST 2022 CPS tool competition concerning the AI of a self-driving car.
109,595
109,595
Beyond EM Algorithm on Over-specified Two-Component Location-Scale Gaussian Mixtures
The Expectation-Maximization (EM) algorithm has been predominantly used to approximate the maximum likelihood estimation of the location-scale Gaussian mixtures. However, when the models are over-specified, namely, the chosen number of components to fit the data is larger than the unknown true number of components, EM needs a polynomial number of iterations in terms of the sample size to reach the final statistical radius; this is computationally expensive in practice. The slow convergence of EM is due to the missing of the locally strong convexity with respect to the location parameter on the negative population log-likelihood function, i.e., the limit of the negative sample log-likelihood function when the sample size goes to infinity. To efficiently explore the curvature of the negative log-likelihood functions, by specifically considering two-component location-scale Gaussian mixtures, we develop the Exponential Location Update (ELU) algorithm. The idea of the ELU algorithm is that we first obtain the exact optimal solution for the scale parameter and then perform an exponential step-size gradient descent for the location parameter. We demonstrate theoretically and empirically that the ELU iterates converge to the final statistical radius of the models after a logarithmic number of iterations. To the best of our knowledge, it resolves the long-standing open question in the literature about developing an optimization algorithm that has optimal statistical and computational complexities for solving parameter estimation even under some specific settings of the over-specified Gaussian mixture models.
109,596
109,596
YouTube Ad View Sentiment Analysis using Deep Learning and Machine Learning
Sentiment Analysis is currently a vital area of research. With the advancement in the use of the internet, the creation of social media, websites, blogs, opinions, ratings, etc. has increased rapidly. People express their feedback and emotions on social media posts in the form of likes, dislikes, comments, etc. The rapid growth in the volume of viewer-generated or user-generated data or content on YouTube has led to an increase in YouTube sentiment analysis. Due to this, analyzing the public reactions has become an essential need for information extraction and data visualization in the technical domain. This research predicts YouTube Ad view sentiments using Deep Learning and Machine Learning algorithms like Linear Regression (LR), Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), and Artificial Neural Network (ANN). Finally, a comparative analysis is done based on experimental results acquired from different models.
109,597
109,597
FedNorm: Modality-Based Normalization in Federated Learning for Multi-Modal Liver Segmentation
Given the high incidence and effective treatment options for liver diseases, they are of great socioeconomic importance. One of the most common methods for analyzing CT and MRI images for diagnosis and follow-up treatment is liver segmentation. Recent advances in deep learning have demonstrated encouraging results for automatic liver segmentation. Despite this, their success depends primarily on the availability of an annotated database, which is often not available because of privacy concerns. Federated Learning has been recently proposed as a solution to alleviate these challenges by training a shared global model on distributed clients without access to their local databases. Nevertheless, Federated Learning does not perform well when it is trained on a high degree of heterogeneity of image data due to multi-modal imaging, such as CT and MRI, and multiple scanner types. To this end, we propose Fednorm and its extension \fednormp, two Federated Learning algorithms that use a modality-based normalization technique. Specifically, Fednorm normalizes the features on a client-level, while Fednorm+ employs the modality information of single slices in the feature normalization. Our methods were validated using 428 patients from six publicly available databases and compared to state-of-the-art Federated Learning algorithms and baseline models in heterogeneous settings (multi-institutional, multi-modal data). The experimental results demonstrate that our methods show an overall acceptable performance, achieve Dice per patient scores up to 0.961, consistently outperform locally trained models, and are on par or slightly better than centralized models.
109,598
109,598
PointDistiller: Structured Knowledge Distillation Towards Efficient and Compact 3D Detection
The remarkable breakthroughs in point cloud representation learning have boosted their usage in real-world applications such as self-driving cars and virtual reality. However, these applications usually have an urgent requirement for not only accurate but also efficient 3D object detection. Recently, knowledge distillation has been proposed as an effective model compression technique, which transfers the knowledge from an over-parameterized teacher to a lightweight student and achieves consistent effectiveness in 2D vision. However, due to point clouds' sparsity and irregularity, directly applying previous image-based knowledge distillation methods to point cloud detectors usually leads to unsatisfactory performance. To fill the gap, this paper proposes PointDistiller, a structured knowledge distillation framework for point clouds-based 3D detection. Concretely, PointDistiller includes local distillation which extracts and distills the local geometric structure of point clouds with dynamic graph convolution and reweighted learning strategy, which highlights student learning on the crucial points or voxels to improve knowledge distillation efficiency. Extensive experiments on both voxels-based and raw points-based detectors have demonstrated the effectiveness of our method over seven previous knowledge distillation methods. For instance, our 4X compressed PointPillars student achieves 2.8 and 3.4 mAP improvements on BEV and 3D object detection, outperforming its teacher by 0.9 and 1.8 mAP, respectively. Codes have been released at https://github.com/RunpeiDong/PointDistiller.
109,599
109,599
B\'ezier Flow: a Surface-wise Gradient Descent Method for Multi-objective Optimization
In this paper, we propose a strategy to construct a multi-objective optimization algorithm from a single-objective optimization algorithm by using the B\'ezier simplex model. Also, we extend the stability of optimization algorithms in the sense of Probability Approximately Correct (PAC) learning and define the PAC stability. We prove that it leads to an upper bound on the generalization with high probability. Furthermore, we show that multi-objective optimization algorithms derived from a gradient descent-based single-objective optimization algorithm are PAC stable. We conducted numerical experiments and demonstrated that our method achieved lower generalization errors than the existing multi-objective optimization algorithm.