Unnamed: 0.1
int64
0
113k
Unnamed: 0
float64
0
113k
title
stringlengths
7
246
abstract
stringlengths
6
3.31k
109,300
109,300
A Learning-Based Approach to Approximate Coded Computation
Lagrange coded computation (LCC) is essential to solving problems about matrix polynomials in a coded distributed fashion; nevertheless, it can only solve the problems that are representable as matrix polynomials. In this paper, we propose AICC, an AI-aided learning approach that is inspired by LCC but also uses deep neural networks (DNNs). It is appropriate for coded computation of more general functions. Numerical simulations demonstrate the suitability of the proposed approach for the coded computation of different matrix functions that are often utilized in digital signal processing.
109,301
109,301
Deep Learning Methods for Proximal Inference via Maximum Moment Restriction
The No Unmeasured Confounding Assumption is widely used to identify causal effects in observational studies. Recent work on proximal inference has provided alternative identification results that succeed even in the presence of unobserved confounders, provided that one has measured a sufficiently rich set of proxy variables, satisfying specific structural conditions. However, proximal inference requires solving an ill-posed integral equation. Previous approaches have used a variety of machine learning techniques to estimate a solution to this integral equation, commonly referred to as the bridge function. However, prior work has often been limited by relying on pre-specified kernel functions, which are not data adaptive and struggle to scale to large datasets. In this work, we introduce a flexible and scalable method based on a deep neural network to estimate causal effects in the presence of unmeasured confounding using proximal inference. Our method achieves state of the art performance on two well-established proximal inference benchmarks. Finally, we provide theoretical consistency guarantees for our method.
109,302
109,302
Algorithms for Weak Optimal Transport with an Application to Economics
The theory of weak optimal transport (WOT), introduced by [Gozlan et al., 2017], generalizes the classic Monge-Kantorovich framework by allowing the transport cost between one point and the points it is matched with to be nonlinear. In the so-called barycentric version of WOT, the cost for transporting a point $x$ only depends on $x$ and on the barycenter of the points it is matched with. This aggregation property of WOT is appealing in machine learning, economics and finance. Yet algorithms to compute WOT have only been developed for the special case of quadratic barycentric WOT, or depend on neural networks with no guarantee on the computed value and matching. The main difficulty lies in the transportation constraints which are costly to project onto. In this paper, we propose to use mirror descent algorithms to solve the primal and dual versions of the WOT problem. We also apply our algorithms to the variant of WOT introduced by [Chon\'e et al., 2022] where mass is distributed from one space to another through unnormalized kernels (WOTUK). We empirically compare the solutions of WOT and WOTUK with classical OT. We illustrate our numerical methods to the economic framework of [Chon\'e and Kramarz, 2021], namely the matching between workers and firms on labor markets.
109,303
109,303
Capturing cross-session neural population variability through self-supervised identification of consistent neuron ensembles
Decoding stimuli or behaviour from recorded neural activity is a common approach to interrogate brain function in research, and an essential part of brain-computer and brain-machine interfaces. Reliable decoding even from small neural populations is possible because high dimensional neural population activity typically occupies low dimensional manifolds that are discoverable with suitable latent variable models. Over time however, drifts in activity of individual neurons and instabilities in neural recording devices can be substantial, making stable decoding over days and weeks impractical. While this drift cannot be predicted on an individual neuron level, population level variations over consecutive recording sessions such as differing sets of neurons and varying permutations of consistent neurons in recorded data may be learnable when the underlying manifold is stable over time. Classification of consistent versus unfamiliar neurons across sessions and accounting for deviations in the order of consistent recording neurons in recording datasets over sessions of recordings may then maintain decoding performance. In this work we show that self-supervised training of a deep neural network can be used to compensate for this inter-session variability. As a result, a sequential autoencoding model can maintain state-of-the-art behaviour decoding performance for completely unseen recording sessions several days into the future. Our approach only requires a single recording session for training the model, and is a step towards reliable, recalibration-free brain computer interfaces.
109,304
109,304
Learning Interface Conditions in Domain Decomposition Solvers
Domain decomposition methods are widely used and effective in the approximation of solutions to partial differential equations. Yet the optimal construction of these methods requires tedious analysis and is often available only in simplified, structured-grid settings, limiting their use for more complex problems. In this work, we generalize optimized Schwarz domain decomposition methods to unstructured-grid problems, using Graph Convolutional Neural Networks (GCNNs) and unsupervised learning to learn optimal modifications at subdomain interfaces. A key ingredient in our approach is an improved loss function, enabling effective training on relatively small problems, but robust performance on arbitrarily large problems, with computational cost linear in problem size. The performance of the learned linear solvers is compared with both classical and optimized domain decomposition algorithms, for both structured- and unstructured-grid problems.
109,305
109,305
Classification of Intra-Pulse Modulation of Radar Signals by Feature Fusion Based Convolutional Neural Networks
Detection and classification of radars based on pulses they transmit is an important application in electronic warfare systems. In this work, we propose a novel deep-learning based technique that automatically recognizes intra-pulse modulation types of radar signals. Re-assigned spectrogram of measured radar signal and detected outliers of its instantaneous phases filtered by a special function are used for training multiple convolutional neural networks. Automatically extracted features from the networks are fused to distinguish frequency and phase modulated signals. Simulation results show that the proposed FF-CNN (Feature Fusion based Convolutional Neural Network) technique outperforms the current state-of-the-art alternatives and is easily scalable among broad range of modulation types.
109,306
109,306
Concurrent Policy Blending and System Identification for Generalized Assistive Control
In this work, we address the problem of solving complex collaborative robotic tasks subject to multiple varying parameters. Our approach combines simultaneous policy blending with system identification to create generalized policies that are robust to changes in system parameters. We employ a blending network whose state space relies solely on parameter estimates from a system identification technique. As a result, this blending network learns how to handle parameter changes instead of trying to learn how to solve the task for a generalized parameter set simultaneously. We demonstrate our scheme's ability on a collaborative robot and human itching task in which the human has motor impairments. We then showcase our approach's efficiency with a variety of system identification techniques when compared to standard domain randomization.
109,307
109,307
Summarization as Indirect Supervision for Relation Extraction
Relation extraction (RE) models have been challenged by their reliance on training data with expensive annotations. Considering that summarization tasks aim at acquiring concise expressions of synoptical information from the longer context, these tasks naturally align with the objective of RE, i.e., extracting a kind of synoptical information that describes the relation of entity mentions. We present SuRE, which converts RE into a summarization formulation. SuRE leads to more precise and resource-efficient RE based on indirect supervision from summarization tasks. To achieve this goal, we develop sentence and relation conversion techniques that essentially bridge the formulation of summarization and RE tasks. We also incorporate constraint decoding techniques with Trie scoring to further enhance summarization-based RE with robust inference. Experiments on three RE datasets demonstrate the effectiveness of SuRE in both full-dataset and low-resource settings, showing that summarization is a promising source of indirect supervision to improve RE models.
109,308
109,308
Why GANs are overkill for NLP
This work offers a novel theoretical perspective on why, despite numerous attempts, adversarial approaches to generative modeling (e.g., GANs) have not been as popular for certain generation tasks, particularly sequential tasks such as Natural Language Generation, as they have in others, such as Computer Vision. In particular, on sequential data such as text, maximum-likelihood approaches are significantly more utilized than GANs. We show that, while it may seem that maximizing likelihood is inherently different than minimizing distinguishability, this distinction is largely artificial and only holds for limited models. We argue that minimizing KL-divergence (i.e., maximizing likelihood) is a more efficient approach to effectively minimizing the same distinguishability criteria that adversarial models seek to optimize. Reductions show that minimizing distinguishability can be seen as simply boosting likelihood for certain families of models including n-gram models and neural networks with a softmax output layer. To achieve a full polynomial-time reduction, a novel next-token distinguishability model is considered.
109,309
109,309
HyBNN and FedHyBNN: (Federated) Hybrid Binary Neural Networks
Binary Neural Networks (BNNs), neural networks with weights and activations constrained to -1(0) and +1, are an alternative to deep neural networks which offer faster training, lower memory consumption and lightweight models, ideal for use in resource constrained devices while being able to utilize the architecture of their deep neural network counterpart. However, the input binarization step used in BNNs causes a severe accuracy loss. In this paper, we introduce a novel hybrid neural network architecture, Hybrid Binary Neural Network (HyBNN), consisting of a task-independent, general, full-precision variational autoencoder with a binary latent space and a task specific binary neural network that is able to greatly limit the accuracy loss due to input binarization by using the full precision variational autoencoder as a feature extractor. We use it to combine the state-of-the-art accuracy of deep neural networks with the much faster training time, quicker test-time inference and power efficiency of binary neural networks. We show that our proposed system is able to very significantly outperform a vanilla binary neural network with input binarization. We also introduce FedHyBNN, a highly communication efficient federated counterpart to HyBNN and demonstrate that it is able to reach the same accuracy as its non-federated equivalent. We make our source code, experimental parameters and models available at: https://anonymous.4open.science/r/HyBNN.
109,310
109,310
A toolbox for idea generation and evaluation: Machine learning, data-driven, and contest-driven approaches to support idea generation
The significance and abundance of data are increasing due to the growing digital data generated from social media, sensors, scholarly literature, patents, different forms of documents published online, databases, product manuals, etc. Various data sources can be used to generate ideas, yet, in addition to bias, the size of the available digital data is a major challenge when it comes to manual analysis. Hence, human-machine interaction is essential for generating valuable ideas where machine learning and data-driven techniques generate patterns from data and serve human sense-making. However, the use of machine learning and data-driven approaches to generate ideas is a relatively new area. Moreover, it is also possible to stimulate innovation using contest-driven idea generation and evaluation. The results and contributions of this thesis can be viewed as a toolbox of idea-generation techniques, including a list of data-driven and machine learning techniques with corresponding data sources and models to support idea generation. In addition, the results include two models, one method and one framework, to better support data-driven and contest- driven idea generation. The beneficiaries of these artefacts are practitioners in data and knowledge engineering, data mining project managers, and innovation agents. Innovation agents include incubators, contest organizers, consultants, innovation accelerators, and industries. Since the proposed artefacts consist of process models augmented with AI techniques, human-centred AI is a promising area of research that can contribute to the artefacts' further development and promote creativity.
109,311
109,311
Confident Clustering via PCA Compression Ratio and Its Application to Single-cell RNA-seq Analysis
Unsupervised clustering algorithms for vectors has been widely used in the area of machine learning. Many applications, including the biological data we studied in this paper, contain some boundary datapoints which show combination properties of two underlying clusters and could lower the performance of the traditional clustering algorithms. We develop a confident clustering method aiming to diminish the influence of these datapoints and improve the clustering results. Concretely, for a list of datapoints, we give two clustering results. The first-round clustering attempts to classify only pure vectors with high confidence. Based on it, we classify more vectors with less confidence in the second round. We validate our algorithm on single-cell RNA-seq data, which is a powerful and widely used tool in biology area. Our confident clustering shows a high accuracy on our tested datasets. In addition, unlike traditional clustering methods in single-cell analysis, the confident clustering shows high stability under different choices of parameters.
109,312
109,312
Deconfounding Actor-Critic Network with Policy Adaptation for Dynamic Treatment Regimes
Despite intense efforts in basic and clinical research, an individualized ventilation strategy for critically ill patients remains a major challenge. Recently, dynamic treatment regime (DTR) with reinforcement learning (RL) on electronic health records (EHR) has attracted interest from both the healthcare industry and machine learning research community. However, most learned DTR policies might be biased due to the existence of confounders. Although some treatment actions non-survivors received may be helpful, if confounders cause the mortality, the training of RL models guided by long-term outcomes (e.g., 90-day mortality) would punish those treatment actions causing the learned DTR policies to be suboptimal. In this study, we develop a new deconfounding actor-critic network (DAC) to learn optimal DTR policies for patients. To alleviate confounding issues, we incorporate a patient resampling module and a confounding balance module into our actor-critic framework. To avoid punishing the effective treatment actions non-survivors received, we design a short-term reward to capture patients' immediate health state changes. Combining short-term with long-term rewards could further improve the model performance. Moreover, we introduce a policy adaptation method to successfully transfer the learned model to new-source small-scale datasets. The experimental results on one semi-synthetic and two different real-world datasets show the proposed model outperforms the state-of-the-art models. The proposed model provides individualized treatment decisions for mechanical ventilation that could improve patient outcomes.
109,313
109,313
MCVD: Masked Conditional Video Diffusion for Prediction, Generation, and Interpolation
Video prediction is a challenging task. The quality of video frames from current state-of-the-art (SOTA) generative models tends to be poor and generalization beyond the training data is difficult. Furthermore, existing prediction frameworks are typically not capable of simultaneously handling other video-related tasks such as unconditional generation or interpolation. In this work, we devise a general-purpose framework called Masked Conditional Video Diffusion (MCVD) for all of these video synthesis tasks using a probabilistic conditional score-based denoising diffusion model, conditioned on past and/or future frames. We train the model in a manner where we randomly and independently mask all the past frames or all the future frames. This novel but straightforward setup allows us to train a single model that is capable of executing a broad range of video tasks, specifically: future/past prediction -- when only future/past frames are masked; unconditional generation -- when both past and future frames are masked; and interpolation -- when neither past nor future frames are masked. Our experiments show that this approach can generate high-quality frames for diverse types of videos. Our MCVD models are built from simple non-recurrent 2D-convolutional architectures, conditioning on blocks of frames and generating blocks of frames. We generate videos of arbitrary lengths autoregressively in a block-wise manner. Our approach yields SOTA results across standard video prediction and interpolation benchmarks, with computation times for training models measured in 1-12 days using $\le$ 4 GPUs. Project page: https://mask-cond-video-diffusion.github.io ; Code : https://github.com/voletiv/mcvd-pytorch
109,314
109,314
Mean-Field Analysis of Two-Layer Neural Networks: Global Optimality with Linear Convergence Rates
We consider optimizing two-layer neural networks in the mean-field regime where the learning dynamics of network weights can be approximated by the evolution in the space of probability measures over the weight parameters associated with the neurons. The mean-field regime is a theoretically attractive alternative to the NTK (lazy training) regime which is only restricted locally in the so-called neural tangent kernel space around specialized initializations. Several prior works (\cite{mei2018mean, chizat2018global}) establish the asymptotic global optimality of the mean-field regime, but it is still challenging to obtain a quantitative convergence rate due to the complicated nonlinearity of the training dynamics. This work establishes a new linear convergence result for two-layer neural networks trained by continuous-time noisy gradient descent in the mean-field regime. Our result relies on a novelty logarithmic Sobolev inequality for two-layer neural networks, and uniform upper bounds on the logarithmic Sobolev constants for a family of measures determined by the evolving distribution of hidden neurons.
109,315
109,315
Recurrent segmentation meets block models in temporal networks
A popular approach to model interactions is to represent them as a network with nodes being the agents and the interactions being the edges. Interactions are often timestamped, which leads to having timestamped edges. Many real-world temporal networks have a recurrent or possibly cyclic behaviour. For example, social network activity may be heightened during certain hours of day. In this paper, our main interest is to model recurrent activity in such temporal networks. As a starting point we use stochastic block model, a popular choice for modelling static networks, where nodes are split into $R$ groups. We extend this model to temporal networks by modelling the edges with a Poisson process. We make the parameters of the process dependent on time by segmenting the time line into $K$ segments. To enforce the recurring activity we require that only $H < K$ different set of parameters can be used, that is, several, not necessarily consecutive, segments must share their parameters. We prove that the searching for optimal blocks and segmentation is an NP-hard problem. Consequently, we split the problem into 3 subproblems where we optimize blocks, model parameters, and segmentation in turn while keeping the remaining structures fixed. We propose an iterative algorithm that requires $O(KHm + Rn + R^2H)$ time per iteration, where $n$ and $m$ are the number of nodes and edges in the network. We demonstrate experimentally that the number of required iterations is typically low, the algorithm is able to discover the ground truth from synthetic datasets, and show that certain real-world networks exhibit recurrent behaviour as the likelihood does not deteriorate when $H$ is lowered.
109,316
109,316
Automated Scoring for Reading Comprehension via In-context BERT Tuning
Automated scoring of open-ended student responses has the potential to significantly reduce human grader effort. Recent advances in automated scoring often leverage textual representations based on pre-trained language models such as BERT and GPT as input to scoring models. Most existing approaches train a separate model for each item/question, which is suitable for scenarios such as essay scoring where items can be quite different from one another. However, these approaches have two limitations: 1) they fail to leverage item linkage for scenarios such as reading comprehension where multiple items may share a reading passage; 2) they are not scalable since storing one model per item becomes difficult when models have a large number of parameters. In this paper, we report our (grand prize-winning) solution to the National Assessment of Education Progress (NAEP) automated scoring challenge for reading comprehension. Our approach, in-context BERT fine-tuning, produces a single shared scoring model for all items with a carefully-designed input structure to provide contextual information on each item. We demonstrate the effectiveness of our approach via local evaluations using the training dataset provided by the challenge. We also discuss the biases, common error types, and limitations of our approach.
109,317
109,317
Service Delay Minimization for Federated Learning over Mobile Devices
Federated learning (FL) over mobile devices has fostered numerous intriguing applications/services, many of which are delay-sensitive. In this paper, we propose a service delay efficient FL (SDEFL) scheme over mobile devices. Unlike traditional communication efficient FL, which regards wireless communications as the bottleneck, we find that under many situations, the local computing delay is comparable to the communication delay during the FL training process, given the development of high-speed wireless transmission techniques. Thus, the service delay in FL should be computing delay + communication delay over training rounds. To minimize the service delay of FL, simply reducing local computing/communication delay independently is not enough. The delay trade-off between local computing and wireless communications must be considered. Besides, we empirically study the impacts of local computing control and compression strategies (i.e., the number of local updates, weight quantization, and gradient quantization) on computing, communication and service delays. Based on those trade-off observation and empirical studies, we develop an optimization scheme to minimize the service delay of FL over heterogeneous devices. We establish testbeds and conduct extensive emulations/experiments to verify our theoretical analysis. The results show that SDEFL reduces notable service delay with a small accuracy drop compared to peer designs.
109,318
109,318
Transformer with Memory Replay
Transformers achieve state-of-the-art performance for natural language processing tasks by pre-training on large-scale text corpora. They are extremely compute-intensive and have very high sample complexity. Memory replay is a mechanism that remembers and reuses past examples by saving to and replaying from a memory buffer. It has been successfully used in reinforcement learning and GANs due to better sample efficiency. In this paper, we propose \emph{Transformer with Memory Replay} (TMR), which integrates memory replay with transformer, making transformer more sample-efficient. Experiments on GLUE and SQuAD benchmark datasets show that Transformer with Memory Replay achieves at least $1\%$ point increase compared to the baseline transformer model when pretrained with the same number of examples. Further, by adopting a careful design that reduces the wall-clock time overhead of memory replay, we also empirically achieve a better runtime efficiency.
109,319
109,319
Content-Context Factorized Representations for Automated Speech Recognition
Deep neural networks have largely demonstrated their ability to perform automated speech recognition (ASR) by extracting meaningful features from input audio frames. Such features, however, may consist not only of information about the spoken language content, but also may contain information about unnecessary contexts such as background noise and sounds or speaker identity, accent, or protected attributes. Such information can directly harm generalization performance, by introducing spurious correlations between the spoken words and the context in which such words were spoken. In this work, we introduce an unsupervised, encoder-agnostic method for factoring speech-encoder representations into explicit content-encoding representations and spurious context-encoding representations. By doing so, we demonstrate improved performance on standard ASR benchmarks, as well as improved performance in both real-world and artificially noisy ASR scenarios.
109,320
109,320
Incremental Learning with Differentiable Architecture and Forgetting Search
As progress is made on training machine learning models on incrementally expanding classification tasks (i.e., incremental learning), a next step is to translate this progress to industry expectations. One technique missing from incremental learning is automatic architecture design via Neural Architecture Search (NAS). In this paper, we show that leveraging NAS for incremental learning results in strong performance gains for classification tasks. Specifically, we contribute the following: first, we create a strong baseline approach for incremental learning based on Differentiable Architecture Search (DARTS) and state-of-the-art incremental learning strategies, outperforming many existing strategies trained with similar-sized popular architectures; second, we extend the idea of architecture search to regularize architecture forgetting, boosting performance past our proposed baseline. We evaluate our method on both RF signal and image classification tasks, and demonstrate we can achieve up to a 10% performance increase over state-of-the-art methods. Most importantly, our contribution enables learning from continuous distributions on real-world application data for which the complexity of the data distribution is unknown, or the modality less explored (such as RF signal classification).
109,321
109,321
Real Time Multi-Object Detection for Helmet Safety
The National Football League and Amazon Web Services teamed up to develop the best sports injury surveillance and mitigation program via the Kaggle competition. Through which the NFL wants to assign specific players to each helmet, which would help accurately identify each player's "exposures" throughout a football play. We are trying to implement a computer vision based ML algorithms capable of assigning detected helmet impacts to correct players via tracking information. Our paper will explain the approach to automatically track player helmets and their collisions. This will also allow them to review previous plays and explore the trends in exposure over time.
109,322
109,322
Beyond Labels: Visual Representations for Bone Marrow Cell Morphology Recognition
Analyzing and inspecting bone marrow cell cytomorphology is a critical but highly complex and time-consuming component of hematopathology diagnosis. Recent advancements in artificial intelligence have paved the way for the application of deep learning algorithms to complex medical tasks. Nevertheless, there are many challenges in applying effective learning algorithms to medical image analysis, such as the lack of sufficient and reliably annotated training datasets and the highly class-imbalanced nature of most medical data. Here, we improve on the state-of-the-art methodologies of bone marrow cell recognition by deviating from sole reliance on labeled data and leveraging self-supervision in training our learning models. We investigate our approach's effectiveness in identifying bone marrow cell types. Our experiments demonstrate significant performance improvements in conducting different bone marrow cell recognition tasks compared to the current state-of-the-art methodologies.
109,323
109,323
A Rule Search Framework for the Early Identification of Chronic Emergency Homeless Shelter Clients
This paper uses rule search techniques for the early identification of emergency homeless shelter clients who are at risk of becoming long term or chronic shelter users. Using a data set from a major North American shelter containing 12 years of service interactions with over 40,000 individuals, the optimized pruning for unordered search (OPUS) algorithm is used to develop rules that are both intuitive and effective. The rules are evaluated within a framework compatible with the real-time delivery of a housing program meant to transition high risk clients to supportive housing. Results demonstrate that the median time to identification of clients at risk of chronic shelter use drops from 297 days to 162 days when the methods in this paper are applied.
109,324
109,324
Time Series Anomaly Detection via Reinforcement Learning-Based Model Selection
Time series anomaly detection is of critical importance for the reliable and efficient operation of real-world systems. Many anomaly detection models have been developed throughout the years based on various assumptions regarding anomaly characteristics. However, due to the complex nature of real-world data, different anomalies within a time series usually have diverse profiles supporting different anomaly assumptions, making it difficult to find a single anomaly detector that can consistently beat all other models. In this work, to harness the benefits of different base models, we assume that a pool of anomaly detection models is accessible and propose to utilize reinforcement learning to dynamically select a candidate model from these base models. Experiments on real-world data have been implemented. It is demonstrated that the proposed strategy can outperforms all baseline models in terms of overall performance.
109,325
109,325
Interpolating Compressed Parameter Subspaces
Inspired by recent work on neural subspaces and mode connectivity, we revisit parameter subspace sampling for shifted and/or interpolatable input distributions (instead of a single, unshifted distribution). We enforce a compressed geometric structure upon a set of trained parameters mapped to a set of train-time distributions, denoting the resulting subspaces as Compressed Parameter Subspaces (CPS). We show the success and failure modes of the types of shifted distributions whose optimal parameters reside in the CPS. We find that ensembling point-estimates within a CPS can yield a high average accuracy across a range of test-time distributions, including backdoor, adversarial, permutation, stylization and rotation perturbations. We also find that the CPS can contain low-loss point-estimates for various task shifts (albeit interpolated, perturbed, unseen or non-identical coarse labels). We further demonstrate this property in a continual learning setting with CIFAR100.
109,326
109,326
Let the Model Decide its Curriculum for Multitask Learning
Curriculum learning strategies in prior multi-task learning approaches arrange datasets in a difficulty hierarchy either based on human perception or by exhaustively searching the optimal arrangement. However, human perception of difficulty may not always correlate well with machine interpretation leading to poor performance and exhaustive search is computationally expensive. Addressing these concerns, we propose two classes of techniques to arrange training instances into a learning curriculum based on difficulty scores computed via model-based approaches. The two classes i.e Dataset-level and Instance-level differ in granularity of arrangement. Through comprehensive experiments with 12 datasets, we show that instance-level and dataset-level techniques result in strong representations as they lead to an average performance improvement of 4.17% and 3.15% over their respective baselines. Furthermore, we find that most of this improvement comes from correctly answering the difficult instances, implying a greater efficacy of our techniques on difficult tasks.
109,327
109,327
Breaking the $\sqrt{T}$ Barrier: Instance-Independent Logarithmic Regret in Stochastic Contextual Linear Bandits
We prove an instance independent (poly) logarithmic regret for stochastic contextual bandits with linear payoff. Previously, in \cite{chu2011contextual}, a lower bound of $\mathcal{O}(\sqrt{T})$ is shown for the contextual linear bandit problem with arbitrary (adversarily chosen) contexts. In this paper, we show that stochastic contexts indeed help to reduce the regret from $\sqrt{T}$ to $\polylog(T)$. We propose Low Regret Stochastic Contextual Bandits (\texttt{LR-SCB}), which takes advantage of the stochastic contexts and performs parameter estimation (in $\ell_2$ norm) and regret minimization simultaneously. \texttt{LR-SCB} works in epochs, where the parameter estimation of the previous epoch is used to reduce the regret of the current epoch. The (poly) logarithmic regret of \texttt{LR-SCB} stems from two crucial facts: (a) the application of a norm adaptive algorithm to exploit the parameter estimation and (b) an analysis of the shifted linear contextual bandit algorithm, showing that shifting results in increasing regret. We have also shown experimentally that stochastic contexts indeed incurs a regret that scales with $\polylog(T)$.
109,328
109,328
Estimating the frame potential of large-scale quantum circuit sampling using tensor networks up to 50 qubits
We develop numerical protocols for estimating the frame potential, the 2-norm distance between a given ensemble and the exact Haar randomness, using the \texttt{QTensor} platform. Our tensor-network-based algorithm has polynomial complexity for shallow circuits and is high performing using CPU and GPU parallelism. We apply the above methods to two problems: the Brown-Susskind conjecture, with local and parallel random circuits in terms of the Haar distance and the approximate $k$-design properties of the hardware efficient ans{\"a}tze in quantum machine learning, which induce the barren plateau problem. We estimate frame potentials with these ensembles up to 50 qubits and $k=5$, examine the Haar distance of the hardware-efficient ans{\"a}tze, and verify the Brown-Susskind conjecture numerically. Our work shows that large-scale tensor network simulations could provide important hints toward open problems in quantum information science.
109,329
109,329
Minimal Explanations for Neural Network Predictions
Explaining neural network predictions is known to be a challenging problem. In this paper, we propose a novel approach which can be effectively exploited, either in isolation or in combination with other methods, to enhance the interpretability of neural model predictions. For a given input to a trained neural model, our aim is to compute a smallest set of input features so that the model prediction changes when these features are disregarded by setting them to an uninformative baseline value. While computing such minimal explanations is computationally intractable in general for fully-connected neural networks, we show that the problem becomes solvable in polynomial time by a greedy algorithm under mild assumptions on the network's activation functions. We then show that our tractability result extends seamlessly to more advanced neural architectures such as convolutional and graph neural networks. We conduct experiments to showcase the capability of our method for identifying the input features that are essential to the model's prediction.
109,330
109,330
Data Augmentation for Compositional Data: Advancing Predictive Models of the Microbiome
Data augmentation plays a key role in modern machine learning pipelines. While numerous augmentation strategies have been studied in the context of computer vision and natural language processing, less is known for other data modalities. Our work extends the success of data augmentation to compositional data, i.e., simplex-valued data, which is of particular interest in the context of the human microbiome. Drawing on key principles from compositional data analysis, such as the Aitchison geometry of the simplex and subcompositions, we define novel augmentation strategies for this data modality. Incorporating our data augmentations into standard supervised learning pipelines results in consistent performance gains across a wide range of standard benchmark datasets. In particular, we set a new state-of-the-art for key disease prediction tasks including colorectal cancer, type 2 diabetes, and Crohn's disease. In addition, our data augmentations enable us to define a novel contrastive learning model, which improves on previous representation learning approaches for microbiome compositional data. Our code is available at https://github.com/cunningham-lab/AugCoDa.
109,331
109,331
Sparse Infinite Random Feature Latent Variable Modeling
We propose a non-linear, Bayesian non-parametric latent variable model where the latent space is assumed to be sparse and infinite dimensional a priori using an Indian buffet process prior. A posteriori, the number of instantiated dimensions in the latent space is guaranteed to be finite. The purpose of placing the Indian buffet process on the latent variables is to: 1.) Automatically and probabilistically select the number of latent dimensions. 2.) Impose sparsity in the latent space, where the Indian buffet process will select which elements are exactly zero. Our proposed model allows for sparse, non-linear latent variable modeling where the number of latent dimensions is selected automatically. Inference is made tractable using the random Fourier approximation and we can easily implement posterior inference through Markov chain Monte Carlo sampling. This approach is amenable to many observation models beyond the Gaussian setting. We demonstrate the utility of our method on a variety of synthetic, biological and text datasets and show that we can obtain superior test set performance compared to previous latent variable models.
109,332
109,332
Can Foundation Models Wrangle Your Data?
Foundation Models (FMs) are models trained on large corpora of data that, at very large scale, can generalize to new tasks without any task-specific finetuning. As these models continue to grow in size, innovations continue to push the boundaries of what these models can do on language and image tasks. This paper aims to understand an underexplored area of FMs: classical data tasks like cleaning and integration. As a proof-of-concept, we cast three data cleaning and integration tasks as prompting tasks and evaluate the performance of FMs on these tasks. We find that large FMs generalize and achieve SoTA performance on data cleaning and integration tasks, even though they are not trained for these data tasks. We identify specific research challenges and opportunities that these models present, including challenges with private and temporal data, and opportunities to make data driven systems more accessible to non-experts. We make our code and experiments publicly available at: https://github.com/HazyResearch/fm_data_tasks.
109,333
109,333
Robust Expected Information Gain for Optimal Bayesian Experimental Design Using Ambiguity Sets
The ranking of experiments by expected information gain (EIG) in Bayesian experimental design is sensitive to changes in the model's prior distribution, and the approximation of EIG yielded by sampling will have errors similar to the use of a perturbed prior. We define and analyze \emph{robust expected information gain} (REIG), a modification of the objective in EIG maximization by minimizing an affine relaxation of EIG over an ambiguity set of distributions that are close to the original prior in KL-divergence. We show that, when combined with a sampling-based approach to estimating EIG, REIG corresponds to a `log-sum-exp' stabilization of the samples used to estimate EIG, meaning that it can be efficiently implemented in practice. Numerical tests combining REIG with variational nested Monte Carlo (VNMC), adaptive contrastive estimation (ACE) and mutual information neural estimation (MINE) suggest that in practice REIG also compensates for the variability of under-sampled estimators.
109,334
109,334
KERPLE: Kernelized Relative Positional Embedding for Length Extrapolation
Relative positional embeddings (RPE) have received considerable attention since RPEs effectively model the relative distance among tokens and enable length extrapolation. We propose KERPLE, a framework that generalizes relative position embedding for extrapolation by kernelizing positional differences. We achieve this goal using conditionally positive definite (CPD) kernels, a class of functions known for generalizing distance metrics. To maintain the inner product interpretation of self-attention, we show that a CPD kernel can be transformed into a PD kernel by adding a constant offset. This offset is implicitly absorbed in the Softmax normalization during self-attention. The diversity of CPD kernels allows us to derive various RPEs that enable length extrapolation in a principled way. Experiments demonstrate that the logarithmic variant achieves excellent extrapolation performance on three large language modeling datasets.
109,335
109,335
Anomaly Detection for Multivariate Time Series on Large-scale Fluid Handling Plant Using Two-stage Autoencoder
This paper focuses on anomaly detection for multivariate time series data in large-scale fluid handling plants with dynamic components, such as power generation, water treatment, and chemical plants, where signals from various physical phenomena are observed simultaneously. In these plants, the need for anomaly detection techniques is increasing in order to reduce the cost of operation and maintenance, in view of a decline in the number of skilled engineers and a shortage of manpower. However, considering the complex behavior of high-dimensional signals and the demand for interpretability, the techniques constitute a major challenge. We introduce a Two-Stage AutoEncoder (TSAE) as an anomaly detection method suitable for such plants. This is a simple autoencoder architecture that makes anomaly detection more interpretable and more accurate, in which based on the premise that plant signals can be separated into two behaviors that have almost no correlation with each other, the signals are separated into long-term and short-term components in a stepwise manner, and the two components are trained independently to improve the inference capability for normal signals. Through experiments on two publicly available datasets of water treatment systems, we have confirmed the high detection performance, the validity of the premise, and that the model behavior was as intended, i.e., the technical effectiveness of TSAE.
109,336
109,336
On Jointly Optimizing Partial Offloading and SFC Mapping: A Cooperative Dual-agent Deep Reinforcement Learning Approach
Multi-access edge computing (MEC) and network function virtualization (NFV) are promising technologies to support emerging IoT applications, especially those computation-intensive. In NFV-enabled MEC environment, service function chain (SFC), i.e., a set of ordered virtual network functions (VNFs), can be mapped on MEC servers. Mobile devices (MDs) can offload computation-intensive applications, which can be represented by SFCs, fully or partially to MEC servers for remote execution. This paper studies the partial offloading and SFC mapping joint optimization (POSMJO) problem in an NFV-enabled MEC system, where an incoming task can be partitioned into two parts, one for local execution and the other for remote execution. The objective is to minimize the average cost in the long term which is a combination of execution delay, MD's energy consumption, and usage charge for edge computing. This problem consists of two closely related decision-making steps, namely task partition and VNF placement, which is highly complex and quite challenging. To address this, we propose a cooperative dual-agent deep reinforcement learning (CDADRL) algorithm, where we design a framework enabling interaction between two agents. Simulation results show that the proposed algorithm outperforms three combinations of deep reinforcement learning algorithms in terms of cumulative and average episodic rewards and it overweighs a number of baseline algorithms with respect to execution delay, energy consumption, and usage charge.
109,337
109,337
CertiFair: A Framework for Certified Global Fairness of Neural Networks
We consider the problem of whether a Neural Network (NN) model satisfies global individual fairness. Individual Fairness suggests that similar individuals with respect to a certain task are to be treated similarly by the decision model. In this work, we have two main objectives. The first is to construct a verifier which checks whether the fairness property holds for a given NN in a classification task or provide a counterexample if it is violated, i.e., the model is fair if all similar individuals are classified the same, and unfair if a pair of similar individuals are classified differently. To that end, We construct a sound and complete verifier that verifies global individual fairness properties of ReLU NN classifiers using distance-based similarity metrics. The second objective of this paper is to provide a method for training provably fair NN classifiers from unfair (biased) data. We propose a fairness loss that can be used during training to enforce fair outcomes for similar individuals. We then provide provable bounds on the fairness of the resulting NN. We run experiments on commonly used fairness datasets that are publicly available and we show that global individual fairness can be improved by 96 % without significant drop in test accuracy.
109,338
109,338
Cross Reconstruction Transformer for Self-Supervised Time Series Representation Learning
Unsupervised/self-supervised representation learning in time series is critical since labeled samples are usually scarce in real-world scenarios. Existing approaches mainly leverage the contrastive learning framework, which automatically learns to understand the similar and dissimilar data pairs. Nevertheless, they are restricted to the prior knowledge of constructing pairs, cumbersome sampling policy, and unstable performances when encountering sampling bias. Also, few works have focused on effectively modeling across temporal-spectral relations to extend the capacity of representations. In this paper, we aim at learning representations for time series from a new perspective and propose Cross Reconstruction Transformer (CRT) to solve the aforementioned problems in a unified way. CRT achieves time series representation learning through a cross-domain dropping-reconstruction task. Specifically, we transform time series into the frequency domain and randomly drop certain parts in both time and frequency domains. Dropping can maximally preserve the global context compared to cropping and masking. Then a transformer architecture is utilized to adequately capture the cross-domain correlations between temporal and spectral information through reconstructing data in both domains, which is called Dropped Temporal-Spectral Modeling. To discriminate the representations in global latent space, we propose Instance Discrimination Constraint to reduce the mutual information between different time series and sharpen the decision boundaries. Additionally, we propose a specified curriculum learning strategy to optimize the CRT, which progressively increases the dropping ratio in the training process.
109,339
109,339
BayesPCN: A Continually Learnable Predictive Coding Associative Memory
Associative memory plays an important role in human intelligence and its mechanisms have been linked to attention in machine learning. While the machine learning community's interest in associative memories has recently been rekindled, most work has focused on memory recall ($read$) over memory learning ($write$). In this paper, we present BayesPCN, a hierarchical associative memory capable of performing continual one-shot memory writes without meta-learning. Moreover, BayesPCN is able to gradually forget past observations ($forget$) to free its memory. Experiments show that BayesPCN can recall corrupted i.i.d. high-dimensional data observed hundreds of "timesteps" ago without a significant drop in recall ability compared to the state-of-the-art offline-learned associative memory models.
109,340
109,340
Towards Explanation for Unsupervised Graph-Level Representation Learning
Due to the superior performance of Graph Neural Networks (GNNs) in various domains, there is an increasing interest in the GNN explanation problem "\emph{which fraction of the input graph is the most crucial to decide the model's decision?}" Existing explanation methods focus on the supervised settings, \eg, node classification and graph classification, while the explanation for unsupervised graph-level representation learning is still unexplored. The opaqueness of the graph representations may lead to unexpected risks when deployed for high-stake decision-making scenarios. In this paper, we advance the Information Bottleneck principle (IB) to tackle the proposed explanation problem for unsupervised graph representations, which leads to a novel principle, \textit{Unsupervised Subgraph Information Bottleneck} (USIB). We also theoretically analyze the connection between graph representations and explanatory subgraphs on the label space, which reveals that the expressiveness and robustness of representations benefit the fidelity of explanatory subgraphs. Experimental results on both synthetic and real-world datasets demonstrate the superiority of our developed explainer and the validity of our theoretical analysis.
109,341
109,341
Conformal Prediction with Temporal Quantile Adjustments
We develop Temporal Quantile Adjustment (TQA), a general method to construct efficient and valid prediction intervals (PIs) for regression on cross-sectional time series data. Such data is common in many domains, including econometrics and healthcare. A canonical example in healthcare is predicting patient outcomes using physiological time-series data, where a population of patients composes a cross-section. Reliable PI estimators in this setting must address two distinct notions of coverage: cross-sectional coverage across a cross-sectional slice, and longitudinal coverage along the temporal dimension for each time series. Recent works have explored adapting Conformal Prediction (CP) to obtain PIs in the time series context. However, none handles both notions of coverage simultaneously. CP methods typically query a pre-specified quantile from the distribution of nonconformity scores on a calibration set. TQA adjusts the quantile to query in CP at each time $t$, accounting for both cross-sectional and longitudinal coverage in a theoretically-grounded manner. The post-hoc nature of TQA facilitates its use as a general wrapper around any time series regression model. We validate TQA's performance through extensive experimentation: TQA generally obtains efficient PIs and improves longitudinal coverage while preserving cross-sectional coverage.
109,342
109,342
Explainable Supervised Domain Adaptation
Domain adaptation techniques have contributed to the success of deep learning. Leveraging knowledge from an auxiliary source domain for learning in labeled data-scarce target domain is fundamental to domain adaptation. While these techniques result in increasing accuracy, the adaptation process, particularly the knowledge leveraged from the source domain, remains unclear. This paper proposes an explainable by design supervised domain adaptation framework - XSDA-Net. We integrate a case-based reasoning mechanism into the XSDA-Net to explain the prediction of a test instance in terms of similar-looking regions in the source and target train images. We empirically demonstrate the utility of the proposed framework by curating the domain adaptation settings on datasets popularly known to exhibit part-based explainability.
109,343
109,343
Discrete-Convex-Analysis-Based Framework for Warm-Starting Algorithms with Predictions
Augmenting algorithms with learned predictions is a promising approach for going beyond worst-case bounds. Dinitz, Im, Lavastida, Moseley, and Vassilvitskii~(2021) have demonstrated that a warm start with learned dual solutions can improve the time complexity of the Hungarian method for weighted perfect bipartite matching. We extend and improve their framework in a principled manner via \textit{discrete convex analysis} (DCA), a discrete analog of convex analysis. We show the usefulness of our DCA-based framework by applying it to weighted perfect bipartite matching, weighted matroid intersection, and discrete energy minimization for computer vision. Our DCA-based framework yields time complexity bounds that depend on the $\ell_\infty$-distance from a predicted solution to an optimal solution, which has two advantages relative to the previous $\ell_1$-distance-dependent bounds: time complexity bounds are smaller, and learning of predictions is more sample efficient. We also discuss whether to learn primal or dual solutions from the DCA perspective.
109,344
109,344
Sample Complexity of Learning Heuristic Functions for Greedy-Best-First and A* Search
Greedy best-first search (GBFS) and A* search (A*) are popular algorithms for path-finding on large graphs. Both use so-called heuristic functions, which estimate how close a vertex is to the goal. While heuristic functions have been handcrafted using domain knowledge, recent studies demonstrate that learning heuristic functions from data is effective in many applications. Motivated by this emerging approach, we study the sample complexity of learning heuristic functions for GBFS and A*. We build on a recent framework called \textit{data-driven algorithm design} and evaluate the \textit{pseudo-dimension} of a class of utility functions that measure the performance of parameterized algorithms. Assuming that a vertex set of size $n$ is fixed, we present $\mathrm{O}(n\lg n)$ and $\mathrm{O}(n^2\lg n)$ upper bounds on the pseudo-dimensions for GBFS and A*, respectively, parameterized by heuristic function values. The upper bound for A* can be improved to $\mathrm{O}(n^2\lg d)$ if every vertex has a degree of at most $d$ and to $\mathrm{O}(n \lg n)$ if edge weights are integers bounded by $\mathrm{poly}(n)$. We also give $\Omega(n)$ lower bounds for GBFS and A*, which imply that our bounds for GBFS and A* under the integer-weight condition are tight up to a $\lg n$ factor. Finally, we discuss a case where the performance of A* is measured by the suboptimality and show that we can sometimes obtain a better guarantee by combining a parameter-dependent worst-case bound with a sample complexity bound.
109,345
109,345
A Fully Controllable Agent in the Path Planning using Goal-Conditioned Reinforcement Learning
The aim of path planning is to reach the goal from starting point by searching for the route of an agent. In the path planning, the routes may vary depending on the number of variables such that it is important for the agent to reach various goals. Numerous studies, however, have dealt with a single goal that is predefined by the user. In the present study, I propose a novel reinforcement learning framework for a fully controllable agent in the path planning. To do this, I propose a bi-directional memory editing to obtain various bi-directional trajectories of the agent, in which the behavior of the agent and sub-goals are trained on the goal-conditioned RL. As for moving the agent in various directions, I utilize the sub-goals dedicated network, separated from a policy network. Lastly, I present the reward shaping to shorten the number of steps for the agent to reach the goal. In the experimental result, the agent was able to reach the various goals that have never been visited by the agent in the training. We confirmed that the agent could perform difficult missions such as a round trip and the agent used the shorter route with the reward shaping.
109,346
109,346
A General Framework for quantifying Aleatoric and Epistemic uncertainty in Graph Neural Networks
Graph Neural Networks (GNN) provide a powerful framework that elegantly integrates Graph theory with Machine learning for modeling and analysis of networked data. We consider the problem of quantifying the uncertainty in predictions of GNN stemming from modeling errors and measurement uncertainty. We consider aleatoric uncertainty in the form of probabilistic links and noise in feature vector of nodes, while epistemic uncertainty is incorporated via a probability distribution over the model parameters. We propose a unified approach to treat both sources of uncertainty in a Bayesian framework, where Assumed Density Filtering is used to quantify aleatoric uncertainty and Monte Carlo dropout captures uncertainty in model parameters. Finally, the two sources of uncertainty are aggregated to estimate the total uncertainty in predictions of a GNN. Results in the real-world datasets demonstrate that the Bayesian model performs at par with a frequentist model and provides additional information about predictions uncertainty that are sensitive to uncertainties in the data and model.
109,347
109,347
On Tackling Explanation Redundancy in Decision Trees
Decision trees (DTs) epitomize the ideal of interpretability of machine learning (ML) models. The interpretability of decision trees motivates explainability approaches by so-called intrinsic interpretability, and it is at the core of recent proposals for applying interpretable ML models in high-risk applications. The belief in DT interpretability is justified by the fact that explanations for DT predictions are generally expected to be succinct. Indeed, in the case of DTs, explanations correspond to DT paths. Since decision trees are ideally shallow, and so paths contain far fewer features than the total number of features, explanations in DTs are expected to be succinct, and hence interpretable. This paper offers both theoretical and experimental arguments demonstrating that, as long as interpretability of decision trees equates with succinctness of explanations, then decision trees ought not be deemed interpretable. The paper introduces logically rigorous path explanations and path explanation redundancy, and proves that there exist functions for which decision trees must exhibit paths with arbitrarily large explanation redundancy. The paper also proves that only a very restricted class of functions can be represented with DTs that exhibit no explanation redundancy. In addition, the paper includes experimental results substantiating that path explanation redundancy is observed ubiquitously in decision trees, including those obtained using different tree learning algorithms, but also in a wide range of publicly available decision trees. The paper also proposes polynomial-time algorithms for eliminating path explanation redundancy, which in practice require negligible time to compute. Thus, these algorithms serve to indirectly attain irreducible, and so succinct, explanations for decision trees.
109,348
109,348
A New Feature Selection Method for LogNNet and its Application for Diagnosis and Prognosis of COVID-19 Disease Using Routine Blood Values
Since February-2020, the world has embarked on an intense struggle with the COVID-19 disease, and health systems have come under a tragic pressure as the disease turned into a pandemic. The aim of this study is to determine the most effective routine-blood-values (RBV) in the diagnosis/prognosis of COVID-19 using new feature selection method for LogNNet reservoir neural network. First dataset in this study consists of a total of 5296-patients with a same number of negative and positive covid test. Second dataset consists of a total of 3899-patients with a diagnosis of COVID-19, who were treated in hospital with severe-infected (203) and mildly-infected (3696). The most important RBVs that affect the diagnosis of the disease from the first dataset were mean-corpuscular-hemoglobin-concentration (MCHC), mean-corpuscular-hemoglobin (MCH) and activated-partial-prothrombin-time (aPTT). The most effective features in the prognosis of the disease were erythrocyte-sedimentation-rate (ESR), neutrophil-count (NEU), C-reactive-protein (CRP). LogNNet-model achieved an accuracy rate of A46 = 99.5% in the diagnosis of the disease with 46 features and A3 = 99.17% with only MCHC, MCH, and aPTT features. Model reached an accuracy rate of A48 = 94.4% in determining the prognosis of the disease with 48 features and A3 = 82.7% with only ESR, NEU, and CRP features. LogNNet model demonstrated a very high disease diagnosis/prognosis of COVID-19 performance without knowing about the symptoms or history of the patients. The model is suitable for devices with low resources (3-14 kB of RAM used on the Arduino microcontroller), and is promising to create mobile health monitoring systems in the Internet of Things. Our method will reduce the negative pressures on the health sector and help doctors understand pathogenesis of COVID-19 through key futures and contribute positively to the treatment processes.
109,349
109,349
FairNorm: Fair and Fast Graph Neural Network Training
Graph neural networks (GNNs) have been demonstrated to achieve state-of-the-art for a number of graph-based learning tasks, which leads to a rise in their employment in various domains. However, it has been shown that GNNs may inherit and even amplify bias within training data, which leads to unfair results towards certain sensitive groups. Meanwhile, training of GNNs introduces additional challenges, such as slow convergence and possible instability. Faced with these limitations, this work proposes FairNorm, a unified normalization framework that reduces the bias in GNN-based learning while also providing provably faster convergence. Specifically, FairNorm employs fairness-aware normalization operators over different sensitive groups with learnable parameters to reduce the bias in GNNs. The design of FairNorm is built upon analyses that illuminate the sources of bias in graph-based learning. Experiments on node classification over real-world networks demonstrate the efficiency of the proposed scheme in improving fairness in terms of statistical parity and equal opportunity compared to fairness-aware baselines. In addition, it is empirically shown that the proposed framework leads to faster convergence compared to the naive baseline where no normalization is employed.
109,350
109,350
HeadText: Exploring Hands-free Text Entry using Head Gestures by Motion Sensing on a Smart Earpiece
We present HeadText, a hands-free technique on a smart earpiece for text entry by motion sensing. Users input text utilizing only 7 head gestures for key selection, word selection, word commitment and word cancelling tasks. Head gesture recognition is supported by motion sensing on a smart earpiece to capture head moving signals and machine learning algorithms (K-Nearest-Neighbor (KNN) with a Dynamic Time Warping (DTW) distance measurement). A 10-participant user study proved that HeadText could recognize 7 head gestures at an accuracy of 94.29%. After that, the second user study presented that HeadText could achieve a maximum accuracy of 10.65 WPM and an average accuracy of 9.84 WPM for text entry. Finally, we demonstrate potential applications of HeadText in hands-free scenarios for (a). text entry of people with motor impairments, (b). private text entry, and (c). socially acceptable text entry.
109,351
109,351
SafeNet: Mitigating Data Poisoning Attacks on Private Machine Learning
Secure multiparty computation (MPC) has been proposed to allow multiple mutually distrustful data owners to jointly train machine learning (ML) models on their combined data. However, the datasets used for training ML models might be under the control of an adversary mounting a data poisoning attack, and MPC prevents inspecting training sets to detect poisoning. We show that multiple MPC frameworks for private ML training are susceptible to backdoor and targeted poisoning attacks. To mitigate this, we propose SafeNet, a framework for building ensemble models in MPC with formal guarantees of robustness to data poisoning attacks. We extend the security definition of private ML training to account for poisoning and prove that our SafeNet design satisfies the definition. We demonstrate SafeNet's efficiency, accuracy, and resilience to poisoning on several machine learning datasets and models. For instance, SafeNet reduces backdoor attack success from 100% to 0% for a neural network model, while achieving 39x faster training and 36x less communication than the four-party MPC framework of Dalskov et al.
109,352
109,352
Set-based Meta-Interpolation for Few-Task Meta-Learning
Meta-learning approaches enable machine learning systems to adapt to new tasks given few examples by leveraging knowledge from related tasks. However, a large number of meta-training tasks are still required for generalization to unseen tasks during meta-testing, which introduces a critical bottleneck for real-world problems that come with only few tasks, due to various reasons including the difficulty and cost of constructing tasks. Recently, several task augmentation methods have been proposed to tackle this issue using domain-specific knowledge to design augmentation techniques to densify the meta-training task distribution. However, such reliance on domain-specific knowledge renders these methods inapplicable to other domains. While Manifold Mixup based task augmentation methods are domain-agnostic, we empirically find them ineffective on non-image domains. To tackle these limitations, we propose a novel domain-agnostic task augmentation method, Meta-Interpolation, which utilizes expressive neural set functions to densify the meta-training task distribution using bilevel optimization. We empirically validate the efficacy of Meta-Interpolation on eight datasets spanning across various domains such as image classification, molecule property prediction, text classification and speech recognition. Experimentally, we show that Meta-Interpolation consistently outperforms all the relevant baselines. Theoretically, we prove that task interpolation with the set function regularizes the meta-learner to improve generalization.
109,353
109,353
Planning with Diffusion for Flexible Behavior Synthesis
Model-based reinforcement learning methods often use learning only for the purpose of estimating an approximate dynamics model, offloading the rest of the decision-making work to classical trajectory optimizers. While conceptually simple, this combination has a number of empirical shortcomings, suggesting that learned models may not be well-suited to standard trajectory optimization. In this paper, we consider what it would look like to fold as much of the trajectory optimization pipeline as possible into the modeling problem, such that sampling from the model and planning with it become nearly identical. The core of our technical approach lies in a diffusion probabilistic model that plans by iteratively denoising trajectories. We show how classifier-guided sampling and image inpainting can be reinterpreted as coherent planning strategies, explore the unusual and useful properties of diffusion-based planning methods, and demonstrate the effectiveness of our framework in control settings that emphasize long-horizon decision-making and test-time flexibility.
109,354
109,354
RiskLoc: Localization of Multi-dimensional Root Causes by Weighted Risk
Failures and anomalies in large-scale software systems are unavoidable incidents. When an issue is detected, operators need to quickly and correctly identify its location to facilitate a swift repair. In this work, we consider the problem of identifying the root cause set that best explains an anomaly in multi-dimensional time series with categorical attributes. The huge search space is the main challenge, even for a small number of attributes and small value sets, the number of theoretical combinations is too large to brute force. Previous approaches have thus focused on reducing the search space, but they all suffer from various issues, requiring extensive manual parameter tuning, being too slow and thus impractical, or being incapable of finding more complex root causes. We propose RiskLoc to solve the problem of multidimensional root cause localization. RiskLoc applies a 2-way partitioning scheme and assigns element weights that linearly increase with the distance from the partitioning point. A risk score is assigned to each element that integrates two factors, 1) its weighted proportion within the abnormal partition, and 2) the relative change in the deviation score adjusted for the ripple effect property. Extensive experiments on multiple datasets verify the effectiveness and efficiency of RiskLoc, and for a comprehensive evaluation, we introduce three synthetically generated datasets that complement existing datasets. We demonstrate that RiskLoc consistently outperforms state-of-the-art baselines, especially in more challenging root cause scenarios, with gains in F1-score up to 57% over the second-best approach with comparable running times.
109,355
109,355
Self-Supervised Depth Estimation with Isometric-Self-Sample-Based Learning
Managing the dynamic regions in the photometric loss formulation has been a main issue for handling the self-supervised depth estimation problem. Most previous methods have alleviated this issue by removing the dynamic regions in the photometric loss formulation based on the masks estimated from another module, making it difficult to fully utilize the training images. In this paper, to handle this problem, we propose an isometric self-sample-based learning (ISSL) method to fully utilize the training images in a simple yet effective way. The proposed method provides additional supervision during training using self-generated images that comply with pure static scene assumption. Specifically, the isometric self-sample generator synthesizes self-samples for each training image by applying random rigid transformations on the estimated depth. Thus both the generated self-samples and the corresponding training image always follow the static scene assumption. We show that plugging our ISSL module into several existing models consistently improves the performance by a large margin. In addition, it also boosts the depth accuracy over different types of scene, i.e., outdoor scenes (KITTI and Make3D) and indoor scene (NYUv2), validating its high effectiveness.
109,356
109,356
The price of ignorance: how much does it cost to forget noise structure in low-rank matrix estimation?
We consider the problem of estimating a rank-1 signal corrupted by structured rotationally invariant noise, and address the following question: how well do inference algorithms perform when the noise statistics is unknown and hence Gaussian noise is assumed? While the matched Bayes-optimal setting with unstructured noise is well understood, the analysis of this mismatched problem is only at its premises. In this paper, we make a step towards understanding the effect of the strong source of mismatch which is the noise statistics. Our main technical contribution is the rigorous analysis of a Bayes estimator and of an approximate message passing (AMP) algorithm, both of which incorrectly assume a Gaussian setup. The first result exploits the theory of spherical integrals and of low-rank matrix perturbations; the idea behind the second one is to design and analyze an artificial AMP which, by taking advantage of the flexibility in the denoisers, is able to "correct" the mismatch. Armed with these sharp asymptotic characterizations, we unveil a rich and often unexpected phenomenology. For example, despite AMP is in principle designed to efficiently compute the Bayes estimator, the former is outperformed by the latter in terms of mean-square error. We show that this performance gap is due to an incorrect estimation of the signal norm. In fact, when the SNR is large enough, the overlaps of the AMP and the Bayes estimator coincide, and they even match those of optimal estimators taking into account the structure of the noise.
109,357
109,357
Constructive Interpretability with CoLabel: Corroborative Integration, Complementary Features, and Collaborative Learning
Machine learning models with explainable predictions are increasingly sought after, especially for real-world, mission-critical applications that require bias detection and risk mitigation. Inherent interpretability, where a model is designed from the ground-up for interpretability, provides intuitive insights and transparent explanations on model prediction and performance. In this paper, we present CoLabel, an approach to build interpretable models with explanations rooted in the ground truth. We demonstrate CoLabel in a vehicle feature extraction application in the context of vehicle make-model recognition (VMMR). CoLabel performs VMMR with a composite of interpretable features such as vehicle color, type, and make, all based on interpretable annotations of the ground truth labels. First, CoLabel performs corroborative integration to join multiple datasets that each have a subset of desired annotations of color, type, and make. Then, CoLabel uses decomposable branches to extract complementary features corresponding to desired annotations. Finally, CoLabel fuses them together for final predictions. During feature fusion, CoLabel harmonizes complementary branches so that VMMR features are compatible with each other and can be projected to the same semantic space for classification. With inherent interpretability, CoLabel achieves superior performance to the state-of-the-art black-box models, with accuracy of 0.98, 0.95, and 0.94 on CompCars, Cars196, and BoxCars116K, respectively. CoLabel provides intuitive explanations due to constructive interpretability, and subsequently achieves high accuracy and usability in mission-critical situations.
109,358
109,358
A Survey of Trustworthy Graph Learning: Reliability, Explainability, and Privacy Protection
Deep graph learning has achieved remarkable progresses in both business and scientific areas ranging from finance and e-commerce, to drug and advanced material discovery. Despite these progresses, how to ensure various deep graph learning algorithms behave in a socially responsible manner and meet regulatory compliance requirements becomes an emerging problem, especially in risk-sensitive domains. Trustworthy graph learning (TwGL) aims to solve the above problems from a technical viewpoint. In contrast to conventional graph learning research which mainly cares about model performance, TwGL considers various reliability and safety aspects of the graph learning framework including but not limited to robustness, explainability, and privacy. In this survey, we provide a comprehensive review of recent leading approaches in the TwGL field from three dimensions, namely, reliability, explainability, and privacy protection. We give a general categorization for existing work and review typical work for each category. To give further insights for TwGL research, we provide a unified view to inspect previous works and build the connection between them. We also point out some important open problems remaining to be solved in the future developments of TwGL.
109,359
109,359
Self-Paced Multi-Agent Reinforcement Learning
Curriculum reinforcement learning (CRL) aims to speed up learning of a task by changing gradually the difficulty of the task from easy to hard through control of factors such as initial state or environment dynamics. While automating CRL is well studied in the single-agent setting, in multi-agent reinforcement learning (MARL) an open question is whether control of the number of agents with other factors in a principled manner is beneficial, prior approaches typically relying on hand-crafted heuristics. In addition, how the tasks evolve as the number of agents changes remains understudied, which is critical for scaling to more challenging tasks. We introduce self-paced MARL (SPMARL) that enables optimizing the number of agents with other environment factors in a principled way, and, show that usual assumptions such as that fewer agents make the task always easier are not generally valid. The curriculum induced by SPMARL reveals the evolution of tasks w.r.t. number of agents and experiments show that SPMARL improves the performance when the number of agents sufficiently influences task difficulty.
109,360
109,360
Translating Hanja historical documents to understandable Korean and English
The Annals of Joseon Dynasty (AJD) contain the daily records of the Kings of Joseon, the 500-year kingdom preceding the modern nation of Korea. The Annals were originally written in an archaic Korean writing system, `Hanja', and translated into Korean from 1968 to 1993. However, this translation was literal and contained many archaic Korean words; thus, a new expert translation effort began in 2012, completing the records of only one king in a decade. Also, expert translators are working on an English translation, of which only one king's records are available because of the high cost and slow progress. Thus, we propose H2KE, the neural machine translation model that translates Hanja historical documents to understandable Korean and English. Based on the multilingual neural machine translation approach, it translates the historical document written in Hanja, using both the full dataset of outdated Korean translation and a small dataset of recently translated Korean and English. We compare our method with two baselines: one is a recent model that simultaneously learns to restore and translate Hanja historical document and the other is the transformer that trained on newly translated corpora only. The results show that our method significantly outperforms the baselines in terms of BLEU score in both modern Korean and English translations. We also conduct a human evaluation that shows that our translation is preferred over the original expert translation.
109,361
109,361
Neural Additive Models for Nowcasting
Deep neural networks (DNNs) are one of the most highlighted methods in machine learning. However, as DNNs are black-box models, they lack explanatory power for their predictions. Recently, neural additive models (NAMs) have been proposed to provide this power while maintaining high prediction performance. In this paper, we propose a novel NAM approach for multivariate nowcasting (NC) problems, which comprise an important focus area of machine learning. For the multivariate time-series data used in NC problems, explanations should be considered for every input value to the variables at distinguishable time steps. By employing generalized additive models, the proposed NAM-NC successfully explains each input value's importance for multiple variables and time steps. Experimental results involving a toy example and two real-world datasets show that the NAM-NC predicts multivariate time-series data as accurately as state-of-the-art neural networks, while also providing the explanatory importance of each input value. We also examine parameter-sharing networks using NAM-NC to decrease their complexity, and NAM-MC's hard-tied feature net extracted explanations with good performance.
109,362
109,362
Predicting electrode array impedance after one month from cochlear implantation surgery
Sensorineural hearing loss can be treated using Cochlear implantation. After this surgery using the electrode array impedance measurements, we can check the stability of the impedance value and the dynamic range. Deterioration of speech recognition scores could happen because of increased impedance values. Medicines used to do these measures many times during a year after the surgery. Predicting the electrode impedance could help in taking decisions to help the patient get better hearing. In this research we used a dataset of 80 patients of children who did cochlear implantation using MED-EL FLEX28 electrode array of 12 channels. We predicted the electrode impedance on each channel after 1 month from the surgery date. We used different machine learning algorithms like neural networks and decision trees. Our results indicates that the electrode impedance can be predicted, and the best algorithm is different based on the electrode channel. Also, the accuracy level varies between 66% and 100% based on the electrode channel when accepting an error range between 0 and 3 KO. Further research is required to predict the electrode impedance after three months, six months and one year.
109,363
109,363
Towards Consistency in Adversarial Classification
In this paper, we study the problem of consistency in the context of adversarial examples. Specifically, we tackle the following question: can surrogate losses still be used as a proxy for minimizing the $0/1$ loss in the presence of an adversary that alters the inputs at test-time? Different from the standard classification task, this question cannot be reduced to a point-wise minimization problem, and calibration needs not to be sufficient to ensure consistency. In this paper, we expose some pathological behaviors specific to the adversarial problem, and show that no convex surrogate loss can be consistent or calibrated in this context. It is therefore necessary to design another class of surrogate functions that can be used to solve the adversarial consistency issue. As a first step towards designing such a class, we identify sufficient and necessary conditions for a surrogate loss to be calibrated in both the adversarial and standard settings. Finally, we give some directions for building a class of losses that could be consistent in the adversarial framework.
109,364
109,364
Trend analysis and forecasting air pollution in Rwanda
Air pollution is a major public health problem worldwide although the lack of data is a global issue for most low and middle income countries. Ambient air pollution in the form of fine particulate matter (PM2.5) exceeds the World Health Organization guidelines in Rwanda with a daily average of around 42.6 microgram per meter cube. Monitoring and mitigation strategies require an expensive investment in equipment to collect pollution data. Low-cost sensor technology and machine learning methods have appeared as an alternative solution to get reliable information for decision making. This paper analyzes the trend of air pollution in Rwanda and proposes forecasting models suitable to data collected by a network of low-cost sensors deployed in Rwanda.
109,365
109,365
Survey on Fair Reinforcement Learning: Theory and Practice
Fairness-aware learning aims at satisfying various fairness constraints in addition to the usual performance criteria via data-driven machine learning techniques. Most of the research in fairness-aware learning employs the setting of fair-supervised learning. However, many dynamic real-world applications can be better modeled using sequential decision-making problems and fair reinforcement learning provides a more suitable alternative for addressing these problems. In this article, we provide an extensive overview of fairness approaches that have been implemented via a reinforcement learning (RL) framework. We discuss various practical applications in which RL methods have been applied to achieve a fair solution with high accuracy. We further include various facets of the theory of fair reinforcement learning, organizing them into single-agent RL, multi-agent RL, long-term fairness via RL, and offline learning. Moreover, we highlight a few major issues to explore in order to advance the field of fair-RL, namely - i) correcting societal biases, ii) feasibility of group fairness or individual fairness, and iii) explainability in RL. Our work is beneficial for both researchers and practitioners as we discuss articles providing mathematical guarantees as well as articles with empirical studies on real-world problems.
109,366
109,366
Exploring Extreme Parameter Compression for Pre-trained Language Models
Recent work explored the potential of large-scale Transformer-based pre-trained models, especially Pre-trained Language Models (PLMs) in natural language processing. This raises many concerns from various perspectives, e.g., financial costs and carbon emissions. Compressing PLMs like BERT with negligible performance loss for faster inference and cheaper deployment has attracted much attention. In this work, we aim to explore larger compression ratios for PLMs, among which tensor decomposition is a potential but under-investigated one. Two decomposition and reconstruction protocols are further proposed to improve the effectiveness and efficiency during compression. Our compressed BERT with ${1}/{7}$ parameters in Transformer layers performs on-par with, sometimes slightly better than the original BERT in GLUE benchmark. A tiny version achieves $96.7\%$ performance of BERT-base with $ {1}/{48} $ encoder parameters (i.e., less than 2M parameters excluding the embedding layer) and $2.7 \times$ faster on inference. To show that the proposed method is orthogonal to existing compression methods like knowledge distillation, we also explore the benefit of the proposed method on a distilled BERT.
109,367
109,367
Posterior Refinement Improves Sample Efficiency in Bayesian Neural Networks
Monte Carlo (MC) integration is the de facto method for approximating the predictive distribution of Bayesian neural networks (BNNs). But, even with many MC samples, Gaussian-based BNNs could still yield bad predictive performance due to the posterior approximation's error. Meanwhile, alternatives to MC integration tend to be more expensive or biased. In this work, we experimentally show that the key to good MC-approximated predictive distributions is the quality of the approximate posterior itself. However, previous methods for obtaining accurate posterior approximations are expensive and non-trivial to implement. We, therefore, propose to refine Gaussian approximate posteriors with normalizing flows. When applied to last-layer BNNs, it yields a simple \emph{post hoc} method for improving pre-existing parametric approximations. We show that the resulting posterior approximation is competitive with even the gold-standard full-batch Hamiltonian Monte Carlo.
109,368
109,368
Towards biologically plausible Dreaming and Planning
Humans and animals can learn new skills after practicing for a few hours, while current reinforcement learning algorithms require a large amount of data to achieve good performances. Recent model-based approaches show promising results by reducing the number of necessary interactions with the environment to learn a desirable policy. However, these methods require biological implausible ingredients, such as the detailed storage of older experiences, and long periods of offline learning. The optimal way to learn and exploit word-models is still an open question. Taking inspiration from biology, we suggest that dreaming might be an efficient expedient to use an inner model. We propose a two-module (agent and model) neural network in which "dreaming" (living new experiences in a model-based simulated environment) significantly boosts learning. We also explore "planning", an online alternative to dreaming, that shows comparable performances. Importantly, our model does not require the detailed storage of experiences, and learns online the world-model. This is a key ingredient for biological plausibility and implementability (e.g., in neuromorphic hardware). Our network is composed of spiking neurons, further increasing the energetic efficiency and the plausibility of the model. To our knowledge, there are no previous works proposing biologically plausible model-based reinforcement learning in recurrent spiking networks. Our work is a step toward building efficient neuromorphic systems for autonomous robots, capable of learning new skills in real-world environments. Even when the environment is no longer accessible, the robot optimizes learning by "reasoning" in its own "mind". These approaches are of great relevance when the acquisition from the environment is slow, expensive (robotics) or unsafe (autonomous driving).
109,369
109,369
ExMo: Explainable AI Model using Inverse Frequency Decision Rules
In this paper, we present a novel method to compute decision rules to build a more accurate interpretable machine learning model, denoted as ExMo. The ExMo interpretable machine learning model consists of a list of IF...THEN... statements with a decision rule in the condition. This way, ExMo naturally provides an explanation for a prediction using the decision rule that was triggered. ExMo uses a new approach to extract decision rules from the training data using term frequency-inverse document frequency (TF-IDF) features. With TF-IDF, decision rules with feature values that are more relevant to each class are extracted. Hence, the decision rules obtained by ExMo can distinguish the positive and negative classes better than the decision rules used in the existing Bayesian Rule List (BRL) algorithm, obtained using the frequent pattern mining approach. The paper also shows that ExMo learns a qualitatively better model than BRL. Furthermore, ExMo demonstrates that the textual explanation can be provided in a human-friendly way so that the explanation can be easily understood by non-expert users. We validate ExMo on several datasets with different sizes to evaluate its efficacy. Experimental validation on a real-world fraud detection application shows that ExMo is 20% more accurate than BRL and that it achieves accuracy similar to those of deep learning models.
109,370
109,370
The Sufficiency of Off-policyness: PPO is insufficient according to an Off-policy Measure
One of the major difficulties of reinforcement learning is learning from {\em off-policy} samples, which are collected by a different policy (behavior policy) from what the algorithm evaluates (the target policy). Off-policy learning needs to correct the distribution of the samples from the behavior policy towards that of the target policy. Unfortunately, important sampling has an inherent high variance issue which leads to poor gradient estimation in policy gradient methods. We focus on an off-policy Actor-Critic architecture, and propose a novel method, called Preconditioned Proximal Policy Optimization (P3O), which can control the high variance of importance sampling by applying a preconditioner to the Conservative Policy Iteration (CPI) objective. {\em This preconditioning uses the sigmoid function in a special way that when there is no policy change, the gradient is maximal and hence policy gradient will drive a big parameter update for efficient exploration of the parameter space}. This is a novel exploration method that has not been studied before given that existing exploration methods are based on the novelty of states and actions. We compare with several best-performing algorithms on both discrete and continuous tasks and the results showed that {\em PPO is insufficient in off-policyness}, and our P3O is {\em more off-policy} than PPO according to the "off-policyness" measured by the DEON metric, and P3O explores in a larger policy space than PPO. Results also show that our P3O maximizes the CPI objective better than PPO during the training process.
109,371
109,371
MaskGAE: Masked Graph Modeling Meets Graph Autoencoders
We present masked graph autoencoder (MaskGAE), a self-supervised learning framework for graph-structured data. Different from previous graph autoencoders (GAEs), MaskGAE adopts masked graph modeling (MGM) as a principled pretext task: masking a portion of edges and attempting to reconstruct the missing part with partially visible, unmasked graph structure. To understand whether MGM can help GAEs learn better representations, we provide both theoretical and empirical evidence to justify the benefits of this pretext task. Theoretically, we establish the connections between GAEs and contrastive learning, showing that MGM significantly improves the self-supervised learning scheme of GAEs. Empirically, we conduct extensive experiments on a number of benchmark datasets, demonstrating the superiority of MaskGAE over several state-of-the-arts on both link prediction and node classification tasks. Our code is publicly available at \url{https://github.com/EdisonLeeeee/MaskGAE}.
109,372
109,372
Towards Extremely Fast Bilevel Optimization with Self-governed Convergence Guarantees
Gradient methods have become mainstream techniques for Bi-Level Optimization (BLO) in learning and vision fields. The validity of existing works heavily relies on solving a series of approximation subproblems with extraordinarily high accuracy. Unfortunately, to achieve the approximation accuracy requires executing a large quantity of time-consuming iterations and computational burden is naturally caused. This paper is thus devoted to address this critical computational issue. In particular, we propose a single-level formulation to uniformly understand existing explicit and implicit Gradient-based BLOs (GBLOs). This together with our designed counter-example can clearly illustrate the fundamental numerical and theoretical issues of GBLOs and their naive accelerations. By introducing the dual multipliers as a new variable, we then establish Bilevel Alternating Gradient with Dual Correction (BAGDC), a general framework, which significantly accelerates different categories of existing methods by taking specific settings. A striking feature of our convergence result is that, compared to those original unaccelerated GBLO versions, the fast BAGDC admits a unified non-asymptotic convergence theory towards stationarity. A variety of numerical experiments have also been conducted to demonstrate the superiority of the proposed algorithmic framework.
109,373
109,373
A Case of Exponential Convergence Rates for SVM
Classification is often the first problem described in introductory machine learning classes. Generalization guarantees of classification have historically been offered by Vapnik-Chervonenkis theory. Yet those guarantees are based on intractable algorithms, which has led to the theory of surrogate methods in classification. Guarantees offered by surrogate methods are based on calibration inequalities, which have been shown to be highly sub-optimal under some margin conditions, failing short to capture exponential convergence phenomena. Those "super" fast rates are becoming to be well understood for smooth surrogates, but the picture remains blurry for non-smooth losses such as the hinge loss, associated with the renowned support vector machines. In this paper, we present a simple mechanism to obtain fast convergence rates and we investigate its usage for SVM. In particular, we show that SVM can exhibit exponential convergence rates even without assuming the hard Tsybakov margin condition.
109,374
109,374
Leveraging Relational Information for Learning Weakly Disentangled Representations
Disentanglement is a difficult property to enforce in neural representations. This might be due, in part, to a formalization of the disentanglement problem that focuses too heavily on separating relevant factors of variation of the data in single isolated dimensions of the neural representation. We argue that such a definition might be too restrictive and not necessarily beneficial in terms of downstream tasks. In this work, we present an alternative view over learning (weakly) disentangled representations, which leverages concepts from relational learning. We identify the regions of the latent space that correspond to specific instances of generative factors, and we learn the relationships among these regions in order to perform controlled changes to the latent codes. We also introduce a compound generative model that implements such a weak disentanglement approach. Our experiments shows that the learned representations can separate the relevant factors of variation in the data, while preserving the information needed for effectively generating high quality data samples.
109,375
109,375
The Unreasonable Effectiveness of Deep Evidential Regression
There is a significant need for principled uncertainty reasoning in machine learning systems as they are increasingly deployed in safety-critical domains. A new approach with uncertainty-aware regression-based neural networks (NNs), based on learning evidential distributions for aleatoric and epistemic uncertainties, shows promise over traditional deterministic methods and typical Bayesian NNs, notably with the capabilities to disentangle aleatoric and epistemic uncertainties. Despite some empirical success of Deep Evidential Regression (DER), there are important gaps in the mathematical foundation that raise the question of why the proposed technique seemingly works. We detail the theoretical shortcomings and analyze the performance on synthetic and real-world data sets, showing that Deep Evidential Regression is a heuristic rather than an exact uncertainty quantification. We go on to propose corrections and redefinitions of how aleatoric and epistemic uncertainties should be extracted from NNs.
109,376
109,376
Understanding and Mitigating the Uncertainty in Zero-Shot Translation
Zero-shot translation is a promising direction for building a comprehensive multilingual neural machine translation (MNMT) system. However, its quality is still not satisfactory due to off-target issues. In this paper, we aim to understand and alleviate the off-target issues from the perspective of uncertainty in zero-shot translation. By carefully examining the translation output and model confidence, we identify two uncertainties that are responsible for the off-target issues, namely, extrinsic data uncertainty and intrinsic model uncertainty. Based on the observations, we propose two light-weight and complementary approaches to denoise the training data for model training, and mask out the vocabulary of the off-target languages in inference. Extensive experiments on both balanced and unbalanced datasets show that our approaches significantly improve the performance of zero-shot translation over strong MNMT baselines. Qualitative analyses provide insights into where our approaches reduce off-target translations
109,377
109,377
On the Prediction Instability of Graph Neural Networks
Instability of trained models, i.e., the dependence of individual node predictions on random factors, can affect reproducibility, reliability, and trust in machine learning systems. In this paper, we systematically assess the prediction instability of node classification with state-of-the-art Graph Neural Networks (GNNs). With our experiments, we establish that multiple instantiations of popular GNN models trained on the same data with the same model hyperparameters result in almost identical aggregated performance but display substantial disagreement in the predictions for individual nodes. We find that up to one third of the incorrectly classified nodes differ across algorithm runs. We identify correlations between hyperparameters, node properties, and the size of the training set with the stability of predictions. In general, maximizing model performance implicitly also reduces model instability.
109,378
109,378
Unintended memorisation of unique features in neural networks
Neural networks pose a privacy risk due to their propensity to memorise and leak training data. We show that unique features occurring only once in training data are memorised by discriminative multi-layer perceptrons and convolutional neural networks trained on benchmark imaging datasets. We design our method for settings where sensitive training data is not available, for example medical imaging. Our setting knows the unique feature, but not the training data, model weights or the unique feature's label. We develop a score estimating a model's sensitivity to a unique feature by comparing the KL divergences of the model's output distributions given modified out-of-distribution images. We find that typical strategies to prevent overfitting do not prevent unique feature memorisation. And that images containing a unique feature are highly influential, regardless of the influence the images's other features. We also find a significant variation in memorisation with training seed. These results imply that neural networks pose a privacy risk to rarely occurring private information. This risk is more pronounced in healthcare applications since sensitive patient information can be memorised when it remains in training data due to an imperfect data sanitisation process.
109,379
109,379
On Calibration of Ensemble-Based Credal Predictors
In recent years, several classification methods that intend to quantify epistemic uncertainty have been proposed, either by producing predictions in the form of second-order distributions or sets of probability distributions. In this work, we focus on the latter, also called credal predictors, and address the question of how to evaluate them: What does it mean that a credal predictor represents epistemic uncertainty in a faithful manner? To answer this question, we refer to the notion of calibration of probabilistic predictors and extend it to credal predictors. Broadly speaking, we call a credal predictor calibrated if it returns sets that cover the true conditional probability distribution. To verify this property for the important case of ensemble-based credal predictors, we propose a novel nonparametric calibration test that generalizes an existing test for probabilistic predictors to the case of credal predictors. Making use of this test, we empirically show that credal predictors based on deep neural networks are often not well calibrated.
109,380
109,380
A Unified Experiment Design Approach for Cyclic and Acyclic Causal Models
We study experiment design for the unique identification of the causal graph of a system where the graph may contain cycles. The presence of cycles in the structure introduces major challenges for experiment design. Unlike the case of acyclic graphs, learning the skeleton of the causal graph from observational distribution may not be possible. Furthermore, intervening on a variable does not necessarily lead to orienting all the edges incident to it. In this paper, we propose an experiment design approach that can learn both cyclic and acyclic graphs and hence, unifies the task of experiment design for both types of graphs. We provide a lower bound on the number of experiments required to guarantee the unique identification of the causal graph in the worst case, showing that the proposed approach is order-optimal in terms of the number of experiments up to an additive logarithmic term. Moreover, we extend our result to the setting where the size of each experiment is bounded by a constant. For this case, we show that our approach is optimal in terms of the size of the largest experiment required for the unique identification of the causal graph in the worst case.
109,381
109,381
Semi-self-supervised Automated ICD Coding
Clinical Text Notes (CTNs) contain physicians' reasoning process, written in an unstructured free text format, as they examine and interview patients. In recent years, several studies have been published that provide evidence for the utility of machine learning for predicting doctors' diagnoses from CTNs, a task known as ICD coding. Data annotation is time consuming, particularly when a degree of specialization is needed, as is the case for medical data. This paper presents a method of augmenting a sparsely annotated dataset of Icelandic CTNs with a machine-learned imputation in a semi-self-supervised manner. We train a neural network on a small set of annotated CTNs and use it to extract clinical features from a set of un-annotated CTNs. These clinical features consist of answers to about a thousand potential questions that a physician might find the answers to during a consultation of a patient. The features are then used to train a classifier for the diagnosis of certain types of diseases. We report the results of an evaluation of this data augmentation method over three tiers of data availability to the physician. Our data augmentation method shows a significant positive effect which is diminished when clinical features from the examination of the patient and diagnostics are made available. We recommend our method for augmenting scarce datasets for systems that take decisions based on clinical features that do not include examinations or tests.
109,382
109,382
Kernel Normalized Convolutional Networks
Existing deep convolutional neural network (CNN) architectures frequently rely upon batch normalization (BatchNorm) to effectively train the model. BatchNorm significantly improves model performance, but performs poorly with smaller batch sizes. To address this limitation, we propose kernel normalization and kernel normalized convolutional layers, and incorporate them into kernel normalized convolutional networks (KNConvNets) as the main building blocks. We implement KNConvNets corresponding to the state-of-the-art CNNs such as ResNet and DenseNet while forgoing BatchNorm layers. Through extensive experiments, we illustrate that KNConvNets consistently outperform their batch, group, and layer normalized counterparts in terms of both accuracy and convergence rate while maintaining competitive computational efficiency.
109,383
109,383
Visual Concepts Tokenization
Obtaining the human-like perception ability of abstracting visual concepts from concrete pixels has always been a fundamental and important target in machine learning research fields such as disentangled representation learning and scene decomposition. Towards this goal, we propose an unsupervised transformer-based Visual Concepts Tokenization framework, dubbed VCT, to perceive an image into a set of disentangled visual concept tokens, with each concept token responding to one type of independent visual concept. Particularly, to obtain these concept tokens, we only use cross-attention to extract visual information from the image tokens layer by layer without self-attention between concept tokens, preventing information leakage across concept tokens. We further propose a Concept Disentangling Loss to facilitate that different concept tokens represent independent visual concepts. The cross-attention and disentangling loss play the role of induction and mutual exclusion for the concept tokens, respectively. Extensive experiments on several popular datasets verify the effectiveness of VCT on the tasks of disentangled representation learning and scene decomposition. VCT achieves the state of the art results by a large margin.
109,384
109,384
LeNSE: Learning To Navigate Subgraph Embeddings for Large-Scale Combinatorial Optimisation
Combinatorial Optimisation problems arise in several application domains and are often formulated in terms of graphs. Many of these problems are NP-hard, but exact solutions are not always needed. Several heuristics have been developed to provide near-optimal solutions; however, they do not typically scale well with the size of the graph. We propose a low-complexity approach for identifying a (possibly much smaller) subgraph of the original graph where the heuristics can be run in reasonable time and with a high likelihood of finding a global near-optimal solution. The core component of our approach is LeNSE, a reinforcement learning algorithm that learns how to navigate the space of possible subgraphs using an Euclidean subgraph embedding as its map. To solve CO problems, LeNSE is provided with a discriminative embedding trained using any existing heuristics using only on a small portion of the original graph. When tested on three problems (vertex cover, max-cut and influence maximisation) using real graphs with up to $10$ million edges, LeNSE identifies small subgraphs yielding solutions comparable to those found by running the heuristics on the entire graph, but at a fraction of the total run time.
109,385
109,385
FedNoiL: A Simple Two-Level Sampling Method for Federated Learning with Noisy Labels
Federated learning (FL) aims at training a global model on the server side while the training data are collected and located at the local devices. Hence, the labels in practice are usually annotated by clients of varying expertise or criteria and thus contain different amounts of noises. Local training on noisy labels can easily result in overfitting to noisy labels, which is devastating to the global model through aggregation. Although recent robust FL methods take malicious clients into account, they have not addressed local noisy labels on each device and the impact to the global model. In this paper, we develop a simple two-level sampling method "FedNoiL" that (1) selects clients for more robust global aggregation on the server; and (2) selects clean labels and correct pseudo-labels at the client end for more robust local training. The sampling probabilities are built upon clean label detection by the global model. Moreover, we investigate different schedules changing the local epochs between aggregations over the course of FL, which notably improves the communication and computation efficiency in noisy label setting. In experiments with homogeneous/heterogeneous data distributions and noise ratios, we observed that direct combinations of SOTA FL methods with SOTA noisy-label learning methods can easily fail but our method consistently achieves better and robust performance.
109,386
109,386
Evolutionary Multi-Armed Bandits with Genetic Thompson Sampling
As two popular schools of machine learning, online learning and evolutionary computations have become two important driving forces behind real-world decision making engines for applications in biomedicine, economics, and engineering fields. Although there are prior work that utilizes bandits to improve evolutionary algorithms' optimization process, it remains a field of blank on how evolutionary approach can help improve the sequential decision making tasks of online learning agents such as the multi-armed bandits. In this work, we propose the Genetic Thompson Sampling, a bandit algorithm that keeps a population of agents and update them with genetic principles such as elite selection, crossover and mutations. Empirical results in multi-armed bandit simulation environments and a practical epidemic control problem suggest that by incorporating the genetic algorithm into the bandit algorithm, our method significantly outperforms the baselines in nonstationary settings. Lastly, we introduce EvoBandit, a web-based interactive visualization to guide the readers through the entire learning process and perform lightweight evaluations on the fly. We hope to engage researchers into this growing field of research with this investigation.
109,387
109,387
Evolving SimGANs to Improve Abnormal Electrocardiogram Classification
Machine Learning models are used in a wide variety of domains. However, machine learning methods often require a large amount of data in order to be successful. This is especially troublesome in domains where collecting real-world data is difficult and/or expensive. Data simulators do exist for many of these domains, but they do not sufficiently reflect the real world data due to factors such as a lack of real-world noise. Recently generative adversarial networks (GANs) have been modified to refine simulated image data into data that better fits the real world distribution, using the SimGAN method. While evolutionary computing has been used for GAN evolution, there are currently no frameworks that can evolve a SimGAN. In this paper we (1) extend the SimGAN method to refine one-dimensional data, (2) modify Easy Cartesian Genetic Programming (ezCGP), an evolutionary computing framework, to create SimGANs that more accurately refine simulated data, and (3) create new feature-based quantitative metrics to evaluate refined data. We also use our framework to augment an electrocardiogram (ECG) dataset, a domain that suffers from the issues previously mentioned. In particular, while healthy ECGs can be simulated there are no current simulators of abnormal ECGs. We show that by using an evolved SimGAN to refine simulated healthy ECG data to mimic real-world abnormal ECGs, we can improve the accuracy of abnormal ECG classifiers.
109,388
109,388
DDDM: a Brain-Inspired Framework for Robust Classification
Despite their outstanding performance in a broad spectrum of real-world tasks, deep artificial neural networks are sensitive to input noises, particularly adversarial perturbations. On the contrary, human and animal brains are much less vulnerable. In contrast to the one-shot inference performed by most deep neural networks, the brain often solves decision-making with an evidence accumulation mechanism that may trade time for accuracy when facing noisy inputs. The mechanism is well described by the Drift-Diffusion Model (DDM). In the DDM, decision-making is modeled as a process in which noisy evidence is accumulated toward a threshold. Drawing inspiration from the DDM, we propose the Dropout-based Drift-Diffusion Model (DDDM) that combines test-phase dropout and the DDM for improving the robustness for arbitrary neural networks. The dropouts create temporally uncorrelated noises in the network that counter perturbations, while the evidence accumulation mechanism guarantees a reasonable decision accuracy. Neural networks enhanced with the DDDM tested in image, speech, and text classification tasks all significantly outperform their native counterparts, demonstrating the DDDM as a task-agnostic defense against adversarial attacks.
109,389
109,389
An Artificial Neural Network Functionalized by Evolution
The topology of artificial neural networks has a significant effect on their performance. Characterizing efficient topology is a field of promising research in Artificial Intelligence. However, it is not a trivial task and it is mainly experimented on through convolutional neural networks. We propose a hybrid model which combines the tensor calculus of feed-forward neural networks with Pseudo-Darwinian mechanisms. This allows for finding topologies that are well adapted for elaboration of strategies, control problems or pattern recognition tasks. In particular, the model can provide adapted topologies at early evolutionary stages, and 'structural convergence', which can found applications in robotics, big-data and artificial life.
109,390
109,390
Is explainable AI a race against model complexity?
Explaining the behaviour of intelligent systems will get increasingly and perhaps intractably challenging as models grow in size and complexity. We may not be able to expect an explanation for every prediction made by a brain-scale model, nor can we expect explanations to remain objective or apolitical. Our functionalist understanding of these models is of less advantage than we might assume. Models precede explanations, and can be useful even when both model and explanation are incorrect. Explainability may never win the race against complexity, but this is less problematic than it seems.
109,391
109,391
Converting Artificial Neural Networks to Spiking Neural Networks via Parameter Calibration
Spiking Neural Network (SNN), originating from the neural behavior in biology, has been recognized as one of the next-generation neural networks. Conventionally, SNNs can be obtained by converting from pre-trained Artificial Neural Networks (ANNs) by replacing the non-linear activation with spiking neurons without changing the parameters. In this work, we argue that simply copying and pasting the weights of ANN to SNN inevitably results in activation mismatch, especially for ANNs that are trained with batch normalization (BN) layers. To tackle the activation mismatch issue, we first provide a theoretical analysis by decomposing local conversion error to clipping error and flooring error, and then quantitatively measure how this error propagates throughout the layers using the second-order analysis. Motivated by the theoretical results, we propose a set of layer-wise parameter calibration algorithms, which adjusts the parameters to minimize the activation mismatch. Extensive experiments for the proposed algorithms are performed on modern architectures and large-scale tasks including ImageNet classification and MS COCO detection. We demonstrate that our method can handle the SNN conversion with batch normalization layers and effectively preserve the high accuracy even in 32 time steps. For example, our calibration algorithms can increase up to 65% accuracy when converting VGG-16 with BN layers.
109,392
109,392
Stochastic resonance neurons in artificial neural networks
Many modern applications of the artificial neural networks ensue large number of layers making traditional digital implementations increasingly complex. Optical neural networks offer parallel processing at high bandwidth, but have the challenge of noise accumulation. We propose here a new type of neural networks using stochastic resonances as an inherent part of the architecture and demonstrate a possibility of significant reduction of the required number of neurons for a given performance accuracy. We also show that such a neural network is more robust against the impact of noise.
109,393
109,393
Lifelong Personal Context Recognition
We focus on the development of AIs which live in lifelong symbiosis with a human. The key prerequisite for this task is that the AI understands - at any moment in time - the personal situational context that the human is in. We outline the key challenges that this task brings forth, namely (i) handling the human-like and ego-centric nature of the the user's context, necessary for understanding and providing useful suggestions, (ii) performing lifelong context recognition using machine learning in a way that is robust to change, and (iii) maintaining alignment between the AI's and human's representations of the world through continual bidirectional interaction. In this short paper, we summarize our recent attempts at tackling these challenges, discuss the lessons learned, and highlight directions of future research. The main take-away message is that pursuing this project requires research which lies at the intersection of knowledge representation and machine learning. Neither technology can achieve this goal without the other.
109,394
109,394
The Fellowship of the Dyson Ring: ACT&Friends' Results and Methods for GTOC 11
Dyson spheres are hypothetical megastructures encircling stars in order to harvest most of their energy output. During the 11th edition of the GTOC challenge, participants were tasked with a complex trajectory planning related to the construction of a precursor Dyson structure, a heliocentric ring made of twelve stations. To this purpose, we developed several new approaches that synthesize techniques from machine learning, combinatorial optimization, planning and scheduling, and evolutionary optimization effectively integrated into a fully automated pipeline. These include a machine learned transfer time estimator, improving the established Edelbaum approximation and thus better informing a Lazy Race Tree Search to identify and collect asteroids with high arrival mass for the stations; a series of optimally-phased low-thrust transfers to all stations computed by indirect optimization techniques, exploiting the synodic periodicity of the system; and a modified Hungarian scheduling algorithm, which utilizes evolutionary techniques to arrange a mass-balanced arrival schedule out of all transfer possibilities. We describe the steps of our pipeline in detail with a special focus on how our approaches mutually benefit from each other. Lastly, we outline and analyze the final solution of our team, ACT&Friends, which ranked second at the GTOC 11 challenge.
109,395
109,395
Neural-Symbolic Models for Logical Queries on Knowledge Graphs
Answering complex first-order logic (FOL) queries on knowledge graphs is a fundamental task for multi-hop reasoning. Traditional symbolic methods traverse a complete knowledge graph to extract the answers, which provides good interpretation for each step. Recent neural methods learn geometric embeddings for complex queries. These methods can generalize to incomplete knowledge graphs, but their reasoning process is hard to interpret. In this paper, we propose Graph Neural Network Query Executor (GNN-QE), a neural-symbolic model that enjoys the advantages of both worlds. GNN-QE decomposes a complex FOL query into relation projections and logical operations over fuzzy sets, which provides interpretability for intermediate variables. To reason about the missing links, GNN-QE adapts a graph neural network from knowledge graph completion to execute the relation projections, and models the logical operations with product fuzzy logic. Extensive experiments on 3 datasets show that GNN-QE significantly improves over previous state-of-the-art models in answering FOL queries. Meanwhile, GNN-QE can predict the number of answers without explicit supervision, and provide visualizations for intermediate variables.
109,396
109,396
Topology-aware Graph Neural Networks for Learning Feasible and Adaptive ac-OPF Solutions
Solving the optimal power flow (OPF) problem is a fundamental task to ensure the system efficiency and reliability in real-time electricity grid operations. We develop a new topology-informed graph neural network (GNN) approach for predicting the optimal solutions of real-time ac-OPF problem. To incorporate grid topology to the NN model, the proposed GNN-for-OPF framework innovatively exploits the locality property of locational marginal prices and voltage magnitude. Furthermore, we develop a physics-aware (ac-)flow feasibility regularization approach for general OPF learning. The advantages of our proposed designs include reduced model complexity, improved generalizability and feasibility guarantees. By providing the analytical understanding on the graph subspace stability under grid topology contingency, we show the proposed GNN can quickly adapt to varying grid topology by an efficient re-training strategy. Numerical tests on various test systems of different sizes have validated the prediction accuracy, improved flow feasibility, and topology adaptivity capability of our proposed GNN-based learning framework.
109,397
109,397
Function Regression using Spiking DeepONet
One of the main broad applications of deep learning is function regression. However, despite their demonstrated accuracy and robustness, modern neural network architectures require heavy computational resources to train. One method to mitigate or even resolve this inefficiency has been to draw further inspiration from the brain and reformulate the learning process in a more biologically-plausible way, developing what are known as Spiking Neural Networks (SNNs), which have been gaining traction in recent years. In this paper we present an SNN-based method to perform regression, which has been a challenge due to the inherent difficulty in representing a function's input domain and continuous output values as spikes. We use a DeepONet - neural network designed to learn operators - to learn the behavior of spikes. Then, we use this approach to do function regression. We propose several methods to use a DeepONet in the spiking framework, and present accuracy and training time for different benchmarks.
109,398
109,398
Towards efficient feature sharing in MIMO architectures
Multi-input multi-output architectures propose to train multiple subnetworks within one base network and then average the subnetwork predictions to benefit from ensembling for free. Despite some relative success, these architectures are wasteful in their use of parameters. Indeed, we highlight in this paper that the learned subnetwork fail to share even generic features which limits their applicability on smaller mobile and AR/VR devices. We posit this behavior stems from an ill-posed part of the multi-input multi-output framework. To solve this issue, we propose a novel unmixing step in MIMO architectures that allows subnetworks to properly share features. Preliminary experiments on CIFAR-100 show our adjustments allow feature sharing and improve model performance for small architectures.
109,399
109,399
The developmental trajectory of object recognition robustness: children are like small adults but unlike big deep neural networks
In laboratory object recognition tasks based on undistorted photographs, both adult humans and Deep Neural Networks (DNNs) perform close to ceiling. Unlike adults', whose object recognition performance is robust against a wide range of image distortions, DNNs trained on standard ImageNet (1.3M images) perform poorly on distorted images. However, the last two years have seen impressive gains in DNN distortion robustness, predominantly achieved through ever-increasing large-scale datasets$\unicode{x2014}$orders of magnitude larger than ImageNet. While this simple brute-force approach is very effective in achieving human-level robustness in DNNs, it raises the question of whether human robustness, too, is simply due to extensive experience with (distorted) visual input during childhood and beyond. Here we investigate this question by comparing the core object recognition performance of 146 children (aged 4$\unicode{x2013}$15) against adults and against DNNs. We find, first, that already 4$\unicode{x2013}$6 year-olds showed remarkable robustness to image distortions and outperform DNNs trained on ImageNet. Second, we estimated the number of $\unicode{x201C}$images$\unicode{x201D}$ children have been exposed to during their lifetime. Compared to various DNNs, children's high robustness requires relatively little data. Third, when recognizing objects children$\unicode{x2014}$like adults but unlike DNNs$\unicode{x2014}$rely heavily on shape but not on texture cues. Together our results suggest that the remarkable robustness to distortions emerges early in the developmental trajectory of human object recognition and is unlikely the result of a mere accumulation of experience with distorted visual input. Even though current DNNs match human performance regarding robustness they seem to rely on different and more data-hungry strategies to do so.