Unnamed: 0.1
int64
0
113k
Unnamed: 0
float64
0
113k
title
stringlengths
7
246
abstract
stringlengths
6
3.31k
107,300
107,300
TorchSparse: Efficient Point Cloud Inference Engine
Deep learning on point clouds has received increased attention thanks to its wide applications in AR/VR and autonomous driving. These applications require low latency and high accuracy to provide real-time user experience and ensure user safety. Unlike conventional dense workloads, the sparse and irregular nature of point clouds poses severe challenges to running sparse CNNs efficiently on the general-purpose hardware. Furthermore, existing sparse acceleration techniques for 2D images do not translate to 3D point clouds. In this paper, we introduce TorchSparse, a high-performance point cloud inference engine that accelerates the sparse convolution computation on GPUs. TorchSparse directly optimizes the two bottlenecks of sparse convolution: irregular computation and data movement. It applies adaptive matrix multiplication grouping to trade computation for better regularity, achieving 1.4-1.5x speedup for matrix multiplication. It also optimizes the data movement by adopting vectorized, quantized and fused locality-aware memory access, reducing the memory movement cost by 2.7x. Evaluated on seven representative models across three benchmark datasets, TorchSparse achieves 1.6x and 1.5x measured end-to-end speedup over the state-of-the-art MinkowskiEngine and SpConv, respectively.
107,301
107,301
Learning Future Object Prediction with a Spatiotemporal Detection Transformer
We explore future object prediction -- a challenging problem where all objects visible in a future video frame are to be predicted. We propose to tackle this problem end-to-end by training a detection transformer to directly output future objects. In order to make accurate predictions about the future, it is necessary to capture the dynamics in the scene, both of other objects and of the ego-camera. We extend existing detection transformers in two ways to capture the scene dynamics. First, we experiment with three different mechanisms that enable the model to spatiotemporally process multiple frames. Second, we feed ego-motion information to the model via cross-attention. We show that both of these cues substantially improve future object prediction performance. Our final approach learns to capture the dynamics and make predictions on par with an oracle for 100 ms prediction horizons, and outperform baselines for longer prediction horizons.
107,302
107,302
Simulate Time-integrated Coarse-grained Molecular Dynamics with Geometric Machine Learning
Molecular dynamics (MD) simulation is the workhorse of various scientific domains but is limited by high computational cost. Learning-based force fields have made major progress in accelerating ab-initio MD simulation but are still not fast enough for many real-world applications that require long-time MD simulation. In this paper, we adopt a different machine learning approach where we coarse-grain a physical system using graph clustering, and model the system evolution with a very large time-integration step using graph neural networks. A novel score-based GNN refinement module resolves the long-standing challenge of long-time simulation instability. Despite only trained with short MD trajectory data, our learned simulator can generalize to unseen novel systems and simulate for much longer than the training trajectories. Properties requiring 10-100 ns level long-time dynamics can be accurately recovered at several-orders-of-magnitude higher speed than classical force fields. We demonstrate the effectiveness of our method on two realistic complex systems: (1) single-chain coarse-grained polymers in implicit solvent; (2) multi-component Li-ion polymer electrolyte systems.
107,303
107,303
Provably Efficient Kernelized Q-Learning
We propose and analyze a kernelized version of Q-learning. Although a kernel space is typically infinite-dimensional, extensive study has shown that generalization is only affected by the effective dimension of the data. We incorporate such ideas into the Q-learning framework and derive regret bounds for arbitrary kernels. In particular, we provide concrete bounds for linear kernels and Gaussian RBF kernels; notably, the latter bound looks almost identical to the former, only that the actual dimension is replaced by a different notion of dimensionality. Finally, we test our algorithm on a suite of classic control tasks; remarkably, under the Gaussian RBF kernel, it achieves reasonably good performance after only 1000 environmental steps, while its neural network counterpart, deep Q-learning, still struggles.
107,304
107,304
A Framework for Interactive Knowledge-Aided Machine Teaching
Machine Teaching (MT) is an interactive process where humans train a machine learning model by playing the role of a teacher. The process of designing an MT system involves decisions that can impact both efficiency of human teachers and performance of machine learners. Previous research has proposed and evaluated specific MT systems but there is limited discussion on a general framework for designing them. We propose a framework for designing MT systems and also detail a system for the text classification problem as a specific instance. Our framework focuses on three components i.e. teaching interface, machine learner, and knowledge base; and their relations describe how each component can benefit the others. Our preliminary experiments show how MT systems can reduce both human teaching time and machine learner error rate.
107,305
107,305
Model-free Learning of Regions of Attraction via Recurrent Sets
We consider the problem of learning an inner approximation of the region of attraction (ROA) of an asymptotically stable equilibrium point without an explicit model of the dynamics. Rather than leveraging approximate models with bounded uncertainty to find a (robust) invariant set contained in the ROA, we propose to learn sets that satisfy a more relaxed notion of containment known as recurrence. We define a set to be $\tau$-recurrent (resp. $k$-recurrent) if every trajectory that starts within the set, returns to it after at most $\tau$ seconds (resp. $k$ steps). We show that under mild assumptions a $\tau$-recurrent set containing a stable equilibrium must be a subset of its ROA. We then leverage this property to develop algorithms that compute inner approximations of the ROA using counter-examples of recurrence that are obtained by sampling finite-length trajectories. Our algorithms process samples sequentially, which allow them to continue being executed even after an initial offline training stage. We further provide an upper bound on the number of counter-examples used by the algorithm, and almost sure convergence guarantees.
107,306
107,306
Learning how to Interact with a Complex Interface using Hierarchical Reinforcement Learning
Hierarchical Reinforcement Learning (HRL) allows interactive agents to decompose complex problems into a hierarchy of sub-tasks. Higher-level tasks can invoke the solutions of lower-level tasks as if they were primitive actions. In this work, we study the utility of hierarchical decompositions for learning an appropriate way to interact with a complex interface. Specifically, we train HRL agents that can interface with applications in a simulated Android device. We introduce a Hierarchical Distributed Deep Reinforcement Learning architecture that learns (1) subtasks corresponding to simple finger gestures, and (2) how to combine these gestures to solve several Android tasks. Our approach relies on goal conditioning and can be used more generally to convert any base RL agent into an HRL agent. We use the AndroidEnv environment to evaluate our approach. For the experiments, the HRL agent uses a distributed version of the popular DQN algorithm to train different components of the hierarchy. While the native action space is completely intractable for simple DQN agents, our architecture can be used to establish an effective way to interact with different tasks, significantly improving the performance of the same DQN agent over different levels of abstraction.
107,307
107,307
Differentially Private Learning with Margin Guarantees
We present a series of new differentially private (DP) algorithms with dimension-independent margin guarantees. For the family of linear hypotheses, we give a pure DP learning algorithm that benefits from relative deviation margin guarantees, as well as an efficient DP learning algorithm with margin guarantees. We also present a new efficient DP learning algorithm with margin guarantees for kernel-based hypotheses with shift-invariant kernels, such as Gaussian kernels, and point out how our results can be extended to other kernels using oblivious sketching techniques. We further give a pure DP learning algorithm for a family of feed-forward neural networks for which we prove margin guarantees that are independent of the input dimension. Additionally, we describe a general label DP learning algorithm, which benefits from relative deviation margin bounds and is applicable to a broad family of hypothesis sets, including that of neural networks. Finally, we show how our DP learning algorithms can be augmented in a general way to include model selection, to select the best confidence margin parameter.
107,308
107,308
Facilitating automated conversion of scientific knowledge into scientific simulation models with the Machine Assisted Generation, Calibration, and Comparison (MAGCC) Framework
The Machine Assisted Generation, Comparison, and Calibration (MAGCC) framework provides machine assistance and automation of recurrent crucial steps and processes in the development, implementation, testing, and use of scientific simulation models. MAGCC bridges systems for knowledge extraction via natural language processing or extracted from existing mathematical models and provides a comprehensive workflow encompassing the composition of scientific models and artificial intelligence (AI) assisted code generation. MAGCC accomplishes this through: 1) the development of a comprehensively expressive formal knowledge representation knowledgebase, the Structured Scientific Knowledge Representation (SSKR) that encompasses all the types of information needed to make any simulation model, 2) the use of an artificially intelligent logic reasoning system, the Computational Modeling Assistant (CMA), that takes information from the SSKR and generates, in a traceable fashion, model specifications across a range of simulation modeling methods, and 3) the use of the CMA to generate executable code for a simulation model from those model specifications. The MAGCC framework can be customized any scientific domain, and future work will integrate newly developed code-generating AI systems.
107,309
107,309
SoftEdge: Regularizing Graph Classification with Random Soft Edges
Graph data augmentation plays a vital role in regularizing Graph Neural Networks (GNNs), which leverage information exchange along edges in graphs, in the form of message passing, for learning. Due to their effectiveness, simple edge and node manipulations (e.g., addition and deletion) have been widely used in graph augmentation. In this paper, we identify a limitation in such a common augmentation technique. That is, simple edge and node manipulations can create graphs with an identical structure or indistinguishable structures to message passing GNNs but of conflict labels, leading to the sample collision issue and thus the degradation of model performance. To address this problem, we propose SoftEdge, which assigns random weights to a portion of the edges of a given graph to construct dynamic neighborhoods over the graph. We prove that SoftEdge creates collision-free augmented graphs. We also show that this simple method obtains superior accuracy to popular node and edge manipulation approaches and notable resilience to the accuracy degradation with the GNN depth.
107,310
107,310
Optimizing Nitrogen Management with Deep Reinforcement Learning and Crop Simulations
Nitrogen (N) management is critical to sustain soil fertility and crop production while minimizing the negative environmental impact, but is challenging to optimize. This paper proposes an intelligent N management system using deep reinforcement learning (RL) and crop simulations with Decision Support System for Agrotechnology Transfer (DSSAT). We first formulate the N management problem as an RL problem. We then train management policies with deep Q-network and soft actor-critic algorithms, and the Gym-DSSAT interface that allows for daily interactions between the simulated crop environment and RL agents. According to the experiments on the maize crop in both Iowa and Florida in the US, our RL-trained policies outperform previous empirical methods by achieving higher or similar yield while using less fertilizers
107,311
107,311
STD: A Seasonal-Trend-Dispersion Decomposition of Time Series
The decomposition of a time series is an essential task that helps to understand its very nature. It facilitates the analysis and forecasting of complex time series expressing various hidden components such as the trend, seasonal components, cyclic components and irregular fluctuations. Therefore, it is crucial in many fields for forecasting and decision processes. In recent years, many methods of time series decomposition have been developed, which extract and reveal different time series properties. Unfortunately, they neglect a very important property, i.e. time series variance. To deal with heteroscedasticity in time series, the method proposed in this work -- a seasonal-trend-dispersion decomposition (STD) -- extracts the trend, seasonal component and component related to the dispersion of the time series. We define STD decomposition in two ways: with and without an irregular component. We show how STD can be used for time series analysis and forecasting.
107,312
107,312
Interpolation of Missing Swaption Volatility Data using Gibbs Sampling on Variational Autoencoders
Albeit of crucial interest for both financial practitioners and researchers, market-implied volatility data of European swaptions often exhibit large portions of missing quotes due to illiquidity of the various underlying swaption instruments. In this case, standard stochastic interpolation tools like the common SABR model often cannot be calibrated to observed implied volatility smiles, due to data being only available for the at-the-money quote of the respective underlying swaption. Here, we propose to infer the geometry of the full unknown implied volatility cube by learning stochastic latent representations of implied volatility cubes via variational autoencoders, enabling inference about the missing volatility data conditional on the observed data by an approximate Gibbs sampling approach. Imputed estimates of missing quotes can afterwards be used to fit a standard stochastic volatility model. Since training data for the employed variational autoencoder model is usually sparsely available, we test the robustness of the approach for a model trained on synthetic data on real market quotes and we show that SABR interpolated volatilites calibrated to reconstructed volatility cubes with artificially imputed missing values differ by not much more than two basis points compared to SABR fits calibrated to the complete cube. Moreover, we show how the imputation can be used to successfully set up delta-neutral portfolios for hedging purposes.
107,313
107,313
ICDBigBird: A Contextual Embedding Model for ICD Code Classification
The International Classification of Diseases (ICD) system is the international standard for classifying diseases and procedures during a healthcare encounter and is widely used for healthcare reporting and management purposes. Assigning correct codes for clinical procedures is important for clinical, operational, and financial decision-making in healthcare. Contextual word embedding models have achieved state-of-the-art results in multiple NLP tasks. However, these models have yet to achieve state-of-the-art results in the ICD classification task since one of their main disadvantages is that they can only process documents that contain a small number of tokens which is rarely the case with real patient notes. In this paper, we introduce ICDBigBird a BigBird-based model which can integrate a Graph Convolutional Network (GCN), that takes advantage of the relations between ICD codes in order to create 'enriched' representations of their embeddings, with a BigBird contextual model that can process larger documents. Our experiments on a real-world clinical dataset demonstrate the effectiveness of our BigBird-based model on the ICD classification task as it outperforms the previous state-of-the-art models.
107,314
107,314
Staying the course: Locating equilibria of dynamical systems on Riemannian manifolds defined by point-clouds
We introduce a method to successively locate equilibria (steady states) of dynamical systems on Riemannian manifolds. The manifolds need not be characterized by an atlas or by the zeros of a smooth map. Instead, they can be defined by point-clouds and sampled as needed through an iterative process. If the manifold is an Euclidean space, our method follows isoclines, curves along which the direction of the vector field $X$ is constant. For a generic vector field $X$, isoclines are smooth curves and every equilibrium is a limit point of isoclines. We generalize the definition of isoclines to Riemannian manifolds through the use of parallel transport: generalized isoclines are curves along which the directions of $X$ are parallel transports of each other. As in the Euclidean case, generalized isoclines of generic vector fields $X$ are smooth curves that connect equilibria of $X$. Our work is motivated by computational statistical mechanics, specifically high dimensional (stochastic) differential equations that model the dynamics of molecular systems. Often, these dynamics concentrate near low-dimensional manifolds and have transitions (sadddle points with a single unstable direction) between metastable equilibria We employ iteratively sampled data and isoclines to locate these saddle points. Coupling a black-box sampling scheme (e.g., Markov chain Monte Carlo) with manifold learning techniques (diffusion maps in the case presented here), we show that our method reliably locates equilibria of $X$.
107,315
107,315
A Top-Down Approach to Hierarchically Coherent Probabilistic Forecasting
Hierarchical forecasting is a key problem in many practical multivariate forecasting applications - the goal is to obtain coherent predictions for a large number of correlated time series that are arranged in a pre-specified tree hierarchy. In this paper, we present a probabilistic top-down approach to hierarchical forecasting that uses a novel attention-based RNN model to learn the distribution of the proportions according to which each parent prediction is split among its children nodes at any point in time. These probabilistic proportions are then coupled with an independent univariate probabilistic forecasting model (such as Prophet or STS) for the root time series. The resulting forecasts are computed in a top-down fashion and are naturally coherent, and also support probabilistic predictions over all time series in the hierarchy. We provide theoretical justification for the superiority of our top-down approach compared to traditional bottom-up hierarchical modeling. Finally, we experiment on three public datasets and demonstrate significantly improved probabilistic forecasts, compared to state-of-the-art probabilistic hierarchical models.
107,316
107,316
CycleSense: Detecting Near Miss Incidents in Bicycle Traffic from Mobile Motion Sensors
In cities worldwide, cars cause health and traffic problems which could be partly mitigated through an increased modal share of bicycles. Many people, however, avoid cycling due to a lack of perceived safety. For city planners, addressing this is hard as they lack insights into where cyclists feel safe and where they do not. To gain such insights, we have in previous work proposed the crowdsourcing platform SimRa, which allows cyclists to record their rides and report near miss incidents via a smartphone app. In this paper, we present CycleSense, a combination of signal processing and Machine Learning techniques, which partially automates the detection of near miss incidents. Using the SimRa data set, we evaluate CycleSense by comparing it to a baseline method used by SimRa and show that it significantly improves incident detection.
107,317
107,317
Lightweight Hybrid CNN-ELM Model for Multi-building and Multi-floor Classification
Machine learning models have become an essential tool in current indoor positioning solutions, given their high capabilities to extract meaningful information from the environment. Convolutional neural networks (CNNs) are one of the most used neural networks (NNs) due to that they are capable of learning complex patterns from the input data. Another model used in indoor positioning solutions is the Extreme Learning Machine (ELM), which provides an acceptable generalization performance as well as a fast speed of learning. In this paper, we offer a lightweight combination of CNN and ELM, which provides a quick and accurate classification of building and floor, suitable for power and resource-constrained devices. As a result, the proposed model is 58\% faster than the benchmark, with a slight improvement in the classification accuracy (by less than 1\%
107,318
107,318
Learning Sequential Latent Variable Models from Multimodal Time Series Data
Sequential modelling of high-dimensional data is an important problem that appears in many domains including model-based reinforcement learning and dynamics identification for control. Latent variable models applied to sequential data (i.e., latent dynamics models) have been shown to be a particularly effective probabilistic approach to solve this problem, especially when dealing with images. However, in many application areas (e.g., robotics), information from multiple sensing modalities is available -- existing latent dynamics methods have not yet been extended to effectively make use of such multimodal sequential data. Multimodal sensor streams can be correlated in a useful manner and often contain complementary information across modalities. In this work, we present a self-supervised generative modelling framework to jointly learn a probabilistic latent state representation of multimodal data and the respective dynamics. Using synthetic and real-world datasets from a multimodal robotic planar pushing task, we demonstrate that our approach leads to significant improvements in prediction and representation quality. Furthermore, we compare to the common learning baseline of concatenating each modality in the latent space and show that our principled probabilistic formulation performs better. Finally, despite being fully self-supervised, we demonstrate that our method is nearly as effective as an existing supervised approach that relies on ground truth labels.
107,319
107,319
Curriculum Learning for Goal-Oriented Semantic Communications with a Common Language
Goal-oriented semantic communication will be a pillar of next-generation wireless networks. Despite significant recent efforts in this area, most prior works are focused on specific data types (e.g., image or audio), and they ignore the goal and effectiveness aspects of semantic transmissions. In contrast, in this paper, a holistic goal-oriented semantic communication framework is proposed to enable a speaker and a listener to cooperatively execute a set of sequential tasks in a dynamic environment. A common language based on a hierarchical belief set is proposed to enable semantic communications between speaker and listener. The speaker, acting as an observer of the environment, utilizes the beliefs to transmit an initial description of its observation (called event) to the listener. The listener is then able to infer on the transmitted description and complete it by adding related beliefs to the transmitted beliefs of the speaker. As such, the listener reconstructs the observed event based on the completed description, and it then takes appropriate action in the environment based on the reconstructed event. An optimization problem is defined to determine the perfect and abstract description of the events while minimizing the transmission and inference costs with constraints on the task execution time and belief efficiency. Then, a novel bottom-up curriculum learning (CL) framework based on reinforcement learning is proposed to solve the optimization problem and enable the speaker and listener to gradually identify the structure of the belief set and the perfect and abstract description of the events. Simulation results show that the proposed CL method outperforms traditional RL in terms of convergence time, task execution cost and time, reliability, and belief efficiency.
107,320
107,320
Scale-Equivariant Unrolled Neural Networks for Data-Efficient Accelerated MRI Reconstruction
Unrolled neural networks have enabled state-of-the-art reconstruction performance and fast inference times for the accelerated magnetic resonance imaging (MRI) reconstruction task. However, these approaches depend on fully-sampled scans as ground truth data which is either costly or not possible to acquire in many clinical medical imaging applications; hence, reducing dependence on data is desirable. In this work, we propose modeling the proximal operators of unrolled neural networks with scale-equivariant convolutional neural networks in order to improve the data-efficiency and robustness to drifts in scale of the images that might stem from the variability of patient anatomies or change in field-of-view across different MRI scanners. Our approach demonstrates strong improvements over the state-of-the-art unrolled neural networks under the same memory constraints both with and without data augmentations on both in-distribution and out-of-distribution scaled images without significantly increasing the train or inference time.
107,321
107,321
Evolution of Transparent Explainable Rule-sets
Most AI systems are black boxes generating reasonable outputs for given inputs. Some domains, however, have explainability and trustworthiness requirements that cannot be directly met by these approaches. Various methods have therefore been developed to interpret black-box models after training. This paper advocates an alternative approach where the models are transparent and explainable to begin with. This approach, EVOTER, evolves rule-sets based on simple logical expressions. The approach is evaluated in several prediction/classification and prescription/policy search domains with and without a surrogate. It is shown to discover meaningful rule sets that perform similarly to black-box models. The rules can provide insight to the domain, and make biases hidden in the data explicit. It may also be possible to edit them directly to remove biases and add constraints. EVOTER thus forms a promising foundation for building trustworthy AI systems for real-world applications in the future.
107,322
107,322
Hypergraph Transformer: Weakly-supervised Multi-hop Reasoning for Knowledge-based Visual Question Answering
Knowledge-based visual question answering (QA) aims to answer a question which requires visually-grounded external knowledge beyond image content itself. Answering complex questions that require multi-hop reasoning under weak supervision is considered as a challenging problem since i) no supervision is given to the reasoning process and ii) high-order semantics of multi-hop knowledge facts need to be captured. In this paper, we introduce a concept of hypergraph to encode high-level semantics of a question and a knowledge base, and to learn high-order associations between them. The proposed model, Hypergraph Transformer, constructs a question hypergraph and a query-aware knowledge hypergraph, and infers an answer by encoding inter-associations between two hypergraphs and intra-associations in both hypergraph itself. Extensive experiments on two knowledge-based visual QA and two knowledge-based textual QA demonstrate the effectiveness of our method, especially for multi-hop reasoning problem. Our source code is available at https://github.com/yujungheo/kbvqa-public.
107,323
107,323
SCOPE: Safe Exploration for Dynamic Computer Systems Optimization
Modern computer systems need to execute under strict safety constraints (e.g., a power limit), but doing so often conflicts with their ability to deliver high performance (i.e. minimal latency). Prior work uses machine learning to automatically tune hardware resources such that the system execution meets safety constraints optimally. Such solutions monitor past system executions to learn the system's behavior under different hardware resource allocations before dynamically tuning resources to optimize the application execution. However, system behavior can change significantly between different applications and even different inputs of the same applications. Hence, the models learned using data collected a priori are often suboptimal and violate safety constraints when used with new applications and inputs. To address this limitation, we introduce the concept of an execution space, which is the cross product of hardware resources, input features, and applications. To dynamically and safely allocate hardware resources from the execution space, we present SCOPE, a resource manager that leverages a novel safe exploration framework. We evaluate SCOPE's ability to deliver improved latency while minimizing power constraint violations by dynamically configuring hardware while running a variety of Apache Spark applications. Compared to prior approaches that minimize power constraint violations, SCOPE consumes comparable power while improving latency by up to 9.5X. Compared to prior approaches that minimize latency, SCOPE achieves similar latency but reduces power constraint violation rates by up to 45.88X, achieving almost zero safety constraint violations across all applications.
107,324
107,324
Neural Contrastive Clustering: Fully Unsupervised Bias Reduction for Sentiment Classification
Background: Neural networks produce biased classification results due to correlation bias (they learn correlations between their inputs and outputs to classify samples, even when those correlations do not represent cause-and-effect relationships). Objective: This study introduces a fully unsupervised method of mitigating correlation bias, demonstrated with sentiment classification on COVID-19 social media data. Methods: Correlation bias in sentiment classification often arises in conversations about controversial topics. Therefore, this study uses adversarial learning to contrast clusters based on sentiment classification labels, with clusters produced by unsupervised topic modeling. This discourages the neural network from learning topic-related features that produce biased classification results. Results: Compared to a baseline classifier, neural contrastive clustering approximately doubles accuracy on bias-prone sentences for human-labeled COVID-19 social media data, without adversely affecting the classifier's overall F1 score. Despite being a fully unsupervised approach, neural contrastive clustering achieves a larger improvement in accuracy on bias-prone sentences than a supervised masking approach. Conclusions: Neural contrastive clustering reduces correlation bias in sentiment text classification. Further research is needed to explore generalizing this technique to other neural network architectures and application domains.
107,325
107,325
Gene Function Prediction with Gene Interaction Networks: A Context Graph Kernel Approach
Predicting gene functions is a challenge for biologists in the post genomic era. Interactions among genes and their products compose networks that can be used to infer gene functions. Most previous studies adopt a linkage assumption, i.e., they assume that gene interactions indicate functional similarities between connected genes. In this study, we propose to use a gene's context graph, i.e., the gene interaction network associated with the focal gene, to infer its functions. In a kernel-based machine-learning framework, we design a context graph kernel to capture the information in context graphs. Our experimental study on a testbed of p53-related genes demonstrates the advantage of using indirect gene interactions and shows the empirical superiority of the proposed approach over linkage-assumption-based methods, such as the algorithm to minimize inconsistent connected genes and diffusion kernels.
107,326
107,326
Global Mapping of Gene/Protein Interactions in PubMed Abstracts: A Framework and an Experiment with P53 Interactions
Gene/protein interactions provide critical information for a thorough understanding of cellular processes. Recently, considerable interest and effort has been focused on the construction and analysis of genome-wide gene networks. The large body of biomedical literature is an important source of gene/protein interaction information. Recent advances in text mining tools have made it possible to automatically extract such documented interactions from free-text literature. In this paper, we propose a comprehensive framework for constructing and analyzing large-scale gene functional networks based on the gene/protein interactions extracted from biomedical literature repositories using text mining tools. Our proposed framework consists of analyses of the network topology, network topology-gene function relationship, and temporal network evolution to distill valuable information embedded in the gene functional interactions in literature. We demonstrate the application of the proposed framework using a testbed of P53-related PubMed abstracts, which shows that literature-based P53 networks exhibit small-world and scale-free properties. We also found that high degree genes in the literature-based networks have a high probability of appearing in the manually curated database and genes in the same pathway tend to form local clusters in our literature-based networks. Temporal analysis showed that genes interacting with many other genes tend to be involved in a large number of newly discovered interactions.
107,327
107,327
Analysis of Temporal Difference Learning: Linear System Approach
The goal of this technical note is to introduce a new finite-time convergence analysis of temporal difference (TD) learning based on stochastic linear system models. TD-learning is a fundamental reinforcement learning (RL) to evaluate a given policy by estimating the corresponding value function for a Markov decision process. While there has been a series of successful works in theoretical analysis of TDlearning, it was not until recently that researchers found some guarantees on its statistical efficiency by developing finite-time error bounds. In this paper, we propose a simple control theoretic finite-time analysis of TD-learning, which exploits linear system models and standard notions in linear system communities. The proposed work provides new simple templets for RL analysis, and additional insights on TD-learning and RL based on ideas in control theory.
107,328
107,328
NLP Based Anomaly Detection for Categorical Time Series
Identifying anomalies in large multi-dimensional time series is a crucial and difficult task across multiple domains. Few methods exist in the literature that address this task when some of the variables are categorical in nature. We formalize an analogy between categorical time series and classical Natural Language Processing and demonstrate the strength of this analogy for anomaly detection and root cause investigation by implementing and testing three different machine learning anomaly detection and root cause investigation models based upon it.
107,329
107,329
Adversarial Estimators
We develop an asymptotic theory of adversarial estimators ('A-estimators'). They generalize maximum-likelihood-type estimators ('M-estimators') as their objective is maximized by some parameters and minimized by others. This class subsumes the continuous-updating Generalized Method of Moments, Generative Adversarial Networks and more recent proposals in machine learning and econometrics. In these examples, researchers state which aspects of the problem may in principle be used for estimation, and an adversary learns how to emphasize them optimally. We derive the convergence rates of A-estimators under pointwise and partial identification, and the normality of functionals of their parameters. Unknown functions may be approximated via sieves such as deep neural networks, for which we provide simplified low-level conditions. As a corollary, we obtain the normality of neural-net M-estimators, overcoming technical issues previously identified by the literature. Our theory yields novel results about a variety of A-estimators, providing intuition and formal justification for their success in recent applications.
107,330
107,330
Multimodal Adaptive Distillation for Leveraging Unimodal Encoders for Vision-Language Tasks
Cross-modal encoders for vision-language (VL) tasks are often pretrained with carefully curated vision-language datasets. While these datasets reach an order of 10 million samples, the labor cost is prohibitive to scale further. Conversely, unimodal encoders are pretrained with simpler annotations that are less cost-prohibitive, achieving scales of hundreds of millions to billions. As a result, unimodal encoders have achieved state-of-art (SOTA) on many downstream tasks. However, challenges remain when applying to VL tasks. The pretraining data is not optimal for cross-modal architectures and requires heavy computational resources. In addition, unimodal architectures lack cross-modal interactions that have demonstrated significant benefits for VL tasks. Therefore, how to best leverage pretrained unimodal encoders for VL tasks is still an area of active research. In this work, we propose a method to leverage unimodal vision and text encoders for VL tasks that augment existing VL approaches while conserving computational complexity. Specifically, we propose Multimodal Adaptive Distillation (MAD), which adaptively distills useful knowledge from pretrained encoders to cross-modal VL encoders. Second, to better capture nuanced impacts on VL task performance, we introduce an evaluation protocol that includes Visual Commonsense Reasoning (VCR), Visual Entailment (SNLI-VE), and Visual Question Answering (VQA), across a variety of data constraints and conditions of domain shift. Experiments demonstrate that MAD leads to consistent gains in the low-shot, domain-shifted, and fully-supervised conditions on VCR, SNLI-VE, and VQA, achieving SOTA performance on VCR compared to other single models pretrained with image-text data. Finally, MAD outperforms concurrent works utilizing pretrained vision encoder from CLIP. Code will be made available.
107,331
107,331
Application of Federated Learning in Building a Robust COVID-19 Chest X-ray Classification Model
While developing artificial intelligence (AI)-based algorithms to solve problems, the amount of data plays a pivotal role - large amount of data helps the researchers and engineers to develop robust AI algorithms. In the case of building AI-based models for problems related to medical imaging, these data need to be transferred from the medical institutions where they were acquired to the organizations developing the algorithms. This movement of data involves time-consuming formalities like complying with HIPAA, GDPR, etc.There is also a risk of patients' private data getting leaked, compromising their confidentiality. One solution to these problems is using the Federated Learning framework. Federated Learning (FL) helps AI models to generalize better and create a robust AI model by using data from different sources having different distributions and data characteristics without moving all the data to a central server. In our paper, we apply the FL framework for training a deep learning model to solve a binary classification problem of predicting the presence or absence of COVID-19. We took three different sources of data and trained individual models on each source. Then we trained an FL model on the complete data and compared all the model performances. We demonstrated that the FL model performs better than the individual models. Moreover, the FL model performed at par with the model trained on all the data combined at a central server. Thus Federated Learning leads to generalized AI models without the cost of data transfer and regulatory overhead.
107,332
107,332
Taygete at SemEval-2022 Task 4: RoBERTa based models for detecting Patronising and Condescending Language
This work describes the development of different models to detect patronising and condescending language within extracts of news articles as part of the SemEval 2022 competition (Task-4). This work explores different models based on the pre-trained RoBERTa language model coupled with LSTM and CNN layers. The best models achieved 15$^{th}$ rank with an F1-score of 0.5924 for subtask-A and 12$^{th}$ in subtask-B with a macro-F1 score of 0.3763.
107,333
107,333
Exploring Hidden Semantics in Neural Networks with Symbolic Regression
Many recent studies focus on developing mechanisms to explain the black-box behaviors of neural networks (NNs). However, little work has been done to extract the potential hidden semantics (mathematical representation) of a neural network. A succinct and explicit mathematical representation of a NN model could improve the understanding and interpretation of its behaviors. To address this need, we propose a novel symbolic regression method for neural works (called SRNet) to discover the mathematical expressions of a NN. SRNet creates a Cartesian genetic programming (NNCGP) to represent the hidden semantics of a single layer in a NN. It then leverages a multi-chromosome NNCGP to represent hidden semantics of all layers of the NN. The method uses a (1+$\lambda$) evolutionary strategy (called MNNCGP-ES) to extract the final mathematical expressions of all layers in the NN. Experiments on 12 symbolic regression benchmarks and 5 classification benchmarks show that SRNet not only can reveal the complex relationships between each layer of a NN but also can extract the mathematical representation of the whole NN. Compared with LIME and MAPLE, SRNet has higher interpolation accuracy and trends to approximate the real model on the practical dataset.
107,334
107,334
Multi-view Information Bottleneck Without Variational Approximation
By "intelligently" fusing the complementary information across different views, multi-view learning is able to improve the performance of classification tasks. In this work, we extend the information bottleneck principle to a supervised multi-view learning scenario and use the recently proposed matrix-based R{\'e}nyi's $\alpha$-order entropy functional to optimize the resulting objective directly, without the necessity of variational approximation or adversarial training. Empirical results in both synthetic and real-world datasets suggest that our method enjoys improved robustness to noise and redundant information in each view, especially given limited training samples. Code is available at~\url{https://github.com/archy666/MEIB}.
107,335
107,335
End-to-end symbolic regression with transformers
Symbolic regression, the task of predicting the mathematical expression of a function from the observation of its values, is a difficult task which usually involves a two-step procedure: predicting the "skeleton" of the expression up to the choice of numerical constants, then fitting the constants by optimizing a non-convex loss function. The dominant approach is genetic programming, which evolves candidates by iterating this subroutine a large number of times. Neural networks have recently been tasked to predict the correct skeleton in a single try, but remain much less powerful. In this paper, we challenge this two-step procedure, and task a Transformer to directly predict the full mathematical expression, constants included. One can subsequently refine the predicted constants by feeding them to the non-convex optimizer as an informed initialization. We present ablations to show that this end-to-end approach yields better results, sometimes even without the refinement step. We evaluate our model on problems from the SRBench benchmark and show that our model approaches the performance of state-of-the-art genetic programming with several orders of magnitude faster inference.
107,336
107,336
Fourier Imager Network (FIN): A deep neural network for hologram reconstruction with superior external generalization
Deep learning-based image reconstruction methods have achieved remarkable success in phase recovery and holographic imaging. However, the generalization of their image reconstruction performance to new types of samples never seen by the network remains a challenge. Here we introduce a deep learning framework, termed Fourier Imager Network (FIN), that can perform end-to-end phase recovery and image reconstruction from raw holograms of new types of samples, exhibiting unprecedented success in external generalization. FIN architecture is based on spatial Fourier transform modules that process the spatial frequencies of its inputs using learnable filters and a global receptive field. Compared with existing convolutional deep neural networks used for hologram reconstruction, FIN exhibits superior generalization to new types of samples, while also being much faster in its image inference speed, completing the hologram reconstruction task in ~0.04 s per 1 mm^2 of the sample area. We experimentally validated the performance of FIN by training it using human lung tissue samples and blindly testing it on human prostate, salivary gland tissue and Pap smear samples, proving its superior external generalization and image reconstruction speed. Beyond holographic microscopy and quantitative phase imaging, FIN and the underlying neural network architecture might open up various new opportunities to design broadly generalizable deep learning models in computational imaging and machine vision fields.
107,337
107,337
Sharper Utility Bounds for Differentially Private Models
In this paper, by introducing Generalized Bernstein condition, we propose the first $\mathcal{O}\big(\frac{\sqrt{p}}{n\epsilon}\big)$ high probability excess population risk bound for differentially private algorithms under the assumptions $G$-Lipschitz, $L$-smooth, and Polyak-{\L}ojasiewicz condition, based on gradient perturbation method. If we replace the properties $G$-Lipschitz and $L$-smooth by $\alpha$-H{\"o}lder smoothness (which can be used in non-smooth setting), the high probability bound comes to $\mathcal{O}\big(n^{-\frac{\alpha}{1+2\alpha}}\big)$ w.r.t $n$, which cannot achieve $\mathcal{O}\left(1/n\right)$ when $\alpha\in(0,1]$. To solve this problem, we propose a variant of gradient perturbation method, \textbf{max$\{1,g\}$-Normalized Gradient Perturbation} (m-NGP). We further show that by normalization, the high probability excess population risk bound under assumptions $\alpha$-H{\"o}lder smooth and Polyak-{\L}ojasiewicz condition can achieve $\mathcal{O}\big(\frac{\sqrt{p}}{n\epsilon}\big)$, which is the first $\mathcal{O}\left(1/n\right)$ high probability excess population risk bound w.r.t $n$ for differentially private algorithms under non-smooth conditions. Moreover, we evaluate the performance of the new proposed algorithm m-NGP, the experimental results show that m-NGP improves the performance of the differentially private model over real datasets. It demonstrates that m-NGP improves the utility bound and the accuracy of the DP model on real datasets simultaneously.
107,338
107,338
Energy-efficient and Privacy-aware Social Distance Monitoring with Low-resolution Infrared Sensors and Adaptive Inference
Low-resolution infrared (IR) Sensors combined with machine learning (ML) can be leveraged to implement privacy-preserving social distance monitoring solutions in indoor spaces. However, the need of executing these applications on Internet of Things (IoT) edge nodes makes energy consumption critical. In this work, we propose an energy-efficient adaptive inference solution consisting of the cascade of a simple wake-up trigger and a 8-bit quantized Convolutional Neural Network (CNN), which is only invoked for difficult-to-classify frames. Deploying such adaptive system on a IoT Microcontroller, we show that, when processing the output of a 8x8 low-resolution IR sensor, we are able to reduce the energy consumption by 37-57% with respect to a static CNN-based approach, with an accuracy drop of less than 2% (83% balanced accuracy).
107,339
107,339
Privacy-preserving Social Distance Monitoring on Microcontrollers with Low-Resolution Infrared Sensors and CNNs
Low-resolution infrared (IR) array sensors offer a low-cost, low-power, and privacy-preserving alternative to optical cameras and smartphones/wearables for social distance monitoring in indoor spaces, permitting the recognition of basic shapes, without revealing the personal details of individuals. In this work, we demonstrate that an accurate detection of social distance violations can be achieved processing the raw output of a 8x8 IR array sensor with a small-sized Convolutional Neural Network (CNN). Furthermore, the CNN can be executed directly on a Microcontroller (MCU)-based sensor node. With results on a newly collected open dataset, we show that our best CNN achieves 86.3% balanced accuracy, significantly outperforming the 61% achieved by a state-of-the-art deterministic algorithm. Changing the architectural parameters of the CNN, we obtain a rich Pareto set of models, spanning 70.5-86.3% accuracy and 0.18-75k parameters. Deployed on a STM32L476RG MCU, these models have a latency of 0.73-5.33ms, with an energy consumption per inference of 9.38-68.57{\mu}J.
107,340
107,340
Depth Pruning with Auxiliary Networks for TinyML
Pruning is a neural network optimization technique that sacrifices accuracy in exchange for lower computational requirements. Pruning has been useful when working with extremely constrained environments in tinyML. Unfortunately, special hardware requirements and limited study on its effectiveness on already compact models prevent its wider adoption. Depth pruning is a form of pruning that requires no specialized hardware but suffers from a large accuracy falloff. To improve this, we propose a modification that utilizes a highly efficient auxiliary network as an effective interpreter of intermediate feature maps. Our results show a parameter reduction of 93% on the MLPerfTiny Visual Wakewords (VWW) task and 28% on the Keyword Spotting (KWS) task with accuracy cost of 0.65% and 1.06% respectively. When evaluated on a Cortex-M0 microcontroller, our proposed method reduces the VWW model size by 4.7x and latency by 1.6x while counter intuitively gaining 1% accuracy. KWS model size on Cortex-M0 was also reduced by 1.2x and latency by 1.2x at the cost of 2.21% accuracy.
107,341
107,341
Sparse and Dense Approaches for the Full-rank Retrieval of Responses for Dialogues
Ranking responses for a given dialogue context is a popular benchmark in which the setup is to re-rank the ground-truth response over a limited set of $n$ responses, where $n$ is typically 10. The predominance of this setup in conversation response ranking has lead to a great deal of attention to building neural re-rankers, while the first-stage retrieval step has been overlooked. Since the correct answer is always available in the candidate list of $n$ responses, this artificial evaluation setup assumes that there is a first-stage retrieval step which is always able to rank the correct response in its top-$n$ list. In this paper we focus on the more realistic task of full-rank retrieval of responses, where $n$ can be up to millions of responses. We investigate both dialogue context and response expansion techniques for sparse retrieval, as well as zero-shot and fine-tuned dense retrieval approaches. Our findings based on three different information-seeking dialogue datasets reveal that a learned response expansion technique is a solid baseline for sparse retrieval. We find the best performing method overall to be dense retrieval with intermediate training, i.e. a step after the language model pre-training where sentence representations are learned, followed by fine-tuning on the target conversational data. We also investigate the intriguing phenomena that harder negatives sampling techniques lead to worse results for the fine-tuned dense retrieval models. The code and datasets are available at https://github.com/Guzpenha/transformer_rankers/tree/full_rank_retrieval_dialogues.
107,342
107,342
A piece-wise constant approximation for non-conjugate Gaussian Process models
Gaussian Processes (GPs) are a versatile and popular method in Bayesian Machine Learning. A common modification are Sparse Variational Gaussian Processes (SVGPs) which are well suited to deal with large datasets. While GPs allow to elegantly deal with Gaussian-distributed target variables in closed form, their applicability can be extended to non-Gaussian data as well. These extensions are usually impossible to treat in closed form and hence require approximate solutions. This paper proposes to approximate the inverse-link function, which is necessary when working with non-Gaussian likelihoods, by a piece-wise constant function. It will be shown that this yields a closed form solution for the corresponding SVGP lower bound. In addition, it is demonstrated how the piece-wise constant function itself can be optimized, resulting in an inverse-link function that can be learnt from the data at hand.
107,343
107,343
Lossy compression of matrices by black-box optimisation of mixed-integer non-linear programming
In edge computing, suppressing data size is a challenge for machine learning models that perform complex tasks such as autonomous driving, in which computational resources (speed, memory size and power) are limited. Efficient lossy compression of matrix data has been introduced by decomposing it into the product of an integer and real matrices. However, its optimisation is difficult as it requires simultaneous optimisation of an integer and real variables. In this paper, we improve this optimisation by utilising recently developed black-box optimisation (BBO) algorithms with an Ising solver for integer variables. In addition, the algorithm can be used to solve mixed-integer programming problems that are linear and non-linear in terms of real and integer variables, respectively. The differences between the choice of Ising solvers (simulated annealing (SA), quantum annealing (QA) and simulated quenching (SQ)) and the strategies of the BBO algorithms (BOCS, FMQA and their variations) are discussed for further development of the BBO techniques.
107,344
107,344
FAIR4Cov: Fused Audio Instance and Representation for COVID-19 Detection
Audio-based classification techniques on body sounds have long been studied to support diagnostic decisions, particularly in pulmonary diseases. In response to the urgency of the COVID-19 pandemic, a growing number of models are developed to identify COVID-19 patients based on acoustic input. Most models focus on cough because the dry cough is the best-known symptom of COVID-19. However, other body sounds, such as breath and speech, have also been revealed to correlate with COVID-19 as well. In this work, rather than relying on a specific body sound, we propose Fused Audio Instance and Representation for COVID-19 Detection (FAIR4Cov). It relies on constructing a joint feature vector obtained from a plurality of body sounds in waveform and spectrogram representation. The core component of FAIR4Cov is a self-attention fusion unit that is trained to establish the relation of multiple body sounds and audio representations and integrate it into a compact feature vector. We set up our experiments on different combinations of body sounds using only waveform, spectrogram, and a joint representation of waveform and spectrogram. Our findings show that the use of self-attention to combine extracted features from cough, breath, and speech sounds leads to the best performance with an Area Under the Receiver Operating Characteristic Curve (AUC) score of 0.8658, a sensitivity of 0.8057, and a specificity of 0.7958. This AUC is 0.0227 higher than the one of the models trained on spectrograms only and 0.0847 higher than the one of the models trained on waveforms only. The results demonstrate that the combination of spectrogram with waveform representation helps to enrich the extracted features and outperforms the models with single representation.
107,345
107,345
Emergent Communication for Understanding Human Language Evolution: What's Missing?
Emergent communication protocols among humans and artificial neural network agents do not yet share the same properties and show some critical mismatches in results. We describe three important phenomena with respect to the emergence and benefits of compositionality: ease-of-learning, generalization, and group size effects (i.e., larger groups create more systematic languages). The latter two are not fully replicated with neural agents, which hinders the use of neural emergent communication for language evolution research. We argue that one possible reason for these mismatches is that key cognitive and communicative constraints of humans are not yet integrated. Specifically, in humans, memory constraints and the alternation between the roles of speaker and listener underlie the emergence of linguistic structure, yet these constraints are typically absent in neural simulations. We suggest that introducing such communicative and cognitive constraints would promote more linguistically plausible behaviors with neural agents.
107,346
107,346
Spacing Loss for Discovering Novel Categories
Novel Class Discovery (NCD) is a learning paradigm, where a machine learning model is tasked to semantically group instances from unlabeled data, by utilizing labeled instances from a disjoint set of classes. In this work, we first characterize existing NCD approaches into single-stage and two-stage methods based on whether they require access to labeled and unlabeled data together while discovering new classes. Next, we devise a simple yet powerful loss function that enforces separability in the latent space using cues from multi-dimensional scaling, which we refer to as Spacing Loss. Our proposed formulation can either operate as a standalone method or can be plugged into existing methods to enhance them. We validate the efficacy of Spacing Loss with thorough experimental evaluation across multiple settings on CIFAR-10 and CIFAR-100 datasets.
107,347
107,347
Balancing Expert Utilization in Mixture-of-Experts Layers Embedded in CNNs
This work addresses the problem of unbalanced expert utilization in sparsely-gated Mixture of Expert (MoE) layers, embedded directly into convolutional neural networks. To enable a stable training process, we present both soft and hard constraint-based approaches. With hard constraints, the weights of certain experts are allowed to become zero, while soft constraints balance the contribution of experts with an additional auxiliary loss. As a result, soft constraints handle expert utilization better and support the expert specialization process, hard constraints mostly maintain generalized experts and increase the model performance for many applications. Our findings demonstrate that even with a single dataset and end-to-end training, experts can implicitly focus on individual sub-domains of the input space. Experts in the proposed models with MoE embeddings implicitly focus on distinct domains, even without suitable predefined datasets. As an example, experts trained for CIFAR-100 image classification specialize in recognizing different domains such as sea animals or flowers without previous data clustering. Experiments with RetinaNet and the COCO dataset further indicate that object detection experts can also specialize in detecting objects of distinct sizes.
107,348
107,348
Federated Learning via Inexact ADMM
One of the crucial issues in federated learning is how to develop efficient optimization algorithms. Most of the current ones require full devices participation and/or impose strong assumptions for convergence. Different from the widely-used gradient descent-based algorithms, this paper develops an inexact alternating direction method of multipliers (ADMM), which is both computation and communication-efficient, capable of combating the stragglers' effect, and convergent under mild conditions.
107,349
107,349
Modelling graph dynamics in fraud detection with "Attention"
At online retail platforms, detecting fraudulent accounts and transactions is crucial to improve customer experience, minimize loss, and avoid unauthorized transactions. Despite the variety of different models for deep learning on graphs, few approaches have been proposed for dealing with graphs that are both heterogeneous and dynamic. In this paper, we propose DyHGN (Dynamic Heterogeneous Graph Neural Network) and its variants to capture both temporal and heterogeneous information. We first construct dynamic heterogeneous graphs from registration and transaction data from eBay. Then, we build models with diachronic entity embedding and heterogeneous graph transformer. We also use model explainability techniques to understand the behaviors of DyHGN-* models. Our findings reveal that modelling graph dynamics with heterogeneous inputs need to be conducted with "attention" depending on the data structure, distribution, and computation cost.
107,350
107,350
MEKER: Memory Efficient Knowledge Embedding Representation for Link Prediction and Question Answering
Knowledge Graphs (KGs) are symbolically structured storages of facts. The KG embedding contains concise data used in NLP tasks requiring implicit information about the real world. Furthermore, the size of KGs that may be useful in actual NLP assignments is enormous, and creating embedding over it has memory cost issues. We represent KG as a 3rd-order binary tensor and move beyond the standard CP decomposition by using a data-specific generalized version of it. The generalization of the standard CP-ALS algorithm allows obtaining optimization gradients without a backpropagation mechanism. It reduces the memory needed in training while providing computational benefits. We propose a MEKER, a memory-efficient KG embedding model, which yields SOTA-comparable performance on link prediction tasks and KG-based Question Answering.
107,351
107,351
Log-based Sparse Nonnegative Matrix Factorization for Data Representation
Nonnegative matrix factorization (NMF) has been widely studied in recent years due to its effectiveness in representing nonnegative data with parts-based representations. For NMF, a sparser solution implies better parts-based representation.However, current NMF methods do not always generate sparse solutions.In this paper, we propose a new NMF method with log-norm imposed on the factor matrices to enhance the sparseness.Moreover, we propose a novel column-wisely sparse norm, named $\ell_{2,\log}$-(pseudo) norm to enhance the robustness of the proposed method.The $\ell_{2,\log}$-(pseudo) norm is invariant, continuous, and differentiable.For the $\ell_{2,\log}$ regularized shrinkage problem, we derive a closed-form solution, which can be used for other general problems.Efficient multiplicative updating rules are developed for the optimization, which theoretically guarantees the convergence of the objective value sequence.Extensive experimental results confirm the effectiveness of the proposed method, as well as the enhanced sparseness and robustness.
107,352
107,352
3D pride without 2D prejudice: Bias-controlled multi-level generative models for structure-based ligand design
Generative models for structure-based molecular design hold significant promise for drug discovery, with the potential to speed up the hit-to-lead development cycle, while improving the quality of drug candidates and reducing costs. Data sparsity and bias are, however, two main roadblocks to the development of 3D-aware models. Here we propose a first-in-kind training protocol based on multi-level contrastive learning for improved bias control and data efficiency. The framework leverages the large data resources available for 2D generative modelling with datasets of ligand-protein complexes. The result are hierarchical generative models that are topologically unbiased, explainable and customizable. We show how, by deconvolving the generative posterior into chemical, topological and structural context factors, we not only avoid common pitfalls in the design and evaluation of generative models, but furthermore gain detailed insight into the generative process itself. This improved transparency significantly aids method development, besides allowing fine-grained control over novelty vs familiarity.
107,353
107,353
Paramixer: Parameterizing Mixing Links in Sparse Factors Works Better than Dot-Product Self-Attention
Self-Attention is a widely used building block in neural modeling to mix long-range data elements. Most self-attention neural networks employ pairwise dot-products to specify the attention coefficients. However, these methods require $O(N^2)$ computing cost for sequence length $N$. Even though some approximation methods have been introduced to relieve the quadratic cost, the performance of the dot-product approach is still bottlenecked by the low-rank constraint in the attention matrix factorization. In this paper, we propose a novel scalable and effective mixing building block called Paramixer. Our method factorizes the interaction matrix into several sparse matrices, where we parameterize the non-zero entries by MLPs with the data elements as input. The overall computing cost of the new building block is as low as $O(N \log N)$. Moreover, all factorizing matrices in Paramixer are full-rank, so it does not suffer from the low-rank bottleneck. We have tested the new method on both synthetic and various real-world long sequential data sets and compared it with several state-of-the-art attention networks. The experimental results show that Paramixer has better performance in most learning tasks.
107,354
107,354
Generative De Novo Protein Design with Global Context
The linear sequence of amino acids determines protein structure and function. Protein design, known as the inverse of protein structure prediction, aims to obtain a novel protein sequence that will fold into the defined structure. Recent works on computational protein design have studied designing sequences for the desired backbone structure with local positional information and achieved competitive performance. However, similar local environments in different backbone structures may result in different amino acids, indicating that protein structure's global context matters. Thus, we propose the Global-Context Aware generative de novo protein design method (GCA), consisting of local and global modules. While local modules focus on relationships between neighbor amino acids, global modules explicitly capture non-local contexts. Experimental results demonstrate that the proposed GCA method outperforms state-of-the-arts on de novo protein design. Our code and pretrained model will be released.
107,355
107,355
Unknown Face Presentation Attack Detection via Localised Learning of Multiple Kernels
The paper studies face spoofing, a.k.a. presentation attack detection (PAD) in the demanding scenarios of unknown types of attack. While earlier studies have revealed the benefits of ensemble methods, and in particular, a multiple kernel learning approach to the problem, one limitation of such techniques is that they typically treat the entire observation space similarly and ignore any variability and local structure inherent to the data. This work studies this aspect of the face presentation attack detection problem in relation to multiple kernel learning in a one-class setting to benefit from intrinsic local structure in bona fide face samples. More concretely, inspired by the success of the one-class Fisher null formalism, we formulate a convex localised multiple kernel learning algorithm by imposing a joint matrix-norm constraint on the collection of local kernel weights and infer locally adaptive weights for zero-shot one-class unseen attack detection. We present a theoretical study of the proposed localised MKL algorithm using Rademacher complexities to characterise its generalisation capability and demonstrate the advantages of the proposed technique over some other options. An assessment of the proposed approach on general object image datasets illustrates its efficacy for abnormality and novelty detection while the results of the experiments on face PAD datasets verifies its potential in detecting unknown/unseen face presentation attacks.
107,356
107,356
TASAC: a twin-actor reinforcement learning framework with stochastic policy for batch process control
Due to their complex nonlinear dynamics and batch-to-batch variability, batch processes pose a challenge for process control. Due to the absence of accurate models and resulting plant-model mismatch, these problems become harder to address for advanced model-based control strategies. Reinforcement Learning (RL), wherein an agent learns the policy by directly interacting with the environment, offers a potential alternative in this context. RL frameworks with actor-critic architecture have recently become popular for controlling systems where state and action spaces are continuous. It has been shown that an ensemble of actor and critic networks further helps the agent learn better policies due to the enhanced exploration due to simultaneous policy learning. To this end, the current study proposes a stochastic actor-critic RL algorithm, termed Twin Actor Soft Actor-Critic (TASAC), by incorporating an ensemble of actors for learning, in a maximum entropy framework, for batch process control.
107,357
107,357
Universum-inspired Supervised Contrastive Learning
Mixup is an efficient data augmentation method which generates additional samples through respective convex combinations of original data points and labels. Although being theoretically dependent on data properties, Mixup is reported to perform well as a regularizer and calibrator contributing reliable robustness and generalization to neural network training. In this paper, inspired by Universum Learning which uses out-of-class samples to assist the target tasks, we investigate Mixup from a largely under-explored perspective - the potential to generate in-domain samples that belong to none of the target classes, that is, universum. We find that in the framework of supervised contrastive learning, universum-style Mixup produces surprisingly high-quality hard negatives, greatly relieving the need for a large batch size in contrastive learning. With these findings, we propose Universum-inspired Contrastive learning (UniCon), which incorporates Mixup strategy to generate universum data as g-negatives and pushes them apart from anchor samples of the target classes. Our approach not only improves Mixup with hard labels, but also innovates a novel measure to generate universum data. With a linear classifier on the learned representations, our method achieves 81.68% top-1 accuracy on CIFAR-100, surpassing the state of art by a significant margin of 5% with a much smaller batch size, typically, 256 in UniCon vs. 1024 in SupCon using ResNet-50.
107,358
107,358
Quantum Semi-Supervised Kernel Learning
Quantum computing leverages quantum effects to build algorithms that are faster then their classical variants. In machine learning, for a given model architecture, the speed of training the model is typically determined by the size of the training dataset. Thus, quantum machine learning methods have the potential to facilitate learning using extremely large datasets. While the availability of data for training machine learning models is steadily increasing, oftentimes it is much easier to collect feature vectors that to obtain the corresponding labels. One of the approaches for addressing this issue is to use semi-supervised learning, which leverages not only the labeled samples, but also unlabeled feature vectors. Here, we present a quantum machine learning algorithm for training Semi-Supervised Kernel Support Vector Machines. The algorithm uses recent advances in quantum sample-based Hamiltonian simulation to extend the existing Quantum LS-SVM algorithm to handle the semi-supervised term in the loss. Through a theoretical study of the algorithm's computational complexity, we show that it maintains the same speedup as the fully-supervised Quantum LS-SVM.
107,359
107,359
EmbedTrack -- Simultaneous Cell Segmentation and Tracking Through Learning Offsets and Clustering Bandwidths
A systematic analysis of the cell behavior requires automated approaches for cell segmentation and tracking. While deep learning has been successfully applied for the task of cell segmentation, there are few approaches for simultaneous cell segmentation and tracking using deep learning. Here, we present EmbedTrack, a single convolutional neural network for simultaneous cell segmentation and tracking which predicts easy to interpret embeddings. As embeddings, offsets of cell pixels to their cell center and bandwidths are learned. We benchmark our approach on nine 2D data sets from the Cell Tracking Challenge, where our approach performs on seven out of nine data sets within the top 3 contestants including three top 1 performances. The source code is publicly available at https://git.scc.kit.edu/kit-loe-ge/embedtrack.
107,360
107,360
Hierarchical Label-wise Attention Transformer Model for Explainable ICD Coding
International Classification of Diseases (ICD) coding plays an important role in systematically classifying morbidity and mortality data. In this study, we propose a hierarchical label-wise attention Transformer model (HiLAT) for the explainable prediction of ICD codes from clinical documents. HiLAT firstly fine-tunes a pretrained Transformer model to represent the tokens of clinical documents. We subsequently employ a two-level hierarchical label-wise attention mechanism that creates label-specific document representations. These representations are in turn used by a feed-forward neural network to predict whether a specific ICD code is assigned to the input clinical document of interest. We evaluate HiLAT using hospital discharge summaries and their corresponding ICD-9 codes from the MIMIC-III database. To investigate the performance of different types of Transformer models, we develop ClinicalplusXLNet, which conducts continual pretraining from XLNet-Base using all the MIMIC-III clinical notes. The experiment results show that the F1 scores of the HiLAT+ClinicalplusXLNet outperform the previous state-of-the-art models for the top-50 most frequent ICD-9 codes from MIMIC-III. Visualisations of attention weights present a potential explainability tool for checking the face validity of ICD code predictions.
107,361
107,361
E2E Segmenter: Joint Segmenting and Decoding for Long-Form ASR
Improving the performance of end-to-end ASR models on long utterances ranging from minutes to hours in length is an ongoing challenge in speech recognition. A common solution is to segment the audio in advance using a separate voice activity detector (VAD) that decides segment boundary locations based purely on acoustic speech/non-speech information. VAD segmenters, however, may be sub-optimal for real-world speech where, e.g., a complete sentence that should be taken as a whole may contain hesitations in the middle ("set an alarm for... 5 o'clock"). We propose to replace the VAD with an end-to-end ASR model capable of predicting segment boundaries in a streaming fashion, allowing the segmentation decision to be conditioned not only on better acoustic features but also on semantic features from the decoded text with negligible extra computation. In experiments on real world long-form audio (YouTube) with lengths of up to 30 minutes, we demonstrate 8.5% relative WER improvement and 250 ms reduction in median end-of-segment latency compared to the VAD segmenter baseline on a state-of-the-art Conformer RNN-T model.
107,362
107,362
The Boltzmann Policy Distribution: Accounting for Systematic Suboptimality in Human Models
Models of human behavior for prediction and collaboration tend to fall into two categories: ones that learn from large amounts of data via imitation learning, and ones that assume human behavior to be noisily-optimal for some reward function. The former are very useful, but only when it is possible to gather a lot of human data in the target environment and distribution. The advantage of the latter type, which includes Boltzmann rationality, is the ability to make accurate predictions in new environments without extensive data when humans are actually close to optimal. However, these models fail when humans exhibit systematic suboptimality, i.e. when their deviations from optimal behavior are not independent, but instead consistent over time. Our key insight is that systematic suboptimality can be modeled by predicting policies, which couple action choices over time, instead of trajectories. We introduce the Boltzmann policy distribution (BPD), which serves as a prior over human policies and adapts via Bayesian inference to capture systematic deviations by observing human actions during a single episode. The BPD is difficult to compute and represent because policies lie in a high-dimensional continuous space, but we leverage tools from generative and sequence models to enable efficient sampling and inference. We show that the BPD enables prediction of human behavior and human-AI collaboration equally as well as imitation learning-based human models while using far less data.
107,363
107,363
Constructing dynamic residential energy lifestyles using Latent Dirichlet Allocation
The rapid expansion of Advanced Meter Infrastructure (AMI) has dramatically altered the energy information landscape. However, our ability to use this information to generate actionable insights about residential electricity demand remains limited. In this research, we propose and test a new framework for understanding residential electricity demand by using a dynamic energy lifestyles approach that is iterative and highly extensible. To obtain energy lifestyles, we develop a novel approach that applies Latent Dirichlet Allocation (LDA), a method commonly used for inferring the latent topical structure of text data, to extract a series of latent household energy attributes. By doing so, we provide a new perspective on household electricity consumption where each household is characterized by a mixture of energy attributes that form the building blocks for identifying a sparse collection of energy lifestyles. We examine this approach by running experiments on one year of hourly smart meter data from 60,000 households and we extract six energy attributes that describe general daily use patterns. We then use clustering techniques to derive six distinct energy lifestyle profiles from energy attribute proportions. Our lifestyle approach is also flexible to varying time interval lengths, and we test our lifestyle approach seasonally (Autumn, Winter, Spring, and Summer) to track energy lifestyle dynamics within and across households and find that around 73% of households manifest multiple lifestyles across a year. These energy lifestyles are then compared to different energy use characteristics, and we discuss their practical applications for demand response program design and lifestyle change analysis.
107,364
107,364
Denoising of Three-Dimensional Fast Spin Echo Magnetic Resonance Images of Knee Joints using Spatial-Variant Noise-Relevant Residual Learning of Convolution Neural Network
Two-dimensional (2D) fast spin echo (FSE) techniques play a central role in the clinical magnetic resonance imaging (MRI) of knee joints. Moreover, three-dimensional (3D) FSE provides high-isotropic-resolution magnetic resonance (MR) images of knee joints, but it has a reduced signal-to-noise ratio compared to 2D FSE. Deep-learning denoising methods are a promising approach for denoising MR images, but they are often trained using synthetic noise due to challenges in obtaining true noise distributions for MR images. In this study, inherent true noise information from 2-NEX acquisition was used to develop a deep-learning model based on residual learning of convolutional neural network (CNN), and this model was used to suppress the noise in 3D FSE MR images of knee joints. The proposed CNN used two-step residual learning over parallel transporting and residual blocks and was designed to comprehensively learn real noise features from 2-NEX training data. The results of an ablation study validated the network design. The new method achieved improved denoising performance of 3D FSE knee MR images compared with current state-of-the-art methods, based on the peak signal-to-noise ratio and structural similarity index measure. The improved image quality after denoising using the new method was verified by radiological evaluation. A deep CNN using the inherent spatial-varying noise information in 2-NEX acquisitions was developed. This method showed promise for clinical MRI assessments of the knee, and has potential applications for the assessment of other anatomical structures.
107,365
107,365
ParkPredict+: Multimodal Intent and Motion Prediction for Vehicles in Parking Lots with CNN and Transformer
The problem of multimodal intent and trajectory prediction for human-driven vehicles in parking lots is addressed in this paper. Using models designed with CNN and Transformer networks, we extract temporal-spatial and contextual information from trajectory history and local bird's eye view (BEV) semantic images, and generate predictions about intent distribution and future trajectory sequences. Our methods outperforms existing models in accuracy, while allowing an arbitrary number of modes, encoding complex multi-agent scenarios, and adapting to different parking maps. In addition, we present the first public human driving dataset in parking lot with high resolution and rich traffic scenarios for relevant research in this field.
107,366
107,366
Centralized Adversarial Learning for Robust Deep Hashing
Deep hashing has been extensively utilized in massive image retrieval because of its efficiency and effectiveness. Recently, it becomes a hot issue to study adversarial examples which poses a security challenge to deep hashing models. However, there is still a critical bottleneck: how to find a superior and exact semantic representative as the guide to further enhance the adversarial attack and defense in deep hashing based retrieval. We, for the first time, attempt to design an effective adversarial learning with the min-max paradigm to improve the robustness of hashing networks by using the generated adversarial samples. Specifically, we obtain the optimal solution (called center code) through a proved Continuous Hash Center Method (CHCM), which preserves the semantic similarity with positive samples and dissimilarity with negative samples. On one hand, we propose the Deep Hashing Central Attack (DHCA) for efficient attack on hashing retrieval by maximizing the Hamming distance between the hash code of adversarial example and the center code. On the other hand, we present the Deep Hashing Central Adversarial Training (DHCAT) to optimize the hashing networks for defense, by minimizing the Hamming distance to the center code. Extensive experiments on the benchmark datasets verify that our attack method can achieve better performance than the state-of-the-arts, and our defense algorithm can effectively mitigate the effects of adversarial perturbations.
107,367
107,367
On Feature Learning in Neural Networks with Global Convergence Guarantees
We study the optimization of wide neural networks (NNs) via gradient flow (GF) in setups that allow feature learning while admitting non-asymptotic global convergence guarantees. First, for wide shallow NNs under the mean-field scaling and with a general class of activation functions, we prove that when the input dimension is no less than the size of the training set, the training loss converges to zero at a linear rate under GF. Building upon this analysis, we study a model of wide multi-layer NNs whose second-to-last layer is trained via GF, for which we also prove a linear-rate convergence of the training loss to zero, but regardless of the input dimension. We also show empirically that, unlike in the Neural Tangent Kernel (NTK) regime, our multi-layer model exhibits feature learning and can achieve better generalization performance than its NTK counterpart.
107,368
107,368
MNL-Bandits under Inventory and Limited Switches Constraints
Optimizing the assortment of products to display to customers is a key to increasing revenue for both offline and online retailers. To trade-off between exploring customers' preference and exploiting customers' choices learned from data, in this paper, by adopting the Multi-Nomial Logit (MNL) choice model to capture customers' choices over products, we study the problem of optimizing assortments over a planning horizon $T$ for maximizing the profit of the retailer. To make the problem setting more practical, we consider both the inventory constraint and the limited switches constraint, where the retailer cannot use up the resource inventory before time $T$ and is forbidden to switch the assortment shown to customers too many times. Such a setting suits the case when an online retailer wants to dynamically optimize the assortment selection for a population of customers. We develop an efficient UCB-like algorithm to optimize the assortments while learning customers' choices from data. We prove that our algorithm can achieve a sub-linear regret bound $\tilde{O}\left(T^{1-\alpha/2}\right)$ if $O(T^\alpha)$ switches are allowed. %, and our regret bound is optimal with respect to $T$. Extensive numerical experiments show that our algorithm outperforms baselines and the gap between our algorithm's performance and the theoretical upper bound is small.
107,369
107,369
A Unifying Framework for Combining Complementary Strengths of Humans and ML toward Better Predictive Decision-Making
Hybrid human-ML systems are increasingly in charge of consequential decisions in a wide range of domains. A growing body of work has advanced our understanding of these systems by providing empirical and theoretical analyses. However, existing empirical results are mixed, and theoretical proposals are often incompatible with each other. Our goal in this work is to bring much-needed organization to this field by offering a unifying framework for understanding conditions under which combining complementary strengths of human and ML leads to higher quality decisions than those produced by them individually -- a state to which we refer to as human-ML complementarity. We focus specifically on the context of human-ML predictive decision-making systems and investigate optimal ways of combining human and ML-based predictive decisions, accounting for the underlying causes of variation in their judgments. Within this scope, we present two crucial contributions. First, drawing upon prior literature in human psychology, machine learning, and human-computer interaction, we introduce a taxonomy characterizing a wide variety of criteria across which human and machine decision-making differ. Building on our taxonomy, our second contribution presents a unifying optimization-based framework for formalizing how human and ML predictive decisions should be aggregated optimally. We show that our proposed framework encompasses several existing models of human-ML complementarity as special cases. Last but not least, the exploratory analysis of our framework offers a critical piece of insight for future work in this area: the mechanism by which we combine human-ML judgments should be informed by the underlying causes of their diverging decisions.
107,370
107,370
Predicting highway lane-changing maneuvers: A benchmark analysis of machine and ensemble learning algorithms
Understanding and predicting highway lane-change maneuvers is essential for driving modeling and its automation. The development of data-based lane-changing decision-making algorithms is nowadays in full expansion. We compare empirically in this article different machine and ensemble learning classification techniques to the MOBIL rule-based model using trajectory data of European two-lane highways. The analysis relies on instantaneous measurements of up to twenty-four spatial-temporal variables with the four neighboring vehicles on current and adjacent lanes. Preliminary descriptive investigations by principal component and logistic analyses allow identifying main variables intending a driver to change lanes. We predict two types of discretionary lane-change maneuvers: Overtaking (from slow to fast lane) and fold-down (from fast to slow lane). The prediction accuracy is quantified using total, lane-changing and lane-keeping errors and associated receiver operating characteristic curves. The benchmark analysis includes logistic model, linear discriminant, decision tree, na\"ive Bayes classifier, support vector machine, neural network machine learning algorithms, and up to ten bagging and stacking ensemble learning meta-heuristics. If the rule-based model provides limited predicting accuracy, especially in case of fold-down, the data-based algorithms, devoid of modeling bias, allow significant prediction improvements. Cross validations show that selected neural networks and stacking algorithms allow predicting from a single observation both fold-down and overtaking maneuvers up to four seconds in advance with high accuracy.
107,371
107,371
Learning to Scaffold: Optimizing Model Explanations for Teaching
Modern machine learning models are opaque, and as a result there is a burgeoning academic subfield on methods that explain these models' behavior. However, what is the precise goal of providing such explanations, and how can we demonstrate that explanations achieve this goal? Some research argues that explanations should help teach a student (either human or machine) to simulate the model being explained, and that the quality of explanations can be measured by the simulation accuracy of students on unexplained examples. In this work, leveraging meta-learning techniques, we extend this idea to improve the quality of the explanations themselves, specifically by optimizing explanations such that student models more effectively learn to simulate the original model. We train models on three natural language processing and computer vision tasks, and find that students trained with explanations extracted with our framework are able to simulate the teacher significantly more effectively than ones produced with previous methods. Through human annotations and a user study, we further find that these learned explanations more closely align with how humans would explain the required decisions in these tasks. Our code is available at https://github.com/coderpat/learning-scaffold
107,372
107,372
Reward Reports for Reinforcement Learning
The desire to build good systems in the face of complex societal effects requires a dynamic approach towards equity and access. Recent approaches to machine learning (ML) documentation have demonstrated the promise of discursive frameworks for deliberation about these complexities. However, these developments have been grounded in a static ML paradigm, leaving the role of feedback and post-deployment performance unexamined. Meanwhile, recent work in reinforcement learning design has shown that the effects of optimization objectives on the resultant system behavior can be wide-ranging and unpredictable. In this paper we sketch a framework for documenting deployed learning systems, which we call Reward Reports. Taking inspiration from various contributions to the technical literature on reinforcement learning, we outline Reward Reports as living documents that track updates to design choices and assumptions behind what a particular automated system is optimizing for. They are intended to track dynamic phenomena arising from system deployment, rather than merely static properties of models or data. After presenting the elements of a Reward Report, we provide three examples: DeepMind's MuZero, MovieLens, and a hypothetical deployment of a Project Flow traffic control policy.
107,373
107,373
Convergence of the Riemannian Langevin Algorithm
We study the Riemannian Langevin Algorithm for the problem of sampling from a distribution with density $\nu$ with respect to the natural measure on a manifold with metric $g$. We assume that the target density satisfies a log-Sobolev inequality with respect to the metric and prove that the manifold generalization of the Unadjusted Langevin Algorithm converges rapidly to $\nu$ for Hessian manifolds. This allows us to reduce the problem of sampling non-smooth (constrained) densities in ${\bf R}^n$ to sampling smooth densities over appropriate manifolds, while needing access only to the gradient of the log-density, and this, in turn, to sampling from the natural Brownian motion on the manifold. Our main analytic tools are (1) an extension of self-concordance to manifolds, and (2) a stochastic approach to bounding smoothness on manifolds. A special case of our approach is sampling isoperimetric densities restricted to polytopes by using the metric defined by the logarithmic barrier.
107,374
107,374
Memory Bounds for Continual Learning
Continual learning, or lifelong learning, is a formidable current challenge to machine learning. It requires the learner to solve a sequence of $k$ different learning tasks, one after the other, while retaining its aptitude for earlier tasks; the continual learner should scale better than the obvious solution of developing and maintaining a separate learner for each of the $k$ tasks. We embark on a complexity-theoretic study of continual learning in the PAC framework. We make novel uses of communication complexity to establish that any continual learner, even an improper one, needs memory that grows linearly with $k$, strongly suggesting that the problem is intractable. When logarithmically many passes over the learning tasks are allowed, we provide an algorithm based on multiplicative weights update whose memory requirement scales well; we also establish that improper learning is necessary for such performance. We conjecture that these results may lead to new promising approaches to continual learning.
107,375
107,375
Learning for Spatial Branching: An Algorithm Selection Approach
The use of machine learning techniques to improve the performance of branch-and-bound optimization algorithms is a very active area in the context of mixed integer linear problems, but little has been done for non-linear optimization. To bridge this gap, we develop a learning framework for spatial branching and show its efficacy in the context of the Reformulation-Linearization Technique for polynomial optimization problems. The proposed learning is performed offline, based on instance-specific features and with no computational overhead when solving new instances. Novel graph-based features are introduced, which turn out to play an important role for the learning. Experiments on different benchmark instances from the literature show that the learning-based branching rule significantly outperforms the standard rules.
107,376
107,376
Federated Learning Enables Big Data for Rare Cancer Boundary Detection
Although machine learning (ML) has shown promise in numerous domains, there are concerns about generalizability to out-of-sample data. This is currently addressed by centrally sharing ample, and importantly diverse, data from multiple sites. However, such centralization is challenging to scale (or even not feasible) due to various limitations. Federated ML (FL) provides an alternative to train accurate and generalizable ML models, by only sharing numerical model updates. Here we present findings from the largest FL study to-date, involving data from 71 healthcare institutions across 6 continents, to generate an automatic tumor boundary detector for the rare disease of glioblastoma, utilizing the largest dataset of such patients ever used in the literature (25,256 MRI scans from 6,314 patients). We demonstrate a 33% improvement over a publicly trained model to delineate the surgically targetable tumor, and 23% improvement over the tumor's entire extent. We anticipate our study to: 1) enable more studies in healthcare informed by large and diverse data, ensuring meaningful results for rare diseases and underrepresented populations, 2) facilitate further quantitative analyses for glioblastoma via performance optimization of our consensus model for eventual public release, and 3) demonstrate the effectiveness of FL at such scale and task complexity as a paradigm shift for multi-site collaborations, alleviating the need for data sharing.
107,377
107,377
How Sampling Impacts the Robustness of Stochastic Neural Networks
Stochastic neural networks (SNNs) are random functions and predictions are gained by averaging over multiple realizations of this random function. Consequently, an adversarial attack is calculated based on one set of samples and applied to the prediction defined by another set of samples. In this paper we analyze robustness in this setting by deriving a sufficient condition for the given prediction process to be robust against the calculated attack. This allows us to identify the factors that lead to an increased robustness of SNNs and helps to explain the impact of the variance and the amount of samples. Among other things, our theoretical analysis gives insights into (i) why increasing the amount of samples drawn for the estimation of adversarial examples increases the attack's strength, (ii) why decreasing sample size during inference hardly influences the robustness, and (iii) why a higher prediction variance between realizations relates to a higher robustness. We verify the validity of our theoretical findings by an extensive empirical analysis.
107,378
107,378
Detecting early signs of depression in the conversational domain: The role of transfer learning in low-resource scenarios
The high prevalence of depression in society has given rise to the need for new digital tools to assist in its early detection. To this end, existing research has mainly focused on detecting depression in the domain of social media, where there is a sufficient amount of data. However, with the rise of conversational agents like Siri or Alexa, the conversational domain is becoming more critical. Unfortunately, there is a lack of data in the conversational domain. We perform a study focusing on domain adaptation from social media to the conversational domain. Our approach mainly exploits the linguistic information preserved in the vector representation of text. We describe transfer learning techniques to classify users who suffer from early signs of depression with high recall. We achieve state-of-the-art results on a commonly used conversational dataset, and we highlight how the method can easily be used in conversational agents. We publicly release all source code.
107,379
107,379
Learning-to-Rank at the Speed of Sampling: Plackett-Luce Gradient Estimation With Minimal Computational Complexity
Plackett-Luce gradient estimation enables the optimization of stochastic ranking models within feasible time constraints through sampling techniques. Unfortunately, the computational complexity of existing methods does not scale well with the length of the rankings, i.e. the ranking cutoff, nor with the item collection size. In this paper, we introduce the novel PL-Rank-3 algorithm that performs unbiased gradient estimation with a computational complexity comparable to the best sorting algorithms. As a result, our novel learning-to-rank method is applicable in any scenario where standard sorting is feasible in reasonable time. Our experimental results indicate large gains in the time required for optimization, without any loss in performance. For the field, our contribution could potentially allow state-of-the-art learning-to-rank methods to be applied to much larger scales than previously feasible.
107,380
107,380
Compressibility: Power of PCA in Clustering Problems Beyond Dimensionality Reduction
In this paper we take a step towards understanding the impact of principle component analysis (PCA) in the context of unsupervised clustering beyond a dimensionality reduction tool. We explore another property of PCA in vector clustering problems, which we call compressibility. This phenomenon shows that PCA significantly reduces the distance of data points belonging to the same clusters, while reducing inter-cluster distances relatively mildly. This gap explains many empirical observations found in practice. For example, in single-cell RNA-sequencing analysis, which is an application of vector clustering in biology, it has been observed that applying PCA on datasets significantly improves the accuracy of classical clustering algorithms such as K-means. We study this compression gap in both theory and practice. On the theoretical side, we analyze PCA in a fairly general probabilistic setup, which we call the random vector model. In terms of practice, we verify the compressibility of PCA on multiple single-cell RNA-seq datasets.
107,381
107,381
Generative sampling in tractography using autoencoders (GESTA)
Current tractography methods use the local orientation information to propagate streamlines from seed locations. Many such seeds provide streamlines that stop prematurely or fail to map the true pathways because some white matter bundles are "harder-to-track" than others. This results in tractography reconstructions with poor white and gray matter spatial coverage. In this work, we propose a generative, autoencoder-based method, named GESTA (Generative Sampling in Tractography using Autoencoders), that produces streamlines with better spatial coverage. Compared to other deep learning methods, our autoencoder-based framework is not constrained by any prior or a fixed set of bundles. GESTA produces new and complete streamlines for any white matter bundle. GESTA is shown to be effective on both synthetic and human brain in vivo data. Our streamline evaluation framework ensures that the streamlines produced by GESTA are anatomically plausible and fit well to the local diffusion signal. The streamline evaluation criteria assess anatomy (white matter coverage), local orientation alignment (direction), geometry features of streamlines, and optionally, gray matter connectivity. The GESTA framework offers considerable gains in bundle coverage using a reduced set of seeding streamlines with a 1.5x improvement for the "Fiber Cup", and 6x for the ISMRM 2015 Tractography Challenge datasets. Similarly, it provides a 4x white matter volume increase on the BIL&GIN callosal homotopic dataset. It also successfully generates new streamlines in poorly populated bundles, such as the fornix and other hard-to-track bundles, on in vivo data. GESTA is thus the first deep tractography generative method that can improve white matter reconstruction of hard-to-track bundles.
107,382
107,382
Comparative Study of Machine Learning Test Case Prioritization for Continuous Integration Testing
There is a growing body of research indicating the potential of machine learning to tackle complex software testing challenges. One such challenge pertains to continuous integration testing, which is highly time-constrained, and generates a large amount of data coming from iterative code commits and test runs. In such a setting, we can use plentiful test data for training machine learning predictors to identify test cases able to speed up the detection of regression bugs introduced during code integration. However, different machine learning models can have different fault prediction performance depending on the context and the parameters of continuous integration testing, for example variable time budget available for continuous integration cycles, or the size of test execution history used for learning to prioritize failing test cases. Existing studies on test case prioritization rarely study both of these factors, which are essential for the continuous integration practice. In this study we perform a comprehensive comparison of the fault prediction performance of machine learning approaches that have shown the best performance on test case prioritization tasks in the literature. We evaluate the accuracy of the classifiers in predicting fault-detecting tests for different values of the continuous integration time budget and with different length of test history used for training the classifiers. In evaluation, we use real-world industrial datasets from a continuous integration practice. The results show that different machine learning models have different performance for different size of test history used for model training and for different time budget available for test case execution. Our results imply that machine learning approaches for test prioritization in continuous integration testing should be carefully configured to achieve optimal performance.
107,383
107,383
Label a Herd in Minutes: Individual Holstein-Friesian Cattle Identification
We describe a practically evaluated approach for training visual cattle ID systems for a whole farm requiring only ten minutes of labelling effort. In particular, for the task of automatic identification of individual Holstein-Friesians in real-world farm CCTV, we show that self-supervision, metric learning, cluster analysis, and active learning can complement each other to significantly reduce the annotation requirements usually needed to train cattle identification frameworks. Evaluating the approach on the test portion of the publicly available Cows2021 dataset, for training we use 23,350 frames across 435 single individual tracklets generated by automated oriented cattle detection and tracking in operational farm footage. Self-supervised metric learning is first employed to initialise a candidate identity space where each tracklet is considered a distinct entity. Grouping entities into equivalence classes representing cattle identities is then performed by automated merging via cluster analysis and active learning. Critically, we identify the inflection point at which automated choices cannot replicate improvements based on human intervention to reduce annotation to a minimum. Experimental results show that cluster analysis and a few minutes of labelling after automated self-supervision can improve the test identification accuracy of 153 identities to 92.44% (ARI=0.93) from the 74.9% (ARI=0.754) obtained by self-supervision only. These promising results indicate that a tailored combination of human and machine reasoning in visual cattle ID pipelines can be highly effective whilst requiring only minimal labelling effort. We provide all key source code and network weights with this paper for easy result reproduction.
107,384
107,384
Error-in-variables modelling for operator learning
Deep operator learning has emerged as a promising tool for reduced-order modelling and PDE model discovery. Leveraging the expressive power of deep neural networks, especially in high dimensions, such methods learn the mapping between functional state variables. While proposed methods have assumed noise only in the dependent variables, experimental and numerical data for operator learning typically exhibit noise in the independent variables as well, since both variables represent signals that are subject to measurement error. In regression on scalar data, failure to account for noisy independent variables can lead to biased parameter estimates. With noisy independent variables, linear models fitted via ordinary least squares (OLS) will show attenuation bias, wherein the slope will be underestimated. In this work, we derive an analogue of attenuation bias for linear operator regression with white noise in both the independent and dependent variables. In the nonlinear setting, we computationally demonstrate underprediction of the action of the Burgers operator in the presence of noise in the independent variable. We propose error-in-variables (EiV) models for two operator regression methods, MOR-Physics and DeepONet, and demonstrate that these new models reduce bias in the presence of noisy independent variables for a variety of operator learning problems. Considering the Burgers operator in 1D and 2D, we demonstrate that EiV operator learning robustly recovers operators in high-noise regimes that defeat OLS operator learning. We also introduce an EiV model for time-evolving PDE discovery and show that OLS and EiV perform similarly in learning the Kuramoto-Sivashinsky evolution operator from corrupted data, suggesting that the effect of bias in OLS operator learning depends on the regularity of the target operator.
107,385
107,385
Revealing Occlusions with 4D Neural Fields
For computer vision systems to operate in dynamic situations, they need to be able to represent and reason about object permanence. We introduce a framework for learning to estimate 4D visual representations from monocular RGB-D, which is able to persist objects, even once they become obstructed by occlusions. Unlike traditional video representations, we encode point clouds into a continuous representation, which permits the model to attend across the spatiotemporal context to resolve occlusions. On two large video datasets that we release along with this paper, our experiments show that the representation is able to successfully reveal occlusions for several tasks, without any architectural changes. Visualizations show that the attention mechanism automatically learns to follow occluded objects. Since our approach can be trained end-to-end and is easily adaptable, we believe it will be useful for handling occlusions in many video understanding tasks. Data, code, and models are available at https://occlusions.cs.columbia.edu/.
107,386
107,386
SegDiscover: Visual Concept Discovery via Unsupervised Semantic Segmentation
Visual concept discovery has long been deemed important to improve interpretability of neural networks, because a bank of semantically meaningful concepts would provide us with a starting point for building machine learning models that exhibit intelligible reasoning process. Previous methods have disadvantages: either they rely on labelled support sets that incorporate human biases for objects that are "useful," or they fail to identify multiple concepts that occur within a single image. We reframe the concept discovery task as an unsupervised semantic segmentation problem, and present SegDiscover, a novel framework that discovers semantically meaningful visual concepts from imagery datasets with complex scenes without supervision. Our method contains three important pieces: generating concept primitives from raw images, discovering concepts by clustering in the latent space of a self-supervised pretrained encoder, and concept refinement via neural network smoothing. Experimental results provide evidence that our method can discover multiple concepts within a single image and outperforms state-of-the-art unsupervised methods on complex datasets such as Cityscapes and COCO-Stuff. Our method can be further used as a neural network explanation tool by comparing results obtained by different encoders.
107,387
107,387
A Tale of Two Models: Constructing Evasive Attacks on Edge Models
Full-precision deep learning models are typically too large or costly to deploy on edge devices. To accommodate to the limited hardware resources, models are adapted to the edge using various edge-adaptation techniques, such as quantization and pruning. While such techniques may have a negligible impact on top-line accuracy, the adapted models exhibit subtle differences in output compared to the original model from which they are derived. In this paper, we introduce a new evasive attack, DIVA, that exploits these differences in edge adaptation, by adding adversarial noise to input data that maximizes the output difference between the original and adapted model. Such an attack is particularly dangerous, because the malicious input will trick the adapted model running on the edge, but will be virtually undetectable by the original model, which typically serves as the authoritative model version, used for validation, debugging and retraining. We compare DIVA to a state-of-the-art attack, PGD, and show that DIVA is only 1.7-3.6% worse on attacking the adapted model but 1.9-4.2 times more likely not to be detected by the the original model under a whitebox and semi-blackbox setting, compared to PGD.
107,388
107,388
Counterfactual Learning To Rank for Utility-Maximizing Query Autocompletion
Conventional methods for query autocompletion aim to predict which completed query a user will select from a list. A shortcoming of this approach is that users often do not know which query will provide the best retrieval performance on the current information retrieval system, meaning that any query autocompletion methods trained to mimic user behavior can lead to suboptimal query suggestions. To overcome this limitation, we propose a new approach that explicitly optimizes the query suggestions for downstream retrieval performance. We formulate this as a problem of ranking a set of rankings, where each query suggestion is represented by the downstream item ranking it produces. We then present a learning method that ranks query suggestions by the quality of their item rankings. The algorithm is based on a counterfactual learning approach that is able to leverage feedback on the items (e.g., clicks, purchases) to evaluate query suggestions through an unbiased estimator, thus avoiding the assumption that users write or select optimal queries. We establish theoretical support for the proposed approach and provide learning-theoretic guarantees. We also present empirical results on publicly available datasets, and demonstrate real-world applicability using data from an online shopping store.
107,389
107,389
A Multi-level Alignment Training Scheme for Video-and-Language Grounding
To solve video-and-language grounding tasks, the key is for the network to understand the connection between the two modalities. For a pair of video and language description, their semantic relation is reflected by their encodings' similarity. A good multi-modality encoder should be able to well capture both inputs' semantics and encode them in the shared feature space where embedding distance gets properly translated into their semantic similarity. In this work, we focused on this semantic connection between video and language, and developed a multi-level alignment training scheme to directly shape the encoding process. Global and segment levels of video-language alignment pairs were designed, based on the information similarity ranging from high-level context to fine-grained semantics. The contrastive loss was used to contrast the encodings' similarities between the positive and negative alignment pairs, and to ensure the network is trained in such a way that similar information is encoded closely in the shared feature space while information of different semantics is kept apart. Our multi-level alignment training can be applied to various video-and-language grounding tasks. Together with the task-specific training loss, our framework achieved comparable performance to previous state-of-the-arts on multiple video QA and retrieval datasets.
107,390
107,390
Balancing Fairness and Accuracy in Sentiment Detection using Multiple Black Box Models
Sentiment detection is an important building block for multiple information retrieval tasks such as product recommendation, cyberbullying detection, and misinformation detection. Unsurprisingly, multiple commercial APIs, each with different levels of accuracy and fairness, are now available for sentiment detection. While combining inputs from multiple modalities or black-box models for increasing accuracy is commonly studied in multimedia computing literature, there has been little work on combining different modalities for increasing fairness of the resulting decision. In this work, we audit multiple commercial sentiment detection APIs for the gender bias in two actor news headlines settings and report on the level of bias observed. Next, we propose a "Flexible Fair Regression" approach, which ensures satisfactory accuracy and fairness by jointly learning from multiple black-box models. The results pave way for fair yet accurate sentiment detectors for multiple applications.
107,391
107,391
Evaluation of Multi-Scale Multiple Instance Learning to Improve Thyroid Cancer Classification
Thyroid cancer is currently the fifth most common malignancy diagnosed in women. Since differentiation of cancer sub-types is important for treatment and current, manual methods are time consuming and subjective, automatic computer-aided differentiation of cancer types is crucial. Manual differentiation of thyroid cancer is based on tissue sections, analysed by pathologists using histological features. Due to the enormous size of gigapixel whole slide images, holistic classification using deep learning methods is not feasible. Patch based multiple instance learning approaches, combined with aggregations such as bag-of-words, is a common approach. This work's contribution is to extend a patch based state-of-the-art method by generating and combining feature vectors of three different patch resolutions and analysing three distinct ways of combining them. The results showed improvements in one of the three multi-scale approaches, while the others led to decreased scores. This provides motivation for analysis and discussion of the individual approaches.
107,392
107,392
Visual Attention Emerges from Recurrent Sparse Reconstruction
Visual attention helps achieve robust perception under noise, corruption, and distribution shifts in human vision, which are areas where modern neural networks still fall short. We present VARS, Visual Attention from Recurrent Sparse reconstruction, a new attention formulation built on two prominent features of the human visual attention mechanism: recurrency and sparsity. Related features are grouped together via recurrent connections between neurons, with salient objects emerging via sparse regularization. VARS adopts an attractor network with recurrent connections that converges toward a stable pattern over time. Network layers are represented as ordinary differential equations (ODEs), formulating attention as a recurrent attractor network that equivalently optimizes the sparse reconstruction of input using a dictionary of "templates" encoding underlying patterns of data. We show that self-attention is a special case of VARS with a single-step optimization and no sparsity constraint. VARS can be readily used as a replacement for self-attention in popular vision transformers, consistently improving their robustness across various benchmarks. Code is released on GitHub (https://github.com/bfshi/VARS).
107,393
107,393
Statistical inference of travelers' route choice preferences with system-level data
Traditional network models encapsulate travel behavior among all origin-destination pairs based on a simplified and generic utility function. Typically, the utility function consists of travel time solely and its coefficients are equated to estimates obtained from stated preference data. While this modeling strategy is reasonable, the inherent sampling bias in individual-level data may be further amplified over network flow aggregation, leading to inaccurate flow estimates. This data must be collected from surveys or travel diaries, which may be labor intensive, costly and limited to a small time period. To address these limitations, this study extends classical bi-level formulations to estimate travelers' utility functions with multiple attributes using system-level data. We formulate a methodology grounded on non-linear least squares to statistically infer travelers' utility function in the network context using traffic counts, traffic speeds, traffic incidents and sociodemographic information, among other attributes. The analysis of the mathematical properties of the optimization problem and of its pseudo-convexity motivate the use of normalized gradient descent. We also develop a hypothesis test framework to examine statistical properties of the utility function coefficients and to perform attributes selection. Experiments on synthetic data show that the coefficients are consistently recovered and that hypothesis tests are a reliable statistic to identify which attributes are determinants of travelers' route choices. Besides, a series of Monte-Carlo experiments suggest that statistical inference is robust to noise in the Origin-Destination matrix and in the traffic counts, and to various levels of sensor coverage. The methodology is also deployed at a large scale using real-world multi-source data in Fresno, CA collected before and during the COVID-19 outbreak.
107,394
107,394
CLIP-Dissect: Automatic Description of Neuron Representations in Deep Vision Networks
In this paper, we propose CLIP-Dissect, a new technique to automatically describe the function of individual hidden neurons inside vision networks. CLIP-Dissect leverages recent advances in multimodal vision/language models to label internal neurons with open-ended concepts without the need for any labeled data or human examples, which are required for existing tools to succeed. We show that CLIP-Dissect provides more accurate descriptions than existing methods for neurons where the ground-truth is available as well as qualitatively good descriptions for hidden layer neurons. In addition, our method is very flexible: it is model agnostic, can easily handle new concepts and can be extended to take advantage of better multimodal models in the future. Finally CLIP-Dissect is computationally efficient and labels all neurons of a layer in a large vision model in tens of minutes.
107,395
107,395
Spherical Rotation Dimension Reduction with Geometric Loss Functions
Modern datasets witness high-dimensionality and nontrivial geometries of spaces they live in. It would be helpful in data analysis to reduce the dimensionality while retaining the geometric structure of the dataset. Motivated by this observation, we propose a general dimension reduction method by incorporating geometric information. Our Spherical Rotation Component Analysis (SRCA) is a dimension reduction method that uses spheres or ellipsoids, to approximate a low-dimensional manifold. This method not only generalizes the Spherical Component Analysis (SPCA) method in terms of theories and algorithms and presents a comprehensive comparison of our method, as an optimization problem with theoretical guarantee and also as a structural preserving low-rank representation of data. Results relative to state-of-the-art competitors show considerable gains in ability to accurately approximate the subspace with fewer components and better structural preserving. In addition, we have pointed out that this method is a specific incarnation of a grander idea of using a geometrically induced loss function in dimension reduction tasks.
107,396
107,396
Discovering Intrinsic Reward with Contrastive Random Walk
The aim of this paper is to demonstrate the efficacy of using Contrastive Random Walk as a curiosity method to achieve faster convergence to the optimal policy.Contrastive Random Walk defines the transition matrix of a random walk with the help of neural networks. It learns a meaningful state representation with a closed loop. The loss of Contrastive Random Walk serves as an intrinsic reward and is added to the environment reward. Our method works well in non-tabular sparse reward scenarios, in the sense that our method receives the highest reward within the same iterations compared to other methods. Meanwhile, Contrastive Random Walk is more robust. The performance doesn't change much with different random initialization of environments. We also find that adaptive restart and appropriate temperature are crucial to the performance of Contrastive Random Walk.
107,397
107,397
All-optical graph representation learning using integrated diffractive photonic computing units
Photonic neural networks perform brain-inspired computations using photons instead of electrons that can achieve substantially improved computing performance. However, existing architectures can only handle data with regular structures, e.g., images or videos, but fail to generalize to graph-structured data beyond Euclidean space, e.g., social networks or document co-citation networks. Here, we propose an all-optical graph representation learning architecture, termed diffractive graph neural network (DGNN), based on the integrated diffractive photonic computing units (DPUs) to address this limitation. Specifically, DGNN optically encodes node attributes into strip optical waveguides, which are transformed by DPUs and aggregated by on-chip optical couplers to extract their feature representations. Each DPU comprises successive passive layers of metalines to modulate the electromagnetic optical field via diffraction, where the metaline structures are learnable parameters shared across graph nodes. DGNN captures complex dependencies among the node neighborhoods and eliminates the nonlinear transition functions during the light-speed optical message passing over graph structures. We demonstrate the use of DGNN extracted features for node and graph-level classification tasks with benchmark databases and achieve superior performance. Our work opens up a new direction for designing application-specific integrated photonic circuits for high-efficiency processing of large-scale graph data structures using deep learning.
107,398
107,398
Smoothed Online Combinatorial Optimization Using Imperfect Predictions
Smoothed online combinatorial optimization considers a learner who repeatedly chooses a combinatorial decision to minimize an unknown changing cost function with a penalty on switching decisions in consecutive rounds. We study smoothed online combinatorial optimization problems when an imperfect predictive model is available, where the model can forecast the future cost functions with uncertainty. We show that using predictions to plan for a finite time horizon leads to regret dependent on the total predictive uncertainty and an additional switching cost. This observation suggests choosing a suitable planning window to balance between uncertainty and switching cost, which leads to an online algorithm with guarantees on the upper and lower bounds of the cumulative regret. Lastly, we provide an iterative algorithm to approximately solve the planning problem in real-time. Empirically, our algorithm shows a significant improvement in cumulative regret compared to other baselines in synthetic online distributed streaming problems.
107,399
107,399
Distributed Dynamic Safe Screening Algorithms for Sparse Regularization
Distributed optimization has been widely used as one of the most efficient approaches for model training with massive samples. However, large-scale learning problems with both massive samples and high-dimensional features widely exist in the era of big data. Safe screening is a popular technique to speed up high-dimensional models by discarding the inactive features with zero coefficients. Nevertheless, existing safe screening methods are limited to the sequential setting. In this paper, we propose a new distributed dynamic safe screening (DDSS) method for sparsity regularized models and apply it on shared-memory and distributed-memory architecture respectively, which can achieve significant speedup without any loss of accuracy by simultaneously enjoying the sparsity of the model and dataset. To the best of our knowledge, this is the first work of distributed safe dynamic screening method. Theoretically, we prove that the proposed method achieves the linear convergence rate with lower overall complexity and can eliminate almost all the inactive features in a finite number of iterations almost surely. Finally, extensive experimental results on benchmark datasets confirm the superiority of our proposed method.