Unnamed: 0.1
int64
0
113k
Unnamed: 0
float64
0
113k
title
stringlengths
7
246
abstract
stringlengths
6
3.31k
107,200
107,200
Gaussian mixture modeling of nodes in Bayesian network according to maximal parental cliques
This paper uses Gaussian mixture model instead of linear Gaussian model to fit the distribution of every node in Bayesian network. We will explain why and how we use Gaussian mixture models in Bayesian network. Meanwhile we propose a new method, called double iteration algorithm, to optimize the mixture model, the double iteration algorithm combines the expectation maximization algorithm and gradient descent algorithm, and it performs perfectly on the Bayesian network with mixture models. In experiments we test the Gaussian mixture model and the optimization algorithm on different graphs which is generated by different structure learning algorithm on real data sets, and give the details of every experiment.
107,201
107,201
De-biasing facial detection system using VAE
Bias in AI/ML-based systems is a ubiquitous problem and bias in AI/ML systems may negatively impact society. There are many reasons behind a system being biased. The bias can be due to the algorithm we are using for our problem or may be due to the dataset we are using, having some features over-represented in it. In the face detection system bias due to the dataset is majorly seen. Sometimes models learn only features that are over-represented in data and ignore rare features from data which results in being biased toward those over-represented features. In real life, these biased systems are dangerous to society. The proposed approach uses generative models which are best suited for learning underlying features(latent variables) from the dataset and by using these learned features models try to reduce the threats which are there due to bias in the system. With the help of an algorithm, the bias present in the dataset can be removed. And then we train models on two datasets and compare the results.
107,202
107,202
Understanding and Preventing Capacity Loss in Reinforcement Learning
The reinforcement learning (RL) problem is rife with sources of non-stationarity, making it a notoriously difficult problem domain for the application of neural networks. We identify a mechanism by which non-stationary prediction targets can prevent learning progress in deep RL agents: \textit{capacity loss}, whereby networks trained on a sequence of target values lose their ability to quickly update their predictions over time. We demonstrate that capacity loss occurs in a range of RL agents and environments, and is particularly damaging to performance in sparse-reward tasks. We then present a simple regularizer, Initial Feature Regularization (InFeR), that mitigates this phenomenon by regressing a subspace of features towards its value at initialization, leading to significant performance improvements in sparse-reward environments such as Montezuma's Revenge. We conclude that preventing capacity loss is crucial to enable agents to maximally benefit from the learning signals they obtain throughout the entire training trajectory.
107,203
107,203
Cross-view Brain Decoding
How the brain captures the meaning of linguistic stimuli across multiple views is still a critical open question in neuroscience. Consider three different views of the concept apartment: (1) picture (WP) presented with the target word label, (2) sentence (S) using the target word, and (3) word cloud (WC) containing the target word along with other semantically related words. Unlike previous efforts, which focus only on single view analysis, in this paper, we study the effectiveness of brain decoding in a zero-shot cross-view learning setup. Further, we propose brain decoding in the novel context of cross-view-translation tasks like image captioning (IC), image tagging (IT), keyword extraction (KE), and sentence formation (SF). Using extensive experiments, we demonstrate that cross-view zero-shot brain decoding is practical leading to ~0.68 average pairwise accuracy across view pairs. Also, the decoded representations are sufficiently detailed to enable high accuracy for cross-view-translation tasks with following pairwise accuracy: IC (78.0), IT (83.0), KE (83.7) and SF (74.5). Analysis of the contribution of different brain networks reveals exciting cognitive insights: (1) A high percentage of visual voxels are involved in image captioning and image tagging tasks, and a high percentage of language voxels are involved in the sentence formation and keyword extraction tasks. (2) Zero-shot accuracy of the model trained on S view and tested on WC view is better than same-view accuracy of the model trained and tested on WC view.
107,204
107,204
Predictive Accuracy of a Hybrid Generalized Long Memory Model for Short Term Electricity Price Forecasting
Accurate electricity price forecasting is the main management goal for market participants since it represents the fundamental basis to maximize the profits for market players. However, electricity is a non-storable commodity and the electricity prices are affected by some social and natural factors that make the price forecasting a challenging task. This study investigates the predictive performance of a new hybrid model based on the Generalized long memory autoregressive model (k-factor GARMA), the Gegenbauer Generalized Autoregressive Conditional Heteroscedasticity(G-GARCH) process, Wavelet decomposition, and Local Linear Wavelet Neural Network (LLWNN) optimized using two different learning algorithms; the Backpropagation algorithm (BP) and the Particle Swarm optimization algorithm (PSO). The performance of the proposed model is evaluated using data from Nord Pool Electricity markets. Moreover, it is compared with some other parametric and non-parametric models in order to prove its robustness. The empirical results prove that the proposed method performs well than other competing techniques.
107,205
107,205
Energy-Efficient Tree-Based EEG Artifact Detection
In the context of epilepsy monitoring, EEG artifacts are often mistaken for seizures due to their morphological similarity in both amplitude and frequency, making seizure detection systems susceptible to higher false alarm rates. In this work we present the implementation of an artifact detection algorithm based on a minimal number of EEG channels on a parallel ultra-low-power (PULP) embedded platform. The analyses are based on the TUH EEG Artifact Corpus dataset and focus on the temporal electrodes. First, we extract optimal feature models in the frequency domain using an automated machine learning framework, achieving a 93.95% accuracy, with a 0.838 F1 score for a 4 temporal EEG channel setup. The achieved accuracy levels surpass state-of-the-art by nearly 20%. Then, these algorithms are parallelized and optimized for a PULP platform, achieving a 5.21 times improvement of energy-efficient compared to state-of-the-art low-power implementations of artifact detection frameworks. Combining this model with a low-power seizure detection algorithm would allow for 300h of continuous monitoring on a 300 mAh battery in a wearable form factor and power budget. These results pave the way for implementing affordable, wearable, long-term epilepsy monitoring solutions with low false-positive rates and high sensitivity, meeting both patients' and caregivers' requirements.
107,206
107,206
Restructuring TCAD System: Teaching Traditional TCAD New Tricks
Traditional TCAD simulation has succeeded in predicting and optimizing the device performance; however, it still faces a massive challenge - a high computational cost. There have been many attempts to replace TCAD with deep learning, but it has not yet been completely replaced. This paper presents a novel algorithm restructuring the traditional TCAD system. The proposed algorithm predicts three-dimensional (3-D) TCAD simulation in real-time while capturing a variance, enables deep learning and TCAD to complement each other, and fully resolves convergence errors.
107,207
107,207
A Survey and Perspective on Artificial Intelligence for Security-Aware Electronic Design Automation
Artificial intelligence (AI) and machine learning (ML) techniques have been increasingly used in several fields to improve performance and the level of automation. In recent years, this use has exponentially increased due to the advancement of high-performance computing and the ever increasing size of data. One of such fields is that of hardware design; specifically the design of digital and analog integrated circuits~(ICs), where AI/ ML techniques have been extensively used to address ever-increasing design complexity, aggressive time-to-market, and the growing number of ubiquitous interconnected devices (IoT). However, the security concerns and issues related to IC design have been highly overlooked. In this paper, we summarize the state-of-the-art in AL/ML for circuit design/optimization, security and engineering challenges, research in security-aware CAD/EDA, and future research directions and needs for using AI/ML for security-aware circuit design.
107,208
107,208
Improved Worst-Group Robustness via Classifier Retraining on Independent Splits
High-capacity deep neural networks (DNNs) trained with Empirical Risk Minimization (ERM) often suffer from poor worst-group accuracy despite good on-average performance, where worst-group accuracy measures a model's robustness towards certain subpopulations of the input space. Spurious correlations and memorization behaviors of ERM trained DNNs are typically attributed to this degradation in performance. We develop a method, called CRIS, that address these issues by performing robust classifier retraining on independent splits of the dataset. This results in a simple method that improves upon state-of-the-art methods, such as Group DRO, on standard datasets while relying on much fewer group labels and little additional hyperparameter tuning.
107,209
107,209
Exploring Descriptions of Movement Through Geovisual Analytics
Sensemaking using automatically extracted information from text is a challenging problem. In this paper, we address a specific type of information extraction, namely extracting information related to descriptions of movement. Aggregating and understanding information related to descriptions of movement and lack of movement specified in text can lead to an improved understanding and sensemaking of movement phenomena of various types, e.g., migration of people and animals, impediments to travel due to COVID-19, etc. We present GeoMovement, a system that is based on combining machine learning and rule-based extraction of movement-related information with state-of-the-art visualization techniques. Along with the depiction of movement, our tool can extract and present a lack of movement. Very little prior work exists on automatically extracting descriptions of movement, especially negation and movement. Apart from addressing these, GeoMovement also provides a novel integrated framework for combining these extraction modules with visualization. We include two systematic case studies of GeoMovement that show how humans can derive meaningful geographic movement information. GeoMovement can complement precise movement data, e.g., obtained using sensors, or be used by itself when precise data is unavailable.
107,210
107,210
Distantly Supervised Named Entity Recognition via Confidence-Based Multi-Class Positive and Unlabeled Learning
In this paper, we study the named entity recognition (NER) problem under distant supervision. Due to the incompleteness of the external dictionaries and/or knowledge bases, such distantly annotated training data usually suffer from a high false negative rate. To this end, we formulate the Distantly Supervised NER (DS-NER) problem via Multi-class Positive and Unlabeled (MPU) learning and propose a theoretically and practically novel CONFidence-based MPU (Conf-MPU) approach. To handle the incomplete annotations, Conf-MPU consists of two steps. First, a confidence score is estimated for each token of being an entity token. Then, the proposed Conf-MPU risk estimation is applied to train a multi-class classifier for the NER task. Thorough experiments on two benchmark datasets labeled by various external knowledge demonstrate the superiority of the proposed Conf-MPU over existing DS-NER methods.
107,211
107,211
Predicting Clinical Intent from Free Text Electronic Health Records
After a patient consultation, a clinician determines the steps in the management of the patient. A clinician may for example request to see the patient again or refer them to a specialist. Whilst most clinicians will record their intent as "next steps" in the patient's clinical notes, in some cases the clinician may forget to indicate their intent as an order or request, e.g. failure to place the follow-up order. This consequently results in patients becoming lost-to-follow up and may in some cases lead to adverse consequences. In this paper we train a machine learning model to detect a clinician's intent to follow up with a patient from the patient's clinical notes. Annotators systematically identified 22 possible types of clinical intent and annotated 3000 Bariatric clinical notes. The annotation process revealed a class imbalance in the labeled data and we found that there was only sufficient labeled data to train 11 out of the 22 intents. We used the data to train a BERT based multilabel classification model and reported the following average accuracy metrics for all intents: macro-precision: 0.91, macro-recall: 0.90, macro-f1: 0.90.
107,212
107,212
Deep Reinforcement Learning for a Two-Echelon Supply Chain with Seasonal Demand
This paper leverages recent developments in reinforcement learning and deep learning to solve the supply chain inventory management problem, a complex sequential decision-making problem consisting of determining the optimal quantity of products to produce and ship to different warehouses over a given time horizon. A mathematical formulation of the stochastic two-echelon supply chain environment is given, which allows an arbitrary number of warehouses and product types to be managed. Additionally, an open-source library that interfaces with deep reinforcement learning algorithms is developed and made publicly available for solving the inventory management problem. Performances achieved by state-of-the-art deep reinforcement learning algorithms are compared through a rich set of numerical experiments on synthetically generated data. The experimental plan is designed and performed, including different structures, topologies, demands, capacities, and costs of the supply chain. Results show that the PPO algorithm adapts very well to different characteristics of the environment. The VPG algorithm almost always converges to a local maximum, even if it typically achieves an acceptable performance level. Finally, A3C is the fastest algorithm, but just like the VPG, it never achieves the best performance when compared to PPO. In conclusion, numerical experiments show that deep reinforcement learning performs consistently better than standard inventory management strategies, such as the static (s, Q)-policy. Thus, it can be considered a practical and effective option for solving real-world instances of the stochastic two-echelon supply chain problem.
107,213
107,213
Detecting Unintended Memorization in Language-Model-Fused ASR
End-to-end (E2E) models are often being accompanied by language models (LMs) via shallow fusion for boosting their overall quality as well as recognition of rare words. At the same time, several prior works show that LMs are susceptible to unintentionally memorizing rare or unique sequences in the training data. In this work, we design a framework for detecting memorization of random textual sequences (which we call canaries) in the LM training data when one has only black-box (query) access to LM-fused speech recognizer, as opposed to direct access to the LM. On a production-grade Conformer RNN-T E2E model fused with a Transformer LM, we show that detecting memorization of singly-occurring canaries from the LM training data of 300M examples is possible. Motivated to protect privacy, we also show that such memorization gets significantly reduced by per-example gradient-clipped LM training without compromising overall quality.
107,214
107,214
Assembly Planning from Observations under Physical Constraints
This paper addresses the problem of copying an unknown assembly of primitives with known shape and appearance using information extracted from a single photograph by an off-the-shelf procedure for object detection and pose estimation. The proposed algorithm uses a simple combination of physical stability constraints, convex optimization and Monte Carlo tree search to plan assemblies as sequences of pick-and-place operations represented by STRIPS operators. It is efficient and, most importantly, robust to the errors in object detection and pose estimation unavoidable in any real robotic system. The proposed approach is demonstrated with thorough experiments on a UR5 manipulator.
107,215
107,215
Estimating city-wide hourly bicycle flow using a hybrid LSTM MDN
Cycling can reduce greenhouse gas emissions and air pollution and increase public health. With this in mind, policy-makers in cities worldwide seek to improve the bicycle mode-share. However, they often struggle against the fear and the perceived riskiness of cycling. Efforts to increase the bicycle's mode-share involve many measures, one of them being the improvement of cycling safety. This requires the analysis of the factors surrounding accidents and the outcome. However, meaningful analysis of cycling safety requires accurate bicycle flow data that is generally sparse or not even available at a segment level. Therefore, safety engineers often rely on aggregated variables or calibration factors that fail to account for variations in the cycling traffic caused by external factors. This paper fills this gap by presenting a Deep Learning based approach, the Long Short-Term Memory Mixture Density Network (LSTMMDN), to estimate hourly bicycle flow in Copenhagen, conditional on weather, temporal and road conditions at the segment level. This method addresses the shortcomings in the calibration factor method and results in 66-77\% more accurate bicycle traffic estimates. To quantify the impact of more accurate bicycle traffic estimates in cycling safety analysis, we estimate bicycle crash risk models to evaluate bicycle crashes in Copenhagen. The models are identical except for the exposure variables being used. One model is estimated using the LSTMMDN estimates, one using the calibration-based estimates, and one using yearly mean traffic estimates. The results show that investing in more advanced methods for obtaining bicycle volume estimates can benefit the quality, mitigating efforts by improving safety analyses and other performance measures.
107,216
107,216
A Brief Guide to Designing and Evaluating Human-Centered Interactive Machine Learning
Interactive machine learning (IML) is a field of research that explores how to leverage both human and computational abilities in decision making systems. IML represents a collaboration between multiple complementary human and machine intelligent systems working as a team, each with their own unique abilities and limitations. This teamwork might mean that both systems take actions at the same time, or in sequence. Two major open research questions in the field of IML are: "How should we design systems that can learn to make better decisions over time with human interaction?" and "How should we evaluate the design and deployment of such systems?" A lack of appropriate consideration for the humans involved can lead to problematic system behaviour, and issues of fairness, accountability, and transparency. Thus, our goal with this work is to present a human-centred guide to designing and evaluating IML systems while mitigating risks. This guide is intended to be used by machine learning practitioners who are responsible for the health, safety, and well-being of interacting humans. An obligation of responsibility for public interaction means acting with integrity, honesty, fairness, and abiding by applicable legal statutes. With these values and principles in mind, we as a machine learning research community can better achieve goals of augmenting human skills and abilities. This practical guide therefore aims to support many of the responsible decisions necessary throughout the iterative design, development, and dissemination of IML systems.
107,217
107,217
SurvLatent ODE : A Neural ODE based time-to-event model with competing risks for longitudinal data improves cancer-associated Deep Vein Thrombosis (DVT) prediction
Effective learning from electronic health records (EHR) data for prediction of clinical outcomes is often challenging because of features recorded at irregular timesteps and loss to follow-up as well as competing events such as death or disease progression. To that end, we propose a generative time-to-event model, SurvLatent ODE, which adopts an Ordinary Differential Equation-based Recurrent Neural Networks (ODE-RNN) as an encoder to effectively parameterize a latent representation under irregularly sampled data. Our model then utilizes the latent representation to flexibly estimate survival times for multiple competing events without specifying shapes of event-specific hazard function. We demonstrate competitive performance of our model on MIMIC-III, a freely-available longitudinal dataset collected from critical care units, on predicting hospital mortality as well as the data from the Dana-Farber Cancer Institute (DFCI) on predicting onset of Deep Vein Thrombosis (DVT), a life-threatening complication for patients with cancer, with death as a competing event. SurvLatent ODE outperforms the current clinical standard Khorana Risk scores for stratifying DVT risk groups.
107,218
107,218
Clotho-AQA: A Crowdsourced Dataset for Audio Question Answering
Audio question answering (AQA) is a multimodal translation task where a system analyzes an audio signal and a natural language question, to generate a desirable natural language answer. In this paper, we introduce Clotho-AQA, a dataset for Audio question answering consisting of 1991 audio files each between 15 to 30 seconds in duration selected from the Clotho dataset [1]. For each audio file, we collect six different questions and corresponding answers by crowdsourcing using Amazon Mechanical Turk. The questions and answers are produced by different annotators. Out of the six questions for each audio, two questions each are designed to have 'yes' and 'no' as answers, while the remaining two questions have other single-word answers. For each question, we collect answers from three different annotators. We also present two baseline experiments to describe the usage of our dataset for the AQA task - an LSTM-based multimodal binary classifier for 'yes' or 'no' type answers and an LSTM-based multimodal multi-class classifier for 828 single-word answers. The binary classifier achieved an accuracy of 62.7% and the multi-class classifier achieved a top-1 accuracy of 54.2% and a top-5 accuracy of 93.7%. Clotho-AQA dataset is freely available online at https://zenodo.org/record/6473207.
107,219
107,219
An Interpretable Probabilistic Autoregressive Neural Network Model for Time Series Forecasting
Forecasting time series data presents an emerging field of data science that has its application ranging from stock price and exchange rate prediction to the early prediction of epidemics. Numerous statistical and machine learning methods have been proposed in the last five decades with the demand for generating high-quality and reliable forecasts. However, in real-life prediction problems, situations exist in which a model based on one of the above paradigms is preferable, and therefore, hybrid solutions are needed to bridge the gap between classical forecasting methods and scalable neural network models. We introduce an interpretable probabilistic autoregressive neural network model for an explainable, scalable, and "white box-like" framework that can handle a wide variety of irregular time series data (e.g., nonlinearity and nonstationarity). Sufficient conditions for asymptotic stationarity and geometric ergodicity are obtained by considering the asymptotic behavior of the associated Markov chain. During computational experiments, PARNN outperforms standard statistical, machine learning, and deep learning models on a diverse collection of real-world datasets coming from economics, finance, and epidemiology, to mention a few. Furthermore, the proposed PARNN model improves forecast accuracy significantly for 10 out of 12 datasets compared to state-of-the-art models for short to long-term forecasts.
107,220
107,220
The TalkMoves Dataset: K-12 Mathematics Lesson Transcripts Annotated for Teacher and Student Discursive Moves
Transcripts of teaching episodes can be effective tools to understand discourse patterns in classroom instruction. According to most educational experts, sustained classroom discourse is a critical component of equitable, engaging, and rich learning environments for students. This paper describes the TalkMoves dataset, composed of 567 human-annotated K-12 mathematics lesson transcripts (including entire lessons or portions of lessons) derived from video recordings. The set of transcripts primarily includes in-person lessons with whole-class discussions and/or small group work, as well as some online lessons. All of the transcripts are human-transcribed, segmented by the speaker (teacher or student), and annotated at the sentence level for ten discursive moves based on accountable talk theory. In addition, the transcripts include utterance-level information in the form of dialogue act labels based on the Switchboard Dialog Act Corpus. The dataset can be used by educators, policymakers, and researchers to understand the nature of teacher and student discourse in K-12 math classrooms. Portions of this dataset have been used to develop the TalkMoves application, which provides teachers with automated, immediate, and actionable feedback about their mathematics instruction.
107,221
107,221
A Fast Post-Training Pruning Framework for Transformers
Pruning is an effective way to reduce the huge inference cost of large Transformer models. However, prior work on model pruning requires retraining the model. This can add high cost and complexity to model deployment, making it difficult to use in many practical situations. To address this, we propose a fast post-training pruning framework for Transformers that does not require any retraining. Given a resource constraint and a sample dataset, our framework automatically prunes the Transformer model using structured sparsity methods. To retain high accuracy without retraining, we introduce three novel techniques: (i) a lightweight mask search algorithm that finds which heads and filters to prune based on the Fisher information; (ii) mask rearrangement that complements the search algorithm; and (iii) mask tuning that reconstructs the output activations for each layer. We apply our method to BERT-BASE and DistilBERT, and we evaluate its effectiveness on GLUE and SQuAD benchmarks. Our framework achieves up to 2.0x reduction in FLOPs and 1.56x speedup in inference latency, while maintaining < 1% loss in accuracy. Importantly, our framework prunes Transformers in less than 3 minutes on a single GPU, which is over two orders of magnitude faster than existing pruning approaches that retrain. Our code is publicly available.
107,222
107,222
Generative Design Ideation: A Natural Language Generation Approach
This paper aims to explore a generative approach for knowledge-based design ideation by applying the latest pre-trained language models in artificial intelligence (AI). Specifically, a method of fine-tuning the generative pre-trained transformer using the USPTO patent database is proposed. The AI-generated ideas are not only in concise and understandable language but also able to synthesize the target design with external knowledge sources with controllable knowledge distance. The method is tested in a case study of rolling toy design and the results show good performance in generating ideas of varied novelty with near-field and far-field source knowledge.
107,223
107,223
Deep Learning meets Nonparametric Regression: Are Weight-Decayed DNNs Locally Adaptive?
We study the theory of neural network (NN) from the lens of classical nonparametric regression problems with a focus on NN's ability to adaptively estimate functions with heterogeneous smoothness -- a property of functions in Besov or Bounded Variation (BV) classes. Existing work on this problem requires tuning the NN architecture based on the function spaces and sample sizes. We consider a "Parallel NN" variant of deep ReLU networks and show that the standard weight decay is equivalent to promoting the $\ell_p$-sparsity ($0<p<1$) of the coefficient vector of an end-to-end learned function bases, i.e., a dictionary. Using this equivalence, we further establish that by tuning only the weight decay, such Parallel NN achieves an estimation error arbitrarily close to the minimax rates for both the Besov and BV classes. Notably, it gets exponentially closer to minimax optimal as the NN gets deeper. Our research sheds new lights on why depth matters and how NNs are more powerful than kernel methods.
107,224
107,224
FS-NCSR: Increasing Diversity of the Super-Resolution Space via Frequency Separation and Noise-Conditioned Normalizing Flow
Super-resolution suffers from an innate ill-posed problem that a single low-resolution (LR) image can be from multiple high-resolution (HR) images. Recent studies on the flow-based algorithm solve this ill-posedness by learning the super-resolution space and predicting diverse HR outputs. Unfortunately, the diversity of the super-resolution outputs is still unsatisfactory, and the outputs from the flow-based model usually suffer from undesired artifacts which causes low-quality outputs. In this paper, we propose FS-NCSR which produces diverse and high-quality super-resolution outputs using frequency separation and noise conditioning compared to the existing flow-based approaches. As the sharpness and high-quality detail of the image rely on its high-frequency information, FS-NCSR only estimates the high-frequency information of the high-resolution outputs without redundant low-frequency components. Through this, FS-NCSR significantly improves the diversity score without significant image quality degradation compared to the NCSR, the winner of the previous NTIRE 2021 challenge.
107,225
107,225
Generative Pre-Trained Transformers for Biologically Inspired Design
Biological systems in nature have evolved for millions of years to adapt and survive the environment. Many features they developed can be inspirational and beneficial for solving technical problems in modern industries. This leads to a novel form of design-by-analogy called bio-inspired design (BID). Although BID as a design method has been proven beneficial, the gap between biology and engineering continuously hinders designers from effectively applying the method. Therefore, we explore the recent advance of artificial intelligence (AI) for a computational approach to bridge the gap. This paper proposes a generative design approach based on the pre-trained language model (PLM) to automatically retrieve and map biological analogy and generate BID in the form of natural language. The latest generative pre-trained transformer, namely GPT-3, is used as the base PLM. Three types of design concept generators are identified and fine-tuned from the PLM according to the looseness of the problem space representation. Machine evaluators are also fine-tuned to assess the correlation between the domains within the generated BID concepts. The approach is then tested via a case study in which the fine-tuned models are applied to generate and evaluate light-weighted flying car concepts inspired by nature. The results show our approach can generate BID concepts with good performance.
107,226
107,226
Scaling Language Model Size in Cross-Device Federated Learning
Most studies in cross-device federated learning focus on small models, due to the server-client communication and on-device computation bottlenecks. In this work, we leverage various techniques for mitigating these bottlenecks to train larger language models in cross-device federated learning. With systematic applications of partial model training, quantization, efficient transfer learning, and communication-efficient optimizers, we are able to train a $21$M parameter Transformer that achieves the same perplexity as that of a similarly sized LSTM with $\sim10\times$ smaller client-to-server communication cost and $11\%$ lower perplexity than smaller LSTMs commonly studied in literature.
107,227
107,227
Matching Writers to Content Writing Tasks
Businesses need content. In various forms and formats and for varied purposes. In fact, the content marketing industry is set to be worth $412.88 billion by the end of 2021. However, according to the Content Marketing Institute, creating engaging content is the #1 challenge that marketers face today. We under-stand that producing great content requires great writers who understand the business and can weave their message into reader (and search engine) friendly content. In this project, the team has attempted to bridge the gap between writers and projects by using AI and ML tools. We used NLP techniques to analyze thou-sands of publicly available business articles (corpora) to extract various defining factors for each writing sample. Through this project we aim to automate the highly time-consuming, and often biased task of manually shortlisting the most suitable writer for a given content writing requirement. We believe that a tool like this will have far reaching positive implications for both parties - businesses looking for suitable talent for niche writing jobs as well as experienced writers and Subject Matter Experts (SMEs) wanting to lend their services to content marketing projects. The business gets the content they need, the content writer/ SME gets a chance to leverage his or her talent, while the reader gets authentic content that adds real value.
107,228
107,228
A majorization-minimization algorithm for nonnegative binary matrix factorization
This paper tackles the problem of decomposing binary data using matrix factorization. We consider the family of mean-parametrized Bernoulli models, a class of generative models that are well suited for modeling binary data and enables interpretability of the factors. We factorize the Bernoulli parameter and consider an additional Beta prior on one of the factors to further improve the model's expressive power. While similar models have been proposed in the literature, they only exploit the Beta prior as a proxy to ensure a valid Bernoulli parameter in a Bayesian setting; in practice it reduces to a uniform or uninformative prior. Besides, estimation in these models has focused on costly Bayesian inference. In this paper, we propose a simple yet very efficient majorization-minimization algorithm for maximum a posteriori estimation. Our approach leverages the Beta prior whose parameters can be tuned to improve performance in matrix completion tasks. Experiments conducted on three public binary datasets show that our approach offers an excellent trade-off between prediction performance, computational complexity, and interpretability.
107,229
107,229
Federated Learning for Energy-limited Wireless Networks: A Partial Model Aggregation Approach
The limited communication resources, e.g., bandwidth and energy, and data heterogeneity across devices are two of the main bottlenecks for federated learning (FL). To tackle these challenges, we first devise a novel FL framework with partial model aggregation (PMA), which only aggregates the lower layers of neural networks responsible for feature extraction while the upper layers corresponding to complex pattern recognition remain at devices for personalization. The proposed PMA-FL is able to address the data heterogeneity and reduce the transmitted information in wireless channels. We then obtain a convergence bound of the framework under a non-convex loss function setting. With the aid of this bound, we define a new objective function, named the scheduled data sample volume, to transfer the original inexplicit optimization problem into a tractable one for device scheduling, bandwidth allocation, computation and communication time division. Our analysis reveals that the optimal time division is achieved when the communication and computation parts of PMA-FL have the same power. We also develop a bisection method to solve the optimal bandwidth allocation policy and use the set expansion algorithm to address the optimal device scheduling. Compared with the state-of-the-art benchmarks, the proposed PMA-FL improves 2.72% and 11.6% accuracy on two typical heterogeneous datasets, i.e., MINIST and CIFAR-10, respectively. In addition, the proposed joint dynamic device scheduling and resource optimization approach achieve slightly higher accuracy than the considered benchmarks, but they provide a satisfactory energy and time reduction: 29% energy or 20% time reduction on the MNIST; and 25% energy or 12.5% time reduction on the CIFAR-10.
107,230
107,230
A Hierarchical Bayesian Approach to Inverse Reinforcement Learning with Symbolic Reward Machines
A misspecified reward can degrade sample efficiency and induce undesired behaviors in reinforcement learning (RL) problems. We propose symbolic reward machines for incorporating high-level task knowledge when specifying the reward signals. Symbolic reward machines augment existing reward machine formalism by allowing transitions to carry predicates and symbolic reward outputs. This formalism lends itself well to inverse reinforcement learning, whereby the key challenge is determining appropriate assignments to the symbolic values from a few expert demonstrations. We propose a hierarchical Bayesian approach for inferring the most likely assignments such that the concretized reward machine can discriminate expert demonstrated trajectories from other trajectories with high accuracy. Experimental results show that learned reward machines can significantly improve training efficiency for complex RL tasks and generalize well across different task environment configurations.
107,231
107,231
Multi-label classification for biomedical literature: an overview of the BioCreative VII LitCovid Track for COVID-19 literature topic annotations
The COVID-19 pandemic has been severely impacting global society since December 2019. Massive research has been undertaken to understand the characteristics of the virus and design vaccines and drugs. The related findings have been reported in biomedical literature at a rate of about 10,000 articles on COVID-19 per month. Such rapid growth significantly challenges manual curation and interpretation. For instance, LitCovid is a literature database of COVID-19-related articles in PubMed, which has accumulated more than 200,000 articles with millions of accesses each month by users worldwide. One primary curation task is to assign up to eight topics (e.g., Diagnosis and Treatment) to the articles in LitCovid. Despite the continuing advances in biomedical text mining methods, few have been dedicated to topic annotations in COVID-19 literature. To close the gap, we organized the BioCreative LitCovid track to call for a community effort to tackle automated topic annotation for COVID-19 literature. The BioCreative LitCovid dataset, consisting of over 30,000 articles with manually reviewed topics, was created for training and testing. It is one of the largest multilabel classification datasets in biomedical scientific literature. 19 teams worldwide participated and made 80 submissions in total. Most teams used hybrid systems based on transformers. The highest performing submissions achieved 0.8875, 0.9181, and 0.9394 for macro F1-score, micro F1-score, and instance-based F1-score, respectively. The level of participation and results demonstrate a successful track and help close the gap between dataset curation and method development. The dataset is publicly available via https://ftp.ncbi.nlm.nih.gov/pub/lu/LitCovid/biocreative/ for benchmarking and further development.
107,232
107,232
Reinforcement Learning from Partial Observation: Linear Function Approximation with Provable Sample Efficiency
We study reinforcement learning for partially observed Markov decision processes (POMDPs) with infinite observation and state spaces, which remains less investigated theoretically. To this end, we make the first attempt at bridging partial observability and function approximation for a class of POMDPs with a linear structure. In detail, we propose a reinforcement learning algorithm (Optimistic Exploration via Adversarial Integral Equation or OP-TENET) that attains an $\epsilon$-optimal policy within $O(1/\epsilon^2)$ episodes. In particular, the sample complexity scales polynomially in the intrinsic dimension of the linear structure and is independent of the size of the observation and state spaces. The sample efficiency of OP-TENET is enabled by a sequence of ingredients: (i) a Bellman operator with finite memory, which represents the value function in a recursive manner, (ii) the identification and estimation of such an operator via an adversarial integral equation, which features a smoothed discriminator tailored to the linear structure, and (iii) the exploration of the observation and state spaces via optimism, which is based on quantifying the uncertainty in the adversarial integral equation.
107,233
107,233
Wrapped Distributions on homogeneous Riemannian manifolds
We provide a general framework for constructing probability distributions on Riemannian manifolds, taking advantage of area-preserving maps and isometries. Control over distributions' properties, such as parameters, symmetry and modality yield a family of flexible distributions that are straightforward to sample from, suitable for use within Monte Carlo algorithms and latent variable models, such as autoencoders. As an illustration, we empirically validate our approach by utilizing our proposed distributions within a variational autoencoder and a latent space network model. Finally, we take advantage of the generalized description of this framework to posit questions for future work.
107,234
107,234
Assessing Machine Learning Algorithms for Near-Real Time Bus Ridership Prediction During Extreme Weather
Given an increasingly volatile climate, the relationship between weather and transit ridership has drawn increasing interest. However, challenges stemming from spatio-temporal dependency and non-stationarity have not been fully addressed in modelling and predicting transit ridership under the influence of weather conditions especially with the traditional statistical approaches. Drawing on three-month smart card data in Brisbane, Australia, this research adopts and assesses a suite of machine-learning algorithms, i.e., random forest, eXtreme Gradient Boosting (XGBoost) and Tweedie XGBoost, to model and predict near real-time bus ridership in relation to sudden change of weather conditions. The study confirms that there indeed exists a significant level of spatio-temporal variability of weather-ridership relationship, which produces equally dynamic patterns of prediction errors. Further comparison of model performance suggests that Tweedie XGBoost outperforms the other two machine-learning algorithms in generating overall more accurate prediction outcomes in space and time. Future research may advance the current study by drawing on larger data sets and applying more advanced machine and deep-learning approaches to provide more enhanced evidence for real-time operation of transit systems.
107,235
107,235
Exact Formulas for Finite-Time Estimation Errors of Decentralized Temporal Difference Learning with Linear Function Approximation
In this paper, we consider the policy evaluation problem in multi-agent reinforcement learning (MARL) and derive exact closed-form formulas for the finite-time mean-squared estimation errors of decentralized temporal difference (TD) learning with linear function approximation. Our analysis hinges upon the fact that the decentralized TD learning method can be viewed as a Markov jump linear system (MJLS). Then standard MJLS theory can be applied to quantify the mean and covariance matrix of the estimation error of the decentralized TD method at every time step. Various implications of our exact formulas on the algorithm performance are also discussed. An interesting finding is that under a necessary and sufficient stability condition, the mean-squared TD estimation error will converge to an exact limit at a specific exponential rate.
107,236
107,236
GUARD: Graph Universal Adversarial Defense
Graph convolutional networks (GCNs) have shown to be vulnerable to small adversarial perturbations, which becomes a severe threat and largely limits their applications in security-critical scenarios. To mitigate such a threat, considerable research efforts have been devoted to increasing the robustness of GCNs against adversarial attacks. However, current approaches for defense are typically designed for the whole graph and consider the global performance, posing challenges in protecting important local nodes from stronger adversarial targeted attacks. In this work, we present a simple yet effective method, named Graph Universal Adversarial Defense (GUARD). Unlike previous works, GUARD protects each individual node from attacks with a universal defensive patch, which is generated once and can be applied to any node (node-agnostic) in a graph. Extensive experiments on four benchmark datasets demonstrate that our method significantly improves robustness for several established GCNs against multiple adversarial attacks and outperforms state-of-the-art defense methods by large margins. Our code is publicly available at https://github.com/EdisonLeeeee/GUARD.
107,237
107,237
fairDMS: Rapid Model Training by Data and Model Reuse
Extracting actionable information from data sources such as the Linac Coherent Light Source (LCLS-II) and Advanced Photon Source Upgrade (APS-U) is becoming more challenging due to the fast-growing data generation rate. The rapid analysis possible with ML methods can enable fast feedback loops that can be used to adjust experimental setups in real-time, for example when errors occur or interesting events are detected. However, to avoid degradation in ML performance over time due to changes in an instrument or sample, we need a way to update ML models rapidly while an experiment is running. We present here a data service and model service to accelerate deep neural network training with a focus on ML-based scientific applications. Our proposed data service achieves 100x speedup in terms of data labeling compare to the current state-of-the-art. Further, our model service achieves up to 200x improvement in training speed. Overall, fairDMS achieves up to 92x speedup in terms of end-to-end model updating time.
107,238
107,238
Deep transfer learning for partial differential equations under conditional shift with DeepONet
Traditional machine learning algorithms are designed to learn in isolation, i.e. address single tasks. The core idea of transfer learning (TL) is that knowledge gained in learning to perform one task (source) can be leveraged to improve learning performance in a related, but different, task (target). TL leverages and transfers previously acquired knowledge to address the expense of data acquisition and labeling, potential computational power limitations, and the dataset distribution mismatches. Although significant progress has been made in the fields of image processing, speech recognition, and natural language processing (for classification and regression) for TL, little work has been done in the field of scientific machine learning for functional regression and uncertainty quantification in partial differential equations. In this work, we propose a novel TL framework for task-specific learning under conditional shift with a deep operator network (DeepONet). Inspired by the conditional embedding operator theory, we measure the statistical distance between the source domain and the target feature domain by embedding conditional distributions onto a reproducing kernel Hilbert space. Task-specific operator learning is accomplished by fine-tuning task-specific layers of the target DeepONet using a hybrid loss function that allows for the matching of individual target samples while also preserving the global properties of the conditional distribution of target data. We demonstrate the advantages of our approach for various TL scenarios involving nonlinear PDEs under conditional shift. Our results include geometry domain adaptation and show that the proposed TL framework enables fast and efficient multi-task operator learning, despite significant differences between the source and target domains.
107,239
107,239
A Revealing Large-Scale Evaluation of Unsupervised Anomaly Detection Algorithms
Anomaly detection has many applications ranging from bank-fraud detection and cyber-threat detection to equipment maintenance and health monitoring. However, choosing a suitable algorithm for a given application remains a challenging design decision, often informed by the literature on anomaly detection algorithms. We extensively reviewed twelve of the most popular unsupervised anomaly detection methods. We observed that, so far, they have been compared using inconsistent protocols - the choice of the class of interest or the positive class, the split of training and test data, and the choice of hyperparameters - leading to ambiguous evaluations. This observation led us to define a coherent evaluation protocol which we then used to produce an updated and more precise picture of the relative performance of the twelve methods on five widely used tabular datasets. While our evaluation cannot pinpoint a method that outperforms all the others on all datasets, it identifies those that stand out and revise misconceived knowledge about their relative performances.
107,240
107,240
Relevance-guided Unsupervised Discovery of Abilities with Quality-Diversity Algorithms
Quality-Diversity algorithms provide efficient mechanisms to generate large collections of diverse and high-performing solutions, which have shown to be instrumental for solving downstream tasks. However, most of those algorithms rely on a behavioural descriptor to characterise the diversity that is hand-coded, hence requiring prior knowledge about the considered tasks. In this work, we introduce Relevance-guided Unsupervised Discovery of Abilities; a Quality-Diversity algorithm that autonomously finds a behavioural characterisation tailored to the task at hand. In particular, our method introduces a custom diversity metric that leads to higher densities of solutions near the areas of interest in the learnt behavioural descriptor space. We evaluate our approach on a simulated robotic environment, where the robot has to autonomously discover its abilities based on its full sensory data. We evaluated the algorithms on three tasks: navigation to random targets, moving forward with a high velocity, and performing half-rolls. The experimental results show that our method manages to discover collections of solutions that are not only diverse, but also well-adapted to the considered downstream task.
107,241
107,241
Accurate Molecular-Orbital-Based Machine Learning Energies via Unsupervised Clustering of Chemical Space
We introduce an unsupervised clustering algorithm to improve training efficiency and accuracy in predicting energies using molecular-orbital-based machine learning (MOB-ML). This work determines clusters via the Gaussian mixture model (GMM) in an entirely automatic manner and simplifies an earlier supervised clustering approach [J. Chem. Theory Comput., 15, 6668 (2019)] by eliminating both the necessity for user-specified parameters and the training of an additional classifier. Unsupervised clustering results from GMM have the advantage of accurately reproducing chemically intuitive groupings of frontier molecular orbitals and having improved performance with an increasing number of training examples. The resulting clusters from supervised or unsupervised clustering is further combined with scalable Gaussian process regression (GPR) or linear regression (LR) to learn molecular energies accurately by generating a local regression model in each cluster. Among all four combinations of regressors and clustering methods, GMM combined with scalable exact Gaussian process regression (GMM/GPR) is the most efficient training protocol for MOB-ML. The numerical tests of molecular energy learning on thermalized datasets of drug-like molecules demonstrate the improved accuracy, transferability, and learning efficiency of GMM/GPR over not only other training protocols for MOB-ML, i.e., supervised regression-clustering combined with GPR(RC/GPR) and GPR without clustering. GMM/GPR also provide the best molecular energy predictions compared with the ones from literature on the same benchmark datasets. With a lower scaling, GMM/GPR has a 10.4-fold speedup in wall-clock training time compared with scalable exact GPR with a training size of 6500 QM7b-T molecules.
107,242
107,242
Memory Bounds for the Experts Problem
Online learning with expert advice is a fundamental problem of sequential prediction. In this problem, the algorithm has access to a set of $n$ "experts" who make predictions on each day. The goal on each day is to process these predictions, and make a prediction with the minimum cost. After making a prediction, the algorithm sees the actual outcome on that day, updates its state, and then moves on to the next day. An algorithm is judged by how well it does compared to the best expert in the set. The classical algorithm for this problem is the multiplicative weights algorithm. However, every application, to our knowledge, relies on storing weights for every expert, and uses $\Omega(n)$ memory. There is little work on understanding the memory required to solve the online learning with expert advice problem, or run standard sequential prediction algorithms, in natural streaming models, which is especially important when the number of experts, as well as the number of days on which the experts make predictions, is large. We initiate the study of the learning with expert advice problem in the streaming setting, and show lower and upper bounds. Our lower bound for i.i.d., random order, and adversarial order streams uses a reduction to a custom-built problem using a novel masking technique, to show a smooth trade-off for regret versus memory. Our upper bounds show novel ways to run standard sequential prediction algorithms in rounds on small "pools" of experts, thus reducing the necessary memory. For random-order streams, we show that our upper bound is tight up to low order terms. We hope that these results and techniques will have broad applications in online learning, and can inspire algorithms based on standard sequential prediction techniques, like multiplicative weights, for a wide range of other problems in the memory-constrained setting.
107,243
107,243
Multi-Tier Platform for Cognizing Massive Electroencephalogram
An end-to-end platform assembling multiple tiers is built for precisely cognizing brain activities. Being fed massive electroencephalogram (EEG) data, the time-frequency spectrograms are conventionally projected into the episode-wise feature matrices (seen as tier-1). A spiking neural network (SNN) based tier is designed to distill the principle information in terms of spike-streams from the rare features, which maintains the temporal implication in the nature of EEGs. The proposed tier-3 transposes time- and space-domain of spike patterns from the SNN; and feeds the transposed pattern-matrices into an artificial neural network (ANN, Transformer specifically) known as tier-4, where a special spanning topology is proposed to match the two-dimensional input form. In this manner, cognition such as classification is conducted with high accuracy. For proof-of-concept, the sleep stage scoring problem is demonstrated by introducing multiple EEG datasets with the largest comprising 42,560 hours recorded from 5,793 subjects. From experiment results, our platform achieves the general cognition overall accuracy of 87% by leveraging sole EEG, which is 2% superior to the state-of-the-art. Moreover, our developed multi-tier methodology offers visible and graphical interpretations of the temporal characteristics of EEG by identifying the critical episodes, which is demanded in neurodynamics but hardly appears in conventional cognition scenarios.
107,244
107,244
FedCL: Federated Contrastive Learning for Privacy-Preserving Recommendation
Contrastive learning is widely used for recommendation model learning, where selecting representative and informative negative samples is critical. Existing methods usually focus on centralized data, where abundant and high-quality negative samples are easy to obtain. However, centralized user data storage and exploitation may lead to privacy risks and concerns, while decentralized user data on a single client can be too sparse and biased for accurate contrastive learning. In this paper, we propose a federated contrastive learning method named FedCL for privacy-preserving recommendation, which can exploit high-quality negative samples for effective model training with privacy well protected. We first infer user embeddings from local user data through the local model on each client, and then perturb them with local differential privacy (LDP) before sending them to a central server for hard negative sampling. Since individual user embedding contains heavy noise due to LDP, we propose to cluster user embeddings on the server to mitigate the influence of noise, and the cluster centroids are used to retrieve hard negative samples from the item pool. These hard negative samples are delivered to user clients and mixed with the observed negative samples from local data as well as in-batch negatives constructed from positive samples for federated model training. Extensive experiments on four benchmark datasets show FedCL can empower various recommendation methods in a privacy-preserving way.
107,245
107,245
CNLL: A Semi-supervised Approach For Continual Noisy Label Learning
The task of continual learning requires careful design of algorithms that can tackle catastrophic forgetting. However, the noisy label, which is inevitable in a real-world scenario, seems to exacerbate the situation. While very few studies have addressed the issue of continual learning under noisy labels, long training time and complicated training schemes limit their applications in most cases. In contrast, we propose a simple purification technique to effectively cleanse the online data stream that is both cost-effective and more accurate. After purification, we perform fine-tuning in a semi-supervised fashion that ensures the participation of all available samples. Training in this fashion helps us learn a better representation that results in state-of-the-art (SOTA) performance. Through extensive experimentation on 3 benchmark datasets, MNIST, CIFAR10 and CIFAR100, we show the effectiveness of our proposed approach. We achieve a 24.8% performance gain for CIFAR10 with 20% noise over previous SOTA methods. Our code is publicly available.
107,246
107,246
Fairness in Graph Mining: A Survey
Graph mining algorithms have been playing a significant role in myriad fields over the years. However, despite their promising performance on various graph analytical tasks, most of these algorithms lack fairness considerations. As a consequence, they could lead to discrimination towards certain populations when exploited in human-centered applications. Recently, algorithmic fairness has been extensively studied in graph-based applications. In contrast to algorithmic fairness on independent and identically distributed (i.i.d.) data, fairness in graph mining has exclusive backgrounds, taxonomies, and fulfilling techniques. In this survey, we provide a comprehensive and up-to-date introduction of existing literature under the context of fair graph mining. Specifically, we propose a novel taxonomy of fairness notions on graphs, which sheds light on their connections and differences. We further present an organized summary of existing techniques that promote fairness in graph mining. Finally, we summarize the widely used datasets in this emerging research field and provide insights on current research challenges and open questions, aiming at encouraging cross-breeding ideas and further advances.
107,247
107,247
Inducing Gaussian Process Networks
Gaussian processes (GPs) are powerful but computationally expensive machine learning models, requiring an estimate of the kernel covariance matrix for every prediction. In large and complex domains, such as graphs, sets, or images, the choice of suitable kernel can also be non-trivial to determine, providing an additional obstacle to the learning task. Over the last decade, these challenges have resulted in significant advances being made in terms of scalability and expressivity, exemplified by, e.g., the use of inducing points and neural network kernel approximations. In this paper, we propose inducing Gaussian process networks (IGN), a simple framework for simultaneously learning the feature space as well as the inducing points. The inducing points, in particular, are learned directly in the feature space, enabling a seamless representation of complex structured domains while also facilitating scalable gradient-based learning methods. We consider both regression and (binary) classification tasks and report on experimental results for real-world data sets showing that IGNs provide significant advances over state-of-the-art methods. We also demonstrate how IGNs can be used to effectively model complex domains using neural network architectures.
107,248
107,248
Infographics Wizard: Flexible Infographics Authoring and Design Exploration
Infographics are an aesthetic visual representation of information following specific design principles of human perception. Designing infographics can be a tedious process for non-experts and time-consuming, even for professional designers. With the help of designers, we propose a semi-automated infographic framework for general structured and flow-based infographic design generation. For novice designers, our framework automatically creates and ranks infographic designs for a user-provided text with no requirement for design input. However, expert designers can still provide custom design inputs to customize the infographics. We will also contribute an individual visual group (VG) designs dataset (in SVG), along with a 1k complete infographic image dataset with segmented VGs in this work. Evaluation results confirm that by using our framework, designers from all expertise levels can generate generic infographic designs faster than existing methods while maintaining the same quality as hand-designed infographics templates.
107,249
107,249
MRAM-based Analog Sigmoid Function for In-memory Computing
We propose an analog implementation of the transcendental activation function leveraging two spin-orbit torque magnetoresistive random-access memory (SOT-MRAM) devices and a CMOS inverter. The proposed analog neuron circuit consumes 1.8-27x less power, and occupies 2.5-4931x smaller area, compared to the state-of-the-art analog and digital implementations. Moreover, the developed neuron can be readily integrated with memristive crossbars without requiring any intermediate signal conversion units. The architecture-level analyses show that a fully-analog in-memory computing (IMC) circuit that use our SOT-MRAM neuron along with an SOT-MRAM based crossbar can achieve more than 1.1x, 12x, and 13.3x reduction in power, latency, and energy, respectively, compared to a mixed-signal implementation with analog memristive crossbars and digital neurons. Finally, through cross-layer analyses, we provide a guide on how varying the device-level parameters in our neuron can affect the accuracy of multilayer perceptron (MLP) for MNIST classification.
107,250
107,250
Perception Visualization: Seeing Through the Eyes of a DNN
Artificial intelligence (AI) systems power the world we live in. Deep neural networks (DNNs) are able to solve tasks in an ever-expanding landscape of scenarios, but our eagerness to apply these powerful models leads us to focus on their performance and deprioritises our ability to understand them. Current research in the field of explainable AI tries to bridge this gap by developing various perturbation or gradient-based explanation techniques. For images, these techniques fail to fully capture and convey the semantic information needed to elucidate why the model makes the predictions it does. In this work, we develop a new form of explanation that is radically different in nature from current explanation methods, such as Grad-CAM. Perception visualization provides a visual representation of what the DNN perceives in the input image by depicting what visual patterns the latent representation corresponds to. Visualizations are obtained through a reconstruction model that inverts the encoded features, such that the parameters and predictions of the original models are not modified. Results of our user study demonstrate that humans can better understand and predict the system's decisions when perception visualizations are available, thus easing the debugging and deployment of deep models as trusted systems.
107,251
107,251
FastDiff: A Fast Conditional Diffusion Model for High-Quality Speech Synthesis
Denoising diffusion probabilistic models (DDPMs) have recently achieved leading performances in many generative tasks. However, the inherited iterative sampling process costs hindered their applications to speech synthesis. This paper proposes FastDiff, a fast conditional diffusion model for high-quality speech synthesis. FastDiff employs a stack of time-aware location-variable convolutions of diverse receptive field patterns to efficiently model long-term time dependencies with adaptive conditions. A noise schedule predictor is also adopted to reduce the sampling steps without sacrificing the generation quality. Based on FastDiff, we design an end-to-end text-to-speech synthesizer, FastDiff-TTS, which generates high-fidelity speech waveforms without any intermediate feature (e.g., Mel-spectrogram). Our evaluation of FastDiff demonstrates the state-of-the-art results with higher-quality (MOS 4.28) speech samples. Also, FastDiff enables a sampling speed of 58x faster than real-time on a V100 GPU, making diffusion models practically applicable to speech synthesis deployment for the first time. We further show that FastDiff generalized well to the mel-spectrogram inversion of unseen speakers, and FastDiff-TTS outperformed other competing methods in end-to-end text-to-speech synthesis. Audio samples are available at \url{https://FastDiff.github.io/}.
107,252
107,252
Ultra-marginal Feature Importance
Scientists frequently prioritize learning from data rather than training the best possible model; however, research in machine learning often prioritizes the latter. Marginal feature importance methods, such as marginal contribution feature importance (MCI), attempt to break this trend by providing a useful framework for quantifying the relationships in data in an interpretable fashion. In this work, we generalize the framework of MCI while aiming to improve performance and runtime by introducing ultra-marginal feature importance (UMFI). To do so, we prove that UMFI can be computed directly by applying preprocessing methods from the AI fairness literature to remove dependencies in the feature set. We show on real and simulated data that UMFI performs at least as well as MCI, with significantly better performance in the presence of correlated interactions and unrelated features, while substantially reducing the exponential runtime of MCI to super-linear.
107,253
107,253
Hybrid Cloud-Edge Collaborative Data Anomaly Detection in Industrial Sensor Networks
Industrial control systems (ICSs) are facing increasing cyber-physical attacks that can cause catastrophes in the physical system. Efficient anomaly detection models in the industrial sensor networks are essential for enhancing ICS reliability and security, due to the sensor data is related to the operational state of the ICS. Considering the limited availability of computing resources, this paper proposes a hybrid anomaly detection approach in cloud-edge collaboration industrial sensor networks. The hybrid approach consists of sensor data detection models deployed at the edges and a sensor data analysis model deployed in the cloud. The sensor data detection model based on Gaussian and Bayesian algorithms can detect the anomalous sensor data in real-time and upload them to the cloud for further analysis, filtering the normal sensor data and reducing traffic load. The sensor data analysis model based on Graph convolutional network, Residual algorithm and Long short-term memory network (GCRL) can effectively extract the spatial and temporal features and then identify the attack precisely. The proposed hybrid anomaly detection approach is evaluated using a benchmark dataset and baseline anomaly detection models. The experimental results show that the proposed approach can achieve an overall 11.19% increase in Recall and an impressive 14.29% improvement in F1-score, compared with the existing models.
107,254
107,254
Towards Reliable Neural Generative Modeling of Detectors
The increasing luminosities of future data taking at Large Hadron Collider and next generation collider experiments require an unprecedented amount of simulated events to be produced. Such large scale productions demand a significant amount of valuable computing resources. This brings a demand to use new approaches to event generation and simulation of detector responses. In this paper, we discuss the application of generative adversarial networks (GANs) to the simulation of the LHCb experiment events. We emphasize main pitfalls in the application of GANs and study the systematic effects in detail. The presented results are based on the Geant4 simulation of the LHCb Cherenkov detector.
107,255
107,255
Merging of neural networks
We propose a simple scheme for merging two neural networks trained with different starting initialization into a single one with the same size as the original ones. We do this by carefully selecting channels from each input network. Our procedure might be used as a finalization step after one tries multiple starting seeds to avoid an unlucky one. We also show that training two networks and merging them leads to better performance than training a single network for an extended period of time. Availability: https://github.com/fmfi-compbio/neural-network-merging
107,256
107,256
Eliminating Backdoor Triggers for Deep Neural Networks Using Attention Relation Graph Distillation
Due to the prosperity of Artificial Intelligence (AI) techniques, more and more backdoors are designed by adversaries to attack Deep Neural Networks (DNNs).Although the state-of-the-art method Neural Attention Distillation (NAD) can effectively erase backdoor triggers from DNNs, it still suffers from non-negligible Attack Success Rate (ASR) together with lowered classification ACCuracy (ACC), since NAD focuses on backdoor defense using attention features (i.e., attention maps) of the same order. In this paper, we introduce a novel backdoor defense framework named Attention Relation Graph Distillation (ARGD), which fully explores the correlation among attention features with different orders using our proposed Attention Relation Graphs (ARGs). Based on the alignment of ARGs between both teacher and student models during knowledge distillation, ARGD can eradicate more backdoor triggers than NAD. Comprehensive experimental results show that, against six latest backdoor attacks, ARGD outperforms NAD by up to 94.85% reduction in ASR, while ACC can be improved by up to 3.23%.
107,257
107,257
A data filling methodology for time series based on CNN and (Bi)LSTM neural networks
In the process of collecting data from sensors, several circumstances can affect their continuity and validity, resulting in alterations of the data or loss of information. Although classical methods of statistics, such as interpolation-like techniques, can be used to approximate the missing data in a time series, the recent developments in Deep Learning (DL) have given impetus to innovative and much more accurate forecasting techniques. In the present paper, we develop two DL models aimed at filling data gaps, for the specific case of internal temperature time series obtained from monitored apartments located in Bolzano, Italy. The DL models developed in the present work are based on the combination of Convolutional Neural Networks (CNNs), Long Short-Term Memory Neural Networks (LSTMs), and Bidirectional LSTMs (BiLSTMs). Two key features of our models are the use of both pre- and post-gap data, and the exploitation of a correlated time series (the external temperature) in order to predict the target one (the internal temperature). Our approach manages to capture the fluctuating nature of the data and shows good accuracy in reconstructing the target time series. In addition, our models significantly improve the already good results from another DL architecture that is used as a baseline for the present work.
107,258
107,258
Fluctuation-based Outlier Detection
Outlier detection is an important topic in machine learning and has been used in a wide range of applications. Outliers are objects that are few in number and deviate from the majority of objects. As a result of these two properties, we show that outliers are susceptible to a mechanism called fluctuation. This article proposes a method called fluctuation-based outlier detection (FBOD) that achieves a low linear time complexity and detects outliers purely based on the concept of fluctuation without employing any distance, density or isolation measure. Fundamentally different from all existing methods. FBOD first converts the Euclidean structure datasets into graphs by using random links, then propagates the feature value according to the connection of the graph. Finally, by comparing the difference between the fluctuation of an object and its neighbors, FBOD determines the object with a larger difference as an outlier. The results of experiments comparing FBOD with seven state-of-the-art algorithms on eight real-world tabular datasets and three video datasets show that FBOD outperforms its competitors in the majority of cases and that FBOD has only 5% of the execution time of the fastest algorithm. The experiment codes are available at: https://github.com/FluctuationOD/Fluctuation-based-Outlier-Detection.
107,259
107,259
MedFACT: Modeling Medical Feature Correlations in Patient Health Representation Learning via Feature Clustering
In healthcare prediction tasks, it is essential to exploit the correlations between medical features and learn better patient health representations. Existing methods try to estimate feature correlations only from data, or increase the quality of estimation by introducing task-specific medical knowledge. However, such methods either are difficult to estimate the feature correlations due to insufficient training samples, or cannot be generalized to other tasks due to reliance on specific knowledge. There are medical research revealing that not all the medical features are strongly correlated. Thus, to address the issues, we expect to group up strongly correlated features and learn feature correlations in a group-wise manner to reduce the learning complexity without losing generality. In this paper, we propose a general patient health representation learning framework MedFACT. We estimate correlations via measuring similarity between temporal patterns of medical features with kernel methods, and cluster features with strong correlations into groups. The feature group is further formulated as a correlation graph, and we employ graph convolutional networks to conduct group-wise feature interactions for better representation learning. Experiments on two real-world datasets demonstrate the superiority of MedFACT. The discovered medical findings are also confirmed by literature, providing valuable medical insights and explanations.
107,260
107,260
Cross-Speaker Emotion Transfer for Low-Resource Text-to-Speech Using Non-Parallel Voice Conversion with Pitch-Shift Data Augmentation
Data augmentation via voice conversion (VC) has been successfully applied to low-resource expressive text-to-speech (TTS) when only neutral data for the target speaker are available. Although the quality of VC is crucial for this approach, it is challenging to learn a stable VC model because the amount of data is limited in low-resource scenarios, and highly expressive speech has large acoustic variety. To address this issue, we propose a novel data augmentation method that combines pitch-shifting and VC techniques. Because pitch-shift data augmentation enables the coverage of a variety of pitch dynamics, it greatly stabilizes training for both VC and TTS models, even when only 1,000 utterances of the target speaker's neutral data are available. Subjective test results showed that a FastSpeech 2-based emotional TTS system with the proposed method improved naturalness and emotional similarity compared with conventional methods.
107,261
107,261
Scalable Sensitivity and Uncertainty Analysis for Causal-Effect Estimates of Continuous-Valued Interventions
Estimating the effects of continuous-valued interventions from observational data is a critically important task for climate science, healthcare, and economics. Recent work focuses on designing neural network architectures and regularization functions to allow for scalable estimation of average and individual-level dose-response curves from high-dimensional, large-sample data. Such methodologies assume ignorability (observation of all confounding variables) and positivity (observation of all treatment levels for every covariate value describing a set of units), assumptions problematic in the continuous treatment regime. Scalable sensitivity and uncertainty analyses to understand the ignorance induced in causal estimates when these assumptions are relaxed are less studied. Here, we develop a continuous treatment-effect marginal sensitivity model (CMSM) and derive bounds that agree with the observed data and a researcher-defined level of hidden confounding. We introduce a scalable algorithm and uncertainty-aware deep models to derive and estimate these bounds for high-dimensional, large-sample observational data. We work in concert with climate scientists interested in the climatological impacts of human emissions on cloud properties using satellite observations from the past 15 years. This problem is known to be complicated by many unobserved confounders.
107,262
107,262
Understanding the Domain Gap in LiDAR Object Detection Networks
In order to make autonomous driving a reality, artificial neural networks have to work reliably in the open-world. However, the open-world is vast and continuously changing, so it is not technically feasible to collect and annotate training datasets which accurately represent this domain. Therefore, there are always domain gaps between training datasets and the open-world which must be understood. In this work, we investigate the domain gaps between high-resolution and low-resolution LiDAR sensors in object detection networks. Using a unique dataset, which enables us to study sensor resolution domain gaps independent of other effects, we show two distinct domain gaps - an inference domain gap and a training domain gap. The inference domain gap is characterised by a strong dependence on the number of LiDAR points per object, while the training gap shows no such dependence. These fndings show that different approaches are required to close these inference and training domain gaps.
107,263
107,263
Is Neuron Coverage Needed to Make Person Detection More Robust?
The growing use of deep neural networks (DNNs) in safety- and security-critical areas like autonomous driving raises the need for their systematic testing. Coverage-guided testing (CGT) is an approach that applies mutation or fuzzing according to a predefined coverage metric to find inputs that cause misbehavior. With the introduction of a neuron coverage metric, CGT has also recently been applied to DNNs. In this work, we apply CGT to the task of person detection in crowded scenes. The proposed pipeline uses YOLOv3 for person detection and includes finding DNN bugs via sampling and mutation, and subsequent DNN retraining on the updated training set. To be a bug, we require a mutated image to cause a significant performance drop compared to a clean input. In accordance with the CGT, we also consider an additional requirement of increased coverage in the bug definition. In order to explore several types of robustness, our approach includes natural image transformations, corruptions, and adversarial examples generated with the Daedalus attack. The proposed framework has uncovered several thousand cases of incorrect DNN behavior. The relative change in mAP performance of the retrained models reached on average between 26.21\% and 64.24\% for different robustness types. However, we have found no evidence that the investigated coverage metrics can be advantageously used to improve robustness.
107,264
107,264
A Learned Index for Exact Similarity Search in Metric Spaces
Indexing is an effective way to support efficient query processing in large databases. Recently the concept of learned index has been explored actively to replace or supplement traditional index structures with machine learning models to reduce storage and search costs. However, accurate and efficient similarity query processing in high-dimensional metric spaces remains to be an open challenge. In this paper, a novel indexing approach called LIMS is proposed to use data clustering and pivot-based data transformation techniques to build learned indexes for efficient similarity query processing in metric spaces. The underlying data is partitioned into clusters such that each cluster follows a relatively uniform data distribution. Data redistribution is achieved by utilizing a small number of pivots for each cluster. Similar data are mapped into compact regions and the mapped values are totally ordinal. Machine learning models are developed to approximate the position of each data record on the disk. Efficient algorithms are designed for processing range queries and nearest neighbor queries based on LIMS, and for index maintenance with dynamic updates. Extensive experiments on real-world and synthetic datasets demonstrate the superiority of LIMS compared with traditional indexes and state-of-the-art learned indexes.
107,265
107,265
DropMessage: Unifying Random Dropping for Graph Neural Networks
Graph Neural Networks (GNNs) are powerful tools for graph representation learning. Despite their rapid development, GNNs also faces some challenges, such as over-fitting, over-smoothing, and non-robustness. Previous works indicate that these problems can be alleviated by random dropping methods, which integrate noises into models by randomly masking parts of the input. However, some open-ended problems of random dropping on GNNs remain to solve. First, it is challenging to find a universal method that are suitable for all cases considering the divergence of different datasets and models. Second, random noises introduced to GNNs cause the incomplete coverage of parameters and unstable training process. In this paper, we propose a novel random dropping method called DropMessage, which performs dropping operations directly on the message matrix and can be applied to any message-passing GNNs. Furthermore, we elaborate the superiority of DropMessage: it stabilizes the training process by reducing sample variance; it keeps information diversity from the perspective of information theory, which makes it a theoretical upper bound of other methods. Also, we unify existing random dropping methods into our framework and analyze their effects on GNNs. To evaluate our proposed method, we conduct experiments that aims for multiple tasks on five public datasets and two industrial datasets with various backbone models. The experimental results show that DropMessage has both advantages of effectiveness and generalization.
107,266
107,266
Robustness of Machine Learning Models Beyond Adversarial Attacks
Correctly quantifying the robustness of machine learning models is a central aspect in judging their suitability for specific tasks, and thus, ultimately, for generating trust in the models. We show that the widely used concept of adversarial robustness and closely related metrics based on counterfactuals are not necessarily valid metrics for determining the robustness of ML models against perturbations that occur "naturally", outside specific adversarial attack scenarios. Additionally, we argue that generic robustness metrics in principle are insufficient for determining real-world-robustness. Instead we propose a flexible approach that models possible perturbations in input data individually for each application. This is then combined with a probabilistic approach that computes the likelihood that a real-world perturbation will change a prediction, thus giving quantitative information of the robustness of the trained machine learning model. The method does not require access to the internals of the classifier and thus in principle works for any black-box model. It is, however, based on Monte-Carlo sampling and thus only suited for input spaces with small dimensions. We illustrate our approach on two dataset, as well as on analytically solvable cases. Finally, we discuss ideas on how real-world robustness could be computed or estimated in high-dimensional input spaces.
107,267
107,267
On Distribution Shift in Learning-based Bug Detectors
Deep learning has recently achieved initial success in program analysis tasks such as bug detection. Lacking real bugs, most existing works construct training and test data by injecting synthetic bugs into correct programs. Despite achieving high test accuracy (e.g. >90%), the resulting bug detectors are found to be surprisingly unusable in practice, i.e., <10% precision when used to scan real software repositories. In this work, we argue that this massive performance difference is caused by distribution shift, i.e., a fundamental mismatch between the real bug distribution and the synthetic bug distribution used to train and evaluate the detectors. To address this key challenge, we propose to train a bug detector in two phases, first on a synthetic bug distribution to adapt the model to the bug detection domain, and then on a real bug distribution to drive the model towards the real distribution. During these two phases, we leverage a multi-task hierarchy, focal loss, and contrastive learning to further boost performance. We evaluate our approach extensively on three widely studied bug types, for which we construct new datasets carefully designed to capture the real bug distribution. The results demonstrate that our approach is practically effective and successfully mitigates the distribution shift: our learned detectors are highly performant on both our constructed test set and the latest version of open source repositories.
107,268
107,268
Detecting Topology Attacks against Graph Neural Networks
Graph neural networks (GNNs) have been widely used in many real applications, and recent studies have revealed their vulnerabilities against topology attacks. To address this issue, existing efforts have mainly been dedicated to improving the robustness of GNNs, while little attention has been paid to the detection of such attacks. In this work, we study the victim node detection problem under topology attacks against GNNs. Our approach is built upon the key observation rooted in the intrinsic message passing nature of GNNs. That is, the neighborhood of a victim node tends to have two competing group forces, pushing the node classification results towards the original label and the targeted label, respectively. Based on this observation, we propose to detect victim nodes by deliberately designing an effective measurement of the neighborhood variance for each node. Extensive experimental results on four real-world datasets and five existing topology attacks show the effectiveness and efficiency of the proposed detection approach.
107,269
107,269
A two-level machine learning framework for predictive maintenance: comparison of learning formulations
Predicting incoming failures and scheduling maintenance based on sensors information in industrial machines is increasingly important to avoid downtime and machine failure. Different machine learning formulations can be used to solve the predictive maintenance problem. However, many of the approaches studied in the literature are not directly applicable to real-life scenarios. Indeed, many of those approaches usually either rely on labelled machine malfunctions in the case of classification and fault detection, or rely on finding a monotonic health indicator on which a prediction can be made in the case of regression and remaining useful life estimation, which is not always feasible. Moreover, the decision-making part of the problem is not always studied in conjunction with the prediction phase. This paper aims to design and compare different formulations for predictive maintenance in a two-level framework and design metrics that quantify both the failure detection performance as well as the timing of the maintenance decision. The first level is responsible for building a health indicator by aggregating features using a learning algorithm. The second level consists of a decision-making system that can trigger an alarm based on this health indicator. Three degrees of refinements are compared in the first level of the framework, from simple threshold-based univariate predictive technique to supervised learning methods based on the remaining time before failure. We choose to use the Support Vector Machine (SVM) and its variations as the common algorithm used in all the formulations. We apply and compare the different strategies on a real-world rotating machine case study and observe that while a simple model can already perform well, more sophisticated refinements enhance the predictions for well-chosen parameters.
107,270
107,270
Working memory inspired hierarchical video decomposition with transformative representations
Video decomposition is very important to extract moving foreground objects from complex backgrounds in computer vision, machine learning, and medical imaging, e.g., extracting moving contrast-filled vessels from the complex and noisy backgrounds of X-ray coronary angiography (XCA). However, the challenges caused by dynamic backgrounds, overlapping heterogeneous environments and complex noises still exist in video decomposition. To solve these problems, this study is the first to introduce a flexible visual working memory model in video decomposition tasks to provide interpretable and high-performance hierarchical deep architecture, integrating the transformative representations between sensory and control layers from the perspective of visual and cognitive neuroscience. Specifically, robust PCA unrolling networks acting as a structure-regularized sensor layer decompose XCA into sparse/low-rank structured representations to separate moving contrast-filled vessels from noisy and complex backgrounds. Then, patch recurrent convolutional LSTM networks with a backprojection module embody unstructured random representations of the control layer in working memory, recurrently projecting spatiotemporally decomposed nonlocal patches into orthogonal subspaces for heterogeneous vessel retrieval and interference suppression. This video decomposition deep architecture effectively restores the heterogeneous profiles of intensity and the geometries of moving objects against the complex background interferences. Experiments show that the proposed method significantly outperforms state-of-the-art methods in accurate moving contrast-filled vessel extraction with excellent flexibility and computational efficiency.
107,271
107,271
Physical Modeling using Recurrent Neural Networks with Fast Convolutional Layers
Discrete-time modeling of acoustic, mechanical and electrical systems is a prominent topic in the musical signal processing literature. Such models are mostly derived by discretizing a mathematical model, given in terms of ordinary or partial differential equations, using established techniques. Recent work has applied the techniques of machine-learning to construct such models automatically from data for the case of systems which have lumped states described by scalar values, such as electrical circuits. In this work, we examine how similar techniques are able to construct models of systems which have spatially distributed rather than lumped states. We describe several novel recurrent neural network structures, and show how they can be thought of as an extension of modal techniques. As a proof of concept, we generate synthetic data for three physical systems and show that the proposed network structures can be trained with this data to reproduce the behavior of these systems.
107,272
107,272
Learnable Model Augmentation Self-Supervised Learning for Sequential Recommendation
Sequential Recommendation aims to predict the next item based on user behaviour. Recently, Self-Supervised Learning (SSL) has been proposed to improve recommendation performance. However, most of existing SSL methods use a uniform data augmentation scheme, which loses the sequence correlation of an original sequence. To this end, in this paper, we propose a Learnable Model Augmentation self-supervised learning for sequential Recommendation (LMA4Rec). Specifically, LMA4Rec first takes model augmentation as a supplementary method for data augmentation to generate views. Then, LMA4Rec uses learnable Bernoulli dropout to implement model augmentation learnable operations. Next, self-supervised learning is used between the contrastive views to extract self-supervised signals from an original sequence. Finally, experiments on three public datasets show that the LMA4Rec method effectively improves sequential recommendation performance compared with baseline methods.
107,273
107,273
Automated analysis of fibrous cap in intravascular optical coherence tomography images of coronary arteries
Thin-cap fibroatheroma (TCFA) and plaque rupture have been recognized as the most frequent risk factor for thrombosis and acute coronary syndrome. Intravascular optical coherence tomography (IVOCT) can identify TCFA and assess cap thickness, which provides an opportunity to assess plaque vulnerability. We developed an automated method that can detect lipidous plaque and assess fibrous cap thickness in IVOCT images. This study analyzed a total of 4,360 IVOCT image frames of 77 lesions among 41 patients. To improve segmentation performance, preprocessing included lumen segmentation, pixel-shifting, and noise filtering on the raw polar (r, theta) IVOCT images. We used the DeepLab-v3 plus deep learning model to classify lipidous plaque pixels. After lipid detection, we automatically detected the outer border of the fibrous cap using a special dynamic programming algorithm and assessed the cap thickness. Our method provided excellent discriminability of lipid plaque with a sensitivity of 85.8% and A-line Dice coefficient of 0.837. By comparing lipid angle measurements between two analysts following editing of our automated software, we found good agreement by Bland-Altman analysis (difference 6.7+/-17 degree; mean 196 degree). Our method accurately detected the fibrous cap from the detected lipid plaque. Automated analysis required a significant modification for only 5.5% frames. Furthermore, our method showed a good agreement of fibrous cap thickness between two analysts with Bland-Altman analysis (4.2+/-14.6 micron; mean 175 micron), indicating little bias between users and good reproducibility of the measurement. We developed a fully automated method for fibrous cap quantification in IVOCT images, resulting in good agreement with determinations by analysts. The method has great potential to enable highly automated, repeatable, and comprehensive evaluations of TCFAs.
107,274
107,274
Evolution and use of data science vocabulary. How much have we changed in 13 years?
Here I present an investigation on the evolution and use of vocabulary in data science in the last 13 years. Based on a rigorous statistical analysis, a database with 12,787 documents containing the words "data science" in the title, abstract or keywords is analyzed. It is proposed to classify the evolution of this discipline in three periods: emergence, growth and boom. Characteristic words and pioneering documents are identified for each period. By proposing the distinctive vocabulary and relevant topics of data science and classified in time periods, these results add value to the scientific community of this discipline.
107,275
107,275
Scale Dependencies and Self-Similarity Through Wavelet Scattering Covariance
We introduce a scattering covariance matrix which provides non-Gaussian models of time-series having stationary increments. A complex wavelet transform computes signal variations at each scale. Dependencies across scales are captured by the joint covariance across time and scales of complex wavelet coefficients and their modulus. This covariance is nearly diagonalized by a second wavelet transform, which defines the scattering covariance. We show that this set of moments characterizes a wide range of non-Gaussian properties of multi-scale processes. This is analyzed for a variety of processes, including fractional Brownian motions, Poisson, multifractal random walks and Hawkes processes. We prove that self-similar processes have a scattering covariance matrix which is scale invariant. This property can be estimated numerically and defines a class of wide-sense self-similar processes. We build maximum entropy models conditioned by scattering covariance coefficients, and generate new time-series with a microcanonical sampling algorithm. Applications are shown for highly non-Gaussian financial and turbulence time-series.
107,276
107,276
Distributed Learning for Vehicular Dynamic Spectrum Access in Autonomous Driving
Reliable wireless communication between the autonomously driving cars is one of the fundamental needs for guaranteeing passenger safety and comfort. However, when the number of communicating cars increases, the transmission quality may be significantly degraded due to too high occupancy radio of the used frequency band. In this paper, we concentrate on the autonomous vehicle-platooning use-case, where intra-platoon communication is done in the dynamically selected frequency band, other than nominally devoted for such purposes. The carrier selection is done in a flexible manner with the support of the context database located at the roadside unit (edge of wireless communication infrastructure). However, as the database delivers only context information to the platoons' leaders, the final decision is made separately by the individual platoons, following the suggestions made by the artificial intelligence algorithms. In this work, we concentrate on a lightweight Q-learning solution, that could be successfully implemented in each car for dynamic channel selection.
107,277
107,277
Multi-Component Optimization and Efficient Deployment of Neural-Networks on Resource-Constrained IoT Hardware
The majority of IoT devices like smartwatches, smart plugs, HVAC controllers, etc., are powered by hardware with a constrained specification (low memory, clock speed and processor) which is insufficient to accommodate and execute large, high-quality models. On such resource-constrained devices, manufacturers still manage to provide attractive functionalities (to boost sales) by following the traditional approach of programming IoT devices/products to collect and transmit data (image, audio, sensor readings, etc.) to their cloud-based ML analytics platforms. For decades, this online approach has been facing issues such as compromised data streams, non-real-time analytics due to latency, bandwidth constraints, costly subscriptions, recent privacy issues raised by users and the GDPR guidelines, etc. In this paper, to enable ultra-fast and accurate AI-based offline analytics on resource-constrained IoT devices, we present an end-to-end multi-component model optimization sequence and open-source its implementation. Researchers and developers can use our optimization sequence to optimize high memory, computation demanding models in multiple aspects in order to produce small size, low latency, low-power consuming models that can comfortably fit and execute on resource-constrained hardware. The experimental results show that our optimization components can produce models that are; (i) 12.06 x times compressed; (ii) 0.13% to 0.27% more accurate; (iii) Orders of magnitude faster unit inference at 0.06 ms. Our optimization sequence is generic and can be applied to any state-of-the-art models trained for anomaly detection, predictive maintenance, robotics, voice recognition, and machine vision.
107,278
107,278
INSPIRE: Distributed Bayesian Optimization for ImproviNg SPatIal REuse in Dense WLANs
WLANs, which have overtaken wired networks to become the primary means of connecting devices to the Internet, are prone to performance issues due to the scarcity of space in the radio spectrum. As a response, IEEE 802.11ax and subsequent amendments aim at increasing the spatial reuse of a radio channel by allowing the dynamic update of two key parameters in wireless transmission: the transmission power (TX_POWER) and the sensitivity threshold (OBSS_PD). In this paper, we present INSPIRE, a distributed solution performing local Bayesian optimizations based on Gaussian processes to improve the spatial reuse in WLANs. INSPIRE makes no explicit assumptions about the topology of WLANs and favors altruistic behaviors of the access points, leading them to find adequate configurations of their TX_POWER and OBSS_PD parameters for the "greater good" of the WLANs. We demonstrate the superiority of INSPIRE over other state-of-the-art strategies using the ns-3 simulator and two examples inspired by real-life deployments of dense WLANs. Our results show that, in only a few seconds, INSPIRE is able to drastically increase the quality of service of operational WLANs by improving their fairness and throughput.
107,279
107,279
Social Media Sentiment Analysis for Cryptocurrency Market Prediction
In this paper, we explore the usability of different natural language processing models for the sentiment analysis of social media applied to financial market prediction, using the cryptocurrency domain as a reference. We study how the different sentiment metrics are correlated with the price movements of Bitcoin. For this purpose, we explore different methods to calculate the sentiment metrics from a text finding most of them not very accurate for this prediction task. We find that one of the models outperforms more than 20 other public ones and makes it possible to fine-tune it efficiently given its interpretable nature. Thus we confirm that interpretable artificial intelligence and natural language processing methods might be more valuable practically than non-explainable and non-interpretable ones. In the end, we analyse potential causal connections between the different sentiment metrics and the price movements.
107,280
107,280
Neural Topic Modeling of Psychotherapy Sessions
In this work, we compare different neural topic modeling methods in learning the topical propensities of different psychiatric conditions from the psychotherapy session transcripts parsed from speech recordings. We also incorporate temporal modeling to put this additional interpretability to action by parsing out topic similarities as a time series in a turn-level resolution. We believe this topic modeling framework can offer interpretable insights for the therapist to optimally decide his or her strategy and improve the psychotherapy effectiveness.
107,281
107,281
Condition Monitoring of Transformer Bushings Using Computational Intelligence
Dissolved Gas-in-oil analysis (DGA) is used to monitor the condition of bushings on large power transformers. There are different techniques used in determining the conditions from the data collected, but in this work the Artificial Intelligence techniques are investigated. This work investigates which gases in DGA are related to each other and which ones are important for making decisions. When the related and crucial gases are determined, the other gases are discarded thereby reducing the number of attributes in DGA. Hence a further investigation is done to see how these new datasets influence the performance of the classifiers used to classify the DGA of full attributes. The classifiers used in these experiments were Backpropagation Neural Networks (BPNN) and Support Vector Machines (SVM) whereas the Principal Component Analysis (PCA), Rough Set (RS), Incremental Granular Ranking (GR++) and Decision Trees (DT) were used to reduce the attributes of the dataset. The parameters used when training the BPNN and SVM classifiers are kept fixed to create a controlled test environment when investigating the effects of reducing the number of gases. This work further introduced a new classifier that can handle high dimension dataset and noisy dataset, Rough Neural Network (RNN).
107,282
107,282
IIITDWD-ShankarB@ Dravidian-CodeMixi-HASOC2021: mBERT based model for identification of offensive content in south Indian languages
In recent years, there has been a lot of focus on offensive content. The amount of offensive content generated by social media is increasing at an alarming rate. This created a greater need to address this issue than ever before. To address these issues, the organizers of "Dravidian-Code Mixed HASOC-2020" have created two challenges. Task 1 involves identifying offensive content in Malayalam data, whereas Task 2 includes Malayalam and Tamil Code Mixed Sentences. Our team participated in Task 2. In our suggested model, we experiment with multilingual BERT to extract features, and three different classifiers are used on extracted features. Our model received a weighted F1 score of 0.70 for Malayalam data and was ranked fifth; we also received a weighted F1 score of 0.573 for Tamil Code Mixed data and were ranked eleventh.
107,283
107,283
Unsupervised Numerical Reasoning to Extract Phenotypes from Clinical Text by Leveraging External Knowledge
Extracting phenotypes from clinical text has been shown to be useful for a variety of clinical use cases such as identifying patients with rare diseases. However, reasoning with numerical values remains challenging for phenotyping in clinical text, for example, temperature 102F representing Fever. Current state-of-the-art phenotyping models are able to detect general phenotypes, but perform poorly when they detect phenotypes requiring numerical reasoning. We present a novel unsupervised methodology leveraging external knowledge and contextualized word embeddings from ClinicalBERT for numerical reasoning in a variety of phenotypic contexts. Comparing against unsupervised benchmarks, it shows a substantial performance improvement with absolute gains on generalized Recall and F1 scores up to 79% and 71%, respectively. In the supervised setting, it also surpasses the performance of alternative approaches with absolute gains on generalized Recall and F1 scores up to 70% and 44%, respectively.
107,284
107,284
BTranspose: Bottleneck Transformers for Human Pose Estimation with Self-Supervised Pre-Training
The task of 2D human pose estimation is challenging as the number of keypoints is typically large (~ 17) and this necessitates the use of robust neural network architectures and training pipelines that can capture the relevant features from the input image. These features are then aggregated to make accurate heatmap predictions from which the final keypoints of human body parts can be inferred. Many papers in literature use CNN-based architectures for the backbone, and/or combine it with a transformer, after which the features are aggregated to make the final keypoint predictions [1]. In this paper, we consider the recently proposed Bottleneck Transformers [2], which combine CNN and multi-head self attention (MHSA) layers effectively, and we integrate it with a Transformer encoder and apply it to the task of 2D human pose estimation. We consider different backbone architectures and pre-train them using the DINO self-supervised learning method [3], this pre-training is found to improve the overall prediction accuracy. We call our model BTranspose, and experiments show that on the COCO validation set, our model achieves an AP of 76.4, which is competitive with other methods such as [1] and has fewer network parameters. Furthermore, we also present the dependencies of the final predicted keypoints on both the MHSA block and the Transformer encoder layers, providing clues on the image sub-regions the network attends to at the mid and high levels.
107,285
107,285
OCTOPUS -- optical coherence tomography plaque and stent analysis software
Compared with other imaging modalities, intravascular optical coherence tomography (IVOCT) has significant advantages for guiding percutaneous coronary interventions. To aid IVOCT research studies, we developed the Optical Coherence TOmography PlaqUe and Stent (OCTOPUS) analysis software. To automate image analysis results, the software includes several important algorithmic steps: pre-processing, deep learning plaque segmentation, machine learning identification of stent struts, and registration of pullbacks. Interactive visualization and manual editing of segmentations were included in the software. Quantifications include stent deployment characteristics (e.g., stent strut malapposition), strut level analysis, calcium angle, and calcium thickness measurements. Interactive visualizations include (x,y) anatomical, en face, and longitudinal views with optional overlays. Underlying plaque segmentation algorithm yielded excellent pixel-wise results (86.2% sensitivity and 0.781 F1 score). Using OCTOPUS on 34 new pullbacks, we determined that following automated segmentation, only 13% and 23% of frames needed any manual touch up for detailed lumen and calcification labeling, respectively. Only up to 3.8% of plaque pixels were modified, leading to an average editing time of only 7.5 seconds/frame, an approximately 80% reduction compared to manual analysis. Regarding stent analysis, sensitivity and precision were both greater than 90%, and each strut was successfully classified as either covered or uncovered with high sensitivity (94%) and specificity (90%). We introduced and evaluated the clinical application of a highly automated software package, OCTOPUS, for quantitative plaque and stent analysis in IVOCT images. The software is currently used as an offline tool for research purposes; however, the software's embedded algorithms may also be useful for real-time treatment planning.
107,286
107,286
Learning spatiotemporal features from incomplete data for traffic flow prediction using hybrid deep neural networks
Urban traffic flow prediction using data-driven models can play an important role in route planning and preventing congestion on highways. These methods utilize data collected from traffic recording stations at different timestamps to predict the future status of traffic. Hence, data collection, transmission, storage, and extraction techniques can have a significant impact on the performance of the traffic flow model. On the other hand, a comprehensive database can provide the opportunity for using complex, yet reliable predictive models such as deep learning methods. However, most of these methods have difficulties in handling missing values and outliers. This study focuses on hybrid deep neural networks to predict traffic flow in the California Freeway Performance Measurement System (PeMS) with missing values. The proposed networks are based on a combination of recurrent neural networks (RNNs) to consider the temporal dependencies in the data recorded in each station and convolutional neural networks (CNNs) to take the spatial correlations in the adjacent stations into account. Various architecture configurations with series and parallel connections are considered based on RNNs and CNNs, and several prevalent data imputation techniques are used to examine the robustness of the hybrid networks to missing values. A comprehensive analysis performed on two different datasets from PeMS indicates that the proposed series-parallel hybrid network with the mean imputation technique achieves the lowest error in predicting the traffic flow and is robust to missing values up until 21% missing ratio in both complete and incomplete training data scenarios when applied to an incomplete test data.
107,287
107,287
The Silent Problem -- Machine Learning Model Failure -- How to Diagnose and Fix Ailing Machine Learning Models
The COVID-19 pandemic has dramatically changed how healthcare is delivered to patients, how patients interact with healthcare providers, and how healthcare information is disseminated to both healthcare providers and patients. Analytical models that were trained and tested pre-pandemic may no longer be performing up to expectations, providing unreliable and irrelevant learning (ML) models given that ML depends on the basic principle that what happened in the past are likely to repeat in the future. ML faced to two important degradation principles, concept drift, when the underlying properties and characteristics of the variables change and data drift, when the data distributions, probabilities, co-variates, and other variable relationships change, both of which are prime culprits of model failure. Therefore, detecting and diagnosing drift in existing models is something that has become an imperative. And perhaps even more important is a shift in our mindset towards a conscious recognition that drift is inevitable, and model building must incorporate intentional resilience, the ability to offset and recover quickly from failure, and proactive robustness, avoiding failure by developing models that are less vulnerable to drift and disruption.
107,288
107,288
The NIST CTS Speaker Recognition Challenge
The US National Institute of Standards and Technology (NIST) has been conducting a second iteration of the CTS challenge since August 2020. The current iteration of the CTS Challenge is a leaderboard-style speaker recognition evaluation using telephony data extracted from the unexposed portions of the Call My Net 2 (CMN2) and Multi-Language Speech (MLS) corpora collected by the LDC. The CTS Challenge is currently organized in a similar manner to the SRE19 CTS Challenge, offering only an open training condition using two evaluation subsets, namely Progress and Test. Unlike in the SRE19 Challenge, no training or development set was initially released, and NIST has publicly released the leaderboards on both subsets for the CTS Challenge. Which subset (i.e., Progress or Test) a trial belongs to is unknown to challenge participants, and each system submission needs to contain outputs for all of the trials. The CTS Challenge has also served, and will continue to do so, as a prerequisite for entrance to the regular SREs (such as SRE21). Since August 2020, a total of 53 organizations (forming 33 teams) from academia and industry have participated in the CTS Challenge and submitted more than 4400 valid system outputs. This paper presents an overview of the evaluation and several analyses of system performance for some primary conditions in the CTS Challenge. The CTS Challenge results thus far indicate remarkable improvements in performance due to 1) speaker embeddings extracted using large-scale and complex neural network architectures such as ResNets along with angular margin losses for speaker embedding extraction, 2) extensive data augmentation, 3) the use of large amounts of in-house proprietary data from a large number of labeled speakers, 4) long-duration fine-tuning.
107,289
107,289
Handling Imbalanced Classification Problems With Support Vector Machines via Evolutionary Bilevel Optimization
Support vector machines (SVMs) are popular learning algorithms to deal with binary classification problems. They traditionally assume equal misclassification costs for each class; however, real-world problems may have an uneven class distribution. This article introduces EBCS-SVM: evolutionary bilevel cost-sensitive SVMs. EBCS-SVM handles imbalanced classification problems by simultaneously learning the support vectors and optimizing the SVM hyperparameters, which comprise the kernel parameter and misclassification costs. The resulting optimization problem is a bilevel problem, where the lower level determines the support vectors and the upper level the hyperparameters. This optimization problem is solved using an evolutionary algorithm (EA) at the upper level and sequential minimal optimization (SMO) at the lower level. These two methods work in a nested fashion, that is, the optimal support vectors help guide the search of the hyperparameters, and the lower level is initialized based on previous successful solutions. The proposed method is assessed using 70 datasets of imbalanced classification and compared with several state-of-the-art methods. The experimental results, supported by a Bayesian test, provided evidence of the effectiveness of EBCS-SVM when working with highly imbalanced datasets.
107,290
107,290
A Sandbox Tool to Bias(Stress)-Test Fairness Algorithms
Motivated by the growing importance of reducing unfairness in ML predictions, Fair-ML researchers have presented an extensive suite of algorithmic "fairness-enhancing" remedies. Most existing algorithms, however, are agnostic to the sources of the observed unfairness. As a result, the literature currently lacks guiding frameworks to specify conditions under which each algorithmic intervention can potentially alleviate the underpinning cause of unfairness. To close this gap, we scrutinize the underlying biases (e.g., in the training data or design choices) that cause observational unfairness. We present a bias-injection sandbox tool to investigate fairness consequences of various biases and assess the effectiveness of algorithmic remedies in the presence of specific types of bias. We call this process the bias(stress)-testing of algorithmic interventions. Unlike existing toolkits, ours provides a controlled environment to counterfactually inject biases in the ML pipeline. This stylized setup offers the distinct capability of testing fairness interventions beyond observational data and against an unbiased benchmark. In particular, we can test whether a given remedy can alleviate the injected bias by comparing the predictions resulting after the intervention in the biased setting with true labels in the unbiased regime -- that is, before any bias injection. We illustrate the utility of our toolkit via a proof-of-concept case study on synthetic data. Our empirical analysis showcases the type of insights that can be obtained through our simulations.
107,291
107,291
The 2021 NIST Speaker Recognition Evaluation
The 2021 Speaker Recognition Evaluation (SRE21) was the latest cycle of the ongoing evaluation series conducted by the U.S. National Institute of Standards and Technology (NIST) since 1996. It was the second large-scale multimodal speaker/person recognition evaluation organized by NIST (the first one being SRE19). Similar to SRE19, it featured two core evaluation tracks, namely audio and audio-visual, as well as an optional visual track. In addition to offering fixed and open training conditions, it also introduced new challenges for the community, thanks to a new multimodal (i.e., audio, video, and selfie images) and multilingual (i.e., with multilingual speakers) corpus, termed WeCanTalk, collected outside North America by the Linguistic Data Consortium (LDC). These challenges included: 1) trials (target and non-target) with enrollment and test segments originating from different domains (i.e., telephony versus video), and 2) trials (target and non-target) with enrollment and test segments spoken in different languages (i.e., cross-lingual trials). This paper presents an overview of SRE21 including the tasks, performance metric, data, evaluation protocol, results and system performance analyses. A total of 23 organizations (forming 15 teams) from academia and industry participated in SRE21 and submitted 158 valid system outputs. Evaluation results indicate: audio-visual fusion produce substantial gains in performance over audio-only or visual-only systems; top performing speaker and face recognition systems exhibited comparable performance under the matched domain conditions present in this evaluation; and, the use of complex neural network architectures (e.g., ResNet) along with angular losses with margin, data augmentation, as well as long duration fine-tuning contributed to notable performance improvements for the audio-only speaker recognition task.
107,292
107,292
Revisiting Gaussian mixture critics in off-policy reinforcement learning: a sample-based approach
Actor-critic algorithms that make use of distributional policy evaluation have frequently been shown to outperform their non-distributional counterparts on many challenging control tasks. Examples of this behavior include the D4PG and DMPO algorithms as compared to DDPG and MPO, respectively [Barth-Maron et al., 2018; Hoffman et al., 2020]. However, both agents rely on the C51 critic for value estimation.One major drawback of the C51 approach is its requirement of prior knowledge about the minimum andmaximum values a policy can attain as well as the number of bins used, which fixes the resolution ofthe distributional estimate. While the DeepMind control suite of tasks utilizes standardized rewards and episode lengths, thus enabling the entire suite to be solved with a single setting of these hyperparameters, this is often not the case. This paper revisits a natural alternative that removes this requirement, namelya mixture of Gaussians, and a simple sample-based loss function to train it in an off-policy regime. We empirically evaluate its performance on a broad range of continuous control tasks and demonstrate that it eliminates the need for these distributional hyperparameters and achieves state-of-the-art performance on a variety of challenging tasks (e.g. the humanoid, dog, quadruped, and manipulator domains). Finallywe provide an implementation in the Acme agent repository.
107,293
107,293
DooDLeNet: Double DeepLab Enhanced Feature Fusion for Thermal-color Semantic Segmentation
In this paper we present a new approach for feature fusion between RGB and LWIR Thermal images for the task of semantic segmentation for driving perception. We propose DooDLeNet, a double DeepLab architecture with specialized encoder-decoders for thermal and color modalities and a shared decoder for final segmentation. We combine two strategies for feature fusion: confidence weighting and correlation weighting. We report state-of-the-art mean IoU results on the MF dataset.
107,294
107,294
Out-of-distribution generalization for learning quantum dynamics
Generalization bounds are a critical tool to assess the training data requirements of Quantum Machine Learning (QML). Recent work has established guarantees for in-distribution generalization of quantum neural networks (QNNs), where training and testing data are assumed to be drawn from the same data distribution. However, there are currently no results on out-of-distribution generalization in QML, where we require a trained model to perform well even on data drawn from a distribution different from the training distribution. In this work, we prove out-of-distribution generalization for the task of learning an unknown unitary using a QNN and for a broad class of training and testing distributions. In particular, we show that one can learn the action of a unitary on entangled states using only product state training data. We numerically illustrate this by showing that the evolution of a Heisenberg spin chain can be learned using only product training states. Since product states can be prepared using only single-qubit gates, this advances the prospects of learning quantum dynamics using near term quantum computers and quantum experiments, and further opens up new methods for both the classical and quantum compilation of quantum circuits.
107,295
107,295
Dynamical simulation via quantum machine learning with provable generalization
Much attention has been paid to dynamical simulation and quantum machine learning (QML) independently as applications for quantum advantage, while the possibility of using QML to enhance dynamical simulations has not been thoroughly investigated. Here we develop a framework for using QML methods to simulate quantum dynamics on near-term quantum hardware. We use generalization bounds, which bound the error a machine learning model makes on unseen data, to rigorously analyze the training data requirements of an algorithm within this framework. This provides a guarantee that our algorithm is resource-efficient, both in terms of qubit and data requirements. Our numerics exhibit efficient scaling with problem size, and we simulate 20 times longer than Trotterization on IBMQ-Bogota.
107,296
107,296
Deep learning techniques for energy clustering in the CMS ECAL
The reconstruction of electrons and photons in CMS depends on topological clustering of the energy deposited by an incident particle in different crystals of the electromagnetic calorimeter (ECAL). These clusters are formed by aggregating neighbouring crystals according to the expected topology of an electromagnetic shower in the ECAL. The presence of upstream material (beampipe, tracker and support structures) causes electrons and photons to start showering before reaching the calorimeter. This effect, combined with the 3.8T CMS magnetic field, leads to energy being spread in several clusters around the primary one. It is essential to recover the energy contained in these satellite clusters in order to achieve the best possible energy resolution for physics analyses. Historically satellite clusters have been associated to the primary cluster using a purely topological algorithm which does not attempt to remove spurious energy deposits from additional pileup interactions (PU). The performance of this algorithm is expected to degrade during LHC Run 3 (2022+) because of the larger average PU levels and the increasing levels of noise due to the ageing of the ECAL detector. New methods are being investigated that exploit state-of-the-art deep learning architectures like Graph Neural Networks (GNN) and self-attention algorithms. These more sophisticated models improve the energy collection and are more resilient to PU and noise, helping to preserve the electron and photon energy resolution achieved during LHC Runs 1 and 2. This work will cover the challenges of training the models as well the opportunity that this new approach offers to unify the ECAL energy measurement with the particle identification steps used in the global CMS photon and electron reconstruction.
107,297
107,297
Addressing Tactic Volatility in Self-Adaptive Systems Using Evolved Recurrent Neural Networks and Uncertainty Reduction Tactics
Self-adaptive systems frequently use tactics to perform adaptations. Tactic examples include the implementation of additional security measures when an intrusion is detected, or activating a cooling mechanism when temperature thresholds are surpassed. Tactic volatility occurs in real-world systems and is defined as variable behavior in the attributes of a tactic, such as its latency or cost. A system's inability to effectively account for tactic volatility adversely impacts its efficiency and resiliency against the dynamics of real-world environments. To enable systems' efficiency against tactic volatility, we propose a Tactic Volatility Aware (TVA-E) process utilizing evolved Recurrent Neural Networks (eRNN) to provide accurate tactic predictions. TVA-E is also the first known process to take advantage of uncertainty reduction tactics to provide additional information to the decision-making process and reduce uncertainty. TVA-E easily integrates into popular adaptation processes enabling it to immediately benefit a large number of existing self-adaptive systems. Simulations using 52,106 tactic records demonstrate that: I) eRNN is an effective prediction mechanism, II) TVA-E represents an improvement over existing state-of-the-art processes in accounting for tactic volatility, and III) Uncertainty reduction tactics are beneficial in accounting for tactic volatility. The developed dataset and tool can be found at https://tacticvolatility.github.io/
107,298
107,298
Adversarial Contrastive Learning by Permuting Cluster Assignments
Contrastive learning has gained popularity as an effective self-supervised representation learning technique. Several research directions improve traditional contrastive approaches, e.g., prototypical contrastive methods better capture the semantic similarity among instances and reduce the computational burden by considering cluster prototypes or cluster assignments, while adversarial instance-wise contrastive methods improve robustness against a variety of attacks. To the best of our knowledge, no prior work jointly considers robustness, cluster-wise semantic similarity and computational efficiency. In this work, we propose SwARo, an adversarial contrastive framework that incorporates cluster assignment permutations to generate representative adversarial samples. We evaluate SwARo on multiple benchmark datasets and against various white-box and black-box attacks, obtaining consistent improvements over state-of-the-art baselines.
107,299
107,299
Feature anomaly detection system (FADS) for intelligent manufacturing
Anomaly detection is important for industrial automation and part quality assurance, and while humans can easily detect anomalies in components given a few examples, designing a generic automated system that can perform at human or above human capabilities remains a challenge. In this work, we present a simple new anomaly detection algorithm called FADS (feature-based anomaly detection system) which leverages pretrained convolutional neural networks (CNN) to generate a statistical model of nominal inputs by observing the activation of the convolutional filters. During inference the system compares the convolutional filter activation of the new input to the statistical model and flags activations that are outside the expected range of values and therefore likely an anomaly. By using a pretrained network, FADS demonstrates excellent performance similar to or better than other machine learning approaches to anomaly detection while at the same time FADS requires no tuning of the CNN weights. We demonstrate FADS ability by detecting process parameter changes on a custom dataset of additively manufactured lattices. The FADS localization algorithm shows that textural differences that are visible on the surface can be used to detect process parameter changes. In addition, we test FADS on benchmark datasets, such as the MVTec Anomaly Detection dataset, and report good results.