BrightData's picture
Update README.md
bd192d0 verified
---
license: other
license_name: bright-data-master-service-agreement
license_link: https://brightdata.com/license
language:
- en
tags:
- travel
- hospitality
- booking
- hotels
- hotel
- pricing‑data
- tabular‑data
pretty_name: 'Booking.com Listings '
size_categories:
- 10K<n<100K
---
# Booking Listings – *Free Cancellation* 🏨✈️
**Booking Listings** is a structured snapshot of accommodation offers worldwide as listed on **Booking.com**.
This subset contains **only properties that offer *free cancellation***, enabling analysts and data scientists to study flexible‑booking behaviour, derive pricing strategies, and build recommendation or revenue‑management systems.
> **Highlights**
>
> * 75 k hotels & apartments across **84 countries**
> * Rich pricing & availability metadata (final vs. original price, tax descriptions, currency, sustainability flags)
> * Guest sentiment — review score & count
> * Property configuration: bedrooms, kitchens, beds, star rating, sustainability level, ***free‑cancellation‑until*** timestamp
> * Scraped **Mar 19 2025** with Bright Data Web Scraper
---
## Dataset Summary
| Metric | Value |
| --------------- | ------------------------------------------------- |
| Records | ≈ 75 000 (filtered free‑cancellation subset) |
| Columns | 36 |
| Time range | Check‑in/out dates centred on **19 Mar 2025** |
## Supported Tasks
* **Travel recommendation & personalisation** – rank properties by flexibility, price trends, amenities.
* **Dynamic pricing / revenue management** – benchmark competitors that allow free cancellation to fine‑tune rates.
* **Market research & trend analysis** – assess demand elasticity towards cancellation policies in different regions.
* **Real‑estate & investment insights** – locate high‑rated, sustainable, or luxury properties with lenient policies.
## Languages
All textual fields are in **English**. Currency codes follow ISO‑4217.
---
## Dataset Structure
### Data Instances
Each row represents a single property returned by a user search (one check‑in/out pair). Below is a truncated example (JSON Lines):
```json
{
"url": "https://www.booking.com/hotel/au/the-westin-perth.html?...",
"location": "Perth",
"check_in": "2025-03-19T00:00:00Z",
"check_out": "2025-03-20T00:00:00Z",
"adults": 1,
"rooms": 1,
"id": 3052882,
"title": "The Westin Perth",
"city": "Perth",
"review_score": 8.8,
"review_count": 1250,
"image": "https://cf.bstatic.com/xdata/images/hotel/...jpg",
"final_price": 47249,
"original_price": 47249,
"currency": "JPY",
"free_cancellation": true,
"free_cancellation_until": "2025-03-18T16:00:00Z",
"hotel_rank": 77,
"star_rating": null,
"tags": null,
...
}
```
### Data Fields
| Column | Type | Description |
| ------------------------- | -------------------- | --------------------------------------------------- |
| `url` | string (URL) | Direct link to the property listing. |
| `location` | string | General destination (city/area) of the property. |
| `check_in` | datetime | Requested check‑in date. |
| `check_out` | datetime | Requested check‑out date. |
| `adults` | int | Number of adults in the query. |
| `children` | int \| null | Number of children (if provided). |
| `rooms` | int | Rooms requested. |
| `id` | string | Booking.com property identifier. |
| `title` | string | Property name. |
| `address` | string | Street address. |
| `city` | string | City name (may differ from `location`). |
| `review_score` | float | Average guest rating (0‑10). |
| `review_count` | int | Number of reviews. |
| `image` | string (URL \| null) | Thumbnail of main image. |
| `final_price` | float | Price returned by search (includes taxes). |
| `original_price` | float | Original price before discounts. |
| `currency` | string | ISO‑4217 currency code. |
| `tax_description` | string \| null | Additional taxes/fees description. |
| `nb_bedrooms` | int | Number of bedrooms. |
| `nb_all_beds` | int | Total beds available. |
| `full_location` | string | Normalised “City, Country” location. |
| `free_cancellation` | bool | *Always `true`* in this subset. |
| `free_cancellation_until` | datetime \| null | Deadline for free cancellation. |
| `property_sustainability` | JSON | Sustainability metadata + facility codes. |
| `hotel_rank` | int | Position in Booking search results. |
| `searched_country` | string | 2‑letter country code of the search. |
| `map_coordinates` | struct | `{ "lat": float, "lon": float }` (may be null). |
| `listing_country` | string | Country where property is located. |
| `total_listings_found` | int | Total search results for query. |
| `star_rating` | int \| null | 1‑5 stars. |
| `tags` | string \| null | Booking‑generated tags (e.g. "Travel Sustainable"). |
| nb_livingrooms | int | Number of living rooms in the property. |
| nb_kitchens | int | Number of kitchens in the property. |
| no_prepayment | bool | Indicates if prepayment is not required. |
Nested object keys:
full_location → description, main_distance, display_location, beach_distance, nearby_beach_names
property_sustainability → is_sustainable, level_id, facilities
---
## Data Splits
| Split | Rows | Description |
| ------- | ----- | ------------------------------- |
| `train` | 0 | *not applicable* |
| `test` | 0 | *not applicable* |
| `all` | ≈ 75k | Complete snapshot (single CSV). |
This dataset is delivered as **one CSV file** (`booking_listings.csv`).
---
## Usage Example
```python
from datasets import load_dataset
ds = load_dataset(
"BrightData/booking_listings",
data_files="booking_listings.csv",
split="train",
)
print(ds[0]["title"], ds[0]["free_cancellation_until"])
```
---
## Source & Methodology
Data was collected on **19 Mar 2025** using the **Bright Data Infrastructure** and publicly available Booking.com search results.
For this subset, we retained only listings where the *free cancellation* flag was **`true`**.
---
## Citation
If you use this dataset in your work, please cite it as:
```bibtex
@dataset{booking_listings_free_cancel_2025,
author = {Bright Data},
title = {Booking Listings – Free Cancellation Subset},
year = {2025},
publisher = {Hugging Face},
url = {https://huggingface.co/datasets/BrightData/Booking-Listings},
note = {Scraped via Bright Data on 2025‑03‑19}
}
```
---
## Maintainers
**Bright Data**
[@Bright Data](https://github.com/luminati-io)
Have questions or need a refreshed dump? Open an issue or reach out! 📨