Datasets:
File size: 8,431 Bytes
445780c bd192d0 445780c bd192d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
---
license: other
license_name: bright-data-master-service-agreement
license_link: https://brightdata.com/license
language:
- en
tags:
- travel
- hospitality
- booking
- hotels
- hotel
- pricing‑data
- tabular‑data
pretty_name: 'Booking.com Listings '
size_categories:
- 10K<n<100K
---
# Booking Listings – *Free Cancellation* 🏨✈️
**Booking Listings** is a structured snapshot of accommodation offers worldwide as listed on **Booking.com**.
This subset contains **only properties that offer *free cancellation***, enabling analysts and data scientists to study flexible‑booking behaviour, derive pricing strategies, and build recommendation or revenue‑management systems.
> **Highlights**
>
> * 75 k hotels & apartments across **84 countries**
> * Rich pricing & availability metadata (final vs. original price, tax descriptions, currency, sustainability flags)
> * Guest sentiment — review score & count
> * Property configuration: bedrooms, kitchens, beds, star rating, sustainability level, ***free‑cancellation‑until*** timestamp
> * Scraped **Mar 19 2025** with Bright Data Web Scraper
---
## Dataset Summary
| Metric | Value |
| --------------- | ------------------------------------------------- |
| Records | ≈ 75 000 (filtered free‑cancellation subset) |
| Columns | 36 |
| Time range | Check‑in/out dates centred on **19 Mar 2025** |
## Supported Tasks
* **Travel recommendation & personalisation** – rank properties by flexibility, price trends, amenities.
* **Dynamic pricing / revenue management** – benchmark competitors that allow free cancellation to fine‑tune rates.
* **Market research & trend analysis** – assess demand elasticity towards cancellation policies in different regions.
* **Real‑estate & investment insights** – locate high‑rated, sustainable, or luxury properties with lenient policies.
## Languages
All textual fields are in **English**. Currency codes follow ISO‑4217.
---
## Dataset Structure
### Data Instances
Each row represents a single property returned by a user search (one check‑in/out pair). Below is a truncated example (JSON Lines):
```json
{
"url": "https://www.booking.com/hotel/au/the-westin-perth.html?...",
"location": "Perth",
"check_in": "2025-03-19T00:00:00Z",
"check_out": "2025-03-20T00:00:00Z",
"adults": 1,
"rooms": 1,
"id": 3052882,
"title": "The Westin Perth",
"city": "Perth",
"review_score": 8.8,
"review_count": 1250,
"image": "https://cf.bstatic.com/xdata/images/hotel/...jpg",
"final_price": 47249,
"original_price": 47249,
"currency": "JPY",
"free_cancellation": true,
"free_cancellation_until": "2025-03-18T16:00:00Z",
"hotel_rank": 77,
"star_rating": null,
"tags": null,
...
}
```
### Data Fields
| Column | Type | Description |
| ------------------------- | -------------------- | --------------------------------------------------- |
| `url` | string (URL) | Direct link to the property listing. |
| `location` | string | General destination (city/area) of the property. |
| `check_in` | datetime | Requested check‑in date. |
| `check_out` | datetime | Requested check‑out date. |
| `adults` | int | Number of adults in the query. |
| `children` | int \| null | Number of children (if provided). |
| `rooms` | int | Rooms requested. |
| `id` | string | Booking.com property identifier. |
| `title` | string | Property name. |
| `address` | string | Street address. |
| `city` | string | City name (may differ from `location`). |
| `review_score` | float | Average guest rating (0‑10). |
| `review_count` | int | Number of reviews. |
| `image` | string (URL \| null) | Thumbnail of main image. |
| `final_price` | float | Price returned by search (includes taxes). |
| `original_price` | float | Original price before discounts. |
| `currency` | string | ISO‑4217 currency code. |
| `tax_description` | string \| null | Additional taxes/fees description. |
| `nb_bedrooms` | int | Number of bedrooms. |
| `nb_all_beds` | int | Total beds available. |
| `full_location` | string | Normalised “City, Country” location. |
| `free_cancellation` | bool | *Always `true`* in this subset. |
| `free_cancellation_until` | datetime \| null | Deadline for free cancellation. |
| `property_sustainability` | JSON | Sustainability metadata + facility codes. |
| `hotel_rank` | int | Position in Booking search results. |
| `searched_country` | string | 2‑letter country code of the search. |
| `map_coordinates` | struct | `{ "lat": float, "lon": float }` (may be null). |
| `listing_country` | string | Country where property is located. |
| `total_listings_found` | int | Total search results for query. |
| `star_rating` | int \| null | 1‑5 stars. |
| `tags` | string \| null | Booking‑generated tags (e.g. "Travel Sustainable"). |
| nb_livingrooms | int | Number of living rooms in the property. |
| nb_kitchens | int | Number of kitchens in the property. |
| no_prepayment | bool | Indicates if prepayment is not required. |
Nested object keys:
full_location → description, main_distance, display_location, beach_distance, nearby_beach_names
property_sustainability → is_sustainable, level_id, facilities
---
## Data Splits
| Split | Rows | Description |
| ------- | ----- | ------------------------------- |
| `train` | 0 | *not applicable* |
| `test` | 0 | *not applicable* |
| `all` | ≈ 75k | Complete snapshot (single CSV). |
This dataset is delivered as **one CSV file** (`booking_listings.csv`).
---
## Usage Example
```python
from datasets import load_dataset
ds = load_dataset(
"BrightData/booking_listings",
data_files="booking_listings.csv",
split="train",
)
print(ds[0]["title"], ds[0]["free_cancellation_until"])
```
---
## Source & Methodology
Data was collected on **19 Mar 2025** using the **Bright Data Infrastructure** and publicly available Booking.com search results.
For this subset, we retained only listings where the *free cancellation* flag was **`true`**.
---
## Citation
If you use this dataset in your work, please cite it as:
```bibtex
@dataset{booking_listings_free_cancel_2025,
author = {Bright Data},
title = {Booking Listings – Free Cancellation Subset},
year = {2025},
publisher = {Hugging Face},
url = {https://huggingface.co/datasets/BrightData/Booking-Listings},
note = {Scraped via Bright Data on 2025‑03‑19}
}
```
---
## Maintainers
**Bright Data**
[@Bright Data](https://github.com/luminati-io)
Have questions or need a refreshed dump? Open an issue or reach out! 📨 |