Search is not available for this dataset
text
stringlengths 75
104k
|
---|
def _load_image(file_path):
"""
Parameters
----------
file_path: str
Path to the nifti file
Returns
-------
nipy.Image with a file_path member
"""
if not os.path.exists(file_path):
raise FileNotFound(file_path)
try:
nii_img = load_nipy_img(file_path)
nii_img.file_path = file_path
return nii_img
except Exception as exc:
raise Exception('Reading file {0}.'.format(file_path)) from exc |
def _smooth_img(nii_img, smooth_fwhm):
"""
Parameters
----------
nii_img: nipy.Image
smooth_fwhm: float
Returns
-------
smoothed nipy.Image
"""
# delayed import because could not install nipy on Python 3 on OSX
from nipy.algorithms.kernel_smooth import LinearFilter
if smooth_fwhm <= 0:
return nii_img
filter = LinearFilter(nii_img.coordmap, nii_img.shape)
return filter.smooth(nii_img) |
def from_dict(self, subj_files):
"""
Parameters
----------
subj_files: dict of str
file_path -> int/str
"""
for group_label in subj_files:
try:
group_files = subj_files[group_label]
self.items.extend([self._load_image(get_abspath(imgf)) for imgf in group_files])
self.labels.extend([group_label]*len(group_files))
except Exception as exc:
raise Exception('Error while reading files from '
'group {0}.'.format(group_label)) from exc |
def from_list(self, subj_files):
"""
Parameters
----------
subj_files: list of str
file_paths
"""
for sf in subj_files:
try:
nii_img = self._load_image(get_abspath(sf))
self.items.append(nii_img)
except Exception as exc:
raise Exception('Error while reading file {0}.'.format(sf)) from exc |
def set_labels(self, subj_labels):
"""
Parameters
----------
subj_labels: list of int or str
This list will be checked to have the same size as files list
(self.items)
"""
if len(subj_labels) != self.n_subjs:
raise ValueError('The number of given labels is not the same as the number of subjects.')
self.labels = subj_labels |
def to_matrix(self, smooth_fwhm=0, outdtype=None):
"""Create a Numpy array with the data and return the relevant information (mask indices and volume shape).
Parameters
----------
smooth_fwhm: int
Integer indicating the size of the FWHM Gaussian smoothing kernel
to smooth the subject volumes before creating the data matrix
outdtype: dtype
Type of the elements of the array, if None will obtain the dtype from
the first nifti file.
Returns
-------
outmat, mask_indices, vol_shape
outmat: Numpy array with shape N x prod(vol.shape)
containing the N files as flat vectors.
mask_indices: matrix with indices of the voxels in the mask
vol_shape: Tuple with shape of the volumes, for reshaping.
"""
vol = self.items[0].get_data()
if not outdtype:
outdtype = vol.dtype
n_voxels = None
mask_indices = None
mask_shape = self.items[0].shape
if self.has_mask:
mask_arr = get_img_data(self.mask_file)
mask_indices = np.where(mask_arr > 0)
mask_shape = mask_arr.shape
n_voxels = np.count_nonzero(mask_arr)
if n_voxels is None:
log.debug('Non-zero voxels have not been found in mask {}'.format(self.mask_file))
n_voxels = np.prod(vol.shape)
outmat = np.zeros((self.n_subjs, n_voxels), dtype=outdtype)
try:
for i, nipy_img in enumerate(self.items):
vol = self._smooth_img(nipy_img, smooth_fwhm).get_data()
if self.has_mask is not None:
outmat[i, :] = vol[mask_indices]
else:
outmat[i, :] = vol.flatten()
except Exception as exc:
raise Exception('Error when flattening file {0}'.format(nipy_img.file_path)) from exc
else:
return outmat, mask_indices, mask_shape |
def die(msg, code=-1):
"""Writes msg to stderr and exits with return code"""
sys.stderr.write(msg + "\n")
sys.exit(code) |
def check_call(cmd_args):
"""
Calls the command
Parameters
----------
cmd_args: list of str
Command name to call and its arguments in a list.
Returns
-------
Command output
"""
p = subprocess.Popen(cmd_args, stdout=subprocess.PIPE)
(output, err) = p.communicate()
return output |
def call_command(cmd_name, args_strings):
"""Call CLI command with arguments and returns its return value.
Parameters
----------
cmd_name: str
Command name or full path to the binary file.
arg_strings: list of str
Argument strings list.
Returns
-------
return_value
Command return value.
"""
if not op.isabs(cmd_name):
cmd_fullpath = which(cmd_name)
else:
cmd_fullpath = cmd_name
try:
cmd_line = [cmd_fullpath] + args_strings
log.info('Calling: {}.'.format(cmd_line))
retval = subprocess.check_call(cmd_line)
except CalledProcessError as ce:
log.exception("Error calling command {} with arguments: "
"{} \n With return code: {}".format(cmd_name, args_strings,
ce.returncode))
raise
else:
return retval |
def condor_call(cmd, shell=True):
"""
Tries to submit cmd to HTCondor, if it does not succeed, it will
be called with subprocess.call.
Parameters
----------
cmd: string
Command to be submitted
Returns
-------
"""
log.info(cmd)
ret = condor_submit(cmd)
if ret != 0:
subprocess.call(cmd, shell=shell) |
def condor_submit(cmd):
"""
Submits cmd to HTCondor queue
Parameters
----------
cmd: string
Command to be submitted
Returns
-------
int
returncode value from calling the submission command.
"""
is_running = subprocess.call('condor_status', shell=True) == 0
if not is_running:
raise CalledProcessError('HTCondor is not running.')
sub_cmd = 'condor_qsub -shell n -b y -r y -N ' \
+ cmd.split()[0] + ' -m n'
log.info('Calling: ' + sub_cmd)
return subprocess.call(sub_cmd + ' ' + cmd, shell=True) |
def clean(ctx):
"""Clean previously built package artifacts.
"""
ctx.run(f'python setup.py clean')
dist = ROOT.joinpath('dist')
print(f'removing {dist}')
shutil.rmtree(str(dist)) |
def upload(ctx, repo):
"""Upload the package to an index server.
This implies cleaning and re-building the package.
:param repo: Required. Name of the index server to upload to, as specifies
in your .pypirc configuration file.
"""
artifacts = ' '.join(
shlex.quote(str(n))
for n in ROOT.joinpath('dist').glob('pipfile[-_]cli-*')
)
ctx.run(f'twine upload --repository="{repo}" {artifacts}') |
def load_command_table(self, args): #pylint: disable=too-many-statements
"""Load all Service Fabric commands"""
# Need an empty client for the select and upload operations
with CommandSuperGroup(__name__, self,
'rcctl.custom_cluster#{}') as super_group:
with super_group.group('cluster') as group:
group.command('select', 'select')
with CommandSuperGroup(__name__, self, 'rcctl.custom_reliablecollections#{}',
client_factory=client_create) as super_group:
with super_group.group('dictionary') as group:
group.command('query', 'query_reliabledictionary')
group.command('execute', 'execute_reliabledictionary')
group.command('schema', 'get_reliabledictionary_schema')
group.command('list', 'get_reliabledictionary_list')
group.command('type-schema', 'get_reliabledictionary_type_schema')
with ArgumentsContext(self, 'dictionary') as ac:
ac.argument('application_name', options_list=['--application-name', '-a'])
ac.argument('service_name', options_list=['--service-name', '-s'])
ac.argument('dictionary_name', options_list=['--dictionary-name', '-d'])
ac.argument('output_file', options_list=['--output-file', '-out'])
ac.argument('input_file', options_list=['--input-file', '-in'])
ac.argument('query_string', options_list=['--query-string', '-q'])
ac.argument('type_name', options_list=['--type-name', '-t'])
return OrderedDict(self.command_table) |
def open_volume_file(filepath):
"""Open a volumetric file using the tools following the file extension.
Parameters
----------
filepath: str
Path to a volume file
Returns
-------
volume_data: np.ndarray
Volume data
pixdim: 1xN np.ndarray
Vector with the description of the voxels physical size (usually in mm) for each volume dimension.
Raises
------
IOError
In case the file is not found.
"""
# check if the file exists
if not op.exists(filepath):
raise IOError('Could not find file {}.'.format(filepath))
# define helper functions
def open_nifti_file(filepath):
return NiftiImage(filepath)
def open_mhd_file(filepath):
return MedicalImage(filepath)
vol_data, hdr_data = load_raw_data_with_mhd(filepath)
# TODO: convert vol_data and hdr_data into MedicalImage
return vol_data, hdr_data
def open_mha_file(filepath):
raise NotImplementedError('This function has not been implemented yet.')
# generic loader function
def _load_file(filepath, loader):
return loader(filepath)
# file_extension -> file loader function
filext_loader = {
'nii': open_nifti_file,
'mhd': open_mhd_file,
'mha': open_mha_file,
}
# get extension of the `filepath`
ext = get_extension(filepath)
# find the loader from `ext`
loader = None
for e in filext_loader:
if ext in e:
loader = filext_loader[e]
if loader is None:
raise ValueError('Could not find a loader for file {}.'.format(filepath))
return _load_file(filepath, loader) |
def _check_medimg(image, make_it_3d=True):
"""Check that image is a proper img. Turn filenames into objects.
Parameters
----------
image: img-like object or str
Can either be:
- a file path to a medical image file, e.g. NifTI, .mhd/raw, .mha
- any object with get_data() method and affine & header attributes, e.g., nibabel.Nifti1Image.
- a Numpy array, which will be wrapped by a nibabel.Nifti2Image class with an `eye` affine.
If niimg is a string, consider it as a path to Nifti image and
call nibabel.load on it. If it is an object, check if get_data()
and get_affine() methods are present, raise TypeError otherwise.
make_it_3d: boolean, optional
If True, check if the image is a 3D image and raise an error if not.
Returns
-------
result: nifti-like
result can be nibabel.Nifti1Image or the input, as-is. It is guaranteed
that the returned object has get_data() and get_affine() methods.
"""
if isinstance(image, string_types):
# a filename, load it
img = open_volume_file(image)
if make_it_3d:
img = _make_it_3d(img)
return img
elif isinstance(image, np.array):
return nib.Nifti2Image(image, affine=np.eye(image.ndim + 1))
elif isinstance(image, nib.Nifti1Image) or is_img(image):
return image
else:
raise TypeError('Data given cannot be converted to a medical image'
' image: this object -"{}"- does not have'
' get_data or get_affine methods'.format(type(image))) |
def rename_file_group_to_serial_nums(file_lst):
"""Will rename all files in file_lst to a padded serial
number plus its extension
:param file_lst: list of path.py paths
"""
file_lst.sort()
c = 1
for f in file_lst:
dirname = get_abspath(f.dirname())
fdest = f.joinpath(dirname, "{0:04d}".format(c) +
OUTPUT_DICOM_EXTENSION)
log.info('Renaming {0} to {1}'.format(f, fdest))
f.rename(fdest)
c += 1 |
def _store_dicom_paths(self, folders):
"""Search for dicoms in folders and save file paths into
self.dicom_paths set.
:param folders: str or list of str
"""
if isinstance(folders, str):
folders = [folders]
for folder in folders:
if not os.path.exists(folder):
raise FolderNotFound(folder)
self.items.extend(list(find_all_dicom_files(folder))) |
def from_set(self, fileset, check_if_dicoms=True):
"""Overwrites self.items with the given set of files.
Will filter the fileset and keep only Dicom files.
Parameters
----------
fileset: iterable of str
Paths to files
check_if_dicoms: bool
Whether to check if the items in fileset are dicom file paths
"""
if check_if_dicoms:
self.items = []
for f in fileset:
if is_dicom_file(f):
self.items.append(f)
else:
self.items = fileset |
def update(self, dicomset):
"""Update this set with the union of itself and dicomset.
Parameters
----------
dicomset: DicomFileSet
"""
if not isinstance(dicomset, DicomFileSet):
raise ValueError('Given dicomset is not a DicomFileSet.')
self.items = list(set(self.items).update(dicomset)) |
def copy_files_to_other_folder(self, output_folder, rename_files=True,
mkdir=True, verbose=False):
"""
Copies all files within this set to the output_folder
Parameters
----------
output_folder: str
Path of the destination folder of the files
rename_files: bool
Whether or not rename the files to a sequential format
mkdir: bool
Whether to make the folder if it does not exist
verbose: bool
Whether to print to stdout the files that are beind copied
"""
import shutil
if not os.path.exists(output_folder):
os.mkdir(output_folder)
if not rename_files:
for dcmf in self.items:
outf = os.path.join(output_folder, os.path.basename(dcmf))
if verbose:
print('{} -> {}'.format(dcmf, outf))
shutil.copyfile(dcmf, outf)
else:
n_pad = len(self.items)+2
for idx, dcmf in enumerate(self.items):
outf = '{number:0{width}d}.dcm'.format(width=n_pad, number=idx)
outf = os.path.join(output_folder, outf)
if verbose:
print('{} -> {}'.format(dcmf, outf))
shutil.copyfile(dcmf, outf) |
def get_dcm_reader(store_metadata=True, header_fields=None):
"""
Creates a lambda function to read DICOM files.
If store_store_metadata is False, will only return the file path.
Else if you give header_fields, will return only the set of of
header_fields within a DicomFile object or the whole DICOM file if
None.
:return: function
This function has only one parameter: file_path
"""
if not store_metadata:
return lambda fpath: fpath
if header_fields is None:
build_dcm = lambda fpath: DicomFile(fpath)
else:
dicom_header = namedtuple('DicomHeader', header_fields)
build_dcm = lambda fpath: dicom_header._make(DicomFile(fpath).get_attributes(header_fields))
return build_dcm |
def scrape_all_files(self):
"""
Generator that yields one by one the return value for self.read_dcm
for each file within this set
"""
try:
for dcmf in self.items:
yield self.read_dcm(dcmf)
except IOError as ioe:
raise IOError('Error reading DICOM file: {}.'.format(dcmf)) from ioe |
def get_unique_field_values(dcm_file_list, field_name):
"""Return a set of unique field values from a list of DICOM files
Parameters
----------
dcm_file_list: iterable of DICOM file paths
field_name: str
Name of the field from where to get each value
Returns
-------
Set of field values
"""
field_values = set()
for dcm in dcm_file_list:
field_values.add(str(DicomFile(dcm).get_attributes(field_name)))
return field_values |
def find_all_dicom_files(root_path):
"""
Returns a list of the dicom files within root_path
Parameters
----------
root_path: str
Path to the directory to be recursively searched for DICOM files.
Returns
-------
dicoms: set
Set of DICOM absolute file paths
"""
dicoms = set()
try:
for fpath in get_all_files(root_path):
if is_dicom_file(fpath):
dicoms.add(fpath)
except IOError as ioe:
raise IOError('Error reading file {0}.'.format(fpath)) from ioe
return dicoms |
def is_dicom_file(filepath):
"""
Tries to read the file using dicom.read_file,
if the file exists and dicom.read_file does not raise
and Exception returns True. False otherwise.
:param filepath: str
Path to DICOM file
:return: bool
"""
if not os.path.exists(filepath):
raise IOError('File {} not found.'.format(filepath))
filename = os.path.basename(filepath)
if filename == 'DICOMDIR':
return False
try:
_ = dicom.read_file(filepath)
except Exception as exc:
log.debug('Checking if {0} was a DICOM, but returned '
'False.'.format(filepath))
return False
return True |
def group_dicom_files(dicom_paths, hdr_field='PatientID'):
"""Group in a dictionary all the DICOM files in dicom_paths
separated by the given `hdr_field` tag value.
Parameters
----------
dicom_paths: str
Iterable of DICOM file paths.
hdr_field: str
Name of the DICOM tag whose values will be used as key for the group.
Returns
-------
dicom_groups: dict of dicom_paths
"""
dicom_groups = defaultdict(list)
try:
for dcm in dicom_paths:
hdr = dicom.read_file(dcm)
group_key = getattr(hdr, hdr_field)
dicom_groups[group_key].append(dcm)
except KeyError as ke:
raise KeyError('Error reading field {} from file {}.'.format(hdr_field, dcm)) from ke
return dicom_groups |
def decompress(input_dir, dcm_pattern='*.dcm'):
""" Decompress all *.dcm files recursively found in DICOM_DIR.
This uses 'gdcmconv --raw'.
It works when 'dcm2nii' shows the `Unsupported Transfer Syntax` error. This error is
usually caused by lack of JPEG2000 support in dcm2nii compilation.
Read more:
http://www.nitrc.org/plugins/mwiki/index.php/dcm2nii:MainPage#Transfer_Syntaxes_and_Compressed_Images
Parameters
----------
input_dir: str
Folder path
dcm_patther: str
Pattern of the DICOM file names in `input_dir`.
Notes
-----
The *.dcm files in `input_folder` will be overwritten.
"""
dcmfiles = sorted(recursive_glob(input_dir, dcm_pattern))
for dcm in dcmfiles:
cmd = 'gdcmconv --raw -i "{0}" -o "{0}"'.format(dcm)
log.debug('Calling {}.'.format(cmd))
subprocess.check_call(cmd, shell=True) |
def get_attributes(self, attributes, default=''):
"""Return the attributes values from this DicomFile
Parameters
----------
attributes: str or list of str
DICOM field names
default: str
Default value if the attribute does not exist.
Returns
-------
Value of the field or list of values.
"""
if isinstance(attributes, str):
attributes = [attributes]
attrs = [getattr(self, attr, default) for attr in attributes]
if len(attrs) == 1:
return attrs[0]
return tuple(attrs) |
def merge_images(images, axis='t'):
""" Concatenate `images` in the direction determined in `axis`.
Parameters
----------
images: list of str or img-like object.
See NeuroImage constructor docstring.
axis: str
't' : concatenate images in time
'x' : concatenate images in the x direction
'y' : concatenate images in the y direction
'z' : concatenate images in the z direction
Returns
-------
merged: img-like object
"""
# check if images is not empty
if not images:
return None
# the given axis name to axis idx
axis_dim = {'x': 0,
'y': 1,
'z': 2,
't': 3,
}
# check if the given axis name is valid
if axis not in axis_dim:
raise ValueError('Expected `axis` to be one of ({}), got {}.'.format(set(axis_dim.keys()), axis))
# check if all images are compatible with each other
img1 = images[0]
for img in images:
check_img_compatibility(img1, img)
# read the data of all the given images
# TODO: optimize memory consumption by merging one by one.
image_data = []
for img in images:
image_data.append(check_img(img).get_data())
# if the work_axis is bigger than the number of axis of the images,
# create a new axis for the images
work_axis = axis_dim[axis]
ndim = image_data[0].ndim
if ndim - 1 < work_axis:
image_data = [np.expand_dims(img, axis=work_axis) for img in image_data]
# concatenate and return
return np.concatenate(image_data, axis=work_axis) |
def nifti_out(f):
""" Picks a function whose first argument is an `img`, processes its
data and returns a numpy array. This decorator wraps this numpy array
into a nibabel.Nifti1Image."""
@wraps(f)
def wrapped(*args, **kwargs):
r = f(*args, **kwargs)
img = read_img(args[0])
return nib.Nifti1Image(r, affine=img.get_affine(), header=img.header)
return wrapped |
def thr_img(img, thr=2., mode='+'):
""" Use the given magic function name `func` to threshold with value `thr`
the data of `img` and return a new nibabel.Nifti1Image.
Parameters
----------
img: img-like
thr: float or int
The threshold value.
mode: str
Choices: '+' for positive threshold,
'+-' for positive and negative threshold and
'-' for negative threshold.
Returns
-------
thr_img: nibabel.Nifti1Image
Thresholded image
"""
vol = read_img(img).get_data()
if mode == '+':
mask = vol > thr
elif mode == '+-' or mode == '-+':
mask = np.abs(vol) > thr
elif mode == '-':
mask = vol < -thr
else:
raise ValueError("Expected `mode` to be one of ('+', '+-', '-+', '-'), "
"got {}.".format(mode))
return vol * mask |
def div_img(img1, div2):
""" Pixelwise division or divide by a number """
if is_img(div2):
return img1.get_data()/div2.get_data()
elif isinstance(div2, (float, int)):
return img1.get_data()/div2
else:
raise NotImplementedError('Cannot divide {}({}) by '
'{}({})'.format(type(img1),
img1,
type(div2),
div2)) |
def apply_mask(img, mask):
"""Return the image with the given `mask` applied."""
from .mask import apply_mask
vol, _ = apply_mask(img, mask)
return vector_to_volume(vol, read_img(mask).get_data().astype(bool)) |
def abs_img(img):
""" Return an image with the binarised version of the data of `img`."""
bool_img = np.abs(read_img(img).get_data())
return bool_img.astype(int) |
def icc_img_to_zscore(icc, center_image=False):
""" Return a z-scored version of `icc`.
This function is based on GIFT `icatb_convertImageToZScores` function.
"""
vol = read_img(icc).get_data()
v2 = vol[vol != 0]
if center_image:
v2 = detrend(v2, axis=0)
vstd = np.linalg.norm(v2, ord=2) / np.sqrt(np.prod(v2.shape) - 1)
eps = np.finfo(vstd.dtype).eps
vol /= (eps + vstd)
return vol |
def spatial_map(icc, thr, mode='+'):
""" Return the thresholded z-scored `icc`. """
return thr_img(icc_img_to_zscore(icc), thr=thr, mode=mode).get_data() |
def filter_icc(icc, mask=None, thr=2, zscore=True, mode="+"):
""" Threshold then mask an IC correlation map.
Parameters
----------
icc: img-like
The 'raw' ICC map.
mask: img-like
If not None. Will apply this masks in the end of the process.
thr: float
The threshold value.
zscore: bool
If True will calculate the z-score of the ICC before thresholding.
mode: str
Choices: '+' for positive threshold,
'+-' for positive and negative threshold and
'-' for negative threshold.
Returns
-------
icc_filt: nibabel.NiftiImage
Thresholded and masked ICC.
"""
if zscore:
icc_filt = thr_img(icc_img_to_zscore(icc), thr=thr, mode=mode)
else:
icc_filt = thr_img(icc, thr=thr, mode=mode)
if mask is not None:
icc_filt = apply_mask(icc_filt, mask)
return icc_filt |
def check_mhd_img(image, make_it_3d=False):
"""Check that image is a proper img. Turn filenames into objects.
Parameters
----------
image: img-like object or str
Can either be:
- a file path to a .mhd file. (if it is a .raw file, this won't work).
- any object with get_data() and get_affine() methods, e.g., nibabel.Nifti1Image.
If niimg is a string, consider it as a path to .mhd image and
call load_raw_data_with_mhd on it. If it is an object, check if get_data()
and get_affine() methods are present, raise TypeError otherwise.
make_it_3d: boolean, optional
If True, check if the image is a 3D image and raise an error if not.
Returns
-------
result: nifti-like
result can be nibabel.Nifti1Image or the input, as-is. It is guaranteed
that the returned object has get_data() and get_affine() methods.
"""
if isinstance(image, string_types):
# a filename, load it
if not op.exists(image):
raise FileNotFound(image)
ext = get_extension(image).lower()
if not 'mhd' in ext:
warnings.warn('Expecting a filepath with `.mhd` extension, got {}.'.format(image))
img, hdr = load_raw_data_with_mhd(image)
if make_it_3d:
img = _make_it_3d(img)
return img
elif is_img(image):
return image
else:
raise TypeError('Data given cannot be converted to a nifti'
' image: this object -"{}"- does not have'
' get_data or get_affine methods'.format(type(image))) |
def _make_it_3d(img):
"""Enforce that img is a 3D img-like object, if it is not, raise a TypeError.
i.e., remove dimensions of size 1.
Parameters
----------
img: numpy.ndarray
Image data array
Returns
-------
3D numpy ndarray object
"""
shape = img.shape
if len(shape) == 3:
return img
elif len(shape) == 4 and shape[3] == 1:
# "squeeze" the image.
return img[:, :, :, 0]
else:
raise TypeError('A 3D image is expected, but an image with a shape of {} was given.'.format(shape)) |
def write_meta_header(filename, meta_dict):
""" Write the content of the `meta_dict` into `filename`.
Parameters
----------
filename: str
Path to the output file
meta_dict: dict
Dictionary with the fields of the metadata .mhd file
"""
header = ''
# do not use tags = meta_dict.keys() because the order of tags matters
for tag in MHD_TAGS:
if tag in meta_dict.keys():
header += '{} = {}\n'.format(tag, meta_dict[tag])
with open(filename, 'w') as f:
f.write(header) |
def dump_raw_data(filename, data):
""" Write the data into a raw format file. Big endian is always used.
Parameters
----------
filename: str
Path to the output file
data: numpy.ndarray
n-dimensional image data array.
"""
if data.ndim == 3:
# Begin 3D fix
data = data.reshape([data.shape[0], data.shape[1]*data.shape[2]])
# End 3D fix
a = array.array('f')
for o in data:
a.fromlist(list(o.flatten()))
# if is_little_endian():
# a.byteswap()
with open(filename, 'wb') as rawf:
a.tofile(rawf) |
def write_mhd_file(filename, data, shape=None, meta_dict=None):
""" Write the `data` and `meta_dict` in two files with names
that use `filename` as a prefix.
Parameters
----------
filename: str
Path to the output file.
This is going to be used as a preffix.
Two files will be created, one with a '.mhd' extension
and another with '.raw'. If `filename` has any of these already
they will be taken into account to build the filenames.
data: numpy.ndarray
n-dimensional image data array.
shape: tuple
Tuple describing the shape of `data`
Default: data.shape
meta_dict: dict
Dictionary with the fields of the metadata .mhd file
Default: {}
Returns
-------
mhd_filename: str
Path to the .mhd file
raw_filename: str
Path to the .raw file
"""
# check its extension
ext = get_extension(filename)
fname = op.basename(filename)
if ext != '.mhd' or ext != '.raw':
mhd_filename = fname + '.mhd'
raw_filename = fname + '.raw'
elif ext == '.mhd':
mhd_filename = fname
raw_filename = remove_ext(fname) + '.raw'
elif ext == '.raw':
mhd_filename = remove_ext(fname) + '.mhd'
raw_filename = fname
else:
raise ValueError('`filename` extension {} from {} is not recognised. '
'Expected .mhd or .raw.'.format(ext, filename))
# default values
if meta_dict is None:
meta_dict = {}
if shape is None:
shape = data.shape
# prepare the default header
meta_dict['ObjectType'] = meta_dict.get('ObjectType', 'Image')
meta_dict['BinaryData'] = meta_dict.get('BinaryData', 'True' )
meta_dict['BinaryDataByteOrderMSB'] = meta_dict.get('BinaryDataByteOrderMSB', 'False')
meta_dict['ElementType'] = meta_dict.get('ElementType', NUMPY_TO_MHD_TYPE[data.dtype.type])
meta_dict['NDims'] = meta_dict.get('NDims', str(len(shape)))
meta_dict['DimSize'] = meta_dict.get('DimSize', ' '.join([str(i) for i in shape]))
meta_dict['ElementDataFile'] = meta_dict.get('ElementDataFile', raw_filename)
# target files
mhd_filename = op.join(op.dirname(filename), mhd_filename)
raw_filename = op.join(op.dirname(filename), raw_filename)
# write the header
write_meta_header(mhd_filename, meta_dict)
# write the data
dump_raw_data(raw_filename, data)
return mhd_filename, raw_filename |
def copy_mhd_and_raw(src, dst):
"""Copy .mhd and .raw files to dst.
If dst is a folder, won't change the file, but if dst is another filepath,
will modify the ElementDataFile field in the .mhd to point to the
new renamed .raw file.
Parameters
----------
src: str
Path to the .mhd file to be copied
dst: str
Path to the destination of the .mhd and .raw files.
If a new file name is given, the extension will be ignored.
Returns
-------
dst: str
"""
# check if src exists
if not op.exists(src):
raise IOError('Could not find file {}.'.format(src))
# check its extension
ext = get_extension(src)
if ext != '.mhd':
msg = 'The src file path must be a .mhd file. Given: {}.'.format(src)
raise ValueError(msg)
# get the raw file for this src mhd file
meta_src = _read_meta_header(src)
# get the source raw file
src_raw = meta_src['ElementDataFile']
if not op.isabs(src_raw):
src_raw = op.join(op.dirname(src), src_raw)
# check if dst is dir
if op.isdir(dst):
# copy the mhd and raw file to its destiny
shutil.copyfile(src, dst)
shutil.copyfile(src_raw, dst)
return dst
# build raw file dst file name
dst_raw = op.join(op.dirname(dst), remove_ext(op.basename(dst))) + '.raw'
# add extension to the dst path
if get_extension(dst) != '.mhd':
dst += '.mhd'
# copy the mhd and raw file to its destiny
log.debug('cp: {} -> {}'.format(src, dst))
log.debug('cp: {} -> {}'.format(src_raw, dst_raw))
shutil.copyfile(src, dst)
shutil.copyfile(src_raw, dst_raw)
# check if src file name is different than dst file name
# if not the same file name, change the content of the ElementDataFile field
if op.basename(dst) != op.basename(src):
log.debug('modify {}: ElementDataFile: {} -> {}'.format(dst, src_raw,
op.basename(dst_raw)))
meta_dst = _read_meta_header(dst)
meta_dst['ElementDataFile'] = op.basename(dst_raw)
write_meta_header(dst, meta_dst)
return dst |
def sav_to_pandas_rpy2(input_file):
"""
SPSS .sav files to Pandas DataFrame through Rpy2
:param input_file: string
:return:
"""
import pandas.rpy.common as com
w = com.robj.r('foreign::read.spss("%s", to.data.frame=TRUE)' % input_file)
return com.convert_robj(w) |
def sav_to_pandas_savreader(input_file):
"""
SPSS .sav files to Pandas DataFrame through savreader module
:param input_file: string
:return:
"""
from savReaderWriter import SavReader
lines = []
with SavReader(input_file, returnHeader=True) as reader:
header = next(reader)
for line in reader:
lines.append(line)
return pd.DataFrame(data=lines, columns=header) |
def save_variables(filename, variables):
"""Save given variables in a file.
Valid extensions: '.pyshelf' or '.shelf' (Python shelve)
'.mat' (Matlab archive),
'.hdf5' or '.h5' (HDF5 file)
Parameters
----------
filename: str
Output file path.
variables: dict
Dictionary varname -> variable
Raises
------
ValueError: if the extension of the filesname is not recognized.
"""
ext = get_extension(filename).lower()
out_exts = {'.pyshelf', '.shelf', '.mat', '.hdf5', '.h5'}
output_file = filename
if not ext in out_exts:
output_file = add_extension_if_needed(filename, '.pyshelf')
ext = get_extension(filename)
if ext == '.pyshelf' or ext == '.shelf':
save_variables_to_shelve(output_file, variables)
elif ext == '.mat':
save_variables_to_mat(output_file, variables)
elif ext == '.hdf5' or ext == '.h5':
from .hdf5 import save_variables_to_hdf5
save_variables_to_hdf5(output_file, variables)
else:
raise ValueError('Filename extension {0} not accepted.'.format(ext)) |
def save_varlist(filename, varnames, varlist):
"""
Valid extensions '.pyshelf', '.mat', '.hdf5' or '.h5'
@param filename: string
@param varnames: list of strings
Names of the variables
@param varlist: list of objects
The objects to be saved
"""
variables = {}
for i, vn in enumerate(varnames):
variables[vn] = varlist[i]
ExportData.save_variables(filename, variables) |
def cli():
"""Create CLI environment"""
return VersionedCLI(cli_name=SF_CLI_NAME,
config_dir=SF_CLI_CONFIG_DIR,
config_env_var_prefix=SF_CLI_ENV_VAR_PREFIX,
commands_loader_cls=SFCommandLoader,
help_cls=SFCommandHelp) |
def drain_rois(img):
"""Find all the ROIs in img and returns a similar volume with the ROIs
emptied, keeping only their border voxels.
This is useful for DTI tractography.
Parameters
----------
img: img-like object or str
Can either be:
- a file path to a Nifti image
- any object with get_data() and get_affine() methods, e.g., nibabel.Nifti1Image.
If niimg is a string, consider it as a path to Nifti image and
call nibabel.load on it. If it is an object, check if get_data()
and get_affine() methods are present, raise TypeError otherwise.
Returns
-------
np.ndarray
an array of same shape as img_data
"""
img_data = get_img_data(img)
out = np.zeros(img_data.shape, dtype=img_data.dtype)
krn_dim = [3] * img_data.ndim
kernel = np.ones(krn_dim, dtype=int)
vals = np.unique(img_data)
vals = vals[vals != 0]
for i in vals:
roi = img_data == i
hits = scn.binary_hit_or_miss(roi, kernel)
roi[hits] = 0
out[roi > 0] = i
return out |
def pick_rois(rois_img, roi_values, bg_val=0):
""" Return the `rois_img` only with the ROI values from `roi_values`.
Parameters
----------
rois_img: niimg-like
roi_values: list of int or float
The list of values from rois_img.
bg_val: int or float
The background value of `rois_img`.
Returns
-------
subset_rois_img: nibabel.Nifti2Image
"""
img = read_img(rois_img)
img_data = img.get_data()
if bg_val == 0:
out = np.zeros(img_data.shape, dtype=img_data.dtype)
else:
out = np.ones(img_data.shape, dtype=img_data.dtype) * bg_val
for r in roi_values:
out[img_data == r] = r
return nib.Nifti2Image(out, affine=img.affine, header=img.header) |
def largest_connected_component(volume):
"""Return the largest connected component of a 3D array.
Parameters
-----------
volume: numpy.array
3D boolean array.
Returns
--------
volume: numpy.array
3D boolean array with only one connected component.
"""
# We use asarray to be able to work with masked arrays.
volume = np.asarray(volume)
labels, num_labels = scn.label(volume)
if not num_labels:
raise ValueError('No non-zero values: no connected components found.')
if num_labels == 1:
return volume.astype(np.bool)
label_count = np.bincount(labels.ravel().astype(np.int))
# discard the 0 label
label_count[0] = 0
return labels == label_count.argmax() |
def large_clusters_mask(volume, min_cluster_size):
""" Return as mask for `volume` that includes only areas where
the connected components have a size bigger than `min_cluster_size`
in number of voxels.
Parameters
-----------
volume: numpy.array
3D boolean array.
min_cluster_size: int
Minimum size in voxels that the connected component must have.
Returns
--------
volume: numpy.array
3D int array with a mask excluding small connected components.
"""
labels, num_labels = scn.label(volume)
labels_to_keep = set([i for i in range(num_labels)
if np.sum(labels == i) >= min_cluster_size])
clusters_mask = np.zeros_like(volume, dtype=int)
for l in range(num_labels):
if l in labels_to_keep:
clusters_mask[labels == l] = 1
return clusters_mask |
def create_rois_mask(roislist, filelist):
"""Look for the files in filelist containing the names in roislist, these files will be opened, binarised
and merged in one mask.
Parameters
----------
roislist: list of strings
Names of the ROIs, which will have to be in the names of the files in filelist.
filelist: list of strings
List of paths to the volume files containing the ROIs.
Returns
-------
numpy.ndarray
Mask volume
"""
roifiles = []
for roi in roislist:
try:
roi_file = search_list(roi, filelist)[0]
except Exception as exc:
raise Exception('Error creating list of roi files. \n {}'.format(str(exc)))
else:
roifiles.append(roi_file)
return binarise(roifiles) |
def get_unique_nonzeros(arr):
""" Return a sorted list of the non-zero unique values of arr.
Parameters
----------
arr: numpy.ndarray
The data array
Returns
-------
list of items of arr.
"""
rois = np.unique(arr)
rois = rois[np.nonzero(rois)]
rois.sort()
return rois |
def get_rois_centers_of_mass(vol):
"""Get the center of mass for each ROI in the given volume.
Parameters
----------
vol: numpy ndarray
Volume with different values for each ROI.
Returns
-------
OrderedDict
Each entry in the dict has the ROI value as key and the center_of_mass coordinate as value.
"""
from scipy.ndimage.measurements import center_of_mass
roisvals = np.unique(vol)
roisvals = roisvals[roisvals != 0]
rois_centers = OrderedDict()
for r in roisvals:
rois_centers[r] = center_of_mass(vol, vol, r)
return rois_centers |
def partition_timeseries(image, roi_img, mask_img=None, zeroe=True, roi_values=None, outdict=False):
"""Partition the timeseries in tsvol according to the ROIs in roivol.
If a mask is given, will use it to exclude any voxel outside of it.
The outdict indicates whether you want a dictionary for each set of timeseries keyed by the ROI value
or a list of timeseries sets. If True and roi_img is not None will return an OrderedDict, if False
or roi_img or roi_list is None will return a list.
Background value is assumed to be 0 and won't be used here.
Parameters
----------
image: img-like object or str
4D timeseries volume
roi_img: img-like object or str
3D volume defining different ROIs.
mask_img: img-like object or str
3D mask volume
zeroe: bool
If true will remove the null timeseries voxels.
roi_values: list of ROI values (int?)
List of the values of the ROIs to indicate the
order and which ROIs will be processed.
outdict: bool
If True will return an OrderedDict of timeseries sets, otherwise a list.
Returns
-------
timeseries: list or OrderedDict
A dict with the timeseries as items and keys as the ROIs voxel values or
a list where each element is the timeseries set ordered by the sorted values in roi_img or by the roi_values
argument.
"""
img = read_img(image)
rois = read_img(roi_img)
# check if roi_img and image are compatible
check_img_compatibility(img, rois, only_check_3d=True)
# check if rois has all roi_values
roi_data = rois.get_data()
if roi_values is not None:
for rv in roi_values:
if not np.any(roi_data == rv):
raise ValueError('Could not find value {} in rois_img {}.'.format(rv, repr_imgs(roi_img)))
else:
roi_values = get_unique_nonzeros(roi_data)
# check if mask and image are compatible
if mask_img is None:
mask_data = None
else:
mask = load_mask(mask_img)
check_img_compatibility(img, mask, only_check_3d=True)
mask_data = mask.get_data()
# choose function to call
if outdict:
extract_data = _extract_timeseries_dict
else:
extract_data = _extract_timeseries_list
# extract data and return it
try:
return extract_data(img.get_data(), rois.get_data(), mask_data,
roi_values=roi_values, zeroe=zeroe)
except:
raise |
def _partition_data(datavol, roivol, roivalue, maskvol=None, zeroe=True):
""" Extracts the values in `datavol` that are in the ROI with value `roivalue` in `roivol`.
The ROI can be masked by `maskvol`.
Parameters
----------
datavol: numpy.ndarray
4D timeseries volume or a 3D volume to be partitioned
roivol: numpy.ndarray
3D ROIs volume
roivalue: int or float
A value from roivol that represents the ROI to be used for extraction.
maskvol: numpy.ndarray
3D mask volume
zeroe: bool
If true will remove the null timeseries voxels. Only applied to timeseries (4D) data.
Returns
-------
values: np.array
An array of the values in the indicated ROI.
A 2D matrix if `datavol` is 4D or a 1D vector if `datavol` is 3D.
"""
if maskvol is not None:
# get all masked time series within this roi r
indices = (roivol == roivalue) * (maskvol > 0)
else:
# get all time series within this roi r
indices = roivol == roivalue
if datavol.ndim == 4:
ts = datavol[indices, :]
else:
ts = datavol[indices]
# remove zeroed time series
if zeroe:
if datavol.ndim == 4:
ts = ts[ts.sum(axis=1) != 0, :]
return ts |
def _extract_timeseries_dict(tsvol, roivol, maskvol=None, roi_values=None, zeroe=True):
"""Partition the timeseries in tsvol according to the ROIs in roivol.
If a mask is given, will use it to exclude any voxel outside of it.
Parameters
----------
tsvol: numpy.ndarray
4D timeseries volume or a 3D volume to be partitioned
roivol: numpy.ndarray
3D ROIs volume
maskvol: numpy.ndarray
3D mask volume
zeroe: bool
If true will remove the null timeseries voxels.
roi_values: list of ROI values (int?)
List of the values of the ROIs to indicate the
order and which ROIs will be processed.
Returns
-------
ts_dict: OrderedDict
A dict with the timeseries as items and keys as the ROIs voxel values.
"""
_check_for_partition(tsvol, roivol, maskvol)
# get unique values of the atlas
if roi_values is None:
roi_values = get_unique_nonzeros(roivol)
ts_dict = OrderedDict()
for r in roi_values:
ts = _partition_data(tsvol, roivol, r, maskvol, zeroe)
if len(ts) == 0:
ts = np.zeros(tsvol.shape[-1])
ts_dict[r] = ts
return ts_dict |
def _extract_timeseries_list(tsvol, roivol, maskvol=None, roi_values=None, zeroe=True):
"""Partition the timeseries in tsvol according to the ROIs in roivol.
If a mask is given, will use it to exclude any voxel outside of it.
Parameters
----------
tsvol: numpy.ndarray
4D timeseries volume or a 3D volume to be partitioned
roivol: numpy.ndarray
3D ROIs volume
maskvol: numpy.ndarray
3D mask volume
zeroe: bool
If true will remove the null timeseries voxels. Only applied to timeseries (4D) data.
roi_values: list of ROI values (int?)
List of the values of the ROIs to indicate the
order and which ROIs will be processed.
Returns
-------
ts_list: list
A list with the timeseries arrays as items
"""
_check_for_partition(tsvol, roivol, maskvol)
if roi_values is None:
roi_values = get_unique_nonzeros(roivol)
ts_list = []
for r in roi_values:
ts = _partition_data(tsvol, roivol, r, maskvol, zeroe)
if len(ts) == 0:
ts = np.zeros(tsvol.shape[-1])
ts_list.append(ts)
return ts_list |
def get_3D_from_4D(image, vol_idx=0):
"""Pick one 3D volume from a 4D nifti image file
Parameters
----------
image: img-like object or str
Volume defining different ROIs.
Can either be:
- a file path to a Nifti image
- any object with get_data() and get_affine() methods, e.g., nibabel.Nifti1Image.
If niimg is a string, consider it as a path to Nifti image and
call nibabel.load on it. If it is an object, check if get_data()
and get_affine() methods are present, raise TypeError otherwise.
vol_idx: int
Index of the 3D volume to be extracted from the 4D volume.
Returns
-------
vol, hdr, aff
The data array, the image header and the affine transform matrix.
"""
img = check_img(image)
hdr, aff = get_img_info(img)
if len(img.shape) != 4:
raise AttributeError('Volume in {} does not have 4 dimensions.'.format(repr_imgs(img)))
if not 0 <= vol_idx < img.shape[3]:
raise IndexError('IndexError: 4th dimension in volume {} has {} volumes, '
'not {}.'.format(repr_imgs(img), img.shape[3], vol_idx))
img_data = img.get_data()
new_vol = img_data[:, :, :, vol_idx].copy()
hdr.set_data_shape(hdr.get_data_shape()[:3])
return new_vol, hdr, aff |
def create_hdf_file(self):
"""
:return: h5py DataSet
"""
mode = 'w'
if not self._overwrite and os.path.exists(self._fname):
mode = 'a'
self._hdf_file = h5py.File(self._fname, mode)
if self._hdf_basepath == '/':
self._group = self._hdf_file['/']
else:
self._group = self._hdf_file.create_group(self._hdf_basepath) |
def get_dataset(self, ds_name, mode='r'):
"""
Returns a h5py dataset given its registered name.
:param ds_name: string
Name of the dataset to be returned.
:return:
"""
if ds_name in self._datasets:
return self._datasets[ds_name]
else:
return self.create_empty_dataset(ds_name) |
def create_empty_dataset(self, ds_name, dtype=np.float32):
"""
Creates a Dataset with unknown size.
Resize it before using.
:param ds_name: string
:param dtype: dtype
Datatype of the dataset
:return: h5py DataSet
"""
if ds_name in self._datasets:
return self._datasets[ds_name]
ds = self._group.create_dataset(ds_name, (1, 1), maxshape=None,
dtype=dtype)
self._datasets[ds_name] = ds
return ds |
def create_dataset(self, ds_name, data, attrs=None, dtype=None):
"""
Saves a Numpy array in a dataset in the HDF file, registers it as
ds_name and returns the h5py dataset.
:param ds_name: string
Registration name of the dataset to be registered.
:param data: Numpy ndarray
:param dtype: dtype
Datatype of the dataset
:return: h5py dataset
"""
if ds_name in self._datasets:
ds = self._datasets[ds_name]
if ds.dtype != data.dtype:
warnings.warn('Dataset and data dtype are different!')
else:
if dtype is None:
dtype = data.dtype
ds = self._group.create_dataset(ds_name, data.shape,
dtype=dtype)
if attrs is not None:
for key in attrs:
setattr(ds.attrs, key, attrs[key])
ds.read_direct(data)
self._datasets[ds_name] = ds
return ds |
def save(self, ds_name, data, dtype=None):
"""
See create_dataset.
"""
return self.create_dataset(ds_name, data, dtype) |
def _fill_missing_values(df, range_values, fill_value=0, fill_method=None):
"""
Will get the names of the index colums of df, obtain their ranges from
range_values dict and return a reindexed version of df with the given
range values.
:param df: pandas DataFrame
:param range_values: dict or array-like
Must contain for each index column of df an entry with all the values
within the range of the column.
:param fill_value: scalar or 'nearest', default 0
Value to use for missing values. Defaults to 0, but can be any
"compatible" value, e.g., NaN.
The 'nearest' mode will fill the missing value with the nearest value in
the column.
:param fill_method: {'backfill', 'bfill', 'pad', 'ffill', None}, default None
Method to use for filling holes in reindexed DataFrame
'pad' / 'ffill': propagate last valid observation forward to next valid
'backfill' / 'bfill': use NEXT valid observation to fill gap
:return: pandas Dataframe and used column ranges
reindexed DataFrame and dict with index column ranges
"""
idx_colnames = df.index.names
idx_colranges = [range_values[x] for x in idx_colnames]
fullindex = pd.Index([p for p in product(*idx_colranges)],
name=tuple(idx_colnames))
fulldf = df.reindex(index=fullindex, fill_value=fill_value,
method=fill_method)
fulldf.index.names = idx_colnames
return fulldf, idx_colranges |
def get(self, key):
"""
Retrieve pandas object or group of Numpy ndarrays
stored in file
Parameters
----------
key : object
Returns
-------
obj : type of object stored in file
"""
node = self.get_node(key)
if node is None:
raise KeyError('No object named %s in the file' % key)
if hasattr(node, 'attrs'):
if 'pandas_type' in node.attrs:
return self._read_group(node)
return self._read_array(node) |
def put(self, key, value, attrs=None, format=None, append=False, **kwargs):
"""
Store object in HDFStore
Parameters
----------
key : str
value : {Series, DataFrame, Panel, Numpy ndarray}
format : 'fixed(f)|table(t)', default is 'fixed'
fixed(f) : Fixed format
Fast writing/reading. Not-appendable, nor searchable
table(t) : Table format
Write as a PyTables Table structure which may perform worse but allow more flexible operations
like searching/selecting subsets of the data
append : boolean, default False
This will force Table format, append the input data to the
existing.
encoding : default None, provide an encoding for strings
"""
if not isinstance(value, np.ndarray):
super(NumpyHDFStore, self).put(key, value, format, append, **kwargs)
else:
group = self.get_node(key)
# remove the node if we are not appending
if group is not None and not append:
self._handle.removeNode(group, recursive=True)
group = None
if group is None:
paths = key.split('/')
# recursively create the groups
path = '/'
for p in paths:
if not len(p):
continue
new_path = path
if not path.endswith('/'):
new_path += '/'
new_path += p
group = self.get_node(new_path)
if group is None:
group = self._handle.createGroup(path, p)
path = new_path
ds_name = kwargs.get('ds_name', self._array_dsname)
ds = self._handle.createArray(group, ds_name, value)
if attrs is not None:
for key in attrs:
setattr(ds.attrs, key, attrs[key])
self._handle.flush()
return ds |
def _push_dfblock(self, key, df, ds_name, range_values):
"""
:param key: string
:param df: pandas Dataframe
:param ds_name: string
"""
#create numpy array and put into hdf_file
vals_colranges = [range_values[x] for x in df.index.names]
nu_shape = [len(x) for x in vals_colranges]
return self.put(key, np.reshape(df.values, tuple(nu_shape)),
attrs={'axes': df.index.names},
ds_name=ds_name, append=True) |
def put_df_as_ndarray(self, key, df, range_values, loop_multiindex=False,
unstack=False, fill_value=0, fill_method=None):
"""Returns a PyTables HDF Array from df in the shape given by its index columns range values.
:param key: string object
:param df: pandas DataFrame
:param range_values: dict or array-like
Must contain for each index column of df an entry with all the values
within the range of the column.
:param loop_multiindex: bool
Will loop through the first index in a multiindex dataframe, extract a
dataframe only for one value, complete and fill the missing values and
store in the HDF.
If this is True, it will not use unstack.
This is as fast as unstacking.
:param unstack: bool
Unstack means that this will use the first index name to
unfold the DataFrame, and will create a group with as many datasets
as valus has this first index.
Use this if you think the filled dataframe won't fit in your RAM memory.
If set to False, this will transform the dataframe in memory first
and only then save it.
:param fill_value: scalar or 'nearest', default 0
Value to use for missing values. Defaults to 0, but can be any
"compatible" value, e.g., NaN.
The 'nearest' mode will fill the missing value with the nearest value in
the column.
:param fill_method: {'backfill', 'bfill', 'pad', 'ffill', None}, default None
Method to use for filling holes in reindexed DataFrame
'pad' / 'ffill': propagate last valid observation forward to next valid
'backfill' / 'bfill': use NEXT valid observation to fill gap
:return: PyTables data node
"""
idx_colnames = df.index.names
#idx_colranges = [range_values[x] for x in idx_colnames]
#dataset group name if not given
if key is None:
key = idx_colnames[0]
if loop_multiindex:
idx_values = df.index.get_level_values(0).unique()
for idx in idx_values:
vals, _ = self._fill_missing_values(df.xs((idx,), level=idx_colnames[0]),
range_values,
fill_value=fill_value,
fill_method=fill_method)
ds_name = str(idx) + '_' + '_'.join(vals.columns)
self._push_dfblock(key, vals, ds_name, range_values)
return self._handle.get_node('/' + str(key))
#separate the dataframe into blocks, only with the first index
else:
if unstack:
df = df.unstack(idx_colnames[0])
for idx in df:
vals, _ = self._fill_missing_values(df[idx], range_values,
fill_value=fill_value,
fill_method=fill_method)
vals = np.nan_to_num(vals)
ds_name = '_'.join([str(x) for x in vals.name])
self._push_dfblock(key, vals, ds_name, range_values)
return self._handle.get_node('/' + str(key))
#not separate the data
vals, _ = self._fill_missing_values(df, range_values,
fill_value=fill_value,
fill_method=fill_method)
ds_name = self._array_dsname
return self._push_dfblock(key, vals, ds_name, range_values) |
def get_data(self, safe_copy=False):
"""Get the data in the image.
If save_copy is True, will perform a deep copy of the data and return it.
Parameters
----------
smoothed: (optional) bool
If True and self._smooth_fwhm > 0 will smooth the data before masking.
masked: (optional) bool
If True and self.has_mask will return the masked data, the plain data otherwise.
safe_copy: (optional) bool
Returns
-------
np.ndarray
"""
if safe_copy:
data = get_data(self.img)
else:
data = self.img.get_data(caching=self._caching)
return data |
def smooth_fwhm(self, fwhm):
""" Set a smoothing Gaussian kernel given its FWHM in mm. """
if fwhm != self._smooth_fwhm:
self._is_data_smooth = False
self._smooth_fwhm = fwhm |
def get_data(self, smoothed=True, masked=True, safe_copy=False):
"""Get the data in the image.
If save_copy is True, will perform a deep copy of the data and return it.
Parameters
----------
smoothed: (optional) bool
If True and self._smooth_fwhm > 0 will smooth the data before masking.
masked: (optional) bool
If True and self.has_mask will return the masked data, the plain data otherwise.
safe_copy: (optional) bool
Returns
-------
np.ndarray
"""
if not safe_copy and smoothed == self._is_data_smooth and masked == self._is_data_masked:
if self.has_data_loaded() and self._caching == 'fill':
return self.get_data()
if safe_copy:
data = get_data(self.img)
else:
data = self.img.get_data(caching=self._caching)
is_smoothed = False
if smoothed and self._smooth_fwhm > 0:
try:
data = _smooth_data_array(data, self.get_affine(), self._smooth_fwhm, copy=False)
except ValueError as ve:
raise ValueError('Error smoothing image {} with a {}mm FWHM '
'kernel.'.format(self.img, self._smooth_fwhm)) from ve
else:
is_smoothed = True
is_data_masked = False
if masked and self.has_mask():
try:
data = self.unmask(self._mask_data(data)[0])
except:
raise
else:
is_data_masked = True
if not safe_copy:
self._is_data_masked = is_data_masked
self._is_data_smooth = is_smoothed
return data |
def apply_mask(self, mask_img):
"""First set_mask and the get_masked_data.
Parameters
----------
mask_img: nifti-like image, NeuroImage or str
3D mask array: True where a voxel should be used.
Can either be:
- a file path to a Nifti image
- any object with get_data() and get_affine() methods, e.g., nibabel.Nifti1Image.
If niimg is a string, consider it as a path to Nifti image and
call nibabel.load on it. If it is an object, check if get_data()
and get_affine() methods are present, raise TypeError otherwise.
Returns
-------
The masked data deepcopied
"""
self.set_mask(mask_img)
return self.get_data(masked=True, smoothed=True, safe_copy=True) |
def set_mask(self, mask_img):
"""Sets a mask img to this. So every operation to self, this mask will be taken into account.
Parameters
----------
mask_img: nifti-like image, NeuroImage or str
3D mask array: True where a voxel should be used.
Can either be:
- a file path to a Nifti image
- any object with get_data() and get_affine() methods, e.g., nibabel.Nifti1Image.
If niimg is a string, consider it as a path to Nifti image and
call nibabel.load on it. If it is an object, check if get_data()
and get_affine() methods are present, raise TypeError otherwise.
Note
----
self.img and mask_file must have the same shape.
Raises
------
FileNotFound, NiftiFilesNotCompatible
"""
mask = load_mask(mask_img, allow_empty=True)
check_img_compatibility(self.img, mask, only_check_3d=True) # this will raise an exception if something is wrong
self.mask = mask |
def _mask_data(self, data):
"""Return the data masked with self.mask
Parameters
----------
data: np.ndarray
Returns
-------
masked np.ndarray
Raises
------
ValueError if the data and mask dimensions are not compatible.
Other exceptions related to numpy computations.
"""
self._check_for_mask()
msk_data = self.mask.get_data()
if self.ndim == 3:
return data[msk_data], np.where(msk_data)
elif self.ndim == 4:
return _apply_mask_to_4d_data(data, self.mask)
else:
raise ValueError('Cannot mask {} with {} dimensions using mask {}.'.format(self, self.ndim, self.mask)) |
def apply_smoothing(self, smooth_fwhm):
"""Set self._smooth_fwhm and then smooths the data.
See boyle.nifti.smooth.smooth_imgs.
Returns
-------
the smoothed data deepcopied.
"""
if smooth_fwhm <= 0:
return
old_smooth_fwhm = self._smooth_fwhm
self._smooth_fwhm = smooth_fwhm
try:
data = self.get_data(smoothed=True, masked=True, safe_copy=True)
except ValueError as ve:
self._smooth_fwhm = old_smooth_fwhm
raise
else:
self._smooth_fwhm = smooth_fwhm
return data |
def mask_and_flatten(self):
"""Return a vector of the masked data.
Returns
-------
np.ndarray, tuple of indices (np.ndarray), tuple of the mask shape
"""
self._check_for_mask()
return self.get_data(smoothed=True, masked=True, safe_copy=False)[self.get_mask_indices()],\
self.get_mask_indices(), self.mask.shape |
def unmask(self, arr):
"""Use self.mask to reshape arr and self.img to get an affine and header to create
a new self.img using the data in arr.
If self.has_mask() is False, will return the same arr.
"""
self._check_for_mask()
if 1 > arr.ndim > 2:
raise ValueError('The given array has {} dimensions while my mask has {}. '
'Masked data must be 1D or 2D array. '.format(arr.ndim,
len(self.mask.shape)))
if arr.ndim == 2:
return matrix_to_4dvolume(arr, self.mask.get_data())
elif arr.ndim == 1:
return vector_to_volume(arr, self.mask.get_data()) |
def to_file(self, outpath):
"""Save this object instance in outpath.
Parameters
----------
outpath: str
Output file path
"""
if not self.has_mask() and not self.is_smoothed():
save_niigz(outpath, self.img)
else:
save_niigz(outpath, self.get_data(masked=True, smoothed=True),
self.get_header(), self.get_affine()) |
def setup_logging(log_config_file=op.join(op.dirname(__file__), 'logger.yml'),
log_default_level=LOG_LEVEL,
env_key=MODULE_NAME.upper() + '_LOG_CFG'):
"""Setup logging configuration."""
path = log_config_file
value = os.getenv(env_key, None)
if value:
path = value
if op.exists(path):
log_cfg = yaml.load(read(path).format(MODULE_NAME))
logging.config.dictConfig(log_cfg)
#print('Started logging using config file {0}.'.format(path))
else:
logging.basicConfig(level=log_default_level)
#print('Started default logging. Could not find config file '
# 'in {0}.'.format(path))
log = logging.getLogger(__name__)
log.debug('Start logging.') |
def _read_meta_header(filename):
"""Return a dictionary of meta data from meta header file.
Parameters
----------
filename: str
Path to a .mhd file
Returns
-------
meta_dict: dict
A dictionary with the .mhd header content.
"""
fileIN = open(filename, 'r')
line = fileIN.readline()
meta_dict = {}
tag_flag = [False]*len(MHD_TAGS)
while line:
tags = str.split(line, '=')
# print tags[0]
for i in range(len(MHD_TAGS)):
tag = MHD_TAGS[i]
if (str.strip(tags[0]) == tag) and (not tag_flag[i]):
# print tags[1]
meta_dict[tag] = str.strip(tags[1])
tag_flag[i] = True
line = fileIN.readline()
# comment
fileIN.close()
return meta_dict |
def load_raw_data_with_mhd(filename):
"""Return a dictionary of meta data from meta header file.
Parameters
----------
filename: str
Path to a .mhd file
Returns
-------
data: numpy.ndarray
n-dimensional image data array.
meta_dict: dict
A dictionary with the .mhd header content.
"""
meta_dict = _read_meta_header(filename)
dim = int(meta_dict['NDims'])
assert (meta_dict['ElementType'] in MHD_TO_NUMPY_TYPE)
arr = [int(i) for i in meta_dict['DimSize'].split()]
volume = reduce(lambda x, y: x*y, arr[0:dim-1], 1)
pwd = op.dirname(filename)
raw_file = meta_dict['ElementDataFile']
data_file = op.join(pwd, raw_file)
ndtype = MHD_TO_NUMPY_TYPE[meta_dict['ElementType']]
arrtype = NDARRAY_TO_ARRAY_TYPE[ndtype]
with open(data_file, 'rb') as fid:
binvalues = array.array(arrtype)
binvalues.fromfile(fid, volume*arr[dim-1])
data = np.array (binvalues, ndtype)
data = np.reshape(data, (arr[dim-1], volume))
if dim >= 3:
# Begin 3D fix
dimensions = [int(i) for i in meta_dict['DimSize'].split()]
# dimensions.reverse() ??
data = data.reshape(dimensions)
# End 3D fix
return data, meta_dict |
def get_3D_from_4D(filename, vol_idx=0):
"""Return a 3D volume from a 4D nifti image file
Parameters
----------
filename: str
Path to the 4D .mhd file
vol_idx: int
Index of the 3D volume to be extracted from the 4D volume.
Returns
-------
vol, hdr
The data array and the new 3D image header.
"""
def remove_4th_element_from_hdr_string(hdr, fieldname):
if fieldname in hdr:
hdr[fieldname] = ' '.join(hdr[fieldname].split()[:3])
vol, hdr = load_raw_data_with_mhd(filename)
if vol.ndim != 4:
raise ValueError('Volume in {} does not have 4 dimensions.'.format(op.join(op.dirname(filename),
hdr['ElementDataFile'])))
if not 0 <= vol_idx < vol.shape[3]:
raise IndexError('IndexError: 4th dimension in volume {} has {} volumes, not {}.'.format(filename,
vol.shape[3], vol_idx))
new_vol = vol[:, :, :, vol_idx].copy()
hdr['NDims'] = 3
remove_4th_element_from_hdr_string(hdr, 'ElementSpacing')
remove_4th_element_from_hdr_string(hdr, 'DimSize')
return new_vol, hdr |
def _safe_cache(memory, func, **kwargs):
""" A wrapper for mem.cache that flushes the cache if the version
number of nibabel has changed.
"""
cachedir = memory.cachedir
if cachedir is None or cachedir in __CACHE_CHECKED:
return memory.cache(func, **kwargs)
version_file = os.path.join(cachedir, 'module_versions.json')
versions = dict()
if os.path.exists(version_file):
with open(version_file, 'r') as _version_file:
versions = json.load(_version_file)
modules = (nibabel, )
# Keep only the major + minor version numbers
my_versions = dict((m.__name__, LooseVersion(m.__version__).version[:2])
for m in modules)
commons = set(versions.keys()).intersection(set(my_versions.keys()))
collisions = [m for m in commons if versions[m] != my_versions[m]]
# Flush cache if version collision
if len(collisions) > 0:
if nilearn.CHECK_CACHE_VERSION:
warnings.warn("Incompatible cache in %s: "
"different version of nibabel. Deleting "
"the cache. Put nilearn.CHECK_CACHE_VERSION "
"to false to avoid this behavior."
% cachedir)
try:
tmp_dir = (os.path.split(cachedir)[:-1]
+ ('old_%i' % os.getpid(), ))
tmp_dir = os.path.join(*tmp_dir)
# We use rename + unlink to be more robust to race
# conditions
os.rename(cachedir, tmp_dir)
shutil.rmtree(tmp_dir)
except OSError:
# Another process could have removed this dir
pass
try:
os.makedirs(cachedir)
except OSError:
# File exists?
pass
else:
warnings.warn("Incompatible cache in %s: "
"old version of nibabel." % cachedir)
# Write json files if configuration is different
if versions != my_versions:
with open(version_file, 'w') as _version_file:
json.dump(my_versions, _version_file)
__CACHE_CHECKED[cachedir] = True
return memory.cache(func, **kwargs) |
def cache(func, memory, func_memory_level=None, memory_level=None,
**kwargs):
""" Return a joblib.Memory object.
The memory_level determines the level above which the wrapped
function output is cached. By specifying a numeric value for
this level, the user can to control the amount of cache memory
used. This function will cache the function call or not
depending on the cache level.
Parameters
----------
func: function
The function which output is to be cached.
memory: instance of joblib.Memory or string
Used to cache the function call.
func_memory_level: int, optional
The memory_level from which caching must be enabled for the wrapped
function.
memory_level: int, optional
The memory_level used to determine if function call must
be cached or not (if user_memory_level is equal of greater than
func_memory_level the function is cached)
kwargs: keyword arguments
The keyword arguments passed to memory.cache
Returns
-------
mem: joblib.MemorizedFunc
object that wraps the function func. This object may be
a no-op, if the requested level is lower than the value given
to _cache()). For consistency, a joblib.Memory object is always
returned.
"""
verbose = kwargs.get('verbose', 0)
# memory_level and func_memory_level must be both None or both integers.
memory_levels = [memory_level, func_memory_level]
both_params_integers = all(isinstance(lvl, int) for lvl in memory_levels)
both_params_none = all(lvl is None for lvl in memory_levels)
if not (both_params_integers or both_params_none):
raise ValueError('Reference and user memory levels must be both None '
'or both integers.')
if memory is not None and (func_memory_level is None or
memory_level >= func_memory_level):
if isinstance(memory, _basestring):
memory = Memory(cachedir=memory, verbose=verbose)
if not isinstance(memory, MEMORY_CLASSES):
raise TypeError("'memory' argument must be a string or a "
"joblib.Memory object. "
"%s %s was given." % (memory, type(memory)))
if (memory.cachedir is None and memory_level is not None
and memory_level > 1):
warnings.warn("Caching has been enabled (memory_level = %d) "
"but no Memory object or path has been provided"
" (parameter memory). Caching deactivated for "
"function %s." %
(memory_level, func.__name__),
stacklevel=2)
else:
memory = Memory(cachedir=None, verbose=verbose)
return _safe_cache(memory, func, **kwargs) |
def _cache(self, func, func_memory_level=1, **kwargs):
""" Return a joblib.Memory object.
The memory_level determines the level above which the wrapped
function output is cached. By specifying a numeric value for
this level, the user can to control the amount of cache memory
used. This function will cache the function call or not
depending on the cache level.
Parameters
----------
func: function
The function the output of which is to be cached.
memory_level: int
The memory_level from which caching must be enabled for the wrapped
function.
Returns
-------
mem: joblib.Memory
object that wraps the function func. This object may be
a no-op, if the requested level is lower than the value given
to _cache()). For consistency, a joblib.Memory object is always
returned.
"""
verbose = getattr(self, 'verbose', 0)
# Creates attributes if they don't exist
# This is to make creating them in __init__() optional.
if not hasattr(self, "memory_level"):
self.memory_level = 0
if not hasattr(self, "memory"):
self.memory = Memory(cachedir=None, verbose=verbose)
if isinstance(self.memory, _basestring):
self.memory = Memory(cachedir=self.memory, verbose=verbose)
# If cache level is 0 but a memory object has been provided, set
# memory_level to 1 with a warning.
if self.memory_level == 0:
if (isinstance(self.memory, _basestring)
or self.memory.cachedir is not None):
warnings.warn("memory_level is currently set to 0 but "
"a Memory object has been provided. "
"Setting memory_level to 1.")
self.memory_level = 1
return cache(func, self.memory, func_memory_level=func_memory_level,
memory_level=self.memory_level, **kwargs) |
def save_niigz(filepath, vol, header=None, affine=None):
"""Saves a volume into a Nifti (.nii.gz) file.
Parameters
----------
vol: Numpy 3D or 4D array
Volume with the data to be saved.
file_path: string
Output file name path
affine: (optional) 4x4 Numpy array
Array with the affine transform of the file.
This is needed if vol is a np.ndarray.
header: (optional) nibabel.nifti1.Nifti1Header, optional
Header for the file, optional but recommended.
This is needed if vol is a np.ndarray.
Note
----
affine and header only work for numpy volumes.
"""
# delayed import because could not install nipy on Python 3 on OSX
we_have_nipy = False
try:
import nipy.core.image as niim
from nipy import save_image
except:
pass
else:
we_have_nipy = True
if isinstance(vol, np.ndarray):
log.debug('Saving numpy nifti file: {}.'.format(filepath))
ni = nib.Nifti1Image(vol, affine, header)
nib.save(ni, filepath)
elif isinstance(vol, nib.Nifti1Image):
log.debug('Saving nibabel nifti file: {}.'.format(filepath))
nib.save(vol, filepath)
elif we_have_nipy and isinstance(vol, niim.Image):
log.debug('Saving nipy nifti file: {}.'.format(filepath))
save_image(vol, filepath)
#elif isinstance(vol, NeuroImage):
# log.debug('Saving boyle.NeuroImage nifti file: {}.'.format(filepath))
# nib.save(vol.img, filepath)
else:
raise ValueError('Could not recognise input vol filetype. Got: {}.'.format(repr_imgs(vol))) |
def spatialimg_to_hdfgroup(h5group, spatial_img):
"""Saves a Nifti1Image into an HDF5 group.
Parameters
----------
h5group: h5py Group
Output HDF5 file path
spatial_img: nibabel SpatialImage
Image to be saved
h5path: str
HDF5 group path where the image data will be saved.
Datasets will be created inside the given group path:
'data', 'extra', 'affine', the header information will
be set as attributes of the 'data' dataset.
"""
try:
h5group['data'] = spatial_img.get_data()
h5group['affine'] = spatial_img.get_affine()
if hasattr(h5group, 'get_extra'):
h5group['extra'] = spatial_img.get_extra()
hdr = spatial_img.get_header()
for k in list(hdr.keys()):
h5group['data'].attrs[k] = hdr[k]
except ValueError as ve:
raise Exception('Error creating group ' + h5group.name) from ve |
def spatialimg_to_hdfpath(file_path, spatial_img, h5path=None, append=True):
"""Saves a Nifti1Image into an HDF5 file.
Parameters
----------
file_path: string
Output HDF5 file path
spatial_img: nibabel SpatialImage
Image to be saved
h5path: string
HDF5 group path where the image data will be saved.
Datasets will be created inside the given group path:
'data', 'extra', 'affine', the header information will
be set as attributes of the 'data' dataset.
Default: '/img'
append: bool
True if you don't want to erase the content of the file
if it already exists, False otherwise.
Note
----
HDF5 open modes
>>> 'r' Readonly, file must exist
>>> 'r+' Read/write, file must exist
>>> 'w' Create file, truncate if exists
>>> 'w-' Create file, fail if exists
>>> 'a' Read/write if exists, create otherwise (default)
"""
if h5path is None:
h5path = '/img'
mode = 'w'
if os.path.exists(file_path):
if append:
mode = 'a'
with h5py.File(file_path, mode) as f:
try:
h5img = f.create_group(h5path)
spatialimg_to_hdfgroup(h5img, spatial_img)
except ValueError as ve:
raise Exception('Error creating group ' + h5path) from ve |
def hdfpath_to_nifti1image(file_path, h5path):
"""Returns a nibabel Nifti1Image from a HDF5 group datasets
Parameters
----------
file_path: string
HDF5 file path
h5path:
HDF5 group path in file_path
Returns
-------
nibabel Nifti1Image
"""
with h5py.File(file_path, 'r') as f:
return hdfgroup_to_nifti1image(f[h5path]) |
def hdfgroup_to_nifti1image(h5group):
"""Returns a nibabel Nifti1Image from a HDF5 group datasets
Parameters
----------
h5group: h5py.Group
HDF5 group
Returns
-------
nibabel Nifti1Image
"""
try:
data = h5group['data'][:]
affine = h5group['affine'][:]
extra = None
if 'extra' in h5group:
extra = h5group['extra'][:]
header = get_nifti1hdr_from_h5attrs(h5group['data'].attrs)
img = nib.Nifti1Image(data, affine, header=header, extra=extra)
return img
except KeyError as ke:
raise Exception('Could not read Nifti1Image datasets from ' + h5group.name) from ke |
def get_nifti1hdr_from_h5attrs(h5attrs):
"""Transforms an H5py Attributes set to a dict.
Converts unicode string keys into standard strings
and each value into a numpy array.
Parameters
----------
h5attrs: H5py Attributes
Returns
--------
dict
"""
hdr = nib.Nifti1Header()
for k in list(h5attrs.keys()):
hdr[str(k)] = np.array(h5attrs[k])
return hdr |
def all_childnodes_to_nifti1img(h5group):
"""Returns in a list all images found under h5group.
Parameters
----------
h5group: h5py.Group
HDF group
Returns
-------
list of nifti1Image
"""
child_nodes = []
def append_parent_if_dataset(name, obj):
if isinstance(obj, h5py.Dataset):
if name.split('/')[-1] == 'data':
child_nodes.append(obj.parent)
vols = []
h5group.visititems(append_parent_if_dataset)
for c in child_nodes:
vols.append(hdfgroup_to_nifti1image(c))
return vols |
def insert_volumes_in_one_dataset(file_path, h5path, file_list, newshape=None,
concat_axis=0, dtype=None, append=True):
"""Inserts all given nifti files from file_list into one dataset in fname.
This will not check if the dimensionality of all files match.
Parameters
----------
file_path: string
HDF5 file path
h5path: string
file_list: list of strings
newshape: tuple or lambda function
If None, it will not reshape the images.
If a lambda function, this lambda will receive only the shape array.
e.g., newshape = lambda x: (np.prod(x[0:3]), x[3])
If a tuple, it will try to reshape all the images with the same shape.
It must work for all the images in file_list.
concat_axis: int
Axis of concatenation after reshaping
dtype: data type
Dataset data type
If not set, will use the type of the first file.
append: bool
Raises
------
ValueError if concat_axis is bigger than data dimensionality.
Note
----
For now, this only works if the dataset ends up being a 2D matrix.
I haven't tested for multi-dimensionality concatenations.
"""
def isalambda(v):
return isinstance(v, type(lambda: None)) and v.__name__ == '<lambda>'
mode = 'w'
if os.path.exists(file_path):
if append:
mode = 'a'
#loading the metadata into spatialimages
imgs = [nib.load(vol) for vol in file_list]
#getting the shapes of all volumes
shapes = [np.array(img.get_shape()) for img in imgs]
#getting the reshaped shapes
if newshape is not None:
if isalambda(newshape):
nushapes = np.array([newshape(shape) for shape in shapes])
else:
nushapes = np.array([shape for shape in shapes])
#checking if concat_axis is available in this new shapes
for nushape in nushapes:
assert(len(nushape) - 1 < concat_axis)
#calculate the shape of the new dataset
n_dims = nushapes.shape[1]
ds_shape = np.zeros(n_dims, dtype=np.int)
for a in list(range(n_dims)):
if a == concat_axis:
ds_shape[a] = np.sum(nushapes[:, concat_axis])
else:
ds_shape[a] = np.max(nushapes[:, a])
#get the type of the new dataset
#dtypes = [img.get_data_dtype() for img in imgs]
if dtype is None:
dtype = imgs[0].get_data_dtype()
with h5py.File(file_path, mode) as f:
try:
ic = 0
h5grp = f.create_group(os.path.dirname(h5path))
h5ds = h5grp.create_dataset(os.path.basename(h5path),
ds_shape, dtype)
for img in imgs:
#get the shape of the current image
nushape = nushapes[ic, :]
def append_to_dataset(h5ds, idx, data, concat_axis):
"""
@param h5ds: H5py DataSet
@param idx: int
@param data: ndarray
@param concat_axis: int
@return:
"""
shape = data.shape
ndims = len(shape)
if ndims == 1:
if concat_axis == 0:
h5ds[idx] = data
elif ndims == 2:
if concat_axis == 0:
h5ds[idx ] = data
elif concat_axis == 1:
h5ds[idx ] = data
elif ndims == 3:
if concat_axis == 0:
h5ds[idx ] = data
elif concat_axis == 1:
h5ds[idx ] = data
elif concat_axis == 2:
h5ds[idx ] = data
#appending the reshaped image into the dataset
append_to_dataset(h5ds, ic,
np.reshape(img.get_data(), tuple(nushape)),
concat_axis)
ic += 1
except ValueError as ve:
raise Exception('Error creating group {} in hdf file {}'.format(h5path, file_path)) from ve |
def treefall(iterable):
"""
Generate all combinations of the elements of iterable and its subsets.
Parameters
----------
iterable: list, set or dict or any iterable object
Returns
-------
A generator of all possible combinations of the iterable.
Example:
-------
>>> for i in treefall([1, 2, 3, 4, 5]): print(i)
>>> (1, 2, 3)
>>> (1, 2)
>>> (1, 3)
>>> (2, 3)
>>> (1,)
>>> (2,)
>>> (3,)
>>> ()
"""
num_elems = len(iterable)
for i in range(num_elems, -1, -1):
for c in combinations(iterable, i):
yield c |
def get_reliabledictionary_list(client, application_name, service_name):
"""List existing reliable dictionaries.
List existing reliable dictionaries and respective schema for given application and service.
:param application_name: Name of the application.
:type application_name: str
:param service_name: Name of the service.
:type service_name: str
"""
cluster = Cluster.from_sfclient(client)
service = cluster.get_application(application_name).get_service(service_name)
for dictionary in service.get_dictionaries():
print(dictionary.name) |
def get_reliabledictionary_schema(client, application_name, service_name, dictionary_name, output_file=None):
"""Query Schema information for existing reliable dictionaries.
Query Schema information existing reliable dictionaries for given application and service.
:param application_name: Name of the application.
:type application_name: str
:param service_name: Name of the service.
:type service_name: str
:param dictionary: Name of the reliable dictionary.
:type dictionary: str
:param output_file: Optional file to save the schema.
"""
cluster = Cluster.from_sfclient(client)
dictionary = cluster.get_application(application_name).get_service(service_name).get_dictionary(dictionary_name)
result = json.dumps(dictionary.get_information(), indent=4)
if (output_file == None):
output_file = "{}-{}-{}-schema-output.json".format(application_name, service_name, dictionary_name)
with open(output_file, "w") as output:
output.write(result)
print('Printed schema information to: ' + output_file)
print(result) |
def query_reliabledictionary(client, application_name, service_name, dictionary_name, query_string, partition_key=None, partition_id=None, output_file=None):
"""Query existing reliable dictionary.
Query existing reliable dictionaries for given application and service.
:param application_name: Name of the application.
:type application_name: str
:param service_name: Name of the service.
:type service_name: str
:param dictionary_name: Name of the reliable dictionary.
:type dictionary_name: str
:param query_string: An OData query string. For example $top=10. Check https://www.odata.org/documentation/ for more information.
:type query_string: str
:param partition_key: Optional partition key of the desired partition, either a string if named schema or int if Int64 schema
:type partition_id: str
:param partition_id: Optional partition GUID of the owning reliable dictionary.
:type partition_id: str
:param output_file: Optional file to save the schema.
"""
cluster = Cluster.from_sfclient(client)
dictionary = cluster.get_application(application_name).get_service(service_name).get_dictionary(dictionary_name)
start = time.time()
if (partition_id != None):
result = dictionary.query(query_string, PartitionLookup.ID, partition_id)
elif (partition_key != None):
result = dictionary.query(query_string, PartitionLookup.KEY, partition_key)
else:
result = dictionary.query(query_string)
if type(result) is str:
print(result)
return
else:
result = json.dumps(result.get("value"), indent=4)
print("Query took " + str(time.time() - start) + " seconds")
if (output_file == None):
output_file = "{}-{}-{}-query-output.json".format(application_name, service_name, dictionary_name)
with open(output_file, "w") as output:
output.write(result)
print()
print('Printed output to: ' + output_file)
print(result) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.