Search is not available for this dataset
text
stringlengths
75
104k
def require_http_allowed_method(cls, request): """Ensure that we're allowed to use this HTTP method.""" allowed = cls.meta.http_allowed_methods if request.method not in allowed: # The specified method is not allowed for the resource # identified by the request URI. # RFC 2616 § 10.4.6 — 405 Method Not Allowed raise http.exceptions.MethodNotAllowed(allowed)
def route(self, request, response): """Processes every request. Directs control flow to the appropriate HTTP/1.1 method. """ # Ensure that we're allowed to use this HTTP method. self.require_http_allowed_method(request) # Retrieve the function corresponding to this HTTP method. function = getattr(self, request.method.lower(), None) if function is None: # Server is not capable of supporting it. raise http.exceptions.NotImplemented() # Delegate to the determined function to process the request. return function(request, response)
def options(self, request, response): """Process an `OPTIONS` request. Used to initiate a cross-origin request. All handling specific to CORS requests is done on every request however this method also returns a list of available methods. """ # Gather a list available HTTP/1.1 methods for this URI. response['Allowed'] = ', '.join(self.meta.http_allowed_methods) # All CORS handling is done for every HTTP/1.1 method. # No more handling is neccesary; set the response to 200 and return. response.status = http.client.OK
def resource(**kwargs): """Wraps the decorated function in a lightweight resource.""" def inner(function): name = kwargs.pop('name', None) if name is None: name = utils.dasherize(function.__name__) methods = kwargs.pop('methods', None) if isinstance(methods, six.string_types): # Tuple-ify the method if we got just a string. methods = methods, # Construct a handler. handler = (function, methods) if name not in _resources: # Initiate the handlers list. _handlers[name] = [] # Construct a light-weight resource using the passed kwargs # as the arguments for the meta. from armet import resources kwargs['name'] = name class LightweightResource(resources.Resource): Meta = type(str('Meta'), (), kwargs) def route(self, request, response): for handler, methods in _handlers[name]: if methods is None or request.method in methods: return handler(request, response) resources.Resource.route(self) # Construct and add this resource. _resources[name] = LightweightResource # Add this to the handlers. _handlers[name].append(handler) # Return the resource. return _resources[name] # Return the inner method. return inner
def threewise(iterable): """s -> (None, s0, s1), (s0, s1, s2), ... (sn-1, sn, None) example: for (last, cur, next) in threewise(l): """ a, b, c = itertools.tee(iterable,3) def prepend(val, l): yield val for i in l: yield i def postpend(val, l): for i in l: yield i yield val next(c,None) for _xa, _xb, _xc in six.moves.zip(prepend(None,a), b, postpend(None,c)): yield (_xa, _xb, _xc)
def lines2less(lines): """ input: lines = list / iterator of strings eg: lines = ["This is the first line", "This is the second line"] output: print those lines to stdout if the output is short + narrow otherwise print the lines to less """ lines = iter(lines) #cast list to iterator #print output to stdout if small, otherwise to less has_term = True terminal_cols = 100 try: terminal_cols = terminal_size() except: #getting terminal info failed -- maybe it's a #weird situation like running through cron has_term = False MAX_CAT_ROWS = 20 #if there are <= this many rows then print to screen first_rows = list(itertools.islice(lines,0,MAX_CAT_ROWS)) wide = any(len(l) > terminal_cols for l in first_rows) use_less = False if has_term and (wide or len(first_rows) == MAX_CAT_ROWS): use_less = True lines = itertools.chain(first_rows, lines) lines = six.moves.map(lambda x: x + '\n', lines) if use_less: lesspager(lines) else: for l in lines: sys.stdout.write(l)
def lesspager(lines): """ Use for streaming writes to a less process Taken from pydoc.pipepager: /usr/lib/python2.7/pydoc.py and /usr/lib/python3.5/pydoc.py """ cmd = "less -S" if sys.version_info[0] >= 3: """Page through text by feeding it to another program.""" import subprocess proc = subprocess.Popen(cmd, shell=True, stdin=subprocess.PIPE) try: with io.TextIOWrapper(proc.stdin, errors='backslashreplace') as pipe: try: for l in lines: pipe.write(l) except KeyboardInterrupt: # We've hereby abandoned whatever text hasn't been written, # but the pager is still in control of the terminal. pass except OSError: pass # Ignore broken pipes caused by quitting the pager program. while True: try: proc.wait() break except KeyboardInterrupt: # Ignore ctl-c like the pager itself does. Otherwise the pager is # left running and the terminal is in raw mode and unusable. pass else: proc = os.popen(cmd, 'w') try: for l in lines: proc.write(l) except IOError: proc.close() sys.exit()
def argmax(l,f=None): """http://stackoverflow.com/questions/5098580/implementing-argmax-in-python""" if f: l = [f(i) for i in l] return max(enumerate(l), key=lambda x:x[1])[0]
def render_to_string(self): """Render to cookie strings. """ values = '' for key, value in self.items(): values += '{}={};'.format(key, value) return values
def from_cookie_string(self, cookie_string): """update self with cookie_string. """ for key_value in cookie_string.split(';'): if '=' in key_value: key, value = key_value.split('=', 1) else: key = key_value strip_key = key.strip() if strip_key and strip_key.lower() not in COOKIE_ATTRIBUTE_NAMES: self[strip_key] = value.strip()
def _add_method(self, effect, verb, resource, conditions): """ Adds a method to the internal lists of allowed or denied methods. Each object in the internal list contains a resource ARN and a condition statement. The condition statement can be null. """ if verb != '*' and not hasattr(HttpVerb, verb): raise NameError('Invalid HTTP verb ' + verb + '. Allowed verbs in HttpVerb class') resource_pattern = re.compile(self.path_regex) if not resource_pattern.match(resource): raise NameError('Invalid resource path: ' + resource + '. Path should match ' + self.path_regex) if resource[:1] == '/': resource = resource[1:] resource_arn = ('arn:aws:execute-api:' + self.region + ':' + self.aws_account_id + ':' + self.rest_api_id + '/' + self.stage + '/' + verb + '/' + resource) if effect.lower() == 'allow': self.allowMethods.append({ 'resource_arn': resource_arn, 'conditions': conditions }) elif effect.lower() == 'deny': self.denyMethods.append({ 'resource_arn': resource_arn, 'conditions': conditions })
def _get_effect_statement(self, effect, methods): """ This function loops over an array of objects containing a resourceArn and conditions statement and generates the array of statements for the policy. """ statements = [] if len(methods) > 0: statement = self._get_empty_statement(effect) for method in methods: if (method['conditions'] is None or len(method['conditions']) == 0): statement['Resource'].append(method['resource_arn']) else: cond_statement = self._get_empty_statement(effect) cond_statement['Resource'].append(method['resource_arn']) cond_statement['Condition'] = method['conditions'] statements.append(cond_statement) statements.append(statement) return statements
def allow_method_with_conditions(self, verb, resource, conditions): """ Adds an API Gateway method (Http verb + Resource path) to the list of allowed methods and includes a condition for the policy statement. More on AWS policy conditions here: http://docs.aws.amazon.com/IAM/latest/UserGuide/ reference_policies_elements.html#Condition """ self._add_method('Allow', verb, resource, conditions)
def deny_method_with_conditions(self, verb, resource, conditions): """ Adds an API Gateway method (Http verb + Resource path) to the list of denied methods and includes a condition for the policy statement. More on AWS policy conditions here: http://docs.aws.amazon.com/IAM/latest/UserGuide/ reference_policies_elements.html#Condition """ self._add_method('Deny', verb, resource, conditions)
def build(self): """ Generates the policy document based on the internal lists of allowed and denied conditions. This will generate a policy with two main statements for the effect: one statement for Allow and one statement for Deny. Methods that includes conditions will have their own statement in the policy. """ if ((self.allowMethods is None or len(self.allowMethods) == 0) and (self.denyMethods is None or len(self.denyMethods) == 0)): raise NameError('No statements defined for the policy') policy = { 'principalId': self.principal_id, 'policyDocument': { 'Version': self.version, 'Statement': [] } } policy['policyDocument']['Statement'].extend( self._get_effect_statement('Allow', self.allowMethods)) policy['policyDocument']['Statement'].extend( self._get_effect_statement('Deny', self.denyMethods)) return policy
def deref(self, data): """AWS doesn't quite have Swagger 2.0 validation right and will fail on some refs. So, we need to convert to deref before upload.""" # We have to make a deepcopy here to create a proper JSON # compatible object, otherwise `json.dumps` fails when it # hits jsonref.JsonRef objects. deref = copy.deepcopy(jsonref.JsonRef.replace_refs(data)) # Write out JSON version because we might want this. self.write_template(deref, filename='swagger.json') return deref
def check_pre_requirements(pre_requirements): """Check all necessary system requirements to exist. :param pre_requirements: Sequence of pre-requirements to check by running ``where <pre_requirement>`` on Windows and ``which ...`` elsewhere. """ pre_requirements = set(pre_requirements or []) pre_requirements.add('virtualenv') for requirement in pre_requirements: if not which(requirement): print_error('Requirement {0!r} is not found in system'. format(requirement)) return False return True
def config_to_args(config): """Convert config dict to arguments list. :param config: Configuration dict. """ result = [] for key, value in iteritems(config): if value is False: continue key = '--{0}'.format(key.replace('_', '-')) if isinstance(value, (list, set, tuple)): for item in value: result.extend((key, smart_str(item))) elif value is not True: result.extend((key, smart_str(value))) else: result.append(key) return tuple(result)
def create_env(env, args, recreate=False, ignore_activated=False, quiet=False): """Create virtual environment. :param env: Virtual environment name. :param args: Pass given arguments to ``virtualenv`` script. :param recerate: Recreate virtual environment? By default: False :param ignore_activated: Ignore already activated virtual environment and create new one. By default: False :param quiet: Do not output messages into terminal. By default: False """ cmd = None result = True inside_env = hasattr(sys, 'real_prefix') or os.environ.get('VIRTUAL_ENV') env_exists = os.path.isdir(env) if not quiet: print_message('== Step 1. Create virtual environment ==') if ( recreate or (not inside_env and not env_exists) ) or ( ignore_activated and not env_exists ): cmd = ('virtualenv', ) + args + (env, ) if not cmd and not quiet: if inside_env: message = 'Working inside of virtual environment, done...' else: message = 'Virtual environment {0!r} already created, done...' print_message(message.format(env)) if cmd: with disable_error_handler(): result = not run_cmd(cmd, echo=not quiet) if not quiet: print_message() return result
def error_handler(func): """Decorator to error handling.""" @wraps(func) def wrapper(*args, **kwargs): """ Run actual function and if exception catched and error handler enabled put traceback to log file """ try: return func(*args, **kwargs) except BaseException as err: # Do not catch exceptions on testing if BOOTSTRAPPER_TEST_KEY in os.environ: raise # Fail silently if error handling disabled if ERROR_HANDLER_DISABLED: return True # Otherwise save traceback to log return save_traceback(err) return wrapper
def install(env, requirements, args, ignore_activated=False, install_dev_requirements=False, quiet=False): """Install library or project into virtual environment. :param env: Use given virtual environment name. :param requirements: Use given requirements file for pip. :param args: Pass given arguments to pip script. :param ignore_activated: Do not run pip inside already activated virtual environment. By default: False :param install_dev_requirements: When enabled install prefixed or suffixed dev requirements after original installation process completed. By default: False :param quiet: Do not output message to terminal. By default: False """ if os.path.isfile(requirements): args += ('-r', requirements) label = 'project' else: args += ('-U', '-e', '.') label = 'library' # Attempt to install development requirements if install_dev_requirements: dev_requirements = None dirname = os.path.dirname(requirements) basename, ext = os.path.splitext(os.path.basename(requirements)) # Possible dev requirements files: # # * <requirements>-dev.<ext> # * dev-<requirements>.<ext> # * <requirements>_dev.<ext> # * dev_<requirements>.<ext> # * <requirements>dev.<ext> # * dev<requirements>.<ext> # # Where <requirements> is basename of given requirements file to use # and <ext> is its extension. for delimiter in ('-', '_', ''): filename = os.path.join( dirname, ''.join((basename, delimiter, 'dev', ext)) ) if os.path.isfile(filename): dev_requirements = filename break filename = os.path.join( dirname, ''.join(('dev', delimiter, basename, ext)) ) if os.path.isfile(filename): dev_requirements = filename break # If at least one dev requirements file found, install dev requirements if dev_requirements: args += ('-r', dev_requirements) if not quiet: print_message('== Step 2. Install {0} =='.format(label)) result = not pip_cmd(env, ('install', ) + args, ignore_activated, echo=not quiet) if not quiet: print_message() return result
def iteritems(data, **kwargs): """Iterate over dict items.""" return iter(data.items(**kwargs)) if IS_PY3 else data.iteritems(**kwargs)
def iterkeys(data, **kwargs): """Iterate over dict keys.""" return iter(data.keys(**kwargs)) if IS_PY3 else data.iterkeys(**kwargs)
def main(*args): r"""Bootstrap Python projects and libraries with virtualenv and pip. Also check system requirements before bootstrap and run post bootstrap hook if any. :param \*args: Command line arguments list. """ # Create parser, read arguments from direct input or command line with disable_error_handler(): args = parse_args(args or sys.argv[1:]) # Read current config from file and command line arguments config = read_config(args.config, args) if config is None: return True bootstrap = config[__script__] # Check pre-requirements if not check_pre_requirements(bootstrap['pre_requirements']): return True # Create virtual environment env_args = prepare_args(config['virtualenv'], bootstrap) if not create_env( bootstrap['env'], env_args, bootstrap['recreate'], bootstrap['ignore_activated'], bootstrap['quiet'] ): # Exit if couldn't create virtual environment return True # And install library or project here pip_args = prepare_args(config['pip'], bootstrap) if not install( bootstrap['env'], bootstrap['requirements'], pip_args, bootstrap['ignore_activated'], bootstrap['install_dev_requirements'], bootstrap['quiet'] ): # Exist if couldn't install requirements into venv return True # Run post-bootstrap hook run_hook(bootstrap['hook'], bootstrap, bootstrap['quiet']) # All OK! if not bootstrap['quiet']: print_message('All OK!') # False means everything went alright, exit code: 0 return False
def parse_args(args): """ Parse args from command line by creating argument parser instance and process it. :param args: Command line arguments list. """ from argparse import ArgumentParser description = ('Bootstrap Python projects and libraries with virtualenv ' 'and pip.') parser = ArgumentParser(description=description) parser.add_argument('--version', action='version', version=__version__) parser.add_argument( '-c', '--config', default=DEFAULT_CONFIG, help='Path to config file. By default: {0}'.format(DEFAULT_CONFIG) ) parser.add_argument( '-p', '--pre-requirements', default=[], nargs='+', help='List of pre-requirements to check, separated by space.' ) parser.add_argument( '-e', '--env', help='Virtual environment name. By default: {0}'. format(CONFIG[__script__]['env']) ) parser.add_argument( '-r', '--requirements', help='Path to requirements file. By default: {0}'. format(CONFIG[__script__]['requirements']) ) parser.add_argument( '-d', '--install-dev-requirements', action='store_true', default=None, help='Install prefixed or suffixed "dev" requirements after ' 'installation of original requirements file or library completed ' 'without errors.' ) parser.add_argument( '-C', '--hook', help='Execute this hook after bootstrap process.' ) parser.add_argument( '--ignore-activated', action='store_true', default=None, help='Ignore pre-activated virtualenv, like on Travis CI.' ) parser.add_argument( '--recreate', action='store_true', default=None, help='Recreate virtualenv on every run.' ) parser.add_argument( '-q', '--quiet', action='store_true', default=None, help='Minimize output, show only error messages.' ) return parser.parse_args(args)
def pip_cmd(env, cmd, ignore_activated=False, **kwargs): r"""Run pip command in given or activated virtual environment. :param env: Virtual environment name. :param cmd: Pip subcommand to run. :param ignore_activated: Ignore activated virtual environment and use given venv instead. By default: False :param \*\*kwargs: Additional keyword arguments to be passed to :func:`~run_cmd` """ cmd = tuple(cmd) dirname = safe_path(env) if not ignore_activated: activated_env = os.environ.get('VIRTUAL_ENV') if hasattr(sys, 'real_prefix'): dirname = sys.prefix elif activated_env: dirname = activated_env pip_path = os.path.join(dirname, 'Scripts' if IS_WINDOWS else 'bin', 'pip') if kwargs.pop('return_path', False): return pip_path if not os.path.isfile(pip_path): raise OSError('No pip found at {0!r}'.format(pip_path)) # Disable pip version check in tests if BOOTSTRAPPER_TEST_KEY in os.environ and cmd[0] == 'install': cmd = list(cmd) cmd.insert(1, '--disable-pip-version-check') cmd = tuple(cmd) with disable_error_handler(): return run_cmd((pip_path, ) + cmd, **kwargs)
def prepare_args(config, bootstrap): """Convert config dict to command line args line. :param config: Configuration dict. :param bootstrap: Bootstrapper configuration dict. """ config = copy.deepcopy(config) environ = dict(copy.deepcopy(os.environ)) data = {'env': bootstrap['env'], 'pip': pip_cmd(bootstrap['env'], '', return_path=True), 'requirements': bootstrap['requirements']} environ.update(data) if isinstance(config, string_types): return config.format(**environ) for key, value in iteritems(config): if not isinstance(value, string_types): continue config[key] = value.format(**environ) return config_to_args(config)
def print_error(message, wrap=True): """Print error message to stderr, using ANSI-colors. :param message: Message to print :param wrap: Wrap message into ``ERROR: <message>. Exit...`` template. By default: True """ if wrap: message = 'ERROR: {0}. Exit...'.format(message.rstrip('.')) colorizer = (_color_wrap(colorama.Fore.RED) if colorama else lambda message: message) return print(colorizer(message), file=sys.stderr)
def print_message(message=None): """Print message via ``subprocess.call`` function. This helps to ensure consistent output and avoid situations where print messages actually shown after messages from all inner threads. :param message: Text message to print. """ kwargs = {'stdout': sys.stdout, 'stderr': sys.stderr, 'shell': True} return subprocess.call('echo "{0}"'.format(message or ''), **kwargs)
def read_config(filename, args): """ Read and parse configuration file. By default, ``filename`` is relative path to current work directory. If no config file found, default ``CONFIG`` would be used. :param filename: Read config from given filename. :param args: Parsed command line arguments. """ # Initial vars config = defaultdict(dict) splitter = operator.methodcaller('split', ' ') converters = { __script__: { 'env': safe_path, 'pre_requirements': splitter, }, 'pip': { 'allow_external': splitter, 'allow_unverified': splitter, } } default = copy.deepcopy(CONFIG) sections = set(iterkeys(default)) # Append download-cache for old pip versions if int(getattr(pip, '__version__', '1.x').split('.')[0]) < 6: default['pip']['download_cache'] = safe_path(os.path.expanduser( os.path.join('~', '.{0}'.format(__script__), 'pip-cache') )) # Expand user and environ vars in config filename is_default = filename == DEFAULT_CONFIG filename = os.path.expandvars(os.path.expanduser(filename)) # Read config if it exists on disk if not is_default and not os.path.isfile(filename): print_error('Config file does not exist at {0!r}'.format(filename)) return None parser = ConfigParser() try: parser.read(filename) except ConfigParserError: print_error('Cannot parse config file at {0!r}'.format(filename)) return None # Apply config for each possible section for section in sections: if not parser.has_section(section): continue items = parser.items(section) # Make auto convert here for integers and boolean values for key, value in items: try: value = int(value) except (TypeError, ValueError): try: value = bool(strtobool(value)) except ValueError: pass if section in converters and key in converters[section]: value = converters[section][key](value) config[section][key] = value # Update config with default values if necessary for section, data in iteritems(default): if section not in config: config[section] = data else: for key, value in iteritems(data): config[section].setdefault(key, value) # Update bootstrap config from parsed args keys = set(( 'env', 'hook', 'install_dev_requirements', 'ignore_activated', 'pre_requirements', 'quiet', 'recreate', 'requirements' )) for key in keys: value = getattr(args, key) config[__script__].setdefault(key, value) if key == 'pre_requirements' and not value: continue if value is not None: config[__script__][key] = value return config
def run_cmd(cmd, echo=False, fail_silently=False, **kwargs): r"""Call given command with ``subprocess.call`` function. :param cmd: Command to run. :type cmd: tuple or str :param echo: If enabled show command to call and its output in STDOUT, otherwise hide all output. By default: False :param fail_silently: Do not raise exception on error. By default: False :param \*\*kwargs: Additional keyword arguments to be passed to ``subprocess.call`` function. STDOUT and STDERR streams would be setup inside of function to ensure hiding command output in case of disabling ``echo``. """ out, err = None, None if echo: cmd_str = cmd if isinstance(cmd, string_types) else ' '.join(cmd) kwargs['stdout'], kwargs['stderr'] = sys.stdout, sys.stderr print_message('$ {0}'.format(cmd_str)) else: out, err = get_temp_streams() kwargs['stdout'], kwargs['stderr'] = out, err try: retcode = subprocess.call(cmd, **kwargs) except subprocess.CalledProcessError as err: if fail_silently: return False print_error(str(err) if IS_PY3 else unicode(err)) # noqa finally: if out: out.close() if err: err.close() if retcode and echo and not fail_silently: print_error('Command {0!r} returned non-zero exit status {1}'. format(cmd_str, retcode)) return retcode
def run_hook(hook, config, quiet=False): """Run post-bootstrap hook if any. :param hook: Hook to run. :param config: Configuration dict. :param quiet: Do not output messages to STDOUT/STDERR. By default: False """ if not hook: return True if not quiet: print_message('== Step 3. Run post-bootstrap hook ==') result = not run_cmd(prepare_args(hook, config), echo=not quiet, fail_silently=True, shell=True) if not quiet: print_message() return result
def save_traceback(err): """Save error traceback to bootstrapper log file. :param err: Catched exception. """ # Store logs to ~/.bootstrapper directory dirname = safe_path(os.path.expanduser( os.path.join('~', '.{0}'.format(__script__)) )) # But ensure that directory exists if not os.path.isdir(dirname): os.mkdir(dirname) # Now we ready to put traceback to log file filename = os.path.join(dirname, '{0}.log'.format(__script__)) with open(filename, 'a+') as handler: traceback.print_exc(file=handler) # And show colorized message message = ('User aborted workflow' if isinstance(err, KeyboardInterrupt) else 'Unexpected error catched') print_error(message) print_error('Full log stored to {0}'.format(filename), False) return True
def smart_str(value, encoding='utf-8', errors='strict'): """Convert Python object to string. :param value: Python object to convert. :param encoding: Encoding to use if in Python 2 given object is unicode. :param errors: Errors mode to use if in Python 2 given object is unicode. """ if not IS_PY3 and isinstance(value, unicode): # noqa return value.encode(encoding, errors) return str(value)
def copy_w_ext(srcfile, destdir, basename): """ Copy `srcfile` in `destdir` with name `basename + get_extension(srcfile)`. Add pluses to the destination path basename if a file with the same name already exists in `destdir`. Parameters ---------- srcfile: str destdir: str basename:str Returns ------- dstpath: str """ ext = get_extension(op.basename(srcfile)) dstpath = op.join(destdir, basename + ext) return copy_w_plus(srcfile, dstpath)
def copy_w_plus(src, dst): """Copy file from `src` path to `dst` path. If `dst` already exists, will add '+' characters to the end of the basename without extension. Parameters ---------- src: str dst: str Returns ------- dstpath: str """ dst_ext = get_extension(dst) dst_pre = remove_ext (dst) while op.exists(dst_pre + dst_ext): dst_pre += '+' shutil.copy(src, dst_pre + dst_ext) return dst_pre + dst_ext
def get_abspath(folderpath): """Returns the absolute path of folderpath. If the path does not exist, will raise IOError. """ if not op.exists(folderpath): raise FolderNotFound(folderpath) return op.abspath(folderpath)
def get_extension(filepath, check_if_exists=False, allowed_exts=ALLOWED_EXTS): """Return the extension of fpath. Parameters ---------- fpath: string File name or path check_if_exists: bool allowed_exts: dict Dictionary of strings, where the key if the last part of a complex ('.' separated) extension and the value is the previous part. For example: for the '.nii.gz' extension I would have a dict as {'.gz': ['.nii',]} Returns ------- str The extension of the file name or path """ if check_if_exists: if not op.exists(filepath): raise IOError('File not found: ' + filepath) rest, ext = op.splitext(filepath) if ext in allowed_exts: alloweds = allowed_exts[ext] _, ext2 = op.splitext(rest) if ext2 in alloweds: ext = ext2 + ext return ext
def add_extension_if_needed(filepath, ext, check_if_exists=False): """Add the extension ext to fpath if it doesn't have it. Parameters ---------- filepath: str File name or path ext: str File extension check_if_exists: bool Returns ------- File name or path with extension added, if needed. """ if not filepath.endswith(ext): filepath += ext if check_if_exists: if not op.exists(filepath): raise IOError('File not found: ' + filepath) return filepath
def parse_subjects_list(filepath, datadir='', split=':', labelsf=None): """Parses a file with a list of: <subject_file>:<subject_class_label>. Parameters ---------- filepath: str Path to file with a list of: <subject_file>:<subject_class_label>. Where ':' can be any split character datadir: str String to be path prefix of each line of the fname content, only in case the lines are relative file paths. split: str Split character for each line labelsf: str Path to file with a list of the labels if it is not included in fname. It will overwrite the labels from fname. Returns ------- [labels, subjs] where labels is a list of labels and subjs a list of filepaths """ labels = [] subjs = [] if datadir: datadir += op.sep with open(filepath, 'r') as f: for s in f: line = s.strip().split(split) if len(line) == 2: labels.append(np.float(line[1])) subjf = line[0].strip() else: subjf = line.strip() if not op.isabs(subjf): subjs.append(datadir + subjf) else: subjs.append(subjf) if labelsf is not None: labels = np.loadtxt(labelsf) return [labels, subjs]
def create_subjects_file(filelist, labels, output_file, split=':'): """Creates a file where each line is <subject_file>:<subject_class_label>. Parameters ---------- filelist: list of str List of filepaths labels: list of int, str or labels that can be transformed with str() List of labels output_file: str Output file path split: str Split character for each line """ if len(filelist) != len(labels): raise ValueError('Expected `filelist` and `labels` to have the same length.' 'Got {} and {}.'.format(len(filelist), len(labels))) lines = [] for i, subj in enumerate(filelist): lab = labels[i] line = subj + split + str(lab) lines.append(line) lines = np.array(lines) np.savetxt(output_file, lines, fmt='%s')
def join_path_to_filelist(path, filelist): """Joins path to each line in filelist Parameters ---------- path: str filelist: list of str Returns ------- list of filepaths """ return [op.join(path, str(item)) for item in filelist]
def remove_all(filelist, folder=''): """Deletes all files in filelist Parameters ---------- filelist: list of str List of the file paths to be removed folder: str Path to be used as common directory for all file paths in filelist """ if not folder: for f in filelist: os.remove(f) else: for f in filelist: os.remove(op.join(folder, f))
def get_folder_subpath(path, folder_depth): """ Returns a folder path of path with depth given by folder_dept: Parameters ---------- path: str folder_depth: int > 0 Returns ------- A folder path Example ------- >>> get_folder_subpath('/home/user/mydoc/work/notes.txt', 3) >>> '/home/user/mydoc' """ if path[0] == op.sep: folder_depth += 1 return op.sep.join(path.split(op.sep)[0:folder_depth])
def get_temp_dir(prefix=None, basepath=None): """ Uses tempfile to create a TemporaryDirectory using the default arguments. The folder is created using tempfile.mkdtemp() function. Parameters ---------- prefix: str Name prefix for the temporary folder. basepath: str Directory where the new folder must be created. The default directory is chosen from a platform-dependent list, but the user of the application can control the directory location by setting the TMPDIR, TEMP or TMP environment variables. Returns ------- folder object """ if basepath is None: return tempfile.TemporaryDirectory(dir=basepath) else: return tempfile.TemporaryDirectory(prefix=prefix, dir=basepath)
def ux_file_len(filepath): """Returns the length of the file using the 'wc' GNU command Parameters ---------- filepath: str Returns ------- float """ p = subprocess.Popen(['wc', '-l', filepath], stdout=subprocess.PIPE, stderr=subprocess.PIPE) result, err = p.communicate() if p.returncode != 0: raise IOError(err) l = result.strip() l = int(l.split()[0]) return l
def merge(dict_1, dict_2): """Merge two dictionaries. Values that evaluate to true take priority over falsy values. `dict_1` takes priority over `dict_2`. """ return dict((str(key), dict_1.get(key) or dict_2.get(key)) for key in set(dict_2) | set(dict_1))
def get_sys_path(rcpath, app_name, section_name=None): """Return a folder path if it exists. First will check if it is an existing system path, if it is, will return it expanded and absoluted. If this fails will look for the rcpath variable in the app_name rcfiles or exclusively within the given section_name, if given. Parameters ---------- rcpath: str Existing folder path or variable name in app_name rcfile with an existing one. section_name: str Name of a section in the app_name rcfile to look exclusively there for variable names. app_name: str Name of the application to look for rcfile configuration files. Returns ------- sys_path: str A expanded absolute file or folder path if the path exists. Raises ------ IOError if the proposed sys_path does not exist. """ # first check if it is an existing path if op.exists(rcpath): return op.realpath(op.expanduser(rcpath)) # look for the rcfile try: settings = rcfile(app_name, section_name) except: raise # look for the variable within the rcfile configutarions try: sys_path = op.expanduser(settings[rcpath]) except KeyError: raise IOError('Could not find an existing variable with name {0} in' ' section {1} of {2}rc config setup. Maybe it is a ' ' folder that could not be found.'.format(rcpath, section_name, app_name)) # found the variable, now check if it is an existing path else: if not op.exists(sys_path): raise IOError('Could not find the path {3} indicated by the ' 'variable {0} in section {1} of {2}rc config ' 'setup.'.format(rcpath, section_name, app_name, sys_path)) # expand the path and return return op.realpath(op.expanduser(sys_path))
def rcfile(appname, section=None, args={}, strip_dashes=True): """Read environment variables and config files and return them merged with predefined list of arguments. Parameters ---------- appname: str Application name, used for config files and environment variable names. section: str Name of the section to be read. If this is not set: appname. args: arguments from command line (optparse, docopt, etc). strip_dashes: bool Strip dashes prefixing key names from args dict. Returns -------- dict containing the merged variables of environment variables, config files and args. Raises ------ IOError In case the return value is empty. Notes ----- Environment variables are read if they start with appname in uppercase with underscore, for example: TEST_VAR=1 Config files compatible with ConfigParser are read and the section name appname is read, example: [appname] var=1 We can also have host-dependent configuration values, which have priority over the default appname values. [appname] var=1 [appname:mylinux] var=3 For boolean flags do not try to use: 'True' or 'False', 'on' or 'off', '1' or '0'. Unless you are willing to parse this values by yourself. We recommend commenting the variables out with '#' if you want to set a flag to False and check if it is in the rcfile cfg dict, i.e.: flag_value = 'flag_variable' in cfg Files are read from: /etc/appname/config, /etc/appfilerc, ~/.config/appname/config, ~/.config/appname, ~/.appname/config, ~/.appnamerc, appnamerc, .appnamerc, appnamerc file found in 'path' folder variable in args, .appnamerc file found in 'path' folder variable in args, file provided by 'config' variable in args. Example ------- args = rcfile(__name__, docopt(__doc__, version=__version__)) """ if strip_dashes: for k in args.keys(): args[k.lstrip('-')] = args.pop(k) environ = get_environment(appname) if section is None: section = appname config = get_config(appname, section, args.get('config', ''), args.get('path', '')) config = merge(merge(args, config), environ) if not config: raise IOError('Could not find any rcfile for application ' '{}.'.format(appname)) return config
def get_rcfile_section(app_name, section_name): """ Return the dictionary containing the rcfile section configuration variables. Parameters ---------- section_name: str Name of the section in the rcfiles. app_name: str Name of the application to look for its rcfiles. Returns ------- settings: dict Dict with variable values """ try: settings = rcfile(app_name, section_name) except IOError: raise except: raise KeyError('Error looking for section {} in {} ' ' rcfiles.'.format(section_name, app_name)) else: return settings
def get_rcfile_variable_value(var_name, app_name, section_name=None): """ Return the value of the variable in the section_name section of the app_name rc file. Parameters ---------- var_name: str Name of the variable to be searched for. section_name: str Name of the section in the rcfiles. app_name: str Name of the application to look for its rcfiles. Returns ------- var_value: str The value of the variable with given var_name. """ cfg = get_rcfile_section(app_name, section_name) if var_name in cfg: raise KeyError('Option {} not found in {} ' 'section.'.format(var_name, section_name)) return cfg[var_name]
def find_in_sections(var_name, app_name): """ Return the section and the value of the variable where the first var_name is found in the app_name rcfiles. Parameters ---------- var_name: str Name of the variable to be searched for. app_name: str Name of the application to look for its rcfiles. Returns ------- section_name: str Name of the section in the rcfiles where var_name was first found. var_value: str The value of the first variable with given var_name. """ sections = get_sections(app_name) if not sections: raise ValueError('No sections found in {} rcfiles.'.format(app_name)) for s in sections: try: var_value = get_rcfile_variable_value(var_name, section_name=s, app_name=app_name) except: pass else: return s, var_value raise KeyError('No variable {} has been found in {} ' 'rcfiles.'.format(var_name, app_name))
def filter_list(lst, pattern): """ Filters the lst using pattern. If pattern starts with '(' it will be considered a re regular expression, otherwise it will use fnmatch filter. :param lst: list of strings :param pattern: string :return: list of strings Filtered list of strings """ if is_fnmatch_regex(pattern) and not is_regex(pattern): #use fnmatch log.info('Using fnmatch for {0}'.format(pattern)) filst = fnmatch.filter(lst, pattern) else: #use re log.info('Using regex match for {0}'.format(pattern)) filst = match_list(lst, pattern) if filst: filst.sort() return filst
def get_subdict(adict, path, sep=os.sep): """ Given a nested dictionary adict. This returns its childen just below the path. The path is a string composed of adict keys separated by sep. :param adict: nested dict :param path: str :param sep: str :return: dict or list or leaf of treemap """ return reduce(adict.__class__.get, [p for p in op.split(sep) if p], adict)
def get_dict_leaves(data): """ Given a nested dictionary, this returns all its leave elements in a list. :param adict: :return: list """ result = [] if isinstance(data, dict): for item in data.values(): result.extend(get_dict_leaves(item)) elif isinstance(data, list): result.extend(data) else: result.append(data) return result
def get_possible_paths(base_path, path_regex): """ Looks for path_regex within base_path. Each match is append in the returned list. path_regex may contain subfolder structure. If any part of the folder structure is a :param base_path: str :param path_regex: str :return list of strings """ if not path_regex: return [] if len(path_regex) < 1: return [] if path_regex[0] == os.sep: path_regex = path_regex[1:] rest_files = '' if os.sep in path_regex: #split by os.sep node_names = path_regex.partition(os.sep) first_node = node_names[0] rest_nodes = node_names[2] folder_names = filter_list(os.listdir(base_path), first_node) for nom in folder_names: new_base = op.join(base_path, nom) if op.isdir(new_base): rest_files = get_possible_paths(new_base, rest_nodes) else: rest_files = filter_list(os.listdir(base_path), path_regex) files = [] if rest_files: files = [op.join(base_path, f) for f in rest_files] return files
def create_folder(dirpath, overwrite=False): """ Will create dirpath folder. If dirpath already exists and overwrite is False, will append a '+' suffix to dirpath until dirpath does not exist.""" if not overwrite: while op.exists(dirpath): dirpath += '+' os.makedirs(dirpath, exist_ok=overwrite) return dirpath
def _import_config(filepath): """ Imports filetree and root_path variable values from the filepath. :param filepath: :return: root_path and filetree """ if not op.isfile(filepath): raise IOError('Data config file not found. ' 'Got: {0}'.format(filepath)) cfg = import_pyfile(filepath) if not hasattr(cfg, 'root_path'): raise KeyError('Config file root_path key not found.') if not hasattr(cfg, 'filetree'): raise KeyError('Config file filetree key not found.') return cfg.root_path, cfg.filetree
def remove_nodes(self, pattern, adict): """ Remove the nodes that match the pattern. """ mydict = self._filetree if adict is None else adict if isinstance(mydict, dict): for nom in mydict.keys(): if isinstance(mydict[nom], dict): matchs = filter_list(mydict[nom], pattern) for nom in matchs: mydict = self.remove_nodes(pattern, mydict[nom]) mydict.pop(nom) else: mydict[nom] = filter_list(mydict[nom], pattern) else: matchs = set(filter_list(mydict, pattern)) mydict = set(mydict) - matchs return mydict
def count_node_match(self, pattern, adict=None): """ Return the number of nodes that match the pattern. :param pattern: :param adict: :return: int """ mydict = self._filetree if adict is None else adict k = 0 if isinstance(mydict, dict): names = mydict.keys() k += len(filter_list(names, pattern)) for nom in names: k += self.count_node_match(pattern, mydict[nom]) else: k = len(filter_list(mydict, pattern)) return k
def as_float_array(X, copy=True, force_all_finite=True): """Converts an array-like to an array of floats The new dtype will be np.float32 or np.float64, depending on the original type. The function can create a copy or modify the argument depending on the argument copy. Parameters ---------- X : {array-like, sparse matrix} copy : bool, optional If True, a copy of X will be created. If False, a copy may still be returned if X's dtype is not a floating point type. Returns ------- XT : {array, sparse matrix} An array of type np.float """ if isinstance(X, np.matrix) or (not isinstance(X, np.ndarray) and not sp.issparse(X)): return check_array(X, ['csr', 'csc', 'coo'], dtype=np.float64, copy=copy, force_all_finite=force_all_finite, ensure_2d=False) elif sp.issparse(X) and X.dtype in [np.float32, np.float64]: return X.copy() if copy else X elif X.dtype in [np.float32, np.float64]: # is numpy array return X.copy('F' if X.flags['F_CONTIGUOUS'] else 'C') if copy else X else: return X.astype(np.float32 if X.dtype == np.int32 else np.float64)
def _num_samples(x): """Return number of samples in array-like x.""" if not hasattr(x, '__len__') and not hasattr(x, 'shape'): if hasattr(x, '__array__'): x = np.asarray(x) else: raise TypeError("Expected sequence or array-like, got %r" % x) return x.shape[0] if hasattr(x, 'shape') else len(x)
def check_consistent_length(*arrays): """Check that all arrays have consistent first dimensions. Checks whether all objects in arrays have the same shape or length. Parameters ---------- arrays : list or tuple of input objects. Objects that will be checked for consistent length. """ uniques = np.unique([_num_samples(X) for X in arrays if X is not None]) if len(uniques) > 1: raise ValueError("Found arrays with inconsistent numbers of samples: %s" % str(uniques))
def indexable(*iterables): """Make arrays indexable for cross-validation. Checks consistent length, passes through None, and ensures that everything can be indexed by converting sparse matrices to csr and converting non-interable objects to arrays. Parameters ---------- iterables : lists, dataframes, arrays, sparse matrices List of objects to ensure sliceability. """ result = [] for X in iterables: if sp.issparse(X): result.append(X.tocsr()) elif hasattr(X, "__getitem__") or hasattr(X, "iloc"): result.append(X) elif X is None: result.append(X) else: result.append(np.array(X)) check_consistent_length(*result) return result
def check_array(array, accept_sparse=None, dtype=None, order=None, copy=False, force_all_finite=True, ensure_2d=True, allow_nd=False): """Input validation on an array, list, sparse matrix or similar. By default, the input is converted to an at least 2nd numpy array. Parameters ---------- array : object Input object to check / convert. accept_sparse : string, list of string or None (default=None) String[s] representing allowed sparse matrix formats, such as 'csc', 'csr', etc. None means that sparse matrix input will raise an error. If the input is sparse but not in the allowed format, it will be converted to the first listed format. order : 'F', 'C' or None (default=None) Whether an array will be forced to be fortran or c-style. copy : boolean (default=False) Whether a forced copy will be triggered. If copy=False, a copy might be triggered by a conversion. force_all_finite : boolean (default=True) Whether to raise an error on np.inf and np.nan in X. ensure_2d : boolean (default=True) Whether to make X at least 2d. allow_nd : boolean (default=False) Whether to allow X.ndim > 2. Returns ------- X_converted : object The converted and validated X. """ if isinstance(accept_sparse, str): accept_sparse = [accept_sparse] if sp.issparse(array): array = _ensure_sparse_format(array, accept_sparse, dtype, order, copy, force_all_finite) else: if ensure_2d: array = np.atleast_2d(array) array = np.array(array, dtype=dtype, order=order, copy=copy) if not allow_nd and array.ndim >= 3: raise ValueError("Found array with dim %d. Expected <= 2" % array.ndim) if force_all_finite: _assert_all_finite(array) return array
def check_X_y(X, y, accept_sparse=None, dtype=None, order=None, copy=False, force_all_finite=True, ensure_2d=True, allow_nd=False, multi_output=False): """Input validation for standard estimators. Checks X and y for consistent length, enforces X 2d and y 1d. Standard input checks are only applied to y. For multi-label y, set multi_ouput=True to allow 2d and sparse y. Parameters ---------- X : nd-array, list or sparse matrix Input data. y : nd-array, list or sparse matrix Labels. accept_sparse : string, list of string or None (default=None) String[s] representing allowed sparse matrix formats, such as 'csc', 'csr', etc. None means that sparse matrix input will raise an error. If the input is sparse but not in the allowed format, it will be converted to the first listed format. order : 'F', 'C' or None (default=None) Whether an array will be forced to be fortran or c-style. copy : boolean (default=False) Whether a forced copy will be triggered. If copy=False, a copy might be triggered by a conversion. force_all_finite : boolean (default=True) Whether to raise an error on np.inf and np.nan in X. ensure_2d : boolean (default=True) Whether to make X at least 2d. allow_nd : boolean (default=False) Whether to allow X.ndim > 2. Returns ------- X_converted : object The converted and validated X. """ X = check_array(X, accept_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd) if multi_output: y = check_array(y, 'csr', force_all_finite=True, ensure_2d=False) else: y = column_or_1d(y, warn=True) _assert_all_finite(y) check_consistent_length(X, y) return X, y
def column_or_1d(y, warn=False): """ Ravel column or 1d numpy array, else raises an error Parameters ---------- y : array-like Returns ------- y : array """ shape = np.shape(y) if len(shape) == 1: return np.ravel(y) if len(shape) == 2 and shape[1] == 1: if warn: warnings.warn("A column-vector y was passed when a 1d array was" " expected. Please change the shape of y to " "(n_samples, ), for example using ravel().", DataConversionWarning, stacklevel=2) return np.ravel(y) raise ValueError("bad input shape {0}".format(shape))
def warn_if_not_float(X, estimator='This algorithm'): """Warning utility function to check that data type is floating point. Returns True if a warning was raised (i.e. the input is not float) and False otherwise, for easier input validation. """ if not isinstance(estimator, str): estimator = estimator.__class__.__name__ if X.dtype.kind != 'f': warnings.warn("%s assumes floating point values as input, " "got %s" % (estimator, X.dtype)) return True return False
def as_ndarray(arr, copy=False, dtype=None, order='K'): """Convert an arbitrary array to numpy.ndarray. In the case of a memmap array, a copy is automatically made to break the link with the underlying file (whatever the value of the "copy" keyword). The purpose of this function is mainly to get rid of memmap objects, but it can be used for other purposes. In particular, combining copying and casting can lead to performance improvements in some cases, by avoiding unnecessary copies. If not specified, input array order is preserved, in all cases, even when a copy is requested. Caveat: this function does not copy during bool to/from 1-byte dtype conversions. This can lead to some surprising results in some rare cases. Example: a = numpy.asarray([0, 1, 2], dtype=numpy.int8) b = as_ndarray(a, dtype=bool) # array([False, True, True], dtype=bool) c = as_ndarray(b, dtype=numpy.int8) # array([0, 1, 2], dtype=numpy.int8) The usually expected result for the last line would be array([0, 1, 1]) because True evaluates to 1. Since there is no copy made here, the original array is recovered. Parameters ---------- arr: array-like input array. Any value accepted by numpy.asarray is valid. copy: bool if True, force a copy of the array. Always True when arr is a memmap. dtype: any numpy dtype dtype of the returned array. Performing copy and type conversion at the same time can in some cases avoid an additional copy. order: string gives the order of the returned array. Valid values are: "C", "F", "A", "K", None. default is "K". See ndarray.copy() for more information. Returns ------- ret: np.ndarray Numpy array containing the same data as arr, always of class numpy.ndarray, and with no link to any underlying file. """ if order not in ('C', 'F', 'A', 'K', None): raise ValueError("Invalid value for 'order': {}".format(str(order))) if isinstance(arr, np.memmap): if dtype is None: if order in ('K', 'A', None): ret = np.array(np.asarray(arr), copy=True) else: ret = np.array(np.asarray(arr), copy=True, order=order) else: if order in ('K', 'A', None): # always copy (even when dtype does not change) ret = np.asarray(arr).astype(dtype) else: # load data from disk without changing order # Changing order while reading through a memmap is incredibly # inefficient. ret = _asarray(np.array(arr, copy=True), dtype=dtype, order=order) elif isinstance(arr, np.ndarray): ret = _asarray(arr, dtype=dtype, order=order) # In the present cas, np.may_share_memory result is always reliable. if np.may_share_memory(ret, arr) and copy: # order-preserving copy ret = ret.T.copy().T if ret.flags['F_CONTIGUOUS'] else ret.copy() elif isinstance(arr, (list, tuple)): if order in ("A", "K"): ret = np.asarray(arr, dtype=dtype) else: ret = np.asarray(arr, dtype=dtype, order=order) else: raise ValueError("Type not handled: {}".format(arr.__class__)) return ret
def xfm_atlas_to_functional(atlas_filepath, anatbrain_filepath, meanfunc_filepath, atlas2anat_nonlin_xfm_filepath, is_atlas2anat_inverted, anat2func_lin_xfm_filepath, atlasinanat_out_filepath, atlasinfunc_out_filepath, interp='nn', rewrite=True, parallel=False): """Call FSL tools to apply transformations to a given atlas to a functional image. Given the transformation matrices. Parameters ---------- atlas_filepath: str Path to the 3D atlas volume file. anatbrain_filepath: str Path to the anatomical brain volume file (skull-stripped and registered to the same space as the atlas, e.g., MNI). meanfunc_filepath: str Path to the average functional image to be used as reference in the last applywarp step. atlas2anat_nonlin_xfm_filepath: str Path to the atlas to anatomical brain linear transformation .mat file. If you have the inverse transformation, i.e., anatomical brain to atlas, set is_atlas2anat_inverted to True. is_atlas2anat_inverted: bool If False will have to calculate the inverse atlas2anat transformation to apply the transformations. This step will be performed with FSL invwarp. anat2func_lin_xfm_filepath: str Path to the anatomical to functional .mat linear transformation file. atlasinanat_out_filepath: str Path to output file which will contain the 3D atlas in the subject anatomical space. atlasinfunc_out_filepath: str Path to output file which will contain the 3D atlas in the subject functional space. verbose: bool If verbose will show DEBUG log info. rewrite: bool If True will re-run all the commands overwriting any existing file. Otherwise will check if each file exists and if it does won't run the command. parallel: bool If True will launch the commands using ${FSLDIR}/fsl_sub to use the cluster infrastructure you have setup with FSL (SGE or HTCondor). """ if is_atlas2anat_inverted: # I already have the inverted fields I need anat_to_mni_nl_inv = atlas2anat_nonlin_xfm_filepath else: # I am creating the inverted fields then...need output file path: output_dir = op.abspath (op.dirname(atlasinanat_out_filepath)) ext = get_extension(atlas2anat_nonlin_xfm_filepath) anat_to_mni_nl_inv = op.join(output_dir, remove_ext(op.basename(atlas2anat_nonlin_xfm_filepath)) + '_inv' + ext) # setup the commands to be called invwarp_cmd = op.join('${FSLDIR}', 'bin', 'invwarp') applywarp_cmd = op.join('${FSLDIR}', 'bin', 'applywarp') fslsub_cmd = op.join('${FSLDIR}', 'bin', 'fsl_sub') # add fsl_sub before the commands if parallel: invwarp_cmd = fslsub_cmd + ' ' + invwarp_cmd applywarp_cmd = fslsub_cmd + ' ' + applywarp_cmd # create the inverse fields if rewrite or (not is_atlas2anat_inverted and not op.exists(anat_to_mni_nl_inv)): log.debug('Creating {}.\n'.format(anat_to_mni_nl_inv)) cmd = invwarp_cmd + ' ' cmd += '-w {} '.format(atlas2anat_nonlin_xfm_filepath) cmd += '-o {} '.format(anat_to_mni_nl_inv) cmd += '-r {} '.format(anatbrain_filepath) log.debug('Running {}'.format(cmd)) check_call(cmd) # transform the atlas to anatomical space if rewrite or not op.exists(atlasinanat_out_filepath): log.debug('Creating {}.\n'.format(atlasinanat_out_filepath)) cmd = applywarp_cmd + ' ' cmd += '--in={} '.format(atlas_filepath) cmd += '--ref={} '.format(anatbrain_filepath) cmd += '--warp={} '.format(anat_to_mni_nl_inv) cmd += '--interp={} '.format(interp) cmd += '--out={} '.format(atlasinanat_out_filepath) log.debug('Running {}'.format(cmd)) check_call(cmd) # transform the atlas to functional space if rewrite or not op.exists(atlasinfunc_out_filepath): log.debug('Creating {}.\n'.format(atlasinfunc_out_filepath)) cmd = applywarp_cmd + ' ' cmd += '--in={} '.format(atlasinanat_out_filepath) cmd += '--ref={} '.format(meanfunc_filepath) cmd += '--premat={} '.format(anat2func_lin_xfm_filepath) cmd += '--interp={} '.format(interp) cmd += '--out={} '.format(atlasinfunc_out_filepath) log.debug('Running {}'.format(cmd)) check_call(cmd)
def fwhm2sigma(fwhm): """Convert a FWHM value to sigma in a Gaussian kernel. Parameters ---------- fwhm: float or numpy.array fwhm value or values Returns ------- fwhm: float or numpy.array sigma values """ fwhm = np.asarray(fwhm) return fwhm / np.sqrt(8 * np.log(2))
def sigma2fwhm(sigma): """Convert a sigma in a Gaussian kernel to a FWHM value. Parameters ---------- sigma: float or numpy.array sigma value or values Returns ------- fwhm: float or numpy.array fwhm values corresponding to `sigma` values """ sigma = np.asarray(sigma) return np.sqrt(8 * np.log(2)) * sigma
def _smooth_data_array(arr, affine, fwhm, copy=True): """Smooth images with a a Gaussian filter. Apply a Gaussian filter along the three first dimensions of arr. Parameters ---------- arr: numpy.ndarray 3D or 4D array, with image number as last dimension. affine: numpy.ndarray Image affine transformation matrix for image. fwhm: scalar, numpy.ndarray Smoothing kernel size, as Full-Width at Half Maximum (FWHM) in millimeters. If a scalar is given, kernel width is identical on all three directions. A numpy.ndarray must have 3 elements, giving the FWHM along each axis. copy: bool if True, will make a copy of the input array. Otherwise will directly smooth the input array. Returns ------- smooth_arr: numpy.ndarray """ if arr.dtype.kind == 'i': if arr.dtype == np.int64: arr = arr.astype(np.float64) else: arr = arr.astype(np.float32) if copy: arr = arr.copy() # Zeroe possible NaNs and Inf in the image. arr[np.logical_not(np.isfinite(arr))] = 0 try: # Keep the 3D part of the affine. affine = affine[:3, :3] # Convert from FWHM in mm to a sigma. fwhm_sigma_ratio = np.sqrt(8 * np.log(2)) vox_size = np.sqrt(np.sum(affine ** 2, axis=0)) sigma = fwhm / (fwhm_sigma_ratio * vox_size) for n, s in enumerate(sigma): ndimage.gaussian_filter1d(arr, s, output=arr, axis=n) except: raise ValueError('Error smoothing the array.') else: return arr
def smooth_imgs(images, fwhm): """Smooth images using a Gaussian filter. Apply a Gaussian filter along the three first dimensions of each image in images. In all cases, non-finite values in input are zeroed. Parameters ---------- imgs: str or img-like object or iterable of img-like objects See boyle.nifti.read.read_img Image(s) to smooth. fwhm: scalar or numpy.ndarray Smoothing kernel size, as Full-Width at Half Maximum (FWHM) in millimeters. If a scalar is given, kernel width is identical on all three directions. A numpy.ndarray must have 3 elements, giving the FWHM along each axis. Returns ------- smooth_imgs: nibabel.Nifti1Image or list of. Smooth input image/s. """ if fwhm <= 0: return images if not isinstance(images, string_types) and hasattr(images, '__iter__'): only_one = False else: only_one = True images = [images] result = [] for img in images: img = check_img(img) affine = img.get_affine() smooth = _smooth_data_array(img.get_data(), affine, fwhm=fwhm, copy=True) result.append(nib.Nifti1Image(smooth, affine)) if only_one: return result[0] else: return result
def _smooth_array(arr, affine, fwhm=None, ensure_finite=True, copy=True, **kwargs): """Smooth images by applying a Gaussian filter. Apply a Gaussian filter along the three first dimensions of arr. This is copied and slightly modified from nilearn: https://github.com/nilearn/nilearn/blob/master/nilearn/image/image.py Added the **kwargs argument. Parameters ========== arr: numpy.ndarray 4D array, with image number as last dimension. 3D arrays are also accepted. affine: numpy.ndarray (4, 4) matrix, giving affine transformation for image. (3, 3) matrices are also accepted (only these coefficients are used). If fwhm='fast', the affine is not used and can be None fwhm: scalar, numpy.ndarray, 'fast' or None Smoothing strength, as a full-width at half maximum, in millimeters. If a scalar is given, width is identical on all three directions. A numpy.ndarray must have 3 elements, giving the FWHM along each axis. If fwhm == 'fast', a fast smoothing will be performed with a filter [0.2, 1, 0.2] in each direction and a normalisation to preserve the local average value. If fwhm is None, no filtering is performed (useful when just removal of non-finite values is needed). ensure_finite: bool if True, replace every non-finite values (like NaNs) by zero before filtering. copy: bool if True, input array is not modified. False by default: the filtering is performed in-place. kwargs: keyword-arguments Arguments for the ndimage.gaussian_filter1d function. Returns ======= filtered_arr: numpy.ndarray arr, filtered. Notes ===== This function is most efficient with arr in C order. """ if arr.dtype.kind == 'i': if arr.dtype == np.int64: arr = arr.astype(np.float64) else: # We don't need crazy precision arr = arr.astype(np.float32) if copy: arr = arr.copy() if ensure_finite: # SPM tends to put NaNs in the data outside the brain arr[np.logical_not(np.isfinite(arr))] = 0 if fwhm == 'fast': arr = _fast_smooth_array(arr) elif fwhm is not None: # Keep only the scale part. affine = affine[:3, :3] # Convert from a FWHM to a sigma: fwhm_over_sigma_ratio = np.sqrt(8 * np.log(2)) vox_size = np.sqrt(np.sum(affine ** 2, axis=0)) sigma = fwhm / (fwhm_over_sigma_ratio * vox_size) for n, s in enumerate(sigma): ndimage.gaussian_filter1d(arr, s, output=arr, axis=n, **kwargs) return arr
def smooth_img(imgs, fwhm, **kwargs): """Smooth images by applying a Gaussian filter. Apply a Gaussian filter along the three first dimensions of arr. In all cases, non-finite values in input image are replaced by zeros. This is copied and slightly modified from nilearn: https://github.com/nilearn/nilearn/blob/master/nilearn/image/image.py Added the **kwargs argument. Parameters ========== imgs: Niimg-like object or iterable of Niimg-like objects See http://nilearn.github.io/manipulating_images/manipulating_images.html#niimg. Image(s) to smooth. fwhm: scalar, numpy.ndarray, 'fast' or None Smoothing strength, as a Full-Width at Half Maximum, in millimeters. If a scalar is given, width is identical on all three directions. A numpy.ndarray must have 3 elements, giving the FWHM along each axis. If fwhm == 'fast', a fast smoothing will be performed with a filter [0.2, 1, 0.2] in each direction and a normalisation to preserve the scale. If fwhm is None, no filtering is performed (useful when just removal of non-finite values is needed) Returns ======= filtered_img: nibabel.Nifti1Image or list of. Input image, filtered. If imgs is an iterable, then filtered_img is a list. """ # Use hasattr() instead of isinstance to workaround a Python 2.6/2.7 bug # See http://bugs.python.org/issue7624 if hasattr(imgs, "__iter__") \ and not isinstance(imgs, string_types): single_img = False else: single_img = True imgs = [imgs] ret = [] for img in imgs: img = check_niimg(img) affine = img.get_affine() filtered = _smooth_array(img.get_data(), affine, fwhm=fwhm, ensure_finite=True, copy=True, **kwargs) ret.append(new_img_like(img, filtered, affine, copy_header=True)) if single_img: return ret[0] else: return ret
def signed_session(self, session=None): """Create requests session with any required auth headers applied. :rtype: requests.Session. """ if session: session = super(ClientCertAuthentication, self).signed_session(session) else: session = super(ClientCertAuthentication, self).signed_session() if self.cert is not None: session.cert = self.cert if self.ca_cert is not None: session.verify = self.ca_cert if self.no_verify: session.verify = False return session
def signed_session(self, session=None): """Create requests session with AAD auth headers :rtype: requests.Session. """ from sfctl.config import (aad_metadata, aad_cache) if session: session = super(AdalAuthentication, self).signed_session(session) else: session = super(AdalAuthentication, self).signed_session() if self.no_verify: session.verify = False authority_uri, cluster_id, client_id = aad_metadata() existing_token, existing_cache = aad_cache() context = adal.AuthenticationContext(authority_uri, cache=existing_cache) new_token = context.acquire_token(cluster_id, existing_token['userId'], client_id) header = "{} {}".format("Bearer", new_token['accessToken']) session.headers['Authorization'] = header return session
def voxspace_to_mmspace(img): """ Return a grid with coordinates in 3D physical space for `img`.""" shape, affine = img.shape[:3], img.affine coords = np.array(np.meshgrid(*(range(i) for i in shape), indexing='ij')) coords = np.rollaxis(coords, 0, len(shape) + 1) mm_coords = nib.affines.apply_affine(affine, coords) return mm_coords
def voxcoord_to_mm(cm, i, j, k): ''' Parameters ---------- cm: nipy.core.reference.coordinate_map.CoordinateMap i, j, k: floats Voxel coordinates Returns ------- Triplet with real 3D world coordinates ''' try: mm = cm([i, j, k]) except Exception as exc: raise Exception('Error on converting coordinates.') from exc else: return mm
def mm_to_voxcoord(cm, x, y, z): ''' Parameters ---------- cm: nipy.core.reference.coordinate_map.CoordinateMap x, y, z: floats Physical coordinates Returns ------- Triplet with 3D voxel coordinates ''' try: vox = cm.inverse()([x, y, z]) except Exception as exc: raise Exception('Error on converting coordinates') from exc else: return vox
def get_3D_coordmap(img): ''' Gets a 3D CoordinateMap from img. Parameters ---------- img: nib.Nifti1Image or nipy Image Returns ------- nipy.core.reference.coordinate_map.CoordinateMap ''' if isinstance(img, nib.Nifti1Image): img = nifti2nipy(img) if img.ndim == 4: from nipy.core.reference.coordinate_map import drop_io_dim cm = drop_io_dim(img.coordmap, 3) else: cm = img.coordmap return cm
def get_img_info(image): """Return the header and affine matrix from a Nifti file. Parameters ---------- image: img-like object or str Can either be: - a file path to a Nifti image - any object with get_data() and get_affine() methods, e.g., nibabel.Nifti1Image. If niimg is a string, consider it as a path to Nifti image and call nibabel.load on it. If it is an object, check if get_data() and get_affine() methods are present, raise TypeError otherwise. Returns ------- hdr, aff """ try: img = check_img(image) except Exception as exc: raise Exception('Error reading file {0}.'.format(repr_imgs(image))) from exc else: return img.get_header(), img.get_affine()
def get_img_data(image, copy=True): """Return the voxel matrix of the Nifti file. If safe_mode will make a copy of the img before returning the data, so the input image is not modified. Parameters ---------- image: img-like object or str Can either be: - a file path to a Nifti image - any object with get_data() and get_affine() methods, e.g., nibabel.Nifti1Image. If niimg is a string, consider it as a path to Nifti image and call nibabel.load on it. If it is an object, check if get_data() and get_affine() methods are present, raise TypeError otherwise. copy: bool If safe_mode will make a copy of the img before returning the data, so the input image is not modified. Returns ------- array_like """ try: img = check_img(image) if copy: return get_data(img) else: return img.get_data() except Exception as exc: raise Exception('Error when reading file {0}.'.format(repr_imgs(image))) from exc
def load_nipy_img(nii_file): """Read a Nifti file and return as nipy.Image Parameters ---------- param nii_file: str Nifti file path Returns ------- nipy.Image """ # delayed import because could not install nipy on Python 3 on OSX import nipy if not os.path.exists(nii_file): raise FileNotFound(nii_file) try: return nipy.load_image(nii_file) except Exception as exc: raise Exception('Reading file {0}.'.format(repr_imgs(nii_file))) from exc
def niftilist_to_array(img_filelist, outdtype=None): """ From the list of absolute paths to nifti files, creates a Numpy array with the data. Parameters ---------- img_filelist: list of str List of absolute file paths to nifti files. All nifti files must have the same shape. outdtype: dtype Type of the elements of the array, if not set will obtain the dtype from the first nifti file. Returns ------- outmat: Numpy array with shape N x prod(vol.shape) containing the N files as flat vectors. vol_shape: Tuple with shape of the volumes, for reshaping. """ try: first_img = img_filelist[0] vol = get_img_data(first_img) except IndexError as ie: raise Exception('Error getting the first item of img_filelis: {}'.format(repr_imgs(img_filelist[0]))) from ie if not outdtype: outdtype = vol.dtype outmat = np.zeros((len(img_filelist), np.prod(vol.shape)), dtype=outdtype) try: for i, img_file in enumerate(img_filelist): vol = get_img_data(img_file) outmat[i, :] = vol.flatten() except Exception as exc: raise Exception('Error on reading file {0}.'.format(img_file)) from exc return outmat, vol.shape
def _crop_img_to(image, slices, copy=True): """Crops image to a smaller size Crop img to size indicated by slices and modify the affine accordingly. Parameters ---------- image: img-like object or str Can either be: - a file path to a Nifti image - any object with get_data() and get_affine() methods, e.g., nibabel.Nifti1Image. If niimg is a string, consider it as a path to Nifti image and call nibabel.load on it. If it is an object, check if get_data() and get_affine() methods are present, raise TypeError otherwise. Image to be cropped. slices: list of slices Defines the range of the crop. E.g. [slice(20, 200), slice(40, 150), slice(0, 100)] defines a 3D cube If slices has less entries than image has dimensions, the slices will be applied to the first len(slices) dimensions. copy: boolean Specifies whether cropped data is to be copied or not. Default: True Returns ------- cropped_img: img-like object Cropped version of the input image """ img = check_img(image) data = img.get_data() affine = img.get_affine() cropped_data = data[slices] if copy: cropped_data = cropped_data.copy() linear_part = affine[:3, :3] old_origin = affine[:3, 3] new_origin_voxel = np.array([s.start for s in slices]) new_origin = old_origin + linear_part.dot(new_origin_voxel) new_affine = np.eye(4) new_affine[:3, :3] = linear_part new_affine[:3, 3] = new_origin new_img = nib.Nifti1Image(cropped_data, new_affine) return new_img
def crop_img(image, rtol=1e-8, copy=True): """Crops img as much as possible Will crop img, removing as many zero entries as possible without touching non-zero entries. Will leave one voxel of zero padding around the obtained non-zero area in order to avoid sampling issues later on. Parameters ---------- image: img-like object or str Can either be: - a file path to a Nifti image - any object with get_data() and get_affine() methods, e.g., nibabel.Nifti1Image. If niimg is a string, consider it as a path to Nifti image and call nibabel.load on it. If it is an object, check if get_data() and get_affine() methods are present, raise TypeError otherwise. Image to be cropped. rtol: float relative tolerance (with respect to maximal absolute value of the image), under which values are considered negligeable and thus croppable. copy: boolean Specifies whether cropped data is copied or not. Returns ------- cropped_img: image Cropped version of the input image """ img = check_img(image) data = img.get_data() infinity_norm = max(-data.min(), data.max()) passes_threshold = np.logical_or(data < -rtol * infinity_norm, data > rtol * infinity_norm) if data.ndim == 4: passes_threshold = np.any(passes_threshold, axis=-1) coords = np.array(np.where(passes_threshold)) start = coords.min(axis=1) end = coords.max(axis=1) + 1 # pad with one voxel to avoid resampling problems start = np.maximum(start - 1, 0) end = np.minimum(end + 1, data.shape[:3]) slices = [slice(s, e) for s, e in zip(start, end)] return _crop_img_to(img, slices, copy=copy)
def new_img_like(ref_niimg, data, affine=None, copy_header=False): """Create a new image of the same class as the reference image Parameters ---------- ref_niimg: image Reference image. The new image will be of the same type. data: numpy array Data to be stored in the image affine: 4x4 numpy array, optional Transformation matrix copy_header: boolean, optional Indicated if the header of the reference image should be used to create the new image Returns ------- new_img: image A loaded image with the same type (and header) as the reference image. """ # Hand-written loading code to avoid too much memory consumption if not (hasattr(ref_niimg, 'get_data') and hasattr(ref_niimg,'get_affine')): if isinstance(ref_niimg, _basestring): ref_niimg = nib.load(ref_niimg) elif operator.isSequenceType(ref_niimg): ref_niimg = nib.load(ref_niimg[0]) else: raise TypeError(('The reference image should be a niimg, %r ' 'was passed') % ref_niimg ) if affine is None: affine = ref_niimg.get_affine() if data.dtype == bool: default_dtype = np.int8 if (LooseVersion(nib.__version__) >= LooseVersion('1.2.0') and isinstance(ref_niimg, nib.freesurfer.mghformat.MGHImage)): default_dtype = np.uint8 data = as_ndarray(data, dtype=default_dtype) header = None if copy_header: header = copy.copy(ref_niimg.get_header()) header['scl_slope'] = 0. header['scl_inter'] = 0. header['glmax'] = 0. header['cal_max'] = np.max(data) if data.size > 0 else 0. header['cal_max'] = np.min(data) if data.size > 0 else 0. return ref_niimg.__class__(data, affine, header=header)
def save_variables_to_hdf5(file_path, variables, mode='w', h5path='/'): """ Parameters ---------- file_path: str variables: dict Dictionary with objects. Object name -> object mode: str HDF5 file access mode See h5py documentation for details. r Readonly, file must exist r+ Read/write, file must exist w Create file, truncate if exists w- Create file, fail if exists a Read/write if exists, create otherwise (default) Notes ----- It is recommended to use numpy arrays as objects. List or tuples of strings won't work, convert them into numpy.arrays before. """ if not isinstance(variables, dict): raise ValueError('Expected `variables` to be a dict, got a {}.'.format(type(variables))) if not variables: raise ValueError('Expected `variables` to be a non-empty dict.') h5file = h5py.File(file_path, mode=mode) h5group = h5file.require_group(h5path) for vn in variables: data = variables[vn] # fix for string numpy arrays if hasattr(data, 'dtype') and (data.dtype.type is np.string_ or data.dtype.type is np.unicode_): dt = h5py.special_dtype(vlen=str) data = data.astype(dt) if isinstance(data, dict): for key in data: #h5group.create_dataset(str(key)) #import ipdb #ipdb.set_trace() h5group[str(key)] = data[key] elif isinstance(data, list): for idx, item in enumerate(data): #h5group.create_dataset(str(idx)) h5group[str(idx)] = item else: h5group[vn] = data h5file.close()
def get_h5file(file_path, mode='r'): """ Return the h5py.File given its file path. Parameters ---------- file_path: string HDF5 file path mode: string r Readonly, file must exist r+ Read/write, file must exist w Create file, truncate if exists w- Create file, fail if exists a Read/write if exists, create otherwise (default) Returns ------- h5file: h5py.File """ if not op.exists(file_path): raise IOError('Could not find file {}.'.format(file_path)) try: h5file = h5py.File(file_path, mode=mode) except: raise else: return h5file
def extract_datasets(h5file, h5path='/'): """ Return all dataset contents from h5path group in h5file in an OrderedDict. Parameters ---------- h5file: h5py.File HDF5 file object h5path: str HDF5 group path to read datasets from Returns ------- datasets: OrderedDict Dict with variables contained in file_path/h5path """ if isinstance(h5file, str): _h5file = h5py.File(h5file, mode='r') else: _h5file = h5file _datasets = get_datasets(_h5file, h5path) datasets = OrderedDict() try: for ds in _datasets: datasets[ds.name.split('/')[-1]] = ds[:] except: raise RuntimeError('Error reading datasets in {}/{}.'.format(_h5file.filename, h5path)) finally: if isinstance(h5file, str): _h5file.close() return datasets
def _get_node_names(h5file, h5path='/', node_type=h5py.Dataset): """Return the node of type node_type names within h5path of h5file. Parameters ---------- h5file: h5py.File HDF5 file object h5path: str HDF5 group path to get the group names from node_type: h5py object type HDF5 object type Returns ------- names: list of str List of names """ if isinstance(h5file, str): _h5file = get_h5file(h5file, mode='r') else: _h5file = h5file if not h5path.startswith('/'): h5path = '/' + h5path names = [] try: h5group = _h5file.require_group(h5path) for node in _hdf5_walk(h5group, node_type=node_type): names.append(node.name) except: raise RuntimeError('Error getting node names from {}/{}.'.format(_h5file.filename, h5path)) finally: if isinstance(h5file, str): _h5file.close() return names
def mask(self, image): """ self.mask setter Parameters ---------- image: str or img-like object. See NeuroImage constructor docstring. """ if image is None: self._mask = None try: mask = load_mask(image) except Exception as exc: raise Exception('Could not load mask image {}.'.format(image)) from exc else: self._mask = mask
def check_compatibility(self, one_img, another_img=None): """ Parameters ---------- one_img: str or img-like object. See NeuroImage constructor docstring. anoter_img: str or img-like object. See NeuroImage constructor docstring. If None will use the first image of self.images, if there is any. Raises ------ NiftiFilesNotCompatible If one_img and another_img aren't compatible. ValueError If another_img is None and there are no other images in this set. """ if another_img is None: if len(self.items) > 0: another_img = self.items[0] else: raise ValueError('self.items is empty, need an image to compare ' 'with {}'.format(repr_imgs(one_img))) try: if self.all_compatible: check_img_compatibility(one_img, another_img) if self.mask is not None: check_img_compatibility(one_img, self.mask, only_check_3d=True) except: raise
def set_labels(self, labels): """ Parameters ---------- labels: list of int or str This list will be checked to have the same size as Raises ------ ValueError if len(labels) != self.n_subjs """ if not isinstance(labels, string_types) and len(labels) != self.n_subjs: raise ValueError('The number of given labels ({}) is not the same ' 'as the number of subjects ({}).'.format(len(labels), self.n_subjs)) self.labels = labels
def _load_images_and_labels(self, images, labels=None): """Read the images, load them into self.items and set the labels.""" if not isinstance(images, (list, tuple)): raise ValueError('Expected an iterable (list or tuple) of strings or img-like objects. ' 'Got a {}.'.format(type(images))) if not len(images) > 0: raise ValueError('Expected an iterable (list or tuple) of strings or img-like objects ' 'of size higher than 0. Got {} items.'.format(len(images))) if labels is not None and len(labels) != len(images): raise ValueError('Expected the same length for image set ({}) and ' 'labels list ({}).'.format(len(images), len(labels))) first_file = images[0] if first_file: first_img = NeuroImage(first_file) else: raise('Error reading image {}.'.format(repr_imgs(first_file))) for idx, image in enumerate(images): try: img = NeuroImage(image) self.check_compatibility(img, first_img) except: log.exception('Error reading image {}.'.format(repr_imgs(image))) raise else: self.items.append(img) self.set_labels(labels)
def to_matrix(self, smooth_fwhm=0, outdtype=None): """Return numpy.ndarray with the masked or flatten image data and the relevant information (mask indices and volume shape). Parameters ---------- smooth__fwhm: int Integer indicating the size of the FWHM Gaussian smoothing kernel to smooth the subject volumes before creating the data matrix outdtype: dtype Type of the elements of the array, if None will obtain the dtype from the first nifti file. Returns ------- outmat, mask_indices, vol_shape outmat: Numpy array with shape N x prod(vol.shape) containing the N files as flat vectors. mask_indices: matrix with indices of the voxels in the mask vol_shape: Tuple with shape of the volumes, for reshaping. """ if not self.all_compatible: raise ValueError("`self.all_compatible` must be True in order to use this function.") if not outdtype: outdtype = self.items[0].dtype # extract some info from the mask n_voxels = None mask_indices = None mask_shape = self.items[0].shape[:3] if self.has_mask: mask_arr = self.mask.get_data() mask_indices = np.nonzero(mask_arr) mask_shape = self.mask.shape n_voxels = np.count_nonzero(mask_arr) # if the mask is empty will use the whole image if n_voxels is None: log.debug('Non-zero voxels have not been found in mask {}'.format(self.mask)) n_voxels = np.prod(mask_shape) mask_indices = None # get the shape of the flattened subject data ndims = self.items[0].ndim if ndims == 3: subj_flat_shape = (n_voxels, ) elif ndims == 4: subj_flat_shape = (n_voxels, self.items[0].shape[3]) else: raise NotImplementedError('The subject images have {} dimensions. ' 'Still have not implemented t_matrix for this shape.'.format(ndims)) # create and fill the big matrix outmat = np.zeros((self.n_subjs, ) + subj_flat_shape, dtype=outdtype) try: for i, image in enumerate(self.items): if smooth_fwhm > 0: image.fwhm = smooth_fwhm if self.has_mask: image.set_mask(self.mask) outmat[i, :], _, _ = image.mask_and_flatten() image.clear_data() except Exception as exc: raise Exception('Error flattening file {0}'.format(image)) from exc else: return outmat, mask_indices, mask_shape
def to_file(self, output_file, smooth_fwhm=0, outdtype=None): """Save the Numpy array created from to_matrix function to the output_file. Will save into the file: outmat, mask_indices, vol_shape and self.others (put here whatever you want) data: Numpy array with shape N x prod(vol.shape) containing the N files as flat vectors. mask_indices: matrix with indices of the voxels in the mask vol_shape: Tuple with shape of the volumes, for reshaping. Parameters ---------- output_file: str Path to the output file. The extension of the file will be taken into account for the file format. Choices of extensions: '.pyshelf' or '.shelf' (Python shelve) '.mat' (Matlab archive), '.hdf5' or '.h5' (HDF5 file) smooth_fwhm: int Integer indicating the size of the FWHM Gaussian smoothing kernel to smooth the subject volumes before creating the data matrix outdtype: dtype Type of the elements of the array, if None will obtain the dtype from the first nifti file. """ outmat, mask_indices, mask_shape = self.to_matrix(smooth_fwhm, outdtype) exporter = ExportData() content = {'data': outmat, 'labels': self.labels, 'mask_indices': mask_indices, 'mask_shape': mask_shape, } if self.others: content.update(self.others) log.debug('Creating content in file {}.'.format(output_file)) try: exporter.save_variables(output_file, content) except Exception as exc: raise Exception('Error saving variables to file {}.'.format(output_file)) from exc
def _init_subj_data(self, subj_files): """ Parameters ---------- subj_files: list or dict of str file_path -> int/str """ try: if isinstance(subj_files, list): self.from_list(subj_files) elif isinstance(subj_files, dict): self.from_dict(subj_files) else: raise ValueError('Could not recognize subj_files argument variable type.') except Exception as exc: raise Exception('Cannot read subj_files input argument.') from exc