Search is not available for this dataset
text
stringlengths
75
104k
def suppose(self, var, value): "Start accumulating inferences from assuming var=value." self.support_pruning() removals = [(var, a) for a in self.curr_domains[var] if a != value] self.curr_domains[var] = [value] return removals
def prune(self, var, value, removals): "Rule out var=value." self.curr_domains[var].remove(value) if removals is not None: removals.append((var, value))
def infer_assignment(self): "Return the partial assignment implied by the current inferences." self.support_pruning() return dict((v, self.curr_domains[v][0]) for v in self.vars if 1 == len(self.curr_domains[v]))
def restore(self, removals): "Undo a supposition and all inferences from it." for B, b in removals: self.curr_domains[B].append(b)
def conflicted_vars(self, current): "Return a list of variables in current assignment that are in conflict" return [var for var in self.vars if self.nconflicts(var, current[var], current) > 0]
def nconflicts(self, var, val, assignment): """The number of conflicts, as recorded with each assignment. Count conflicts in row and in up, down diagonals. If there is a queen there, it can't conflict with itself, so subtract 3.""" n = len(self.vars) c = self.rows[val] + self.downs[var+val] + self.ups[var-val+n-1] if assignment.get(var, None) == val: c -= 3 return c
def assign(self, var, val, assignment): "Assign var, and keep track of conflicts." oldval = assignment.get(var, None) if val != oldval: if oldval is not None: # Remove old val if there was one self.record_conflict(assignment, var, oldval, -1) self.record_conflict(assignment, var, val, +1) CSP.assign(self, var, val, assignment)
def unassign(self, var, assignment): "Remove var from assignment (if it is there) and track conflicts." if var in assignment: self.record_conflict(assignment, var, assignment[var], -1) CSP.unassign(self, var, assignment)
def record_conflict(self, assignment, var, val, delta): "Record conflicts caused by addition or deletion of a Queen." n = len(self.vars) self.rows[val] += delta self.downs[var + val] += delta self.ups[var - val + n - 1] += delta
def display(self, assignment): "Print the queens and the nconflicts values (for debugging)." n = len(self.vars) for val in range(n): for var in range(n): if assignment.get(var,'') == val: ch = 'Q' elif (var+val) % 2 == 0: ch = '.' else: ch = '-' print ch, print ' ', for var in range(n): if assignment.get(var,'') == val: ch = '*' else: ch = ' ' print str(self.nconflicts(var, val, assignment))+ch, print
def viterbi_segment(text, P): """Find the best segmentation of the string of characters, given the UnigramTextModel P.""" # best[i] = best probability for text[0:i] # words[i] = best word ending at position i n = len(text) words = [''] + list(text) best = [1.0] + [0.0] * n ## Fill in the vectors best, words via dynamic programming for i in range(n+1): for j in range(0, i): w = text[j:i] if P[w] * best[i - len(w)] >= best[i]: best[i] = P[w] * best[i - len(w)] words[i] = w ## Now recover the sequence of best words sequence = []; i = len(words)-1 while i > 0: sequence[0:0] = [words[i]] i = i - len(words[i]) ## Return sequence of best words and overall probability return sequence, best[-1]
def encode(plaintext, code): "Encodes text, using a code which is a permutation of the alphabet." from string import maketrans trans = maketrans(alphabet + alphabet.upper(), code + code.upper()) return plaintext.translate(trans)
def add(self, ngram): """Count 1 for P[(w1, ..., wn)] and for P(wn | (w1, ..., wn-1)""" CountingProbDist.add(self, ngram) self.cond_prob[ngram[:-1]].add(ngram[-1])
def add_sequence(self, words): """Add each of the tuple words[i:i+n], using a sliding window. Prefix some copies of the empty word, '', to make the start work.""" n = self.n words = ['',] * (n-1) + words for i in range(len(words)-n): self.add(tuple(words[i:i+n]))
def samples(self, nwords): """Build up a random sample of text nwords words long, using the conditional probability given the n-1 preceding words.""" n = self.n nminus1gram = ('',) * (n-1) output = [] for i in range(nwords): if nminus1gram not in self.cond_prob: nminus1gram = ('',) * (n-1) # Cannot continue, so restart. wn = self.cond_prob[nminus1gram].sample() output.append(wn) nminus1gram = nminus1gram[1:] + (wn,) return ' '.join(output)
def index_collection(self, filenames): "Index a whole collection of files." for filename in filenames: self.index_document(open(filename).read(), filename)
def index_document(self, text, url): "Index the text of a document." ## For now, use first line for title title = text[:text.index('\n')].strip() docwords = words(text) docid = len(self.documents) self.documents.append(Document(title, url, len(docwords))) for word in docwords: if word not in self.stopwords: self.index[word][docid] += 1
def query(self, query_text, n=10): """Return a list of n (score, docid) pairs for the best matches. Also handle the special syntax for 'learn: command'.""" if query_text.startswith("learn:"): doctext = os.popen(query_text[len("learn:"):], 'r').read() self.index_document(doctext, query_text) return [] qwords = [w for w in words(query_text) if w not in self.stopwords] shortest = argmin(qwords, lambda w: len(self.index[w])) docs = self.index[shortest] results = [(sum([self.score(w, d) for w in qwords]), d) for d in docs] results.sort(); results.reverse() return results[:n]
def score(self, word, docid): "Compute a score for this word on this docid." ## There are many options; here we take a very simple approach return (math.log(1 + self.index[word][docid]) / math.log(1 + self.documents[docid].nwords))
def present(self, results): "Present the results as a list." for (score, d) in results: doc = self.documents[d] print ("%5.2f|%25s | %s" % (100 * score, doc.url, doc.title[:45].expandtabs()))
def present_results(self, query_text, n=10): "Get results for the query and present them." self.present(self.query(query_text, n))
def score(self, plaintext): "Return a score for text based on how common letters pairs are." s = 1.0 for bi in bigrams(plaintext): s = s * self.P2[bi] return s
def decode(self, ciphertext): "Search for a decoding of the ciphertext." self.ciphertext = ciphertext problem = PermutationDecoderProblem(decoder=self) return search.best_first_tree_search( problem, lambda node: self.score(node.state))
def score(self, code): """Score is product of word scores, unigram scores, and bigram scores. This can get very small, so we use logs and exp.""" text = permutation_decode(self.ciphertext, code) logP = (sum([log(self.Pwords[word]) for word in words(text)]) + sum([log(self.P1[c]) for c in text]) + sum([log(self.P2[b]) for b in bigrams(text)])) return exp(logP)
def get_value(self, context, default): """ Returns a ``SettingDict`` object. """ if default is None: settings = self.setting_model.objects.as_dict() else: settings = self.setting_model.objects.as_dict(default=default) return settings
def get_value(self, context, name, default): """ Returns the value of the named setting. """ settings = self.setting_model.objects.filter(name=name) if default is None: settings = settings.as_dict() else: settings = settings.as_dict(default=default) value = settings[name] return value
def render_tag(self, context, name, nodelist): """ Returns the value of the named setting. """ # Use `try` and `except` instead of `setdefault()` so we can skip # rendering the nodelist when the setting already exists. settings = self.setting_model.objects.filter(name=name).as_dict() try: value = settings[name] except KeyError: value = settings[name] = nodelist.render(context) return value
def value_iteration(mdp, epsilon=0.001): "Solving an MDP by value iteration. [Fig. 17.4]" U1 = dict([(s, 0) for s in mdp.states]) R, T, gamma = mdp.R, mdp.T, mdp.gamma while True: U = U1.copy() delta = 0 for s in mdp.states: U1[s] = R(s) + gamma * max([sum([p * U[s1] for (p, s1) in T(s, a)]) for a in mdp.actions(s)]) delta = max(delta, abs(U1[s] - U[s])) if delta < epsilon * (1 - gamma) / gamma: return U
def best_policy(mdp, U): """Given an MDP and a utility function U, determine the best policy, as a mapping from state to action. (Equation 17.4)""" pi = {} for s in mdp.states: pi[s] = argmax(mdp.actions(s), lambda a:expected_utility(a, s, U, mdp)) return pi
def expected_utility(a, s, U, mdp): "The expected utility of doing a in state s, according to the MDP and U." return sum([p * U[s1] for (p, s1) in mdp.T(s, a)])
def policy_iteration(mdp): "Solve an MDP by policy iteration [Fig. 17.7]" U = dict([(s, 0) for s in mdp.states]) pi = dict([(s, random.choice(mdp.actions(s))) for s in mdp.states]) while True: U = policy_evaluation(pi, U, mdp) unchanged = True for s in mdp.states: a = argmax(mdp.actions(s), lambda a: expected_utility(a,s,U,mdp)) if a != pi[s]: pi[s] = a unchanged = False if unchanged: return pi
def policy_evaluation(pi, U, mdp, k=20): """Return an updated utility mapping U from each state in the MDP to its utility, using an approximation (modified policy iteration).""" R, T, gamma = mdp.R, mdp.T, mdp.gamma for i in range(k): for s in mdp.states: U[s] = R(s) + gamma * sum([p * U[s1] for (p, s1) in T(s, pi[s])]) return U
def go(self, state, direction): "Return the state that results from going in this direction." state1 = vector_add(state, direction) return if_(state1 in self.states, state1, state)
def to_grid(self, mapping): """Convert a mapping from (x, y) to v into a [[..., v, ...]] grid.""" return list(reversed([[mapping.get((x,y), None) for x in range(self.cols)] for y in range(self.rows)]))
def as_dict(self, default=None): """ Returns a ``SettingDict`` object for this queryset. """ settings = SettingDict(queryset=self, default=default) return settings
def create(self, name, value): """ Creates and returns an object of the appropriate type for ``value``. """ if value is None: raise ValueError('Setting value cannot be `None`.') model = Setting.get_model_for_value(value) # Call `create()` method on the super class to avoid recursion. obj = super(SettingQuerySet, model.objects.all()) \ .create(name=name, value=value) return obj
def get_model_for_value(cls, value): """ Iterates through setting value subclasses, returning one that is compatible with the type of ``value``. Calls ``is_compatible()`` on each subclass. """ for related_object in get_all_related_objects(cls._meta): model = getattr(related_object, 'related_model', related_object.model) if issubclass(model, cls): if model.is_compatible(value): return model raise ValueError( 'No compatible `SettingValueModel` subclass for %r' % value)
def is_compatible(cls, value): """ Returns ``True`` if this model should be used to store ``value``. Checks if ``value`` is an instance of ``value_type``. Override this method if you need more advanced behaviour. For example, to distinguish between single and multi-line text. """ if not hasattr(cls, 'value_type'): raise NotImplementedError( 'You must define a `value_type` attribute or override the ' '`is_compatible()` method on `SettingValueModel` subclasses.') return isinstance(value, cls.value_type)
def tree_search(problem, frontier): """Search through the successors of a problem to find a goal. The argument frontier should be an empty queue. Don't worry about repeated paths to a state. [Fig. 3.7]""" frontier.append(Node(problem.initial)) while frontier: node = frontier.pop() if problem.goal_test(node.state): return node frontier.extend(node.expand(problem)) return None
def graph_search(problem, frontier): """Search through the successors of a problem to find a goal. The argument frontier should be an empty queue. If two paths reach a state, only use the first one. [Fig. 3.7]""" frontier.append(Node(problem.initial)) explored = set() while frontier: node = frontier.pop() if problem.goal_test(node.state): return node explored.add(node.state) frontier.extend(child for child in node.expand(problem) if child.state not in explored and child not in frontier) return None
def breadth_first_search(problem): "[Fig. 3.11]" node = Node(problem.initial) if problem.goal_test(node.state): return node frontier = FIFOQueue() frontier.append(node) explored = set() while frontier: node = frontier.pop() explored.add(node.state) for child in node.expand(problem): if child.state not in explored and child not in frontier: if problem.goal_test(child.state): return child frontier.append(child) return None
def best_first_graph_search(problem, f): """Search the nodes with the lowest f scores first. You specify the function f(node) that you want to minimize; for example, if f is a heuristic estimate to the goal, then we have greedy best first search; if f is node.depth then we have breadth-first search. There is a subtlety: the line "f = memoize(f, 'f')" means that the f values will be cached on the nodes as they are computed. So after doing a best first search you can examine the f values of the path returned.""" f = memoize(f, 'f') node = Node(problem.initial) if problem.goal_test(node.state): return node frontier = PriorityQueue(min, f) frontier.append(node) explored = set() while frontier: node = frontier.pop() if problem.goal_test(node.state): return node explored.add(node.state) for child in node.expand(problem): if child.state not in explored and child not in frontier: frontier.append(child) elif child in frontier: incumbent = frontier[child] if f(child) < f(incumbent): del frontier[incumbent] frontier.append(child) return None
def depth_limited_search(problem, limit=50): "[Fig. 3.17]" def recursive_dls(node, problem, limit): if problem.goal_test(node.state): return node elif node.depth == limit: return 'cutoff' else: cutoff_occurred = False for child in node.expand(problem): result = recursive_dls(child, problem, limit) if result == 'cutoff': cutoff_occurred = True elif result is not None: return result return if_(cutoff_occurred, 'cutoff', None) # Body of depth_limited_search: return recursive_dls(Node(problem.initial), problem, limit)
def iterative_deepening_search(problem): "[Fig. 3.18]" for depth in xrange(sys.maxint): result = depth_limited_search(problem, depth) if result != 'cutoff': return result
def astar_search(problem, h=None): """A* search is best-first graph search with f(n) = g(n)+h(n). You need to specify the h function when you call astar_search, or else in your Problem subclass.""" h = memoize(h or problem.h, 'h') return best_first_graph_search(problem, lambda n: n.path_cost + h(n))
def recursive_best_first_search(problem, h=None): "[Fig. 3.26]" h = memoize(h or problem.h, 'h') def RBFS(problem, node, flimit): if problem.goal_test(node.state): return node, 0 # (The second value is immaterial) successors = node.expand(problem) if len(successors) == 0: return None, infinity for s in successors: s.f = max(s.path_cost + h(s), node.f) while True: successors.sort(lambda x,y: cmp(x.f, y.f)) # Order by lowest f value best = successors[0] if best.f > flimit: return None, best.f if len(successors) > 1: alternative = successors[1].f else: alternative = infinity result, best.f = RBFS(problem, best, min(flimit, alternative)) if result is not None: return result, best.f node = Node(problem.initial) node.f = h(node) result, bestf = RBFS(problem, node, infinity) return result
def hill_climbing(problem): """From the initial node, keep choosing the neighbor with highest value, stopping when no neighbor is better. [Fig. 4.2]""" current = Node(problem.initial) while True: neighbors = current.expand(problem) if not neighbors: break neighbor = argmax_random_tie(neighbors, lambda node: problem.value(node.state)) if problem.value(neighbor.state) <= problem.value(current.state): break current = neighbor return current.state
def exp_schedule(k=20, lam=0.005, limit=100): "One possible schedule function for simulated annealing" return lambda t: if_(t < limit, k * math.exp(-lam * t), 0)
def simulated_annealing(problem, schedule=exp_schedule()): "[Fig. 4.5]" current = Node(problem.initial) for t in xrange(sys.maxint): T = schedule(t) if T == 0: return current neighbors = current.expand(problem) if not neighbors: return current next = random.choice(neighbors) delta_e = problem.value(next.state) - problem.value(current.state) if delta_e > 0 or probability(math.exp(delta_e/T)): current = next
def genetic_search(problem, fitness_fn, ngen=1000, pmut=0.1, n=20): """Call genetic_algorithm on the appropriate parts of a problem. This requires the problem to have states that can mate and mutate, plus a value method that scores states.""" s = problem.initial_state states = [problem.result(s, a) for a in problem.actions(s)] random.shuffle(states) return genetic_algorithm(states[:n], problem.value, ngen, pmut)
def genetic_algorithm(population, fitness_fn, ngen=1000, pmut=0.1): "[Fig. 4.8]" for i in range(ngen): new_population = [] for i in len(population): fitnesses = map(fitness_fn, population) p1, p2 = weighted_sample_with_replacement(population, fitnesses, 2) child = p1.mate(p2) if random.uniform(0, 1) < pmut: child.mutate() new_population.append(child) population = new_population return argmax(population, fitness_fn)
def RandomGraph(nodes=range(10), min_links=2, width=400, height=300, curvature=lambda: random.uniform(1.1, 1.5)): """Construct a random graph, with the specified nodes, and random links. The nodes are laid out randomly on a (width x height) rectangle. Then each node is connected to the min_links nearest neighbors. Because inverse links are added, some nodes will have more connections. The distance between nodes is the hypotenuse times curvature(), where curvature() defaults to a random number between 1.1 and 1.5.""" g = UndirectedGraph() g.locations = {} ## Build the cities for node in nodes: g.locations[node] = (random.randrange(width), random.randrange(height)) ## Build roads from each city to at least min_links nearest neighbors. for i in range(min_links): for node in nodes: if len(g.get(node)) < min_links: here = g.locations[node] def distance_to_node(n): if n is node or g.get(node,n): return infinity return distance(g.locations[n], here) neighbor = argmin(nodes, distance_to_node) d = distance(g.locations[neighbor], here) * curvature() g.connect(node, neighbor, int(d)) return g
def random_boggle(n=4): """Return a random Boggle board of size n x n. We represent a board as a linear list of letters.""" cubes = [cubes16[i % 16] for i in range(n*n)] random.shuffle(cubes) return map(random.choice, cubes)
def print_boggle(board): "Print the board in a 2-d array." n2 = len(board); n = exact_sqrt(n2) for i in range(n2): if i % n == 0 and i > 0: print if board[i] == 'Q': print 'Qu', else: print str(board[i]) + ' ', print
def boggle_neighbors(n2, cache={}): """Return a list of lists, where the i-th element is the list of indexes for the neighbors of square i.""" if cache.get(n2): return cache.get(n2) n = exact_sqrt(n2) neighbors = [None] * n2 for i in range(n2): neighbors[i] = [] on_top = i < n on_bottom = i >= n2 - n on_left = i % n == 0 on_right = (i+1) % n == 0 if not on_top: neighbors[i].append(i - n) if not on_left: neighbors[i].append(i - n - 1) if not on_right: neighbors[i].append(i - n + 1) if not on_bottom: neighbors[i].append(i + n) if not on_left: neighbors[i].append(i + n - 1) if not on_right: neighbors[i].append(i + n + 1) if not on_left: neighbors[i].append(i - 1) if not on_right: neighbors[i].append(i + 1) cache[n2] = neighbors return neighbors
def exact_sqrt(n2): "If n2 is a perfect square, return its square root, else raise error." n = int(math.sqrt(n2)) assert n * n == n2 return n
def boggle_hill_climbing(board=None, ntimes=100, verbose=True): """Solve inverse Boggle by hill-climbing: find a high-scoring board by starting with a random one and changing it.""" finder = BoggleFinder() if board is None: board = random_boggle() best = len(finder.set_board(board)) for _ in range(ntimes): i, oldc = mutate_boggle(board) new = len(finder.set_board(board)) if new > best: best = new if verbose: print best, _, board else: board[i] = oldc ## Change back if verbose: print_boggle(board) return board, best
def compare_graph_searchers(): """Prints a table of results like this: >>> compare_graph_searchers() Searcher Romania(A, B) Romania(O, N) Australia breadth_first_tree_search < 21/ 22/ 59/B> <1158/1159/3288/N> < 7/ 8/ 22/WA> breadth_first_search < 7/ 11/ 18/B> < 19/ 20/ 45/N> < 2/ 6/ 8/WA> depth_first_graph_search < 8/ 9/ 20/B> < 16/ 17/ 38/N> < 4/ 5/ 11/WA> iterative_deepening_search < 11/ 33/ 31/B> < 656/1815/1812/N> < 3/ 11/ 11/WA> depth_limited_search < 54/ 65/ 185/B> < 387/1012/1125/N> < 50/ 54/ 200/WA> recursive_best_first_search < 5/ 6/ 15/B> <5887/5888/16532/N> < 11/ 12/ 43/WA>""" compare_searchers(problems=[GraphProblem('A', 'B', romania), GraphProblem('O', 'N', romania), GraphProblem('Q', 'WA', australia)], header=['Searcher', 'Romania(A, B)', 'Romania(O, N)', 'Australia'])
def expand(self, problem): "List the nodes reachable in one step from this node." return [self.child_node(problem, action) for action in problem.actions(self.state)]
def child_node(self, problem, action): "Fig. 3.10" next = problem.result(self.state, action) return Node(next, self, action, problem.path_cost(self.path_cost, self.state, action, next))
def path(self): "Return a list of nodes forming the path from the root to this node." node, path_back = self, [] while node: path_back.append(node) node = node.parent return list(reversed(path_back))
def mate(self, other): "Return a new individual crossing self and other." c = random.randrange(len(self.genes)) return self.__class__(self.genes[:c] + other.genes[c:])
def make_undirected(self): "Make a digraph into an undirected graph by adding symmetric edges." for a in self.dict.keys(): for (b, distance) in self.dict[a].items(): self.connect1(b, a, distance)
def connect(self, A, B, distance=1): """Add a link from A and B of given distance, and also add the inverse link if the graph is undirected.""" self.connect1(A, B, distance) if not self.directed: self.connect1(B, A, distance)
def connect1(self, A, B, distance): "Add a link from A to B of given distance, in one direction only." self.dict.setdefault(A,{})[B] = distance
def get(self, a, b=None): """Return a link distance or a dict of {node: distance} entries. .get(a,b) returns the distance or None; .get(a) returns a dict of {node: distance} entries, possibly {}.""" links = self.dict.setdefault(a, {}) if b is None: return links else: return links.get(b)
def h(self, node): "h function is straight-line distance from a node's state to goal." locs = getattr(self.graph, 'locations', None) if locs: return int(distance(locs[node.state], locs[self.goal])) else: return infinity
def actions(self, state): "In the leftmost empty column, try all non-conflicting rows." if state[-1] is not None: return [] # All columns filled; no successors else: col = state.index(None) return [row for row in range(self.N) if not self.conflicted(state, row, col)]
def result(self, state, row): "Place the next queen at the given row." col = state.index(None) new = state[:] new[col] = row return new
def conflicted(self, state, row, col): "Would placing a queen at (row, col) conflict with anything?" return any(self.conflict(row, col, state[c], c) for c in range(col))
def conflict(self, row1, col1, row2, col2): "Would putting two queens in (row1, col1) and (row2, col2) conflict?" return (row1 == row2 ## same row or col1 == col2 ## same column or row1-col1 == row2-col2 ## same \ diagonal or row1+col1 == row2+col2)
def lookup(self, prefix, lo=0, hi=None): """See if prefix is in dictionary, as a full word or as a prefix. Return two values: the first is the lowest i such that words[i].startswith(prefix), or is None; the second is True iff prefix itself is in the Wordlist.""" words = self.words if hi is None: hi = len(words) i = bisect.bisect_left(words, prefix, lo, hi) if i < len(words) and words[i].startswith(prefix): return i, (words[i] == prefix) else: return None, False
def set_board(self, board=None): "Set the board, and find all the words in it." if board is None: board = random_boggle() self.board = board self.neighbors = boggle_neighbors(len(board)) self.found = {} for i in range(len(board)): lo, hi = self.wordlist.bounds[board[i]] self.find(lo, hi, i, [], '') return self
def find(self, lo, hi, i, visited, prefix): """Looking in square i, find the words that continue the prefix, considering the entries in self.wordlist.words[lo:hi], and not revisiting the squares in visited.""" if i in visited: return wordpos, is_word = self.wordlist.lookup(prefix, lo, hi) if wordpos is not None: if is_word: self.found[prefix] = True visited.append(i) c = self.board[i] if c == 'Q': c = 'QU' prefix += c for j in self.neighbors[i]: self.find(wordpos, hi, j, visited, prefix) visited.pop()
def score(self): "The total score for the words found, according to the rules." return sum([self.scores[len(w)] for w in self.words()])
def TraceAgent(agent): """Wrap the agent's program to print its input and output. This will let you see what the agent is doing in the environment.""" old_program = agent.program def new_program(percept): action = old_program(percept) print '%s perceives %s and does %s' % (agent, percept, action) return action agent.program = new_program return agent
def TableDrivenAgentProgram(table): """This agent selects an action based on the percept sequence. It is practical only for tiny domains. To customize it, provide as table a dictionary of all {percept_sequence:action} pairs. [Fig. 2.7]""" percepts = [] def program(percept): percepts.append(percept) action = table.get(tuple(percepts)) return action return program
def SimpleReflexAgentProgram(rules, interpret_input): "This agent takes action based solely on the percept. [Fig. 2.10]" def program(percept): state = interpret_input(percept) rule = rule_match(state, rules) action = rule.action return action return program
def ModelBasedReflexAgentProgram(rules, update_state): "This agent takes action based on the percept and state. [Fig. 2.12]" def program(percept): program.state = update_state(program.state, program.action, percept) rule = rule_match(program.state, rules) action = rule.action return action program.state = program.action = None return program
def TableDrivenVacuumAgent(): "[Fig. 2.3]" table = {((loc_A, 'Clean'),): 'Right', ((loc_A, 'Dirty'),): 'Suck', ((loc_B, 'Clean'),): 'Left', ((loc_B, 'Dirty'),): 'Suck', ((loc_A, 'Clean'), (loc_A, 'Clean')): 'Right', ((loc_A, 'Clean'), (loc_A, 'Dirty')): 'Suck', # ... ((loc_A, 'Clean'), (loc_A, 'Clean'), (loc_A, 'Clean')): 'Right', ((loc_A, 'Clean'), (loc_A, 'Clean'), (loc_A, 'Dirty')): 'Suck', # ... } return Agent(TableDrivenAgentProgram(table))
def ReflexVacuumAgent(): "A reflex agent for the two-state vacuum environment. [Fig. 2.8]" def program((location, status)): if status == 'Dirty': return 'Suck' elif location == loc_A: return 'Right' elif location == loc_B: return 'Left' return Agent(program)
def ModelBasedVacuumAgent(): "An agent that keeps track of what locations are clean or dirty." model = {loc_A: None, loc_B: None} def program((location, status)): "Same as ReflexVacuumAgent, except if everything is clean, do NoOp." model[location] = status ## Update the model here if model[loc_A] == model[loc_B] == 'Clean': return 'NoOp' elif status == 'Dirty': return 'Suck' elif location == loc_A: return 'Right' elif location == loc_B: return 'Left' return Agent(program)
def compare_agents(EnvFactory, AgentFactories, n=10, steps=1000): """See how well each of several agents do in n instances of an environment. Pass in a factory (constructor) for environments, and several for agents. Create n instances of the environment, and run each agent in copies of each one for steps. Return a list of (agent, average-score) tuples.""" envs = [EnvFactory() for i in range(n)] return [(A, test_agent(A, steps, copy.deepcopy(envs))) for A in AgentFactories]
def step(self): """Run the environment for one time step. If the actions and exogenous changes are independent, this method will do. If there are interactions between them, you'll need to override this method.""" if not self.is_done(): actions = [agent.program(self.percept(agent)) for agent in self.agents] for (agent, action) in zip(self.agents, actions): self.execute_action(agent, action) self.exogenous_change()
def run(self, steps=1000): "Run the Environment for given number of time steps." for step in range(steps): if self.is_done(): return self.step()
def list_things_at(self, location, tclass=Thing): "Return all things exactly at a given location." return [thing for thing in self.things if thing.location == location and isinstance(thing, tclass)]
def add_thing(self, thing, location=None): """Add a thing to the environment, setting its location. For convenience, if thing is an agent program we make a new agent for it. (Shouldn't need to override this.""" if not isinstance(thing, Thing): thing = Agent(thing) assert thing not in self.things, "Don't add the same thing twice" thing.location = location or self.default_location(thing) self.things.append(thing) if isinstance(thing, Agent): thing.performance = 0 self.agents.append(thing)
def delete_thing(self, thing): """Remove a thing from the environment.""" try: self.things.remove(thing) except ValueError, e: print e print " in Environment delete_thing" print " Thing to be removed: %s at %s" % (thing, thing.location) print " from list: %s" % [(thing, thing.location) for thing in self.things] if thing in self.agents: self.agents.remove(thing)
def things_near(self, location, radius=None): "Return all things within radius of location." if radius is None: radius = self.perceptible_distance radius2 = radius * radius return [thing for thing in self.things if distance2(location, thing.location) <= radius2]
def percept(self, agent): "By default, agent perceives things within a default radius." return [self.thing_percept(thing, agent) for thing in self.things_near(agent.location)]
def move_to(self, thing, destination): "Move a thing to a new location." thing.bump = self.some_things_at(destination, Obstacle) if not thing.bump: thing.location = destination for o in self.observers: o.thing_moved(thing)
def add_walls(self): "Put walls around the entire perimeter of the grid." for x in range(self.width): self.add_thing(Wall(), (x, 0)) self.add_thing(Wall(), (x, self.height-1)) for y in range(self.height): self.add_thing(Wall(), (0, y)) self.add_thing(Wall(), (self.width-1, y))
def percept(self, agent): """The percept is a tuple of ('Dirty' or 'Clean', 'Bump' or 'None'). Unlike the TrivialVacuumEnvironment, location is NOT perceived.""" status = if_(self.some_things_at(agent.location, Dirt), 'Dirty', 'Clean') bump = if_(agent.bump, 'Bump', 'None') return (status, bump)
def execute_action(self, agent, action): """Change agent's location and/or location's status; track performance. Score 10 for each dirt cleaned; -1 for each move.""" if action == 'Right': agent.location = loc_B agent.performance -= 1 elif action == 'Left': agent.location = loc_A agent.performance -= 1 elif action == 'Suck': if self.status[agent.location] == 'Dirty': agent.performance += 10 self.status[agent.location] = 'Clean'
def Rules(**rules): """Create a dictionary mapping symbols to alternative sequences. >>> Rules(A = "B C | D E") {'A': [['B', 'C'], ['D', 'E']]} """ for (lhs, rhs) in rules.items(): rules[lhs] = [alt.strip().split() for alt in rhs.split('|')] return rules
def Lexicon(**rules): """Create a dictionary mapping symbols to alternative words. >>> Lexicon(Art = "the | a | an") {'Art': ['the', 'a', 'an']} """ for (lhs, rhs) in rules.items(): rules[lhs] = [word.strip() for word in rhs.split('|')] return rules
def generate_random(grammar=E_, s='S'): """Replace each token in s by a random entry in grammar (recursively). This is useful for testing a grammar, e.g. generate_random(E_)""" import random def rewrite(tokens, into): for token in tokens: if token in grammar.rules: rewrite(random.choice(grammar.rules[token]), into) elif token in grammar.lexicon: into.append(random.choice(grammar.lexicon[token])) else: into.append(token) return into return ' '.join(rewrite(s.split(), []))
def parses(self, words, S='S'): """Return a list of parses; words can be a list or string. >>> chart = Chart(E_NP_) >>> chart.parses('happy man', 'NP') [[0, 2, 'NP', [('Adj', 'happy'), [1, 2, 'NP', [('N', 'man')], []]], []]] """ if isinstance(words, str): words = words.split() self.parse(words, S) # Return all the parses that span the whole input # 'span the whole input' => begin at 0, end at len(words) return [[i, j, S, found, []] for (i, j, lhs, found, expects) in self.chart[len(words)] # assert j == len(words) if i == 0 and lhs == S and expects == []]
def parse(self, words, S='S'): """Parse a list of words; according to the grammar. Leave results in the chart.""" self.chart = [[] for i in range(len(words)+1)] self.add_edge([0, 0, 'S_', [], [S]]) for i in range(len(words)): self.scanner(i, words[i]) return self.chart
def add_edge(self, edge): "Add edge to chart, and see if it extends or predicts another edge." start, end, lhs, found, expects = edge if edge not in self.chart[end]: self.chart[end].append(edge) if self.trace: print '%10s: added %s' % (caller(2), edge) if not expects: self.extender(edge) else: self.predictor(edge)