Search is not available for this dataset
text
stringlengths
75
104k
def associate(op, args): """Given an associative op, return an expression with the same meaning as Expr(op, *args), but flattened -- that is, with nested instances of the same op promoted to the top level. >>> associate('&', [(A&B),(B|C),(B&C)]) (A & B & (B | C) & B & C) >>> associate('|', [A|(B|(C|(A&B)))]) (A | B | C | (A & B)) """ args = dissociate(op, args) if len(args) == 0: return _op_identity[op] elif len(args) == 1: return args[0] else: return Expr(op, *args)
def dissociate(op, args): """Given an associative op, return a flattened list result such that Expr(op, *result) means the same as Expr(op, *args).""" result = [] def collect(subargs): for arg in subargs: if arg.op == op: collect(arg.args) else: result.append(arg) collect(args) return result
def pl_resolution(KB, alpha): "Propositional-logic resolution: say if alpha follows from KB. [Fig. 7.12]" clauses = KB.clauses + conjuncts(to_cnf(~alpha)) new = set() while True: n = len(clauses) pairs = [(clauses[i], clauses[j]) for i in range(n) for j in range(i+1, n)] for (ci, cj) in pairs: resolvents = pl_resolve(ci, cj) if FALSE in resolvents: return True new = new.union(set(resolvents)) if new.issubset(set(clauses)): return False for c in new: if c not in clauses: clauses.append(c)
def pl_resolve(ci, cj): """Return all clauses that can be obtained by resolving clauses ci and cj. >>> for res in pl_resolve(to_cnf(A|B|C), to_cnf(~B|~C|F)): ... ppset(disjuncts(res)) set([A, C, F, ~C]) set([A, B, F, ~B]) """ clauses = [] for di in disjuncts(ci): for dj in disjuncts(cj): if di == ~dj or ~di == dj: dnew = unique(removeall(di, disjuncts(ci)) + removeall(dj, disjuncts(cj))) clauses.append(associate('|', dnew)) return clauses
def pl_fc_entails(KB, q): """Use forward chaining to see if a PropDefiniteKB entails symbol q. [Fig. 7.15] >>> pl_fc_entails(Fig[7,15], expr('Q')) True """ count = dict([(c, len(conjuncts(c.args[0]))) for c in KB.clauses if c.op == '>>']) inferred = DefaultDict(False) agenda = [s for s in KB.clauses if is_prop_symbol(s.op)] while agenda: p = agenda.pop() if p == q: return True if not inferred[p]: inferred[p] = True for c in KB.clauses_with_premise(p): count[c] -= 1 if count[c] == 0: agenda.append(c.args[1]) return False
def dpll_satisfiable(s): """Check satisfiability of a propositional sentence. This differs from the book code in two ways: (1) it returns a model rather than True when it succeeds; this is more useful. (2) The function find_pure_symbol is passed a list of unknown clauses, rather than a list of all clauses and the model; this is more efficient. >>> ppsubst(dpll_satisfiable(A&~B)) {A: True, B: False} >>> dpll_satisfiable(P&~P) False """ clauses = conjuncts(to_cnf(s)) symbols = prop_symbols(s) return dpll(clauses, symbols, {})
def dpll(clauses, symbols, model): "See if the clauses are true in a partial model." unknown_clauses = [] ## clauses with an unknown truth value for c in clauses: val = pl_true(c, model) if val == False: return False if val != True: unknown_clauses.append(c) if not unknown_clauses: return model P, value = find_pure_symbol(symbols, unknown_clauses) if P: return dpll(clauses, removeall(P, symbols), extend(model, P, value)) P, value = find_unit_clause(clauses, model) if P: return dpll(clauses, removeall(P, symbols), extend(model, P, value)) P, symbols = symbols[0], symbols[1:] return (dpll(clauses, symbols, extend(model, P, True)) or dpll(clauses, symbols, extend(model, P, False)))
def find_pure_symbol(symbols, clauses): """Find a symbol and its value if it appears only as a positive literal (or only as a negative) in clauses. >>> find_pure_symbol([A, B, C], [A|~B,~B|~C,C|A]) (A, True) """ for s in symbols: found_pos, found_neg = False, False for c in clauses: if not found_pos and s in disjuncts(c): found_pos = True if not found_neg and ~s in disjuncts(c): found_neg = True if found_pos != found_neg: return s, found_pos return None, None
def find_unit_clause(clauses, model): """Find a forced assignment if possible from a clause with only 1 variable not bound in the model. >>> find_unit_clause([A|B|C, B|~C, ~A|~B], {A:True}) (B, False) """ for clause in clauses: P, value = unit_clause_assign(clause, model) if P: return P, value return None, None
def unit_clause_assign(clause, model): """Return a single variable/value pair that makes clause true in the model, if possible. >>> unit_clause_assign(A|B|C, {A:True}) (None, None) >>> unit_clause_assign(B|~C, {A:True}) (None, None) >>> unit_clause_assign(~A|~B, {A:True}) (B, False) """ P, value = None, None for literal in disjuncts(clause): sym, positive = inspect_literal(literal) if sym in model: if model[sym] == positive: return None, None # clause already True elif P: return None, None # more than 1 unbound variable else: P, value = sym, positive return P, value
def SAT_plan(init, transition, goal, t_max, SAT_solver=dpll_satisfiable): "[Fig. 7.22]" for t in range(t_max): cnf = translate_to_SAT(init, transition, goal, t) model = SAT_solver(cnf) if model is not False: return extract_solution(model) return None
def unify(x, y, s): """Unify expressions x,y with substitution s; return a substitution that would make x,y equal, or None if x,y can not unify. x and y can be variables (e.g. Expr('x')), constants, lists, or Exprs. [Fig. 9.1] >>> ppsubst(unify(x + y, y + C, {})) {x: y, y: C} """ if s is None: return None elif x == y: return s elif is_variable(x): return unify_var(x, y, s) elif is_variable(y): return unify_var(y, x, s) elif isinstance(x, Expr) and isinstance(y, Expr): return unify(x.args, y.args, unify(x.op, y.op, s)) elif isinstance(x, str) or isinstance(y, str): return None elif issequence(x) and issequence(y) and len(x) == len(y): if not x: return s return unify(x[1:], y[1:], unify(x[0], y[0], s)) else: return None
def is_variable(x): "A variable is an Expr with no args and a lowercase symbol as the op." return isinstance(x, Expr) and not x.args and is_var_symbol(x.op)
def occur_check(var, x, s): """Return true if variable var occurs anywhere in x (or in subst(s, x), if s has a binding for x).""" if var == x: return True elif is_variable(x) and x in s: return occur_check(var, s[x], s) elif isinstance(x, Expr): return (occur_check(var, x.op, s) or occur_check(var, x.args, s)) elif isinstance(x, (list, tuple)): return some(lambda element: occur_check(var, element, s), x) else: return False
def extend(s, var, val): """Copy the substitution s and extend it by setting var to val; return copy. >>> ppsubst(extend({x: 1}, y, 2)) {x: 1, y: 2} """ s2 = s.copy() s2[var] = val return s2
def subst(s, x): """Substitute the substitution s into the expression x. >>> subst({x: 42, y:0}, F(x) + y) (F(42) + 0) """ if isinstance(x, list): return [subst(s, xi) for xi in x] elif isinstance(x, tuple): return tuple([subst(s, xi) for xi in x]) elif not isinstance(x, Expr): return x elif is_var_symbol(x.op): return s.get(x, x) else: return Expr(x.op, *[subst(s, arg) for arg in x.args])
def fol_fc_ask(KB, alpha): """Inefficient forward chaining for first-order logic. [Fig. 9.3] KB is a FolKB and alpha must be an atomic sentence.""" while True: new = {} for r in KB.clauses: ps, q = parse_definite_clause(standardize_variables(r)) raise NotImplementedError
def standardize_variables(sentence, dic=None): """Replace all the variables in sentence with new variables. >>> e = expr('F(a, b, c) & G(c, A, 23)') >>> len(variables(standardize_variables(e))) 3 >>> variables(e).intersection(variables(standardize_variables(e))) set([]) >>> is_variable(standardize_variables(expr('x'))) True """ if dic is None: dic = {} if not isinstance(sentence, Expr): return sentence elif is_var_symbol(sentence.op): if sentence in dic: return dic[sentence] else: v = Expr('v_%d' % standardize_variables.counter.next()) dic[sentence] = v return v else: return Expr(sentence.op, *[standardize_variables(a, dic) for a in sentence.args])
def diff(y, x): """Return the symbolic derivative, dy/dx, as an Expr. However, you probably want to simplify the results with simp. >>> diff(x * x, x) ((x * 1) + (x * 1)) >>> simp(diff(x * x, x)) (2 * x) """ if y == x: return ONE elif not y.args: return ZERO else: u, op, v = y.args[0], y.op, y.args[-1] if op == '+': return diff(u, x) + diff(v, x) elif op == '-' and len(args) == 1: return -diff(u, x) elif op == '-': return diff(u, x) - diff(v, x) elif op == '*': return u * diff(v, x) + v * diff(u, x) elif op == '/': return (v*diff(u, x) - u*diff(v, x)) / (v * v) elif op == '**' and isnumber(x.op): return (v * u ** (v - 1) * diff(u, x)) elif op == '**': return (v * u ** (v - 1) * diff(u, x) + u ** v * Expr('log')(u) * diff(v, x)) elif op == 'log': return diff(u, x) / u else: raise ValueError("Unknown op: %s in diff(%s, %s)" % (op, y, x))
def pretty_dict(d): """Return dictionary d's repr but with the items sorted. >>> pretty_dict({'m': 'M', 'a': 'A', 'r': 'R', 'k': 'K'}) "{'a': 'A', 'k': 'K', 'm': 'M', 'r': 'R'}" >>> pretty_dict({z: C, y: B, x: A}) '{x: A, y: B, z: C}' """ return '{%s}' % ', '.join('%r: %r' % (k, v) for k, v in sorted(d.items(), key=repr))
def retract(self, sentence): "Remove the sentence's clauses from the KB." for c in conjuncts(to_cnf(sentence)): if c in self.clauses: self.clauses.remove(c)
def clauses_with_premise(self, p): """Return a list of the clauses in KB that have p in their premise. This could be cached away for O(1) speed, but we'll recompute it.""" return [c for c in self.clauses if c.op == '>>' and p in conjuncts(c.args[0])]
def refresh(self): """ Updates the cache with setting values from the database. """ # `values_list('name', 'value')` doesn't work because `value` is not a # setting (base class) field, it's a setting value (subclass) field. So # we have to get real instances. args = [(obj.name, obj.value) for obj in self.queryset.all()] super(SettingDict, self).update(args) self.empty_cache = False
def minimax_decision(state, game): """Given a state in a game, calculate the best move by searching forward all the way to the terminal states. [Fig. 5.3]""" player = game.to_move(state) def max_value(state): if game.terminal_test(state): return game.utility(state, player) v = -infinity for a in game.actions(state): v = max(v, min_value(game.result(state, a))) return v def min_value(state): if game.terminal_test(state): return game.utility(state, player) v = infinity for a in game.actions(state): v = min(v, max_value(game.result(state, a))) return v # Body of minimax_decision: return argmax(game.actions(state), lambda a: min_value(game.result(state, a)))
def alphabeta_search(state, game, d=4, cutoff_test=None, eval_fn=None): """Search game to determine best action; use alpha-beta pruning. This version cuts off search and uses an evaluation function.""" player = game.to_move(state) def max_value(state, alpha, beta, depth): if cutoff_test(state, depth): return eval_fn(state) v = -infinity for a in game.actions(state): v = max(v, min_value(game.result(state, a), alpha, beta, depth+1)) if v >= beta: return v alpha = max(alpha, v) return v def min_value(state, alpha, beta, depth): if cutoff_test(state, depth): return eval_fn(state) v = infinity for a in game.actions(state): v = min(v, max_value(game.result(state, a), alpha, beta, depth+1)) if v <= alpha: return v beta = min(beta, v) return v # Body of alphabeta_search starts here: # The default test cuts off at depth d or at a terminal state cutoff_test = (cutoff_test or (lambda state,depth: depth>d or game.terminal_test(state))) eval_fn = eval_fn or (lambda state: game.utility(state, player)) return argmax(game.actions(state), lambda a: min_value(game.result(state, a), -infinity, infinity, 0))
def play_game(game, *players): """Play an n-person, move-alternating game. >>> play_game(Fig52Game(), alphabeta_player, alphabeta_player) 3 """ state = game.initial while True: for player in players: move = player(game, state) state = game.result(state, move) if game.terminal_test(state): return game.utility(state, game.to_move(game.initial))
def utility(self, state, player): "Return the value to player; 1 for win, -1 for loss, 0 otherwise." return if_(player == 'X', state.utility, -state.utility)
def compute_utility(self, board, move, player): "If X wins with this move, return 1; if O return -1; else return 0." if (self.k_in_row(board, move, player, (0, 1)) or self.k_in_row(board, move, player, (1, 0)) or self.k_in_row(board, move, player, (1, -1)) or self.k_in_row(board, move, player, (1, 1))): return if_(player == 'X', +1, -1) else: return 0
def k_in_row(self, board, move, player, (delta_x, delta_y)): "Return true if there is a line through move on board for player." x, y = move n = 0 # n is number of moves in row while board.get((x, y)) == player: n += 1 x, y = x + delta_x, y + delta_y x, y = move while board.get((x, y)) == player: n += 1 x, y = x - delta_x, y - delta_y n -= 1 # Because we counted move itself twice return n >= self.k
def update(x, **entries): """Update a dict, or an object with slots, according to `entries` dict. >>> update({'a': 1}, a=10, b=20) {'a': 10, 'b': 20} >>> update(Struct(a=1), a=10, b=20) Struct(a=10, b=20) """ if isinstance(x, dict): x.update(entries) else: x.__dict__.update(entries) return x
def removeall(item, seq): """Return a copy of seq (or string) with all occurences of item removed. >>> removeall(3, [1, 2, 3, 3, 2, 1, 3]) [1, 2, 2, 1] >>> removeall(4, [1, 2, 3]) [1, 2, 3] """ if isinstance(seq, str): return seq.replace(item, '') else: return [x for x in seq if x != item]
def count_if(predicate, seq): """Count the number of elements of seq for which the predicate is true. >>> count_if(callable, [42, None, max, min]) 2 """ f = lambda count, x: count + (not not predicate(x)) return reduce(f, seq, 0)
def some(predicate, seq): """If some element x of seq satisfies predicate(x), return predicate(x). >>> some(callable, [min, 3]) 1 >>> some(callable, [2, 3]) 0 """ for x in seq: px = predicate(x) if px: return px return False
def argmin(seq, fn): """Return an element with lowest fn(seq[i]) score; tie goes to first one. >>> argmin(['one', 'to', 'three'], len) 'to' """ best = seq[0]; best_score = fn(best) for x in seq: x_score = fn(x) if x_score < best_score: best, best_score = x, x_score return best
def argmin_list(seq, fn): """Return a list of elements of seq[i] with the lowest fn(seq[i]) scores. >>> argmin_list(['one', 'to', 'three', 'or'], len) ['to', 'or'] """ best_score, best = fn(seq[0]), [] for x in seq: x_score = fn(x) if x_score < best_score: best, best_score = [x], x_score elif x_score == best_score: best.append(x) return best
def argmin_random_tie(seq, fn): """Return an element with lowest fn(seq[i]) score; break ties at random. Thus, for all s,f: argmin_random_tie(s, f) in argmin_list(s, f)""" best_score = fn(seq[0]); n = 0 for x in seq: x_score = fn(x) if x_score < best_score: best, best_score = x, x_score; n = 1 elif x_score == best_score: n += 1 if random.randrange(n) == 0: best = x return best
def histogram(values, mode=0, bin_function=None): """Return a list of (value, count) pairs, summarizing the input values. Sorted by increasing value, or if mode=1, by decreasing count. If bin_function is given, map it over values first.""" if bin_function: values = map(bin_function, values) bins = {} for val in values: bins[val] = bins.get(val, 0) + 1 if mode: return sorted(bins.items(), key=lambda x: (x[1],x[0]), reverse=True) else: return sorted(bins.items())
def median(values): """Return the middle value, when the values are sorted. If there are an odd number of elements, try to average the middle two. If they can't be averaged (e.g. they are strings), choose one at random. >>> median([10, 100, 11]) 11 >>> median([1, 2, 3, 4]) 2.5 """ n = len(values) values = sorted(values) if n % 2 == 1: return values[n/2] else: middle2 = values[(n/2)-1:(n/2)+1] try: return mean(middle2) except TypeError: return random.choice(middle2)
def dotproduct(X, Y): """Return the sum of the element-wise product of vectors x and y. >>> dotproduct([1, 2, 3], [1000, 100, 10]) 1230 """ return sum([x * y for x, y in zip(X, Y)])
def weighted_sample_with_replacement(seq, weights, n): """Pick n samples from seq at random, with replacement, with the probability of each element in proportion to its corresponding weight.""" sample = weighted_sampler(seq, weights) return [sample() for s in range(n)]
def weighted_sampler(seq, weights): "Return a random-sample function that picks from seq weighted by weights." totals = [] for w in weights: totals.append(w + totals[-1] if totals else w) return lambda: seq[bisect.bisect(totals, random.uniform(0, totals[-1]))]
def num_or_str(x): """The argument is a string; convert to a number if possible, or strip it. >>> num_or_str('42') 42 >>> num_or_str(' 42x ') '42x' """ if isnumber(x): return x try: return int(x) except ValueError: try: return float(x) except ValueError: return str(x).strip()
def normalize(numbers): """Multiply each number by a constant such that the sum is 1.0 >>> normalize([1,2,1]) [0.25, 0.5, 0.25] """ total = float(sum(numbers)) return [n / total for n in numbers]
def distance((ax, ay), (bx, by)): "The distance between two (x, y) points." return math.hypot((ax - bx), (ay - by))
def vector_clip(vector, lowest, highest): """Return vector, except if any element is less than the corresponding value of lowest or more than the corresponding value of highest, clip to those values. >>> vector_clip((-1, 10), (0, 0), (9, 9)) (0, 9) """ return type(vector)(map(clip, vector, lowest, highest))
def printf(format, *args): """Format args with the first argument as format string, and write. Return the last arg, or format itself if there are no args.""" sys.stdout.write(str(format) % args) return if_(args, lambda: args[-1], lambda: format)
def memoize(fn, slot=None): """Memoize fn: make it remember the computed value for any argument list. If slot is specified, store result in that slot of first argument. If slot is false, store results in a dictionary.""" if slot: def memoized_fn(obj, *args): if hasattr(obj, slot): return getattr(obj, slot) else: val = fn(obj, *args) setattr(obj, slot, val) return val else: def memoized_fn(*args): if not memoized_fn.cache.has_key(args): memoized_fn.cache[args] = fn(*args) return memoized_fn.cache[args] memoized_fn.cache = {} return memoized_fn
def if_(test, result, alternative): """Like C++ and Java's (test ? result : alternative), except both result and alternative are always evaluated. However, if either evaluates to a function, it is applied to the empty arglist, so you can delay execution by putting it in a lambda. >>> if_(2 + 2 == 4, 'ok', lambda: expensive_computation()) 'ok' """ if test: if callable(result): return result() return result else: if callable(alternative): return alternative() return alternative
def name(object): "Try to find some reasonable name for the object." return (getattr(object, 'name', 0) or getattr(object, '__name__', 0) or getattr(getattr(object, '__class__', 0), '__name__', 0) or str(object))
def print_table(table, header=None, sep=' ', numfmt='%g'): """Print a list of lists as a table, so that columns line up nicely. header, if specified, will be printed as the first row. numfmt is the format for all numbers; you might want e.g. '%6.2f'. (If you want different formats in different columns, don't use print_table.) sep is the separator between columns.""" justs = [if_(isnumber(x), 'rjust', 'ljust') for x in table[0]] if header: table = [header] + table table = [[if_(isnumber(x), lambda: numfmt % x, lambda: x) for x in row] for row in table] maxlen = lambda seq: max(map(len, seq)) sizes = map(maxlen, zip(*[map(str, row) for row in table])) for row in table: print sep.join(getattr(str(x), j)(size) for (j, size, x) in zip(justs, sizes, row))
def AIMAFile(components, mode='r'): "Open a file based at the AIMA root directory." import utils dir = os.path.dirname(utils.__file__) return open(apply(os.path.join, [dir] + components), mode)
def parse_csv(input, delim=','): r"""Input is a string consisting of lines, each line has comma-delimited fields. Convert this into a list of lists. Blank lines are skipped. Fields that look like numbers are converted to numbers. The delim defaults to ',' but '\t' and None are also reasonable values. >>> parse_csv('1, 2, 3 \n 0, 2, na') [[1, 2, 3], [0, 2, 'na']] """ lines = [line for line in input.splitlines() if line.strip()] return [map(num_or_str, line.split(delim)) for line in lines]
def PluralityLearner(dataset): """A very dumb algorithm: always pick the result that was most popular in the training data. Makes a baseline for comparison.""" most_popular = mode([e[dataset.target] for e in dataset.examples]) def predict(example): "Always return same result: the most popular from the training set." return most_popular return predict
def NaiveBayesLearner(dataset): """Just count how many times each value of each input attribute occurs, conditional on the target value. Count the different target values too.""" targetvals = dataset.values[dataset.target] target_dist = CountingProbDist(targetvals) attr_dists = dict(((gv, attr), CountingProbDist(dataset.values[attr])) for gv in targetvals for attr in dataset.inputs) for example in dataset.examples: targetval = example[dataset.target] target_dist.add(targetval) for attr in dataset.inputs: attr_dists[targetval, attr].add(example[attr]) def predict(example): """Predict the target value for example. Consider each possible value, and pick the most likely by looking at each attribute independently.""" def class_probability(targetval): return (target_dist[targetval] * product(attr_dists[targetval, attr][example[attr]] for attr in dataset.inputs)) return argmax(targetvals, class_probability) return predict
def NearestNeighborLearner(dataset, k=1): "k-NearestNeighbor: the k nearest neighbors vote." def predict(example): "Find the k closest, and have them vote for the best." best = heapq.nsmallest(k, ((dataset.distance(e, example), e) for e in dataset.examples)) return mode(e[dataset.target] for (d, e) in best) return predict
def DecisionTreeLearner(dataset): "[Fig. 18.5]" target, values = dataset.target, dataset.values def decision_tree_learning(examples, attrs, parent_examples=()): if len(examples) == 0: return plurality_value(parent_examples) elif all_same_class(examples): return DecisionLeaf(examples[0][target]) elif len(attrs) == 0: return plurality_value(examples) else: A = choose_attribute(attrs, examples) tree = DecisionFork(A, dataset.attrnames[A]) for (v_k, exs) in split_by(A, examples): subtree = decision_tree_learning( exs, removeall(A, attrs), examples) tree.add(v_k, subtree) return tree def plurality_value(examples): """Return the most popular target value for this set of examples. (If target is binary, this is the majority; otherwise plurality.)""" popular = argmax_random_tie(values[target], lambda v: count(target, v, examples)) return DecisionLeaf(popular) def count(attr, val, examples): return count_if(lambda e: e[attr] == val, examples) def all_same_class(examples): "Are all these examples in the same target class?" class0 = examples[0][target] return all(e[target] == class0 for e in examples) def choose_attribute(attrs, examples): "Choose the attribute with the highest information gain." return argmax_random_tie(attrs, lambda a: information_gain(a, examples)) def information_gain(attr, examples): "Return the expected reduction in entropy from splitting by attr." def I(examples): return information_content([count(target, v, examples) for v in values[target]]) N = float(len(examples)) remainder = sum((len(examples_i) / N) * I(examples_i) for (v, examples_i) in split_by(attr, examples)) return I(examples) - remainder def split_by(attr, examples): "Return a list of (val, examples) pairs for each val of attr." return [(v, [e for e in examples if e[attr] == v]) for v in values[attr]] return decision_tree_learning(dataset.examples, dataset.inputs)
def information_content(values): "Number of bits to represent the probability distribution in values." probabilities = normalize(removeall(0, values)) return sum(-p * log2(p) for p in probabilities)
def DecisionListLearner(dataset): """[Fig. 18.11]""" def decision_list_learning(examples): if not examples: return [(True, False)] t, o, examples_t = find_examples(examples) if not t: raise Failure return [(t, o)] + decision_list_learning(examples - examples_t) def find_examples(examples): """Find a set of examples that all have the same outcome under some test. Return a tuple of the test, outcome, and examples.""" unimplemented() def passes(example, test): "Does the example pass the test?" unimplemented() def predict(example): "Predict the outcome for the first passing test." for test, outcome in predict.decision_list: if passes(example, test): return outcome predict.decision_list = decision_list_learning(set(dataset.examples)) return predict
def NeuralNetLearner(dataset, sizes): """Layered feed-forward network.""" activations = map(lambda n: [0.0 for i in range(n)], sizes) weights = [] def predict(example): unimplemented() return predict
def EnsembleLearner(learners): """Given a list of learning algorithms, have them vote.""" def train(dataset): predictors = [learner(dataset) for learner in learners] def predict(example): return mode(predictor(example) for predictor in predictors) return predict return train
def AdaBoost(L, K): """[Fig. 18.34]""" def train(dataset): examples, target = dataset.examples, dataset.target N = len(examples) epsilon = 1./(2*N) w = [1./N] * N h, z = [], [] for k in range(K): h_k = L(dataset, w) h.append(h_k) error = sum(weight for example, weight in zip(examples, w) if example[target] != h_k(example)) # Avoid divide-by-0 from either 0% or 100% error rates: error = clip(error, epsilon, 1-epsilon) for j, example in enumerate(examples): if example[target] == h_k(example): w[j] *= error / (1. - error) w = normalize(w) z.append(math.log((1. - error) / error)) return WeightedMajority(h, z) return train
def WeightedMajority(predictors, weights): "Return a predictor that takes a weighted vote." def predict(example): return weighted_mode((predictor(example) for predictor in predictors), weights) return predict
def weighted_mode(values, weights): """Return the value with the greatest total weight. >>> weighted_mode('abbaa', [1,2,3,1,2]) 'b'""" totals = defaultdict(int) for v, w in zip(values, weights): totals[v] += w return max(totals.keys(), key=totals.get)
def WeightedLearner(unweighted_learner): """Given a learner that takes just an unweighted dataset, return one that takes also a weight for each example. [p. 749 footnote 14]""" def train(dataset, weights): return unweighted_learner(replicated_dataset(dataset, weights)) return train
def replicated_dataset(dataset, weights, n=None): "Copy dataset, replicating each example in proportion to its weight." n = n or len(dataset.examples) result = copy.copy(dataset) result.examples = weighted_replicate(dataset.examples, weights, n) return result
def weighted_replicate(seq, weights, n): """Return n selections from seq, with the count of each element of seq proportional to the corresponding weight (filling in fractions randomly). >>> weighted_replicate('ABC', [1,2,1], 4) ['A', 'B', 'B', 'C']""" assert len(seq) == len(weights) weights = normalize(weights) wholes = [int(w*n) for w in weights] fractions = [(w*n) % 1 for w in weights] return (flatten([x] * nx for x, nx in zip(seq, wholes)) + weighted_sample_with_replacement(seq, fractions, n - sum(wholes)))
def cross_validation(learner, dataset, k=10, trials=1): """Do k-fold cross_validate and return their mean. That is, keep out 1/k of the examples for testing on each of k runs. Shuffle the examples first; If trials>1, average over several shuffles.""" if k is None: k = len(dataset.examples) if trials > 1: return mean([cross_validation(learner, dataset, k, trials=1) for t in range(trials)]) else: n = len(dataset.examples) random.shuffle(dataset.examples) return mean([train_and_test(learner, dataset, i*(n/k), (i+1)*(n/k)) for i in range(k)])
def leave1out(learner, dataset): "Leave one out cross-validation over the dataset." return cross_validation(learner, dataset, k=len(dataset.examples))
def SyntheticRestaurant(n=20): "Generate a DataSet with n examples." def gen(): example = map(random.choice, restaurant.values) example[restaurant.target] = Fig[18,2](example) return example return RestaurantDataSet([gen() for i in range(n)])
def Majority(k, n): """Return a DataSet with n k-bit examples of the majority problem: k random bits followed by a 1 if more than half the bits are 1, else 0.""" examples = [] for i in range(n): bits = [random.choice([0, 1]) for i in range(k)] bits.append(int(sum(bits) > k/2)) examples.append(bits) return DataSet(name="majority", examples=examples)
def ContinuousXor(n): "2 inputs are chosen uniformly from (0.0 .. 2.0]; output is xor of ints." examples = [] for i in range(n): x, y = [random.uniform(0.0, 2.0) for i in '12'] examples.append([x, y, int(x) != int(y)]) return DataSet(name="continuous xor", examples=examples)
def compare(algorithms=[PluralityLearner, NaiveBayesLearner, NearestNeighborLearner, DecisionTreeLearner], datasets=[iris, orings, zoo, restaurant, SyntheticRestaurant(20), Majority(7, 100), Parity(7, 100), Xor(100)], k=10, trials=1): """Compare various learners on various datasets using cross-validation. Print results as a table.""" print_table([[a.__name__.replace('Learner','')] + [cross_validation(a, d, k, trials) for d in datasets] for a in algorithms], header=[''] + [d.name[0:7] for d in datasets], numfmt='%.2f')
def setproblem(self, target, inputs=None, exclude=()): """Set (or change) the target and/or inputs. This way, one DataSet can be used multiple ways. inputs, if specified, is a list of attributes, or specify exclude as a list of attributes to not use in inputs. Attributes can be -n .. n, or an attrname. Also computes the list of possible values, if that wasn't done yet.""" self.target = self.attrnum(target) exclude = map(self.attrnum, exclude) if inputs: self.inputs = removeall(self.target, inputs) else: self.inputs = [a for a in self.attrs if a != self.target and a not in exclude] if not self.values: self.values = map(unique, zip(*self.examples)) self.check_me()
def check_me(self): "Check that my fields make sense." assert len(self.attrnames) == len(self.attrs) assert self.target in self.attrs assert self.target not in self.inputs assert set(self.inputs).issubset(set(self.attrs)) map(self.check_example, self.examples)
def add_example(self, example): "Add an example to the list of examples, checking it first." self.check_example(example) self.examples.append(example)
def check_example(self, example): "Raise ValueError if example has any invalid values." if self.values: for a in self.attrs: if example[a] not in self.values[a]: raise ValueError('Bad value %s for attribute %s in %s' % (example[a], self.attrnames[a], example))
def attrnum(self, attr): "Returns the number used for attr, which can be a name, or -n .. n-1." if attr < 0: return len(self.attrs) + attr elif isinstance(attr, str): return self.attrnames.index(attr) else: return attr
def sanitize(self, example): "Return a copy of example, with non-input attributes replaced by None." return [attr_i if i in self.inputs else None for i, attr_i in enumerate(example)]
def add(self, o): "Add an observation o to the distribution." self.smooth_for(o) self.dictionary[o] += 1 self.n_obs += 1 self.sampler = None
def smooth_for(self, o): """Include o among the possible observations, whether or not it's been observed yet.""" if o not in self.dictionary: self.dictionary[o] = self.default self.n_obs += self.default self.sampler = None
def top(self, n): "Return (count, obs) tuples for the n most frequent observations." return heapq.nlargest(n, [(v, k) for (k, v) in self.dictionary.items()])
def sample(self): "Return a random sample from the distribution." if self.sampler is None: self.sampler = weighted_sampler(self.dictionary.keys(), self.dictionary.values()) return self.sampler()
def AC3(csp, queue=None, removals=None): """[Fig. 6.3]""" if queue is None: queue = [(Xi, Xk) for Xi in csp.vars for Xk in csp.neighbors[Xi]] csp.support_pruning() while queue: (Xi, Xj) = queue.pop() if revise(csp, Xi, Xj, removals): if not csp.curr_domains[Xi]: return False for Xk in csp.neighbors[Xi]: if Xk != Xi: queue.append((Xk, Xi)) return True
def revise(csp, Xi, Xj, removals): "Return true if we remove a value." revised = False for x in csp.curr_domains[Xi][:]: # If Xi=x conflicts with Xj=y for every possible y, eliminate Xi=x if every(lambda y: not csp.constraints(Xi, x, Xj, y), csp.curr_domains[Xj]): csp.prune(Xi, x, removals) revised = True return revised
def mrv(assignment, csp): "Minimum-remaining-values heuristic." return argmin_random_tie( [v for v in csp.vars if v not in assignment], lambda var: num_legal_values(csp, var, assignment))
def lcv(var, assignment, csp): "Least-constraining-values heuristic." return sorted(csp.choices(var), key=lambda val: csp.nconflicts(var, val, assignment))
def forward_checking(csp, var, value, assignment, removals): "Prune neighbor values inconsistent with var=value." for B in csp.neighbors[var]: if B not in assignment: for b in csp.curr_domains[B][:]: if not csp.constraints(var, value, B, b): csp.prune(B, b, removals) if not csp.curr_domains[B]: return False return True
def mac(csp, var, value, assignment, removals): "Maintain arc consistency." return AC3(csp, [(X, var) for X in csp.neighbors[var]], removals)
def backtracking_search(csp, select_unassigned_variable = first_unassigned_variable, order_domain_values = unordered_domain_values, inference = no_inference): """[Fig. 6.5] >>> backtracking_search(australia) is not None True >>> backtracking_search(australia, select_unassigned_variable=mrv) is not None True >>> backtracking_search(australia, order_domain_values=lcv) is not None True >>> backtracking_search(australia, select_unassigned_variable=mrv, order_domain_values=lcv) is not None True >>> backtracking_search(australia, inference=forward_checking) is not None True >>> backtracking_search(australia, inference=mac) is not None True >>> backtracking_search(usa, select_unassigned_variable=mrv, order_domain_values=lcv, inference=mac) is not None True """ def backtrack(assignment): if len(assignment) == len(csp.vars): return assignment var = select_unassigned_variable(assignment, csp) for value in order_domain_values(var, assignment, csp): if 0 == csp.nconflicts(var, value, assignment): csp.assign(var, value, assignment) removals = csp.suppose(var, value) if inference(csp, var, value, assignment, removals): result = backtrack(assignment) if result is not None: return result csp.restore(removals) csp.unassign(var, assignment) return None result = backtrack({}) assert result is None or csp.goal_test(result) return result
def min_conflicts(csp, max_steps=100000): """Solve a CSP by stochastic hillclimbing on the number of conflicts.""" # Generate a complete assignment for all vars (probably with conflicts) csp.current = current = {} for var in csp.vars: val = min_conflicts_value(csp, var, current) csp.assign(var, val, current) # Now repeatedly choose a random conflicted variable and change it for i in range(max_steps): conflicted = csp.conflicted_vars(current) if not conflicted: return current var = random.choice(conflicted) val = min_conflicts_value(csp, var, current) csp.assign(var, val, current) return None
def min_conflicts_value(csp, var, current): """Return the value that will give var the least number of conflicts. If there is a tie, choose at random.""" return argmin_random_tie(csp.domains[var], lambda val: csp.nconflicts(var, val, current))
def tree_csp_solver(csp): "[Fig. 6.11]" n = len(csp.vars) assignment = {} root = csp.vars[0] X, parent = topological_sort(csp.vars, root) for Xj in reversed(X): if not make_arc_consistent(parent[Xj], Xj, csp): return None for Xi in X: if not csp.curr_domains[Xi]: return None assignment[Xi] = csp.curr_domains[Xi][0] return assignment
def MapColoringCSP(colors, neighbors): """Make a CSP for the problem of coloring a map with different colors for any two adjacent regions. Arguments are a list of colors, and a dict of {region: [neighbor,...]} entries. This dict may also be specified as a string of the form defined by parse_neighbors.""" if isinstance(neighbors, str): neighbors = parse_neighbors(neighbors) return CSP(neighbors.keys(), UniversalDict(colors), neighbors, different_values_constraint)
def parse_neighbors(neighbors, vars=[]): """Convert a string of the form 'X: Y Z; Y: Z' into a dict mapping regions to neighbors. The syntax is a region name followed by a ':' followed by zero or more region names, followed by ';', repeated for each region name. If you say 'X: Y' you don't need 'Y: X'. >>> parse_neighbors('X: Y Z; Y: Z') {'Y': ['X', 'Z'], 'X': ['Y', 'Z'], 'Z': ['X', 'Y']} """ dict = DefaultDict([]) for var in vars: dict[var] = [] specs = [spec.split(':') for spec in neighbors.split(';')] for (A, Aneighbors) in specs: A = A.strip() dict.setdefault(A, []) for B in Aneighbors.split(): dict[A].append(B) dict[B].append(A) return dict
def queen_constraint(A, a, B, b): """Constraint is satisfied (true) if A, B are really the same variable, or if they are not in the same row, down diagonal, or up diagonal.""" return A == B or (a != b and A + a != B + b and A - a != B - b)
def Zebra(): "Return an instance of the Zebra Puzzle." Colors = 'Red Yellow Blue Green Ivory'.split() Pets = 'Dog Fox Snails Horse Zebra'.split() Drinks = 'OJ Tea Coffee Milk Water'.split() Countries = 'Englishman Spaniard Norwegian Ukranian Japanese'.split() Smokes = 'Kools Chesterfields Winston LuckyStrike Parliaments'.split() vars = Colors + Pets + Drinks + Countries + Smokes domains = {} for var in vars: domains[var] = range(1, 6) domains['Norwegian'] = [1] domains['Milk'] = [3] neighbors = parse_neighbors("""Englishman: Red; Spaniard: Dog; Kools: Yellow; Chesterfields: Fox; Norwegian: Blue; Winston: Snails; LuckyStrike: OJ; Ukranian: Tea; Japanese: Parliaments; Kools: Horse; Coffee: Green; Green: Ivory""", vars) for type in [Colors, Pets, Drinks, Countries, Smokes]: for A in type: for B in type: if A != B: if B not in neighbors[A]: neighbors[A].append(B) if A not in neighbors[B]: neighbors[B].append(A) def zebra_constraint(A, a, B, b, recurse=0): same = (a == b) next_to = abs(a - b) == 1 if A == 'Englishman' and B == 'Red': return same if A == 'Spaniard' and B == 'Dog': return same if A == 'Chesterfields' and B == 'Fox': return next_to if A == 'Norwegian' and B == 'Blue': return next_to if A == 'Kools' and B == 'Yellow': return same if A == 'Winston' and B == 'Snails': return same if A == 'LuckyStrike' and B == 'OJ': return same if A == 'Ukranian' and B == 'Tea': return same if A == 'Japanese' and B == 'Parliaments': return same if A == 'Kools' and B == 'Horse': return next_to if A == 'Coffee' and B == 'Green': return same if A == 'Green' and B == 'Ivory': return (a - 1) == b if recurse == 0: return zebra_constraint(B, b, A, a, 1) if ((A in Colors and B in Colors) or (A in Pets and B in Pets) or (A in Drinks and B in Drinks) or (A in Countries and B in Countries) or (A in Smokes and B in Smokes)): return not same raise 'error' return CSP(vars, domains, neighbors, zebra_constraint)
def assign(self, var, val, assignment): "Add {var: val} to assignment; Discard the old value if any." assignment[var] = val self.nassigns += 1
def nconflicts(self, var, val, assignment): "Return the number of conflicts var=val has with other variables." # Subclasses may implement this more efficiently def conflict(var2): return (var2 in assignment and not self.constraints(var, val, var2, assignment[var2])) return count_if(conflict, self.neighbors[var])
def actions(self, state): """Return a list of applicable actions: nonconflicting assignments to an unassigned variable.""" if len(state) == len(self.vars): return [] else: assignment = dict(state) var = find_if(lambda v: v not in assignment, self.vars) return [(var, val) for val in self.domains[var] if self.nconflicts(var, val, assignment) == 0]
def support_pruning(self): """Make sure we can prune values from domains. (We want to pay for this only if we use it.)""" if self.curr_domains is None: self.curr_domains = dict((v, list(self.domains[v])) for v in self.vars)