Search is not available for this dataset
text
stringlengths
75
104k
def read_fakelc(fakelcfile): ''' This just reads a pickled fake LC. Parameters ---------- fakelcfile : str The fake LC file to read. Returns ------- dict This returns an lcdict. ''' try: with open(fakelcfile,'rb') as infd: lcdict = pickle.load(infd) except UnicodeDecodeError: with open(fakelcfile,'rb') as infd: lcdict = pickle.load(infd, encoding='latin1') return lcdict
def get_varfeatures(simbasedir, mindet=1000, nworkers=None): '''This runs `lcproc.lcvfeatures.parallel_varfeatures` on fake LCs in `simbasedir`. Parameters ---------- simbasedir : str The directory containing the fake LCs to process. mindet : int The minimum number of detections needed to accept an LC and process it. nworkers : int or None The number of parallel workers to use when extracting variability features from the input light curves. Returns ------- str The path to the `varfeatures` pickle created after running the `lcproc.lcvfeatures.parallel_varfeatures` function. ''' # get the info from the simbasedir with open(os.path.join(simbasedir, 'fakelcs-info.pkl'),'rb') as infd: siminfo = pickle.load(infd) lcfpaths = siminfo['lcfpath'] varfeaturedir = os.path.join(simbasedir,'varfeatures') # get the column defs for the fakelcs timecols = siminfo['timecols'] magcols = siminfo['magcols'] errcols = siminfo['errcols'] # get the column defs for the fakelcs timecols = siminfo['timecols'] magcols = siminfo['magcols'] errcols = siminfo['errcols'] # register the fakelc pklc as a custom lcproc format # now we should be able to use all lcproc functions correctly fakelc_formatkey = 'fake-%s' % siminfo['lcformat'] lcproc.register_lcformat( fakelc_formatkey, '*-fakelc.pkl', timecols, magcols, errcols, 'astrobase.lcproc', '_read_pklc', magsarefluxes=siminfo['magsarefluxes'] ) # now we can use lcproc.parallel_varfeatures directly varinfo = lcvfeatures.parallel_varfeatures(lcfpaths, varfeaturedir, lcformat=fakelc_formatkey, mindet=mindet, nworkers=nworkers) with open(os.path.join(simbasedir,'fakelc-varfeatures.pkl'),'wb') as outfd: pickle.dump(varinfo, outfd, pickle.HIGHEST_PROTOCOL) return os.path.join(simbasedir,'fakelc-varfeatures.pkl')
def precision(ntp, nfp): ''' This calculates precision. https://en.wikipedia.org/wiki/Precision_and_recall Parameters ---------- ntp : int The number of true positives. nfp : int The number of false positives. Returns ------- float The precision calculated using `ntp/(ntp + nfp)`. ''' if (ntp+nfp) > 0: return ntp/(ntp+nfp) else: return np.nan
def recall(ntp, nfn): ''' This calculates recall. https://en.wikipedia.org/wiki/Precision_and_recall Parameters ---------- ntp : int The number of true positives. nfn : int The number of false negatives. Returns ------- float The precision calculated using `ntp/(ntp + nfn)`. ''' if (ntp+nfn) > 0: return ntp/(ntp+nfn) else: return np.nan
def matthews_correl_coeff(ntp, ntn, nfp, nfn): ''' This calculates the Matthews correlation coefficent. https://en.wikipedia.org/wiki/Matthews_correlation_coefficient Parameters ---------- ntp : int The number of true positives. ntn : int The number of true negatives nfp : int The number of false positives. nfn : int The number of false negatives. Returns ------- float The Matthews correlation coefficient. ''' mcc_top = (ntp*ntn - nfp*nfn) mcc_bot = msqrt((ntp + nfp)*(ntp + nfn)*(ntn + nfp)*(ntn + nfn)) if mcc_bot > 0: return mcc_top/mcc_bot else: return np.nan
def get_recovered_variables_for_magbin(simbasedir, magbinmedian, stetson_stdev_min=2.0, inveta_stdev_min=2.0, iqr_stdev_min=2.0, statsonly=True): '''This runs variability selection for the given magbinmedian. To generate a full recovery matrix over all magnitude bins, run this function for each magbin over the specified stetson_stdev_min and inveta_stdev_min grid. Parameters ---------- simbasedir : str The input directory of fake LCs. magbinmedian : float The magbin to run the variable recovery for. This is an item from the dict from `simbasedir/fakelcs-info.pkl: `fakelcinfo['magrms'][magcol]` list for each magcol and designates which magbin to get the recovery stats for. stetson_stdev_min : float The minimum sigma above the trend in the Stetson J variability index distribution for this magbin to use to consider objects as variable. inveta_stdev_min : float The minimum sigma above the trend in the 1/eta variability index distribution for this magbin to use to consider objects as variable. iqr_stdev_min : float The minimum sigma above the trend in the IQR variability index distribution for this magbin to use to consider objects as variable. statsonly : bool If this is True, only the final stats will be returned. If False, the full arrays used to generate the stats will also be returned. Returns ------- dict The returned dict contains statistics for this magbin and if requested, the full arrays used to calculate the statistics. ''' # get the info from the simbasedir with open(os.path.join(simbasedir, 'fakelcs-info.pkl'),'rb') as infd: siminfo = pickle.load(infd) objectids = siminfo['objectid'] varflags = siminfo['isvariable'] sdssr = siminfo['sdssr'] # get the column defs for the fakelcs timecols = siminfo['timecols'] magcols = siminfo['magcols'] errcols = siminfo['errcols'] # register the fakelc pklc as a custom lcproc format # now we should be able to use all lcproc functions correctly fakelc_formatkey = 'fake-%s' % siminfo['lcformat'] lcproc.register_lcformat( fakelc_formatkey, '*-fakelc.pkl', timecols, magcols, errcols, 'astrobase.lcproc', '_read_pklc', magsarefluxes=siminfo['magsarefluxes'] ) # make the output directory if it doesn't exit outdir = os.path.join(simbasedir, 'recvar-threshold-pkls') if not os.path.exists(outdir): os.mkdir(outdir) # run the variability search varfeaturedir = os.path.join(simbasedir, 'varfeatures') varthreshinfof = os.path.join( outdir, 'varthresh-magbinmed%.2f-stet%.2f-inveta%.2f.pkl' % (magbinmedian, stetson_stdev_min, inveta_stdev_min) ) varthresh = varthreshold.variability_threshold( varfeaturedir, varthreshinfof, lcformat=fakelc_formatkey, min_stetj_stdev=stetson_stdev_min, min_inveta_stdev=inveta_stdev_min, min_iqr_stdev=iqr_stdev_min, verbose=False ) # get the magbins from the varthresh info magbins = varthresh['magbins'] # get the magbininds magbininds = np.digitize(sdssr, magbins) # bin the objects according to these magbins binned_objectids = [] binned_actualvars = [] binned_actualnotvars = [] # go through all the mag bins and bin up the objectids, actual variables, # and actual not-variables for mbinind, _magi in zip(np.unique(magbininds), range(len(magbins)-1)): thisbinind = np.where(magbininds == mbinind) thisbin_objectids = objectids[thisbinind] thisbin_varflags = varflags[thisbinind] thisbin_actualvars = thisbin_objectids[thisbin_varflags] thisbin_actualnotvars = thisbin_objectids[~thisbin_varflags] binned_objectids.append(thisbin_objectids) binned_actualvars.append(thisbin_actualvars) binned_actualnotvars.append(thisbin_actualnotvars) # this is the output dict recdict = { 'simbasedir':simbasedir, 'timecols':timecols, 'magcols':magcols, 'errcols':errcols, 'magsarefluxes':siminfo['magsarefluxes'], 'stetj_min_stdev':stetson_stdev_min, 'inveta_min_stdev':inveta_stdev_min, 'iqr_min_stdev':iqr_stdev_min, 'magbinmedian':magbinmedian, } # now, for each magcol, find the magbin corresponding to magbinmedian, and # get its stats for magcol in magcols: # this is the index of the matching magnitude bin for the magbinmedian # provided magbinind = np.where( np.array(varthresh[magcol]['binned_sdssr_median']) == magbinmedian ) magbinind = np.asscalar(magbinind[0]) # get the objectids, actual vars and actual notvars in this magbin thisbin_objectids = binned_objectids[magbinind] thisbin_actualvars = binned_actualvars[magbinind] thisbin_actualnotvars = binned_actualnotvars[magbinind] # stetson recovered variables in this magbin stet_recoveredvars = varthresh[magcol][ 'binned_objectids_thresh_stetsonj' ][magbinind] # calculate TP, FP, TN, FN stet_recoverednotvars = np.setdiff1d(thisbin_objectids, stet_recoveredvars) stet_truepositives = np.intersect1d(stet_recoveredvars, thisbin_actualvars) stet_falsepositives = np.intersect1d(stet_recoveredvars, thisbin_actualnotvars) stet_truenegatives = np.intersect1d(stet_recoverednotvars, thisbin_actualnotvars) stet_falsenegatives = np.intersect1d(stet_recoverednotvars, thisbin_actualvars) # calculate stetson recall, precision, Matthews correl coeff stet_recall = recall(stet_truepositives.size, stet_falsenegatives.size) stet_precision = precision(stet_truepositives.size, stet_falsepositives.size) stet_mcc = matthews_correl_coeff(stet_truepositives.size, stet_truenegatives.size, stet_falsepositives.size, stet_falsenegatives.size) # inveta recovered variables in this magbin inveta_recoveredvars = varthresh[magcol][ 'binned_objectids_thresh_inveta' ][magbinind] inveta_recoverednotvars = np.setdiff1d(thisbin_objectids, inveta_recoveredvars) inveta_truepositives = np.intersect1d(inveta_recoveredvars, thisbin_actualvars) inveta_falsepositives = np.intersect1d(inveta_recoveredvars, thisbin_actualnotvars) inveta_truenegatives = np.intersect1d(inveta_recoverednotvars, thisbin_actualnotvars) inveta_falsenegatives = np.intersect1d(inveta_recoverednotvars, thisbin_actualvars) # calculate inveta recall, precision, Matthews correl coeff inveta_recall = recall(inveta_truepositives.size, inveta_falsenegatives.size) inveta_precision = precision(inveta_truepositives.size, inveta_falsepositives.size) inveta_mcc = matthews_correl_coeff(inveta_truepositives.size, inveta_truenegatives.size, inveta_falsepositives.size, inveta_falsenegatives.size) # iqr recovered variables in this magbin iqr_recoveredvars = varthresh[magcol][ 'binned_objectids_thresh_iqr' ][magbinind] iqr_recoverednotvars = np.setdiff1d(thisbin_objectids, iqr_recoveredvars) iqr_truepositives = np.intersect1d(iqr_recoveredvars, thisbin_actualvars) iqr_falsepositives = np.intersect1d(iqr_recoveredvars, thisbin_actualnotvars) iqr_truenegatives = np.intersect1d(iqr_recoverednotvars, thisbin_actualnotvars) iqr_falsenegatives = np.intersect1d(iqr_recoverednotvars, thisbin_actualvars) # calculate iqr recall, precision, Matthews correl coeff iqr_recall = recall(iqr_truepositives.size, iqr_falsenegatives.size) iqr_precision = precision(iqr_truepositives.size, iqr_falsepositives.size) iqr_mcc = matthews_correl_coeff(iqr_truepositives.size, iqr_truenegatives.size, iqr_falsepositives.size, iqr_falsenegatives.size) # calculate the items missed by one method but found by the other # methods stet_missed_inveta_found = np.setdiff1d(inveta_truepositives, stet_truepositives) stet_missed_iqr_found = np.setdiff1d(iqr_truepositives, stet_truepositives) inveta_missed_stet_found = np.setdiff1d(stet_truepositives, inveta_truepositives) inveta_missed_iqr_found = np.setdiff1d(iqr_truepositives, inveta_truepositives) iqr_missed_stet_found = np.setdiff1d(stet_truepositives, iqr_truepositives) iqr_missed_inveta_found = np.setdiff1d(inveta_truepositives, iqr_truepositives) if not statsonly: recdict[magcol] = { # stetson J alone 'stet_recoveredvars':stet_recoveredvars, 'stet_truepositives':stet_truepositives, 'stet_falsepositives':stet_falsepositives, 'stet_truenegatives':stet_truenegatives, 'stet_falsenegatives':stet_falsenegatives, 'stet_precision':stet_precision, 'stet_recall':stet_recall, 'stet_mcc':stet_mcc, # inveta alone 'inveta_recoveredvars':inveta_recoveredvars, 'inveta_truepositives':inveta_truepositives, 'inveta_falsepositives':inveta_falsepositives, 'inveta_truenegatives':inveta_truenegatives, 'inveta_falsenegatives':inveta_falsenegatives, 'inveta_precision':inveta_precision, 'inveta_recall':inveta_recall, 'inveta_mcc':inveta_mcc, # iqr alone 'iqr_recoveredvars':iqr_recoveredvars, 'iqr_truepositives':iqr_truepositives, 'iqr_falsepositives':iqr_falsepositives, 'iqr_truenegatives':iqr_truenegatives, 'iqr_falsenegatives':iqr_falsenegatives, 'iqr_precision':iqr_precision, 'iqr_recall':iqr_recall, 'iqr_mcc':iqr_mcc, # true positive variables missed by one method but picked up by # the others 'stet_missed_inveta_found':stet_missed_inveta_found, 'stet_missed_iqr_found':stet_missed_iqr_found, 'inveta_missed_stet_found':inveta_missed_stet_found, 'inveta_missed_iqr_found':inveta_missed_iqr_found, 'iqr_missed_stet_found':iqr_missed_stet_found, 'iqr_missed_inveta_found':iqr_missed_inveta_found, # bin info 'actual_variables':thisbin_actualvars, 'actual_nonvariables':thisbin_actualnotvars, 'all_objectids':thisbin_objectids, 'magbinind':magbinind, } # if statsonly is set, then we only return the numbers but not the # arrays themselves else: recdict[magcol] = { # stetson J alone 'stet_recoveredvars':stet_recoveredvars.size, 'stet_truepositives':stet_truepositives.size, 'stet_falsepositives':stet_falsepositives.size, 'stet_truenegatives':stet_truenegatives.size, 'stet_falsenegatives':stet_falsenegatives.size, 'stet_precision':stet_precision, 'stet_recall':stet_recall, 'stet_mcc':stet_mcc, # inveta alone 'inveta_recoveredvars':inveta_recoveredvars.size, 'inveta_truepositives':inveta_truepositives.size, 'inveta_falsepositives':inveta_falsepositives.size, 'inveta_truenegatives':inveta_truenegatives.size, 'inveta_falsenegatives':inveta_falsenegatives.size, 'inveta_precision':inveta_precision, 'inveta_recall':inveta_recall, 'inveta_mcc':inveta_mcc, # iqr alone 'iqr_recoveredvars':iqr_recoveredvars.size, 'iqr_truepositives':iqr_truepositives.size, 'iqr_falsepositives':iqr_falsepositives.size, 'iqr_truenegatives':iqr_truenegatives.size, 'iqr_falsenegatives':iqr_falsenegatives.size, 'iqr_precision':iqr_precision, 'iqr_recall':iqr_recall, 'iqr_mcc':iqr_mcc, # true positive variables missed by one method but picked up by # the others 'stet_missed_inveta_found':stet_missed_inveta_found.size, 'stet_missed_iqr_found':stet_missed_iqr_found.size, 'inveta_missed_stet_found':inveta_missed_stet_found.size, 'inveta_missed_iqr_found':inveta_missed_iqr_found.size, 'iqr_missed_stet_found':iqr_missed_stet_found.size, 'iqr_missed_inveta_found':iqr_missed_inveta_found.size, # bin info 'actual_variables':thisbin_actualvars.size, 'actual_nonvariables':thisbin_actualnotvars.size, 'all_objectids':thisbin_objectids.size, 'magbinind':magbinind, } # # done with per magcol # return recdict
def magbin_varind_gridsearch_worker(task): ''' This is a parallel grid search worker for the function below. ''' simbasedir, gridpoint, magbinmedian = task try: res = get_recovered_variables_for_magbin(simbasedir, magbinmedian, stetson_stdev_min=gridpoint[0], inveta_stdev_min=gridpoint[1], iqr_stdev_min=gridpoint[2], statsonly=True) return res except Exception as e: LOGEXCEPTION('failed to get info for %s' % gridpoint) return None
def variable_index_gridsearch_magbin(simbasedir, stetson_stdev_range=(1.0,20.0), inveta_stdev_range=(1.0,20.0), iqr_stdev_range=(1.0,20.0), ngridpoints=32, ngridworkers=None): '''This runs a variable index grid search per magbin. For each magbin, this does a grid search using the stetson and inveta ranges provided and tries to optimize the Matthews Correlation Coefficient (best value is +1.0), indicating the best possible separation of variables vs. nonvariables. The thresholds on these two variable indexes that produce the largest coeff for the collection of fake LCs will probably be the ones that work best for actual variable classification on the real LCs. https://en.wikipedia.org/wiki/Matthews_correlation_coefficient For each grid-point, calculates the true positives, false positives, true negatives, false negatives. Then gets the precision and recall, confusion matrix, and the ROC curve for variable vs. nonvariable. Once we've identified the best thresholds to use, we can then calculate variable object numbers: - as a function of magnitude - as a function of period - as a function of number of detections - as a function of amplitude of variability Writes everything back to `simbasedir/fakevar-recovery.pkl`. Use the plotting function below to make plots for the results. Parameters ---------- simbasedir : str The directory where the fake LCs are located. stetson_stdev_range : sequence of 2 floats The min and max values of the Stetson J variability index to generate a grid over these to test for the values of this index that produce the 'best' recovery rate for the injected variable stars. inveta_stdev_range : sequence of 2 floats The min and max values of the 1/eta variability index to generate a grid over these to test for the values of this index that produce the 'best' recovery rate for the injected variable stars. iqr_stdev_range : sequence of 2 floats The min and max values of the IQR variability index to generate a grid over these to test for the values of this index that produce the 'best' recovery rate for the injected variable stars. ngridpoints : int The number of grid points for each variability index grid. Remember that this function will be searching in 3D and will require lots of time to run if ngridpoints is too large. For the default number of grid points and 25000 simulated light curves, this takes about 3 days to run on a 40 (effective) core machine with 2 x Xeon E5-2650v3 CPUs. ngridworkers : int or None The number of parallel grid search workers that will be launched. Returns ------- dict The returned dict contains a list of recovery stats for each magbin and each grid point in the variability index grids that were used. This dict can be passed to the plotting function below to plot the results. ''' # make the output directory where all the pkls from the variability # threshold runs will go outdir = os.path.join(simbasedir,'recvar-threshold-pkls') if not os.path.exists(outdir): os.mkdir(outdir) # get the info from the simbasedir with open(os.path.join(simbasedir, 'fakelcs-info.pkl'),'rb') as infd: siminfo = pickle.load(infd) # get the column defs for the fakelcs timecols = siminfo['timecols'] magcols = siminfo['magcols'] errcols = siminfo['errcols'] # get the magbinmedians to use for the recovery processing magbinmedians = siminfo['magrms'][magcols[0]]['binned_sdssr_median'] # generate the grids for stetson and inveta stetson_grid = np.linspace(stetson_stdev_range[0], stetson_stdev_range[1], num=ngridpoints) inveta_grid = np.linspace(inveta_stdev_range[0], inveta_stdev_range[1], num=ngridpoints) iqr_grid = np.linspace(iqr_stdev_range[0], iqr_stdev_range[1], num=ngridpoints) # generate the grid stet_inveta_iqr_grid = [] for stet in stetson_grid: for inveta in inveta_grid: for iqr in iqr_grid: grid_point = [stet, inveta, iqr] stet_inveta_iqr_grid.append(grid_point) # the output dict grid_results = {'stetson_grid':stetson_grid, 'inveta_grid':inveta_grid, 'iqr_grid':iqr_grid, 'stet_inveta_iqr_grid':stet_inveta_iqr_grid, 'magbinmedians':magbinmedians, 'timecols':timecols, 'magcols':magcols, 'errcols':errcols, 'simbasedir':os.path.abspath(simbasedir), 'recovery':[]} # set up the pool pool = mp.Pool(ngridworkers) # run the grid search per magbinmedian for magbinmedian in magbinmedians: LOGINFO('running stetson J-inveta grid-search ' 'for magbinmedian = %.3f...' % magbinmedian) tasks = [(simbasedir, gp, magbinmedian) for gp in stet_inveta_iqr_grid] thisbin_results = pool.map(magbin_varind_gridsearch_worker, tasks) grid_results['recovery'].append(thisbin_results) pool.close() pool.join() LOGINFO('done.') with open(os.path.join(simbasedir, 'fakevar-recovery-per-magbin.pkl'),'wb') as outfd: pickle.dump(grid_results,outfd,pickle.HIGHEST_PROTOCOL) return grid_results
def plot_varind_gridsearch_magbin_results(gridsearch_results): '''This plots the gridsearch results from `variable_index_gridsearch_magbin`. Parameters ---------- gridsearch_results : dict This is the dict produced by `variable_index_gridsearch_magbin` above. Returns ------- dict The returned dict contains filenames of the recovery rate plots made for each variability index. These include plots of the precision, recall, and Matthews Correlation Coefficient over each magbin and a heatmap of these values over the grid points of the variability index stdev values arrays used. ''' # get the result pickle/dict if (isinstance(gridsearch_results, str) and os.path.exists(gridsearch_results)): with open(gridsearch_results,'rb') as infd: gridresults = pickle.load(infd) elif isinstance(gridsearch_results, dict): gridresults = gridsearch_results else: LOGERROR('could not understand the input ' 'variable index grid-search result dict/pickle') return None plotres = {'simbasedir':gridresults['simbasedir']} recgrid = gridresults['recovery'] simbasedir = gridresults['simbasedir'] for magcol in gridresults['magcols']: plotres[magcol] = {'best_stetsonj':[], 'best_inveta':[], 'best_iqr':[], 'magbinmedians':gridresults['magbinmedians']} # go through all the magbins for magbinind, magbinmedian in enumerate(gridresults['magbinmedians']): LOGINFO('plotting results for %s: magbin: %.3f' % (magcol, magbinmedian)) stet_mcc = np.array( [x[magcol]['stet_mcc'] for x in recgrid[magbinind]] )[::(gridresults['inveta_grid'].size * gridresults['stetson_grid'].size)] stet_precision = np.array( [x[magcol]['stet_precision'] for x in recgrid[magbinind]] )[::(gridresults['inveta_grid'].size * gridresults['stetson_grid'].size)] stet_recall = np.array( [x[magcol]['stet_recall'] for x in recgrid[magbinind]] )[::(gridresults['inveta_grid'].size * gridresults['stetson_grid'].size)] stet_missed_inveta_found = np.array( [x[magcol]['stet_missed_inveta_found'] for x in recgrid[magbinind]] )[::(gridresults['inveta_grid'].size * gridresults['stetson_grid'].size)] stet_missed_iqr_found = np.array( [x[magcol]['stet_missed_iqr_found'] for x in recgrid[magbinind]] )[::(gridresults['inveta_grid'].size * gridresults['stetson_grid'].size)] inveta_mcc = np.array( [x[magcol]['inveta_mcc'] for x in recgrid[magbinind]] )[:(gridresults['iqr_grid'].size * gridresults['stetson_grid'].size)][ ::gridresults['inveta_grid'].size ] inveta_precision = np.array( [x[magcol]['inveta_precision'] for x in recgrid[magbinind]] )[:(gridresults['iqr_grid'].size * gridresults['stetson_grid'].size)][ ::gridresults['inveta_grid'].size ] inveta_recall = np.array( [x[magcol]['inveta_recall'] for x in recgrid[magbinind]] )[:(gridresults['iqr_grid'].size * gridresults['stetson_grid'].size)][ ::gridresults['inveta_grid'].size ] inveta_missed_stet_found = np.array( [x[magcol]['inveta_missed_stet_found'] for x in recgrid[magbinind]] )[:(gridresults['iqr_grid'].size * gridresults['stetson_grid'].size)][ ::gridresults['inveta_grid'].size ] inveta_missed_iqr_found = np.array( [x[magcol]['inveta_missed_iqr_found'] for x in recgrid[magbinind]] )[:(gridresults['iqr_grid'].size * gridresults['stetson_grid'].size)][ ::gridresults['inveta_grid'].size ] iqr_mcc = np.array( [x[magcol]['iqr_mcc'] for x in recgrid[magbinind]] )[:(gridresults['iqr_grid'].size * gridresults['stetson_grid'].size)][ :gridresults['inveta_grid'].size ] iqr_precision = np.array( [x[magcol]['iqr_precision'] for x in recgrid[magbinind]] )[:(gridresults['iqr_grid'].size * gridresults['stetson_grid'].size)][ :gridresults['inveta_grid'].size ] iqr_recall = np.array( [x[magcol]['iqr_recall'] for x in recgrid[magbinind]] )[:(gridresults['iqr_grid'].size * gridresults['stetson_grid'].size)][ :gridresults['inveta_grid'].size ] iqr_missed_stet_found = np.array( [x[magcol]['iqr_missed_stet_found'] for x in recgrid[magbinind]] )[:(gridresults['iqr_grid'].size * gridresults['stetson_grid'].size)][ :gridresults['inveta_grid'].size ] iqr_missed_inveta_found = np.array( [x[magcol]['iqr_missed_inveta_found'] for x in recgrid[magbinind]] )[:(gridresults['iqr_grid'].size * gridresults['stetson_grid'].size)][ :gridresults['inveta_grid'].size ] fig = plt.figure(figsize=(6.4*5, 4.8*3)) # FIRST ROW: stetson J plot plt.subplot(3,5,1) if np.any(np.isfinite(stet_mcc)): plt.plot(gridresults['stetson_grid'], stet_mcc) plt.xlabel('stetson J stdev multiplier threshold') plt.ylabel('MCC') plt.title('MCC for stetson J') else: plt.text(0.5,0.5, 'stet MCC values are all nan ' 'for this magbin', transform=plt.gca().transAxes, horizontalalignment='center', verticalalignment='center') plt.xticks([]) plt.yticks([]) plt.subplot(3,5,2) if np.any(np.isfinite(stet_precision)): plt.plot(gridresults['stetson_grid'], stet_precision) plt.xlabel('stetson J stdev multiplier threshold') plt.ylabel('precision') plt.title('precision for stetson J') else: plt.text(0.5,0.5, 'stet precision values are all nan ' 'for this magbin', transform=plt.gca().transAxes, horizontalalignment='center', verticalalignment='center') plt.xticks([]) plt.yticks([]) plt.subplot(3,5,3) if np.any(np.isfinite(stet_recall)): plt.plot(gridresults['stetson_grid'], stet_recall) plt.xlabel('stetson J stdev multiplier threshold') plt.ylabel('recall') plt.title('recall for stetson J') else: plt.text(0.5,0.5, 'stet recall values are all nan ' 'for this magbin', transform=plt.gca().transAxes, horizontalalignment='center', verticalalignment='center') plt.xticks([]) plt.yticks([]) plt.subplot(3,5,4) if np.any(np.isfinite(stet_missed_inveta_found)): plt.plot(gridresults['stetson_grid'], stet_missed_inveta_found) plt.xlabel('stetson J stdev multiplier threshold') plt.ylabel('# objects stetson missed but inveta found') plt.title('stetson J missed, inveta found') else: plt.text(0.5,0.5, 'stet-missed/inveta-found values are all nan ' 'for this magbin', transform=plt.gca().transAxes, horizontalalignment='center', verticalalignment='center') plt.xticks([]) plt.yticks([]) plt.subplot(3,5,5) if np.any(np.isfinite(stet_missed_iqr_found)): plt.plot(gridresults['stetson_grid'], stet_missed_iqr_found) plt.xlabel('stetson J stdev multiplier threshold') plt.ylabel('# objects stetson missed but IQR found') plt.title('stetson J missed, IQR found') else: plt.text(0.5,0.5, 'stet-missed/IQR-found values are all nan ' 'for this magbin', transform=plt.gca().transAxes, horizontalalignment='center', verticalalignment='center') plt.xticks([]) plt.yticks([]) # SECOND ROW: inveta plots plt.subplot(3,5,6) if np.any(np.isfinite(inveta_mcc)): plt.plot(gridresults['inveta_grid'], inveta_mcc) plt.xlabel('inveta stdev multiplier threshold') plt.ylabel('MCC') plt.title('MCC for inveta') else: plt.text(0.5,0.5, 'inveta MCC values are all nan ' 'for this magbin', transform=plt.gca().transAxes, horizontalalignment='center', verticalalignment='center') plt.xticks([]) plt.yticks([]) plt.subplot(3,5,7) if np.any(np.isfinite(inveta_precision)): plt.plot(gridresults['inveta_grid'], inveta_precision) plt.xlabel('inveta stdev multiplier threshold') plt.ylabel('precision') plt.title('precision for inveta') else: plt.text(0.5,0.5, 'inveta precision values are all nan ' 'for this magbin', transform=plt.gca().transAxes, horizontalalignment='center', verticalalignment='center') plt.xticks([]) plt.yticks([]) plt.subplot(3,5,8) if np.any(np.isfinite(inveta_recall)): plt.plot(gridresults['inveta_grid'], inveta_recall) plt.xlabel('inveta stdev multiplier threshold') plt.ylabel('recall') plt.title('recall for inveta') else: plt.text(0.5,0.5, 'inveta recall values are all nan ' 'for this magbin', transform=plt.gca().transAxes, horizontalalignment='center', verticalalignment='center') plt.xticks([]) plt.yticks([]) plt.subplot(3,5,9) if np.any(np.isfinite(inveta_missed_stet_found)): plt.plot(gridresults['inveta_grid'], inveta_missed_stet_found) plt.xlabel('inveta stdev multiplier threshold') plt.ylabel('# objects inveta missed but stetson found') plt.title('inveta missed, stetson J found') else: plt.text(0.5,0.5, 'inveta-missed-stet-found values are all nan ' 'for this magbin', transform=plt.gca().transAxes, horizontalalignment='center', verticalalignment='center') plt.xticks([]) plt.yticks([]) plt.subplot(3,5,10) if np.any(np.isfinite(inveta_missed_iqr_found)): plt.plot(gridresults['inveta_grid'], inveta_missed_iqr_found) plt.xlabel('inveta stdev multiplier threshold') plt.ylabel('# objects inveta missed but IQR found') plt.title('inveta missed, IQR found') else: plt.text(0.5,0.5, 'inveta-missed-iqr-found values are all nan ' 'for this magbin', transform=plt.gca().transAxes, horizontalalignment='center', verticalalignment='center') plt.xticks([]) plt.yticks([]) # THIRD ROW: inveta plots plt.subplot(3,5,11) if np.any(np.isfinite(iqr_mcc)): plt.plot(gridresults['iqr_grid'], iqr_mcc) plt.xlabel('IQR stdev multiplier threshold') plt.ylabel('MCC') plt.title('MCC for IQR') else: plt.text(0.5,0.5, 'IQR MCC values are all nan ' 'for this magbin', transform=plt.gca().transAxes, horizontalalignment='center', verticalalignment='center') plt.xticks([]) plt.yticks([]) plt.subplot(3,5,12) if np.any(np.isfinite(iqr_precision)): plt.plot(gridresults['iqr_grid'], iqr_precision) plt.xlabel('IQR stdev multiplier threshold') plt.ylabel('precision') plt.title('precision for IQR') else: plt.text(0.5,0.5, 'IQR precision values are all nan ' 'for this magbin', transform=plt.gca().transAxes, horizontalalignment='center', verticalalignment='center') plt.xticks([]) plt.yticks([]) plt.subplot(3,5,13) if np.any(np.isfinite(iqr_recall)): plt.plot(gridresults['iqr_grid'], iqr_recall) plt.xlabel('IQR stdev multiplier threshold') plt.ylabel('recall') plt.title('recall for IQR') else: plt.text(0.5,0.5, 'IQR recall values are all nan ' 'for this magbin', transform=plt.gca().transAxes, horizontalalignment='center', verticalalignment='center') plt.xticks([]) plt.yticks([]) plt.subplot(3,5,14) if np.any(np.isfinite(iqr_missed_stet_found)): plt.plot(gridresults['iqr_grid'], iqr_missed_stet_found) plt.xlabel('IQR stdev multiplier threshold') plt.ylabel('# objects IQR missed but stetson found') plt.title('IQR missed, stetson J found') else: plt.text(0.5,0.5, 'iqr-missed-stet-found values are all nan ' 'for this magbin', transform=plt.gca().transAxes, horizontalalignment='center', verticalalignment='center') plt.xticks([]) plt.yticks([]) plt.subplot(3,5,15) if np.any(np.isfinite(iqr_missed_inveta_found)): plt.plot(gridresults['iqr_grid'], iqr_missed_inveta_found) plt.xlabel('IQR stdev multiplier threshold') plt.ylabel('# objects IQR missed but inveta found') plt.title('IQR missed, inveta found') else: plt.text(0.5,0.5, 'iqr-missed-inveta-found values are all nan ' 'for this magbin', transform=plt.gca().transAxes, horizontalalignment='center', verticalalignment='center') plt.xticks([]) plt.yticks([]) plt.subplots_adjust(hspace=0.25,wspace=0.25) plt.suptitle('magcol: %s, magbin: %.3f' % (magcol, magbinmedian)) plotdir = os.path.join(gridresults['simbasedir'], 'varindex-gridsearch-plots') if not os.path.exists(plotdir): os.mkdir(plotdir) gridplotf = os.path.join( plotdir, '%s-magbin-%.3f-var-recoverygrid-permagbin.png' % (magcol, magbinmedian) ) plt.savefig(gridplotf,dpi=100,bbox_inches='tight') plt.close('all') # get the best values of MCC, recall, precision and their associated # stet, inveta stet_mcc_maxind = np.where(stet_mcc == np.max(stet_mcc)) stet_precision_maxind = np.where( stet_precision == np.max(stet_precision) ) stet_recall_maxind = np.where(stet_recall == np.max(stet_recall)) best_stet_mcc = stet_mcc[stet_mcc_maxind] best_stet_precision = stet_mcc[stet_precision_maxind] best_stet_recall = stet_mcc[stet_recall_maxind] stet_with_best_mcc = gridresults['stetson_grid'][stet_mcc_maxind] stet_with_best_precision = gridresults['stetson_grid'][ stet_precision_maxind ] stet_with_best_recall = ( gridresults['stetson_grid'][stet_recall_maxind] ) inveta_mcc_maxind = np.where(inveta_mcc == np.max(inveta_mcc)) inveta_precision_maxind = np.where( inveta_precision == np.max(inveta_precision) ) inveta_recall_maxind = ( np.where(inveta_recall == np.max(inveta_recall)) ) best_inveta_mcc = inveta_mcc[inveta_mcc_maxind] best_inveta_precision = inveta_mcc[inveta_precision_maxind] best_inveta_recall = inveta_mcc[inveta_recall_maxind] inveta_with_best_mcc = gridresults['inveta_grid'][inveta_mcc_maxind] inveta_with_best_precision = gridresults['inveta_grid'][ inveta_precision_maxind ] inveta_with_best_recall = gridresults['inveta_grid'][ inveta_recall_maxind ] iqr_mcc_maxind = np.where(iqr_mcc == np.max(iqr_mcc)) iqr_precision_maxind = np.where( iqr_precision == np.max(iqr_precision) ) iqr_recall_maxind = ( np.where(iqr_recall == np.max(iqr_recall)) ) best_iqr_mcc = iqr_mcc[iqr_mcc_maxind] best_iqr_precision = iqr_mcc[iqr_precision_maxind] best_iqr_recall = iqr_mcc[iqr_recall_maxind] iqr_with_best_mcc = gridresults['iqr_grid'][iqr_mcc_maxind] iqr_with_best_precision = gridresults['iqr_grid'][ iqr_precision_maxind ] iqr_with_best_recall = gridresults['iqr_grid'][ iqr_recall_maxind ] plotres[magcol][magbinmedian] = { # stetson 'stet_grid':gridresults['stetson_grid'], 'stet_mcc':stet_mcc, 'stet_precision':stet_precision, 'stet_recall':stet_recall, 'stet_missed_inveta_found':stet_missed_inveta_found, 'best_stet_mcc':best_stet_mcc, 'stet_with_best_mcc':stet_with_best_mcc, 'best_stet_precision':best_stet_precision, 'stet_with_best_precision':stet_with_best_precision, 'best_stet_recall':best_stet_recall, 'stet_with_best_recall':stet_with_best_recall, # inveta 'inveta_grid':gridresults['inveta_grid'], 'inveta_mcc':inveta_mcc, 'inveta_precision':inveta_precision, 'inveta_recall':inveta_recall, 'inveta_missed_stet_found':inveta_missed_stet_found, 'best_inveta_mcc':best_inveta_mcc, 'inveta_with_best_mcc':inveta_with_best_mcc, 'best_inveta_precision':best_inveta_precision, 'inveta_with_best_precision':inveta_with_best_precision, 'best_inveta_recall':best_inveta_recall, 'inveta_with_best_recall':inveta_with_best_recall, # iqr 'iqr_grid':gridresults['iqr_grid'], 'iqr_mcc':iqr_mcc, 'iqr_precision':iqr_precision, 'iqr_recall':iqr_recall, 'iqr_missed_stet_found':iqr_missed_stet_found, 'best_iqr_mcc':best_iqr_mcc, 'iqr_with_best_mcc':iqr_with_best_mcc, 'best_iqr_precision':best_iqr_precision, 'iqr_with_best_precision':iqr_with_best_precision, 'best_iqr_recall':best_iqr_recall, 'iqr_with_best_recall':iqr_with_best_recall, # plot info 'recoveryplot':gridplotf } # recommend inveta, stetson index, and iqr for this magbin # if there are multiple stets, choose the smallest one if stet_with_best_mcc.size > 1: plotres[magcol]['best_stetsonj'].append(stet_with_best_mcc[0]) elif stet_with_best_mcc.size > 0: plotres[magcol]['best_stetsonj'].append(stet_with_best_mcc[0]) else: plotres[magcol]['best_stetsonj'].append(np.nan) # if there are multiple best invetas, choose the smallest one if inveta_with_best_mcc.size > 1: plotres[magcol]['best_inveta'].append(inveta_with_best_mcc[0]) elif inveta_with_best_mcc.size > 0: plotres[magcol]['best_inveta'].append(inveta_with_best_mcc[0]) else: plotres[magcol]['best_inveta'].append(np.nan) # if there are multiple best iqrs, choose the smallest one if iqr_with_best_mcc.size > 1: plotres[magcol]['best_iqr'].append(iqr_with_best_mcc[0]) elif iqr_with_best_mcc.size > 0: plotres[magcol]['best_iqr'].append(iqr_with_best_mcc[0]) else: plotres[magcol]['best_iqr'].append(np.nan) # write the plotresults to a pickle plotrespicklef = os.path.join(simbasedir, 'varindex-gridsearch-magbin-results.pkl') with open(plotrespicklef, 'wb') as outfd: pickle.dump(plotres, outfd, pickle.HIGHEST_PROTOCOL) # recommend the values of stetson J and inveta to use for magcol in gridresults['magcols']: LOGINFO('best stdev multipliers for each %s magbin:' % magcol) LOGINFO('magbin inveta stetson J IQR') for magbin, inveta, stet, iqr in zip( plotres[magcol]['magbinmedians'], plotres[magcol]['best_inveta'], plotres[magcol]['best_stetsonj'], plotres[magcol]['best_iqr']): LOGINFO('%.3f %.3f %.3f %.3f' % (magbin, inveta, stet, iqr)) return plotres
def run_periodfinding(simbasedir, pfmethods=('gls','pdm','bls'), pfkwargs=({},{},{'startp':1.0,'maxtransitduration':0.3}), getblssnr=False, sigclip=5.0, nperiodworkers=10, ncontrolworkers=4, liststartindex=None, listmaxobjects=None): '''This runs periodfinding using several period-finders on a collection of fake LCs. As a rough benchmark, 25000 fake LCs with 10000--50000 points per LC take about 26 days in total to run on an invocation of this function using GLS+PDM+BLS and 10 periodworkers and 4 controlworkers (so all 40 'cores') on a 2 x Xeon E5-2660v3 machine. Parameters ---------- pfmethods : sequence of str This is used to specify which periodfinders to run. These must be in the `lcproc.periodsearch.PFMETHODS` dict. pfkwargs : sequence of dict This is used to provide optional kwargs to the period-finders. getblssnr : bool If this is True, will run BLS SNR calculations for each object and magcol. This takes a while to run, so it's disabled (False) by default. sigclip : float or int or sequence of two floats/ints or None If a single float or int, a symmetric sigma-clip will be performed using the number provided as the sigma-multiplier to cut out from the input time-series. If a list of two ints/floats is provided, the function will perform an 'asymmetric' sigma-clip. The first element in this list is the sigma value to use for fainter flux/mag values; the second element in this list is the sigma value to use for brighter flux/mag values. For example, `sigclip=[10., 3.]`, will sigclip out greater than 10-sigma dimmings and greater than 3-sigma brightenings. Here the meaning of "dimming" and "brightening" is set by *physics* (not the magnitude system), which is why the `magsarefluxes` kwarg must be correctly set. If `sigclip` is None, no sigma-clipping will be performed, and the time-series (with non-finite elems removed) will be passed through to the output. nperiodworkers : int This is the number of parallel period-finding worker processes to use. ncontrolworkers : int This is the number of parallel period-finding control workers to use. Each control worker will launch `nperiodworkers` worker processes. liststartindex : int The starting index of processing. This refers to the filename list generated by running `glob.glob` on the fake LCs in `simbasedir`. maxobjects : int The maximum number of objects to process in this run. Use this with `liststartindex` to effectively distribute working on a large list of input light curves over several sessions or machines. Returns ------- str The path to the output summary pickle produced by `lcproc.periodsearch.parallel_pf` ''' # get the info from the simbasedir with open(os.path.join(simbasedir, 'fakelcs-info.pkl'),'rb') as infd: siminfo = pickle.load(infd) lcfpaths = siminfo['lcfpath'] pfdir = os.path.join(simbasedir,'periodfinding') # get the column defs for the fakelcs timecols = siminfo['timecols'] magcols = siminfo['magcols'] errcols = siminfo['errcols'] # register the fakelc pklc as a custom lcproc format # now we should be able to use all lcproc functions correctly fakelc_formatkey = 'fake-%s' % siminfo['lcformat'] lcproc.register_lcformat( fakelc_formatkey, '*-fakelc.pkl', timecols, magcols, errcols, 'astrobase.lcproc', '_read_pklc', magsarefluxes=siminfo['magsarefluxes'] ) if liststartindex: lcfpaths = lcfpaths[liststartindex:] if listmaxobjects: lcfpaths = lcfpaths[:listmaxobjects] pfinfo = periodsearch.parallel_pf(lcfpaths, pfdir, lcformat=fakelc_formatkey, pfmethods=pfmethods, pfkwargs=pfkwargs, getblssnr=getblssnr, sigclip=sigclip, nperiodworkers=nperiodworkers, ncontrolworkers=ncontrolworkers) with open(os.path.join(simbasedir, 'fakelc-periodsearch.pkl'),'wb') as outfd: pickle.dump(pfinfo, outfd, pickle.HIGHEST_PROTOCOL) return os.path.join(simbasedir,'fakelc-periodsearch.pkl')
def check_periodrec_alias(actualperiod, recoveredperiod, tolerance=1.0e-3): '''This determines what kind of aliasing (if any) exists between `recoveredperiod` and `actualperiod`. Parameters ---------- actualperiod : float The actual period of the object. recoveredperiod : float The recovered period of the object. tolerance : float The absolute difference required between the input periods to mark the recovered period as close to the actual period. Returns ------- str The type of alias determined for the input combination of periods. This will be CSV string with values taken from the following list, based on the types of alias found:: ['actual', 'twice', 'half', 'ratio_over_1plus', 'ratio_over_1minus', 'ratio_over_1plus_twice', 'ratio_over_1minus_twice', 'ratio_over_1plus_thrice', 'ratio_over_1minus_thrice', 'ratio_over_minus1', 'ratio_over_twice_minus1'] ''' if not (np.isfinite(actualperiod) and np.isfinite(recoveredperiod)): LOGERROR("can't compare nan values for actual/recovered periods") return 'unknown' else: ################# ## ALIAS TYPES ## ################# # simple ratios twotimes_p = actualperiod*2.0 half_p = actualperiod*0.5 # first kind of alias alias_1a = actualperiod/(1.0+actualperiod) alias_1b = actualperiod/(1.0-actualperiod) # second kind of alias alias_2a = actualperiod/(1.0+2.0*actualperiod) alias_2b = actualperiod/(1.0-2.0*actualperiod) # third kind of alias alias_3a = actualperiod/(1.0+3.0*actualperiod) alias_3b = actualperiod/(1.0-3.0*actualperiod) # fourth kind of alias alias_4a = actualperiod/(actualperiod - 1.0) alias_4b = actualperiod/(2.0*actualperiod - 1.0) aliases = np.ravel(np.array([ actualperiod, twotimes_p, half_p, alias_1a, alias_1b, alias_2a, alias_2b, alias_3a, alias_3b, alias_4a, alias_4b] )) alias_labels = np.array(ALIAS_TYPES) # check type of alias closest_alias = np.isclose(recoveredperiod, aliases, atol=tolerance) if np.any(closest_alias): closest_alias_type = alias_labels[closest_alias] return ','.join(closest_alias_type.tolist()) else: return 'other'
def periodicvar_recovery(fakepfpkl, simbasedir, period_tolerance=1.0e-3): '''Recovers the periodic variable status/info for the simulated PF result. - Uses simbasedir and the lcfbasename stored in fakepfpkl to figure out where the LC for this object is. - Gets the actual_varparams, actual_varperiod, actual_vartype, actual_varamplitude elements from the LC. - Figures out if the current objectid is a periodic variable (using actual_vartype). - If it is a periodic variable, gets the canonical period assigned to it. - Checks if the period was recovered in any of the five best periods reported by any of the period-finders, checks if the period recovered was a harmonic of the period. - Returns the objectid, actual period and vartype, recovered period, and recovery status. Parameters ---------- fakepfpkl : str This is a periodfinding-<objectid>.pkl[.gz] file produced in the `simbasedir/periodfinding` subdirectory after `run_periodfinding` above is done. simbasedir : str The base directory where all of the fake LCs and period-finding results are. period_tolerance : float The maximum difference that this function will consider between an actual period (or its aliases) and a recovered period to consider it as as a 'recovered' period. Returns ------- dict Returns a dict of period-recovery results. ''' if fakepfpkl.endswith('.gz'): infd = gzip.open(fakepfpkl,'rb') else: infd = open(fakepfpkl,'rb') fakepf = pickle.load(infd) infd.close() # get info from the fakepf dict objectid, lcfbasename = fakepf['objectid'], fakepf['lcfbasename'] lcfpath = os.path.join(simbasedir,'lightcurves',lcfbasename) # if the LC doesn't exist, bail out if not os.path.exists(lcfpath): LOGERROR('light curve for %s does not exist at: %s' % (objectid, lcfpath)) return None # now, open the fakelc fakelc = lcproc._read_pklc(lcfpath) # get the actual_varparams, actual_varperiod, actual_varamplitude actual_varparams, actual_varperiod, actual_varamplitude, actual_vartype = ( fakelc['actual_varparams'], fakelc['actual_varperiod'], fakelc['actual_varamplitude'], fakelc['actual_vartype'] ) # get the moments too so we can track LC noise, etc. actual_moments = fakelc['moments'] # get the magcols for this LC magcols = fakelc['magcols'] # get the recovered info from each of the available methods pfres = { 'objectid':objectid, 'simbasedir':simbasedir, 'magcols':magcols, 'fakelc':os.path.abspath(lcfpath), 'fakepf':os.path.abspath(fakepfpkl), 'actual_vartype':actual_vartype, 'actual_varperiod':actual_varperiod, 'actual_varamplitude':actual_varamplitude, 'actual_varparams':actual_varparams, 'actual_moments':actual_moments, 'recovery_periods':[], 'recovery_lspvals':[], 'recovery_pfmethods':[], 'recovery_magcols':[], 'recovery_status':[], 'recovery_pdiff':[], } # populate the pfres dict with the periods, pfmethods, and magcols for magcol in magcols: for pfm in lcproc.PFMETHODS: if pfm in fakepf[magcol]: # only get the unique recovered periods by using # period_tolerance for rpi, rp in enumerate( fakepf[magcol][pfm]['nbestperiods'] ): if ((not np.any(np.isclose( rp, np.array(pfres['recovery_periods']), rtol=period_tolerance ))) and np.isfinite(rp)): # populate the recovery periods, pfmethods, and magcols pfres['recovery_periods'].append(rp) pfres['recovery_pfmethods'].append(pfm) pfres['recovery_magcols'].append(magcol) # normalize the periodogram peak value to between # 0 and 1 so we can put in the results of multiple # periodfinders on one scale if pfm == 'pdm': this_lspval = ( np.max(fakepf[magcol][pfm]['lspvals']) - fakepf[magcol][pfm]['nbestlspvals'][rpi] ) else: this_lspval = ( fakepf[magcol][pfm]['nbestlspvals'][rpi] / np.max(fakepf[magcol][pfm]['lspvals']) ) # add the normalized lspval to the outdict for # this object as well. later, we'll use this to # construct a periodogram for objects that were actually # not variables pfres['recovery_lspvals'].append(this_lspval) # convert the recovery_* lists to arrays pfres['recovery_periods'] = np.array(pfres['recovery_periods']) pfres['recovery_lspvals'] = np.array(pfres['recovery_lspvals']) pfres['recovery_pfmethods'] = np.array(pfres['recovery_pfmethods']) pfres['recovery_magcols'] = np.array(pfres['recovery_magcols']) # # now figure out recovery status # # if this is an actual periodic variable, characterize the recovery if (actual_vartype and actual_vartype in PERIODIC_VARTYPES and np.isfinite(actual_varperiod)): if pfres['recovery_periods'].size > 0: for ri in range(pfres['recovery_periods'].size): pfres['recovery_pdiff'].append(pfres['recovery_periods'][ri] - np.asscalar(actual_varperiod)) # get the alias types pfres['recovery_status'].append( check_periodrec_alias(actual_varperiod, pfres['recovery_periods'][ri], tolerance=period_tolerance) ) # turn the recovery_pdiff/status lists into arrays pfres['recovery_status'] = np.array(pfres['recovery_status']) pfres['recovery_pdiff'] = np.array(pfres['recovery_pdiff']) # find the best recovered period and its status rec_absdiff = np.abs(pfres['recovery_pdiff']) best_recp_ind = rec_absdiff == rec_absdiff.min() pfres['best_recovered_period'] = ( pfres['recovery_periods'][best_recp_ind] ) pfres['best_recovered_pfmethod'] = ( pfres['recovery_pfmethods'][best_recp_ind] ) pfres['best_recovered_magcol'] = ( pfres['recovery_magcols'][best_recp_ind] ) pfres['best_recovered_status'] = ( pfres['recovery_status'][best_recp_ind] ) pfres['best_recovered_pdiff'] = ( pfres['recovery_pdiff'][best_recp_ind] ) else: LOGWARNING( 'no finite periods recovered from period-finding for %s' % fakepfpkl ) pfres['recovery_status'] = np.array(['no_finite_periods_recovered']) pfres['recovery_pdiff'] = np.array([np.nan]) pfres['best_recovered_period'] = np.array([np.nan]) pfres['best_recovered_pfmethod'] = np.array([],dtype=np.unicode_) pfres['best_recovered_magcol'] = np.array([],dtype=np.unicode_) pfres['best_recovered_status'] = np.array([],dtype=np.unicode_) pfres['best_recovered_pdiff'] = np.array([np.nan]) # if this is not actually a variable, get the recovered period, # etc. anyway. this way, we can see what we need to look out for and avoid # when getting these values for actual objects else: pfres['recovery_status'] = np.array( ['not_variable']*pfres['recovery_periods'].size ) pfres['recovery_pdiff'] = np.zeros(pfres['recovery_periods'].size) pfres['best_recovered_period'] = np.array([np.nan]) pfres['best_recovered_pfmethod'] = np.array([],dtype=np.unicode_) pfres['best_recovered_magcol'] = np.array([],dtype=np.unicode_) pfres['best_recovered_status'] = np.array(['not_variable']) pfres['best_recovered_pdiff'] = np.array([np.nan]) return pfres
def periodrec_worker(task): '''This is a parallel worker for running period-recovery. Parameters ---------- task : tuple This is used to pass args to the `periodicvar_recovery` function:: task[0] = period-finding result pickle to work on task[1] = simbasedir task[2] = period_tolerance Returns ------- dict This is the dict produced by the `periodicvar_recovery` function for the input period-finding result pickle. ''' pfpkl, simbasedir, period_tolerance = task try: return periodicvar_recovery(pfpkl, simbasedir, period_tolerance=period_tolerance) except Exception as e: LOGEXCEPTION('periodic var recovery failed for %s' % repr(task)) return None
def parallel_periodicvar_recovery(simbasedir, period_tolerance=1.0e-3, liststartind=None, listmaxobjects=None, nworkers=None): '''This is a parallel driver for `periodicvar_recovery`. Parameters ---------- simbasedir : str The base directory where all of the fake LCs and period-finding results are. period_tolerance : float The maximum difference that this function will consider between an actual period (or its aliases) and a recovered period to consider it as as a 'recovered' period. liststartindex : int The starting index of processing. This refers to the filename list generated by running `glob.glob` on the period-finding result pickles in `simbasedir/periodfinding`. listmaxobjects : int The maximum number of objects to process in this run. Use this with `liststartindex` to effectively distribute working on a large list of input period-finding result pickles over several sessions or machines. nperiodworkers : int This is the number of parallel period-finding worker processes to use. Returns ------- str Returns the filename of the pickle produced containing all of the period recovery results. ''' # figure out the periodfinding pickles directory pfpkldir = os.path.join(simbasedir,'periodfinding') if not os.path.exists(pfpkldir): LOGERROR('no "periodfinding" subdirectory in %s, can\'t continue' % simbasedir) return None # find all the periodfinding pickles pfpkl_list = glob.glob(os.path.join(pfpkldir,'*periodfinding*pkl*')) if len(pfpkl_list) > 0: if liststartind: pfpkl_list = pfpkl_list[liststartind:] if listmaxobjects: pfpkl_list = pfpkl_list[:listmaxobjects] tasks = [(x, simbasedir, period_tolerance) for x in pfpkl_list] pool = mp.Pool(nworkers) results = pool.map(periodrec_worker, tasks) pool.close() pool.join() resdict = {x['objectid']:x for x in results if x is not None} actual_periodicvars = np.array( [x['objectid'] for x in results if (x is not None and x['actual_vartype'] in PERIODIC_VARTYPES)], dtype=np.unicode_ ) recovered_periodicvars = np.array( [x['objectid'] for x in results if (x is not None and 'actual' in x['best_recovered_status'])], dtype=np.unicode_ ) alias_twice_periodicvars = np.array( [x['objectid'] for x in results if (x is not None and 'twice' in x['best_recovered_status'])], dtype=np.unicode_ ) alias_half_periodicvars = np.array( [x['objectid'] for x in results if (x is not None and 'half' in x['best_recovered_status'])], dtype=np.unicode_ ) all_objectids = [x['objectid'] for x in results] outdict = {'simbasedir':os.path.abspath(simbasedir), 'objectids':all_objectids, 'period_tolerance':period_tolerance, 'actual_periodicvars':actual_periodicvars, 'recovered_periodicvars':recovered_periodicvars, 'alias_twice_periodicvars':alias_twice_periodicvars, 'alias_half_periodicvars':alias_half_periodicvars, 'details':resdict} outfile = os.path.join(simbasedir,'periodicvar-recovery.pkl') with open(outfile, 'wb') as outfd: pickle.dump(outdict, outfd, pickle.HIGHEST_PROTOCOL) return outdict else: LOGERROR( 'no periodfinding result pickles found in %s, can\'t continue' % pfpkldir ) return None
def plot_periodicvar_recovery_results( precvar_results, aliases_count_as_recovered=None, magbins=None, periodbins=None, amplitudebins=None, ndetbins=None, minbinsize=1, plotfile_ext='png', ): '''This plots the results of periodic var recovery. This function makes plots for periodicvar recovered fraction as a function of: - magbin - periodbin - amplitude of variability - ndet with plot lines broken down by: - magcol - periodfinder - vartype - recovery status The kwargs `magbins`, `periodbins`, `amplitudebins`, and `ndetbins` can be used to set the bin lists as needed. The kwarg `minbinsize` controls how many elements per bin are required to accept a bin in processing its recovery characteristics for mags, periods, amplitudes, and ndets. Parameters ---------- precvar_results : dict or str This is either a dict returned by parallel_periodicvar_recovery or the pickle created by that function. aliases_count_as_recovered : list of str or 'all' This is used to set which kinds of aliases this function considers as 'recovered' objects. Normally, we require that recovered objects have a recovery status of 'actual' to indicate the actual period was recovered. To change this default behavior, aliases_count_as_recovered can be set to a list of alias status strings that should be considered as 'recovered' objects as well. Choose from the following alias types:: 'twice' recovered_p = 2.0*actual_p 'half' recovered_p = 0.5*actual_p 'ratio_over_1plus' recovered_p = actual_p/(1.0+actual_p) 'ratio_over_1minus' recovered_p = actual_p/(1.0-actual_p) 'ratio_over_1plus_twice' recovered_p = actual_p/(1.0+2.0*actual_p) 'ratio_over_1minus_twice' recovered_p = actual_p/(1.0-2.0*actual_p) 'ratio_over_1plus_thrice' recovered_p = actual_p/(1.0+3.0*actual_p) 'ratio_over_1minus_thrice' recovered_p = actual_p/(1.0-3.0*actual_p) 'ratio_over_minus1' recovered_p = actual_p/(actual_p - 1.0) 'ratio_over_twice_minus1' recovered_p = actual_p/(2.0*actual_p - 1.0) or set `aliases_count_as_recovered='all'` to include all of the above in the 'recovered' periodic var list. magbins : np.array The magnitude bins to plot the recovery rate results over. If None, the default mag bins will be used: `np.arange(8.0,16.25,0.25)`. periodbins : np.array The period bins to plot the recovery rate results over. If None, the default period bins will be used: `np.arange(0.0,500.0,0.5)`. amplitudebins : np.array The variability amplitude bins to plot the recovery rate results over. If None, the default amplitude bins will be used: `np.arange(0.0,2.0,0.05)`. ndetbins : np.array The ndet bins to plot the recovery rate results over. If None, the default ndet bins will be used: `np.arange(0.0,60000.0,1000.0)`. minbinsize : int The minimum number of objects per bin required to plot a bin and its recovery fraction on the plot. plotfile_ext : {'png','pdf'} Sets the plot output files' extension. Returns ------- dict A dict containing recovery fraction statistics and the paths to each of the plots made. ''' # get the result pickle/dict if isinstance(precvar_results, str) and os.path.exists(precvar_results): with open(precvar_results,'rb') as infd: precvar = pickle.load(infd) elif isinstance(precvar_results, dict): precvar = precvar_results else: LOGERROR('could not understand the input ' 'periodic var recovery dict/pickle') return None # get the simbasedir and open the fakelc-info.pkl. we'll need the magbins # definition from here. simbasedir = precvar['simbasedir'] lcinfof = os.path.join(simbasedir,'fakelcs-info.pkl') if not os.path.exists(lcinfof): LOGERROR('fakelcs-info.pkl does not exist in %s, can\'t continue' % simbasedir) return None with open(lcinfof,'rb') as infd: lcinfo = pickle.load(infd) # get the magcols, vartypes, sdssr, isvariable flags magcols = lcinfo['magcols'] objectid = lcinfo['objectid'] ndet = lcinfo['ndet'] sdssr = lcinfo['sdssr'] # get the actual periodic vars actual_periodicvars = precvar['actual_periodicvars'] # generate lists of objects binned by magbins and periodbins LOGINFO('getting sdssr and ndet for actual periodic vars...') # get the sdssr and ndet for all periodic vars periodicvar_sdssr = [] periodicvar_ndet = [] periodicvar_objectids = [] for pobj in actual_periodicvars: pobjind = objectid == pobj periodicvar_objectids.append(pobj) periodicvar_sdssr.append(sdssr[pobjind]) periodicvar_ndet.append(ndet[pobjind]) periodicvar_sdssr = np.array(periodicvar_sdssr) periodicvar_objectids = np.array(periodicvar_objectids) periodicvar_ndet = np.array(periodicvar_ndet) LOGINFO('getting periods, vartypes, ' 'amplitudes, ndet for actual periodic vars...') # get the periods, vartypes, amplitudes for the actual periodic vars periodicvar_periods = [ np.asscalar(precvar['details'][x]['actual_varperiod']) for x in periodicvar_objectids ] periodicvar_amplitudes = [ np.asscalar(precvar['details'][x]['actual_varamplitude']) for x in periodicvar_objectids ] periodicvar_vartypes = [ precvar['details'][x]['actual_vartype'] for x in periodicvar_objectids ] # # do the binning # # bin by mag LOGINFO('binning actual periodic vars by magnitude...') magbinned_sdssr = [] magbinned_periodicvars = [] if not magbins: magbins = PERIODREC_DEFAULT_MAGBINS magbininds = np.digitize(np.ravel(periodicvar_sdssr), magbins) for mbinind, magi in zip(np.unique(magbininds), range(len(magbins)-1)): thisbin_periodicvars = periodicvar_objectids[magbininds == mbinind] if (thisbin_periodicvars.size > (minbinsize-1)): magbinned_sdssr.append((magbins[magi] + magbins[magi+1])/2.0) magbinned_periodicvars.append(thisbin_periodicvars) # bin by period LOGINFO('binning actual periodic vars by period...') periodbinned_periods = [] periodbinned_periodicvars = [] if not periodbins: periodbins = PERIODREC_DEFAULT_PERIODBINS periodbininds = np.digitize(np.ravel(periodicvar_periods), periodbins) for pbinind, peri in zip(np.unique(periodbininds), range(len(periodbins)-1)): thisbin_periodicvars = periodicvar_objectids[periodbininds == pbinind] if (thisbin_periodicvars.size > (minbinsize-1)): periodbinned_periods.append((periodbins[peri] + periodbins[peri+1])/2.0) periodbinned_periodicvars.append(thisbin_periodicvars) # bin by amplitude of variability LOGINFO('binning actual periodic vars by variability amplitude...') amplitudebinned_amplitudes = [] amplitudebinned_periodicvars = [] if not amplitudebins: amplitudebins = PERIODREC_DEFAULT_AMPBINS amplitudebininds = np.digitize(np.ravel(np.abs(periodicvar_amplitudes)), amplitudebins) for abinind, ampi in zip(np.unique(amplitudebininds), range(len(amplitudebins)-1)): thisbin_periodicvars = periodicvar_objectids[ amplitudebininds == abinind ] if (thisbin_periodicvars.size > (minbinsize-1)): amplitudebinned_amplitudes.append( (amplitudebins[ampi] + amplitudebins[ampi+1])/2.0 ) amplitudebinned_periodicvars.append(thisbin_periodicvars) # bin by ndet LOGINFO('binning actual periodic vars by ndet...') ndetbinned_ndets = [] ndetbinned_periodicvars = [] if not ndetbins: ndetbins = PERIODREC_DEFAULT_NDETBINS ndetbininds = np.digitize(np.ravel(periodicvar_ndet), ndetbins) for nbinind, ndeti in zip(np.unique(ndetbininds), range(len(ndetbins)-1)): thisbin_periodicvars = periodicvar_objectids[ndetbininds == nbinind] if (thisbin_periodicvars.size > (minbinsize-1)): ndetbinned_ndets.append( (ndetbins[ndeti] + ndetbins[ndeti+1])/2.0 ) ndetbinned_periodicvars.append(thisbin_periodicvars) # now figure out what 'recovered' means using the provided # aliases_count_as_recovered kwarg recovered_status = ['actual'] if isinstance(aliases_count_as_recovered, list): for atype in aliases_count_as_recovered: if atype in ALIAS_TYPES: recovered_status.append(atype) else: LOGWARNING('unknown alias type: %s, skipping' % atype) elif aliases_count_as_recovered and aliases_count_as_recovered == 'all': for atype in ALIAS_TYPES[1:]: recovered_status.append(atype) # find all the matching objects for these recovered statuses recovered_periodicvars = np.array( [precvar['details'][x]['objectid'] for x in precvar['details'] if (precvar['details'][x] is not None and precvar['details'][x]['best_recovered_status'] in recovered_status)], dtype=np.unicode_ ) LOGINFO('recovered %s/%s periodic variables (frac: %.3f) with ' 'period recovery status: %s' % (recovered_periodicvars.size, actual_periodicvars.size, float(recovered_periodicvars.size/actual_periodicvars.size), ', '.join(recovered_status))) # get the objects recovered per bin and overall recovery fractions per bin magbinned_recovered_objects = [ np.intersect1d(x,recovered_periodicvars) for x in magbinned_periodicvars ] magbinned_recfrac = np.array([float(x.size/y.size) for x,y in zip(magbinned_recovered_objects, magbinned_periodicvars)]) periodbinned_recovered_objects = [ np.intersect1d(x,recovered_periodicvars) for x in periodbinned_periodicvars ] periodbinned_recfrac = np.array([float(x.size/y.size) for x,y in zip(periodbinned_recovered_objects, periodbinned_periodicvars)]) amplitudebinned_recovered_objects = [ np.intersect1d(x,recovered_periodicvars) for x in amplitudebinned_periodicvars ] amplitudebinned_recfrac = np.array( [float(x.size/y.size) for x,y in zip(amplitudebinned_recovered_objects, amplitudebinned_periodicvars)] ) ndetbinned_recovered_objects = [ np.intersect1d(x,recovered_periodicvars) for x in ndetbinned_periodicvars ] ndetbinned_recfrac = np.array([float(x.size/y.size) for x,y in zip(ndetbinned_recovered_objects, ndetbinned_periodicvars)]) # convert the bin medians to arrays magbinned_sdssr = np.array(magbinned_sdssr) periodbinned_periods = np.array(periodbinned_periods) amplitudebinned_amplitudes = np.array(amplitudebinned_amplitudes) ndetbinned_ndets = np.array(ndetbinned_ndets) # this is the initial output dict outdict = { 'simbasedir':simbasedir, 'precvar_results':precvar, 'magcols':magcols, 'objectids':objectid, 'ndet':ndet, 'sdssr':sdssr, 'actual_periodicvars':actual_periodicvars, 'recovered_periodicvars':recovered_periodicvars, 'recovery_definition':recovered_status, # mag binned actual periodicvars # note that only bins with nobjects > minbinsize are included 'magbins':magbins, 'magbinned_mags':magbinned_sdssr, 'magbinned_periodicvars':magbinned_periodicvars, 'magbinned_recoveredvars':magbinned_recovered_objects, 'magbinned_recfrac':magbinned_recfrac, # period binned actual periodicvars # note that only bins with nobjects > minbinsize are included 'periodbins':periodbins, 'periodbinned_periods':periodbinned_periods, 'periodbinned_periodicvars':periodbinned_periodicvars, 'periodbinned_recoveredvars':periodbinned_recovered_objects, 'periodbinned_recfrac':periodbinned_recfrac, # amplitude binned actual periodicvars # note that only bins with nobjects > minbinsize are included 'amplitudebins':amplitudebins, 'amplitudebinned_amplitudes':amplitudebinned_amplitudes, 'amplitudebinned_periodicvars':amplitudebinned_periodicvars, 'amplitudebinned_recoveredvars':amplitudebinned_recovered_objects, 'amplitudebinned_recfrac':amplitudebinned_recfrac, # ndet binned actual periodicvars # note that only bins with nobjects > minbinsize are included 'ndetbins':ndetbins, 'ndetbinned_ndets':ndetbinned_ndets, 'ndetbinned_periodicvars':ndetbinned_periodicvars, 'ndetbinned_recoveredvars':ndetbinned_recovered_objects, 'ndetbinned_recfrac':ndetbinned_recfrac, } # figure out which pfmethods were used all_pfmethods = np.unique( np.concatenate( [np.unique(precvar['details'][x]['recovery_pfmethods']) for x in precvar['details']] ) ) # figure out all vartypes all_vartypes = np.unique( [(precvar['details'][x]['actual_vartype']) for x in precvar['details'] if (precvar['details'][x]['actual_vartype'] is not None)] ) # figure out all alias types all_aliastypes = recovered_status # add these to the outdict outdict['aliastypes'] = all_aliastypes outdict['pfmethods'] = all_pfmethods outdict['vartypes'] = all_vartypes # these are recfracs per-magcol, -vartype, -periodfinder, -aliastype # binned appropriately by mags, periods, amplitudes, and ndet # all of these have the shape as the magcols, aliastypes, pfmethods, and # vartypes lists above. magbinned_per_magcol_recfracs = [] magbinned_per_vartype_recfracs = [] magbinned_per_pfmethod_recfracs = [] magbinned_per_aliastype_recfracs = [] periodbinned_per_magcol_recfracs = [] periodbinned_per_vartype_recfracs = [] periodbinned_per_pfmethod_recfracs = [] periodbinned_per_aliastype_recfracs = [] amplitudebinned_per_magcol_recfracs = [] amplitudebinned_per_vartype_recfracs = [] amplitudebinned_per_pfmethod_recfracs = [] amplitudebinned_per_aliastype_recfracs = [] ndetbinned_per_magcol_recfracs = [] ndetbinned_per_vartype_recfracs = [] ndetbinned_per_pfmethod_recfracs = [] ndetbinned_per_aliastype_recfracs = [] # # finally, we do stuff for the plots! # recplotdir = os.path.join(simbasedir, 'periodic-variable-recovery-plots') if not os.path.exists(recplotdir): os.mkdir(recplotdir) # 1. recovery-rate by magbin # 1a. plot of overall recovery rate per magbin fig = plt.figure(figsize=(6.4*1.5,4.8*1.5)) plt.plot(magbinned_sdssr, magbinned_recfrac,marker='.',ms=0.0) plt.xlabel(r'SDSS $r$ magnitude') plt.ylabel('recovered fraction of periodic variables') plt.title('overall recovery fraction by periodic var magnitudes') plt.ylim((0,1)) plt.savefig( os.path.join(recplotdir, 'recfrac-binned-magnitudes-overall.%s' % plotfile_ext), dpi=100, bbox_inches='tight' ) plt.close('all') # 1b. plot of recovery rate per magbin per magcol fig = plt.figure(figsize=(6.4*1.5,4.8*1.5)) for magcol in magcols: thismagcol_recfracs = [] for magbin_pv, magbin_rv in zip(magbinned_periodicvars, magbinned_recovered_objects): thisbin_thismagcol_recvars = [ x for x in magbin_rv if (precvar['details'][x]['best_recovered_magcol'] == magcol) ] thisbin_thismagcol_recfrac = ( np.array(thisbin_thismagcol_recvars).size / magbin_pv.size ) thismagcol_recfracs.append(thisbin_thismagcol_recfrac) # now that we have per magcol recfracs, plot them plt.plot(magbinned_sdssr, np.array(thismagcol_recfracs), marker='.', label='magcol: %s' % magcol, ms=0.0) # add this to the outdict array magbinned_per_magcol_recfracs.append(np.array(thismagcol_recfracs)) # finish up the plot plt.plot(magbinned_sdssr, magbinned_recfrac, marker='.',ms=0.0, label='overall', color='k') plt.xlabel(r'SDSS $r$ magnitude') plt.ylabel('recovered fraction of periodic variables') plt.title('per magcol recovery fraction by periodic var magnitudes') plt.ylim((0,1)) plt.legend(markerscale=10.0) plt.savefig( os.path.join(recplotdir, 'recfrac-binned-magnitudes-magcols.%s' % plotfile_ext), dpi=100, bbox_inches='tight' ) plt.close('all') # 1c. plot of recovery rate per magbin per periodfinder fig = plt.figure(figsize=(6.4*1.5,4.8*1.5)) # figure out which pfmethods were used all_pfmethods = np.unique( np.concatenate( [np.unique(precvar['details'][x]['recovery_pfmethods']) for x in precvar['details']] ) ) for pfm in all_pfmethods: thispf_recfracs = [] for magbin_pv, magbin_rv in zip(magbinned_periodicvars, magbinned_recovered_objects): thisbin_thispf_recvars = [ x for x in magbin_rv if (precvar['details'][x]['best_recovered_pfmethod'] == pfm) ] thisbin_thismagcol_recfrac = ( np.array(thisbin_thispf_recvars).size / magbin_pv.size ) thispf_recfracs.append(thisbin_thismagcol_recfrac) # now that we have per magcol recfracs, plot them plt.plot(magbinned_sdssr, np.array(thispf_recfracs), marker='.', label='%s' % pfm.upper(), ms=0.0) # add this to the outdict array magbinned_per_pfmethod_recfracs.append(np.array(thispf_recfracs)) # finish up the plot plt.plot(magbinned_sdssr, magbinned_recfrac, marker='.',ms=0.0, label='overall', color='k') plt.xlabel(r'SDSS $r$ magnitude') plt.ylabel('recovered fraction of periodic variables') plt.title('per period-finder recovery fraction by periodic var magnitudes') plt.ylim((0,1)) plt.legend(markerscale=10.0) plt.savefig( os.path.join(recplotdir, 'recfrac-binned-magnitudes-pfmethod.%s' % plotfile_ext), dpi=100, bbox_inches='tight' ) plt.close('all') # 1d. plot of recovery rate per magbin per variable type fig = plt.figure(figsize=(6.4*1.5,4.8*1.5)) # figure out all vartypes all_vartypes = np.unique( [(precvar['details'][x]['actual_vartype']) for x in precvar['details'] if (precvar['details'][x]['actual_vartype'] is not None)] ) for vt in all_vartypes: thisvt_recfracs = [] for magbin_pv, magbin_rv in zip(magbinned_periodicvars, magbinned_recovered_objects): thisbin_thisvt_recvars = [ x for x in magbin_rv if (precvar['details'][x]['actual_vartype'] == vt) ] thisbin_thismagcol_recfrac = ( np.array(thisbin_thisvt_recvars).size / magbin_pv.size ) thisvt_recfracs.append(thisbin_thismagcol_recfrac) # now that we have per magcol recfracs, plot them plt.plot(magbinned_sdssr, np.array(thisvt_recfracs), marker='.', label='%s' % vt, ms=0.0) # add this to the outdict array magbinned_per_vartype_recfracs.append(np.array(thisvt_recfracs)) # finish up the plot plt.plot(magbinned_sdssr, magbinned_recfrac, marker='.',ms=0.0, label='overall', color='k') plt.xlabel(r'SDSS $r$ magnitude') plt.ylabel('recovered fraction of periodic variables') plt.title('per vartype recovery fraction by periodic var magnitudes') plt.ylim((0,1)) plt.legend(markerscale=10.0) plt.savefig( os.path.join(recplotdir, 'recfrac-binned-magnitudes-vartype.%s' % plotfile_ext), dpi=100, bbox_inches='tight' ) plt.close('all') # 1e. plot of recovery rate per magbin per alias type fig = plt.figure(figsize=(6.4*1.5,4.8*1.5)) # figure out all alias types all_aliastypes = recovered_status for at in all_aliastypes: thisat_recfracs = [] for magbin_pv, magbin_rv in zip(magbinned_periodicvars, magbinned_recovered_objects): thisbin_thisat_recvars = [ x for x in magbin_rv if (precvar['details'][x]['best_recovered_status'][0] == at) ] thisbin_thismagcol_recfrac = ( np.array(thisbin_thisat_recvars).size / magbin_pv.size ) thisat_recfracs.append(thisbin_thismagcol_recfrac) # now that we have per magcol recfracs, plot them plt.plot(magbinned_sdssr, np.array(thisat_recfracs), marker='.', label='%s' % at, ms=0.0) # add this to the outdict array magbinned_per_aliastype_recfracs.append(np.array(thisat_recfracs)) # finish up the plot plt.plot(magbinned_sdssr, magbinned_recfrac, marker='.',ms=0.0, label='overall', color='k') plt.xlabel(r'SDSS $r$ magnitude') plt.ylabel('recovered fraction of periodic variables') plt.title('per alias-type recovery fraction by periodic var magnitudes') plt.ylim((0,1)) plt.legend(markerscale=10.0) plt.savefig( os.path.join(recplotdir, 'recfrac-binned-magnitudes-aliastype.%s' % plotfile_ext), dpi=100, bbox_inches='tight' ) plt.close('all') # 2. recovery-rate by periodbin # 2a. plot of overall recovery rate per periodbin fig = plt.figure(figsize=(6.4*1.5,4.8*1.5)) plt.plot(periodbinned_periods, periodbinned_recfrac, marker='.',ms=0.0) plt.xlabel('periodic variable period [days]') plt.ylabel('recovered fraction of periodic variables') plt.title('overall recovery fraction by periodic var periods') plt.ylim((0,1)) plt.savefig( os.path.join(recplotdir, 'recfrac-binned-periods-overall.%s' % plotfile_ext), dpi=100, bbox_inches='tight' ) plt.close('all') # 2b. plot of recovery rate per periodbin per magcol fig = plt.figure(figsize=(6.4*1.5,4.8*1.5)) for magcol in magcols: thismagcol_recfracs = [] for periodbin_pv, periodbin_rv in zip(periodbinned_periodicvars, periodbinned_recovered_objects): thisbin_thismagcol_recvars = [ x for x in periodbin_rv if (precvar['details'][x]['best_recovered_magcol'] == magcol) ] thisbin_thismagcol_recfrac = ( np.array(thisbin_thismagcol_recvars).size / periodbin_pv.size ) thismagcol_recfracs.append(thisbin_thismagcol_recfrac) # now that we have per magcol recfracs, plot them plt.plot(periodbinned_periods, np.array(thismagcol_recfracs), marker='.', label='magcol: %s' % magcol, ms=0.0) # add this to the outdict array periodbinned_per_magcol_recfracs.append(np.array(thismagcol_recfracs)) # finish up the plot plt.plot(periodbinned_periods, periodbinned_recfrac, marker='.',ms=0.0, label='overall', color='k') plt.xlabel(r'SDSS $r$ magnitude') plt.ylabel('recovered fraction of periodic variables') plt.title('per magcol recovery fraction by periodic var periods') plt.ylim((0,1)) plt.legend(markerscale=10.0) plt.savefig( os.path.join(recplotdir, 'recfrac-binned-periods-magcols.%s' % plotfile_ext), dpi=100, bbox_inches='tight' ) plt.close('all') # 2c. plot of recovery rate per periodbin per periodfinder fig = plt.figure(figsize=(6.4*1.5,4.8*1.5)) # figure out which pfmethods were used all_pfmethods = np.unique( np.concatenate( [np.unique(precvar['details'][x]['recovery_pfmethods']) for x in precvar['details']] ) ) for pfm in all_pfmethods: thispf_recfracs = [] for periodbin_pv, periodbin_rv in zip(periodbinned_periodicvars, periodbinned_recovered_objects): thisbin_thispf_recvars = [ x for x in periodbin_rv if (precvar['details'][x]['best_recovered_pfmethod'] == pfm) ] thisbin_thismagcol_recfrac = ( np.array(thisbin_thispf_recvars).size / periodbin_pv.size ) thispf_recfracs.append(thisbin_thismagcol_recfrac) # now that we have per magcol recfracs, plot them plt.plot(periodbinned_periods, np.array(thispf_recfracs), marker='.', label='%s' % pfm.upper(), ms=0.0) # add this to the outdict array periodbinned_per_pfmethod_recfracs.append(np.array(thispf_recfracs)) # finish up the plot plt.plot(periodbinned_periods, periodbinned_recfrac, marker='.',ms=0.0, label='overall', color='k') plt.xlabel(r'SDSS $r$ magnitude') plt.ylabel('recovered fraction of periodic variables') plt.title('per period-finder recovery fraction by periodic var periods') plt.ylim((0,1)) plt.legend(markerscale=10.0) plt.savefig( os.path.join(recplotdir, 'recfrac-binned-periods-pfmethod.%s' % plotfile_ext), dpi=100, bbox_inches='tight' ) plt.close('all') # 2d. plot of recovery rate per periodbin per variable type fig = plt.figure(figsize=(6.4*1.5,4.8*1.5)) # figure out all vartypes all_vartypes = np.unique( [(precvar['details'][x]['actual_vartype']) for x in precvar['details'] if (precvar['details'][x]['actual_vartype'] is not None)] ) for vt in all_vartypes: thisvt_recfracs = [] for periodbin_pv, periodbin_rv in zip(periodbinned_periodicvars, periodbinned_recovered_objects): thisbin_thisvt_recvars = [ x for x in periodbin_rv if (precvar['details'][x]['actual_vartype'] == vt) ] thisbin_thismagcol_recfrac = ( np.array(thisbin_thisvt_recvars).size / periodbin_pv.size ) thisvt_recfracs.append(thisbin_thismagcol_recfrac) # now that we have per magcol recfracs, plot them plt.plot(periodbinned_periods, np.array(thisvt_recfracs), marker='.', label='%s' % vt, ms=0.0) # add this to the outdict array periodbinned_per_vartype_recfracs.append(np.array(thisvt_recfracs)) # finish up the plot plt.plot(periodbinned_periods, periodbinned_recfrac, marker='.',ms=0.0, label='overall', color='k') plt.xlabel(r'SDSS $r$ magnitude') plt.ylabel('recovered fraction of periodic variables') plt.title('per vartype recovery fraction by periodic var magnitudes') plt.ylim((0,1)) plt.legend(markerscale=10.0) plt.savefig( os.path.join(recplotdir, 'recfrac-binned-periods-vartype.%s' % plotfile_ext), dpi=100, bbox_inches='tight' ) plt.close('all') # 2e. plot of recovery rate per periodbin per alias type fig = plt.figure(figsize=(6.4*1.5,4.8*1.5)) # figure out all vartypes all_aliastypes = recovered_status for at in all_aliastypes: thisat_recfracs = [] for periodbin_pv, periodbin_rv in zip( periodbinned_periodicvars, periodbinned_recovered_objects ): thisbin_thisat_recvars = [ x for x in periodbin_rv if (precvar['details'][x]['best_recovered_status'][0] == at) ] thisbin_thismagcol_recfrac = ( np.array(thisbin_thisat_recvars).size / periodbin_pv.size ) thisat_recfracs.append(thisbin_thismagcol_recfrac) # now that we have per magcol recfracs, plot them plt.plot(periodbinned_periods, np.array(thisat_recfracs), marker='.', label='%s' % at, ms=0.0) # add this to the outdict array periodbinned_per_aliastype_recfracs.append(np.array(thisat_recfracs)) # finish up the plot plt.plot(periodbinned_periods, periodbinned_recfrac, marker='.',ms=0.0, label='overall', color='k') plt.xlabel(r'SDSS $r$ magnitude') plt.ylabel('recovered fraction of periodic variables') plt.title('per alias-type recovery fraction by periodic var magnitudes') plt.ylim((0,1)) plt.legend(markerscale=10.0) plt.savefig( os.path.join(recplotdir, 'recfrac-binned-periods-aliastype.%s' % plotfile_ext), dpi=100, bbox_inches='tight' ) plt.close('all') # 3. recovery-rate by amplitude bin # 3a. plot of overall recovery rate per amplitude bin fig = plt.figure(figsize=(6.4*1.5,4.8*1.5)) plt.plot(amplitudebinned_amplitudes, amplitudebinned_recfrac, marker='.',ms=0.0) plt.xlabel('periodic variable amplitude [mag]') plt.ylabel('recovered fraction of periodic variables') plt.title('overall recovery fraction by periodic var amplitudes') plt.ylim((0,1)) plt.savefig( os.path.join(recplotdir, 'recfrac-binned-amplitudes-overall.%s' % plotfile_ext), dpi=100, bbox_inches='tight' ) plt.close('all') # 3b. plot of recovery rate per amplitude bin per magcol fig = plt.figure(figsize=(6.4*1.5,4.8*1.5)) for magcol in magcols: thismagcol_recfracs = [] for amplitudebin_pv, amplitudebin_rv in zip( amplitudebinned_periodicvars, amplitudebinned_recovered_objects ): thisbin_thismagcol_recvars = [ x for x in amplitudebin_rv if (precvar['details'][x]['best_recovered_magcol'] == magcol) ] thisbin_thismagcol_recfrac = ( np.array(thisbin_thismagcol_recvars).size / amplitudebin_pv.size ) thismagcol_recfracs.append(thisbin_thismagcol_recfrac) # now that we have per magcol recfracs, plot them plt.plot(amplitudebinned_amplitudes, np.array(thismagcol_recfracs), marker='.', label='magcol: %s' % magcol, ms=0.0) # add this to the outdict array amplitudebinned_per_magcol_recfracs.append( np.array(thismagcol_recfracs) ) # finish up the plot plt.plot(amplitudebinned_amplitudes, amplitudebinned_recfrac, marker='.',ms=0.0, label='overall', color='k') plt.xlabel(r'SDSS $r$ magnitude') plt.ylabel('recovered fraction of periodic variables') plt.title('per magcol recovery fraction by periodic var amplitudes') plt.ylim((0,1)) plt.legend(markerscale=10.0) plt.savefig( os.path.join(recplotdir, 'recfrac-binned-amplitudes-magcols.%s' % plotfile_ext), dpi=100, bbox_inches='tight' ) plt.close('all') # 3c. plot of recovery rate per amplitude bin per periodfinder fig = plt.figure(figsize=(6.4*1.5,4.8*1.5)) # figure out which pfmethods were used all_pfmethods = np.unique( np.concatenate( [np.unique(precvar['details'][x]['recovery_pfmethods']) for x in precvar['details']] ) ) for pfm in all_pfmethods: thispf_recfracs = [] for amplitudebin_pv, amplitudebin_rv in zip( amplitudebinned_periodicvars, amplitudebinned_recovered_objects ): thisbin_thispf_recvars = [ x for x in amplitudebin_rv if (precvar['details'][x]['best_recovered_pfmethod'] == pfm) ] thisbin_thismagcol_recfrac = ( np.array(thisbin_thispf_recvars).size / amplitudebin_pv.size ) thispf_recfracs.append(thisbin_thismagcol_recfrac) # now that we have per magcol recfracs, plot them plt.plot(amplitudebinned_amplitudes, np.array(thispf_recfracs), marker='.', label='%s' % pfm.upper(), ms=0.0) # add this to the outdict array amplitudebinned_per_pfmethod_recfracs.append( np.array(thispf_recfracs) ) # finish up the plot plt.plot(amplitudebinned_amplitudes, amplitudebinned_recfrac, marker='.',ms=0.0, label='overall', color='k') plt.xlabel(r'SDSS $r$ magnitude') plt.ylabel('recovered fraction of periodic variables') plt.title('per period-finder recovery fraction by periodic var amplitudes') plt.ylim((0,1)) plt.legend(markerscale=10.0) plt.savefig( os.path.join(recplotdir, 'recfrac-binned-amplitudes-pfmethod.%s' % plotfile_ext), dpi=100, bbox_inches='tight' ) plt.close('all') # 3d. plot of recovery rate per amplitude bin per variable type fig = plt.figure(figsize=(6.4*1.5,4.8*1.5)) # figure out all vartypes all_vartypes = np.unique( [(precvar['details'][x]['actual_vartype']) for x in precvar['details'] if (precvar['details'][x]['actual_vartype'] is not None)] ) for vt in all_vartypes: thisvt_recfracs = [] for amplitudebin_pv, amplitudebin_rv in zip( amplitudebinned_periodicvars, amplitudebinned_recovered_objects ): thisbin_thisvt_recvars = [ x for x in amplitudebin_rv if (precvar['details'][x]['actual_vartype'] == vt) ] thisbin_thismagcol_recfrac = ( np.array(thisbin_thisvt_recvars).size / amplitudebin_pv.size ) thisvt_recfracs.append(thisbin_thismagcol_recfrac) # now that we have per magcol recfracs, plot them plt.plot(amplitudebinned_amplitudes, np.array(thisvt_recfracs), marker='.', label='%s' % vt, ms=0.0) # add this to the outdict array amplitudebinned_per_vartype_recfracs.append( np.array(thisvt_recfracs) ) # finish up the plot plt.plot(amplitudebinned_amplitudes, amplitudebinned_recfrac, marker='.',ms=0.0, label='overall', color='k') plt.xlabel(r'SDSS $r$ magnitude') plt.ylabel('recovered fraction of periodic variables') plt.title('per vartype recovery fraction by periodic var amplitudes') plt.ylim((0,1)) plt.legend(markerscale=10.0) plt.savefig( os.path.join(recplotdir, 'recfrac-binned-amplitudes-vartype.%s' % plotfile_ext), dpi=100, bbox_inches='tight' ) plt.close('all') # 3e. plot of recovery rate per amplitude bin per alias type fig = plt.figure(figsize=(6.4*1.5,4.8*1.5)) # figure out all vartypes all_aliastypes = recovered_status for at in all_aliastypes: thisat_recfracs = [] for amplitudebin_pv, amplitudebin_rv in zip( amplitudebinned_periodicvars, amplitudebinned_recovered_objects ): thisbin_thisat_recvars = [ x for x in amplitudebin_rv if (precvar['details'][x]['best_recovered_status'][0] == at) ] thisbin_thismagcol_recfrac = ( np.array(thisbin_thisat_recvars).size / amplitudebin_pv.size ) thisat_recfracs.append(thisbin_thismagcol_recfrac) # now that we have per magcol recfracs, plot them plt.plot(amplitudebinned_amplitudes, np.array(thisat_recfracs), marker='.', label='%s' % at, ms=0.0) # add this to the outdict array amplitudebinned_per_aliastype_recfracs.append( np.array(thisat_recfracs) ) # finish up the plot plt.plot(amplitudebinned_amplitudes, amplitudebinned_recfrac, marker='.',ms=0.0, label='overall', color='k') plt.xlabel(r'SDSS $r$ magnitude') plt.ylabel('recovered fraction of periodic variables') plt.title('per alias-type recovery fraction by periodic var amplitudes') plt.ylim((0,1)) plt.legend(markerscale=10.0) plt.savefig( os.path.join(recplotdir, 'recfrac-binned-amplitudes-aliastype.%s' % plotfile_ext), dpi=100, bbox_inches='tight' ) plt.close('all') # 4. recovery-rate by ndet bin # 4a. plot of overall recovery rate per ndet bin fig = plt.figure(figsize=(6.4*1.5,4.8*1.5)) plt.plot(ndetbinned_ndets, ndetbinned_recfrac, marker='.',ms=0.0) plt.xlabel('periodic variable light curve points') plt.ylabel('recovered fraction of periodic variables') plt.title('overall recovery fraction by periodic var ndet') plt.ylim((0,1)) plt.savefig( os.path.join(recplotdir, 'recfrac-binned-ndet-overall.%s' % plotfile_ext), dpi=100, bbox_inches='tight' ) plt.close('all') # 4b. plot of recovery rate per ndet bin per magcol fig = plt.figure(figsize=(6.4*1.5,4.8*1.5)) for magcol in magcols: thismagcol_recfracs = [] for ndetbin_pv, ndetbin_rv in zip(ndetbinned_periodicvars, ndetbinned_recovered_objects): thisbin_thismagcol_recvars = [ x for x in ndetbin_rv if (precvar['details'][x]['best_recovered_magcol'] == magcol) ] thisbin_thismagcol_recfrac = ( np.array(thisbin_thismagcol_recvars).size / ndetbin_pv.size ) thismagcol_recfracs.append(thisbin_thismagcol_recfrac) # now that we have per magcol recfracs, plot them plt.plot(ndetbinned_ndets, np.array(thismagcol_recfracs), marker='.', label='magcol: %s' % magcol, ms=0.0) # add this to the outdict array ndetbinned_per_magcol_recfracs.append( np.array(thismagcol_recfracs) ) # finish up the plot plt.plot(ndetbinned_ndets, ndetbinned_recfrac, marker='.',ms=0.0, label='overall', color='k') plt.xlabel(r'SDSS $r$ magnitude') plt.ylabel('recovered fraction of periodic variables') plt.title('per magcol recovery fraction by periodic var ndets') plt.ylim((0,1)) plt.legend(markerscale=10.0) plt.savefig( os.path.join(recplotdir, 'recfrac-binned-ndet-magcols.%s' % plotfile_ext), dpi=100, bbox_inches='tight' ) plt.close('all') # 4c. plot of recovery rate per ndet bin per periodfinder fig = plt.figure(figsize=(6.4*1.5,4.8*1.5)) # figure out which pfmethods were used all_pfmethods = np.unique( np.concatenate( [np.unique(precvar['details'][x]['recovery_pfmethods']) for x in precvar['details']] ) ) for pfm in all_pfmethods: thispf_recfracs = [] for ndetbin_pv, ndetbin_rv in zip(ndetbinned_periodicvars, ndetbinned_recovered_objects): thisbin_thispf_recvars = [ x for x in ndetbin_rv if (precvar['details'][x]['best_recovered_pfmethod'] == pfm) ] thisbin_thismagcol_recfrac = ( np.array(thisbin_thispf_recvars).size / ndetbin_pv.size ) thispf_recfracs.append(thisbin_thismagcol_recfrac) # now that we have per magcol recfracs, plot them plt.plot(ndetbinned_ndets, np.array(thispf_recfracs), marker='.', label='%s' % pfm.upper(), ms=0.0) # add this to the outdict array ndetbinned_per_pfmethod_recfracs.append( np.array(thispf_recfracs) ) # finish up the plot plt.plot(ndetbinned_ndets, ndetbinned_recfrac, marker='.',ms=0.0, label='overall', color='k') plt.xlabel(r'SDSS $r$ magnitude') plt.ylabel('recovered fraction of periodic variables') plt.title('per period-finder recovery fraction by periodic var ndets') plt.ylim((0,1)) plt.legend(markerscale=10.0) plt.savefig( os.path.join(recplotdir, 'recfrac-binned-ndet-pfmethod.%s' % plotfile_ext), dpi=100, bbox_inches='tight' ) plt.close('all') # 4d. plot of recovery rate per ndet bin per variable type fig = plt.figure(figsize=(6.4*1.5,4.8*1.5)) # figure out all vartypes all_vartypes = np.unique( [(precvar['details'][x]['actual_vartype']) for x in precvar['details'] if (precvar['details'][x]['actual_vartype'] in PERIODIC_VARTYPES)] ) for vt in all_vartypes: thisvt_recfracs = [] for ndetbin_pv, ndetbin_rv in zip(ndetbinned_periodicvars, ndetbinned_recovered_objects): thisbin_thisvt_recvars = [ x for x in ndetbin_rv if (precvar['details'][x]['actual_vartype'] == vt) ] thisbin_thismagcol_recfrac = ( np.array(thisbin_thisvt_recvars).size / ndetbin_pv.size ) thisvt_recfracs.append(thisbin_thismagcol_recfrac) # now that we have per magcol recfracs, plot them plt.plot(ndetbinned_ndets, np.array(thisvt_recfracs), marker='.', label='%s' % vt, ms=0.0) # add this to the outdict array ndetbinned_per_vartype_recfracs.append( np.array(thisvt_recfracs) ) # finish up the plot plt.plot(ndetbinned_ndets, ndetbinned_recfrac, marker='.',ms=0.0, label='overall', color='k') plt.xlabel(r'SDSS $r$ magnitude') plt.ylabel('recovered fraction of periodic variables') plt.title('per vartype recovery fraction by periodic var ndets') plt.ylim((0,1)) plt.legend(markerscale=10.0) plt.savefig( os.path.join(recplotdir, 'recfrac-binned-ndet-vartype.%s' % plotfile_ext), dpi=100, bbox_inches='tight' ) plt.close('all') # 4e. plot of recovery rate per ndet bin per alias type fig = plt.figure(figsize=(6.4*1.5,4.8*1.5)) # figure out all vartypes all_aliastypes = recovered_status for at in all_aliastypes: thisat_recfracs = [] for ndetbin_pv, ndetbin_rv in zip(ndetbinned_periodicvars, ndetbinned_recovered_objects): thisbin_thisat_recvars = [ x for x in ndetbin_rv if (precvar['details'][x]['best_recovered_status'][0] == at) ] thisbin_thismagcol_recfrac = ( np.array(thisbin_thisat_recvars).size / ndetbin_pv.size ) thisat_recfracs.append(thisbin_thismagcol_recfrac) # now that we have per magcol recfracs, plot them plt.plot(ndetbinned_ndets, np.array(thisat_recfracs), marker='.', label='%s' % at, ms=0.0) # add this to the outdict array ndetbinned_per_aliastype_recfracs.append( np.array(thisat_recfracs) ) # finish up the plot plt.plot(ndetbinned_ndets, ndetbinned_recfrac, marker='.',ms=0.0, label='overall', color='k') plt.xlabel(r'SDSS $r$ magnitude') plt.ylabel('recovered fraction of periodic variables') plt.title('per alias-type recovery fraction by periodic var ndets') plt.ylim((0,1)) plt.legend(markerscale=10.0) plt.savefig( os.path.join(recplotdir, 'recfrac-binned-ndet-aliastype.%s' % plotfile_ext), dpi=100, bbox_inches='tight' ) plt.close('all') # update the lists in the outdict outdict['magbinned_per_magcol_recfracs'] = ( magbinned_per_magcol_recfracs ) outdict['magbinned_per_pfmethod_recfracs'] = ( magbinned_per_pfmethod_recfracs ) outdict['magbinned_per_vartype_recfracs'] = ( magbinned_per_vartype_recfracs ) outdict['magbinned_per_aliastype_recfracs'] = ( magbinned_per_aliastype_recfracs ) outdict['periodbinned_per_magcol_recfracs'] = ( periodbinned_per_magcol_recfracs ) outdict['periodbinned_per_pfmethod_recfracs'] = ( periodbinned_per_pfmethod_recfracs ) outdict['periodbinned_per_vartype_recfracs'] = ( periodbinned_per_vartype_recfracs ) outdict['periodbinned_per_aliastype_recfracs'] = ( periodbinned_per_aliastype_recfracs ) outdict['amplitudebinned_per_magcol_recfracs'] = ( amplitudebinned_per_magcol_recfracs ) outdict['amplitudebinned_per_pfmethod_recfracs'] = ( amplitudebinned_per_pfmethod_recfracs ) outdict['amplitudebinned_per_vartype_recfracs'] = ( amplitudebinned_per_vartype_recfracs ) outdict['amplitudebinned_per_aliastype_recfracs'] = ( amplitudebinned_per_aliastype_recfracs ) outdict['ndetbinned_per_magcol_recfracs'] = ( ndetbinned_per_magcol_recfracs ) outdict['ndetbinned_per_pfmethod_recfracs'] = ( ndetbinned_per_pfmethod_recfracs ) outdict['ndetbinned_per_vartype_recfracs'] = ( ndetbinned_per_vartype_recfracs ) outdict['ndetbinned_per_aliastype_recfracs'] = ( ndetbinned_per_aliastype_recfracs ) # get the overall recovered vars per pfmethod overall_recvars_per_pfmethod = [] for pfm in all_pfmethods: thispfm_recvars = np.array([ x for x in precvar['details'] if ((x in recovered_periodicvars) and (precvar['details'][x]['best_recovered_pfmethod'] == pfm)) ]) overall_recvars_per_pfmethod.append(thispfm_recvars) # get the overall recovered vars per vartype overall_recvars_per_vartype = [] for vt in all_vartypes: thisvt_recvars = np.array([ x for x in precvar['details'] if ((x in recovered_periodicvars) and (precvar['details'][x]['actual_vartype'] == vt)) ]) overall_recvars_per_vartype.append(thisvt_recvars) # get the overall recovered vars per magcol overall_recvars_per_magcol = [] for mc in magcols: thismc_recvars = np.array([ x for x in precvar['details'] if ((x in recovered_periodicvars) and (precvar['details'][x]['best_recovered_magcol'] == mc)) ]) overall_recvars_per_magcol.append(thismc_recvars) # get the overall recovered vars per aliastype overall_recvars_per_aliastype = [] for at in all_aliastypes: thisat_recvars = np.array([ x for x in precvar['details'] if ((x in recovered_periodicvars) and (precvar['details'][x]['best_recovered_status'] == at)) ]) overall_recvars_per_aliastype.append(thisat_recvars) # update the outdict with these outdict['overall_recfrac_per_pfmethod'] = np.array([ x.size/actual_periodicvars.size for x in overall_recvars_per_pfmethod ]) outdict['overall_recfrac_per_vartype'] = np.array([ x.size/actual_periodicvars.size for x in overall_recvars_per_vartype ]) outdict['overall_recfrac_per_magcol'] = np.array([ x.size/actual_periodicvars.size for x in overall_recvars_per_magcol ]) outdict['overall_recfrac_per_aliastype'] = np.array([ x.size/actual_periodicvars.size for x in overall_recvars_per_aliastype ]) # 5. bar plot of overall recovery rate per pfmethod fig = plt.figure(figsize=(6.4*1.5,4.8*1.5)) xt = np.arange(len(all_pfmethods)) xl = all_pfmethods plt.barh(xt, outdict['overall_recfrac_per_pfmethod'], 0.50) plt.yticks(xt, xl) plt.xlabel('period-finding method') plt.ylabel('overall recovery rate') plt.title('overall recovery rate per period-finding method') plt.savefig( os.path.join(recplotdir, 'recfrac-overall-pfmethod.%s' % plotfile_ext), dpi=100, bbox_inches='tight' ) plt.close('all') # 6. bar plot of overall recovery rate per magcol fig = plt.figure(figsize=(6.4*1.5,4.8*1.5)) xt = np.arange(len(magcols)) xl = magcols plt.barh(xt, outdict['overall_recfrac_per_magcol'], 0.50) plt.yticks(xt, xl) plt.xlabel('light curve magnitude column') plt.ylabel('overall recovery rate') plt.title('overall recovery rate per light curve magcol') plt.savefig( os.path.join(recplotdir, 'recfrac-overall-magcol.%s' % plotfile_ext), dpi=100, bbox_inches='tight' ) plt.close('all') # 7. bar plot of overall recovery rate per aliastype fig = plt.figure(figsize=(6.4*1.5,4.8*1.5)) xt = np.arange(len(all_aliastypes)) xl = all_aliastypes plt.barh(xt, outdict['overall_recfrac_per_aliastype'], 0.50) plt.yticks(xt, xl) plt.xlabel('period recovery status') plt.ylabel('overall recovery rate') plt.title('overall recovery rate per period recovery status') plt.savefig( os.path.join(recplotdir, 'recfrac-overall-aliastype.%s' % plotfile_ext), dpi=100, bbox_inches='tight' ) plt.close('all') # 8. bar plot of overall recovery rate per vartype fig = plt.figure(figsize=(6.4*1.5,4.8*1.5)) xt = np.arange(len(all_vartypes)) xl = all_vartypes plt.barh(xt, outdict['overall_recfrac_per_vartype'], 0.50) plt.yticks(xt, xl) plt.xlabel('periodic variable type') plt.ylabel('overall recovery rate') plt.title('overall recovery rate per periodic variable type') plt.savefig( os.path.join(recplotdir, 'recfrac-overall-vartype.%s' % plotfile_ext), dpi=100, bbox_inches='tight' ) plt.close('all') # 9. overall recovered period periodogram for objects that aren't actual # periodic variables. this effectively should give us the window function of # the observations notvariable_recovered_periods = np.concatenate([ precvar['details'][x]['recovery_periods'] for x in precvar['details'] if (precvar['details'][x]['actual_vartype'] is None) ]) notvariable_recovered_lspvals = np.concatenate([ precvar['details'][x]['recovery_lspvals'] for x in precvar['details'] if (precvar['details'][x]['actual_vartype'] is None) ]) sortind = np.argsort(notvariable_recovered_periods) notvariable_recovered_periods = notvariable_recovered_periods[sortind] notvariable_recovered_lspvals = notvariable_recovered_lspvals[sortind] outdict['notvariable_recovered_periods'] = notvariable_recovered_periods outdict['notvariable_recovered_lspvals'] = notvariable_recovered_lspvals fig = plt.figure(figsize=(6.4*1.5,4.8*1.5)) plt.plot(notvariable_recovered_periods, notvariable_recovered_lspvals, ms=1.0,linestyle='none',marker='.') plt.xscale('log') plt.xlabel('recovered periods [days]') plt.ylabel('recovered normalized periodogram power') plt.title('periodogram for actual not-variable objects') plt.savefig( os.path.join(recplotdir, 'recovered-periodogram-nonvariables.%s' % plotfile_ext), dpi=100, bbox_inches='tight' ) plt.close('all') # 10. overall recovered period histogram for objects marked # not-variable. this gives us the most common periods fig = plt.figure(figsize=(6.4*1.5,4.8*1.5)) plt.hist(notvariable_recovered_periods,bins=np.arange(0.02,300.0,1.0e-3), histtype='step') plt.xscale('log') plt.xlabel('recovered periods [days]') plt.ylabel('number of times periods recovered') plt.title('recovered period histogram for non-variable objects') plt.savefig( os.path.join(recplotdir, 'recovered-period-hist-nonvariables.%s' % plotfile_ext), dpi=100, bbox_inches='tight' ) plt.close('all') # at the end, write the outdict to a pickle and return it outfile = os.path.join(simbasedir, 'periodicvar-recovery-plotresults.pkl') with open(outfile,'wb') as outfd: pickle.dump(outdict, outfd, pickle.HIGHEST_PROTOCOL) return outdict
def mast_query(service, params, data=None, apiversion='v0', forcefetch=False, cachedir='~/.astrobase/mast-cache', verbose=True, timeout=10.0, refresh=5.0, maxtimeout=90.0, maxtries=3, raiseonfail=False, jitter=5.0): '''This queries the STScI MAST service for catalog data. All results are downloaded as JSON files that are written to `cachedir`. Parameters ---------- service : str This is the name of the service to use. See https://mast.stsci.edu/api/v0/_services.html for a list of all available services. params : dict This is a dict containing the input params to the service as described on its details page linked in the `service description page on MAST <https://mast.stsci.edu/api/v0/_services.html>`_. data : dict or None This contains optional data to upload to the service. apiversion : str The API version of the MAST service to use. This sets the URL that this function will call, using `apiversion` as key into the `MAST_URLS` dict above. forcefetch : bool If this is True, the query will be retried even if cached results for it exist. cachedir : str This points to the directory where results will be downloaded. verbose : bool If True, will indicate progress and warn of any issues. timeout : float This sets the amount of time in seconds to wait for the service to respond to our initial request. refresh : float This sets the amount of time in seconds to wait before checking if the result file is available. If the results file isn't available after `refresh` seconds have elapsed, the function will wait for `refresh` seconds continuously, until `maxtimeout` is reached or the results file becomes available. maxtimeout : float The maximum amount of time in seconds to wait for a result to become available after submitting our query request. maxtries : int The maximum number of tries (across all mirrors tried) to make to either submit the request or download the results, before giving up. raiseonfail : bool If this is True, the function will raise an Exception if something goes wrong, instead of returning None. jitter : float This is used to control the scale of the random wait in seconds before starting the query. Useful in parallelized situations. Returns ------- dict This returns a dict of the following form:: {'params':dict of the input params used for the query, 'provenance':'cache' or 'new download', 'result':path to the file on disk with the downloaded data table} ''' # this matches: # https://mast.stsci.edu/api/v0/class_mashup_1_1_mashup_request.html inputparams = { 'format':'json', 'params':params, 'service':service, 'timeout':timeout, } if data is not None: inputparams['data'] = data # see if the cachedir exists if '~' in cachedir: cachedir = os.path.expanduser(cachedir) if not os.path.exists(cachedir): os.makedirs(cachedir) # generate the cachefname and look for it xcachekey = '-'.join([repr(inputparams[x]) for x in sorted(inputparams.keys())]) cachekey = hashlib.sha256(xcachekey.encode()).hexdigest() cachefname = os.path.join( cachedir, '%s.json' % (cachekey,) ) provenance = 'cache' ##################### ## RUN A NEW QUERY ## ##################### # otherwise, we check the cache if it's done already, or run it again if not if forcefetch or (not os.path.exists(cachefname)): time.sleep(random.randint(1,jitter)) provenance = 'new download' waitdone = False timeelapsed = 0.0 ntries = 1 url = MAST_URLS[apiversion]['url'] formdata = {'request':json.dumps(inputparams)} while (not waitdone) or (ntries < maxtries): if timeelapsed > maxtimeout: retdict = None break try: resp = requests.post(url, data=formdata, # we'll let the service time us out first # if that fails, we'll timeout ourselves timeout=timeout+1.0) resp.raise_for_status() respjson = resp.json() if respjson['status'] == 'COMPLETE': data = respjson['data'] nrows = len(data) if nrows > 0: with open(cachefname, 'w') as outfd: json.dump(respjson, outfd) retdict = { 'params':inputparams, 'provenance':provenance, 'cachefname':cachefname } waitdone = True if verbose: LOGINFO('query successful. nmatches: %s' % nrows) break else: LOGERROR( 'no matching objects found for inputparams: %r' % inputparams ) retdict = None waitdone = True break # if we're still executing after the initial timeout is done elif respjson['status'] == 'EXECUTING': if verbose: LOGINFO('query is still executing, ' 'waiting %s seconds to retry...' % refresh) waitdone = False time.sleep(refresh) timeelapsed = timeelapsed + refresh retdict = None else: LOGERROR('Query failed! Message from service: %s' % respjson['msg']) retdict = None waitdone = True break except requests.exceptions.Timeout as e: if verbose: LOGWARNING('MAST query try timed out, ' 'site is probably down. ' 'Waiting for %s seconds to try again...' % refresh) waitdone = False time.sleep(refresh) timeelapsed = timeelapsed + refresh retdict = None except KeyboardInterrupt as e: LOGERROR('MAST request wait aborted for ' '%s' % repr(inputparams)) return None except Exception as e: LOGEXCEPTION('MAST query failed!') if raiseonfail: raise return None # # increment number of tries at the bottom of the loop # ntries = ntries + 1 # # done with waiting for completion # if retdict is None: LOGERROR('Timed out, errored out, or reached maximum number ' 'of tries with no response. Query was: %r' % inputparams) return None else: return retdict # otherwise, get the file from the cache else: if verbose: LOGINFO('getting cached MAST query result for ' 'request: %s' % (repr(inputparams))) retdict = { 'params':inputparams, 'provenance':provenance, 'cachefname':cachefname } return retdict
def tic_conesearch( ra, decl, radius_arcmin=5.0, apiversion='v0', forcefetch=False, cachedir='~/.astrobase/mast-cache', verbose=True, timeout=10.0, refresh=5.0, maxtimeout=90.0, maxtries=3, jitter=5.0, raiseonfail=False ): '''This runs a TESS Input Catalog cone search on MAST. If you use this, please cite the TIC paper (Stassun et al 2018; http://adsabs.harvard.edu/abs/2018AJ....156..102S). Also see the "living" TESS input catalog docs: https://docs.google.com/document/d/1zdiKMs4Ld4cXZ2DW4lMX-fuxAF6hPHTjqjIwGqnfjqI Also see: https://mast.stsci.edu/api/v0/_t_i_cfields.html for the fields returned by the service and present in the result JSON file. Parameters ---------- ra,decl : float The center coordinates of the cone-search in decimal degrees. radius_arcmin : float The cone-search radius in arcminutes. apiversion : str The API version of the MAST service to use. This sets the URL that this function will call, using `apiversion` as key into the `MAST_URLS` dict above. forcefetch : bool If this is True, the query will be retried even if cached results for it exist. cachedir : str This points to the directory where results will be downloaded. verbose : bool If True, will indicate progress and warn of any issues. timeout : float This sets the amount of time in seconds to wait for the service to respond to our initial request. refresh : float This sets the amount of time in seconds to wait before checking if the result file is available. If the results file isn't available after `refresh` seconds have elapsed, the function will wait for `refresh` seconds continuously, until `maxtimeout` is reached or the results file becomes available. maxtimeout : float The maximum amount of time in seconds to wait for a result to become available after submitting our query request. maxtries : int The maximum number of tries (across all mirrors tried) to make to either submit the request or download the results, before giving up. jitter : float This is used to control the scale of the random wait in seconds before starting the query. Useful in parallelized situations. raiseonfail : bool If this is True, the function will raise an Exception if something goes wrong, instead of returning None. Returns ------- dict This returns a dict of the following form:: {'params':dict of the input params used for the query, 'provenance':'cache' or 'new download', 'result':path to the file on disk with the downloaded data table} ''' params = {'ra':ra, 'dec':decl, 'radius':radius_arcmin/60.0} service = 'Mast.Catalogs.Tic.Cone' return mast_query(service, params, jitter=jitter, apiversion=apiversion, forcefetch=forcefetch, cachedir=cachedir, verbose=verbose, timeout=timeout, refresh=refresh, maxtimeout=maxtimeout, maxtries=maxtries, raiseonfail=raiseonfail)
def tic_xmatch( ra, decl, radius_arcsec=5.0, apiversion='v0', forcefetch=False, cachedir='~/.astrobase/mast-cache', verbose=True, timeout=90.0, refresh=5.0, maxtimeout=180.0, maxtries=3, jitter=5.0, raiseonfail=False ): '''This does a cross-match with TIC. Parameters ---------- ra,decl : np.arrays or lists of floats The coordinates that will be cross-matched against the TIC. radius_arcsec : float The cross-match radius in arcseconds. apiversion : str The API version of the MAST service to use. This sets the URL that this function will call, using `apiversion` as key into the `MAST_URLS` dict above. forcefetch : bool If this is True, the query will be retried even if cached results for it exist. cachedir : str This points to the directory where results will be downloaded. verbose : bool If True, will indicate progress and warn of any issues. timeout : float This sets the amount of time in seconds to wait for the service to respond to our initial request. refresh : float This sets the amount of time in seconds to wait before checking if the result file is available. If the results file isn't available after `refresh` seconds have elapsed, the function will wait for `refresh` seconds continuously, until `maxtimeout` is reached or the results file becomes available. maxtimeout : float The maximum amount of time in seconds to wait for a result to become available after submitting our query request. maxtries : int The maximum number of tries (across all mirrors tried) to make to either submit the request or download the results, before giving up. jitter : float This is used to control the scale of the random wait in seconds before starting the query. Useful in parallelized situations. raiseonfail : bool If this is True, the function will raise an Exception if something goes wrong, instead of returning None. Returns ------- dict This returns a dict of the following form:: {'params':dict of the input params used for the query, 'provenance':'cache' or 'new download', 'result':path to the file on disk with the downloaded data table} ''' service = 'Mast.Tic.Crossmatch' xmatch_input = {'fields':[{'name':'ra','type':'float'}, {'name':'dec','type':'float'}]} xmatch_input['data'] = [{'ra':x, 'dec':y} for (x,y) in zip(ra, decl)] params = {'raColumn':'ra', 'decColumn':'dec', 'radius':radius_arcsec/3600.0} return mast_query(service, params, data=xmatch_input, jitter=jitter, apiversion=apiversion, forcefetch=forcefetch, cachedir=cachedir, verbose=verbose, timeout=timeout, refresh=refresh, maxtimeout=maxtimeout, maxtries=maxtries, raiseonfail=raiseonfail)
def tic_objectsearch( objectid, idcol_to_use="ID", apiversion='v0', forcefetch=False, cachedir='~/.astrobase/mast-cache', verbose=True, timeout=90.0, refresh=5.0, maxtimeout=180.0, maxtries=3, jitter=5.0, raiseonfail=False ): ''' This runs a TIC search for a specified TIC ID. Parameters ---------- objectid : str The object ID to look up information for. idcol_to_use : str This is the name of the object ID column to use when looking up the provided `objectid`. This is one of {'ID', 'HIP', 'TYC', 'UCAC', 'TWOMASS', 'ALLWISE', 'SDSS', 'GAIA', 'APASS', 'KIC'}. apiversion : str The API version of the MAST service to use. This sets the URL that this function will call, using `apiversion` as key into the `MAST_URLS` dict above. forcefetch : bool If this is True, the query will be retried even if cached results for it exist. cachedir : str This points to the directory where results will be downloaded. verbose : bool If True, will indicate progress and warn of any issues. timeout : float This sets the amount of time in seconds to wait for the service to respond to our initial request. refresh : float This sets the amount of time in seconds to wait before checking if the result file is available. If the results file isn't available after `refresh` seconds have elapsed, the function will wait for `refresh` seconds continuously, until `maxtimeout` is reached or the results file becomes available. maxtimeout : float The maximum amount of time in seconds to wait for a result to become available after submitting our query request. maxtries : int The maximum number of tries (across all mirrors tried) to make to either submit the request or download the results, before giving up. jitter : float This is used to control the scale of the random wait in seconds before starting the query. Useful in parallelized situations. raiseonfail : bool If this is True, the function will raise an Exception if something goes wrong, instead of returning None. Returns ------- dict This returns a dict of the following form:: {'params':dict of the input params used for the query, 'provenance':'cache' or 'new download', 'result':path to the file on disk with the downloaded data table} ''' params = { 'columns':'*', 'filters':[ {"paramName": idcol_to_use, "values":[str(objectid)]} ] } service = 'Mast.Catalogs.Filtered.Tic' return mast_query(service, params, jitter=jitter, apiversion=apiversion, forcefetch=forcefetch, cachedir=cachedir, verbose=verbose, timeout=timeout, refresh=refresh, maxtimeout=maxtimeout, maxtries=maxtries, raiseonfail=raiseonfail)
def send_email(sender, subject, content, email_recipient_list, email_address_list, email_user=None, email_pass=None, email_server=None): '''This sends an email to addresses, informing them about events. The email account settings are retrieved from the settings file as described above. Parameters ---------- sender : str The name of the sender to use in the email header. subject : str Subject of the email. content : str Content of the email. email_recipient list : list of str This is a list of email recipient names of the form: `['Example Person 1', 'Example Person 1', ...]` email_recipient list : list of str This is a list of email recipient addresses of the form: `['[email protected]', '[email protected]', ...]` email_user : str The username of the email server account that will send the emails. If this is None, the value of EMAIL_USER from the ~/.astrobase/.emailsettings file will be used. If that is None as well, this function won't work. email_pass : str The password of the email server account that will send the emails. If this is None, the value of EMAIL_PASS from the ~/.astrobase/.emailsettings file will be used. If that is None as well, this function won't work. email_server : str The address of the email server that will send the emails. If this is None, the value of EMAIL_USER from the ~/.astrobase/.emailsettings file will be used. If that is None as well, this function won't work. Returns ------- bool True if email sending succeeded. False if email sending failed. ''' if not email_user: email_user = EMAIL_USER if not email_pass: email_pass = EMAIL_PASSWORD if not email_server: email_server = EMAIL_SERVER if not email_server and email_user and email_pass: raise ValueError("no email server address and " "credentials available, can't continue") msg_text = EMAIL_TEMPLATE.format( sender=sender, hostname=socket.gethostname(), activity_time='%sZ' % datetime.utcnow().isoformat(), activity_report=content ) email_sender = '%s <%s>' % (sender, EMAIL_USER) # put together the recipient and email lists email_recipients = [('%s <%s>' % (x,y)) for (x,y) in zip(email_recipient_list, email_address_list)] # put together the rest of the message email_msg = MIMEText(msg_text) email_msg['From'] = email_sender email_msg['To'] = ', '.join(email_recipients) email_msg['Message-Id'] = make_msgid() email_msg['Subject'] = '[%s on %s] %s' % ( sender, socket.gethostname(), subject ) email_msg['Date'] = formatdate(time.time()) # start the email process try: server = smtplib.SMTP(EMAIL_SERVER, 587) server_ehlo_response = server.ehlo() if server.has_extn('STARTTLS'): try: tls_start_response = server.starttls() tls_ehlo_response = server.ehlo() login_response = server.login(EMAIL_USER, EMAIL_PASSWORD) send_response = ( server.sendmail(email_sender, email_address_list, email_msg.as_string()) ) except Exception as e: print('script email sending failed with error: %s' % e) send_response = None if send_response is not None: print('script email sent successfully') quit_response = server.quit() return True else: quit_response = server.quit() return False else: print('email server does not support STARTTLS,' ' bailing out...') quit_response = server.quit() return False except Exception as e: print('sending email failed with error: %s' % e) returnval = False quit_response = server.quit() return returnval
def fourier_sinusoidal_func(fourierparams, times, mags, errs): '''This generates a sinusoidal light curve using a Fourier cosine series. Parameters ---------- fourierparams : list This MUST be a list of the following form like so:: [period, epoch, [amplitude_1, amplitude_2, amplitude_3, ..., amplitude_X], [phase_1, phase_2, phase_3, ..., phase_X]] where X is the Fourier order. times,mags,errs : np.array The input time-series of measurements and associated errors for which the model will be generated. The times will be used to generate model mags, and the input `times`, `mags`, and `errs` will be resorted by model phase and returned. Returns ------- (modelmags, phase, ptimes, pmags, perrs) : tuple Returns the model mags and phase values. Also returns the input `times`, `mags`, and `errs` sorted by the model's phase. ''' period, epoch, famps, fphases = fourierparams # figure out the order from the length of the Fourier param list forder = len(famps) # phase the times with this period iphase = (times - epoch)/period iphase = iphase - np.floor(iphase) phasesortind = np.argsort(iphase) phase = iphase[phasesortind] ptimes = times[phasesortind] pmags = mags[phasesortind] perrs = errs[phasesortind] # calculate all the individual terms of the series fseries = [famps[x]*np.cos(2.0*np.pi*x*phase + fphases[x]) for x in range(forder)] # this is the zeroth order coefficient - a constant equal to median mag modelmags = np.median(mags) # sum the series for fo in fseries: modelmags += fo return modelmags, phase, ptimes, pmags, perrs
def fourier_sinusoidal_residual(fourierparams, times, mags, errs): ''' This returns the residual between the model mags and the actual mags. Parameters ---------- fourierparams : list This MUST be a list of the following form like so:: [period, epoch, [amplitude_1, amplitude_2, amplitude_3, ..., amplitude_X], [phase_1, phase_2, phase_3, ..., phase_X]] where X is the Fourier order. times,mags,errs : np.array The input time-series of measurements and associated errors for which the model will be generated. The times will be used to generate model mags, and the input `times`, `mags`, and `errs` will be resorted by model phase and returned. Returns ------- np.array The residuals between the input `mags` and generated `modelmags`, weighted by the measurement errors in `errs`. ''' modelmags, phase, ptimes, pmags, perrs = ( fourier_sinusoidal_func(fourierparams, times, mags, errs) ) # this is now a weighted residual taking into account the measurement err return (pmags - modelmags)/perrs
def _make_periodogram(axes, lspinfo, objectinfo, findercmap, finderconvolve, verbose=True, findercachedir='~/.astrobase/stamp-cache'): '''Makes periodogram, objectinfo, and finder tile for `checkplot_png` and `twolsp_checkplot_png`. Parameters ---------- axes : matplotlib.axes.Axes object The Axes object which will contain the plot being made. lspinfo : dict Dict containing results from a period-finder in `astrobase.periodbase` or a dict that corresponds to that format. objectinfo : dict Dict containing basic info about the object being processed. findercmap : matplotlib Colormap object or str The Colormap object to use for the finder chart image. finderconvolve : astropy.convolution.Kernel object or None If not None, the Kernel object to use for convolving the finder image. verbose : bool If True, indicates progress. findercachedir : str The directory where the FITS finder images are downloaded and cached. Returns ------- Does not return anything, works on the input Axes object directly. ''' # get the appropriate plot ylabel pgramylabel = PLOTYLABELS[lspinfo['method']] # get the periods and lspvals from lspinfo periods = lspinfo['periods'] lspvals = lspinfo['lspvals'] bestperiod = lspinfo['bestperiod'] nbestperiods = lspinfo['nbestperiods'] nbestlspvals = lspinfo['nbestlspvals'] # make the LSP plot on the first subplot axes.plot(periods,lspvals) axes.set_xscale('log',basex=10) axes.set_xlabel('Period [days]') axes.set_ylabel(pgramylabel) plottitle = '%s - %.6f d' % (METHODLABELS[lspinfo['method']], bestperiod) axes.set_title(plottitle) # show the best five peaks on the plot for bestperiod, bestpeak in zip(nbestperiods, nbestlspvals): axes.annotate('%.6f' % bestperiod, xy=(bestperiod, bestpeak), xycoords='data', xytext=(0.0,25.0), textcoords='offset points', arrowprops=dict(arrowstyle="->"),fontsize='14.0') # make a grid axes.grid(color='#a9a9a9', alpha=0.9, zorder=0, linewidth=1.0, linestyle=':') # if objectinfo is present, get things from it if (objectinfo and isinstance(objectinfo, dict) and ('objectid' in objectinfo or 'hatid' in objectinfo) and 'ra' in objectinfo and 'decl' in objectinfo and objectinfo['ra'] and objectinfo['decl']): if 'objectid' not in objectinfo: objectid = objectinfo['hatid'] else: objectid = objectinfo['objectid'] if verbose: LOGINFO('adding in object information and ' 'finder chart for %s at RA: %.3f, DEC: %.3f' % (objectid, objectinfo['ra'], objectinfo['decl'])) # calculate colors if ('bmag' in objectinfo and 'vmag' in objectinfo and 'jmag' in objectinfo and 'kmag' in objectinfo and 'sdssi' in objectinfo and objectinfo['bmag'] and objectinfo['vmag'] and objectinfo['jmag'] and objectinfo['kmag'] and objectinfo['sdssi']): bvcolor = objectinfo['bmag'] - objectinfo['vmag'] jkcolor = objectinfo['jmag'] - objectinfo['kmag'] ijcolor = objectinfo['sdssi'] - objectinfo['jmag'] else: bvcolor = None jkcolor = None ijcolor = None if ('teff' in objectinfo and 'gmag' in objectinfo and objectinfo['teff'] and objectinfo['gmag']): # Gaia data input teff_val = objectinfo['teff'] gmag = objectinfo['gmag'] # bump the ylim of the LSP plot so that the overplotted finder and # objectinfo can fit in this axes plot lspylim = axes.get_ylim() axes.set_ylim(lspylim[0], lspylim[1]+0.75*(lspylim[1]-lspylim[0])) # get the stamp try: dss, dssheader = skyview_stamp(objectinfo['ra'], objectinfo['decl'], convolvewith=finderconvolve, flip=False, cachedir=findercachedir, verbose=verbose) stamp = dss # inset plot it on the current axes inset = inset_axes(axes, width="40%", height="40%", loc=1) inset.imshow(stamp, cmap=findercmap, origin='lower') inset.set_xticks([]) inset.set_yticks([]) inset.set_frame_on(False) # grid lines pointing to the center of the frame inset.axvline(x=150,ymin=0.375,ymax=0.45,linewidth=2.0,color='b') inset.axhline(y=150,xmin=0.375,xmax=0.45,linewidth=2.0,color='b') except OSError as e: LOGERROR('downloaded FITS appears to be corrupt, retrying...') dss, dssheader = skyview_stamp(objectinfo['ra'], objectinfo['decl'], convolvewith=finderconvolve, flip=False, forcefetch=True, cachedir=findercachedir, verbose=verbose) stamp = dss # inset plot it on the current axes inset = inset_axes(axes, width="40%", height="40%", loc=1) inset.imshow(stamp, cmap=findercmap, origin='lower') inset.set_xticks([]) inset.set_yticks([]) inset.set_frame_on(False) # grid lines pointing to the center of the frame inset.axvline(x=150,ymin=0.375,ymax=0.45,linewidth=2.0,color='b') inset.axhline(y=150,xmin=0.375,xmax=0.45,linewidth=2.0,color='b') except Exception as e: LOGEXCEPTION('could not fetch a DSS stamp for this ' 'object %s using coords (%.3f,%.3f)' % (objectid, objectinfo['ra'], objectinfo['decl'])) # annotate with objectinfo axes.text( 0.05,0.95, '%s' % objectid, ha='left',va='center',transform=axes.transAxes, fontsize=18.0 ) axes.text( 0.05,0.91, 'RA = %.3f, DEC = %.3f' % (objectinfo['ra'], objectinfo['decl']), ha='left',va='center',transform=axes.transAxes, fontsize=18.0 ) if bvcolor: axes.text(0.05,0.87, '$B - V$ = %.3f, $V$ = %.3f' % (bvcolor, objectinfo['vmag']), ha='left',va='center',transform=axes.transAxes, fontsize=18.0) elif 'vmag' in objectinfo and objectinfo['vmag']: axes.text(0.05,0.87, '$V$ = %.3f' % (objectinfo['vmag'],), ha='left',va='center',transform=axes.transAxes, fontsize=18.0) if ijcolor: axes.text(0.05,0.83, '$i - J$ = %.3f, $J$ = %.3f' % (ijcolor, objectinfo['jmag']), ha='left',va='center',transform=axes.transAxes, fontsize=18.0) elif 'jmag' in objectinfo and objectinfo['jmag']: axes.text(0.05,0.83, '$J$ = %.3f' % (objectinfo['jmag'],), ha='left',va='center',transform=axes.transAxes, fontsize=18.0) if jkcolor: axes.text(0.05,0.79, '$J - K$ = %.3f, $K$ = %.3f' % (jkcolor, objectinfo['kmag']), ha='left',va='center',transform=axes.transAxes, fontsize=18.0) elif 'kmag' in objectinfo and objectinfo['kmag']: axes.text(0.05,0.79, '$K$ = %.3f' % (objectinfo['kmag'],), ha='left',va='center',transform=axes.transAxes, fontsize=18.0) if 'sdssr' in objectinfo and objectinfo['sdssr']: axes.text(0.05,0.75,'SDSS $r$ = %.3f' % objectinfo['sdssr'], ha='left',va='center',transform=axes.transAxes, fontsize=18.0) if ('teff' in objectinfo and 'gmag' in objectinfo and objectinfo['teff'] and objectinfo['gmag']): # gaia data available axes.text(0.05,0.87, r'$G$ = %.1f, $T_\mathrm{eff}$ = %d' % ( gmag, int(teff_val)), ha='left',va='center',transform=axes.transAxes, fontsize=18.0) # add in proper motion stuff if available in objectinfo if ('pmra' in objectinfo and objectinfo['pmra'] and 'pmdecl' in objectinfo and objectinfo['pmdecl']): pm = total_proper_motion(objectinfo['pmra'], objectinfo['pmdecl'], objectinfo['decl']) axes.text(0.05,0.67,r'$\mu$ = %.2f mas yr$^{-1}$' % pm, ha='left',va='center',transform=axes.transAxes, fontsize=18.0) if 'jmag' in objectinfo and objectinfo['jmag']: rpm = reduced_proper_motion(objectinfo['jmag'],pm) axes.text(0.05,0.63,'$H_J$ = %.2f' % rpm, ha='left',va='center',transform=axes.transAxes, fontsize=18.0)
def _make_magseries_plot(axes, stimes, smags, serrs, magsarefluxes=False, ms=2.0): '''Makes the mag-series plot tile for `checkplot_png` and `twolsp_checkplot_png`. axes : matplotlib.axes.Axes object The Axes object where the generated plot will go. stimes,smags,serrs : np.array The mag/flux time-series arrays along with associated errors. These should all have been run through nan-stripping and sigma-clipping beforehand. magsarefluxes : bool If True, indicates the input time-series is fluxes and not mags so the plot y-axis direction and range can be set appropriately. ms : float The `markersize` kwarg to use when making the mag-series plot. Returns ------- Does not return anything, works on the input Axes object directly. ''' scaledplottime = stimes - npmin(stimes) axes.plot(scaledplottime, smags, marker='o', ms=ms, ls='None',mew=0, color='green', rasterized=True) # flip y axis for mags if not magsarefluxes: plot_ylim = axes.get_ylim() axes.set_ylim((plot_ylim[1], plot_ylim[0])) # set the x axis limit axes.set_xlim((npmin(scaledplottime)-1.0, npmax(scaledplottime)+1.0)) # make a grid axes.grid(color='#a9a9a9', alpha=0.9, zorder=0, linewidth=1.0, linestyle=':') # make the x and y axis labels plot_xlabel = 'JD - %.3f' % npmin(stimes) if magsarefluxes: plot_ylabel = 'flux' else: plot_ylabel = 'magnitude' axes.set_xlabel(plot_xlabel) axes.set_ylabel(plot_ylabel) # fix the yaxis ticks (turns off offset and uses the full # value of the yaxis tick) axes.get_yaxis().get_major_formatter().set_useOffset(False) axes.get_xaxis().get_major_formatter().set_useOffset(False)
def _make_phased_magseries_plot(axes, periodind, stimes, smags, serrs, varperiod, varepoch, phasewrap, phasesort, phasebin, minbinelems, plotxlim, lspmethod, lspmethodind=0, xliminsetmode=False, twolspmode=False, magsarefluxes=False, verbose=True, phasems=2.0, phasebinms=4.0): '''Makes the phased magseries plot tile for the `checkplot_png` and `twolsp_checkplot_png` functions. Parameters ---------- axes : matplotlib.axes.Axes object The Axes object where the generated plot will be written. periodind : int The index of the current best period being processed in the lspinfo dict. stimes,smags,serrs : np.array The mag/flux time-series arrays along with associated errors. These should all have been run through nan-stripping and sigma-clipping beforehand. varperiod : float or None The period to use for this phased light curve plot tile. varepoch : 'min' or float or list of lists or None The epoch to use for this phased light curve plot tile. If this is a float, will use the provided value directly. If this is 'min', will automatically figure out the time-of-minimum of the phased light curve. If this is None, will use the mimimum value of `stimes` as the epoch of the phased light curve plot. If this is a list of lists, will use the provided value of `lspmethodind` to look up the current period-finder method and the provided value of `periodind` to look up the epoch associated with that method and the current period. This is mostly only useful when `twolspmode` is True. phasewrap : bool If this is True, the phased time-series will be wrapped around phase 0.0. phasesort : bool If True, will sort the phased light curve in order of increasing phase. phasebin: float The bin size to use to group together measurements closer than this amount in phase. This is in units of phase. If this is a float, a phase-binned version of the phased light curve will be overplotted on top of the regular phased light curve. minbinelems : int The minimum number of elements required per phase bin to include it in the phased LC plot. plotxlim : sequence of two floats or None The x-range (min, max) of the phased light curve plot. If None, will be determined automatically. lspmethod : str One of the three-letter keys corresponding to period-finder method names in the `astrobase.plotbase.METHODSHORTLABELS` dict. Used to set the plot title correctly. lspmethodind : int If `twolspmode` is set, this will be used to look up the correct epoch associated with the current period-finder method and period. xliminsetmode : bool If this is True, the generated phased light curve plot will use the values of `plotxlim` as the main plot x-axis limits (i.e. zoomed-in if `plotxlim` is a range smaller than the full phase range), and will show the full phased light curve plot as an smaller inset. Useful for planetary transit light curves. twolspmode : bool If this is True, will use the `lspmethodind` and `periodind` to look up the correct values of epoch, etc. in the provided `varepoch` list of lists for plotting purposes. magsarefluxes : bool If True, indicates the input time-series is fluxes and not mags so the plot y-axis direction and range can be set appropriately. verbose : bool If True, indicates progress. phasems : float The marker size to use for the main phased light curve plot symbols. phasebinms : float The marker size to use for the binned phased light curve plot symbols. Returns ------- Does not return anything, works on the input Axes object directly. ''' plotvarepoch = None # figure out the epoch, if it's None, use the min of the time if varepoch is None: plotvarepoch = npmin(stimes) # if the varepoch is 'min', then fit a spline to the light curve # phased using the min of the time, find the fit mag minimum and use # the time for that as the varepoch elif isinstance(varepoch, str) and varepoch == 'min': try: spfit = spline_fit_magseries(stimes, smags, serrs, varperiod, magsarefluxes=magsarefluxes, sigclip=None, verbose=verbose) plotvarepoch = spfit['fitinfo']['fitepoch'] if len(plotvarepoch) != 1: plotvarepoch = varepoch[0] except Exception as e: LOGERROR('spline fit failed, trying SavGol fit') sgfit = savgol_fit_magseries(stimes, smags, serrs, varperiod, sigclip=None, magsarefluxes=magsarefluxes, verbose=verbose) plotvarepoch = sgfit['fitinfo']['fitepoch'] if len(plotvarepoch) != 1: plotvarepoch = plotvarepoch[0] finally: if plotvarepoch is None: LOGERROR('could not find a min epoch time, ' 'using min(times) as the epoch for ' 'the phase-folded LC') plotvarepoch = npmin(stimes) elif isinstance(varepoch, list): try: if twolspmode: thisvarepochlist = varepoch[lspmethodind] plotvarepoch = thisvarepochlist[periodind] else: plotvarepoch = varepoch[periodind] except Exception as e: LOGEXCEPTION( "varepoch provided in list form either doesn't match " "the length of nbestperiods from the period-finder " "result, or something else went wrong. using min(times) " "as the epoch instead" ) plotvarepoch = npmin(stimes) # the final case is to use the provided varepoch directly else: plotvarepoch = varepoch if verbose: LOGINFO('plotting phased LC with period %.6f, epoch %.5f' % (varperiod, plotvarepoch)) # phase the magseries phasedlc = phase_magseries(stimes, smags, varperiod, plotvarepoch, wrap=phasewrap, sort=phasesort) plotphase = phasedlc['phase'] plotmags = phasedlc['mags'] # if we're supposed to bin the phases, do so if phasebin: binphasedlc = phase_bin_magseries(plotphase, plotmags, binsize=phasebin, minbinelems=minbinelems) binplotphase = binphasedlc['binnedphases'] binplotmags = binphasedlc['binnedmags'] # finally, make the phased LC plot axes.plot(plotphase, plotmags, marker='o', ms=phasems, ls='None',mew=0, color='gray', rasterized=True) # overlay the binned phased LC plot if we're making one if phasebin: axes.plot(binplotphase, binplotmags, marker='o', ms=phasebinms, ls='None',mew=0, color='#1c1e57', rasterized=True) # flip y axis for mags if not magsarefluxes: plot_ylim = axes.get_ylim() axes.set_ylim((plot_ylim[1], plot_ylim[0])) # set the x axis limit if not plotxlim: axes.set_xlim((npmin(plotphase)-0.1, npmax(plotphase)+0.1)) else: axes.set_xlim((plotxlim[0],plotxlim[1])) # make a grid axes.grid(color='#a9a9a9', alpha=0.9, zorder=0, linewidth=1.0, linestyle=':') # make the x and y axis labels plot_xlabel = 'phase' if magsarefluxes: plot_ylabel = 'flux' else: plot_ylabel = 'magnitude' axes.set_xlabel(plot_xlabel) axes.set_ylabel(plot_ylabel) # fix the yaxis ticks (turns off offset and uses the full # value of the yaxis tick) axes.get_yaxis().get_major_formatter().set_useOffset(False) axes.get_xaxis().get_major_formatter().set_useOffset(False) # make the plot title if periodind == 0: plottitle = '%s best period: %.6f d - epoch: %.5f' % ( METHODSHORTLABELS[lspmethod], varperiod, plotvarepoch ) elif periodind == 1 and not twolspmode: plottitle = '%s best period x 0.5: %.6f d - epoch: %.5f' % ( METHODSHORTLABELS[lspmethod], varperiod, plotvarepoch ) elif periodind == 2 and not twolspmode: plottitle = '%s best period x 2: %.6f d - epoch: %.5f' % ( METHODSHORTLABELS[lspmethod], varperiod, plotvarepoch ) elif periodind > 2 and not twolspmode: plottitle = '%s peak %s: %.6f d - epoch: %.5f' % ( METHODSHORTLABELS[lspmethod], periodind-1, varperiod, plotvarepoch ) elif periodind > 0: plottitle = '%s peak %s: %.6f d - epoch: %.5f' % ( METHODSHORTLABELS[lspmethod], periodind+1, varperiod, plotvarepoch ) axes.set_title(plottitle) # if we're making an inset plot showing the full range if (plotxlim and isinstance(plotxlim, (list,tuple)) and len(plotxlim) == 2 and xliminsetmode is True): # bump the ylim of the plot so that the inset can fit in this axes plot axesylim = axes.get_ylim() if magsarefluxes: axes.set_ylim(axesylim[0], axesylim[1] + 0.5*npabs(axesylim[1]-axesylim[0])) else: axes.set_ylim(axesylim[0], axesylim[1] - 0.5*npabs(axesylim[1]-axesylim[0])) # put the inset axes in inset = inset_axes(axes, width="40%", height="40%", loc=1) # make the scatter plot for the phased LC plot inset.plot(plotphase, plotmags, marker='o', ms=2.0, ls='None',mew=0, color='gray', rasterized=True) # overlay the binned phased LC plot if we're making one if phasebin: inset.plot(binplotphase, binplotmags, marker='o', ms=4.0, ls='None',mew=0, color='#1c1e57', rasterized=True) # show the full phase coverage # show the full phase coverage if phasewrap: inset.set_xlim(-0.2,0.8) else: inset.set_xlim(-0.1,1.1) # flip y axis for mags if not magsarefluxes: inset_ylim = inset.get_ylim() inset.set_ylim((inset_ylim[1], inset_ylim[0])) # set the plot title inset.text(0.5,0.1,'full phased light curve', ha='center',va='center',transform=inset.transAxes) # don't show axes labels or ticks inset.set_xticks([]) inset.set_yticks([])
def checkplot_png(lspinfo, times, mags, errs, varepoch='min', magsarefluxes=False, objectinfo=None, findercmap='gray_r', finderconvolve=None, findercachedir='~/.astrobase/stamp-cache', normto='globalmedian', normmingap=4.0, sigclip=4.0, phasewrap=True, phasesort=True, phasebin=0.002, minbinelems=7, plotxlim=(-0.8,0.8), xliminsetmode=False, bestperiodhighlight=None, plotdpi=100, outfile=None, verbose=True): '''This makes a checkplot PNG using the output from a period-finder routine. A checkplot is a 3 x 3 grid of plots like so:: [periodogram + objectinfo] [ unphased LC ] [period 1 phased LC] [ period 1 phased LC /2 ] [period 1 phased LC x2] [period 2 phased LC] [ period 3 phased LC ] [period 4 phased LC ] [period 5 phased LC] This is used to sanity check the five best periods obtained from a period-finder function in `astrobase.periodbase` or from your own period-finder routines if their results can be turned into a dict with the format shown below. Parameters ---------- lspinfo : dict or str If this is a dict, it must be a dict produced by an `astrobase.periodbase` period-finder function or a dict from your own period-finder function or routine that is of the form below with at least these keys:: {'periods': np.array of all periods searched by the period-finder, 'lspvals': np.array of periodogram power value for each period, 'bestperiod': a float value that is the period with the highest peak in the periodogram, i.e. the most-likely actual period, 'method': a three-letter code naming the period-finder used; must be one of the keys in the `astrobase.periodbase.METHODLABELS` dict, 'nbestperiods': a list of the periods corresponding to periodogram peaks (`nbestlspvals` below) to annotate on the periodogram plot so they can be called out visually, 'nbestlspvals': a list of the power values associated with periodogram peaks to annotate on the periodogram plot so they can be called out visually; should be the same length as `nbestperiods` above} `nbestperiods` and `nbestlspvals` must have at least 5 elements each, e.g. describing the five 'best' (highest power) peaks in the periodogram. If lspinfo is a str, then it must be a path to a pickle file (ending with the extension '.pkl' or '.pkl.gz') that contains a dict of the form described above. times,mags,errs : np.array The mag/flux time-series arrays to process along with associated errors. varepoch : 'min' or float or None or list of lists This sets the time of minimum light finding strategy for the checkplot:: the epoch used for all phased If `varepoch` is None -> light curve plots will be `min(times)`. If `varepoch='min'` -> automatic epoch finding for all periods using light curve fits. If varepoch is a single float -> this epoch will be used for all phased light curve plots If varepoch is a list of floats each epoch will be applied to with length = `len(nbestperiods)+2` -> the phased light curve for each from period-finder results period specifically If you use a list for varepoch, it must be of length `len(lspinfo['nbestperiods']) + 2`, because we insert half and twice the period into the best periods list to make those phased LC plots. magsarefluxes : bool If True, indicates the input time-series is fluxes and not mags so the plot y-axis direction and range can be set appropriately. objectinfo : dict or None If provided, this is a dict containing information on the object whose light curve is being processed. This function will then be able to look up and download a finder chart for this object and write that to the output checkplot PNG image.The `objectinfo` dict must be of the form and contain at least the keys described below:: {'objectid': the name of the object, 'ra': the right ascension of the object in decimal degrees, 'decl': the declination of the object in decimal degrees, 'ndet': the number of observations of this object} You can also provide magnitudes and proper motions of the object using the following keys and the appropriate values in the `objectinfo` dict. These will be used to calculate colors, total and reduced proper motion, etc. and display these in the output checkplot PNG. - SDSS mag keys: 'sdssu', 'sdssg', 'sdssr', 'sdssi', 'sdssz' - 2MASS mag keys: 'jmag', 'hmag', 'kmag' - Cousins mag keys: 'bmag', 'vmag' - GAIA specific keys: 'gmag', 'teff' - proper motion keys: 'pmra', 'pmdecl' findercmap : str or matplotlib.cm.ColorMap object The Colormap object to use for the finder chart image. finderconvolve : astropy.convolution.Kernel object or None If not None, the Kernel object to use for convolving the finder image. findercachedir : str The directory where the FITS finder images are downloaded and cached. normto : {'globalmedian', 'zero'} or a float This sets the normalization target:: 'globalmedian' -> norms each mag to global median of the LC column 'zero' -> norms each mag to zero a float -> norms each mag to this specified float value. normmingap : float This defines how much the difference between consecutive measurements is allowed to be to consider them as parts of different timegroups. By default it is set to 4.0 days. sigclip : float or int or sequence of two floats/ints or None If a single float or int, a symmetric sigma-clip will be performed using the number provided as the sigma-multiplier to cut out from the input time-series. If a list of two ints/floats is provided, the function will perform an 'asymmetric' sigma-clip. The first element in this list is the sigma value to use for fainter flux/mag values; the second element in this list is the sigma value to use for brighter flux/mag values. For example, `sigclip=[10., 3.]`, will sigclip out greater than 10-sigma dimmings and greater than 3-sigma brightenings. Here the meaning of "dimming" and "brightening" is set by *physics* (not the magnitude system), which is why the `magsarefluxes` kwarg must be correctly set. If `sigclip` is None, no sigma-clipping will be performed, and the time-series (with non-finite elems removed) will be passed through to the output. phasewrap : bool If this is True, the phased time-series will be wrapped around phase 0.0. phasesort : bool If this is True, the phased time-series will be sorted in phase. phasebin : float or None If this is provided, indicates the bin size to use to group together measurements closer than this amount in phase. This is in units of phase. The binned phased light curve will be overplotted on top of the phased light curve. Useful for when one has many measurement points and needs to pick out a small trend in an otherwise noisy phased light curve. minbinelems : int The minimum number of elements in each phase bin. plotxlim : sequence of two floats or None The x-axis limits to use when making the phased light curve plot. By default, this is (-0.8, 0.8), which places phase 0.0 at the center of the plot and covers approximately two cycles in phase to make any trends clear. xliminsetmode : bool If this is True, the generated phased light curve plot will use the values of `plotxlim` as the main plot x-axis limits (i.e. zoomed-in if `plotxlim` is a range smaller than the full phase range), and will show the full phased light curve plot as an smaller inset. Useful for planetary transit light curves. bestperiodhighlight : str or None If not None, this is a str with a matplotlib color specification to use as the background color to highlight the phased light curve plot of the 'best' period and epoch combination. If None, no highlight will be applied. outfile : str or None The file name of the file to save the checkplot to. If this is None, will write to a file called 'checkplot.png' in the current working directory. plotdpi : int Sets the resolution in DPI for PNG plots (default = 100). verbose : bool If False, turns off many of the informational messages. Useful for when an external function is driving lots of `checkplot_png` calls. Returns ------- str The file path to the generated checkplot PNG file. ''' if not outfile and isinstance(lspinfo,str): # generate the plot filename plotfpath = os.path.join( os.path.dirname(lspinfo), 'checkplot-%s.png' % ( os.path.basename(lspinfo), ) ) elif outfile: plotfpath = outfile else: plotfpath = 'checkplot.png' # get the lspinfo from a pickle file transparently if isinstance(lspinfo,str) and os.path.exists(lspinfo): if verbose: LOGINFO('loading LSP info from pickle %s' % lspinfo) if '.gz' in lspinfo: with gzip.open(lspinfo,'rb') as infd: lspinfo = pickle.load(infd) else: with open(lspinfo,'rb') as infd: lspinfo = pickle.load(infd) # get the things to plot out of the data if ('periods' in lspinfo and 'lspvals' in lspinfo and 'bestperiod' in lspinfo): bestperiod = lspinfo['bestperiod'] nbestperiods = lspinfo['nbestperiods'] lspmethod = lspinfo['method'] else: LOGERROR('could not understand lspinfo for this object, skipping...') return None if not npisfinite(bestperiod): LOGWARNING('no best period found for this object, skipping...') return None # initialize the plot fig, axes = plt.subplots(3,3) axes = npravel(axes) # this is a full page plot fig.set_size_inches(30,24) ####################### ## PLOT 1 is the LSP ## ####################### _make_periodogram(axes[0],lspinfo,objectinfo, findercmap, finderconvolve, verbose=verbose, findercachedir=findercachedir) ###################################### ## NOW MAKE THE PHASED LIGHT CURVES ## ###################################### stimes, smags, serrs = sigclip_magseries(times, mags, errs, magsarefluxes=magsarefluxes, sigclip=sigclip) # take care of the normalization if normto is not False: stimes, smags = normalize_magseries(stimes, smags, normto=normto, magsarefluxes=magsarefluxes, mingap=normmingap) # make sure we have some lightcurve points to plot after sigclip if len(stimes) >= 50: ############################## ## PLOT 2 is an unphased LC ## ############################## _make_magseries_plot(axes[1], stimes, smags, serrs, magsarefluxes=magsarefluxes) ########################### ### NOW PLOT PHASED LCS ### ########################### # make the plot for each best period lspbestperiods = nbestperiods[::] lspperiodone = lspbestperiods[0] lspbestperiods.insert(1,lspperiodone*2.0) lspbestperiods.insert(1,lspperiodone*0.5) for periodind, varperiod in enumerate(lspbestperiods): # make sure the best period phased LC plot stands out if periodind == 0 and bestperiodhighlight: if MPLVERSION >= (2,0,0): axes[periodind+2].set_facecolor(bestperiodhighlight) else: axes[periodind+2].set_axis_bgcolor(bestperiodhighlight) _make_phased_magseries_plot(axes[periodind+2], periodind, stimes, smags, serrs, varperiod, varepoch, phasewrap, phasesort, phasebin, minbinelems, plotxlim, lspmethod, xliminsetmode=xliminsetmode, magsarefluxes=magsarefluxes, verbose=verbose) # end of plotting for each ax # save the plot to disk fig.set_tight_layout(True) if plotfpath.endswith('.png'): fig.savefig(plotfpath,dpi=plotdpi) else: fig.savefig(plotfpath) plt.close('all') if verbose: LOGINFO('checkplot done -> %s' % plotfpath) return plotfpath # otherwise, there's no valid data for this plot else: LOGWARNING('no good data') for periodind in range(5): axes[periodind+2].text( 0.5,0.5, ('no best aperture light curve available'), horizontalalignment='center', verticalalignment='center', transform=axes[periodind+2].transAxes ) fig.set_tight_layout(True) if plotfpath.endswith('.png'): fig.savefig(plotfpath, dpi=plotdpi) else: fig.savefig(plotfpath) plt.close('all') if verbose: LOGINFO('checkplot done -> %s' % plotfpath) return plotfpath
def twolsp_checkplot_png(lspinfo1, lspinfo2, times, mags, errs, varepoch='min', magsarefluxes=False, objectinfo=None, findercmap='gray_r', finderconvolve=None, findercachedir='~/.astrobase/stamp-cache', normto='globalmedian', normmingap=4.0, sigclip=4.0, phasewrap=True, phasesort=True, phasebin=0.002, minbinelems=7, plotxlim=(-0.8,0.8), unphasedms=2.0, phasems=2.0, phasebinms=4.0, xliminsetmode=False, bestperiodhighlight=None, plotdpi=100, outfile=None, verbose=True): '''This makes a checkplot using results from two independent period-finders. Adapted from Luke Bouma's implementation of a similar function in his work. This makes a special checkplot that uses two lspinfo dictionaries, from two independent period-finding methods. For EBs, it's probably best to use Stellingwerf PDM or Schwarzenberg-Czerny AoV as one of these, and the Box Least-squared Search method as the other one. The checkplot layout in this case is:: [ pgram1 + objectinfo ] [ pgram2 ] [ unphased LC ] [ pgram1 P1 phased LC ] [ pgram1 P2 phased LC ] [ pgram1 P3 phased LC ] [ pgram2 P1 phased LC ] [ pgram2 P2 phased LC ] [ pgram2 P3 phased LC ] where: - pgram1 is the plot for the periodogram in the lspinfo1 dict - pgram1 P1, P2, and P3 are the best three periods from lspinfo1 - pgram2 is the plot for the periodogram in the lspinfo2 dict - pgram2 P1, P2, and P3 are the best three periods from lspinfo2 Note that we take the output file name from lspinfo1 if lspinfo1 is a string filename pointing to a (gzipped) pickle containing the results dict from a period-finding routine similar to those in periodbase. Parameters ---------- lspinfo1,lspinfo2 : dict or str If this is a dict, it must be a dict produced by an `astrobase.periodbase` period-finder function or a dict from your own period-finder function or routine that is of the form below with at least these keys:: {'periods': np.array of all periods searched by the period-finder, 'lspvals': np.array of periodogram power value for each period, 'bestperiod': a float value that is the period with the highest peak in the periodogram, i.e. the most-likely actual period, 'method': a three-letter code naming the period-finder used; must be one of the keys in the `astrobase.periodbase.METHODLABELS` dict, 'nbestperiods': a list of the periods corresponding to periodogram peaks (`nbestlspvals` below) to annotate on the periodogram plot so they can be called out visually, 'nbestlspvals': a list of the power values associated with periodogram peaks to annotate on the periodogram plot so they can be called out visually; should be the same length as `nbestperiods` above} `nbestperiods` and `nbestlspvals` must have at least 3 elements each, e.g. describing the three 'best' (highest power) peaks in the periodogram. If lspinfo is a str, then it must be a path to a pickle file (ending with the extension '.pkl' or '.pkl.gz') that contains a dict of the form described above. times,mags,errs : np.array The mag/flux time-series arrays to process along with associated errors. varepoch : 'min' or float or None or list of lists This sets the time of minimum light finding strategy for the checkplot:: the epoch used for all phased If `varepoch` is None -> light curve plots will be `min(times)`. If `varepoch='min'` -> automatic epoch finding for all periods using light curve fits. If varepoch is a single float -> this epoch will be used for all phased light curve plots If varepoch is a list of floats each epoch will be applied to with length = `len(nbestperiods)` -> the phased light curve for each from period-finder results period specifically If you use a list for varepoch, it must be of length `len(lspinfo['nbestperiods'])`. magsarefluxes : bool If True, indicates the input time-series is fluxes and not mags so the plot y-axis direction and range can be set appropriately/ objectinfo : dict or None If provided, this is a dict containing information on the object whose light curve is being processed. This function will then be able to look up and download a finder chart for this object and write that to the output checkplot PNG image.The `objectinfo` dict must be of the form and contain at least the keys described below:: {'objectid': the name of the object, 'ra': the right ascension of the object in decimal degrees, 'decl': the declination of the object in decimal degrees, 'ndet': the number of observations of this object} You can also provide magnitudes and proper motions of the object using the following keys and the appropriate values in the `objectinfo` dict. These will be used to calculate colors, total and reduced proper motion, etc. and display these in the output checkplot PNG. - SDSS mag keys: 'sdssu', 'sdssg', 'sdssr', 'sdssi', 'sdssz' - 2MASS mag keys: 'jmag', 'hmag', 'kmag' - Cousins mag keys: 'bmag', 'vmag' - GAIA specific keys: 'gmag', 'teff' - proper motion keys: 'pmra', 'pmdecl' findercmap : str or matplotlib.cm.ColorMap object The Colormap object to use for the finder chart image. finderconvolve : astropy.convolution.Kernel object or None If not None, the Kernel object to use for convolving the finder image. findercachedir : str The directory where the FITS finder images are downloaded and cached. normto : {'globalmedian', 'zero'} or a float This sets the LC normalization target:: 'globalmedian' -> norms each mag to global median of the LC column 'zero' -> norms each mag to zero a float -> norms each mag to this specified float value. normmingap : float This defines how much the difference between consecutive measurements is allowed to be to consider them as parts of different timegroups. By default it is set to 4.0 days. sigclip : float or int or sequence of two floats/ints or None If a single float or int, a symmetric sigma-clip will be performed using the number provided as the sigma-multiplier to cut out from the input time-series. If a list of two ints/floats is provided, the function will perform an 'asymmetric' sigma-clip. The first element in this list is the sigma value to use for fainter flux/mag values; the second element in this list is the sigma value to use for brighter flux/mag values. For example, `sigclip=[10., 3.]`, will sigclip out greater than 10-sigma dimmings and greater than 3-sigma brightenings. Here the meaning of "dimming" and "brightening" is set by *physics* (not the magnitude system), which is why the `magsarefluxes` kwarg must be correctly set. If `sigclip` is None, no sigma-clipping will be performed, and the time-series (with non-finite elems removed) will be passed through to the output. phasewrap : bool If this is True, the phased time-series will be wrapped around phase 0.0. phasesort : bool If this is True, the phased time-series will be sorted in phase. phasebin : float or None If this is provided, indicates the bin size to use to group together measurements closer than this amount in phase. This is in units of phase. The binned phased light curve will be overplotted on top of the phased light curve. Useful for when one has many measurement points and needs to pick out a small trend in an otherwise noisy phased light curve. minbinelems : int The minimum number of elements in each phase bin. plotxlim : sequence of two floats or None The x-axis limits to use when making the phased light curve plot. By default, this is (-0.8, 0.8), which places phase 0.0 at the center of the plot and covers approximately two cycles in phase to make any trends clear. unphasedms : float The marker size to use for the main unphased light curve plot symbols. phasems : float The marker size to use for the main phased light curve plot symbols. phasebinms : float The marker size to use for the binned phased light curve plot symbols. xliminsetmode : bool If this is True, the generated phased light curve plot will use the values of `plotxlim` as the main plot x-axis limits (i.e. zoomed-in if `plotxlim` is a range smaller than the full phase range), and will show the full phased light curve plot as an smaller inset. Useful for planetary transit light curves. bestperiodhighlight : str or None If not None, this is a str with a matplotlib color specification to use as the background color to highlight the phased light curve plot of the 'best' period and epoch combination. If None, no highlight will be applied. outfile : str or None The file name of the file to save the checkplot to. If this is None, will write to a file called 'checkplot.png' in the current working directory. plotdpi : int Sets the resolution in DPI for PNG plots (default = 100). verbose : bool If False, turns off many of the informational messages. Useful for when an external function is driving lots of `checkplot_png` calls. Returns ------- str The file path to the generated checkplot PNG file. ''' # generate the plot filename if not outfile and isinstance(lspinfo1,str): plotfpath = os.path.join( os.path.dirname(lspinfo1), 'twolsp-checkplot-%s.png' % ( os.path.basename(lspinfo1), ) ) elif outfile: plotfpath = outfile else: plotfpath = 'twolsp-checkplot.png' # get the first LSP from a pickle file transparently if isinstance(lspinfo1,str) and os.path.exists(lspinfo1): if verbose: LOGINFO('loading LSP info from pickle %s' % lspinfo1) if '.gz' in lspinfo1: with gzip.open(lspinfo1,'rb') as infd: lspinfo1 = pickle.load(infd) else: with open(lspinfo1,'rb') as infd: lspinfo1 = pickle.load(infd) # get the second LSP from a pickle file transparently if isinstance(lspinfo2,str) and os.path.exists(lspinfo2): if verbose: LOGINFO('loading LSP info from pickle %s' % lspinfo2) if '.gz' in lspinfo2: with gzip.open(lspinfo2,'rb') as infd: lspinfo2 = pickle.load(infd) else: with open(lspinfo2,'rb') as infd: lspinfo2 = pickle.load(infd) # get the things to plot out of the data if ('periods' in lspinfo1 and 'periods' in lspinfo2 and 'lspvals' in lspinfo1 and 'lspvals' in lspinfo2 and 'bestperiod' in lspinfo1 and 'bestperiod' in lspinfo2): bestperiod1 = lspinfo1['bestperiod'] nbestperiods1 = lspinfo1['nbestperiods'] lspmethod1 = lspinfo1['method'] bestperiod2 = lspinfo2['bestperiod'] nbestperiods2 = lspinfo2['nbestperiods'] lspmethod2 = lspinfo2['method'] else: LOGERROR('could not understand lspinfo1 or lspinfo2 ' 'for this object, skipping...') return None if (not npisfinite(bestperiod1)) or (not npisfinite(bestperiod2)): LOGWARNING('no best period found for this object, skipping...') return None # initialize the plot fig, axes = plt.subplots(3,3) axes = npravel(axes) # this is a full page plot fig.set_size_inches(30,24) ###################################################################### ## PLOT 1 is the LSP from lspinfo1, including objectinfo and finder ## ###################################################################### _make_periodogram(axes[0], lspinfo1, objectinfo, findercmap, finderconvolve, verbose=verbose, findercachedir=findercachedir) ##################################### ## PLOT 2 is the LSP from lspinfo2 ## ##################################### _make_periodogram(axes[1], lspinfo2, None, findercmap, finderconvolve) ########################################## ## FIX UP THE MAGS AND REMOVE BAD STUFF ## ########################################## # sigclip first stimes, smags, serrs = sigclip_magseries(times, mags, errs, magsarefluxes=magsarefluxes, sigclip=sigclip) # take care of the normalization if normto is not False: stimes, smags = normalize_magseries(stimes, smags, normto=normto, magsarefluxes=magsarefluxes, mingap=normmingap) # make sure we have some lightcurve points to plot after sigclip if len(stimes) >= 50: ############################## ## PLOT 3 is an unphased LC ## ############################## _make_magseries_plot(axes[2], stimes, smags, serrs, magsarefluxes=magsarefluxes, ms=unphasedms) # make the plot for each best period lspbestperiods1 = nbestperiods1[::] lspbestperiods2 = nbestperiods2[::] ########################################################## ### NOW PLOT PHASED LCS FOR 3 BEST PERIODS IN LSPINFO1 ### ########################################################## for periodind, varperiod, plotaxes in zip([0,1,2], lspbestperiods1[:3], [axes[3], axes[4], axes[5]]): # make sure the best period phased LC plot stands out if periodind == 0 and bestperiodhighlight: if MPLVERSION >= (2,0,0): plotaxes.set_facecolor(bestperiodhighlight) else: plotaxes.set_axis_bgcolor(bestperiodhighlight) _make_phased_magseries_plot(plotaxes, periodind, stimes, smags, serrs, varperiod, varepoch, phasewrap, phasesort, phasebin, minbinelems, plotxlim, lspmethod1, lspmethodind=0, twolspmode=True, magsarefluxes=magsarefluxes, xliminsetmode=xliminsetmode, verbose=verbose, phasems=phasems, phasebinms=phasebinms) ########################################################## ### NOW PLOT PHASED LCS FOR 3 BEST PERIODS IN LSPINFO2 ### ########################################################## for periodind, varperiod, plotaxes in zip([0,1,2], lspbestperiods2[:3], [axes[6], axes[7], axes[8]]): # make sure the best period phased LC plot stands out if periodind == 0 and bestperiodhighlight: if MPLVERSION >= (2,0,0): plotaxes.set_facecolor(bestperiodhighlight) else: plotaxes.set_axis_bgcolor(bestperiodhighlight) _make_phased_magseries_plot(plotaxes, periodind, stimes, smags, serrs, varperiod, varepoch, phasewrap, phasesort, phasebin, minbinelems, plotxlim, lspmethod2, lspmethodind=1, twolspmode=True, magsarefluxes=magsarefluxes, xliminsetmode=xliminsetmode, verbose=verbose, phasems=phasems, phasebinms=phasebinms) # end of plotting for each ax # save the plot to disk fig.set_tight_layout(True) if plotfpath.endswith('.png'): fig.savefig(plotfpath,dpi=plotdpi) else: fig.savefig(plotfpath) plt.close() if verbose: LOGINFO('checkplot done -> %s' % plotfpath) return plotfpath # otherwise, there's no valid data for this plot else: LOGWARNING('no good data') for periodind in range(5): axes[periodind+2].text( 0.5,0.5, ('no best aperture light curve available'), horizontalalignment='center', verticalalignment='center', transform=axes[periodind+2].transAxes ) fig.set_tight_layout(True) if plotfpath.endswith('.png'): fig.savefig(plotfpath, dpi=plotdpi) else: fig.savefig(plotfpath) plt.close() if verbose: LOGINFO('checkplot done -> %s' % plotfpath) return plotfpath
def precess_coordinates(ra, dec, epoch_one, epoch_two, jd=None, mu_ra=0.0, mu_dec=0.0, outscalar=False): '''Precesses target coordinates `ra`, `dec` from `epoch_one` to `epoch_two`. This takes into account the jd of the observations, as well as the proper motion of the target mu_ra, mu_dec. Adapted from J. D. Hartman's VARTOOLS/converttime.c [coordprecess]. Parameters ---------- ra,dec : float The equatorial coordinates of the object at `epoch_one` to precess in decimal degrees. epoch_one : float Origin epoch to precess from to target epoch. This is a float, like: 1985.0, 2000.0, etc. epoch_two : float Target epoch to precess from origin epoch. This is a float, like: 2000.0, 2018.0, etc. jd : float The full Julian date to use along with the propermotions in `mu_ra`, and `mu_dec` to handle proper motion along with the coordinate frame precession. If one of `jd`, `mu_ra`, or `mu_dec` is missing, the proper motion will not be used to calculate the final precessed coordinates. mu_ra,mu_dec : float The proper motion in mas/yr in right ascension and declination. If these are provided along with `jd`, the total proper motion of the object will be taken into account to calculate the final precessed coordinates. outscalar : bool If True, converts the output coordinates from one-element np.arrays to scalars. Returns ------- precessed_ra, precessed_dec : float A tuple of precessed equatorial coordinates in decimal degrees at `epoch_two` taking into account proper motion if `jd`, `mu_ra`, and `mu_dec` are provided. ''' raproc, decproc = np.radians(ra), np.radians(dec) if ((mu_ra != 0.0) and (mu_dec != 0.0) and jd): jd_epoch_one = JD2000 + (epoch_one - epoch_two)*365.25 raproc = ( raproc + (jd - jd_epoch_one)*mu_ra*MAS_P_YR_TO_RAD_P_DAY/np.cos(decproc) ) decproc = decproc + (jd - jd_epoch_one)*mu_dec*MAS_P_YR_TO_RAD_P_DAY ca = np.cos(raproc) cd = np.cos(decproc) sa = np.sin(raproc) sd = np.sin(decproc) if epoch_one != epoch_two: t1 = 1.0e-3 * (epoch_two - epoch_one) t2 = 1.0e-3 * (epoch_one - 2000.0) a = ( t1*ARCSEC_TO_RADIANS * (23062.181 + t2*(139.656 + 0.0139*t2) + t1*(30.188 - 0.344*t2+17.998*t1)) ) b = t1*t1*ARCSEC_TO_RADIANS*(79.280 + 0.410*t2 + 0.205*t1) + a c = ( ARCSEC_TO_RADIANS*t1*(20043.109 - t2*(85.33 + 0.217*t2) + t1*(-42.665 - 0.217*t2 - 41.833*t2)) ) sina, sinb, sinc = np.sin(a), np.sin(b), np.sin(c) cosa, cosb, cosc = np.cos(a), np.cos(b), np.cos(c) precmatrix = np.matrix([[cosa*cosb*cosc - sina*sinb, sina*cosb + cosa*sinb*cosc, cosa*sinc], [-cosa*sinb - sina*cosb*cosc, cosa*cosb - sina*sinb*cosc, -sina*sinc], [-cosb*sinc, -sinb*sinc, cosc]]) precmatrix = precmatrix.transpose() x = (np.matrix([cd*ca, cd*sa, sd])).transpose() x2 = precmatrix * x outra = np.arctan2(x2[1],x2[0]) outdec = np.arcsin(x2[2]) outradeg = np.rad2deg(outra) outdecdeg = np.rad2deg(outdec) if outradeg < 0.0: outradeg = outradeg + 360.0 if outscalar: return float(outradeg), float(outdecdeg) else: return outradeg, outdecdeg else: # if the epochs are the same and no proper motion, this will be the same # as the input values. if the epochs are the same, but there IS proper # motion (and a given JD), then these will be perturbed from the input # values of ra, dec by the appropriate amount of motion return np.degrees(raproc), np.degrees(decproc)
def _single_true(iterable): '''This returns True if only one True-ish element exists in `iterable`. Parameters ---------- iterable : iterable Returns ------- bool True if only one True-ish element exists in `iterable`. False otherwise. ''' # return True if exactly one true found iterator = iter(iterable) # consume from "i" until first true or it's exhausted has_true = any(iterator) # carry on consuming until another true value / exhausted has_another_true = any(iterator) return has_true and not has_another_true
def get_epochs_given_midtimes_and_period( t_mid, period, err_t_mid=None, t0_fixed=None, t0_percentile=None, verbose=False ): '''This calculates the future epochs for a transit, given a period and a starting epoch The equation used is:: t_mid = period*epoch + t0 Default behavior if no kwargs are used is to define `t0` as the median finite time of the passed `t_mid` array. Only one of `err_t_mid` or `t0_fixed` should be passed. Parameters ---------- t_mid : np.array A np.array of transit mid-time measurements period : float The period used to calculate epochs, per the equation above. For typical use cases, a period precise to ~1e-5 days is sufficient to get correct epochs. err_t_mid : None or np.array If provided, contains the errors of the transit mid-time measurements. The zero-point epoch is then set equal to the average of the transit times, weighted as `1/err_t_mid^2` . This minimizes the covariance between the transit epoch and the period (e.g., Gibson et al. 2013). For standard O-C analysis this is the best method. t0_fixed : None or float: If provided, use this t0 as the starting epoch. (Overrides all others). t0_percentile : None or float If provided, use this percentile of `t_mid` to define `t0`. Returns ------- tuple This is the of the form `(integer_epoch_array, t0)`. `integer_epoch_array` is an array of integer epochs (float-type), of length equal to the number of *finite* mid-times passed. ''' kwargarr = np.array([isinstance(err_t_mid,np.ndarray), t0_fixed, t0_percentile]) if not _single_true(kwargarr) and not np.all(~kwargarr.astype(bool)): raise AssertionError( 'can have at most one of err_t_mid, t0_fixed, t0_percentile') t_mid = t_mid[np.isfinite(t_mid)] N_midtimes = len(t_mid) if t0_fixed: t0 = t0_fixed elif isinstance(err_t_mid,np.ndarray): # get the weighted average. then round it to the nearest transit epoch. t0_avg = np.average(t_mid, weights=1/err_t_mid**2) t0_options = np.arange(min(t_mid), max(t_mid)+period, period) t0 = t0_options[np.argmin(np.abs(t0_options - t0_avg))] else: if not t0_percentile: # if there are an odd number of times, take the median time as # epoch=0. elif there are an even number of times, take the lower # of the two middle times as epoch=0. if N_midtimes % 2 == 1: t0 = np.median(t_mid) else: t0 = t_mid[int(N_midtimes/2)] else: t0 = np.sort(t_mid)[int(N_midtimes*t0_percentile/100)] epoch = (t_mid - t0)/period # do not convert numpy entries to actual ints, because np.nan is float type int_epoch = np.round(epoch, 0) if verbose: LOGINFO('epochs before rounding') LOGINFO('\n{:s}'.format(repr(epoch))) LOGINFO('epochs after rounding') LOGINFO('\n{:s}'.format(repr(int_epoch))) return int_epoch, t0
def unixtime_to_jd(unix_time): '''This converts UNIX time in seconds to a Julian date in UTC (JD_UTC). Parameters ---------- unix_time : float A UNIX time in decimal seconds since the 1970 UNIX epoch. Returns ------- jd : float The Julian date corresponding to the provided UNIX time. ''' # use astropy's time module jdutc = astime.Time(unix_time, format='unix', scale='utc') return jdutc.jd
def datetime_to_jd(dt): '''This converts a Python datetime object (naive, time in UT) to JD_UTC. Parameters ---------- dt : datetime A naive Python `datetime` object (e.g. with no tz attribute) measured at UTC. Returns ------- jd : float The Julian date corresponding to the `datetime` object. ''' jdutc = astime.Time(dt, format='datetime',scale='utc') return jdutc.jd
def jd_to_datetime(jd, returniso=False): '''This converts a UTC JD to a Python `datetime` object or ISO date string. Parameters ---------- jd : float The Julian date measured at UTC. returniso : bool If False, returns a naive Python `datetime` object corresponding to `jd`. If True, returns the ISO format string corresponding to the date and time at UTC from `jd`. Returns ------- datetime or str Depending on the value of `returniso`. ''' tt = astime.Time(jd, format='jd', scale='utc') if returniso: return tt.iso else: return tt.datetime
def jd_corr(jd, ra, dec, obslon=None, obslat=None, obsalt=None, jd_type='bjd'): '''Returns BJD_TDB or HJD_TDB for input JD_UTC. The equation used is:: BJD_TDB = JD_UTC + JD_to_TDB_corr + romer_delay where: - JD_to_TDB_corr is the difference between UTC and TDB JDs - romer_delay is the delay caused by finite speed of light from Earth-Sun This is based on the code at: https://mail.scipy.org/pipermail/astropy/2014-April/003148.html Note that this does not correct for: 1. precession of coordinates if the epoch is not 2000.0 2. precession of coordinates if the target has a proper motion 3. Shapiro delay 4. Einstein delay Parameters ---------- jd : float or array-like The Julian date(s) measured at UTC. ra,dec : float The equatorial coordinates of the object in decimal degrees. obslon,obslat,obsalt : float or None The longitude, latitude of the observatory in decimal degrees and altitude of the observatory in meters. If these are not provided, the corrected JD will be calculated with respect to the center of the Earth. jd_type : {'bjd','hjd'} Conversion type to perform, either to Baryocentric Julian Date ('bjd') or to Heliocenter Julian Date ('hjd'). Returns ------- float or np.array The converted BJD or HJD. ''' if not HAVEKERNEL: LOGERROR('no JPL kernel available, can\'t continue!') return # Source unit-vector ## Assume coordinates in ICRS ## Set distance to unit (kilometers) # convert the angles to degrees rarad = np.radians(ra) decrad = np.radians(dec) cosra = np.cos(rarad) sinra = np.sin(rarad) cosdec = np.cos(decrad) sindec = np.sin(decrad) # this assumes that the target is very far away src_unitvector = np.array([cosdec*cosra,cosdec*sinra,sindec]) # Convert epochs to astropy.time.Time ## Assume JD(UTC) if (obslon is None) or (obslat is None) or (obsalt is None): t = astime.Time(jd, scale='utc', format='jd') else: t = astime.Time(jd, scale='utc', format='jd', location=('%.5fd' % obslon, '%.5fd' % obslat, obsalt)) # Get Earth-Moon barycenter position ## NB: jplephem uses Barycentric Dynamical Time, e.g. JD(TDB) ## and gives positions relative to solar system barycenter barycenter_earthmoon = jplkernel[0,3].compute(t.tdb.jd) # Get Moon position vectors from the center of Earth to the Moon # this means we get the following vectors from the ephemerides # Earth Barycenter (3) -> Moon (301) # Earth Barycenter (3) -> Earth (399) # so the final vector is [3,301] - [3,399] # units are in km moonvector = (jplkernel[3,301].compute(t.tdb.jd) - jplkernel[3,399].compute(t.tdb.jd)) # Compute Earth position vectors (this is for the center of the earth with # respect to the solar system barycenter) # all these units are in km pos_earth = (barycenter_earthmoon - moonvector * 1.0/(1.0+EMRAT)) if jd_type == 'bjd': # Compute BJD correction ## Assume source vectors parallel at Earth and Solar System ## Barycenter ## i.e. source is at infinity # the romer_delay correction is (r.dot.n)/c where: # r is the vector from SSB to earth center # n is the unit vector from correction_seconds = np.dot(pos_earth.T, src_unitvector)/CLIGHT_KPS correction_days = correction_seconds/SEC_P_DAY elif jd_type == 'hjd': # Compute HJD correction via Sun ephemeris # this is the position vector of the center of the sun in km # Solar System Barycenter (0) -> Sun (10) pos_sun = jplkernel[0,10].compute(t.tdb.jd) # this is the vector from the center of the sun to the center of the # earth sun_earth_vec = pos_earth - pos_sun # calculate the heliocentric correction correction_seconds = np.dot(sun_earth_vec.T, src_unitvector)/CLIGHT_KPS correction_days = correction_seconds/SEC_P_DAY # TDB is the appropriate time scale for these ephemerides new_jd = t.tdb.jd + correction_days return new_jd
def _lclist_parallel_worker(task): '''This is a parallel worker for makelclist. Parameters ---------- task : tuple This is a tuple containing the following items: task[0] = lcf task[1] = columns task[2] = lcformat task[3] = lcformatdir task[4] = lcndetkey Returns ------- dict or None This contains all of the info for the object processed in this LC read operation. If this fails, returns None ''' lcf, columns, lcformat, lcformatdir, lcndetkey = task # get the bits needed for lcformat handling # NOTE: we re-import things in this worker function because sometimes # functions can't be pickled correctly for passing them to worker functions # in a processing pool try: formatinfo = get_lcformat(lcformat, use_lcformat_dir=lcformatdir) if formatinfo: (dfileglob, readerfunc, dtimecols, dmagcols, derrcols, magsarefluxes, normfunc) = formatinfo else: LOGERROR("can't figure out the light curve format") return None except Exception as e: LOGEXCEPTION("can't figure out the light curve format") return None # we store the full path of the light curve lcobjdict = {'lcfname':os.path.abspath(lcf)} try: # read the light curve in lcdict = readerfunc(lcf) # this should handle lists/tuples being returned by readerfunc # we assume that the first element is the actual lcdict # FIXME: figure out how to not need this assumption if ( (isinstance(lcdict, (list, tuple))) and (isinstance(lcdict[0], dict)) ): lcdict = lcdict[0] # insert all of the columns for colkey in columns: if '.' in colkey: getkey = colkey.split('.') else: getkey = [colkey] try: thiscolval = _dict_get(lcdict, getkey) except Exception as e: LOGWARNING('column %s does not exist for %s' % (colkey, lcf)) thiscolval = np.nan # update the lcobjdict with this value lcobjdict[getkey[-1]] = thiscolval except Exception as e: LOGEXCEPTION('could not figure out columns for %s' % lcf) # insert all of the columns as nans for colkey in columns: if '.' in colkey: getkey = colkey.split('.') else: getkey = [colkey] thiscolval = np.nan # update the lclistdict with this value lcobjdict[getkey[-1]] = thiscolval # now get the actual ndets; this excludes nans and infs for dk in lcndetkey: try: if '.' in dk: getdk = dk.split('.') else: getdk = [dk] ndetcol = _dict_get(lcdict, getdk) actualndets = ndetcol[np.isfinite(ndetcol)].size lcobjdict['%s.ndet' % getdk[-1]] = actualndets except Exception as e: lcobjdict['%s.ndet' % getdk[-1]] = np.nan return lcobjdict
def make_lclist(basedir, outfile, use_list_of_filenames=None, lcformat='hat-sql', lcformatdir=None, fileglob=None, recursive=True, columns=['objectid', 'objectinfo.ra', 'objectinfo.decl', 'objectinfo.ndet'], makecoordindex=('objectinfo.ra','objectinfo.decl'), field_fitsfile=None, field_wcsfrom=None, field_scale=ZScaleInterval(), field_stretch=LinearStretch(), field_colormap=plt.cm.gray_r, field_findersize=None, field_pltopts={'marker':'o', 'markersize':10.0, 'markerfacecolor':'none', 'markeredgewidth':2.0, 'markeredgecolor':'red'}, field_grid=False, field_gridcolor='k', field_zoomcontain=True, maxlcs=None, nworkers=NCPUS): '''This generates a light curve catalog for all light curves in a directory. Given a base directory where all the files are, and a light curve format, this will find all light curves, pull out the keys in each lcdict requested in the `columns` kwarg for each object, and write them to the requested output pickle file. These keys should be pointers to scalar values (i.e. something like `objectinfo.ra` is OK, but something like 'times' won't work because it's a vector). Generally, this works with light curve reading functions that produce lcdicts as detailed in the docstring for `lcproc.register_lcformat`. Once you've registered your light curve reader functions using the `lcproc.register_lcformat` function, pass in the `formatkey` associated with your light curve format, and this function will be able to read all light curves in that format as well as the object information stored in their `objectinfo` dict. Parameters ---------- basedir : str or list of str If this is a str, points to a single directory to search for light curves. If this is a list of str, it must be a list of directories to search for light curves. All of these will be searched to find light curve files matching either your light curve format's default fileglob (when you registered your LC format), or a specific fileglob that you can pass in using the `fileglob` kwargh here. If the `recursive` kwarg is set, the provided directories will be searched recursively. If `use_list_of_filenames` is not None, it will override this argument and the function will take those light curves as the list of files it must process instead of whatever is specified in `basedir`. outfile : str This is the name of the output file to write. This will be a pickle file, so a good convention to use for this name is something like 'my-lightcurve-catalog.pkl'. use_list_of_filenames : list of str or None Use this kwarg to override whatever is provided in `basedir` and directly pass in a list of light curve files to process. This can speed up this function by a lot because no searches on disk will be performed to find light curve files matching `basedir` and `fileglob`. lcformat : str This is the `formatkey` associated with your light curve format, which you previously passed in to the `lcproc.register_lcformat` function. This will be used to look up how to find and read the light curves specified in `basedir` or `use_list_of_filenames`. lcformatdir : str or None If this is provided, gives the path to a directory when you've stored your lcformat description JSONs, other than the usual directories lcproc knows to search for them in. Use this along with `lcformat` to specify an LC format JSON file that's not currently registered with lcproc. fileglob : str or None If provided, is a string that is a valid UNIX filename glob. Used to override the default fileglob for this LC format when searching for light curve files in `basedir`. recursive : bool If True, the directories specified in `basedir` will be searched recursively for all light curve files that match the default fileglob for this LC format or a specific one provided in `fileglob`. columns : list of str This is a list of keys in the lcdict produced by your light curve reader function that contain object information, which will be extracted and put into the output light curve catalog. It's highly recommended that your LC reader function produce a lcdict that contains at least the default keys shown here. The lcdict keys to extract are specified by using an address scheme: - First level dict keys can be specified directly: e.g., 'objectid' will extract lcdict['objectid'] - Keys at other levels can be specified by using a period to indicate the level: - e.g., 'objectinfo.ra' will extract lcdict['objectinfo']['ra'] - e.g., 'objectinfo.varinfo.features.stetsonj' will extract lcdict['objectinfo']['varinfo']['features']['stetsonj'] makecoordindex : list of two str or None This is used to specify which lcdict keys contain the right ascension and declination coordinates for this object. If these are provided, the output light curve catalog will have a kdtree built on all object coordinates, which enables fast spatial searches and cross-matching to external catalogs by `checkplot` and `lcproc` functions. field_fitsfile : str or None If this is not None, it should be the path to a FITS image containing the objects these light curves are for. If this is provided, `make_lclist` will use the WCS information in the FITS itself if `field_wcsfrom` is None (or from a WCS header file pointed to by `field_wcsfrom`) to obtain x and y pixel coordinates for all of the objects in the field. A finder chart will also be made using `astrobase.plotbase.fits_finder_chart` using the corresponding `field_scale`, `_stretch`, `_colormap`, `_findersize`, `_pltopts`, `_grid`, and `_gridcolors` kwargs for that function, reproduced here to enable customization of the finder chart plot. field_wcsfrom : str or None If `wcsfrom` is None, the WCS to transform the RA/Dec to pixel x/y will be taken from the FITS header of `fitsfile`. If this is not None, it must be a FITS or similar file that contains a WCS header in its first extension. field_scale : astropy.visualization.Interval object `scale` sets the normalization for the FITS pixel values. This is an astropy.visualization Interval object. See http://docs.astropy.org/en/stable/visualization/normalization.html for details on `scale` and `stretch` objects. field_stretch : astropy.visualization.Stretch object `stretch` sets the stretch function for mapping FITS pixel values to output pixel values. This is an astropy.visualization Stretch object. See http://docs.astropy.org/en/stable/visualization/normalization.html for details on `scale` and `stretch` objects. field_colormap : matplotlib Colormap object `colormap` is a matplotlib color map object to use for the output image. field_findersize : None or tuple of two ints If `findersize` is None, the output image size will be set by the NAXIS1 and NAXIS2 keywords in the input `fitsfile` FITS header. Otherwise, `findersize` must be a tuple with the intended x and y size of the image in inches (all output images will use a DPI = 100). field_pltopts : dict `field_pltopts` controls how the overlay points will be plotted. This a dict with standard matplotlib marker, etc. kwargs as key-val pairs, e.g. 'markersize', 'markerfacecolor', etc. The default options make red outline circles at the location of each object in the overlay. field_grid : bool `grid` sets if a grid will be made on the output image. field_gridcolor : str `gridcolor` sets the color of the grid lines. This is a usual matplotib color spec string. field_zoomcontain : bool `field_zoomcontain` controls if the finder chart will be zoomed to just contain the overlayed points. Everything outside the footprint of these points will be discarded. maxlcs : int or None This sets how many light curves to process in the input LC list generated by searching for LCs in `basedir` or in the list provided as `use_list_of_filenames`. nworkers : int This sets the number of parallel workers to launch to collect information from the light curves. Returns ------- str Returns the path to the generated light curve catalog pickle file. ''' try: formatinfo = get_lcformat(lcformat, use_lcformat_dir=lcformatdir) if formatinfo: (dfileglob, readerfunc, dtimecols, dmagcols, derrcols, magsarefluxes, normfunc) = formatinfo else: LOGERROR("can't figure out the light curve format") return None except Exception as e: LOGEXCEPTION("can't figure out the light curve format") return None if not fileglob: fileglob = dfileglob # this is to get the actual ndet # set to the magnitudes column lcndetkey = dmagcols if isinstance(use_list_of_filenames, list): matching = use_list_of_filenames else: # handle the case where basedir is a list of directories if isinstance(basedir, list): matching = [] for bdir in basedir: # now find the files LOGINFO('searching for %s light curves in %s ...' % (lcformat, bdir)) if recursive is False: matching.extend(glob.glob(os.path.join(bdir, fileglob))) else: # use recursive glob for Python 3.5+ if sys.version_info[:2] > (3,4): matching.extend(glob.glob(os.path.join(bdir, '**', fileglob), recursive=True)) # otherwise, use os.walk and glob else: # use os.walk to go through the directories walker = os.walk(bdir) for root, dirs, _files in walker: for sdir in dirs: searchpath = os.path.join(root, sdir, fileglob) foundfiles = glob.glob(searchpath) if foundfiles: matching.extend(foundfiles) # otherwise, handle the usual case of one basedir to search in else: # now find the files LOGINFO('searching for %s light curves in %s ...' % (lcformat, basedir)) if recursive is False: matching = glob.glob(os.path.join(basedir, fileglob)) else: # use recursive glob for Python 3.5+ if sys.version_info[:2] > (3,4): matching = glob.glob(os.path.join(basedir, '**', fileglob),recursive=True) # otherwise, use os.walk and glob else: # use os.walk to go through the directories walker = os.walk(basedir) matching = [] for root, dirs, _files in walker: for sdir in dirs: searchpath = os.path.join(root, sdir, fileglob) foundfiles = glob.glob(searchpath) if foundfiles: matching.extend(foundfiles) # # now that we have all the files, process them # if matching and len(matching) > 0: LOGINFO('found %s light curves' % len(matching)) # cut down matching to maxlcs if maxlcs: matching = matching[:maxlcs] # prepare the output dict lclistdict = { 'basedir':basedir, 'lcformat':lcformat, 'fileglob':fileglob, 'recursive':recursive, 'columns':columns, 'makecoordindex':makecoordindex, 'nfiles':len(matching), 'objects': { } } # columns that will always be present in the output lclistdict derefcols = ['lcfname'] derefcols.extend(['%s.ndet' % x.split('.')[-1] for x in lcndetkey]) for dc in derefcols: lclistdict['objects'][dc] = [] # fill in the rest of the lclist columns from the columns kwarg for col in columns: # dereference the column thiscol = col.split('.') thiscol = thiscol[-1] lclistdict['objects'][thiscol] = [] derefcols.append(thiscol) # start collecting info LOGINFO('collecting light curve info...') tasks = [(x, columns, lcformat, lcformatdir, lcndetkey) for x in matching] with ProcessPoolExecutor(max_workers=nworkers) as executor: results = executor.map(_lclist_parallel_worker, tasks) results = [x for x in results] # update the columns in the overall dict from the results of the # parallel map for result in results: for xcol in derefcols: lclistdict['objects'][xcol].append(result[xcol]) executor.shutdown() # done with collecting info # turn all of the lists in the lclistdict into arrays for col in lclistdict['objects']: lclistdict['objects'][col] = np.array(lclistdict['objects'][col]) # handle duplicate objectids with different light curves uniques, counts = np.unique(lclistdict['objects']['objectid'], return_counts=True) duplicated_objectids = uniques[counts > 1] if duplicated_objectids.size > 0: # redo the objectid array so it has a bit larger dtype so the extra # tag can fit into the field dt = lclistdict['objects']['objectid'].dtype.str dt = '<U%s' % ( int(dt.replace('<','').replace('U','').replace('S','')) + 3 ) lclistdict['objects']['objectid'] = np.array( lclistdict['objects']['objectid'], dtype=dt ) for objid in duplicated_objectids: objid_inds = np.where( lclistdict['objects']['objectid'] == objid ) # mark the duplicates, assume the first instance is the actual # one for ncounter, nind in enumerate(objid_inds[0][1:]): lclistdict['objects']['objectid'][nind] = '%s-%s' % ( lclistdict['objects']['objectid'][nind], ncounter+2 ) LOGWARNING( 'tagging duplicated instance %s of objectid: ' '%s as %s-%s, lightcurve: %s' % (ncounter+2, objid, objid, ncounter+2, lclistdict['objects']['lcfname'][nind]) ) # if we're supposed to make a spatial index, do so if (makecoordindex and isinstance(makecoordindex, (list, tuple)) and len(makecoordindex) == 2): try: # deref the column names racol, declcol = makecoordindex racol = racol.split('.')[-1] declcol = declcol.split('.')[-1] # get the ras and decls objra, objdecl = (lclistdict['objects'][racol], lclistdict['objects'][declcol]) # get the xyz unit vectors from ra,decl # since i had to remind myself: # https://en.wikipedia.org/wiki/Equatorial_coordinate_system cosdecl = np.cos(np.radians(objdecl)) sindecl = np.sin(np.radians(objdecl)) cosra = np.cos(np.radians(objra)) sinra = np.sin(np.radians(objra)) xyz = np.column_stack((cosra*cosdecl,sinra*cosdecl, sindecl)) # generate the kdtree kdt = sps.cKDTree(xyz,copy_data=True) # put the tree into the dict lclistdict['kdtree'] = kdt LOGINFO('kdtree generated for (ra, decl): (%s, %s)' % (makecoordindex[0], makecoordindex[1])) except Exception as e: LOGEXCEPTION('could not make kdtree for (ra, decl): (%s, %s)' % (makecoordindex[0], makecoordindex[1])) raise # generate the xy pairs if fieldfits is not None if field_fitsfile and os.path.exists(field_fitsfile): # read in the FITS file if field_wcsfrom is None: hdulist = pyfits.open(field_fitsfile) hdr = hdulist[0].header hdulist.close() w = WCS(hdr) wcsok = True elif os.path.exists(field_wcsfrom): w = WCS(field_wcsfrom) wcsok = True else: LOGERROR('could not determine WCS info for input FITS: %s' % field_fitsfile) wcsok = False if wcsok: # first, transform the ra/decl to x/y and put these in the # lclist output dict radecl = np.column_stack((objra, objdecl)) lclistdict['objects']['framexy'] = w.all_world2pix( radecl, 1 ) # next, we'll make a PNG plot for the finder finder_outfile = os.path.join( os.path.dirname(outfile), os.path.splitext(os.path.basename(outfile))[0] + '.png' ) finder_png = fits_finder_chart( field_fitsfile, finder_outfile, wcsfrom=field_wcsfrom, scale=field_scale, stretch=field_stretch, colormap=field_colormap, findersize=field_findersize, overlay_ra=objra, overlay_decl=objdecl, overlay_pltopts=field_pltopts, overlay_zoomcontain=field_zoomcontain, grid=field_grid, gridcolor=field_gridcolor ) if finder_png is not None: LOGINFO('generated a finder PNG ' 'with an object position overlay ' 'for this LC list: %s' % finder_png) # write the pickle with open(outfile,'wb') as outfd: pickle.dump(lclistdict, outfd, protocol=pickle.HIGHEST_PROTOCOL) LOGINFO('done. LC info -> %s' % outfile) return outfile else: LOGERROR('no files found in %s matching %s' % (basedir, fileglob)) return None
def filter_lclist(lc_catalog, objectidcol='objectid', racol='ra', declcol='decl', xmatchexternal=None, xmatchdistarcsec=3.0, externalcolnums=(0,1,2), externalcolnames=['objectid','ra','decl'], externalcoldtypes='U20,f8,f8', externalcolsep=None, externalcommentchar='#', conesearch=None, conesearchworkers=1, columnfilters=None, field_fitsfile=None, field_wcsfrom=None, field_scale=ZScaleInterval(), field_stretch=LinearStretch(), field_colormap=plt.cm.gray_r, field_findersize=None, field_pltopts={'marker':'o', 'markersize':10.0, 'markerfacecolor':'none', 'markeredgewidth':2.0, 'markeredgecolor':'red'}, field_grid=False, field_gridcolor='k', field_zoomcontain=True, copylcsto=None): '''This is used to perform cone-search, cross-match, and column-filter operations on a light curve catalog generated by `make_lclist`. Uses the output of `make_lclist` above. This function returns a list of light curves matching various criteria specified by the `xmatchexternal`, `conesearch`, and `columnfilters kwargs`. Use this function to generate input lists for other lcproc functions, e.g. `lcproc.lcvfeatures.parallel_varfeatures`, `lcproc.periodfinding.parallel_pf`, and `lcproc.lcbin.parallel_timebin`, among others. The operations are applied in this order if more than one is specified: `xmatchexternal` -> `conesearch` -> `columnfilters`. All results from these operations are joined using a logical AND operation. Parameters ---------- objectidcol : str This is the name of the object ID column in the light curve catalog. racol : str This is the name of the RA column in the light curve catalog. declcol : str This is the name of the Dec column in the light curve catalog. xmatchexternal : str or None If provided, this is the filename of a text file containing objectids, ras and decs to match the objects in the light curve catalog to by their positions. xmatchdistarcsec : float This is the distance in arcseconds to use when cross-matching to the external catalog in `xmatchexternal`. externalcolnums : sequence of int This a list of the zero-indexed column numbers of columns to extract from the external catalog file. externalcolnames : sequence of str This is a list of names of columns that will be extracted from the external catalog file. This is the same length as `externalcolnums`. These must contain the names provided as the `objectid`, `ra`, and `decl` column names so this function knows which column numbers correspond to those columns and can use them to set up the cross-match. externalcoldtypes : str This is a CSV string containing numpy dtype definitions for all columns listed to extract from the external catalog file. The number of dtype definitions should be equal to the number of columns to extract. externalcolsep : str or None The column separator to use when extracting columns from the external catalog file. If None, any whitespace between columns is used as the separator. externalcommentchar : str The character indicating that a line in the external catalog file is to be ignored. conesearch : list of float This is used to specify cone-search parameters. It should be a three element list: [center_ra_deg, center_decl_deg, search_radius_deg] conesearchworkers : int The number of parallel workers to launch for the cone-search operation. columnfilters : list of str This is a list of strings indicating any filters to apply on each column in the light curve catalog. All column filters are applied in the specified sequence and are combined with a logical AND operator. The format of each filter string should be: '<lc_catalog column>|<operator>|<operand>' where: - <lc_catalog column> is a column in the lc_catalog pickle file - <operator> is one of: 'lt', 'gt', 'le', 'ge', 'eq', 'ne', which correspond to the usual operators: <, >, <=, >=, ==, != respectively. - <operand> is a float, int, or string. field_fitsfile : str or None If this is not None, it should be the path to a FITS image containing the objects these light curves are for. If this is provided, `make_lclist` will use the WCS information in the FITS itself if `field_wcsfrom` is None (or from a WCS header file pointed to by `field_wcsfrom`) to obtain x and y pixel coordinates for all of the objects in the field. A finder chart will also be made using `astrobase.plotbase.fits_finder_chart` using the corresponding `field_scale`, `_stretch`, `_colormap`, `_findersize`, `_pltopts`, `_grid`, and `_gridcolors` kwargs for that function, reproduced here to enable customization of the finder chart plot. field_wcsfrom : str or None If `wcsfrom` is None, the WCS to transform the RA/Dec to pixel x/y will be taken from the FITS header of `fitsfile`. If this is not None, it must be a FITS or similar file that contains a WCS header in its first extension. field_scale : astropy.visualization.Interval object `scale` sets the normalization for the FITS pixel values. This is an astropy.visualization Interval object. See http://docs.astropy.org/en/stable/visualization/normalization.html for details on `scale` and `stretch` objects. field_stretch : astropy.visualization.Stretch object `stretch` sets the stretch function for mapping FITS pixel values to output pixel values. This is an astropy.visualization Stretch object. See http://docs.astropy.org/en/stable/visualization/normalization.html for details on `scale` and `stretch` objects. field_colormap : matplotlib Colormap object `colormap` is a matplotlib color map object to use for the output image. field_findersize : None or tuple of two ints If `findersize` is None, the output image size will be set by the NAXIS1 and NAXIS2 keywords in the input `fitsfile` FITS header. Otherwise, `findersize` must be a tuple with the intended x and y size of the image in inches (all output images will use a DPI = 100). field_pltopts : dict `field_pltopts` controls how the overlay points will be plotted. This a dict with standard matplotlib marker, etc. kwargs as key-val pairs, e.g. 'markersize', 'markerfacecolor', etc. The default options make red outline circles at the location of each object in the overlay. field_grid : bool `grid` sets if a grid will be made on the output image. field_gridcolor : str `gridcolor` sets the color of the grid lines. This is a usual matplotib color spec string. field_zoomcontain : bool `field_zoomcontain` controls if the finder chart will be zoomed to just contain the overlayed points. Everything outside the footprint of these points will be discarded. copylcsto : str If this is provided, it is interpreted as a directory target to copy all the light curves that match the specified conditions. Returns ------- tuple Returns a two elem tuple: (matching_object_lcfiles, matching_objectids) if conesearch and/or column filters are used. If `xmatchexternal` is also used, a three-elem tuple is returned: (matching_object_lcfiles, matching_objectids, extcat_matched_objectids). ''' with open(lc_catalog,'rb') as infd: lclist = pickle.load(infd) # generate numpy arrays of the matching object indexes. we do it this way so # we can AND everything at the end, instead of having to look up the objects # at these indices and running the columnfilter on them xmatch_matching_index = np.full_like(lclist['objects'][objectidcol], False, dtype=np.bool) conesearch_matching_index = np.full_like(lclist['objects'][objectidcol], False, dtype=np.bool) # do the xmatch first ext_matches = [] ext_matching_objects = [] if (xmatchexternal and isinstance(xmatchexternal, str) and os.path.exists(xmatchexternal)): try: # read in the external file extcat = np.genfromtxt(xmatchexternal, usecols=externalcolnums, delimiter=externalcolsep, names=externalcolnames, dtype=externalcoldtypes, comments=externalcommentchar) ext_cosdecl = np.cos(np.radians(extcat['decl'])) ext_sindecl = np.sin(np.radians(extcat['decl'])) ext_cosra = np.cos(np.radians(extcat['ra'])) ext_sinra = np.sin(np.radians(extcat['ra'])) ext_xyz = np.column_stack((ext_cosra*ext_cosdecl, ext_sinra*ext_cosdecl, ext_sindecl)) ext_xyzdist = 2.0 * np.sin(np.radians(xmatchdistarcsec/3600.0)/2.0) # get our kdtree our_kdt = lclist['kdtree'] # get the external kdtree ext_kdt = sps.cKDTree(ext_xyz) # do a query_ball_tree extkd_matchinds = ext_kdt.query_ball_tree(our_kdt, ext_xyzdist) for extind, mind in enumerate(extkd_matchinds): if len(mind) > 0: ext_matches.append(mind[0]) # get the whole matching row for the ext objects recarray ext_matching_objects.append(extcat[extind]) ext_matches = np.array(ext_matches) if ext_matches.size > 0: # update the xmatch_matching_index xmatch_matching_index[ext_matches] = True LOGINFO('xmatch: objects matched to %s within %.1f arcsec: %s' % (xmatchexternal, xmatchdistarcsec, ext_matches.size)) else: LOGERROR("xmatch: no objects were cross-matched to external " "catalog spec: %s, can't continue" % xmatchexternal) return None, None, None except Exception as e: LOGEXCEPTION('could not match to external catalog spec: %s' % repr(xmatchexternal)) raise # do the cone search next if (conesearch and isinstance(conesearch, (list, tuple)) and len(conesearch) == 3): try: racenter, declcenter, searchradius = conesearch cosdecl = np.cos(np.radians(declcenter)) sindecl = np.sin(np.radians(declcenter)) cosra = np.cos(np.radians(racenter)) sinra = np.sin(np.radians(racenter)) # this is the search distance in xyz unit vectors xyzdist = 2.0 * np.sin(np.radians(searchradius)/2.0) # get the kdtree our_kdt = lclist['kdtree'] # look up the coordinates kdtindices = our_kdt.query_ball_point([cosra*cosdecl, sinra*cosdecl, sindecl], xyzdist, n_jobs=conesearchworkers) if kdtindices and len(kdtindices) > 0: LOGINFO('cone search: objects within %.4f deg ' 'of (%.3f, %.3f): %s' % (searchradius, racenter, declcenter, len(kdtindices))) # update the conesearch_matching_index matchingind = kdtindices conesearch_matching_index[np.array(matchingind)] = True # we fail immediately if we found nothing. this assumes the user # cares more about the cone-search than the regular column filters else: LOGERROR("cone-search: no objects were found within " "%.4f deg of (%.3f, %.3f): %s, can't continue" % (searchradius, racenter, declcenter, len(kdtindices))) return None, None except Exception as e: LOGEXCEPTION('cone-search: could not run a cone-search, ' 'is there a kdtree present in %s?' % lc_catalog) raise # now that we're done with cone-search, do the column filtering allfilterinds = [] if columnfilters and isinstance(columnfilters, list): # go through each filter for cfilt in columnfilters: try: fcol, foperator, foperand = cfilt.split('|') foperator = FILTEROPS[foperator] # generate the evalstring filterstr = ( "np.isfinite(lclist['objects']['%s']) & " "(lclist['objects']['%s'] %s %s)" ) % (fcol, fcol, foperator, foperand) filterind = eval(filterstr) ngood = lclist['objects'][objectidcol][filterind].size LOGINFO('filter: %s -> objects matching: %s ' % (cfilt, ngood)) allfilterinds.append(filterind) except Exception as e: LOGEXCEPTION('filter: could not understand filter spec: %s' % cfilt) LOGWARNING('filter: not applying this broken filter') # now that we have all the filter indices good to go # logical-AND all the things # make sure we only do filtering if we were told to do so if (xmatchexternal or conesearch or columnfilters): filterstack = [] if xmatchexternal: filterstack.append(xmatch_matching_index) if conesearch: filterstack.append(conesearch_matching_index) if columnfilters: filterstack.extend(allfilterinds) finalfilterind = np.column_stack(filterstack) finalfilterind = np.all(finalfilterind, axis=1) # get the filtered object light curves and object names filteredobjectids = lclist['objects'][objectidcol][finalfilterind] filteredlcfnames = lclist['objects']['lcfname'][finalfilterind] else: filteredobjectids = lclist['objects'][objectidcol] filteredlcfnames = lclist['objects']['lcfname'] # if we're told to make a finder chart with the selected objects if field_fitsfile is not None and os.path.exists(field_fitsfile): # get the RA and DEC of the matching objects matching_ra = lclist['objects'][racol][finalfilterind] matching_decl = lclist['objects'][declcol][finalfilterind] matching_postfix = [] if xmatchexternal is not None: matching_postfix.append( 'xmatch_%s' % os.path.splitext(os.path.basename(xmatchexternal))[0] ) if conesearch is not None: matching_postfix.append('conesearch_RA%.3f_DEC%.3f_RAD%.5f' % tuple(conesearch)) if columnfilters is not None: for cfi, cf in enumerate(columnfilters): if cfi == 0: matching_postfix.append('filter_%s_%s_%s' % tuple(cf.split('|'))) else: matching_postfix.append('_and_%s_%s_%s' % tuple(cf.split('|'))) if len(matching_postfix) > 0: matching_postfix = '-%s' % '_'.join(matching_postfix) else: matching_postfix = '' # next, we'll make a PNG plot for the finder finder_outfile = os.path.join( os.path.dirname(lc_catalog), '%s%s.png' % (os.path.splitext(os.path.basename(lc_catalog))[0], matching_postfix) ) finder_png = fits_finder_chart( field_fitsfile, finder_outfile, wcsfrom=field_wcsfrom, scale=field_scale, stretch=field_stretch, colormap=field_colormap, findersize=field_findersize, overlay_ra=matching_ra, overlay_decl=matching_decl, overlay_pltopts=field_pltopts, field_zoomcontain=field_zoomcontain, grid=field_grid, gridcolor=field_gridcolor ) if finder_png is not None: LOGINFO('generated a finder PNG ' 'with an object position overlay ' 'for this filtered LC list: %s' % finder_png) # if copylcsto is not None, copy LCs over to it if copylcsto is not None: if not os.path.exists(copylcsto): os.mkdir(copylcsto) if TQDM: lciter = tqdm(filteredlcfnames) else: lciter = filteredlcfnames LOGINFO('copying matching light curves to %s' % copylcsto) for lc in lciter: shutil.copy(lc, copylcsto) LOGINFO('done. objects matching all filters: %s' % filteredobjectids.size) if xmatchexternal and len(ext_matching_objects) > 0: return filteredlcfnames, filteredobjectids, ext_matching_objects else: return filteredlcfnames, filteredobjectids
def _cpinfo_key_worker(task): '''This wraps `checkplotlist.checkplot_infokey_worker`. This is used to get the correct dtype for each element in retrieved results. Parameters ---------- task : tuple task[0] = cpfile task[1] = keyspeclist (infokeys kwarg from `add_cpinfo_to_lclist`) Returns ------- dict All of the requested keys from the checkplot are returned along with their values in a dict. ''' cpfile, keyspeclist = task keystoget = [x[0] for x in keyspeclist] nonesubs = [x[-2] for x in keyspeclist] nansubs = [x[-1] for x in keyspeclist] # reform the keystoget into a list of lists for i, k in enumerate(keystoget): thisk = k.split('.') if sys.version_info[:2] < (3,4): thisk = [(int(x) if x.isdigit() else x) for x in thisk] else: thisk = [(int(x) if x.isdecimal() else x) for x in thisk] keystoget[i] = thisk # add in the objectid as well to match to the object catalog later keystoget.insert(0,['objectid']) nonesubs.insert(0, '') nansubs.insert(0,'') # get all the keys we need vals = checkplot_infokey_worker((cpfile, keystoget)) # if they have some Nones, nans, etc., reform them as expected for val, nonesub, nansub, valind in zip(vals, nonesubs, nansubs, range(len(vals))): if val is None: outval = nonesub elif isinstance(val, float) and not np.isfinite(val): outval = nansub elif isinstance(val, (list, tuple)): outval = ', '.join(val) else: outval = val vals[valind] = outval return vals
def add_cpinfo_to_lclist( checkplots, # list or a directory path initial_lc_catalog, magcol, # to indicate checkplot magcol outfile, checkplotglob='checkplot*.pkl*', infokeys=CPINFO_DEFAULTKEYS, nworkers=NCPUS ): '''This adds checkplot info to the initial light curve catalogs generated by `make_lclist`. This is used to incorporate all the extra info checkplots can have for objects back into columns in the light curve catalog produced by `make_lclist`. Objects are matched between the checkplots and the light curve catalog using their `objectid`. This then allows one to search this 'augmented' light curve catalog by these extra columns. The 'augmented' light curve catalog also forms the basis for search interface provided by the LCC-Server. The default list of keys that will be extracted from a checkplot and added as columns in the initial light curve catalog is listed above in the `CPINFO_DEFAULTKEYS` list. Parameters ---------- checkplots : str or list If this is a str, is interpreted as a directory which will be searched for checkplot pickle files using `checkplotglob`. If this is a list, it will be interpreted as a list of checkplot pickle files to process. initial_lc_catalog : str This is the path to the light curve catalog pickle made by `make_lclist`. magcol : str This is used to indicate the light curve magnitude column to extract magnitude column specific information. For example, Stetson variability indices can be generated using magnitude measurements in separate photometric apertures, which appear in separate `magcols` in the checkplot. To associate each such feature of the object with its specific `magcol`, pass that `magcol` in here. This `magcol` will then be added as a prefix to the resulting column in the 'augmented' LC catalog, e.g. Stetson J will appear as `magcol1_stetsonj` and `magcol2_stetsonj` for two separate magcols. outfile : str This is the file name of the output 'augmented' light curve catalog pickle file that will be written. infokeys : list of tuples This is a list of keys to extract from the checkplot and some info on how this extraction is to be done. Each key entry is a six-element tuple of the following form: - key name in the checkplot - numpy dtype of the value of this key - False if key is associated with a magcol or True otherwise - False if subsequent updates to the same column name will append to existing key values in the output augmented light curve catalog or True if these will overwrite the existing key value - character to use to substitute a None value of the key in the checkplot in the output light curve catalog column - character to use to substitute a nan value of the key in the checkplot in the output light curve catalog column See the `CPFINFO_DEFAULTKEYS` list above for examples. nworkers : int The number of parallel workers to launch to extract checkplot information. Returns ------- str Returns the path to the generated 'augmented' light curve catalog pickle file. ''' # get the checkplots from the directory if one is provided if not isinstance(checkplots, list) and os.path.exists(checkplots): checkplots = sorted(glob.glob(os.path.join(checkplots, checkplotglob))) tasklist = [(cpf, infokeys) for cpf in checkplots] with ProcessPoolExecutor(max_workers=nworkers) as executor: resultfutures = executor.map(_cpinfo_key_worker, tasklist) results = [x for x in resultfutures] executor.shutdown() # now that we have all the checkplot info, we need to match to the # objectlist in the lclist # open the lclist with open(initial_lc_catalog,'rb') as infd: lc_catalog = pickle.load(infd) catalog_objectids = np.array(lc_catalog['objects']['objectid']) checkplot_objectids = np.array([x[0] for x in results]) # add the extra key arrays in the lclist dict extrainfokeys = [] actualkeys = [] # set up the extrainfokeys list for keyspec in infokeys: key, dtype, firstlevel, overwrite_append, nonesub, nansub = keyspec if firstlevel: eik = key else: eik = '%s.%s' % (magcol, key) extrainfokeys.append(eik) # now handle the output dicts and column list eactual = eik.split('.') # this handles dereferenced list indices if not eactual[-1].isdigit(): if not firstlevel: eactual = '.'.join([eactual[0], eactual[-1]]) else: eactual = eactual[-1] else: elastkey = eactual[-2] # for list columns, this converts stuff like errs -> err, # and parallaxes -> parallax if elastkey.endswith('es'): elastkey = elastkey[:-2] elif elastkey.endswith('s'): elastkey = elastkey[:-1] if not firstlevel: eactual = '.'.join([eactual[0], elastkey]) else: eactual = elastkey actualkeys.append(eactual) # add a new column only if required if eactual not in lc_catalog['columns']: lc_catalog['columns'].append(eactual) # we'll overwrite earlier existing columns in any case lc_catalog['objects'][eactual] = [] # now go through each objectid in the catalog and add the extra keys to # their respective arrays for catobj in tqdm(catalog_objectids): cp_objind = np.where(checkplot_objectids == catobj) if len(cp_objind[0]) > 0: # get the info line for this checkplot thiscpinfo = results[cp_objind[0][0]] # the first element is the objectid which we remove thiscpinfo = thiscpinfo[1:] # update the object catalog entries for this object for ekind, ek in enumerate(actualkeys): # add the actual thing to the output list lc_catalog['objects'][ek].append( thiscpinfo[ekind] ) else: # update the object catalog entries for this object for ekind, ek in enumerate(actualkeys): thiskeyspec = infokeys[ekind] nonesub = thiskeyspec[-2] lc_catalog['objects'][ek].append( nonesub ) # now we should have all the new keys in the object catalog # turn them into arrays for ek in actualkeys: lc_catalog['objects'][ek] = np.array( lc_catalog['objects'][ek] ) # add the magcol to the lc_catalog if 'magcols' in lc_catalog: if magcol not in lc_catalog['magcols']: lc_catalog['magcols'].append(magcol) else: lc_catalog['magcols'] = [magcol] # write back the new object catalog with open(outfile, 'wb') as outfd: pickle.dump(lc_catalog, outfd, protocol=pickle.HIGHEST_PROTOCOL) return outfile
def variability_threshold(featuresdir, outfile, magbins=DEFAULT_MAGBINS, maxobjects=None, timecols=None, magcols=None, errcols=None, lcformat='hat-sql', lcformatdir=None, min_lcmad_stdev=5.0, min_stetj_stdev=2.0, min_iqr_stdev=2.0, min_inveta_stdev=2.0, verbose=True): '''This generates a list of objects with stetson J, IQR, and 1.0/eta above some threshold value to select them as potential variable stars. Use this to pare down the objects to review and put through period-finding. This does the thresholding per magnitude bin; this should be better than one single cut through the entire magnitude range. Set the magnitude bins using the magbins kwarg. FIXME: implement a voting classifier here. this will choose variables based on the thresholds in IQR, stetson, and inveta based on weighting carried over from the variability recovery sims. Parameters ---------- featuresdir : str This is the directory containing variability feature pickles created by :py:func:`astrobase.lcproc.lcpfeatures.parallel_varfeatures` or similar. outfile : str This is the output pickle file that will contain all the threshold information. magbins : np.array of floats This sets the magnitude bins to use for calculating thresholds. maxobjects : int or None This is the number of objects to process. If None, all objects with feature pickles in `featuresdir` will be processed. timecols : list of str or None The timecol keys to use from the lcdict in calculating the thresholds. magcols : list of str or None The magcol keys to use from the lcdict in calculating the thresholds. errcols : list of str or None The errcol keys to use from the lcdict in calculating the thresholds. lcformat : str This is the `formatkey` associated with your light curve format, which you previously passed in to the `lcproc.register_lcformat` function. This will be used to look up how to find and read the light curves specified in `basedir` or `use_list_of_filenames`. lcformatdir : str or None If this is provided, gives the path to a directory when you've stored your lcformat description JSONs, other than the usual directories lcproc knows to search for them in. Use this along with `lcformat` to specify an LC format JSON file that's not currently registered with lcproc. min_lcmad_stdev,min_stetj_stdev,min_iqr_stdev,min_inveta_stdev : float or np.array These are all the standard deviation multiplier for the distributions of light curve standard deviation, Stetson J variability index, the light curve interquartile range, and 1/eta variability index respectively. These multipliers set the minimum values of these measures to use for selecting variable stars. If provided as floats, the same value will be used for all magbins. If provided as np.arrays of `size = magbins.size - 1`, will be used to apply possibly different sigma cuts for each magbin. verbose : bool If True, will report progress and warn about any problems. Returns ------- dict Contains all of the variability threshold information along with indices into the array of the object IDs chosen as variables. ''' try: formatinfo = get_lcformat(lcformat, use_lcformat_dir=lcformatdir) if formatinfo: (dfileglob, readerfunc, dtimecols, dmagcols, derrcols, magsarefluxes, normfunc) = formatinfo else: LOGERROR("can't figure out the light curve format") return None except Exception as e: LOGEXCEPTION("can't figure out the light curve format") return None # override the default timecols, magcols, and errcols # using the ones provided to the function if timecols is None: timecols = dtimecols if magcols is None: magcols = dmagcols if errcols is None: errcols = derrcols # list of input pickles generated by varfeatures functions above pklist = glob.glob(os.path.join(featuresdir, 'varfeatures-*.pkl')) if maxobjects: pklist = pklist[:maxobjects] allobjects = {} for magcol in magcols: # keep local copies of these so we can fix them independently in case of # nans if (isinstance(min_stetj_stdev, list) or isinstance(min_stetj_stdev, np.ndarray)): magcol_min_stetj_stdev = min_stetj_stdev[::] else: magcol_min_stetj_stdev = min_stetj_stdev if (isinstance(min_iqr_stdev, list) or isinstance(min_iqr_stdev, np.ndarray)): magcol_min_iqr_stdev = min_iqr_stdev[::] else: magcol_min_iqr_stdev = min_iqr_stdev if (isinstance(min_inveta_stdev, list) or isinstance(min_inveta_stdev, np.ndarray)): magcol_min_inveta_stdev = min_inveta_stdev[::] else: magcol_min_inveta_stdev = min_inveta_stdev LOGINFO('getting all object sdssr, LC MAD, stet J, IQR, eta...') # we'll calculate the sigma per magnitude bin, so get the mags as well allobjects[magcol] = { 'objectid':[], 'sdssr':[], 'lcmad':[], 'stetsonj':[], 'iqr':[], 'eta':[] } # fancy progress bar with tqdm if present if TQDM and verbose: listiterator = tqdm(pklist) else: listiterator = pklist for pkl in listiterator: with open(pkl,'rb') as infd: thisfeatures = pickle.load(infd) objectid = thisfeatures['objectid'] # the object magnitude if ('info' in thisfeatures and thisfeatures['info'] and 'sdssr' in thisfeatures['info']): if (thisfeatures['info']['sdssr'] and thisfeatures['info']['sdssr'] > 3.0): sdssr = thisfeatures['info']['sdssr'] elif (magcol in thisfeatures and thisfeatures[magcol] and 'median' in thisfeatures[magcol] and thisfeatures[magcol]['median'] > 3.0): sdssr = thisfeatures[magcol]['median'] elif (thisfeatures['info']['jmag'] and thisfeatures['info']['hmag'] and thisfeatures['info']['kmag']): sdssr = jhk_to_sdssr(thisfeatures['info']['jmag'], thisfeatures['info']['hmag'], thisfeatures['info']['kmag']) else: sdssr = np.nan else: sdssr = np.nan # the MAD of the light curve if (magcol in thisfeatures and thisfeatures[magcol] and thisfeatures[magcol]['mad']): lcmad = thisfeatures[magcol]['mad'] else: lcmad = np.nan # stetson index if (magcol in thisfeatures and thisfeatures[magcol] and thisfeatures[magcol]['stetsonj']): stetsonj = thisfeatures[magcol]['stetsonj'] else: stetsonj = np.nan # IQR if (magcol in thisfeatures and thisfeatures[magcol] and thisfeatures[magcol]['mag_iqr']): iqr = thisfeatures[magcol]['mag_iqr'] else: iqr = np.nan # eta if (magcol in thisfeatures and thisfeatures[magcol] and thisfeatures[magcol]['eta_normal']): eta = thisfeatures[magcol]['eta_normal'] else: eta = np.nan allobjects[magcol]['objectid'].append(objectid) allobjects[magcol]['sdssr'].append(sdssr) allobjects[magcol]['lcmad'].append(lcmad) allobjects[magcol]['stetsonj'].append(stetsonj) allobjects[magcol]['iqr'].append(iqr) allobjects[magcol]['eta'].append(eta) # # done with collection of info # LOGINFO('finding objects above thresholds per magbin...') # turn the info into arrays allobjects[magcol]['objectid'] = np.ravel(np.array( allobjects[magcol]['objectid'] )) allobjects[magcol]['sdssr'] = np.ravel(np.array( allobjects[magcol]['sdssr'] )) allobjects[magcol]['lcmad'] = np.ravel(np.array( allobjects[magcol]['lcmad'] )) allobjects[magcol]['stetsonj'] = np.ravel(np.array( allobjects[magcol]['stetsonj'] )) allobjects[magcol]['iqr'] = np.ravel(np.array( allobjects[magcol]['iqr'] )) allobjects[magcol]['eta'] = np.ravel(np.array( allobjects[magcol]['eta'] )) # only get finite elements everywhere thisfinind = ( np.isfinite(allobjects[magcol]['sdssr']) & np.isfinite(allobjects[magcol]['lcmad']) & np.isfinite(allobjects[magcol]['stetsonj']) & np.isfinite(allobjects[magcol]['iqr']) & np.isfinite(allobjects[magcol]['eta']) ) allobjects[magcol]['objectid'] = allobjects[magcol]['objectid'][ thisfinind ] allobjects[magcol]['sdssr'] = allobjects[magcol]['sdssr'][thisfinind] allobjects[magcol]['lcmad'] = allobjects[magcol]['lcmad'][thisfinind] allobjects[magcol]['stetsonj'] = allobjects[magcol]['stetsonj'][ thisfinind ] allobjects[magcol]['iqr'] = allobjects[magcol]['iqr'][thisfinind] allobjects[magcol]['eta'] = allobjects[magcol]['eta'][thisfinind] # invert eta so we can threshold the same way as the others allobjects[magcol]['inveta'] = 1.0/allobjects[magcol]['eta'] # do the thresholding by magnitude bin magbininds = np.digitize(allobjects[magcol]['sdssr'], magbins) binned_objectids = [] binned_sdssr = [] binned_sdssr_median = [] binned_lcmad = [] binned_stetsonj = [] binned_iqr = [] binned_inveta = [] binned_count = [] binned_objectids_thresh_stetsonj = [] binned_objectids_thresh_iqr = [] binned_objectids_thresh_inveta = [] binned_objectids_thresh_all = [] binned_lcmad_median = [] binned_lcmad_stdev = [] binned_stetsonj_median = [] binned_stetsonj_stdev = [] binned_inveta_median = [] binned_inveta_stdev = [] binned_iqr_median = [] binned_iqr_stdev = [] # go through all the mag bins and get the thresholds for J, inveta, IQR for mbinind, magi in zip(np.unique(magbininds), range(len(magbins)-1)): thisbinind = np.where(magbininds == mbinind) thisbin_sdssr_median = (magbins[magi] + magbins[magi+1])/2.0 binned_sdssr_median.append(thisbin_sdssr_median) thisbin_objectids = allobjects[magcol]['objectid'][thisbinind] thisbin_sdssr = allobjects[magcol]['sdssr'][thisbinind] thisbin_lcmad = allobjects[magcol]['lcmad'][thisbinind] thisbin_stetsonj = allobjects[magcol]['stetsonj'][thisbinind] thisbin_iqr = allobjects[magcol]['iqr'][thisbinind] thisbin_inveta = allobjects[magcol]['inveta'][thisbinind] thisbin_count = thisbin_objectids.size if thisbin_count > 4: thisbin_lcmad_median = np.median(thisbin_lcmad) thisbin_lcmad_stdev = np.median( np.abs(thisbin_lcmad - thisbin_lcmad_median) ) * 1.483 binned_lcmad_median.append(thisbin_lcmad_median) binned_lcmad_stdev.append(thisbin_lcmad_stdev) thisbin_stetsonj_median = np.median(thisbin_stetsonj) thisbin_stetsonj_stdev = np.median( np.abs(thisbin_stetsonj - thisbin_stetsonj_median) ) * 1.483 binned_stetsonj_median.append(thisbin_stetsonj_median) binned_stetsonj_stdev.append(thisbin_stetsonj_stdev) # now get the objects above the required stdev threshold if isinstance(magcol_min_stetj_stdev, float): thisbin_objectids_thresh_stetsonj = thisbin_objectids[ thisbin_stetsonj > ( thisbin_stetsonj_median + magcol_min_stetj_stdev*thisbin_stetsonj_stdev ) ] elif (isinstance(magcol_min_stetj_stdev, np.ndarray) or isinstance(magcol_min_stetj_stdev, list)): thisbin_min_stetj_stdev = magcol_min_stetj_stdev[magi] if not np.isfinite(thisbin_min_stetj_stdev): LOGWARNING('provided threshold stetson J stdev ' 'for magbin: %.3f is nan, using 2.0' % thisbin_sdssr_median) thisbin_min_stetj_stdev = 2.0 # update the input list/array as well, since we'll be # saving it to the output dict and using it to plot the # variability thresholds magcol_min_stetj_stdev[magi] = 2.0 thisbin_objectids_thresh_stetsonj = thisbin_objectids[ thisbin_stetsonj > ( thisbin_stetsonj_median + thisbin_min_stetj_stdev*thisbin_stetsonj_stdev ) ] thisbin_iqr_median = np.median(thisbin_iqr) thisbin_iqr_stdev = np.median( np.abs(thisbin_iqr - thisbin_iqr_median) ) * 1.483 binned_iqr_median.append(thisbin_iqr_median) binned_iqr_stdev.append(thisbin_iqr_stdev) # get the objects above the required stdev threshold if isinstance(magcol_min_iqr_stdev, float): thisbin_objectids_thresh_iqr = thisbin_objectids[ thisbin_iqr > (thisbin_iqr_median + magcol_min_iqr_stdev*thisbin_iqr_stdev) ] elif (isinstance(magcol_min_iqr_stdev, np.ndarray) or isinstance(magcol_min_iqr_stdev, list)): thisbin_min_iqr_stdev = magcol_min_iqr_stdev[magi] if not np.isfinite(thisbin_min_iqr_stdev): LOGWARNING('provided threshold IQR stdev ' 'for magbin: %.3f is nan, using 2.0' % thisbin_sdssr_median) thisbin_min_iqr_stdev = 2.0 # update the input list/array as well, since we'll be # saving it to the output dict and using it to plot the # variability thresholds magcol_min_iqr_stdev[magi] = 2.0 thisbin_objectids_thresh_iqr = thisbin_objectids[ thisbin_iqr > (thisbin_iqr_median + thisbin_min_iqr_stdev*thisbin_iqr_stdev) ] thisbin_inveta_median = np.median(thisbin_inveta) thisbin_inveta_stdev = np.median( np.abs(thisbin_inveta - thisbin_inveta_median) ) * 1.483 binned_inveta_median.append(thisbin_inveta_median) binned_inveta_stdev.append(thisbin_inveta_stdev) if isinstance(magcol_min_inveta_stdev, float): thisbin_objectids_thresh_inveta = thisbin_objectids[ thisbin_inveta > ( thisbin_inveta_median + magcol_min_inveta_stdev*thisbin_inveta_stdev ) ] elif (isinstance(magcol_min_inveta_stdev, np.ndarray) or isinstance(magcol_min_inveta_stdev, list)): thisbin_min_inveta_stdev = magcol_min_inveta_stdev[magi] if not np.isfinite(thisbin_min_inveta_stdev): LOGWARNING('provided threshold inveta stdev ' 'for magbin: %.3f is nan, using 2.0' % thisbin_sdssr_median) thisbin_min_inveta_stdev = 2.0 # update the input list/array as well, since we'll be # saving it to the output dict and using it to plot the # variability thresholds magcol_min_inveta_stdev[magi] = 2.0 thisbin_objectids_thresh_inveta = thisbin_objectids[ thisbin_inveta > ( thisbin_inveta_median + thisbin_min_inveta_stdev*thisbin_inveta_stdev ) ] else: thisbin_objectids_thresh_stetsonj = ( np.array([],dtype=np.unicode_) ) thisbin_objectids_thresh_iqr = ( np.array([],dtype=np.unicode_) ) thisbin_objectids_thresh_inveta = ( np.array([],dtype=np.unicode_) ) # # done with check for enough objects in the bin # # get the intersection of all threshold objects to get objects that # lie above the threshold for all variable indices thisbin_objectids_thresh_all = reduce( np.intersect1d, (thisbin_objectids_thresh_stetsonj, thisbin_objectids_thresh_iqr, thisbin_objectids_thresh_inveta) ) binned_objectids.append(thisbin_objectids) binned_sdssr.append(thisbin_sdssr) binned_lcmad.append(thisbin_lcmad) binned_stetsonj.append(thisbin_stetsonj) binned_iqr.append(thisbin_iqr) binned_inveta.append(thisbin_inveta) binned_count.append(thisbin_objectids.size) binned_objectids_thresh_stetsonj.append( thisbin_objectids_thresh_stetsonj ) binned_objectids_thresh_iqr.append( thisbin_objectids_thresh_iqr ) binned_objectids_thresh_inveta.append( thisbin_objectids_thresh_inveta ) binned_objectids_thresh_all.append( thisbin_objectids_thresh_all ) # # done with magbins # # update the output dict for this magcol allobjects[magcol]['magbins'] = magbins allobjects[magcol]['binned_objectids'] = binned_objectids allobjects[magcol]['binned_sdssr_median'] = binned_sdssr_median allobjects[magcol]['binned_sdssr'] = binned_sdssr allobjects[magcol]['binned_count'] = binned_count allobjects[magcol]['binned_lcmad'] = binned_lcmad allobjects[magcol]['binned_lcmad_median'] = binned_lcmad_median allobjects[magcol]['binned_lcmad_stdev'] = binned_lcmad_stdev allobjects[magcol]['binned_stetsonj'] = binned_stetsonj allobjects[magcol]['binned_stetsonj_median'] = binned_stetsonj_median allobjects[magcol]['binned_stetsonj_stdev'] = binned_stetsonj_stdev allobjects[magcol]['binned_iqr'] = binned_iqr allobjects[magcol]['binned_iqr_median'] = binned_iqr_median allobjects[magcol]['binned_iqr_stdev'] = binned_iqr_stdev allobjects[magcol]['binned_inveta'] = binned_inveta allobjects[magcol]['binned_inveta_median'] = binned_inveta_median allobjects[magcol]['binned_inveta_stdev'] = binned_inveta_stdev allobjects[magcol]['binned_objectids_thresh_stetsonj'] = ( binned_objectids_thresh_stetsonj ) allobjects[magcol]['binned_objectids_thresh_iqr'] = ( binned_objectids_thresh_iqr ) allobjects[magcol]['binned_objectids_thresh_inveta'] = ( binned_objectids_thresh_inveta ) allobjects[magcol]['binned_objectids_thresh_all'] = ( binned_objectids_thresh_all ) # get the common selected objects thru all measures try: allobjects[magcol]['objectids_all_thresh_all_magbins'] = np.unique( np.concatenate( allobjects[magcol]['binned_objectids_thresh_all'] ) ) except ValueError: LOGWARNING('not enough variable objects matching all thresholds') allobjects[magcol]['objectids_all_thresh_all_magbins'] = ( np.array([]) ) allobjects[magcol]['objectids_stetsonj_thresh_all_magbins'] = np.unique( np.concatenate( allobjects[magcol]['binned_objectids_thresh_stetsonj'] ) ) allobjects[magcol]['objectids_inveta_thresh_all_magbins'] = np.unique( np.concatenate(allobjects[magcol]['binned_objectids_thresh_inveta']) ) allobjects[magcol]['objectids_iqr_thresh_all_magbins'] = np.unique( np.concatenate(allobjects[magcol]['binned_objectids_thresh_iqr']) ) # turn these into np.arrays for easier plotting if they're lists if isinstance(min_stetj_stdev, list): allobjects[magcol]['min_stetj_stdev'] = np.array( magcol_min_stetj_stdev ) else: allobjects[magcol]['min_stetj_stdev'] = magcol_min_stetj_stdev if isinstance(min_iqr_stdev, list): allobjects[magcol]['min_iqr_stdev'] = np.array( magcol_min_iqr_stdev ) else: allobjects[magcol]['min_iqr_stdev'] = magcol_min_iqr_stdev if isinstance(min_inveta_stdev, list): allobjects[magcol]['min_inveta_stdev'] = np.array( magcol_min_inveta_stdev ) else: allobjects[magcol]['min_inveta_stdev'] = magcol_min_inveta_stdev # this one doesn't get touched (for now) allobjects[magcol]['min_lcmad_stdev'] = min_lcmad_stdev # # done with all magcols # allobjects['magbins'] = magbins with open(outfile,'wb') as outfd: pickle.dump(allobjects, outfd, protocol=pickle.HIGHEST_PROTOCOL) return allobjects
def plot_variability_thresholds(varthreshpkl, xmin_lcmad_stdev=5.0, xmin_stetj_stdev=2.0, xmin_iqr_stdev=2.0, xmin_inveta_stdev=2.0, lcformat='hat-sql', lcformatdir=None, magcols=None): '''This makes plots for the variability threshold distributions. Parameters ---------- varthreshpkl : str The pickle produced by the function above. xmin_lcmad_stdev,xmin_stetj_stdev,xmin_iqr_stdev,xmin_inveta_stdev : float or np.array Values of the threshold values to override the ones in the `vartresholdpkl`. If provided, will plot the thresholds accordingly instead of using the ones in the input pickle directly. lcformat : str This is the `formatkey` associated with your light curve format, which you previously passed in to the `lcproc.register_lcformat` function. This will be used to look up how to find and read the light curves specified in `basedir` or `use_list_of_filenames`. lcformatdir : str or None If this is provided, gives the path to a directory when you've stored your lcformat description JSONs, other than the usual directories lcproc knows to search for them in. Use this along with `lcformat` to specify an LC format JSON file that's not currently registered with lcproc. magcols : list of str or None The magcol keys to use from the lcdict. Returns ------- str The file name of the threshold plot generated. ''' try: formatinfo = get_lcformat(lcformat, use_lcformat_dir=lcformatdir) if formatinfo: (dfileglob, readerfunc, dtimecols, dmagcols, derrcols, magsarefluxes, normfunc) = formatinfo else: LOGERROR("can't figure out the light curve format") return None except Exception as e: LOGEXCEPTION("can't figure out the light curve format") return None if magcols is None: magcols = dmagcols with open(varthreshpkl,'rb') as infd: allobjects = pickle.load(infd) magbins = allobjects['magbins'] for magcol in magcols: min_lcmad_stdev = ( xmin_lcmad_stdev or allobjects[magcol]['min_lcmad_stdev'] ) min_stetj_stdev = ( xmin_stetj_stdev or allobjects[magcol]['min_stetj_stdev'] ) min_iqr_stdev = ( xmin_iqr_stdev or allobjects[magcol]['min_iqr_stdev'] ) min_inveta_stdev = ( xmin_inveta_stdev or allobjects[magcol]['min_inveta_stdev'] ) fig = plt.figure(figsize=(20,16)) # the mag vs lcmad plt.subplot(221) plt.plot(allobjects[magcol]['sdssr'], allobjects[magcol]['lcmad']*1.483, marker='.',ms=1.0, linestyle='none', rasterized=True) plt.plot(allobjects[magcol]['binned_sdssr_median'], np.array(allobjects[magcol]['binned_lcmad_median'])*1.483, linewidth=3.0) plt.plot( allobjects[magcol]['binned_sdssr_median'], np.array(allobjects[magcol]['binned_lcmad_median'])*1.483 + min_lcmad_stdev*np.array( allobjects[magcol]['binned_lcmad_stdev'] ), linewidth=3.0, linestyle='dashed' ) plt.xlim((magbins.min()-0.25, magbins.max())) plt.xlabel('SDSS r') plt.ylabel(r'lightcurve RMS (MAD $\times$ 1.483)') plt.title('%s - SDSS r vs. light curve RMS' % magcol) plt.yscale('log') plt.tight_layout() # the mag vs stetsonj plt.subplot(222) plt.plot(allobjects[magcol]['sdssr'], allobjects[magcol]['stetsonj'], marker='.',ms=1.0, linestyle='none', rasterized=True) plt.plot(allobjects[magcol]['binned_sdssr_median'], allobjects[magcol]['binned_stetsonj_median'], linewidth=3.0) plt.plot( allobjects[magcol]['binned_sdssr_median'], np.array(allobjects[magcol]['binned_stetsonj_median']) + min_stetj_stdev*np.array( allobjects[magcol]['binned_stetsonj_stdev'] ), linewidth=3.0, linestyle='dashed' ) plt.xlim((magbins.min()-0.25, magbins.max())) plt.xlabel('SDSS r') plt.ylabel('Stetson J index') plt.title('%s - SDSS r vs. Stetson J index' % magcol) plt.yscale('log') plt.tight_layout() # the mag vs IQR plt.subplot(223) plt.plot(allobjects[magcol]['sdssr'], allobjects[magcol]['iqr'], marker='.',ms=1.0, linestyle='none', rasterized=True) plt.plot(allobjects[magcol]['binned_sdssr_median'], allobjects[magcol]['binned_iqr_median'], linewidth=3.0) plt.plot( allobjects[magcol]['binned_sdssr_median'], np.array(allobjects[magcol]['binned_iqr_median']) + min_iqr_stdev*np.array( allobjects[magcol]['binned_iqr_stdev'] ), linewidth=3.0, linestyle='dashed' ) plt.xlabel('SDSS r') plt.ylabel('IQR') plt.title('%s - SDSS r vs. IQR' % magcol) plt.xlim((magbins.min()-0.25, magbins.max())) plt.yscale('log') plt.tight_layout() # the mag vs IQR plt.subplot(224) plt.plot(allobjects[magcol]['sdssr'], allobjects[magcol]['inveta'], marker='.',ms=1.0, linestyle='none', rasterized=True) plt.plot(allobjects[magcol]['binned_sdssr_median'], allobjects[magcol]['binned_inveta_median'], linewidth=3.0) plt.plot( allobjects[magcol]['binned_sdssr_median'], np.array(allobjects[magcol]['binned_inveta_median']) + min_inveta_stdev*np.array( allobjects[magcol]['binned_inveta_stdev'] ), linewidth=3.0, linestyle='dashed' ) plt.xlabel('SDSS r') plt.ylabel(r'$1/\eta$') plt.title(r'%s - SDSS r vs. $1/\eta$' % magcol) plt.xlim((magbins.min()-0.25, magbins.max())) plt.yscale('log') plt.tight_layout() plt.savefig('varfeatures-%s-%s-distributions.png' % (varthreshpkl, magcol), bbox_inches='tight') plt.close('all')
def get_stamp(ra, decl, survey='DSS2 Red', scaling='Linear', sizepix=300, forcefetch=False, cachedir='~/.astrobase/stamp-cache', timeout=10.0, retry_failed=True, verbose=True, jitter=5.0): '''This gets a FITS cutout from the NASA GSFC SkyView service. This downloads stamps in FITS format from the NASA SkyView service: https://skyview.gsfc.nasa.gov/current/cgi/query.pl Parameters ---------- ra,decl : float These are decimal equatorial coordinates for the cutout center. survey : str The survey name to get the stamp from. This is one of the values in the 'SkyView Surveys' option boxes on the SkyView webpage. Currently, we've only tested using 'DSS2 Red' as the value for this kwarg, but the other ones should work in principle. scaling : str This is the pixel value scaling function to use. sizepix : int The width and height of the cutout are specified by this value. forcefetch : bool If True, will disregard any existing cached copies of the stamp already downloaded corresponding to the requested center coordinates and redownload the FITS from the SkyView service. cachedir : str This is the path to the astrobase cache directory. All downloaded FITS stamps are stored here as .fits.gz files so we can immediately respond with the cached copy when a request is made for a coordinate center that's already been downloaded. timeout : float Sets the timeout in seconds to wait for a response from the NASA SkyView service. retry_failed : bool If the initial request to SkyView fails, and this is True, will retry until it succeeds. verbose : bool If True, indicates progress. jitter : float This is used to control the scale of the random wait in seconds before starting the query. Useful in parallelized situations. Returns ------- dict A dict of the following form is returned:: { 'params':{input ra, decl and kwargs used}, 'provenance':'cached' or 'new download', 'fitsfile':FITS file to which the cutout was saved on disk } ''' # parse the given params into the correct format for the form formposition = ['%.4f, %.4f' % (ra, decl)] formscaling = [scaling] formparams = copy.deepcopy(SKYVIEW_PARAMS) formparams['Position'] = formposition formparams['survey'][0] = survey formparams['scaling'] = formscaling formparams['pixels'] = ['%s' % sizepix] # see if the cachedir exists if '~' in cachedir: cachedir = os.path.expanduser(cachedir) if not os.path.exists(cachedir): os.makedirs(cachedir) # figure out if we can get this image from the cache cachekey = '%s-%s-%s-%s' % (formposition[0], survey, scaling, sizepix) cachekey = hashlib.sha256(cachekey.encode()).hexdigest() cachefname = os.path.join(cachedir, '%s.fits.gz' % cachekey) provenance = 'cache' # this is to handle older cached stamps that didn't include the sizepix # parameter if sizepix == 300: oldcachekey = '%s-%s-%s' % (formposition[0], survey, scaling) oldcachekey = hashlib.sha256(oldcachekey.encode()).hexdigest() oldcachefname = os.path.join(cachedir, '%s.fits.gz' % oldcachekey) if os.path.exists(oldcachefname): cachefname = oldcachefname # if this exists in the cache and we're not refetching, get the frame if forcefetch or (not os.path.exists(cachefname)): provenance = 'new download' time.sleep(random.randint(1,jitter)) # fire the request try: if verbose: LOGINFO('submitting stamp request for %s, %s, %s, %s' % ( formposition[0], survey, scaling, sizepix) ) req = requests.get(SKYVIEW_URL, params=formparams, timeout=timeout) req.raise_for_status() # get the text of the response, this includes the locations of the # generated FITS on the server resp = req.text # find the URLS of the FITS fitsurls = FITS_REGEX.findall(resp) # download the URLs if fitsurls: for fitsurl in fitsurls: fullfitsurl = urljoin(FITS_BASEURL, fitsurl) if verbose: LOGINFO('getting %s' % fullfitsurl) fitsreq = requests.get(fullfitsurl, timeout=timeout) with gzip.open(cachefname,'wb') as outfd: outfd.write(fitsreq.content) else: LOGERROR('no FITS URLs found in query results for %s' % formposition) return None except requests.exceptions.HTTPError as e: LOGEXCEPTION('SkyView stamp request for ' 'coordinates %s failed' % repr(formposition)) return None except requests.exceptions.Timeout as e: LOGERROR('SkyView stamp request for ' 'coordinates %s did not complete within %s seconds' % (repr(formposition), timeout)) return None except Exception as e: LOGEXCEPTION('SkyView stamp request for ' 'coordinates %s failed' % repr(formposition)) return None # # DONE WITH FETCHING STUFF # # make sure the returned file is OK try: stampfits = pyfits.open(cachefname) stampfits.close() retdict = { 'params':{'ra':ra, 'decl':decl, 'survey':survey, 'scaling':scaling, 'sizepix':sizepix}, 'provenance':provenance, 'fitsfile':cachefname } return retdict except Exception as e: LOGERROR('could not open cached FITS from Skyview download: %r' % {'ra':ra, 'decl':decl, 'survey':survey, 'scaling': scaling, 'sizepix': sizepix}) if retry_failed: return get_stamp(ra, decl, survey=survey, scaling=scaling, sizepix=sizepix, forcefetch=True, cachedir=cachedir, timeout=timeout, verbose=verbose) else: return None
def _update_proxy(self, change): """ An observer which sends the state change to the proxy. """ if change['type'] == 'container': #: Only update what's needed self.proxy.update_points(change) else: super(MapPolyline, self)._update_proxy(change)
def _update_proxy(self, change): """ An observer which sends the state change to the proxy. """ if change['type'] == 'container': #: Only update what's needed self.proxy.update_points(change) else: super(MapPolygon, self)._update_proxy(change)
def handle_change(self, change): """ Handle changes from atom ContainerLists """ op = change['operation'] if op in 'append': self.add(len(change['value']), LatLng(*change['item'])) elif op == 'insert': self.add(change['index'], LatLng(*change['item'])) elif op == 'extend': points = [LatLng(*p) for p in change['items']] self.addAll([bridge.encode(c) for c in points]) elif op == '__setitem__': self.set(change['index'], LatLng(*change['newitem'])) elif op == 'pop': self.remove(change['index']) else: raise NotImplementedError( "Unsupported change operation {}".format(op))
def create_widget(self): """ Create the underlying widget. """ self.init_options() #: Retrieve the actual map MapFragment.newInstance(self.options).then( self.on_map_fragment_created) # Holder for the fragment self.widget = FrameLayout(self.get_context()) # I wrote this a few days ago and already forget how this hack works... # lol We can't simply get a map reference using getMapAsync in the # return value like we normally do with a normal call function return # value. The bridge design was modified to store an object that cannot # be decoded normally (via a standard Bridge.Packer) by saving the new # object in the cache returning the id of the handler or proxy that # invoked it. This way we can manually create a new id and pass that # "future reference-able" object as our listener. At which point the # bridge will create a reference entry in the cache for us with the of # the object we gave it. Once in the cache we can use it like any # bridge object we created. self.map = GoogleMap(__id__=bridge.generate_id())
def init_options(self): """ Initialize the underlying map options. """ self.options = GoogleMapOptions() d = self.declaration self.set_map_type(d.map_type) if d.ambient_mode: self.set_ambient_mode(d.ambient_mode) if (d.camera_position or d.camera_zoom or d.camera_tilt or d.camera_bearing): self.update_camera() if d.map_bounds: self.set_map_bounds(d.map_bounds) if not d.show_compass: self.set_show_compass(d.show_compass) if not d.show_zoom_controls: self.set_show_zoom_controls(d.show_zoom_controls) if not d.show_toolbar: self.set_show_toolbar(d.show_toolbar) if d.lite_mode: self.set_lite_mode(d.lite_mode) if not d.rotate_gestures: self.set_rotate_gestures(d.rotate_gestures) if not d.scroll_gestures: self.set_scroll_gestures(d.scroll_gestures) if not d.tilt_gestures: self.set_tilt_gestures(d.tilt_gestures) if not d.zoom_gestures: self.set_zoom_gestures(d.zoom_gestures) if d.min_zoom: self.set_min_zoom(d.min_zoom) if d.max_zoom: self.set_max_zoom(d.max_zoom)
def init_map(self): """ Add markers, polys, callouts, etc..""" d = self.declaration if d.show_location: self.set_show_location(d.show_location) if d.show_traffic: self.set_show_traffic(d.show_traffic) if d.show_indoors: self.set_show_indoors(d.show_indoors) if d.show_buildings: self.set_show_buildings(d.show_buildings) #: Local ref access is faster mapview = self.map mid = mapview.getId() #: Connect signals #: Camera mapview.onCameraChange.connect(self.on_camera_changed) mapview.onCameraMoveStarted.connect(self.on_camera_move_started) mapview.onCameraMoveCanceled.connect(self.on_camera_move_stopped) mapview.onCameraIdle.connect(self.on_camera_move_stopped) mapview.setOnCameraChangeListener(mid) mapview.setOnCameraMoveStartedListener(mid) mapview.setOnCameraMoveCanceledListener(mid) mapview.setOnCameraIdleListener(mid) #: Clicks mapview.onMapClick.connect(self.on_map_clicked) mapview.setOnMapClickListener(mid) mapview.onMapLongClick.connect(self.on_map_long_clicked) mapview.setOnMapLongClickListener(mid) #: Markers mapview.onMarkerClick.connect(self.on_marker_clicked) mapview.setOnMarkerClickListener(self.map.getId()) mapview.onMarkerDragStart.connect(self.on_marker_drag_start) mapview.onMarkerDrag.connect(self.on_marker_drag) mapview.onMarkerDragEnd.connect(self.on_marker_drag_end) mapview.setOnMarkerDragListener(mid) #: Info window mapview.onInfoWindowClick.connect(self.on_info_window_clicked) mapview.onInfoWindowLongClick.connect(self.on_info_window_long_clicked) mapview.onInfoWindowClose.connect(self.on_info_window_closed) mapview.setOnInfoWindowClickListener(mid) mapview.setOnInfoWindowCloseListener(mid) mapview.setOnInfoWindowLongClickListener(mid) #: Polys mapview.onPolygonClick.connect(self.on_poly_clicked) mapview.onPolylineClick.connect(self.on_poly_clicked) mapview.setOnPolygonClickListener(mid) mapview.setOnPolylineClickListener(mid) #: Circle mapview.onCircleClick.connect(self.on_circle_clicked) mapview.setOnCircleClickListener(mid)
def init_info_window_adapter(self): """ Initialize the info window adapter. Should only be done if one of the markers defines a custom view. """ adapter = self.adapter if adapter: return #: Already initialized adapter = GoogleMap.InfoWindowAdapter() adapter.getInfoContents.connect(self.on_info_window_contents_requested) adapter.getInfoWindow.connect(self.on_info_window_requested) self.map.setInfoWindowAdapter(adapter)
def on_map_fragment_created(self, obj_id): """ Create the fragment and pull the map reference when it's loaded. """ self.fragment = MapFragment(__id__=obj_id) #: Setup callback so we know when the map is ready self.map.onMapReady.connect(self.on_map_ready) self.fragment.getMapAsync(self.map.getId()) context = self.get_context() def on_transaction(id): trans = FragmentTransaction(__id__=id) trans.add(self.widget.getId(), self.fragment) trans.commit() def on_fragment_manager(id): fm = FragmentManager(__id__=id) fm.beginTransaction().then(on_transaction) context.widget.getSupportFragmentManager().then(on_fragment_manager)
def on_map_clicked(self, pos): """ Called when the map is clicked """ d = self.declaration d.clicked({ 'click': 'short', 'position': tuple(pos) })
def on_map_long_clicked(self, pos): """ Called when the map is clicked """ d = self.declaration d.clicked({ 'click': 'long', 'position': tuple(pos) })
def destroy(self): """ Remove the marker if it was added to the map when destroying""" marker = self.marker parent = self.parent() if marker: if parent: del parent.markers[marker.__id__] marker.remove() super(AndroidMapItemBase, self).destroy()
def child_added(self, child): """ If a child is added we have to make sure the map adapter exists """ if child.widget: # TODO: Should we keep count and remove the adapter if not all # markers request it? self.parent().init_info_window_adapter() super(AndroidMapMarker, self).child_added(child)
def on_marker(self, marker): """ Convert our options into the actual marker object""" mid, pos = marker self.marker = Marker(__id__=mid) mapview = self.parent() # Save ref mapview.markers[mid] = self # Required so the packer can pass the id self.marker.setTag(mid) # If we have a child widget we must configure the map to use the # custom adapter for w in self.child_widgets(): mapview.init_info_window_adapter() break d = self.declaration if d.show_info: self.set_show_info(d.show_info) #: Can free the options now del self.options
def on_marker(self, mid): """ Convert our options into the actual circle object""" self.marker = Circle(__id__=mid) self.parent().markers[mid] = self #: Required so the packer can pass the id self.marker.setTag(mid) d = self.declaration if d.clickable: self.set_clickable(d.clickable) #: Can free the options now del self.options
def fit_transform(self, raw_documents, y=None): """ Learn the vocabulary dictionary and return term-document matrix. This is equivalent to fit followed by transform, but more efficiently implemented. Parameters ---------- raw_documents : iterable An iterable which yields either str, unicode or file objects. Returns ------- X : array, [n_samples, n_features] Document-term matrix. """ documents = super(CountVectorizer, self).fit_transform( raw_documents=raw_documents, y=y) self.n = len(raw_documents) m = (self.transform(raw_documents) > 0).astype(int) m = m.sum(axis=0).A1 self.period_ = m self.df_ = m / self.n return documents
def data(self, X=None, y=None, sentences=None): """ Add data to flow """ self.X = X self.y = y self.sentences = sentences
def transform(self, transformer): """ Add transformer to flow and apply transformer to data in flow Parameters ---------- transformer : Transformer a transformer to transform data """ self.transformers.append(transformer) from languageflow.transformer.tagged import TaggedTransformer if isinstance(transformer, TaggedTransformer): self.X, self.y = transformer.transform(self.sentences) if isinstance(transformer, TfidfVectorizer): self.X = transformer.fit_transform(self.X) if isinstance(transformer, CountVectorizer): self.X = transformer.fit_transform(self.X) if isinstance(transformer, NumberRemover): self.X = transformer.transform(self.X) if isinstance(transformer, MultiLabelBinarizer): self.y = transformer.fit_transform(self.y)
def train(self): """ Train model with transformed data """ for i, model in enumerate(self.models): N = [int(i * len(self.y)) for i in self.lc_range] for n in N: X = self.X[:n] y = self.y[:n] e = Experiment(X, y, model.estimator, self.scores, self.validation_method) e.log_folder = self.log_folder e.train()
def export(self, model_name, export_folder): """ Export model and transformers to export_folder Parameters ---------- model_name: string name of model to export export_folder: string folder to store exported model and transformers """ for transformer in self.transformers: if isinstance(transformer, MultiLabelBinarizer): joblib.dump(transformer, join(export_folder, "label.transformer.bin"), protocol=2) if isinstance(transformer, TfidfVectorizer): joblib.dump(transformer, join(export_folder, "tfidf.transformer.bin"), protocol=2) if isinstance(transformer, CountVectorizer): joblib.dump(transformer, join(export_folder, "count.transformer.bin"), protocol=2) if isinstance(transformer, NumberRemover): joblib.dump(transformer, join(export_folder, "number.transformer.bin"), protocol=2) model = [model for model in self.models if model.name == model_name][0] e = Experiment(self.X, self.y, model.estimator, None) model_filename = join(export_folder, "model.bin") e.export(model_filename)
def fit_transform(self, raw_documents, y=None): """Learn vocabulary and idf, return term-document matrix. This is equivalent to fit followed by transform, but more efficiently implemented. Parameters ---------- raw_documents : iterable an iterable which yields either str, unicode or file objects Returns ------- X : sparse matrix, [n_samples, n_features] Tf-idf-weighted document-term matrix. """ documents = super(TfidfVectorizer, self).fit_transform( raw_documents=raw_documents, y=y) count = CountVectorizer(encoding=self.encoding, decode_error=self.decode_error, strip_accents=self.strip_accents, lowercase=self.lowercase, preprocessor=self.preprocessor, tokenizer=self.tokenizer, stop_words=self.stop_words, token_pattern=self.token_pattern, ngram_range=self.ngram_range, analyzer=self.analyzer, max_df=self.max_df, min_df=self.min_df, max_features=self.max_features, vocabulary=self.vocabulary_, binary=self.binary, dtype=self.dtype) count.fit_transform(raw_documents=raw_documents, y=y) self.period_ = count.period_ self.df_ = count.df_ self.n = count.n return documents
def fit(self, X, y, coef_init=None, intercept_init=None, sample_weight=None): """Fit linear model with Stochastic Gradient Descent. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data y : numpy array, shape (n_samples,) Target values coef_init : array, shape (n_classes, n_features) The initial coefficients to warm-start the optimization. intercept_init : array, shape (n_classes,) The initial intercept to warm-start the optimization. sample_weight : array-like, shape (n_samples,), optional Weights applied to individual samples. If not provided, uniform weights are assumed. These weights will be multiplied with class_weight (passed through the constructor) if class_weight is specified Returns ------- self : returns an instance of self. """ super(SGDClassifier, self).fit(X, y, coef_init, intercept_init, sample_weight)
def print_cm(cm, labels, hide_zeroes=False, hide_diagonal=False, hide_threshold=None): """pretty print for confusion matrixes""" columnwidth = max([len(x) for x in labels] + [5]) # 5 is value length empty_cell = " " * columnwidth # Print header print(" " + empty_cell, end=" ") for label in labels: print("%{0}s".format(columnwidth) % label, end=" ") print() # Print rows for i, label1 in enumerate(labels): print(" %{0}s".format(columnwidth) % label1, end=" ") for j in range(len(labels)): cell = "%{0}.1f".format(columnwidth) % cm[i, j] if hide_zeroes: cell = cell if float(cm[i, j]) != 0 else empty_cell if hide_diagonal: cell = cell if i != j else empty_cell if hide_threshold: cell = cell if cm[i, j] > hide_threshold else empty_cell print(cell, end=" ") print()
def load_big_file(f): """ Workaround for loading a big pickle file. Files over 2GB cause pickle errors on certin Mac and Windows distributions. :param f: :return: """ logger.info(f'loading file {f}') with open(f, 'r+b') as f_in: # mmap seems to be much more memory efficient bf = mmap.mmap(f_in.fileno(), 0) f_in.close() return bf
def url_to_filename(url: str, etag: str = None) -> str: """ Converts a url into a filename in a reversible way. If `etag` is specified, add it on the end, separated by a period (which necessarily won't appear in the base64-encoded filename). Get rid of the quotes in the etag, since Windows doesn't like them. """ url_bytes = url.encode('utf-8') b64_bytes = base64.b64encode(url_bytes) decoded = b64_bytes.decode('utf-8') if etag: # Remove quotes from etag etag = etag.replace('"', '') return f"{decoded}.{etag}" else: return decoded
def filename_to_url(filename: str) -> Tuple[str, str]: """ Recovers the the url from the encoded filename. Returns it and the ETag (which may be ``None``) """ try: # If there is an etag, it's everything after the first period decoded, etag = filename.split(".", 1) except ValueError: # Otherwise, use None decoded, etag = filename, None filename_bytes = decoded.encode('utf-8') url_bytes = base64.b64decode(filename_bytes) return url_bytes.decode('utf-8'), etag
def cached_path(url_or_filename: str, cache_dir: Path) -> Path: """ Given something that might be a URL (or might be a local path), determine which. If it's a URL, download the file and cache it, and return the path to the cached file. If it's already a local path, make sure the file exists and then return the path. """ dataset_cache = Path(CACHE_ROOT) / cache_dir parsed = urlparse(url_or_filename) if parsed.scheme in ('http', 'https'): # URL, so get it from the cache (downloading if necessary) return get_from_cache(url_or_filename, dataset_cache) elif parsed.scheme == '' and Path(url_or_filename).exists(): # File, and it exists. return Path(url_or_filename) elif parsed.scheme == '': # File, but it doesn't exist. raise FileNotFoundError("file {} not found".format(url_or_filename)) else: # Something unknown raise ValueError("unable to parse {} as a URL or as a local path".format(url_or_filename))
def get_from_cache(url: str, cache_dir: Path = None) -> Path: """ Given a URL, look for the corresponding dataset in the local cache. If it's not there, download it. Then return the path to the cached file. """ cache_dir.mkdir(parents=True, exist_ok=True) filename = re.sub(r'.+/', '', url) # get cache path to put the file cache_path = cache_dir / filename if cache_path.exists(): return cache_path # make HEAD request to check ETag response = requests.head(url) if response.status_code != 200: if "www.dropbox.com" in url: # dropbox return code 301, so we ignore this error pass else: raise IOError("HEAD request failed for url {}".format(url)) # add ETag to filename if it exists # etag = response.headers.get("ETag") if not cache_path.exists(): # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. fd, temp_filename = tempfile.mkstemp() logger.info("%s not found in cache, downloading to %s", url, temp_filename) # GET file object req = requests.get(url, stream=True) content_length = req.headers.get('Content-Length') total = int(content_length) if content_length is not None else None progress = Tqdm.tqdm(unit="B", total=total) with open(temp_filename, 'wb') as temp_file: for chunk in req.iter_content(chunk_size=1024): if chunk: # filter out keep-alive new chunks progress.update(len(chunk)) temp_file.write(chunk) progress.close() logger.info("copying %s to cache at %s", temp_filename, cache_path) shutil.copyfile(temp_filename, str(cache_path)) logger.info("removing temp file %s", temp_filename) os.close(fd) os.remove(temp_filename) return cache_path
def fit(self, X, y): """Fit CRF according to X, y Parameters ---------- X : list of text each item is a text y: list each item is either a label (in multi class problem) or list of labels (in multi label problem) """ trainer = pycrfsuite.Trainer(verbose=True) for xseq, yseq in zip(X, y): trainer.append(xseq, yseq) trainer.set_params(self.params) if self.filename: filename = self.filename else: filename = 'model.tmp' trainer.train(filename) tagger = pycrfsuite.Tagger() tagger.open(filename) self.estimator = tagger
def predict(self, X): """Predict class labels for samples in X. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Samples. """ if isinstance(X[0], list): return [self.estimator.tag(x) for x in X] return self.estimator.tag(X)
def serve(self, port=62000): """ Start LanguageBoard web application Parameters ---------- port: int port to serve web application """ from http.server import HTTPServer, CGIHTTPRequestHandler os.chdir(self.log_folder) httpd = HTTPServer(('', port), CGIHTTPRequestHandler) print("Starting LanguageBoard on port: " + str(httpd.server_port)) webbrowser.open('http://0.0.0.0:{}'.format(port)) httpd.serve_forever()
def analyze(self, output_folder=".", auto_remove=False): """ :type auto_remove: boolean :param boolean auto_remove: auto remove previous files in analyze folder """ if auto_remove: try: shutil.rmtree(output_folder) except: pass try: mkdir(output_folder) except: pass tokens = [token for sublist in self.sentences for token in sublist] df = pd.DataFrame(tokens) log = u"" log += u"Sentences : {}\n".format(len(self.sentences)) n = df.shape[1] log += self._analyze_first_token(df, 0, output_folder) for i in range(1, n): log += self._analyze_field(df, i, output_folder) print(log) stat_file = join(output_folder, "stats.txt") write(stat_file, log)
def predict(self, X): """ In order to obtain the most likely label for a list of text Parameters ---------- X : list of string Raw texts Returns ------- C : list of string List labels """ x = X if not isinstance(X, list): x = [X] y = self.estimator.predict(x) y = [item[0] for item in y] y = [self._remove_prefix(label) for label in y] if not isinstance(X, list): y = y[0] return y
def log(model_folder, binary_file="count.transformer.bin", log_folder="analyze"): """ Parameters ---------- model_folder : string folder contains binaries file of model binary_file : string file path to count transformer binary file log_folder : string log folder """ file = join(model_folder, binary_file) vectorizer = joblib.load(file) output = [] for token in vectorizer.vocabulary_: index = vectorizer.vocabulary_[token] ngram = len(token.split(" ")) output.append({ "token": token, "ngram": ngram, "period": vectorizer.period_[index].item(), "df": vectorizer.df_[index], }) output = sorted(output, key=lambda item: item["df"]) content = json.dumps(output, ensure_ascii=False) write(join(log_folder, "count.json"), content)
def fit(self, X, y): """Fit KimCNNClassifier according to X, y Parameters ---------- X : list of string each item is a raw text y : list of string each item is a label """ #################### # Data Loader #################### word_vector_transformer = WordVectorTransformer(padding='max') X = word_vector_transformer.fit_transform(X) X = LongTensor(X) self.word_vector_transformer = word_vector_transformer y_transformer = LabelEncoder() y = y_transformer.fit_transform(y) y = torch.from_numpy(y) self.y_transformer = y_transformer dataset = CategorizedDataset(X, y) dataloader = DataLoader(dataset, batch_size=self.batch_size, shuffle=True, num_workers=4) #################### # Model #################### KERNEL_SIZES = self.kernel_sizes NUM_KERNEL = self.num_kernel EMBEDDING_DIM = self.embedding_dim model = TextCNN( vocab_size=word_vector_transformer.get_vocab_size(), embedding_dim=EMBEDDING_DIM, output_size=len(self.y_transformer.classes_), kernel_sizes=KERNEL_SIZES, num_kernel=NUM_KERNEL) if USE_CUDA: model = model.cuda() #################### # Train #################### EPOCH = self.epoch LR = self.lr loss_function = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=LR) for epoch in range(EPOCH): losses = [] for i, data in enumerate(dataloader): X, y = data X, y = Variable(X), Variable(y) optimizer.zero_grad() model.train() output = model(X) loss = loss_function(output, y) losses.append(loss.data.tolist()[0]) loss.backward() optimizer.step() if i % 100 == 0: print("[%d/%d] mean_loss : %0.2f" % ( epoch, EPOCH, np.mean(losses))) losses = [] self.model = model
def config_sources(app, environment, cluster, configs_dirs, app_dir, local=False, build=False): """Return the config files for an environment & cluster specific app.""" sources = [ # Machine-specific (configs_dirs, 'hostname'), (configs_dirs, 'hostname-local'), (configs_dirs, 'hostname-build'), # Global (configs_dirs, 'common'), # Environment + Cluster (configs_dirs, 'common-%s' % environment), (configs_dirs, 'common-%s-%s' % (environment, cluster)), (configs_dirs, 'common-local'), (configs_dirs, 'common-build'), # Machine-specific overrides (configs_dirs, 'common-overrides'), # Application-specific ([app_dir], '%s-default' % app), ([app_dir], '%s-%s' % (app, environment)), ([app_dir], '%s-%s-%s' % (app, environment, cluster)), (configs_dirs, app), (configs_dirs, '%s-%s' % (app, environment)), (configs_dirs, '%s-%s-%s' % (app, environment, cluster)), ([app_dir], '%s-local' % app), ([app_dir], '%s-build' % app), (configs_dirs, '%s-local' % app), (configs_dirs, '%s-build' % app), # Machine-specific application override (configs_dirs, '%s-overrides' % app), ] # Filter out build sources if not requested if not build: sources = [source for source in sources if not source[1].endswith('-build')] # Filter out local sources if not build and not local if not local: sources = [source for source in sources if not source[1].endswith('-local')] return available_sources(sources)
def available_sources(sources): """Yield the sources that are present.""" for dirs, name in sources: for directory in dirs: fn = os.path.join(directory, name) + '.py' if os.path.isfile(fn): yield fn
def smush_config(sources, initial=None): """Merge the configuration sources and return the resulting DotDict.""" if initial is None: initial = {} config = DotDict(initial) for fn in sources: log.debug('Merging %s', fn) mod = get_config_module(fn) config = mod.update(config) log.debug('Current config:\n%s', json.dumps(config, indent=4, cls=LenientJSONEncoder)) return config
def merge_dicts(d1, d2, _path=None): """ Merge dictionary d2 into d1, overriding entries in d1 with values from d2. d1 is mutated. _path is for internal, recursive use. """ if _path is None: _path = () if isinstance(d1, dict) and isinstance(d2, dict): for k, v in d2.items(): if isinstance(v, MissingValue) and v.name is None: v.name = '.'.join(_path + (k,)) if isinstance(v, DeletedValue): d1.pop(k, None) elif k not in d1: if isinstance(v, dict): d1[k] = merge_dicts({}, v, _path + (k,)) else: d1[k] = v else: if isinstance(d1[k], dict) and isinstance(v, dict): d1[k] = merge_dicts(d1[k], v, _path + (k,)) elif isinstance(d1[k], list) and isinstance(v, list): # Lists are only supported as leaves d1[k] += v elif isinstance(d1[k], MissingValue): d1[k] = v elif d1[k] is None: d1[k] = v elif type(d1[k]) == type(v): d1[k] = v else: raise TypeError('Refusing to replace a %s with a %s' % (type(d1[k]), type(v))) else: raise TypeError('Cannot merge a %s with a %s' % (type(d1), type(d2))) return d1
def filter_dict(unfiltered, filter_keys): """Return a subset of a dictionary using the specified keys.""" filtered = DotDict() for k in filter_keys: filtered[k] = unfiltered[k] return filtered
def _convert_item(self, obj): """ Convert obj into a DotDict, or list of DotDict. Directly nested lists aren't supported. Returns the result """ if isinstance(obj, dict) and not isinstance(obj, DotDict): obj = DotDict(obj) elif isinstance(obj, list): # must mutate and not just reassign, otherwise it will # just use original object mutable/immutable for i, item in enumerate(obj): if isinstance(item, dict) and not isinstance(item, DotDict): obj[i] = DotDict(item) return obj
def filter_config(config, deploy_config): """Return a config subset using the filter defined in the deploy config.""" if not os.path.isfile(deploy_config): return DotDict() config_module = get_config_module(deploy_config) return config_module.filter(config)
def seeded_auth_token(client, service, seed): """Return an auth token based on the client+service+seed tuple.""" hash_func = hashlib.md5() token = ','.join((client, service, seed)).encode('utf-8') hash_func.update(token) return hash_func.hexdigest()
def write_config(config, app_dir, filename='configuration.json'): """Write configuration to the applicaiton directory.""" path = os.path.join(app_dir, filename) with open(path, 'w') as f: json.dump( config, f, indent=4, cls=DetectMissingEncoder, separators=(',', ': '))
def get_config_module(config_pathname): """Imports the config file to yoconfigurator.configs.<config_basename>.""" configs_mod = 'yoconfigurator.configs' if configs_mod not in sys.modules: sys.modules[configs_mod] = types.ModuleType(configs_mod) module_name = os.path.basename(config_pathname).rsplit('.', 1)[0] module_name = configs_mod + '.' + module_name return _load_module(module_name, config_pathname)
def validate_date(date_text): """Return True if valid, raise ValueError if not""" try: if int(date_text) < 0: return True except ValueError: pass try: datetime.strptime(date_text, '%Y-%m-%d') return True except ValueError: pass raise ValueError('Dates must be negative integers or YYYY-MM-DD in the past.')
def get_download_total(rows): """Return the total downloads, and the downloads column""" headers = rows.pop(0) index = headers.index('download_count') total_downloads = sum(int(row[index]) for row in rows) rows.insert(0, headers) return total_downloads, index
def add_download_total(rows): """Add a final row to rows showing the total downloads""" total_row = [""] * len(rows[0]) total_row[0] = "Total" total_downloads, downloads_column = get_download_total(rows) total_row[downloads_column] = str(total_downloads) rows.append(total_row) return rows
def pypinfo( ctx, project, fields, auth, run, json, indent, timeout, limit, days, start_date, end_date, where, order, all_installers, percent, markdown, ): """Valid fields are:\n project | version | file | pyversion | percent3 | percent2 | impl | impl-version |\n openssl | date | month | year | country | installer | installer-version |\n setuptools-version | system | system-release | distro | distro-version | cpu """ if auth: set_credentials(auth) click.echo('Credentials location set to "{}".'.format(get_credentials())) return if project is None and not fields: click.echo(ctx.get_help()) return parsed_fields = [] for field in fields: parsed = FIELD_MAP.get(field) if parsed is None: raise ValueError('"{}" is an unsupported field.'.format(field)) parsed_fields.append(parsed) order_name = order order = FIELD_MAP.get(order) if order: order_name = order.name parsed_fields.insert(0, order) built_query = build_query( project, parsed_fields, limit=limit, days=days, start_date=start_date, end_date=end_date, where=where, order=order_name, pip=not all_installers, ) if run: client = create_client(get_credentials()) query_job = client.query(built_query, job_config=create_config()) query_rows = query_job.result(timeout=timeout // 1000) # Cached from_cache = not not query_job.cache_hit # Processed bytes_processed = query_job.total_bytes_processed or 0 processed_amount, processed_unit = convert_units(bytes_processed) # Billed bytes_billed = query_job.total_bytes_billed or 0 billed_amount, billed_unit = convert_units(bytes_billed) # Cost billing_tier = query_job.billing_tier or 1 estimated_cost = Decimal(TIER_COST * billing_tier) / TB * Decimal(bytes_billed) estimated_cost = str(estimated_cost.quantize(TO_CENTS, rounding=ROUND_UP)) rows = parse_query_result(query_job, query_rows) if percent: rows = add_percentages(rows, include_sign=not json) # Only for tables, and if more than the header row + a single data row if len(rows) > 2 and not json: rows = add_download_total(rows) if not json: click.echo('Served from cache: {}'.format(from_cache)) click.echo('Data processed: {:.2f} {}'.format(processed_amount, processed_unit)) click.echo('Data billed: {:.2f} {}'.format(billed_amount, billed_unit)) click.echo('Estimated cost: ${}'.format(estimated_cost)) click.echo() click.echo(tabulate(rows, markdown)) else: query_info = { 'cached': from_cache, 'bytes_processed': bytes_processed, 'bytes_billed': bytes_billed, 'estimated_cost': estimated_cost, } click.echo(format_json(rows, query_info, indent)) else: click.echo(built_query)
def find_and_patch_entry(soup, entry): """ Modify soup so Dash.app can generate TOCs on the fly. """ link = soup.find("a", {"class": "headerlink"}, href="#" + entry.anchor) tag = soup.new_tag("a") tag["name"] = APPLE_REF_TEMPLATE.format(entry.type, entry.name) if link: link.parent.insert(0, tag) return True elif entry.anchor.startswith("module-"): soup.h1.parent.insert(0, tag) return True else: return False
def inv_entry_to_path(data): """ Determine the path from the intersphinx inventory entry Discard the anchors between head and tail to make it compatible with situations where extra meta information is encoded. """ path_tuple = data[2].split("#") if len(path_tuple) > 1: path_str = "#".join((path_tuple[0], path_tuple[-1])) else: path_str = data[2] return path_str
def main( source, force, name, quiet, verbose, destination, add_to_dash, add_to_global, icon, index_page, enable_js, online_redirect_url, parser, ): """ Convert docs from SOURCE to Dash.app's docset format. """ try: logging.config.dictConfig( create_log_config(verbose=verbose, quiet=quiet) ) except ValueError as e: click.secho(e.args[0], fg="red") raise SystemExit(1) if icon: icon_data = icon.read() if not icon_data.startswith(PNG_HEADER): log.error( '"{}" is not a valid PNG image.'.format( click.format_filename(icon.name) ) ) raise SystemExit(1) else: icon_data = None source, dest, name = setup_paths( source, destination, name=name, add_to_global=add_to_global, force=force, ) if parser is None: parser = parsers.get_doctype(source) if parser is None: log.error( '"{}" does not contain a known documentation format.'.format( click.format_filename(source) ) ) raise SystemExit(errno.EINVAL) docset = prepare_docset( source, dest, name, index_page, enable_js, online_redirect_url ) doc_parser = parser(doc_path=docset.docs) log.info( ( "Converting " + click.style("{parser_name}", bold=True) + ' docs from "{src}" to "{dst}".' ).format( parser_name=parser.name, src=click.format_filename(source, shorten=True), dst=click.format_filename(dest), ) ) with docset.db_conn: log.info("Parsing documentation...") toc = patch_anchors(doc_parser, show_progressbar=not quiet) for entry in doc_parser.parse(): docset.db_conn.execute( "INSERT INTO searchIndex VALUES (NULL, ?, ?, ?)", entry.as_tuple(), ) toc.send(entry) count = docset.db_conn.execute( "SELECT COUNT(1) FROM searchIndex" ).fetchone()[0] log.info( ( "Added " + click.style("{count:,}", fg="green" if count > 0 else "red") + " index entries." ).format(count=count) ) toc.close() if icon_data: add_icon(icon_data, dest) if add_to_dash or add_to_global: log.info("Adding to Dash.app...") os.system('open -a dash "{}"'.format(dest))
def create_log_config(verbose, quiet): """ We use logging's levels as an easy-to-use verbosity controller. """ if verbose and quiet: raise ValueError( "Supplying both --quiet and --verbose makes no sense." ) elif verbose: level = logging.DEBUG elif quiet: level = logging.ERROR else: level = logging.INFO logger_cfg = {"handlers": ["click_handler"], "level": level} return { "version": 1, "formatters": {"click_formatter": {"format": "%(message)s"}}, "handlers": { "click_handler": { "level": level, "class": "doc2dash.__main__.ClickEchoHandler", "formatter": "click_formatter", } }, "loggers": {"doc2dash": logger_cfg, "__main__": logger_cfg}, }
def setup_paths(source, destination, name, add_to_global, force): """ Determine source and destination using the options. """ if source[-1] == "/": source = source[:-1] if not name: name = os.path.split(source)[-1] elif name.endswith(".docset"): name = name.replace(".docset", "") if add_to_global: destination = DEFAULT_DOCSET_PATH dest = os.path.join(destination or "", name + ".docset") dst_exists = os.path.lexists(dest) if dst_exists and force: shutil.rmtree(dest) elif dst_exists: log.error( 'Destination path "{}" already exists.'.format( click.format_filename(dest) ) ) raise SystemExit(errno.EEXIST) return source, dest, name
def prepare_docset( source, dest, name, index_page, enable_js, online_redirect_url ): """ Create boilerplate files & directories and copy vanilla docs inside. Return a tuple of path to resources and connection to sqlite db. """ resources = os.path.join(dest, "Contents", "Resources") docs = os.path.join(resources, "Documents") os.makedirs(resources) db_conn = sqlite3.connect(os.path.join(resources, "docSet.dsidx")) db_conn.row_factory = sqlite3.Row db_conn.execute( "CREATE TABLE searchIndex(id INTEGER PRIMARY KEY, name TEXT, " "type TEXT, path TEXT)" ) db_conn.commit() plist_path = os.path.join(dest, "Contents", "Info.plist") plist_cfg = { "CFBundleIdentifier": name, "CFBundleName": name, "DocSetPlatformFamily": name.lower(), "DashDocSetFamily": "python", "isDashDocset": True, "isJavaScriptEnabled": enable_js, } if index_page is not None: plist_cfg["dashIndexFilePath"] = index_page if online_redirect_url is not None: plist_cfg["DashDocSetFallbackURL"] = online_redirect_url write_plist(plist_cfg, plist_path) shutil.copytree(source, docs) return DocSet(path=dest, docs=docs, plist=plist_path, db_conn=db_conn)
def add_icon(icon_data, dest): """ Add icon to docset """ with open(os.path.join(dest, "icon.png"), "wb") as f: f.write(icon_data)
def patch_anchors(parser, show_progressbar): """ Consume ``ParseEntry``s then patch docs for TOCs by calling *parser*'s ``find_and_patch_entry``. """ files = defaultdict(list) try: while True: pentry = (yield) try: fname, anchor = pentry.path.split("#") files[fname].append( TOCEntry(name=pentry.name, type=pentry.type, anchor=anchor) ) except ValueError: # pydoctor has no anchors for e.g. classes pass except GeneratorExit: pass def patch_files(files): for fname, entries in files: full_path = os.path.join(parser.doc_path, fname) with codecs.open(full_path, mode="r", encoding="utf-8") as fp: soup = BeautifulSoup(fp, "html.parser") for entry in entries: if not parser.find_and_patch_entry(soup, entry): log.debug( "Can't find anchor {} in {}.".format( entry.anchor, click.format_filename(fname) ) ) with open(full_path, mode="wb") as fp: fp.write(soup.encode("utf-8")) if show_progressbar is True: with click.progressbar( files.items(), width=0, length=len(files), label="Adding table of contents meta data...", ) as pbar: patch_files(pbar) else: patch_files(files.items())
def has_file_with(path, filename, content): """ Check whether *filename* in *path* contains the string *content*. """ try: with open(os.path.join(path, filename), "rb") as f: return content in f.read() except IOError as e: if e.errno == errno.ENOENT: return False else: raise
def run_cell(self, cell): """Run the Cell code using the IPython globals and locals Args: cell (str): Python code to be executed """ globals = self.ipy_shell.user_global_ns locals = self.ipy_shell.user_ns globals.update({ "__ipy_scope__": None, }) try: with redirect_stdout(self.stdout): self.run(cell, globals, locals) except: self.code_error = True if self.options.debug: raise BdbQuit finally: self.finalize()