Search is not available for this dataset
text
stringlengths
75
104k
def jhk_to_sdssg(jmag,hmag,kmag): '''Converts given J, H, Ks mags to an SDSS g magnitude value. Parameters ---------- jmag,hmag,kmag : float 2MASS J, H, Ks mags of the object. Returns ------- float The converted SDSS g band magnitude. ''' return convert_constants(jmag,hmag,kmag, SDSSG_JHK, SDSSG_JH, SDSSG_JK, SDSSG_HK, SDSSG_J, SDSSG_H, SDSSG_K)
def jhk_to_sdssr(jmag,hmag,kmag): '''Converts given J, H, Ks mags to an SDSS r magnitude value. Parameters ---------- jmag,hmag,kmag : float 2MASS J, H, Ks mags of the object. Returns ------- float The converted SDSS r band magnitude. ''' return convert_constants(jmag,hmag,kmag, SDSSR_JHK, SDSSR_JH, SDSSR_JK, SDSSR_HK, SDSSR_J, SDSSR_H, SDSSR_K)
def jhk_to_sdssi(jmag,hmag,kmag): '''Converts given J, H, Ks mags to an SDSS i magnitude value. Parameters ---------- jmag,hmag,kmag : float 2MASS J, H, Ks mags of the object. Returns ------- float The converted SDSS i band magnitude. ''' return convert_constants(jmag,hmag,kmag, SDSSI_JHK, SDSSI_JH, SDSSI_JK, SDSSI_HK, SDSSI_J, SDSSI_H, SDSSI_K)
def jhk_to_sdssz(jmag,hmag,kmag): '''Converts given J, H, Ks mags to an SDSS z magnitude value. Parameters ---------- jmag,hmag,kmag : float 2MASS J, H, Ks mags of the object. Returns ------- float The converted SDSS z band magnitude. ''' return convert_constants(jmag,hmag,kmag, SDSSZ_JHK, SDSSZ_JH, SDSSZ_JK, SDSSZ_HK, SDSSZ_J, SDSSZ_H, SDSSZ_K)
def absolute_gaia_magnitude(gaia_mag, gaia_parallax_mas, gaia_mag_err=None, gaia_parallax_err_mas=None): '''Calculates the GAIA absolute magnitude for object (or array of objects). Given a G mag and the parallax measured by GAIA, gets the absolute mag using the usual equation:: G - M_G = 5 x log10(d_pc) - 5 M_G = 5 - 5log10(d_pc) + G Parameters ---------- gaia_mag : float or array-like The measured GAIA G magnitude. gaia_parallax_max : float or array-like The measured parallax of the object in mas. gaia_mag_err : float or array-like or None The measurement error in GAIA G magnitude. gaia_parallax_err_mas : float or array-like or None The measurement error in GAIA parallax in mas. Returns ------- float or array-like The absolute magnitude M_G of the object(s). If both `_err` input kwargs are provided, will return a tuple of the form:: (M_G float or array-like, M_G_err float or array-like) ''' # get the distance # we're using the naive calculation of d. this is inaccurate as stated in # Bailer-Jones 2015 (http://arxiv.org/abs/1507.02105) if the error in # parallax is a significant fraction of parallax d_pc = np.abs(1000.0/gaia_parallax_mas) # get the distance error if gaia_parallax_err_mas is not None: d_pc_err = ( (1000.0/(gaia_parallax_mas*gaia_parallax_mas)) * gaia_parallax_err_mas ) else: d_pc_err = None # calculate the absolute mag from the relation # FIXME: this is NOT corrected for extinction in G mag. see Jordi+ 2010 # (http://adsabs.harvard.edu/abs/2010A%26A...523A..48J) to figure out # A_G/A_V as a function of (V-I)_0, then apply it here M_G = 5 - 5.0*np.log10(d_pc) + gaia_mag # calculate the err in M_G if d_pc_err is not None and gaia_mag_err is not None: M_G_err = np.sqrt( ((5.0/(d_pc * np.log(10.0)))**2 * (d_pc_err)**2) + gaia_mag_err*gaia_mag_err ) else: M_G_err = None if M_G_err is not None: return M_G, M_G_err else: return M_G
def aov_theta(times, mags, errs, frequency, binsize=0.05, minbin=9): '''Calculates the Schwarzenberg-Czerny AoV statistic at a test frequency. Parameters ---------- times,mags,errs : np.array The input time-series and associated errors. frequency : float The test frequency to calculate the theta statistic at. binsize : float The phase bin size to use. minbin : int The minimum number of items in a phase bin to consider in the calculation of the statistic. Returns ------- theta_aov : float The value of the AoV statistic at the specified `frequency`. ''' period = 1.0/frequency fold_time = times[0] phased = phase_magseries(times, mags, period, fold_time, wrap=False, sort=True) phases = phased['phase'] pmags = phased['mags'] bins = nparange(0.0, 1.0, binsize) ndets = phases.size binnedphaseinds = npdigitize(phases, bins) bin_s1_tops = [] bin_s2_tops = [] binndets = [] goodbins = 0 all_xbar = npmedian(pmags) for x in npunique(binnedphaseinds): thisbin_inds = binnedphaseinds == x thisbin_mags = pmags[thisbin_inds] if thisbin_mags.size > minbin: thisbin_ndet = thisbin_mags.size thisbin_xbar = npmedian(thisbin_mags) # get s1 thisbin_s1_top = ( thisbin_ndet * (thisbin_xbar - all_xbar) * (thisbin_xbar - all_xbar) ) # get s2 thisbin_s2_top = npsum((thisbin_mags - all_xbar) * (thisbin_mags - all_xbar)) bin_s1_tops.append(thisbin_s1_top) bin_s2_tops.append(thisbin_s2_top) binndets.append(thisbin_ndet) goodbins = goodbins + 1 # turn the quantities into arrays bin_s1_tops = nparray(bin_s1_tops) bin_s2_tops = nparray(bin_s2_tops) binndets = nparray(binndets) # calculate s1 first s1 = npsum(bin_s1_tops)/(goodbins - 1.0) # then calculate s2 s2 = npsum(bin_s2_tops)/(ndets - goodbins) theta_aov = s1/s2 return theta_aov
def _aov_worker(task): '''This is a parallel worker for the function below. Parameters ---------- task : tuple This is of the form below:: task[0] = times task[1] = mags task[2] = errs task[3] = frequency task[4] = binsize task[5] = minbin Returns ------- theta_aov : float The theta value at the specified frequency. nan if the calculation fails. ''' times, mags, errs, frequency, binsize, minbin = task try: theta = aov_theta(times, mags, errs, frequency, binsize=binsize, minbin=minbin) return theta except Exception as e: return npnan
def get_frequency_grid(times, samplesperpeak=5, nyquistfactor=5, minfreq=None, maxfreq=None, returnf0dfnf=False): '''This calculates a frequency grid for the period finding functions in this module. Based on the autofrequency function in astropy.stats.lombscargle. http://docs.astropy.org/en/stable/_modules/astropy/stats/lombscargle/core.html#LombScargle.autofrequency Parameters ---------- times : np.array The times to use to generate the frequency grid over. samplesperpeak : int The minimum sample coverage each frequency point in the grid will get. nyquistfactor : int The multiplier over the Nyquist rate to use. minfreq,maxfreq : float or None If not None, these will be the limits of the frequency grid generated. returnf0dfnf : bool If this is True, will return the values of `f0`, `df`, and `Nf` generated for this grid. Returns ------- np.array A grid of frequencies. ''' baseline = times.max() - times.min() nsamples = times.size df = 1. / baseline / samplesperpeak if minfreq is not None: f0 = minfreq else: f0 = 0.5 * df if maxfreq is not None: Nf = int(np.ceil((maxfreq - f0) / df)) else: Nf = int(0.5 * samplesperpeak * nyquistfactor * nsamples) if returnf0dfnf: return f0, df, Nf, f0 + df * np.arange(Nf) else: return f0 + df * np.arange(Nf)
def independent_freq_count(frequencies, times, conservative=True): '''This estimates M: the number of independent frequencies in the periodogram. This follows the terminology on page 3 of Zechmeister & Kurster (2009):: M = DELTA_f / delta_f where:: DELTA_f = freq.max() - freq.min() delta_f = 1.0/(times.max() - times.min()) Parameters ---------- frequencies : np.array The frequencies array used for the calculation of the GLS periodogram. times : np.array The array of input times used for the calculation of the GLS periodogram. conservative : bool If True, will follow the prescription given in Schwarzenberg-Czerny (2003): http://adsabs.harvard.edu/abs/2003ASPC..292..383S and estimate the number of independent frequences as:: min(N_obs, N_freq, DELTA_f/delta_f) Returns ------- M : int The number of independent frequencies. ''' M = frequencies.ptp()*times.ptp() if conservative: M_eff = min([times.size, frequencies.size, M]) else: M_eff = M return M_eff
def bootstrap_falsealarmprob(lspinfo, times, mags, errs, nbootstrap=250, magsarefluxes=False, sigclip=10.0, npeaks=None): '''Calculates the false alarm probabilities of periodogram peaks using bootstrap resampling of the magnitude time series. The false alarm probability here is defined as:: (1.0 + sum(trialbestpeaks[i] > peak[j]))/(ntrialbestpeaks + 1) for each best periodogram peak j. The index i is for each bootstrap trial. This effectively gives us a significance for the peak. Smaller FAP means a better chance that the peak is real. The basic idea is to get the number of trial best peaks that are larger than the current best peak and divide this by the total number of trials. The distribution of these trial best peaks is obtained after scrambling the mag values and rerunning the specified periodogram method for a bunch of trials. `lspinfo` is the output dict from a periodbase periodogram function and MUST contain a 'method' key that corresponds to one of the keys in the LSPMETHODS dict above. This will let this function know which periodogram function to run to generate the bootstrap samples. The lspinfo SHOULD also have a 'kwargs' key that corresponds to the input keyword arguments for the periodogram function as it was run originally, to keep everything the same during the bootstrap runs. If this is missing, default values will be used. FIXME: this may not be strictly correct; must look more into bootstrap significance testing. Also look into if we're doing resampling correctly for time series because the samples are not iid. Look into moving block bootstrap. Parameters ---------- lspinfo : dict A dict of period-finder results from one of the period-finders in periodbase, or your own functions, provided it's of the form and contains at least the keys listed below:: {'periods': np.array of all periods searched by the period-finder, 'lspvals': np.array of periodogram power value for each period, 'bestperiod': a float value that is the period with the highest peak in the periodogram, i.e. the most-likely actual period, 'method': a three-letter code naming the period-finder used; must be one of the keys in the `astrobase.periodbase.METHODLABELS` dict, 'nbestperiods': a list of the periods corresponding to periodogram peaks (`nbestlspvals` below) to annotate on the periodogram plot so they can be called out visually, 'nbestlspvals': a list of the power values associated with periodogram peaks to annotate on the periodogram plot so they can be called out visually; should be the same length as `nbestperiods` above, 'kwargs': dict of kwargs passed to your own period-finder function} If you provide your own function's period-finder results, you should add a corresponding key for it to the LSPMETHODS dict above so the bootstrap function can use it correctly. Your period-finder function should take `times`, `mags`, errs and any extra parameters as kwargs and return a dict of the form described above. A small worked example:: from your_module import your_periodfinder_func from astrobase import periodbase periodbase.LSPMETHODS['your-finder'] = your_periodfinder_func # run a period-finder session your_pfresults = your_periodfinder_func(times, mags, errs, **extra_kwargs) # run bootstrap to find FAP falsealarm_info = periodbase.bootstrap_falsealarmprob( your_pfresults, times, mags, errs, nbootstrap=250, magsarefluxes=False, ) times,mags,errs : np.arrays The magnitude/flux time-series to process along with their associated measurement errors. nbootstrap : int The total number of bootstrap trials to run. This is set to 250 by default, but should probably be around 1000 for realistic results. magsarefluxes : bool If True, indicates the input time-series is fluxes and not mags. sigclip : float or int or sequence of two floats/ints or None If a single float or int, a symmetric sigma-clip will be performed using the number provided as the sigma-multiplier to cut out from the input time-series. If a list of two ints/floats is provided, the function will perform an 'asymmetric' sigma-clip. The first element in this list is the sigma value to use for fainter flux/mag values; the second element in this list is the sigma value to use for brighter flux/mag values. For example, `sigclip=[10., 3.]`, will sigclip out greater than 10-sigma dimmings and greater than 3-sigma brightenings. Here the meaning of "dimming" and "brightening" is set by *physics* (not the magnitude system), which is why the `magsarefluxes` kwarg must be correctly set. If `sigclip` is None, no sigma-clipping will be performed, and the time-series (with non-finite elems removed) will be passed through to the output. npeaks : int or None The number of peaks from the list of 'nbestlspvals' in the period-finder result dict to run the bootstrap for. If None, all of the peaks in this list will have their FAP calculated. Returns ------- dict Returns a dict of the form:: {'peaks':allpeaks, 'periods':allperiods, 'probabilities':allfaps, 'alltrialbestpeaks':alltrialbestpeaks} ''' # figure out how many periods to work on if (npeaks and (0 < npeaks < len(lspinfo['nbestperiods']))): nperiods = npeaks else: LOGWARNING('npeaks not specified or invalid, ' 'getting FAP for all %s periodogram peaks' % len(lspinfo['nbestperiods'])) nperiods = len(lspinfo['nbestperiods']) nbestperiods = lspinfo['nbestperiods'][:nperiods] nbestpeaks = lspinfo['nbestlspvals'][:nperiods] # get rid of nans first and sigclip stimes, smags, serrs = sigclip_magseries(times, mags, errs, magsarefluxes=magsarefluxes, sigclip=sigclip) allpeaks = [] allperiods = [] allfaps = [] alltrialbestpeaks = [] # make sure there are enough points to calculate a spectrum if len(stimes) > 9 and len(smags) > 9 and len(serrs) > 9: for ind, period, peak in zip(range(len(nbestperiods)), nbestperiods, nbestpeaks): LOGINFO('peak %s: running %s trials...' % (ind+1, nbootstrap)) trialbestpeaks = [] for _trial in range(nbootstrap): # get a scrambled index tindex = np.random.randint(0, high=mags.size, size=mags.size) # get the kwargs dict out of the lspinfo if 'kwargs' in lspinfo: kwargs = lspinfo['kwargs'] # update the kwargs with some local stuff kwargs.update({'magsarefluxes':magsarefluxes, 'sigclip':sigclip, 'verbose':False}) else: kwargs = {'magsarefluxes':magsarefluxes, 'sigclip':sigclip, 'verbose':False} # run the periodogram with scrambled mags and errs # and the appropriate keyword arguments lspres = LSPMETHODS[lspinfo['method']]( times, mags[tindex], errs[tindex], **kwargs ) trialbestpeaks.append(lspres['bestlspval']) trialbestpeaks = np.array(trialbestpeaks) alltrialbestpeaks.append(trialbestpeaks) # calculate the FAP for a trial peak j = FAP[j] = # (1.0 + sum(trialbestpeaks[i] > peak[j]))/(ntrialbestpeaks + 1) if lspinfo['method'] != 'pdm': falsealarmprob = ( (1.0 + trialbestpeaks[trialbestpeaks > peak].size) / (trialbestpeaks.size + 1.0) ) # for PDM, we're looking for a peak smaller than the best peak # because values closer to 0.0 are more significant else: falsealarmprob = ( (1.0 + trialbestpeaks[trialbestpeaks < peak].size) / (trialbestpeaks.size + 1.0) ) LOGINFO('FAP for peak %s, period: %.6f = %.3g' % (ind+1, period, falsealarmprob)) allpeaks.append(peak) allperiods.append(period) allfaps.append(falsealarmprob) return {'peaks':allpeaks, 'periods':allperiods, 'probabilities':allfaps, 'alltrialbestpeaks':alltrialbestpeaks} else: LOGERROR('not enough mag series points to calculate periodogram') return None
def make_combined_periodogram(pflist, outfile, addmethods=False): '''This just puts all of the period-finders on a single periodogram. This will renormalize all of the periodograms so their values lie between 0 and 1, with values lying closer to 1 being more significant. Periodograms that give the same best periods will have their peaks line up together. Parameters ---------- pflist : list of dict This is a list of result dicts from any of the period-finders in periodbase. To use your own period-finders' results here, make sure the result dict is of the form and has at least the keys below:: {'periods': np.array of all periods searched by the period-finder, 'lspvals': np.array of periodogram power value for each period, 'bestperiod': a float value that is the period with the highest peak in the periodogram, i.e. the most-likely actual period, 'method': a three-letter code naming the period-finder used; must be one of the keys in the `astrobase.periodbase.METHODLABELS` dict, 'nbestperiods': a list of the periods corresponding to periodogram peaks (`nbestlspvals` below) to annotate on the periodogram plot so they can be called out visually, 'nbestlspvals': a list of the power values associated with periodogram peaks to annotate on the periodogram plot so they can be called out visually; should be the same length as `nbestperiods` above, 'kwargs': dict of kwargs passed to your own period-finder function} outfile : str This is the output file to write the output to. NOTE: EPS/PS won't work because we use alpha transparency to better distinguish between the various periodograms. addmethods : bool If this is True, will add all of the normalized periodograms together, then renormalize them to between 0 and 1. In this way, if all of the period-finders agree on something, it'll stand out easily. FIXME: implement this kwarg. Returns ------- str The name of the generated plot file. ''' import matplotlib.pyplot as plt for pf in pflist: if pf['method'] == 'pdm': plt.plot(pf['periods'], np.max(pf['lspvals'])/pf['lspvals'] - 1.0, label='%s P=%.5f' % (pf['method'], pf['bestperiod']), alpha=0.5) else: plt.plot(pf['periods'], pf['lspvals']/np.max(pf['lspvals']), label='%s P=%.5f' % (pf['method'], pf['bestperiod']), alpha=0.5) plt.xlabel('period [days]') plt.ylabel('normalized periodogram power') plt.xscale('log') plt.legend() plt.tight_layout() plt.savefig(outfile) plt.close('all') return outfile
def read_original_textlc(lcpath): ''' Read .epdlc, and .tfalc light curves and return a corresponding labelled dict (if LC from <2012) or astropy table (if >=2012). Each has different keys that can be accessed via .keys() Input: lcpath: path (string) to light curve data, which is a textfile with HAT LC data. Example: dat = read_original_textlc('HAT-115-0003266.epdlc') ''' LOGINFO('reading original HAT text LC: {:s}'.format(lcpath)) N_lines_to_parse_comments = 50 with open(lcpath, 'rb') as file: head = [next(file) for ind in range(N_lines_to_parse_comments)] N_comment_lines = len([l for l in head if l.decode('UTF-8')[0] == '#']) # if there are too many comment lines, fail out if N_comment_lines < N_lines_to_parse_comments: LOGERROR( 'LC file {fpath} has too many comment lines'.format(fpath=lcpath) ) return None first_data_line = list( filter(None, head[N_comment_lines].decode('UTF-8').split()) ) N_cols = len(first_data_line) # There are different column formats depending on when HAT pipeline was run # also different formats for different types of LCs: # pre-2012: .epdlc -> 17 columns # pre-2012: .tfalc -> 20 columns # post-2012: .epdlc or .tfalc -> 32 columns if N_cols == 17: colformat = 'pre2012-epdlc' elif N_cols == 20: colformat = 'pre2012-tfalc' elif N_cols == 32: colformat = 'post2012-hatlc' else: LOGERROR("can't handle this column format yet, " "file: {fpath}, ncols: {ncols}".format(fpath=lcpath, ncols=N_cols)) return None # deal with pre-2012 column format if colformat == 'pre2012-epdlc': col_names = ['framekey','rjd', 'aim_000','aie_000','aiq_000', 'aim_001','aie_001','aiq_001', 'aim_002','aie_002','aiq_002', 'arm_000','arm_001','arm_002', 'aep_000','aep_001','aep_002'] col_dtypes = ['U8',float, float,float,'U1', float,float,'U1', float,float,'U1', float,float,float, float,float,float] dtype_pairs = [el for el in zip(col_names, col_dtypes)] data = np.genfromtxt(lcpath, names=col_names, dtype=col_dtypes, skip_header=N_comment_lines, delimiter=None) out = {} for ix in range(len(data.dtype.names)): out[data.dtype.names[ix]] = data[data.dtype.names[ix]] elif colformat == 'pre2012-tfalc': col_names = ['framekey','rjd', 'aim_000','aie_000','aiq_000', 'aim_001','aie_001','aiq_001', 'aim_002','aie_002','aiq_002', 'arm_000','arm_001','arm_002', 'aep_000','aep_001','aep_002', 'atf_000','atf_001','atf_002'] col_dtypes = ['U8',float, float,float,'U1', float,float,'U1', float,float,'U1', float,float,float, float,float,float, float,float,float] dtype_pairs = [el for el in zip(col_names, col_dtypes)] data = np.genfromtxt(lcpath, names=col_names, dtype=col_dtypes, skip_header=N_comment_lines, delimiter=None) out = {} for ix in range(len(data.dtype.names)): out[data.dtype.names[ix]] = data[data.dtype.names[ix]] elif colformat == 'post2012-hatlc': col_names = ['hatid', 'framekey', 'fld', 'bjd', 'aim_000', 'aie_000', 'aiq_000', 'aim_001', 'aie_001', 'aiq_001', 'aim_002', 'aie_002', 'aiq_002', 'arm_000', 'arm_001', 'arm_002', 'aep_000', 'aep_001', 'aep_002', 'atf_000', 'atf_001', 'atf_002', 'xcc', 'ycc', 'bgv', 'bge', 'fsv', 'fdv', 'fkv', 'iha', 'izd', 'rjd'] out = astascii.read(lcpath, names=col_names, comment='#') return out
def traptransit_fit_magseries(times, mags, errs, transitparams, sigclip=10.0, plotfit=False, magsarefluxes=False, verbose=True): '''This fits a trapezoid transit model to a magnitude time series. Parameters ---------- times,mags,errs : np.array The input mag/flux time-series to fit a trapezoid planet-transit model to. period : float The period to use for the model fit. transitparams : list of floats These are initial parameters for the transit model fit. A list of the following form is required:: transitparams = [transitperiod (time), transitepoch (time), transitdepth (flux or mags), transitduration (phase), ingressduration (phase)] - for magnitudes -> `transitdepth` should be < 0 - for fluxes -> `transitdepth` should be > 0 If `transitepoch` is None, this function will do an initial spline fit to find an approximate minimum of the phased light curve using the given period. The `transitdepth` provided is checked against the value of `magsarefluxes`. if `magsarefluxes = True`, the `transitdepth` is forced to be > 0; if `magsarefluxes` = False, the `transitdepth` is forced to be < 0. sigclip : float or int or sequence of two floats/ints or None If a single float or int, a symmetric sigma-clip will be performed using the number provided as the sigma-multiplier to cut out from the input time-series. If a list of two ints/floats is provided, the function will perform an 'asymmetric' sigma-clip. The first element in this list is the sigma value to use for fainter flux/mag values; the second element in this list is the sigma value to use for brighter flux/mag values. For example, `sigclip=[10., 3.]`, will sigclip out greater than 10-sigma dimmings and greater than 3-sigma brightenings. Here the meaning of "dimming" and "brightening" is set by *physics* (not the magnitude system), which is why the `magsarefluxes` kwarg must be correctly set. If `sigclip` is None, no sigma-clipping will be performed, and the time-series (with non-finite elems removed) will be passed through to the output. magsarefluxes : bool If True, will treat the input values of `mags` as fluxes for purposes of plotting the fit and sig-clipping. plotfit : str or False If this is a string, this function will make a plot for the fit to the mag/flux time-series and writes the plot to the path specified here. ignoreinitfail : bool If this is True, ignores the initial failure to find a set of optimized Fourier parameters using the global optimization function and proceeds to do a least-squares fit anyway. verbose : bool If True, will indicate progress and warn of any problems. Returns ------- dict This function returns a dict containing the model fit parameters, the minimized chi-sq value and the reduced chi-sq value. The form of this dict is mostly standardized across all functions in this module:: { 'fittype':'traptransit', 'fitinfo':{ 'initialparams':the initial transit params provided, 'finalparams':the final model fit transit params , 'finalparamerrs':formal errors in the params, 'leastsqfit':the full tuple returned by scipy.leastsq, 'fitmags': the model fit mags, 'fitepoch': the epoch of minimum light for the fit, 'ntransitpoints': the number of LC points in transit phase }, 'fitchisq': the minimized value of the fit's chi-sq, 'fitredchisq':the reduced chi-sq value, 'fitplotfile': the output fit plot if fitplot is not None, 'magseries':{ 'times':input times in phase order of the model, 'phase':the phases of the model mags, 'mags':input mags/fluxes in the phase order of the model, 'errs':errs in the phase order of the model, 'magsarefluxes':input value of magsarefluxes kwarg } } ''' stimes, smags, serrs = sigclip_magseries(times, mags, errs, sigclip=sigclip, magsarefluxes=magsarefluxes) # get rid of zero errs nzind = np.nonzero(serrs) stimes, smags, serrs = stimes[nzind], smags[nzind], serrs[nzind] # check the transitparams transitperiod, transitepoch, transitdepth = transitparams[0:3] # check if we have a transitepoch to use if transitepoch is None: if verbose: LOGWARNING('no transitepoch given in transitparams, ' 'trying to figure it out automatically...') # do a spline fit to figure out the approximate min of the LC try: spfit = spline_fit_magseries(times, mags, errs, transitperiod, sigclip=sigclip, magsarefluxes=magsarefluxes, verbose=verbose) transitepoch = spfit['fitinfo']['fitepoch'] # if the spline-fit fails, try a savgol fit instead except Exception as e: sgfit = savgol_fit_magseries(times, mags, errs, transitperiod, sigclip=sigclip, magsarefluxes=magsarefluxes, verbose=verbose) transitepoch = sgfit['fitinfo']['fitepoch'] # if everything failed, then bail out and ask for the transitepoch finally: if transitepoch is None: LOGERROR("couldn't automatically figure out the transit epoch, " "can't continue. please provide it in transitparams.") # assemble the returndict returndict = { 'fittype':'traptransit', 'fitinfo':{ 'initialparams':transitparams, 'finalparams':None, 'leastsqfit':None, 'fitmags':None, 'fitepoch':None, }, 'fitchisq':np.nan, 'fitredchisq':np.nan, 'fitplotfile':None, 'magseries':{ 'phase':None, 'times':None, 'mags':None, 'errs':None, 'magsarefluxes':magsarefluxes, }, } return returndict else: # check the case when there are more than one transitepochs # returned if transitepoch.size > 1: if verbose: LOGWARNING( "could not auto-find a single minimum in LC for " "transitepoch, using the first one returned" ) transitparams[1] = transitepoch[0] else: if verbose: LOGWARNING( 'using automatically determined transitepoch = %.5f' % transitepoch ) transitparams[1] = transitepoch.item() # next, check the transitdepth and fix it to the form required if magsarefluxes: if transitdepth < 0.0: transitparams[2] = -transitdepth else: if transitdepth > 0.0: transitparams[2] = -transitdepth # finally, do the fit try: leastsqfit = spleastsq(transits.trapezoid_transit_residual, transitparams, args=(stimes, smags, serrs), full_output=True) except Exception as e: leastsqfit = None # if the fit succeeded, then we can return the final parameters if leastsqfit and leastsqfit[-1] in (1,2,3,4): finalparams = leastsqfit[0] covxmatrix = leastsqfit[1] # calculate the chisq and reduced chisq fitmags, phase, ptimes, pmags, perrs, n_transitpoints = ( transits.trapezoid_transit_func( finalparams, stimes, smags, serrs, get_ntransitpoints=True ) ) fitchisq = np.sum( ((fitmags - pmags)*(fitmags - pmags)) / (perrs*perrs) ) fitredchisq = fitchisq/(len(pmags) - len(finalparams) - 1) # get the residual variance and calculate the formal 1-sigma errs on the # final parameters residuals = leastsqfit[2]['fvec'] residualvariance = ( np.sum(residuals*residuals)/(pmags.size - finalparams.size) ) if covxmatrix is not None: covmatrix = residualvariance*covxmatrix stderrs = np.sqrt(np.diag(covmatrix)) else: LOGERROR('covxmatrix not available, fit probably failed!') stderrs = None if verbose: LOGINFO( 'final fit done. chisq = %.5f, reduced chisq = %.5f' % (fitchisq, fitredchisq) ) # get the fit epoch fperiod, fepoch = finalparams[:2] # assemble the returndict returndict = { 'fittype':'traptransit', 'fitinfo':{ 'initialparams':transitparams, 'finalparams':finalparams, 'finalparamerrs':stderrs, 'leastsqfit':leastsqfit, 'fitmags':fitmags, 'fitepoch':fepoch, 'ntransitpoints':n_transitpoints }, 'fitchisq':fitchisq, 'fitredchisq':fitredchisq, 'fitplotfile':None, 'magseries':{ 'phase':phase, 'times':ptimes, 'mags':pmags, 'errs':perrs, 'magsarefluxes':magsarefluxes, }, } # make the fit plot if required if plotfit and isinstance(plotfit, str): make_fit_plot(phase, pmags, perrs, fitmags, fperiod, ptimes.min(), fepoch, plotfit, magsarefluxes=magsarefluxes) returndict['fitplotfile'] = plotfit return returndict # if the leastsq fit failed, return nothing else: LOGERROR('trapezoid-fit: least-squared fit to the light curve failed!') # assemble the returndict returndict = { 'fittype':'traptransit', 'fitinfo':{ 'initialparams':transitparams, 'finalparams':None, 'finalparamerrs':None, 'leastsqfit':leastsqfit, 'fitmags':None, 'fitepoch':None, 'ntransitpoints':0 }, 'fitchisq':np.nan, 'fitredchisq':np.nan, 'fitplotfile':None, 'magseries':{ 'phase':None, 'times':None, 'mags':None, 'errs':None, 'magsarefluxes':magsarefluxes, }, } return returndict
def _get_value(quantitystr, fitparams, fixedparams): """This decides if a value is to be fit for or is fixed in a model fit. When you want to get the value of some parameter, but you're not sure if it's being fit or if it is fixed. then, e.g. for `period`:: period_value = _get_value('period', fitparams, fixedparams) """ # for Mandel-Agol fitting, sometimes we want to fix some parameters, # and fit others. this function allows that flexibility. fitparamskeys, fixedparamskeys = fitparams.keys(), fixedparams.keys() if quantitystr in fitparamskeys: quantity = fitparams[quantitystr] elif quantitystr in fixedparamskeys: quantity = fixedparams[quantitystr] return quantity
def _transit_model(times, t0, per, rp, a, inc, ecc, w, u, limb_dark, exp_time_minutes=2, supersample_factor=7): '''This returns a BATMAN planetary transit model. Parameters ---------- times : np.array The times at which the model will be evaluated. t0 : float The time of periastron for the transit. per : float The orbital period of the planet. rp : float The stellar radius of the planet's star (in Rsun). a : float The semi-major axis of the planet's orbit (in Rsun). inc : float The orbital inclination (in degrees). ecc : float The eccentricity of the orbit. w : float The longitude of periastron (in degrees). u : list of floats The limb darkening coefficients specific to the limb darkening model used. limb_dark : {"uniform", "linear", "quadratic", "square-root", "logarithmic", "exponential", "power2", "custom"} The type of limb darkening model to use. See the full list here: https://www.cfa.harvard.edu/~lkreidberg/batman/tutorial.html#limb-darkening-options exp_time_minutes : float The amount of time to 'smear' the transit LC points over to simulate a long exposure time. supersample_factor: int The number of supersampled time data points to average the lightcurve model over. Returns ------- (params, batman_model) : tuple The returned tuple contains the params list and the generated `batman.TransitModel` object. ''' params = batman.TransitParams() # object to store transit parameters params.t0 = t0 # time of periastron params.per = per # orbital period params.rp = rp # planet radius (in stellar radii) params.a = a # semi-major axis (in stellar radii) params.inc = inc # orbital inclination (in degrees) params.ecc = ecc # the eccentricity of the orbit params.w = w # longitude of periastron (in degrees) params.u = u # limb darkening coefficient list params.limb_dark = limb_dark # limb darkening model to use t = times m = batman.TransitModel(params, t, exp_time=exp_time_minutes/60./24., supersample_factor=supersample_factor) return params, m
def _log_prior_transit(theta, priorbounds): ''' Assume priors on all parameters have uniform probability. ''' # priorbounds contains the input priors, and because of how we previously # sorted theta, its sorted keys tell us which parts of theta correspond to # which physical quantities. allowed = True for ix, key in enumerate(np.sort(list(priorbounds.keys()))): if priorbounds[key][0] < theta[ix] < priorbounds[key][1]: allowed = True and allowed else: allowed = False if allowed: return 0. return -np.inf
def _log_likelihood_transit(theta, params, model, t, flux, err_flux, priorbounds): ''' Given a batman TransitModel and its proposed parameters (theta), update the batman params object with the proposed parameters and evaluate the gaussian likelihood. Note: the priorbounds are only needed to parse theta. ''' u = [] for ix, key in enumerate(sorted(priorbounds.keys())): if key == 'rp': params.rp = theta[ix] elif key == 't0': params.t0 = theta[ix] elif key == 'sma': params.a = theta[ix] elif key == 'incl': params.inc = theta[ix] elif key == 'period': params.per = theta[ix] elif key == 'ecc': params.per = theta[ix] elif key == 'omega': params.w = theta[ix] elif key == 'u_linear': u.append(theta[ix]) elif key == 'u_quadratic': u.append(theta[ix]) params.u = u lc = model.light_curve(params) residuals = flux - lc log_likelihood = -0.5*( np.sum((residuals/err_flux)**2 + np.log(2*np.pi*(err_flux)**2)) ) return log_likelihood
def _log_likelihood_transit_plus_line(theta, params, model, t, data_flux, err_flux, priorbounds): ''' Given a batman TransitModel and its proposed parameters (theta), update the batman params object with the proposed parameters and evaluate the gaussian likelihood. Note: the priorbounds are only needed to parse theta. ''' u = [] for ix, key in enumerate(sorted(priorbounds.keys())): if key == 'rp': params.rp = theta[ix] elif key == 't0': params.t0 = theta[ix] elif key == 'sma': params.a = theta[ix] elif key == 'incl': params.inc = theta[ix] elif key == 'period': params.per = theta[ix] elif key == 'ecc': params.per = theta[ix] elif key == 'omega': params.w = theta[ix] elif key == 'u_linear': u.append(theta[ix]) elif key == 'u_quadratic': u.append(theta[ix]) params.u = u elif key == 'poly_order0': poly_order0 = theta[ix] elif key == 'poly_order1': poly_order1 = theta[ix] try: poly_order0 except Exception as e: poly_order0 = 0 else: pass transit = model.light_curve(params) line = poly_order0 + t*poly_order1 model = transit + line residuals = data_flux - model log_likelihood = -0.5*( np.sum((residuals/err_flux)**2 + np.log(2*np.pi*(err_flux)**2)) ) return log_likelihood
def log_posterior_transit(theta, params, model, t, flux, err_flux, priorbounds): ''' Evaluate posterior probability given proposed model parameters and the observed flux timeseries. ''' lp = _log_prior_transit(theta, priorbounds) if not np.isfinite(lp): return -np.inf else: return lp + _log_likelihood_transit(theta, params, model, t, flux, err_flux, priorbounds)
def log_posterior_transit_plus_line(theta, params, model, t, flux, err_flux, priorbounds): ''' Evaluate posterior probability given proposed model parameters and the observed flux timeseries. ''' lp = _log_prior_transit_plus_line(theta, priorbounds) if not np.isfinite(lp): return -np.inf else: return ( lp + _log_likelihood_transit_plus_line( theta, params, model, t, flux, err_flux, priorbounds) )
def mandelagol_fit_magseries( times, mags, errs, fitparams, priorbounds, fixedparams, trueparams=None, burninpercent=0.3, plotcorner=False, samplesavpath=False, n_walkers=50, n_mcmc_steps=400, eps=1e-4, skipsampling=False, overwriteexistingsamples=False, mcmcprogressbar=False, plotfit=False, magsarefluxes=False, sigclip=10.0, verbose=True, nworkers=4 ): '''This fits a Mandel & Agol (2002) planetary transit model to a flux time series. You can fit and fix whatever parameters you want. It relies on Kreidberg (2015)'s BATMAN implementation for the transit model, emcee to sample the posterior (Foreman-Mackey et al 2013), `corner` to plot it, and `h5py` to save the samples. See e.g., Claret's work for good guesses of star-appropriate limb-darkening parameters. NOTE: this only works for flux time-series at the moment. NOTE: Between the `fitparams`, `priorbounds`, and `fixedparams` dicts, you must specify all of the planetary transit parameters required by BATMAN: `['t0', 'rp', 'sma', 'incl', 'u', 'rp', 'ecc', 'omega', 'period']`, or the BATMAN model will fail to initialize. Parameters ---------- times,mags,errs : np.array The input flux time-series to fit a Fourier cosine series to. fitparams : dict This is the initial parameter guesses for MCMC, found e.g., by BLS. The key string format must not be changed, but any parameter can be either "fit" or "fixed". If it is "fit", it must have a corresponding prior. For example:: fitparams = {'t0':1325.9, 'rp':np.sqrt(fitd['transitdepth']), 'sma':6.17, 'incl':85, 'u':[0.3, 0.2]} where 'u' is a list of the limb darkening parameters, Linear first, then quadratic. Quadratic limb darkening is the only form implemented. priorbounds : dict This sets the lower & upper bounds on uniform prior, e.g.:: priorbounds = {'rp':(0.135, 0.145), 'u_linear':(0.3-1, 0.3+1), 'u_quad':(0.2-1, 0.2+1), 't0':(np.min(time), np.max(time)), 'sma':(6,6.4), 'incl':(80,90)} fixedparams : dict This sets which parameters are fixed, and their values. For example:: fixedparams = {'ecc':0., 'omega':90., 'limb_dark':'quadratic', 'period':fitd['period'] } `limb_dark` must be "quadratic". It's "fixed", because once you choose your limb-darkening model, it's fixed. trueparams : list of floats The true parameter values you're fitting for, if they're known (e.g., a known planet, or fake data). Only for plotting purposes. burninpercent : float The percent of MCMC samples to discard as burn-in. plotcorner : str or False If this is a str, points to the path of output corner plot that will be generated for this MCMC run. samplesavpath : str This must be provided so `emcee` can save its MCMC samples to disk as HDF5 files. This will set the path of the output HDF5file written. n_walkers : int The number of MCMC walkers to use. n_mcmc_steps : int The number of MCMC steps to take. eps : float The radius of the `n_walkers-dimensional` Gaussian ball used to initialize the MCMC. skipsampling : bool If you've already collected MCMC samples, and you do not want any more sampling (e.g., just make the plots), set this to be True. overwriteexistingsamples : bool If you've collected samples, but you want to overwrite them, set this to True. Usually, it should be False, which appends samples to `samplesavpath` HDF5 file. mcmcprogressbar : bool If True, will show a progress bar for the MCMC process. plotfit: str or bool If a str, indicates the path of the output fit plot file. If False, no fit plot will be made. magsarefluxes : bool This indicates if the input measurements in `mags` are actually fluxes. sigclip : float or int or sequence of two floats/ints or None If a single float or int, a symmetric sigma-clip will be performed using the number provided as the sigma-multiplier to cut out from the input time-series. If a list of two ints/floats is provided, the function will perform an 'asymmetric' sigma-clip. The first element in this list is the sigma value to use for fainter flux/mag values; the second element in this list is the sigma value to use for brighter flux/mag values. For example, `sigclip=[10., 3.]`, will sigclip out greater than 10-sigma dimmings and greater than 3-sigma brightenings. Here the meaning of "dimming" and "brightening" is set by *physics* (not the magnitude system), which is why the `magsarefluxes` kwarg must be correctly set. If `sigclip` is None, no sigma-clipping will be performed, and the time-series (with non-finite elems removed) will be passed through to the output. verbose : bool If True, will indicate MCMC progress. nworkers : int The number of parallel workers to launch for MCMC. Returns ------- dict This function returns a dict containing the model fit parameters and other fit information. The form of this dict is mostly standardized across all functions in this module:: { 'fittype':'mandelagol', 'fitinfo':{ 'initialparams':the initial transit params provided, 'fixedparams':the fixed transit params provided, 'finalparams':the final model fit transit params, 'finalparamerrs':formal errors in the params, 'fitmags': the model fit mags, 'fitepoch': the epoch of minimum light for the fit, }, 'fitplotfile': the output fit plot if fitplot is not None, 'magseries':{ 'times':input times in phase order of the model, 'phase':the phases of the model mags, 'mags':input mags/fluxes in the phase order of the model, 'errs':errs in the phase order of the model, 'magsarefluxes':input value of magsarefluxes kwarg } } ''' from multiprocessing import Pool fittype = 'mandelagol' if not magsarefluxes: raise NotImplementedError('magsarefluxes is not implemented yet.') if not samplesavpath: raise ValueError( 'This function requires that you save the samples somewhere' ) if not mandel_agol_dependencies: raise ImportError( 'This function depends on BATMAN, emcee>3.0, corner, and h5py.' ) # sigma clip and get rid of zero errs stimes, smags, serrs = sigclip_magseries(times, mags, errs, sigclip=sigclip, magsarefluxes=magsarefluxes) nzind = np.nonzero(serrs) stimes, smags, serrs = stimes[nzind], smags[nzind], serrs[nzind] init_period = _get_value('period', fitparams, fixedparams) init_epoch = _get_value('t0', fitparams, fixedparams) init_rp = _get_value('rp', fitparams, fixedparams) init_sma = _get_value('sma', fitparams, fixedparams) init_incl = _get_value('incl', fitparams, fixedparams) init_ecc = _get_value('ecc', fitparams, fixedparams) init_omega = _get_value('omega', fitparams, fixedparams) limb_dark = _get_value('limb_dark', fitparams, fixedparams) init_u = _get_value('u', fitparams, fixedparams) if not limb_dark == 'quadratic': raise ValueError( 'only quadratic limb-darkening is supported at the moment' ) # initialize the model and calculate the initial model light-curve init_params, init_m = _transit_model(stimes, init_epoch, init_period, init_rp, init_sma, init_incl, init_ecc, init_omega, init_u, limb_dark) init_flux = init_m.light_curve(init_params) # guessed initial params. give nice guesses, or else emcee struggles. theta, fitparamnames = [], [] for k in np.sort(list(fitparams.keys())): if isinstance(fitparams[k], float) or isinstance(fitparams[k], int): theta.append(fitparams[k]) fitparamnames.append(fitparams[k]) elif isinstance(fitparams[k], list): if not len(fitparams[k]) == 2: raise ValueError('should only be quadratic LD coeffs') theta.append(fitparams[k][0]) theta.append(fitparams[k][1]) fitparamnames.append(fitparams[k][0]) fitparamnames.append(fitparams[k][1]) # initialize sampler n_dim = len(theta) initial_position_vec = [theta + eps*np.random.randn(n_dim) for i in range(n_walkers)] # run the MCMC, unless you just want to load the available samples if not skipsampling: backend = emcee.backends.HDFBackend(samplesavpath) if overwriteexistingsamples: LOGWARNING( 'erased samples previously at {:s}'.format(samplesavpath) ) backend.reset(n_walkers, n_dim) # if this is the first run, then start from a gaussian ball. # otherwise, resume from the previous samples. starting_positions = initial_position_vec isfirstrun = True if os.path.exists(backend.filename): if backend.iteration > 1: starting_positions = None isfirstrun = False if verbose and isfirstrun: LOGINFO( 'start {:s} MCMC with {:d} dims, {:d} steps, {:d} walkers,'. format(fittype, n_dim, n_mcmc_steps, n_walkers) + ' {:d} threads'.format(nworkers) ) elif verbose and not isfirstrun: LOGINFO( 'continue {:s} with {:d} dims, {:d} steps, {:d} walkers, '. format(fittype, n_dim, n_mcmc_steps, n_walkers) + '{:d} threads'.format(nworkers) ) import sys if sys.version_info >= (3, 3): with Pool(nworkers) as pool: sampler = emcee.EnsembleSampler( n_walkers, n_dim, log_posterior_transit, args=(init_params, init_m, stimes, smags, serrs, priorbounds), pool=pool, backend=backend ) sampler.run_mcmc(starting_positions, n_mcmc_steps, progress=mcmcprogressbar) elif sys.version_info < (3, 3): sampler = emcee.EnsembleSampler( n_walkers, n_dim, log_posterior_transit, args=(init_params, init_m, stimes, smags, serrs, priorbounds), threads=nworkers, backend=backend ) sampler.run_mcmc(starting_positions, n_mcmc_steps, progress=mcmcprogressbar) if verbose: LOGINFO( 'ended {:s} MCMC run with {:d} steps, {:d} walkers, '.format( fittype, n_mcmc_steps, n_walkers ) + '{:d} threads'.format(nworkers) ) reader = emcee.backends.HDFBackend(samplesavpath) n_to_discard = int(burninpercent*n_mcmc_steps) samples = reader.get_chain(discard=n_to_discard, flat=True) log_prob_samples = reader.get_log_prob(discard=n_to_discard, flat=True) log_prior_samples = reader.get_blobs(discard=n_to_discard, flat=True) # Get best-fit parameters and their 1-sigma error bars fit_statistics = list( map(lambda v: (v[1], v[2]-v[1], v[1]-v[0]), list(zip( *np.percentile(samples, [15.85, 50, 84.15], axis=0)))) ) medianparams, std_perrs, std_merrs = {}, {}, {} for ix, k in enumerate(np.sort(list(priorbounds.keys()))): medianparams[k] = fit_statistics[ix][0] std_perrs[k] = fit_statistics[ix][1] std_merrs[k] = fit_statistics[ix][2] stderrs = {'std_perrs':std_perrs, 'std_merrs':std_merrs} per = _get_value('period', medianparams, fixedparams) t0 = _get_value('t0', medianparams, fixedparams) rp = _get_value('rp', medianparams, fixedparams) sma = _get_value('sma', medianparams, fixedparams) incl = _get_value('incl', medianparams, fixedparams) ecc = _get_value('ecc', medianparams, fixedparams) omega = _get_value('omega', medianparams, fixedparams) limb_dark = _get_value('limb_dark', medianparams, fixedparams) try: u = fixedparams['u'] except Exception as e: u = [medianparams['u_linear'], medianparams['u_quad']] fit_params, fit_m = _transit_model(stimes, t0, per, rp, sma, incl, ecc, omega, u, limb_dark) fitmags = fit_m.light_curve(fit_params) fepoch = t0 # assemble the return dictionary returndict = { 'fittype':fittype, 'fitinfo':{ 'initialparams':fitparams, 'initialmags':init_flux, 'fixedparams':fixedparams, 'finalparams':medianparams, 'finalparamerrs':stderrs, 'fitmags':fitmags, 'fitepoch':fepoch, }, 'fitplotfile':None, 'magseries':{ 'times':stimes, 'mags':smags, 'errs':serrs, 'magsarefluxes':magsarefluxes, }, } # make the output corner plot, and lightcurve plot if desired if plotcorner: if isinstance(trueparams,dict): trueparamkeys = np.sort(list(trueparams.keys())) truelist = [trueparams[k] for k in trueparamkeys] fig = corner.corner( samples, labels=trueparamkeys, truths=truelist, quantiles=[0.1585, 0.5, .8415], show_titles=True ) else: fig = corner.corner(samples, labels=fitparamnames, quantiles=[0.1585, 0.5, .8415], show_titles=True) plt.savefig(plotcorner, dpi=300) if verbose: LOGINFO('saved {:s}'.format(plotcorner)) if plotfit and isinstance(plotfit, str): f, ax = plt.subplots(figsize=(8,6)) ax.scatter(stimes, smags, c='k', alpha=0.5, label='observed', zorder=1, s=1.5, rasterized=True, linewidths=0) ax.scatter(stimes, init_flux, c='r', alpha=1, s=3.5, zorder=2, rasterized=True, linewidths=0, label='initial guess') ax.scatter( stimes, fitmags, c='b', alpha=1, s=1.5, zorder=3, rasterized=True, linewidths=0, label='fit {:d} dims'.format( len(fitparamnames)) ) ax.legend(loc='best') ax.set(xlabel='time [days]', ylabel='relative flux') f.savefig(plotfit, dpi=300, bbox_inches='tight') if verbose: LOGINFO('saved {:s}'.format(plotfit)) returndict['fitplotfile'] = plotfit return returndict
def mandelagol_and_line_fit_magseries( times, mags, errs, fitparams, priorbounds, fixedparams, trueparams=None, burninpercent=0.3, plotcorner=False, timeoffset=0, samplesavpath=False, n_walkers=50, n_mcmc_steps=400, eps=1e-4, skipsampling=False, overwriteexistingsamples=False, mcmcprogressbar=False, plotfit=False, scatterxdata=None, scatteryaxes=None, magsarefluxes=True, sigclip=10.0, verbose=True, nworkers=4 ): '''The model fit by this function is: a Mandel & Agol (2002) transit, PLUS a line. You can fit and fix whatever parameters you want. A typical use case: you want to measure transit times of individual SNR >~ 50 transits. You fix all the transit parameters except for the mid-time, and also fit for a line locally. NOTE: this only works for flux time-series at the moment. NOTE: Between the `fitparams`, `priorbounds`, and `fixedparams` dicts, you must specify all of the planetary transit parameters required by BATMAN and the parameters for the line fit: `['t0', 'rp', 'sma', 'incl', 'u', 'rp', 'ecc', 'omega', 'period', 'poly_order0', poly_order1']`, or the BATMAN model will fail to initialize. Parameters ---------- times,mags,errs : np.array The input flux time-series to fit a Fourier cosine series to. fitparams : dict This is the initial parameter guesses for MCMC, found e.g., by BLS. The key string format must not be changed, but any parameter can be either "fit" or "fixed". If it is "fit", it must have a corresponding prior. For example:: fitparams = {'t0':1325.9, 'poly_order0':1, 'poly_order1':0.} where `t0` is the time of transit-center for a reference transit. `poly_order0` corresponds to the intercept of the line, `poly_order1` is the slope. priorbounds : dict This sets the lower & upper bounds on uniform prior, e.g.:: priorbounds = {'t0':(np.min(time), np.max(time)), 'poly_order0':(0.5,1.5), 'poly_order1':(-0.5,0.5) } fixedparams : dict This sets which parameters are fixed, and their values. For example:: fixedparams = {'ecc':0., 'omega':90., 'limb_dark':'quadratic', 'period':fitd['period'], 'rp':np.sqrt(fitd['transitdepth']), 'sma':6.17, 'incl':85, 'u':[0.3, 0.2]} `limb_dark` must be "quadratic". It's "fixed", because once you choose your limb-darkening model, it's fixed. trueparams : list of floats The true parameter values you're fitting for, if they're known (e.g., a known planet, or fake data). Only for plotting purposes. burninpercent : float The percent of MCMC samples to discard as burn-in. plotcorner : str or False If this is a str, points to the path of output corner plot that will be generated for this MCMC run. timeoffset : float If input times are offset by some constant, and you want saved pickles to fix that. samplesavpath : str This must be provided so `emcee` can save its MCMC samples to disk as HDF5 files. This will set the path of the output HDF5file written. n_walkers : int The number of MCMC walkers to use. n_mcmc_steps : int The number of MCMC steps to take. eps : float The radius of the `n_walkers-dimensional` Gaussian ball used to initialize the MCMC. skipsampling : bool If you've already collected MCMC samples, and you do not want any more sampling (e.g., just make the plots), set this to be True. overwriteexistingsamples : bool If you've collected samples, but you want to overwrite them, set this to True. Usually, it should be False, which appends samples to `samplesavpath` HDF5 file. mcmcprogressbar : bool If True, will show a progress bar for the MCMC process. plotfit: str or bool If a str, indicates the path of the output fit plot file. If False, no fit plot will be made. scatterxdata : np.array or None Use this to overplot x,y scatter points on the output model/data lightcurve (e.g., to highlight bad data, or to indicate an ephemeris), this can take a `np.ndarray` with the same units as `times`. scatteryaxes : np.array or None Use this to provide the y-values for scatterxdata, in units of fraction of an axis. magsarefluxes : bool This indicates if the input measurements in `mags` are actually fluxes. sigclip : float or int or sequence of two floats/ints or None If a single float or int, a symmetric sigma-clip will be performed using the number provided as the sigma-multiplier to cut out from the input time-series. If a list of two ints/floats is provided, the function will perform an 'asymmetric' sigma-clip. The first element in this list is the sigma value to use for fainter flux/mag values; the second element in this list is the sigma value to use for brighter flux/mag values. For example, `sigclip=[10., 3.]`, will sigclip out greater than 10-sigma dimmings and greater than 3-sigma brightenings. Here the meaning of "dimming" and "brightening" is set by *physics* (not the magnitude system), which is why the `magsarefluxes` kwarg must be correctly set. If `sigclip` is None, no sigma-clipping will be performed, and the time-series (with non-finite elems removed) will be passed through to the output. verbose : bool If True, will indicate MCMC progress. nworkers : int The number of parallel workers to launch for MCMC. Returns ------- dict This function returns a dict containing the model fit parameters and other fit information. The form of this dict is mostly standardized across all functions in this module:: { 'fittype':'mandelagol_and_line', 'fitinfo':{ 'initialparams':the initial transit params provided, 'fixedparams':the fixed transit params provided, 'finalparams':the final model fit transit params, 'finalparamerrs':formal errors in the params, 'fitmags': the model fit mags, 'fitepoch': the epoch of minimum light for the fit, }, 'fitplotfile': the output fit plot if fitplot is not None, 'magseries':{ 'times':input times in phase order of the model, 'phase':the phases of the model mags, 'mags':input mags/fluxes in the phase order of the model, 'errs':errs in the phase order of the model, 'magsarefluxes':input value of magsarefluxes kwarg } } ''' from multiprocessing import Pool fittype = 'mandelagol_and_line' if not magsarefluxes: raise NotImplementedError('magsarefluxes is not implemented yet.') if not samplesavpath: raise ValueError( 'This function requires that you save the samples somewhere' ) if not mandel_agol_dependencies: raise ImportError( 'This function depends on BATMAN, emcee>3.0, corner, and h5py.' ) # sigma clip and get rid of zero errs stimes, smags, serrs = sigclip_magseries(times, mags, errs, sigclip=sigclip, magsarefluxes=magsarefluxes) nzind = np.nonzero(serrs) stimes, smags, serrs = stimes[nzind], smags[nzind], serrs[nzind] init_period = _get_value('period', fitparams, fixedparams) init_epoch = _get_value('t0', fitparams, fixedparams) init_rp = _get_value('rp', fitparams, fixedparams) init_sma = _get_value('sma', fitparams, fixedparams) init_incl = _get_value('incl', fitparams, fixedparams) init_ecc = _get_value('ecc', fitparams, fixedparams) init_omega = _get_value('omega', fitparams, fixedparams) limb_dark = _get_value('limb_dark', fitparams, fixedparams) init_u = _get_value('u', fitparams, fixedparams) init_poly_order0 = _get_value('poly_order0', fitparams, fixedparams) init_poly_order1 = _get_value('poly_order1', fitparams, fixedparams) if not limb_dark == 'quadratic': raise ValueError( 'only quadratic limb-darkening is supported at the moment' ) # initialize the model and calculate the initial model light-curve init_params, init_m = _transit_model( stimes, init_epoch, init_period, init_rp, init_sma, init_incl, init_ecc, init_omega, init_u, limb_dark) init_flux = ( init_m.light_curve(init_params) + init_poly_order0 + init_poly_order1*stimes ) # guessed initial params. give nice guesses, or else emcee struggles. theta, fitparamnames = [], [] for k in np.sort(list(fitparams.keys())): if isinstance(fitparams[k], float) or isinstance(fitparams[k], int): theta.append(fitparams[k]) fitparamnames.append(fitparams[k]) elif isinstance(fitparams[k], list): if not len(fitparams[k]) == 2: raise ValueError('should only be quadratic LD coeffs') theta.append(fitparams[k][0]) theta.append(fitparams[k][1]) fitparamnames.append(fitparams[k][0]) fitparamnames.append(fitparams[k][1]) # initialize sampler n_dim = len(theta) # run the MCMC, unless you just want to load the available samples if not skipsampling: backend = emcee.backends.HDFBackend(samplesavpath) if overwriteexistingsamples: LOGWARNING( 'erased samples previously at {:s}'.format(samplesavpath) ) backend.reset(n_walkers, n_dim) # if this is the first run, then start from a gaussian ball, centered # on the maximum likelihood solution. otherwise, resume from the # previous samples. def nll(*args): return -_log_likelihood_transit_plus_line(*args) soln = spminimize( nll, theta, method='BFGS', args=(init_params, init_m, stimes, smags, serrs, priorbounds) ) theta_ml = soln.x ml_poly_order0 = theta_ml[0] ml_poly_order1 = theta_ml[1] ml_rp = theta_ml[2] ml_t0 = theta_ml[3] ml_params, ml_m = _transit_model(stimes, ml_t0, init_period, ml_rp, init_sma, init_incl, init_ecc, init_omega, init_u, limb_dark) ml_mags = ( ml_m.light_curve(ml_params) + ml_poly_order0 + ml_poly_order1*stimes ) initial_position_vec = [theta_ml + eps*np.random.randn(n_dim) for i in range(n_walkers)] starting_positions = initial_position_vec isfirstrun = True if os.path.exists(backend.filename): if backend.iteration > 1: starting_positions = None isfirstrun = False if verbose and isfirstrun: LOGINFO( 'start {:s} MCMC with {:d} dims, {:d} steps, {:d} walkers,'. format(fittype, n_dim, n_mcmc_steps, n_walkers) + ' {:d} threads'.format(nworkers) ) elif verbose and not isfirstrun: LOGINFO( 'continue {:s} with {:d} dims, {:d} steps, {:d} walkers, '. format(fittype, n_dim, n_mcmc_steps, n_walkers) + '{:d} threads'.format(nworkers) ) with Pool(nworkers) as pool: sampler = emcee.EnsembleSampler( n_walkers, n_dim, log_posterior_transit_plus_line, args=(init_params, init_m, stimes, smags, serrs, priorbounds), pool=pool, backend=backend ) sampler.run_mcmc(starting_positions, n_mcmc_steps, progress=mcmcprogressbar) if verbose: LOGINFO( 'ended {:s} MCMC run with {:d} steps, {:d} walkers, '.format( fittype, n_mcmc_steps, n_walkers ) + '{:d} threads'.format(nworkers) ) reader = emcee.backends.HDFBackend(samplesavpath) n_to_discard = int(burninpercent*n_mcmc_steps) samples = reader.get_chain(discard=n_to_discard, flat=True) log_prob_samples = reader.get_log_prob(discard=n_to_discard, flat=True) log_prior_samples = reader.get_blobs(discard=n_to_discard, flat=True) # Get best-fit parameters and their 1-sigma error bars fit_statistics = list( map(lambda v: (v[1], v[2]-v[1], v[1]-v[0]), list(zip( *np.percentile(samples, [15.85, 50, 84.15], axis=0)))) ) medianparams, std_perrs, std_merrs = {}, {}, {} for ix, k in enumerate(np.sort(list(priorbounds.keys()))): medianparams[k] = fit_statistics[ix][0] std_perrs[k] = fit_statistics[ix][1] std_merrs[k] = fit_statistics[ix][2] stderrs = {'std_perrs':std_perrs, 'std_merrs':std_merrs} per = _get_value('period', medianparams, fixedparams) t0 = _get_value('t0', medianparams, fixedparams) rp = _get_value('rp', medianparams, fixedparams) sma = _get_value('sma', medianparams, fixedparams) incl = _get_value('incl', medianparams, fixedparams) ecc = _get_value('ecc', medianparams, fixedparams) omega = _get_value('omega', medianparams, fixedparams) limb_dark = _get_value('limb_dark', medianparams, fixedparams) try: u = fixedparams['u'] except Exception as e: u = [medianparams['u_linear'], medianparams['u_quad']] poly_order0 = _get_value('poly_order0', medianparams, fixedparams) poly_order1 = _get_value('poly_order1', medianparams, fixedparams) # initialize the model and calculate the initial model light-curve fit_params, fit_m = _transit_model(stimes, t0, per, rp, sma, incl, ecc, omega, u, limb_dark) fitmags = ( fit_m.light_curve(fit_params) + poly_order0 + poly_order1*stimes ) fepoch = t0 # assemble the return dictionary medianparams['t0'] += timeoffset returndict = { 'fittype':fittype, 'fitinfo':{ 'initialparams':fitparams, 'initialmags':init_flux, 'fixedparams':fixedparams, 'finalparams':medianparams, 'finalparamerrs':stderrs, 'fitmags':fitmags, 'fitepoch':fepoch+timeoffset, }, 'fitplotfile':None, 'magseries':{ 'times':stimes+timeoffset, 'mags':smags, 'errs':serrs, 'magsarefluxes':magsarefluxes, }, } # make the output corner plot, and lightcurve plot if desired if plotcorner: fig = corner.corner( samples, labels=['line intercept-1', 'line slope', 'rp','t0-{:.4f}'.format(timeoffset)], truths=[ml_poly_order0, ml_poly_order1, ml_rp, ml_t0], quantiles=[0.1585, 0.5, .8415], show_titles=True ) plt.savefig(plotcorner, dpi=300) if verbose: LOGINFO('saved {:s}'.format(plotcorner)) if plotfit and isinstance(plotfit, str): plt.close('all') f, (a0, a1) = plt.subplots(nrows=2, ncols=1, sharex=True, figsize=(8,5), gridspec_kw={'height_ratios':[3, 1]}) a0.scatter(stimes, smags, c='k', alpha=0.9, label='data', zorder=1, s=10, rasterized=True, linewidths=0) DEBUGGING = False if DEBUGGING: a0.scatter(stimes, init_flux, c='r', alpha=1, s=3.5, zorder=2, rasterized=True, linewidths=0, label='initial guess for ml') a0.scatter(stimes, ml_mags, c='g', alpha=1, s=3.5, zorder=2, rasterized=True, linewidths=0, label='max likelihood') a0.plot( stimes, fitmags, c='b', zorder=0, rasterized=True, lw=2, alpha=0.4, label='{:s} fit, {:d} dims'.format(fittype, len(fitparamnames)) ) a1.scatter( stimes, smags-fitmags, c='k', alpha=0.9, rasterized=True, s=10, linewidths=0 ) if scatterxdata and scatteryaxes: import matplotlib.transforms as transforms for a in [a0, a1]: transform = transforms.blended_transform_factory( a.transData, a.transAxes ) a.scatter(scatterxdata, scatteryaxes, c='r', alpha=0.9, zorder=2, s=10, rasterized=True, linewidths=0, marker="^", transform=transform) a1.set_xlabel('time-t0 [days]') a0.set_ylabel('relative flux') a1.set_ylabel('residual') a0.legend(loc='best', fontsize='x-small') for a in [a0, a1]: a.get_yaxis().set_tick_params(which='both', direction='in') a.get_xaxis().set_tick_params(which='both', direction='in') f.tight_layout(h_pad=0, w_pad=0) f.savefig(plotfit, dpi=300, bbox_inches='tight') if verbose: LOGINFO('saved {:s}'.format(plotfit)) returndict['fitplotfile'] = plotfit return returndict
def list_trilegal_filtersystems(): ''' This just lists all the filter systems available for TRILEGAL. ''' print('%-40s %s' % ('FILTER SYSTEM NAME','DESCRIPTION')) print('%-40s %s' % ('------------------','-----------')) for key in sorted(TRILEGAL_FILTER_SYSTEMS.keys()): print('%-40s %s' % (key, TRILEGAL_FILTER_SYSTEMS[key]['desc']))
def query_galcoords(gal_lon, gal_lat, filtersystem='sloan_2mass', field_deg2=1.0, usebinaries=True, extinction_sigma=0.1, magnitude_limit=26.0, maglim_filtercol=4, trilegal_version=1.6, extraparams=None, forcefetch=False, cachedir='~/.astrobase/trilegal-cache', verbose=True, timeout=60.0, refresh=150.0, maxtimeout=700.0): '''This queries the TRILEGAL model form, downloads results, and parses them. Parameters ---------- gal_lon,gal_lat : float These are the center galactic longitude and latitude in degrees. filtersystem : str This is a key in the TRILEGAL_FILTER_SYSTEMS dict. Use the function :py:func:`astrobase.services.trilegal.list_trilegal_filtersystems` to see a nicely formatted table with the key and description for each of these. field_deg2 : float The area of the simulated field in square degrees. usebinaries : bool If this is True, binaries will be present in the model results. extinction_sigma : float This is the applied std dev around the `Av_extinction` value for the galactic coordinates requested. magnitude_limit : float This is the limiting magnitude of the simulation in the `maglim_filtercol` band index of the filter system chosen. maglim_filtercol : int The index in the filter system list of the magnitude limiting band. trilegal_version : float This is the the version of the TRILEGAL form to use. This can usually be left as-is. extraparams : dict or None This is a dict that can be used to override parameters of the model other than the basic ones used for input to this function. All parameters are listed in `TRILEGAL_DEFAULT_PARAMS` above. See: http://stev.oapd.inaf.it/cgi-bin/trilegal for explanations of these parameters. forcefetch : bool If this is True, the query will be retried even if cached results for it exist. cachedir : str This points to the directory where results will be downloaded. verbose : bool If True, will indicate progress and warn of any issues. timeout : float This sets the amount of time in seconds to wait for the service to respond to our initial request. refresh : float This sets the amount of time in seconds to wait before checking if the result file is available. If the results file isn't available after `refresh` seconds have elapsed, the function will wait for `refresh` seconds continuously, until `maxtimeout` is reached or the results file becomes available. maxtimeout : float The maximum amount of time in seconds to wait for a result to become available after submitting our query request. Returns ------- dict This returns a dict of the form:: {'params':the input param dict used, 'extraparams':any extra params used, 'provenance':'cached' or 'new download', 'tablefile':the path on disk to the downloaded model text file} ''' # these are the default parameters inputparams = copy.deepcopy(TRILEGAL_INPUT_PARAMS) # update them with the input params inputparams['binary_kind'] = '1' if usebinaries else '0' inputparams['extinction_sigma'] = '%.2f' % extinction_sigma inputparams['field'] = '%.2f' % field_deg2 inputparams['icm_lim'] = str(maglim_filtercol) inputparams['mag_lim'] = '%.2f' % magnitude_limit inputparams['trilegal_version'] = str(trilegal_version) # get the coordinates inputparams['gc_l'] = '%.3f' % gal_lon inputparams['gc_b'] = '%.3f' % gal_lat # check if the area is less than 10 deg^2 if field_deg2 > 10.0: LOGERROR("can't have an area > 10 square degrees") return None # get the extinction parameter. this is by default A[inf] in V. we'll use # the value from SF11 generated by the 2MASS DUST service extinction_info = dust.extinction_query(gal_lon, gal_lat, coordtype='galactic', forcefetch=forcefetch, verbose=verbose, timeout=timeout) try: Av_infinity = extinction_info['Amag']['CTIO V']['sf11'] inputparams['extinction_infty'] = '%.5f' % Av_infinity except Exception as e: LOGEXCEPTION( 'could not get A_V_SF11 from 2MASS DUST ' 'for Galactic coords: (%.3f, %.3f), ' 'using default value of %s' % (gal_lon, gal_lat, inputparams['extinction_infty']) ) # get the filter system table if filtersystem in TRILEGAL_FILTER_SYSTEMS: inputparams['photsys_file'] = ( TRILEGAL_FILTER_SYSTEMS[filtersystem]['table'] ) else: LOGERROR('filtersystem name: %s is not in the table of known ' 'filter systems.\n' 'Try the trilegal.list_trilegal_filtersystems() function ' 'to see all available filter systems.' % filtersystem) return None # override the complete form param dict now with our params trilegal_params = copy.deepcopy(TRILEGAL_DEFAULT_PARAMS) trilegal_params.update(inputparams) # override the final params with any extraparams if extraparams and isinstance(extraparams, dict): trilegal_params.update(extraparams) # see if the cachedir exists if '~' in cachedir: cachedir = os.path.expanduser(cachedir) if not os.path.exists(cachedir): os.makedirs(cachedir) # generate the cachefname and look for it cachekey = repr(inputparams) cachekey = hashlib.sha256(cachekey.encode()).hexdigest() cachefname = os.path.join(cachedir, '%s.txt.gz' % cachekey) provenance = 'cache' lockfile = os.path.join(cachedir, 'LOCK-%s' % cachekey) # run the query if results not found in the cache if forcefetch or (not os.path.exists(cachefname)): # first, check if a query like this is running already if os.path.exists(lockfile): with open(lockfile,'r') as infd: lock_contents = infd.read() lock_contents = lock_contents.replace('\n','') LOGERROR('this query appears to be active since %s' 'in another instance, not running it again' % lock_contents) return None else: with open(lockfile,'w') as outfd: outfd.write(datetime.utcnow().isoformat()) provenance = 'new download' try: if verbose: LOGINFO('submitting TRILEGAL request for input params: %s' % repr(inputparams)) posturl = TRILEGAL_POSTURL.format(formversion=trilegal_version) req = requests.post(posturl, data=trilegal_params, timeout=timeout) resp = req.text # get the URL of the result file resultfile = TRILEGAL_REGEX.search(resp) if resultfile: resultfile = resultfile[0] waitdone = False timeelapsed = 0.0 resultfileurl = '%s/%s' % ( TRILEGAL_BASEURL, resultfile.replace('a href=..','') ) if verbose: LOGINFO( 'request submitted sucessfully, waiting for results...' ) # wait for 2 minutes, then try to download the result file while not waitdone: if timeelapsed > maxtimeout: LOGERROR('TRILEGAL timed out after waiting for results,' ' request was: ' '%s' % repr(inputparams)) # remove the lock file if os.path.exists(lockfile): os.remove(lockfile) return None time.sleep(refresh) timeelapsed = timeelapsed + refresh try: resreq = requests.get(resultfileurl) resreq.raise_for_status() if verbose: LOGINFO('TRILEGAL completed, retrieving results...') # stream the response to the output cache file with gzip.open(cachefname,'wb') as outfd: for chunk in resreq.iter_content(chunk_size=65536): outfd.write(chunk) tablefname = cachefname waitdone = True if verbose: LOGINFO('done.') except Exception as e: if verbose: LOGINFO('elapsed time: %.1f, result file: %s ' 'not ready yet...' % (timeelapsed, resultfileurl)) continue else: LOGERROR('no result file URL found in TRILEGAL output, ' 'this is probably an error with the input. ' 'HTML of error page follows:\n') LOGINFO(resp) # remove the lock file if os.path.exists(lockfile): os.remove(lockfile) return None except requests.exceptions.Timeout as e: LOGERROR('TRILEGAL submission timed out, ' 'site is probably down. Request was: ' '%s' % repr(inputparams)) return None except Exception as e: LOGEXCEPTION('TRILEGAL request failed for ' '%s' % repr(inputparams)) return None finally: # remove the lock file if os.path.exists(lockfile): os.remove(lockfile) # otherwise, get the file from the cache else: if verbose: LOGINFO('getting cached TRILEGAL model result for ' 'request: %s' % (repr(inputparams))) tablefname = cachefname # return a dict pointing to the result file # we'll parse this later resdict = {'params':inputparams, 'extraparams':extraparams, 'provenance':provenance, 'tablefile':tablefname} return resdict
def query_radecl(ra, decl, filtersystem='sloan_2mass', field_deg2=1.0, usebinaries=True, extinction_sigma=0.1, magnitude_limit=26.0, maglim_filtercol=4, trilegal_version=1.6, extraparams=None, forcefetch=False, cachedir='~/.astrobase/trilegal-cache', verbose=True, timeout=60.0, refresh=150.0, maxtimeout=700.0): '''This runs the TRILEGAL query for decimal equatorial coordinates. Parameters ---------- ra,decl : float These are the center equatorial coordinates in decimal degrees filtersystem : str This is a key in the TRILEGAL_FILTER_SYSTEMS dict. Use the function :py:func:`astrobase.services.trilegal.list_trilegal_filtersystems` to see a nicely formatted table with the key and description for each of these. field_deg2 : float The area of the simulated field in square degrees. This is in the Galactic coordinate system. usebinaries : bool If this is True, binaries will be present in the model results. extinction_sigma : float This is the applied std dev around the `Av_extinction` value for the galactic coordinates requested. magnitude_limit : float This is the limiting magnitude of the simulation in the `maglim_filtercol` band index of the filter system chosen. maglim_filtercol : int The index in the filter system list of the magnitude limiting band. trilegal_version : float This is the the version of the TRILEGAL form to use. This can usually be left as-is. extraparams : dict or None This is a dict that can be used to override parameters of the model other than the basic ones used for input to this function. All parameters are listed in `TRILEGAL_DEFAULT_PARAMS` above. See: http://stev.oapd.inaf.it/cgi-bin/trilegal for explanations of these parameters. forcefetch : bool If this is True, the query will be retried even if cached results for it exist. cachedir : str This points to the directory where results will be downloaded. verbose : bool If True, will indicate progress and warn of any issues. timeout : float This sets the amount of time in seconds to wait for the service to respond to our initial request. refresh : float This sets the amount of time in seconds to wait before checking if the result file is available. If the results file isn't available after `refresh` seconds have elapsed, the function will wait for `refresh` seconds continuously, until `maxtimeout` is reached or the results file becomes available. maxtimeout : float The maximum amount of time in seconds to wait for a result to become available after submitting our query request. Returns ------- dict This returns a dict of the form:: {'params':the input param dict used, 'extraparams':any extra params used, 'provenance':'cached' or 'new download', 'tablefile':the path on disk to the downloaded model text file} ''' # convert the ra/decl to gl, gb radecl = SkyCoord(ra=ra*u.degree, dec=decl*u.degree) gl = radecl.galactic.l.degree gb = radecl.galactic.b.degree return query_galcoords(gl, gb, filtersystem=filtersystem, field_deg2=field_deg2, usebinaries=usebinaries, extinction_sigma=extinction_sigma, magnitude_limit=magnitude_limit, maglim_filtercol=maglim_filtercol, trilegal_version=trilegal_version, extraparams=extraparams, forcefetch=forcefetch, cachedir=cachedir, verbose=verbose, timeout=timeout, refresh=refresh, maxtimeout=maxtimeout)
def read_model_table(modelfile): ''' This reads a downloaded TRILEGAL model file. Parameters ---------- modelfile : str Path to the downloaded model file to read. Returns ------- np.recarray Returns the model table as a Numpy record array. ''' infd = gzip.open(modelfile) model = np.genfromtxt(infd,names=True) infd.close() return model
def _time_independent_equals(a, b): ''' This compares two values in constant time. Taken from tornado: https://github.com/tornadoweb/tornado/blob/ d4eb8eb4eb5cc9a6677e9116ef84ded8efba8859/tornado/web.py#L3060 ''' if len(a) != len(b): return False result = 0 if isinstance(a[0], int): # python3 byte strings for x, y in zip(a, b): result |= x ^ y else: # python2 for x, y in zip(a, b): result |= ord(x) ^ ord(y) return result == 0
def default(self, obj): '''Overrides the default serializer for `JSONEncoder`. This can serialize the following objects in addition to what `JSONEncoder` can already do. - `np.array` - `bytes` - `complex` - `np.float64` and other `np.dtype` objects Parameters ---------- obj : object A Python object to serialize to JSON. Returns ------- str A JSON encoded representation of the input object. ''' if isinstance(obj, np.ndarray): return obj.tolist() elif isinstance(obj, bytes): return obj.decode() elif isinstance(obj, complex): return (obj.real, obj.imag) elif (isinstance(obj, (float, np.float64, np.float_)) and not np.isfinite(obj)): return None elif isinstance(obj, (np.int8, np.int16, np.int32, np.int64)): return int(obj) else: return json.JSONEncoder.default(self, obj)
def initialize(self, currentdir, assetpath, cplist, cplistfile, executor, readonly, baseurl): ''' handles initial setup. ''' self.currentdir = currentdir self.assetpath = assetpath self.currentproject = cplist self.cplistfile = cplistfile self.executor = executor self.readonly = readonly self.baseurl = baseurl
def get(self): '''This handles GET requests to the index page. TODO: provide the correct baseurl from the checkplotserver options dict, so the frontend JS can just read that off immediately. ''' # generate the project's list of checkplots project_checkplots = self.currentproject['checkplots'] project_checkplotbasenames = [os.path.basename(x) for x in project_checkplots] project_checkplotindices = range(len(project_checkplots)) # get the sortkey and order project_cpsortkey = self.currentproject['sortkey'] if self.currentproject['sortorder'] == 'asc': project_cpsortorder = 'ascending' elif self.currentproject['sortorder'] == 'desc': project_cpsortorder = 'descending' # get the filterkey and condition project_cpfilterstatements = self.currentproject['filterstatements'] self.render('cpindex.html', project_checkplots=project_checkplots, project_cpsortorder=project_cpsortorder, project_cpsortkey=project_cpsortkey, project_cpfilterstatements=project_cpfilterstatements, project_checkplotbasenames=project_checkplotbasenames, project_checkplotindices=project_checkplotindices, project_checkplotfile=self.cplistfile, readonly=self.readonly, baseurl=self.baseurl)
def get(self, checkplotfname): '''This handles GET requests to serve a specific checkplot pickle. This is an AJAX endpoint; returns JSON that gets converted by the frontend into things to render. ''' if checkplotfname: # do the usual safing self.checkplotfname = xhtml_escape( base64.b64decode(url_unescape(checkplotfname)) ) # see if this plot is in the current project if self.checkplotfname in self.currentproject['checkplots']: # make sure this file exists cpfpath = os.path.join( os.path.abspath(os.path.dirname(self.cplistfile)), self.checkplotfname ) LOGGER.info('loading %s...' % cpfpath) if not os.path.exists(cpfpath): msg = "couldn't find checkplot %s" % cpfpath LOGGER.error(msg) resultdict = {'status':'error', 'message':msg, 'result':None} self.write(resultdict) raise tornado.web.Finish() # this is the async call to the executor cpdict = yield self.executor.submit( _read_checkplot_picklefile, cpfpath ) ##################################### ## continue after we're good to go ## ##################################### LOGGER.info('loaded %s' % cpfpath) # break out the initial info objectid = cpdict['objectid'] objectinfo = cpdict['objectinfo'] varinfo = cpdict['varinfo'] if 'pfmethods' in cpdict: pfmethods = cpdict['pfmethods'] else: pfmethods = [] for pfm in PFMETHODS: if pfm in cpdict: pfmethods.append(pfm) # handle neighbors for this object neighbors = [] if ('neighbors' in cpdict and cpdict['neighbors'] is not None and len(cpdict['neighbors'])) > 0: nbrlist = cpdict['neighbors'] # get each neighbor, its info, and its phased LCs for nbr in nbrlist: if 'magdiffs' in nbr: nbrmagdiffs = nbr['magdiffs'] else: nbrmagdiffs = None if 'colordiffs' in nbr: nbrcolordiffs = nbr['colordiffs'] else: nbrcolordiffs = None thisnbrdict = { 'objectid':nbr['objectid'], 'objectinfo':{ 'ra':nbr['ra'], 'decl':nbr['decl'], 'xpix':nbr['xpix'], 'ypix':nbr['ypix'], 'distarcsec':nbr['dist'], 'magdiffs':nbrmagdiffs, 'colordiffs':nbrcolordiffs } } try: nbr_magseries = nbr['magseries']['plot'] thisnbrdict['magseries'] = nbr_magseries except Exception as e: LOGGER.error( "could not load magseries plot for " "neighbor %s for object %s" % (nbr['objectid'], cpdict['objectid']) ) try: for pfm in pfmethods: if pfm in nbr: thisnbrdict[pfm] = { 'plot':nbr[pfm][0]['plot'], 'period':nbr[pfm][0]['period'], 'epoch':nbr[pfm][0]['epoch'] } except Exception as e: LOGGER.error( "could not load phased LC plots for " "neighbor %s for object %s" % (nbr['objectid'], cpdict['objectid']) ) neighbors.append(thisnbrdict) # load object comments if 'comments' in cpdict: objectcomments = cpdict['comments'] else: objectcomments = None # load the xmatch results, if any if 'xmatch' in cpdict: objectxmatch = cpdict['xmatch'] # get rid of those pesky nans for xmcat in objectxmatch: if isinstance(objectxmatch[xmcat]['info'], dict): xminfo = objectxmatch[xmcat]['info'] for xmek in xminfo: if (isinstance(xminfo[xmek], float) and (not np.isfinite(xminfo[xmek]))): xminfo[xmek] = None else: objectxmatch = None # load the colormagdiagram object if 'colormagdiagram' in cpdict: colormagdiagram = cpdict['colormagdiagram'] else: colormagdiagram = None # these are base64 which can be provided directly to JS to # generate images (neat!) if 'finderchart' in cpdict: finderchart = cpdict['finderchart'] else: finderchart = None if ('magseries' in cpdict and isinstance(cpdict['magseries'], dict) and 'plot' in cpdict['magseries']): magseries = cpdict['magseries']['plot'] time0 = cpdict['magseries']['times'].min() magseries_ndet = cpdict['magseries']['times'].size else: magseries = None time0 = 0.0 magseries_ndet = 0 LOGGER.warning( "no 'magseries' key present in this " "checkplot, some plots may be broken..." ) if 'status' in cpdict: cpstatus = cpdict['status'] else: cpstatus = 'unknown, possibly incomplete checkplot' # load the uifilters if present if 'uifilters' in cpdict: uifilters = cpdict['uifilters'] else: uifilters = {'psearch_magfilters':None, 'psearch_sigclip':None, 'psearch_timefilters':None} # FIXME: add in other stuff required by the frontend # - signals # FIXME: the frontend should load these other things as well # into the various elems on the period-search-tools and # variability-tools tabs # this is the initial dict resultdict = { 'status':'ok', 'message':'found checkplot %s' % self.checkplotfname, 'readonly':self.readonly, 'result':{ 'time0':'%.3f' % time0, 'objectid':objectid, 'objectinfo':objectinfo, 'colormagdiagram':colormagdiagram, 'objectcomments':objectcomments, 'varinfo':varinfo, 'uifilters':uifilters, 'neighbors':neighbors, 'xmatch':objectxmatch, 'finderchart':finderchart, 'magseries':magseries, # fallback in case objectinfo doesn't have ndet 'magseries_ndet':magseries_ndet, 'cpstatus':cpstatus, 'pfmethods':pfmethods } } # make sure to replace nans with Nones. frontend JS absolutely # hates NaNs and for some reason, the JSON encoder defined at # the top of this file doesn't deal with them even though it # should for key in resultdict['result']['objectinfo']: if (isinstance(resultdict['result']['objectinfo'][key], (float, np.float64, np.float_)) and (not np.isfinite(resultdict['result'][ 'objectinfo' ][key]))): resultdict['result']['objectinfo'][key] = None elif (isinstance(resultdict['result']['objectinfo'][key], ndarray)): thisval = resultdict['result']['objectinfo'][key] thisval = thisval.tolist() for i, v in enumerate(thisval): if (isinstance(v,(float, np.float64, np.float_)) and (not(np.isfinite(v)))): thisval[i] = None resultdict['result']['objectinfo'][key] = thisval # remove nans from varinfo itself for key in resultdict['result']['varinfo']: if (isinstance( resultdict['result']['varinfo'][key], (float, np.float64, np.float_)) and (not np.isfinite( resultdict['result']['varinfo'][key] ))): resultdict['result']['varinfo'][key] = None elif (isinstance( resultdict['result']['varinfo'][key], ndarray)): thisval = ( resultdict['result']['varinfo'][key] ) thisval = thisval.tolist() for i, v in enumerate(thisval): if (isinstance(v,(float, np.float64, np.float_)) and (not(np.isfinite(v)))): thisval[i] = None resultdict['result']['varinfo'][key] = ( thisval ) # remove nans from varinfo['features'] if ('features' in resultdict['result']['varinfo'] and isinstance(resultdict['result']['varinfo']['features'], dict)): for key in resultdict['result']['varinfo']['features']: if (isinstance( resultdict[ 'result' ]['varinfo']['features'][key], (float, np.float64, np.float_)) and (not np.isfinite( resultdict[ 'result' ]['varinfo']['features'][key]))): resultdict[ 'result' ]['varinfo']['features'][key] = None elif (isinstance( resultdict[ 'result' ]['varinfo']['features'][key], ndarray)): thisval = ( resultdict['result']['varinfo']['features'][key] ) thisval = thisval.tolist() for i, v in enumerate(thisval): if (isinstance(v,(float, np.float64, np.float_)) and (not(np.isfinite(v)))): thisval[i] = None resultdict['result']['varinfo']['features'][key] = ( thisval ) # now get the periodograms and phased LCs for key in pfmethods: # get the periodogram for this method periodogram = cpdict[key]['periodogram'] # get the phased LC with best period if 0 in cpdict[key] and isinstance(cpdict[key][0], dict): phasedlc0plot = cpdict[key][0]['plot'] phasedlc0period = float(cpdict[key][0]['period']) phasedlc0epoch = float(cpdict[key][0]['epoch']) else: phasedlc0plot = None phasedlc0period = None phasedlc0epoch = None # get the associated fitinfo for this period if it # exists if (0 in cpdict[key] and isinstance(cpdict[key][0], dict) and 'lcfit' in cpdict[key][0] and isinstance(cpdict[key][0]['lcfit'], dict)): phasedlc0fit = { 'method':( cpdict[key][0]['lcfit']['fittype'] ), 'redchisq':( cpdict[key][0]['lcfit']['fitredchisq'] ), 'chisq':( cpdict[key][0]['lcfit']['fitchisq'] ), 'params':( cpdict[key][0][ 'lcfit' ]['fitinfo']['finalparams'] if 'finalparams' in cpdict[key][0]['lcfit']['fitinfo'] else None ) } else: phasedlc0fit = None # get the phased LC with 2nd best period if 1 in cpdict[key] and isinstance(cpdict[key][1], dict): phasedlc1plot = cpdict[key][1]['plot'] phasedlc1period = float(cpdict[key][1]['period']) phasedlc1epoch = float(cpdict[key][1]['epoch']) else: phasedlc1plot = None phasedlc1period = None phasedlc1epoch = None # get the associated fitinfo for this period if it # exists if (1 in cpdict[key] and isinstance(cpdict[key][1], dict) and 'lcfit' in cpdict[key][1] and isinstance(cpdict[key][1]['lcfit'], dict)): phasedlc1fit = { 'method':( cpdict[key][1]['lcfit']['fittype'] ), 'redchisq':( cpdict[key][1]['lcfit']['fitredchisq'] ), 'chisq':( cpdict[key][1]['lcfit']['fitchisq'] ), 'params':( cpdict[key][1][ 'lcfit' ]['fitinfo']['finalparams'] if 'finalparams' in cpdict[key][1]['lcfit']['fitinfo'] else None ) } else: phasedlc1fit = None # get the phased LC with 3rd best period if 2 in cpdict[key] and isinstance(cpdict[key][2], dict): phasedlc2plot = cpdict[key][2]['plot'] phasedlc2period = float(cpdict[key][2]['period']) phasedlc2epoch = float(cpdict[key][2]['epoch']) else: phasedlc2plot = None phasedlc2period = None phasedlc2epoch = None # get the associated fitinfo for this period if it # exists if (2 in cpdict[key] and isinstance(cpdict[key][2], dict) and 'lcfit' in cpdict[key][2] and isinstance(cpdict[key][2]['lcfit'], dict)): phasedlc2fit = { 'method':( cpdict[key][2]['lcfit']['fittype'] ), 'redchisq':( cpdict[key][2]['lcfit']['fitredchisq'] ), 'chisq':( cpdict[key][2]['lcfit']['fitchisq'] ), 'params':( cpdict[key][2][ 'lcfit' ]['fitinfo']['finalparams'] if 'finalparams' in cpdict[key][2]['lcfit']['fitinfo'] else None ) } else: phasedlc2fit = None resultdict['result'][key] = { 'nbestperiods':cpdict[key]['nbestperiods'], 'periodogram':periodogram, 'bestperiod':cpdict[key]['bestperiod'], 'phasedlc0':{ 'plot':phasedlc0plot, 'period':phasedlc0period, 'epoch':phasedlc0epoch, 'lcfit':phasedlc0fit, }, 'phasedlc1':{ 'plot':phasedlc1plot, 'period':phasedlc1period, 'epoch':phasedlc1epoch, 'lcfit':phasedlc1fit, }, 'phasedlc2':{ 'plot':phasedlc2plot, 'period':phasedlc2period, 'epoch':phasedlc2epoch, 'lcfit':phasedlc2fit, }, } # # end of processing per pfmethod # # return the checkplot via JSON self.write(resultdict) self.finish() else: LOGGER.error('could not find %s' % self.checkplotfname) resultdict = {'status':'error', 'message':"This checkplot doesn't exist.", 'readonly':self.readonly, 'result':None} self.write(resultdict) self.finish() else: resultdict = {'status':'error', 'message':'No checkplot provided to load.', 'readonly':self.readonly, 'result':None} self.write(resultdict)
def post(self, cpfile): '''This handles POST requests. Also an AJAX endpoint. Updates the persistent checkplot dict using the changes from the UI, and then saves it back to disk. This could definitely be faster by just loading the checkplot into a server-wide shared dict or something. ''' # if self.readonly is set, then don't accept any changes # return immediately with a 400 if self.readonly: msg = "checkplotserver is in readonly mode. no updates allowed." resultdict = {'status':'error', 'message':msg, 'readonly':self.readonly, 'result':None} self.write(resultdict) raise tornado.web.Finish() # now try to update the contents try: self.cpfile = base64.b64decode(url_unescape(cpfile)).decode() cpcontents = self.get_argument('cpcontents', default=None) savetopng = self.get_argument('savetopng', default=None) if not self.cpfile or not cpcontents: msg = "did not receive a checkplot update payload" resultdict = {'status':'error', 'message':msg, 'readonly':self.readonly, 'result':None} self.write(resultdict) raise tornado.web.Finish() cpcontents = json.loads(cpcontents) # the only keys in cpdict that can updated from the UI are from # varinfo, objectinfo (objecttags), uifilters, and comments updated = {'varinfo': cpcontents['varinfo'], 'objectinfo':cpcontents['objectinfo'], 'comments':cpcontents['comments'], 'uifilters':cpcontents['uifilters']} # we need to reform the self.cpfile so it points to the full path cpfpath = os.path.join( os.path.abspath(os.path.dirname(self.cplistfile)), self.cpfile ) LOGGER.info('loading %s...' % cpfpath) if not os.path.exists(cpfpath): msg = "couldn't find checkplot %s" % cpfpath LOGGER.error(msg) resultdict = {'status':'error', 'message':msg, 'readonly':self.readonly, 'result':None} self.write(resultdict) raise tornado.web.Finish() # dispatch the task updated = yield self.executor.submit(checkplot_pickle_update, cpfpath, updated) # continue processing after this is done if updated: LOGGER.info('updated checkplot %s successfully' % updated) resultdict = {'status':'success', 'message':'checkplot update successful', 'readonly':self.readonly, 'result':{'checkplot':updated, 'unixtime':utime.time(), 'changes':cpcontents, 'cpfpng': None}} # handle a savetopng trigger if savetopng: cpfpng = os.path.abspath(cpfpath.replace('.pkl','.png')) cpfpng = StrIO() pngdone = yield self.executor.submit( checkplot_pickle_to_png, cpfpath, cpfpng ) if pngdone is not None: # we'll send back the PNG, which can then be loaded by # the frontend and reformed into a download pngdone.seek(0) pngbin = pngdone.read() pngb64 = base64.b64encode(pngbin) pngdone.close() del pngbin resultdict['result']['cpfpng'] = pngb64 else: resultdict['result']['cpfpng'] = '' self.write(resultdict) self.finish() else: LOGGER.error('could not handle checkplot update for %s: %s' % (self.cpfile, cpcontents)) msg = "checkplot update failed because of a backend error" resultdict = {'status':'error', 'message':msg, 'readonly':self.readonly, 'result':None} self.write(resultdict) self.finish() # if something goes wrong, inform the user except Exception as e: LOGGER.exception('could not handle checkplot update for %s: %s' % (self.cpfile, cpcontents)) msg = "checkplot update failed because of an exception" resultdict = {'status':'error', 'message':msg, 'readonly':self.readonly, 'result':None} self.write(resultdict) self.finish()
def get(self): ''' This handles GET requests for the current checkplot-list.json file. Used with AJAX from frontend. ''' # add the reviewed key to the current dict if it doesn't exist # this will hold all the reviewed objects for the frontend if 'reviewed' not in self.currentproject: self.currentproject['reviewed'] = {} # just returns the current project as JSON self.write(self.currentproject)
def post(self): '''This handles POST requests. Saves the changes made by the user on the frontend back to the current checkplot-list.json file. ''' # if self.readonly is set, then don't accept any changes # return immediately with a 400 if self.readonly: msg = "checkplotserver is in readonly mode. no updates allowed." resultdict = {'status':'error', 'message':msg, 'readonly':self.readonly, 'result':None} self.write(resultdict) raise tornado.web.Finish() objectid = self.get_argument('objectid', None) changes = self.get_argument('changes',None) # if either of the above is invalid, return nothing if not objectid or not changes: msg = ("could not parse changes to the checkplot filelist " "from the frontend") LOGGER.error(msg) resultdict = {'status':'error', 'message':msg, 'readonly':self.readonly, 'result':None} self.write(resultdict) raise tornado.web.Finish() # otherwise, update the checkplot list JSON objectid = xhtml_escape(objectid) changes = json.loads(changes) # update the dictionary if 'reviewed' not in self.currentproject: self.currentproject['reviewed'] = {} self.currentproject['reviewed'][objectid] = changes # update the JSON file with open(self.cplistfile,'w') as outfd: json.dump(self.currentproject, outfd) # return status msg = ("wrote all changes to the checkplot filelist " "from the frontend for object: %s" % objectid) LOGGER.info(msg) resultdict = {'status':'success', 'message':msg, 'readonly':self.readonly, 'result':{'objectid':objectid, 'changes':changes}} self.write(resultdict) self.finish()
def get(self, cpfile): '''This handles a GET request to run a specified LC tool. Parameters ---------- cpfile : str This is the checkplot file to run the tool on. Returns ------- str Returns a JSON response. Notes ----- The URI structure is:: /tools/<cpfile>?[args] where args are:: ?lctool=<lctool>&argkey1=argval1&argkey2=argval2&... &forcereload=true <- if this is present, then reload values from original checkplot. &objectid=<objectid> `lctool` is one of the strings below Period search functions:: psearch-gls: run Lomb-Scargle with given params psearch-bls: run BLS with given params psearch-pdm: run phase dispersion minimization with given params psearch-aov: run analysis-of-variance with given params psearch-mav: run analysis-of-variance (multi-harm) with given params psearch-acf: run ACF period search with given params psearch-win: run spectral window function search with given params Arguments recognized by all period-search functions are:: startp=XX endp=XX magsarefluxes=True|False autofreq=True|False stepsize=XX Variability characterization functions:: var-varfeatures: gets the variability features from the checkplot or recalculates if they're not present var-prewhiten: pre-whitens the light curve with a sinusoidal signal var-masksig: masks a given phase location with given width from the light curve Light curve manipulation functions :: phasedlc-newplot: make phased LC with new provided period/epoch lcfit-fourier: fit a Fourier function to the phased LC lcfit-spline: fit a spline function to the phased LC lcfit-legendre: fit a Legendre polynomial to the phased LC lcfit-savgol: fit a Savitsky-Golay polynomial to the phased LC FIXME: figure out how to cache the results of these functions temporarily and save them back to the checkplot after we click on save in the frontend. TODO: look for a checkplot-blah-blah.pkl-cps-processing file in the same place as the usual pickle file. if this exists and is newer than the pkl file, load it instead. Or have a checkplotdict['cpservertemp'] item. ''' if cpfile: self.cpfile = ( xhtml_escape(base64.b64decode(url_unescape(cpfile))) ) # see if this plot is in the current project if self.cpfile in self.currentproject['checkplots']: # make sure this file exists cpfpath = os.path.join( os.path.abspath(os.path.dirname(self.cplistfile)), self.cpfile ) # if we can't find the pickle, quit immediately if not os.path.exists(cpfpath): msg = "couldn't find checkplot %s" % cpfpath LOGGER.error(msg) resultdict = {'status':'error', 'message':msg, 'readonly':self.readonly, 'result':None} self.write(resultdict) raise tornado.web.Finish() ########################### # now parse the arguments # ########################### # check if we have to force-reload forcereload = self.get_argument('forcereload',False) if forcereload and xhtml_escape(forcereload): forcereload = True if forcereload == 'true' else False # get the objectid cpobjectid = self.get_argument('objectid',None) # get the light curve tool to use lctool = self.get_argument('lctool', None) # preemptive dict to fill out resultdict = {'status':None, 'message':None, 'readonly':self.readonly, 'result':None} # check if the lctool arg is provided if lctool: lctool = xhtml_escape(lctool) lctoolargs = [] lctoolkwargs = {} # check if this lctool is OK and has all the required args if lctool in CPTOOLMAP: try: # all args should have been parsed # successfully. parse the kwargs now for xkwarg, xkwargtype, xkwargdef in zip( CPTOOLMAP[lctool]['kwargs'], CPTOOLMAP[lctool]['kwargtypes'], CPTOOLMAP[lctool]['kwargdefs'] ): # get the kwarg if xkwargtype is list: wbkwarg = self.get_arguments(xkwarg) if len(wbkwarg) > 0: wbkwarg = [url_unescape(xhtml_escape(x)) for x in wbkwarg] else: wbkwarg = None else: wbkwarg = self.get_argument(xkwarg, None) if wbkwarg is not None: wbkwarg = url_unescape( xhtml_escape(wbkwarg) ) LOGGER.info('xkwarg = %s, wbkwarg = %s' % (xkwarg, repr(wbkwarg))) # if it's None, sub with the default if wbkwarg is None: wbkwarg = xkwargdef # otherwise, cast it to the required type else: # special handling for lists of floats if xkwargtype is list: wbkwarg = [float(x) for x in wbkwarg] # special handling for booleans elif xkwargtype is bool: if wbkwarg == 'false': wbkwarg = False elif wbkwarg == 'true': wbkwarg = True else: wbkwarg = xkwargdef # usual casting for other types else: wbkwarg = xkwargtype(wbkwarg) # update the lctools kwarg dict # make sure to remove any [] from the kwargs # this was needed to parse the input query # string correctly if xkwarg.endswith('[]'): xkwarg = xkwarg.rstrip('[]') lctoolkwargs.update({xkwarg:wbkwarg}) except Exception as e: LOGGER.exception('lctool %s, kwarg %s ' 'will not work' % (lctool, xkwarg)) resultdict['status'] = 'error' resultdict['message'] = ( 'lctool %s, kwarg %s ' 'will not work' % (lctool, xkwarg) ) resultdict['result'] = {'objectid':cpobjectid} self.write(resultdict) raise tornado.web.Finish() # if the tool is not in the CPTOOLSMAP else: LOGGER.error('lctool %s, does not exist' % lctool) resultdict['status'] = 'error' resultdict['message'] = ( 'lctool %s does not exist' % lctool ) resultdict['result'] = {'objectid':cpobjectid} self.write(resultdict) raise tornado.web.Finish() # if no lctool arg is provided else: LOGGER.error('lctool argument not provided') resultdict['status'] = 'error' resultdict['message'] = ( 'lctool argument not provided' ) resultdict['result'] = {'objectid':cpobjectid} self.write(resultdict) raise tornado.web.Finish() ############################################## ## NOW WE'RE READY TO ACTUALLY DO SOMETHING ## ############################################## LOGGER.info('loading %s...' % cpfpath) # this loads the actual checkplot pickle cpdict = yield self.executor.submit( _read_checkplot_picklefile, cpfpath ) # we check for the existence of a cpfpath + '-cpserver-temp' # file first. this is where we store stuff before we write it # back to the actual checkplot. tempfpath = cpfpath + '-cpserver-temp' # load the temp checkplot if it exists if os.path.exists(tempfpath): tempcpdict = yield self.executor.submit( _read_checkplot_picklefile, tempfpath ) # if it doesn't exist, read the times, mags, errs from the # actual checkplot in prep for working on it else: tempcpdict = { 'objectid':cpdict['objectid'], 'magseries':{ 'times':cpdict['magseries']['times'], 'mags':cpdict['magseries']['mags'], 'errs':cpdict['magseries']['errs'], } } # if we're not forcing a rerun from the original checkplot dict if not forcereload: cptimes, cpmags, cperrs = ( tempcpdict['magseries']['times'], tempcpdict['magseries']['mags'], tempcpdict['magseries']['errs'], ) LOGGER.info('forcereload = False') # otherwise, reload the original times, mags, errs else: cptimes, cpmags, cperrs = (cpdict['magseries']['times'], cpdict['magseries']['mags'], cpdict['magseries']['errs']) LOGGER.info('forcereload = True') # collect the args for xarg, xargtype in zip(CPTOOLMAP[lctool]['args'], CPTOOLMAP[lctool]['argtypes']): # handle special args if xarg is None: lctoolargs.append(None) elif xarg == 'times': lctoolargs.append(cptimes) elif xarg == 'mags': lctoolargs.append(cpmags) elif xarg == 'errs': lctoolargs.append(cperrs) # handle other args else: try: if xargtype is list: wbarg = self.get_arguments(xarg) else: wbarg = url_unescape( xhtml_escape( self.get_argument(xarg, None) ) ) # cast the arg to the required type # special handling for lists if xargtype is list: wbarg = [float(x) for x in wbarg] # special handling for epochs that can be optional elif xargtype is float and xarg == 'varepoch': try: wbarg = xargtype(wbarg) except Exception as e: wbarg = None # usual casting for other types else: wbarg = xargtype(wbarg) lctoolargs.append(wbarg) except Exception as e: LOGGER.exception('lctool %s, arg %s ' 'will not work' % (lctool, xarg)) resultdict['status'] = 'error' resultdict['message'] = ( 'lctool %s, arg %s ' 'will not work' % (lctool, xarg) ) resultdict['result'] = {'objectid':cpobjectid} self.write(resultdict) raise tornado.web.Finish() LOGGER.info(lctool) LOGGER.info(lctoolargs) LOGGER.info(lctoolkwargs) ############################ ## handle the lctools now ## ############################ # make sure the results aren't there already. # if they are and force-reload is not True, # just return them instead. resloc = CPTOOLMAP[lctool]['resloc'] # TODO: figure out a way to make the dispatched tasks # cancellable. This can probably be done by having a global # TOOLQUEUE object that gets imported on initialize(). In this # object, we could put in key:vals like so: # # TOOLQUEUE['lctool-<toolname>-cpfpath'] = ( # yield self.executor.submit(blah, *blah_args, **blah_kwargs) # ) # # then we probably need some sort of frontend AJAX call that # enqueues things and can then cancel stuff from the queue. see # stuff we need to figure out: # - if the above scheme actually yields so we remain async # - if the Future object supports cancellation # - if the Future object that isn't resolved actually works # get the objectid. we'll send this along with every # result. this should handle the case of the current objectid # not being the same as the objectid being looked at by the # user. in effect, this will allow the user to launch a # long-running process and come back to it later since the # frontend will load the older results when they are complete. objectid = cpdict['objectid'] # if lctool is a periodogram method if lctool in ('psearch-gls', 'psearch-bls', 'psearch-pdm', 'psearch-aov', 'psearch-mav', 'psearch-acf', 'psearch-win'): lspmethod = resloc[0] # if we can return the results from a previous run if (lspmethod in tempcpdict and isinstance(tempcpdict[lspmethod], dict) and (not forcereload)): # for a periodogram method, we need the # following items bestperiod = ( tempcpdict[lspmethod]['bestperiod'] ) nbestperiods = ( tempcpdict[lspmethod]['nbestperiods'] ) nbestlspvals = ( tempcpdict[lspmethod]['nbestlspvals'] ) periodogram = ( tempcpdict[lspmethod]['periodogram'] ) # get the first phased LC plot and its period # and epoch phasedlc0plot = ( tempcpdict[lspmethod][0]['plot'] ) phasedlc0period = float( tempcpdict[lspmethod][0]['period'] ) phasedlc0epoch = float( tempcpdict[lspmethod][0]['epoch'] ) LOGGER.warning( 'returning previously unsaved ' 'results for lctool %s from %s' % (lctool, tempfpath) ) # # assemble the returndict # resultdict['status'] = 'warning' resultdict['message'] = ( 'previous ' 'unsaved results from %s' % lctool ) resultdict['result'] = { 'objectid':objectid, lspmethod:{ 'nbestperiods':nbestperiods, 'periodogram':periodogram, 'bestperiod':bestperiod, 'nbestpeaks':nbestlspvals, 'phasedlc0':{ 'plot':phasedlc0plot, 'period':phasedlc0period, 'epoch':phasedlc0epoch, } } } self.write(resultdict) self.finish() # otherwise, we have to rerun the periodogram method else: # see if sigclip is set. if so, then do the sigclip on # the times, mags, errs if lctoolkwargs['sigclip'] is not None: wtimes, wmags, werrs = lcmath.sigclip_magseries( lctoolargs[0], lctoolargs[1], lctoolargs[2], sigclip=lctoolkwargs['sigclip'], magsarefluxes=lctoolkwargs['magsarefluxes'] ) lctoolargs[0] = wtimes lctoolargs[1] = wmags lctoolargs[2] = werrs # # process the LC filters now # # see if the lctimefilters are set if lctoolkwargs['lctimefilters']: wtimes, wmags, werrs = (lctoolargs[0], lctoolargs[1], lctoolargs[2]) filtermasks = [ np.full_like(wtimes, False, dtype=np.bool_) ] # parse the time filter strings filterstr = lctoolkwargs['lctimefilters'] filters = filterstr.split(',') filters = [ x.strip().lstrip('(').rstrip(')').strip() for x in filters ] for filt in filters: try: thisfilt = filt.split(':') if len(thisfilt) == 2: filt_lo = float(thisfilt[0]) filt_hi = float(thisfilt[1]) filtermasks.append( ((wtimes - cptimes.min()) < filt_hi) & ((wtimes - cptimes.min()) > filt_lo) ) elif (len(thisfilt) == 3 and thisfilt[0].strip() == 'not'): filt_lo = float(thisfilt[1]) filt_hi = float(thisfilt[2]) filtermasks.append(np.logical_not( (((wtimes - cptimes.min()) < filt_hi) & ((wtimes - cptimes.min()) > filt_lo)) )) else: continue except Exception as e: continue # finally, apply the filters if applicable if len(filtermasks) > 0: # apply the filters using an OR filterind = np.column_stack(filtermasks) filterind = np.any(filterind, axis=1) lctoolargs[0] = wtimes[filterind] lctoolargs[1] = wmags[filterind] lctoolargs[2] = werrs[filterind] # see if the lcmagfilters are set if lctoolkwargs['lcmagfilters']: wtimes, wmags, werrs = (lctoolargs[0], lctoolargs[1], lctoolargs[2]) filtermasks = [ np.full_like(wtimes, False, dtype=np.bool_) ] # parse the time filter strings filterstr = lctoolkwargs['lcmagfilters'] filters = filterstr.split(',') filters = [ x.strip().strip() for x in filters ] for filt in filters: try: thisfilt = filt.split(':') if len(thisfilt) == 2: filt_lo = float(thisfilt[0]) filt_hi = float(thisfilt[1]) filtermasks.append( (wmags < filt_hi) & (wmags > filt_lo) ) elif (len(thisfilt) == 3 and thisfilt[0].strip() == 'not'): filt_lo = float(thisfilt[1]) filt_hi = float(thisfilt[2]) filtermasks.append(np.logical_not( ((wmags < filt_hi) & (wmags > filt_lo)) )) else: continue except Exception as e: continue # finally, apply the filters if applicable if len(filtermasks) > 0: # apply the filters using an OR filterind = np.column_stack(filtermasks) filterind = np.any(filterind, axis=1) lctoolargs[0] = wtimes[filterind] lctoolargs[1] = wmags[filterind] lctoolargs[2] = werrs[filterind] # at the end of processing, remove from lctookwargs # since the pfmethod doesn't know about this del lctoolkwargs['lctimefilters'] del lctoolkwargs['lcmagfilters'] # # now run the period finder and get results # lctoolfunction = CPTOOLMAP[lctool]['func'] # run the period finder funcresults = yield self.executor.submit( lctoolfunction, *lctoolargs, **lctoolkwargs ) # get what we need out of funcresults when it # returns. nbestperiods = funcresults['nbestperiods'] nbestlspvals = funcresults['nbestlspvals'] bestperiod = funcresults['bestperiod'] # generate the periodogram png pgramres = yield self.executor.submit( _pkl_periodogram, funcresults, ) # generate the phased LCs. we show these in the frontend # along with the periodogram. phasedlcargs0 = (None, lspmethod, -1, lctoolargs[0], lctoolargs[1], lctoolargs[2], nbestperiods[0], 'min') if len(nbestperiods) > 1: phasedlcargs1 = (None, lspmethod, -1, lctoolargs[0], lctoolargs[1], lctoolargs[2], nbestperiods[1], 'min') else: phasedlcargs1 = None if len(nbestperiods) > 2: phasedlcargs2 = (None, lspmethod, -1, lctoolargs[0], lctoolargs[1], lctoolargs[2], nbestperiods[2], 'min') else: phasedlcargs2 = None # here, we set a bestperiodhighlight to distinguish this # plot from the ones existing in the checkplot already phasedlckwargs = { 'xliminsetmode':False, 'magsarefluxes':lctoolkwargs['magsarefluxes'], 'bestperiodhighlight':'#defa75', } # dispatch the plot functions phasedlc0 = yield self.executor.submit( _pkl_phased_magseries_plot, *phasedlcargs0, **phasedlckwargs ) if phasedlcargs1 is not None: phasedlc1 = yield self.executor.submit( _pkl_phased_magseries_plot, *phasedlcargs1, **phasedlckwargs ) else: phasedlc1 = None if phasedlcargs2 is not None: phasedlc2 = yield self.executor.submit( _pkl_phased_magseries_plot, *phasedlcargs2, **phasedlckwargs ) else: phasedlc2 = None # save these to the tempcpdict # save the pickle only if readonly is not true if not self.readonly: tempcpdict[lspmethod] = { 'periods':funcresults['periods'], 'lspvals':funcresults['lspvals'], 'bestperiod':funcresults['bestperiod'], 'nbestperiods':funcresults['nbestperiods'], 'nbestlspvals':funcresults['nbestlspvals'], 'periodogram':( pgramres[lspmethod]['periodogram'] ), 0:phasedlc0, } if phasedlc1 is not None: tempcpdict[lspmethod][1] = phasedlc1 if phasedlc2 is not None: tempcpdict[lspmethod][2] = phasedlc2 savekwargs = { 'outfile':tempfpath, 'protocol':pickle.HIGHEST_PROTOCOL } savedcpf = yield self.executor.submit( _write_checkplot_picklefile, tempcpdict, **savekwargs ) LOGGER.info( 'saved temp results from ' '%s to checkplot: %s' % (lctool, savedcpf) ) else: LOGGER.warning( 'not saving temp results to checkplot ' ' because readonly = True' ) # # assemble the return dict # # the periodogram periodogram = pgramres[lspmethod]['periodogram'] # phasedlc plot, period, and epoch for best 3 peaks phasedlc0plot = phasedlc0['plot'] phasedlc0period = float(phasedlc0['period']) phasedlc0epoch = float(phasedlc0['epoch']) if phasedlc1 is not None: phasedlc1plot = phasedlc1['plot'] phasedlc1period = float(phasedlc1['period']) phasedlc1epoch = float(phasedlc1['epoch']) if phasedlc2 is not None: phasedlc2plot = phasedlc2['plot'] phasedlc2period = float(phasedlc2['period']) phasedlc2epoch = float(phasedlc2['epoch']) resultdict['status'] = 'success' resultdict['message'] = ( 'new results for %s' % lctool ) resultdict['result'] = { 'objectid':objectid, lspmethod:{ 'nbestperiods':nbestperiods, 'nbestpeaks':nbestlspvals, 'periodogram':periodogram, 'bestperiod':bestperiod, 'phasedlc0':{ 'plot':phasedlc0plot, 'period':phasedlc0period, 'epoch':phasedlc0epoch, }, } } if phasedlc1 is not None: resultdict['result'][lspmethod]['phasedlc1'] = { 'plot':phasedlc1plot, 'period':phasedlc1period, 'epoch':phasedlc1epoch, } if phasedlc2 is not None: resultdict['result'][lspmethod]['phasedlc2'] = { 'plot':phasedlc2plot, 'period':phasedlc2period, 'epoch':phasedlc2epoch, } # return to frontend self.write(resultdict) self.finish() # if the lctool is a call to the phased LC plot itself # this requires lots of parameters # these should all be present in the frontend elif lctool == 'phasedlc-newplot': lspmethod = lctoolargs[1] periodind = lctoolargs[2] # if we can return the results from a previous run if (not forcereload and lspmethod in tempcpdict and isinstance(tempcpdict[lspmethod], dict) and periodind in tempcpdict[lspmethod] and isinstance(tempcpdict[lspmethod][periodind], dict)): # we get phased LC at periodind from a previous run phasedlc = tempcpdict[lspmethod][periodind] LOGGER.warning( 'returning previously unsaved ' 'results for lctool %s from %s' % (lctool, tempfpath) ) # # assemble the returndict # resultdict['status'] = 'warning' resultdict['message'] = ( 'previous ' 'unsaved results from %s' % lctool ) retkey = 'phasedlc%s' % periodind resultdict['result'] = { 'objectid':objectid, lspmethod:{ retkey:phasedlc } } self.write(resultdict) self.finish() # otherwise, we need to dispatch the function else: # add the highlight to distinguish this plot from usual # checkplot plots # full disclosure: http://c0ffee.surge.sh/ lctoolkwargs['bestperiodhighlight'] = '#defa75' # set the input periodind to -1 to make sure we still # have the highlight on the plot. we use the correct # periodind when returning lctoolargs[2] = -1 # see if sigclip is set. if so, then do the sigclip on # the times, mags, errs if lctoolkwargs['sigclip'] is not None: stimes, smags, serrs = lcmath.sigclip_magseries( lctoolargs[3], lctoolargs[4], lctoolargs[5], sigclip=lctoolkwargs['sigclip'], magsarefluxes=lctoolkwargs['magsarefluxes'] ) else: stimes, smags, serrs = (lctoolargs[3], lctoolargs[4], lctoolargs[5]) # # process the LC filters now # # see if the lctimefilters are set if lctoolkwargs['lctimefilters']: wtimes, wmags, werrs = stimes, smags, serrs filtermasks = [ np.full_like(wtimes, False, dtype=np.bool_) ] # parse the time filter strings filterstr = lctoolkwargs['lctimefilters'] filters = filterstr.split(',') filters = [ x.strip().lstrip('(').rstrip(')').strip() for x in filters ] for filt in filters: try: thisfilt = filt.split(':') if len(thisfilt) == 2: filt_lo = float(thisfilt[0]) filt_hi = float(thisfilt[1]) filtermasks.append( ((wtimes - cptimes.min()) < filt_hi) & ((wtimes - cptimes.min()) > filt_lo) ) elif (len(thisfilt) == 3 and thisfilt[0].strip() == 'not'): filt_lo = float(thisfilt[1]) filt_hi = float(thisfilt[2]) filtermasks.append(np.logical_not( (((wtimes - cptimes.min()) < filt_hi) & ((wtimes - cptimes.min()) > filt_lo)) )) else: continue except Exception as e: continue # finally, apply the filters if applicable if len(filtermasks) > 0: # apply the filters using an OR filterind = np.column_stack(filtermasks) filterind = np.any(filterind, axis=1) stimes = wtimes[filterind] smags = wmags[filterind] serrs = werrs[filterind] # see if the lcmagfilters are set if lctoolkwargs['lcmagfilters']: wtimes, wmags, werrs = stimes, smags, serrs filtermasks = [ np.full_like(wtimes, False, dtype=np.bool_) ] # parse the time filter strings filterstr = lctoolkwargs['lcmagfilters'] filters = filterstr.split(',') filters = [ x.strip().strip() for x in filters ] for filt in filters: try: thisfilt = filt.split(':') if len(thisfilt) == 2: filt_lo = float(thisfilt[0]) filt_hi = float(thisfilt[1]) filtermasks.append( (wmags < filt_hi) & (wmags > filt_lo) ) elif (len(thisfilt) == 3 and thisfilt[0].strip() == 'not'): filt_lo = float(thisfilt[1]) filt_hi = float(thisfilt[2]) filtermasks.append(np.logical_not( ((wmags < filt_hi) & (wmags > filt_lo)) )) else: continue except Exception as e: continue # finally, apply the filters if applicable if len(filtermasks) > 0: # apply the filters using an OR filterind = np.column_stack(filtermasks) filterind = np.any(filterind, axis=1) stimes = wtimes[filterind] smags = wmags[filterind] serrs = werrs[filterind] # at the end of processing, remove from lctookwargs # since the pfmethod doesn't know about this del lctoolkwargs['lctimefilters'] del lctoolkwargs['lcmagfilters'] # if the varepoch is set to None, try to get the # minimum-light epoch using a spline fit if lctoolargs[-1] is None: LOGGER.warning( 'automatically getting min epoch ' 'for phased LC plot' ) try: spfit = lcfit.spline_fit_magseries( stimes, # times smags, # mags serrs, # errs lctoolargs[6], # period magsarefluxes=lctoolkwargs['magsarefluxes'], sigclip=None, verbose=True ) # set the epoch correctly now for the plot lctoolargs[-1] = spfit['fitinfo']['fitepoch'] if len(spfit['fitinfo']['fitepoch']) != 1: lctoolargs[-1] = ( spfit['fitinfo']['fitepoch'][0] ) # if the spline fit fails, use the minimum of times as # epoch as usual except Exception as e: LOGGER.exception( 'spline fit failed, ' 'using min(times) as epoch' ) lctoolargs[-1] = np.min(stimes) # now run the phased LC function with provided args, # kwargs # final times, mags, errs lctoolargs[3] = stimes lctoolargs[4] = smags lctoolargs[5] = serrs # the sigclip kwarg isn't used here since we did this # already earlier del lctoolkwargs['sigclip'] lctoolfunction = CPTOOLMAP[lctool]['func'] funcresults = yield self.executor.submit( lctoolfunction, *lctoolargs, **lctoolkwargs ) # save these to the tempcpdict # save the pickle only if readonly is not true if not self.readonly: if (lspmethod in tempcpdict and isinstance(tempcpdict[lspmethod], dict)): if periodind in tempcpdict[lspmethod]: tempcpdict[lspmethod][periodind] = ( funcresults ) else: tempcpdict[lspmethod].update( {periodind: funcresults} ) else: tempcpdict[lspmethod] = {periodind: funcresults} savekwargs = { 'outfile':tempfpath, 'protocol':pickle.HIGHEST_PROTOCOL } savedcpf = yield self.executor.submit( _write_checkplot_picklefile, tempcpdict, **savekwargs ) LOGGER.info( 'saved temp results from ' '%s to checkplot: %s' % (lctool, savedcpf) ) else: LOGGER.warning( 'not saving temp results to checkplot ' ' because readonly = True' ) # # assemble the return dict # resultdict['status'] = 'success' resultdict['message'] = ( 'new results for %s' % lctool ) retkey = 'phasedlc%s' % periodind resultdict['result'] = { 'objectid':objectid, lspmethod:{ retkey:funcresults } } self.write(resultdict) self.finish() # if the lctool is var-varfeatures elif lctool == 'var-varfeatures': # see if we can return results from a previous iteration of # this tool if (not forcereload and 'varinfo' in tempcpdict and isinstance(tempcpdict['varinfo'], dict) and 'varfeatures' in tempcpdict['varinfo'] and isinstance(tempcpdict['varinfo']['varfeatures'], dict)): LOGGER.warning( 'returning previously unsaved ' 'results for lctool %s from %s' % (lctool, tempfpath) ) # # assemble the returndict # resultdict['status'] = 'warning' resultdict['message'] = ( 'previous ' 'unsaved results from %s' % lctool ) resultdict['result'] = { 'objectid':objectid, 'varinfo': { 'varfeatures': ( tempcpdict['varinfo']['varfeatures'] ) } } self.write(resultdict) self.finish() # otherwise, we need to dispatch the function else: lctoolfunction = CPTOOLMAP[lctool]['func'] funcresults = yield self.executor.submit( lctoolfunction, *lctoolargs, **lctoolkwargs ) # save these to the tempcpdict # save the pickle only if readonly is not true if not self.readonly: if ('varinfo' in tempcpdict and isinstance(tempcpdict['varinfo'], dict)): if 'varfeatures' in tempcpdict['varinfo']: tempcpdict['varinfo']['varfeatures'] = ( funcresults ) else: tempcpdict['varinfo'].update( {'varfeatures': funcresults} ) else: tempcpdict['varinfo'] = {'varfeatures': funcresults} savekwargs = { 'outfile':tempfpath, 'protocol':pickle.HIGHEST_PROTOCOL } savedcpf = yield self.executor.submit( _write_checkplot_picklefile, tempcpdict, **savekwargs ) LOGGER.info( 'saved temp results from ' '%s to checkplot: %s' % (lctool, savedcpf) ) else: LOGGER.warning( 'not saving temp results to checkplot ' ' because readonly = True' ) # # assemble the return dict # resultdict['status'] = 'success' resultdict['message'] = ( 'new results for %s' % lctool ) resultdict['result'] = { 'objectid':objectid, 'varinfo':{ 'varfeatures':funcresults } } self.write(resultdict) self.finish() # if the lctool is var-prewhiten or var-masksig elif lctool in ('var-prewhiten','var-masksig'): key1, key2 = resloc # see if we can return results from a previous iteration of # this tool if (not forcereload and key1 in tempcpdict and isinstance(tempcpdict[key1], dict) and key2 in tempcpdict[key1] and isinstance(tempcpdict[key1][key2], dict)): LOGGER.warning( 'returning previously unsaved ' 'results for lctool %s from %s' % (lctool, tempfpath) ) # # assemble the returndict # resultdict['status'] = 'warning' resultdict['message'] = ( 'previous ' 'unsaved results from %s' % lctool ) resultdict['result'] = { 'objectid':objectid, key1: { key2: ( tempcpdict[key1][key2] ) } } self.write(resultdict) self.finish() # otherwise, we need to dispatch the function else: lctoolfunction = CPTOOLMAP[lctool]['func'] # send in a stringio object for the fitplot kwarg lctoolkwargs['plotfit'] = StrIO() funcresults = yield self.executor.submit( lctoolfunction, *lctoolargs, **lctoolkwargs ) # we turn the returned fitplotfile fd into a base64 # encoded string after reading it fitfd = funcresults['fitplotfile'] fitfd.seek(0) fitbin = fitfd.read() fitb64 = base64.b64encode(fitbin) fitfd.close() funcresults['fitplotfile'] = fitb64 # save these to the tempcpdict # save the pickle only if readonly is not true if not self.readonly: if (key1 in tempcpdict and isinstance(tempcpdict[key1], dict)): if key2 in tempcpdict[key1]: tempcpdict[key1][key2] = ( funcresults ) else: tempcpdict[key1].update( {key2: funcresults} ) else: tempcpdict[key1] = {key2: funcresults} savekwargs = { 'outfile':tempfpath, 'protocol':pickle.HIGHEST_PROTOCOL } savedcpf = yield self.executor.submit( _write_checkplot_picklefile, tempcpdict, **savekwargs ) LOGGER.info( 'saved temp results from ' '%s to checkplot: %s' % (lctool, savedcpf) ) else: LOGGER.warning( 'not saving temp results to checkplot ' ' because readonly = True' ) # # assemble the return dict # # for this operation, we'll return: # - fitplotfile fitreturndict = {'fitplotfile':fitb64} resultdict['status'] = 'success' resultdict['message'] = ( 'new results for %s' % lctool ) resultdict['result'] = { 'objectid':objectid, key1:{ key2:fitreturndict } } self.write(resultdict) self.finish() # if the lctool is a lcfit method elif lctool in ('lcfit-fourier', 'lcfit-spline', 'lcfit-legendre', 'lcfit-savgol'): key1, key2 = resloc # see if we can return results from a previous iteration of # this tool if (not forcereload and key1 in tempcpdict and isinstance(tempcpdict[key1], dict) and key2 in tempcpdict[key1] and isinstance(tempcpdict[key1][key2], dict)): LOGGER.warning( 'returning previously unsaved ' 'results for lctool %s from %s' % (lctool, tempfpath) ) # # assemble the returndict # resultdict['status'] = 'warning' resultdict['message'] = ( 'previous ' 'unsaved results from %s' % lctool ) # these are the full results phasedfitlc = tempcpdict[key1][key2] # we only want a few things from them fitresults = { 'method':phasedfitlc['lcfit']['fittype'], 'chisq':phasedfitlc['lcfit']['fitchisq'], 'redchisq':phasedfitlc['lcfit']['fitredchisq'], 'period':phasedfitlc['period'], 'epoch':phasedfitlc['epoch'], 'plot':phasedfitlc['plot'], } # add fitparams if there are any if ('finalparams' in phasedfitlc['lcfit']['fitinfo'] and phasedfitlc['lcfit']['fitinfo']['finalparams'] is not None): fitresults['fitparams'] = ( phasedfitlc['lcfit']['fitinfo']['finalparams'] ) # this is the final result object resultdict['result'] = { 'objectid':objectid, key1: { key2: ( fitresults ) } } self.write(resultdict) self.finish() # otherwise, we need to dispatch the function else: lctoolfunction = CPTOOLMAP[lctool]['func'] funcresults = yield self.executor.submit( lctoolfunction, *lctoolargs, **lctoolkwargs ) # now that we have the fit results, generate a fitplot. # these args are for the special fitplot mode of # _pkl_phased_magseries_plot phasedlcargs = (None, 'lcfit', -1, cptimes, cpmags, cperrs, lctoolargs[3], # this is the fit period 'min') # here, we set a bestperiodhighlight to distinguish this # plot from the ones existing in the checkplot already # also add the overplotfit information phasedlckwargs = { 'xliminsetmode':False, 'magsarefluxes':lctoolkwargs['magsarefluxes'], 'bestperiodhighlight':'#defa75', 'overplotfit':funcresults } # dispatch the plot function phasedlc = yield self.executor.submit( _pkl_phased_magseries_plot, *phasedlcargs, **phasedlckwargs ) # save these to the tempcpdict # save the pickle only if readonly is not true if not self.readonly: if (key1 in tempcpdict and isinstance(tempcpdict[key1], dict)): if key2 in tempcpdict[key1]: tempcpdict[key1][key2] = ( phasedlc ) else: tempcpdict[key1].update( {key2: phasedlc} ) else: tempcpdict[key1] = {key2: phasedlc} savekwargs = { 'outfile':tempfpath, 'protocol':pickle.HIGHEST_PROTOCOL } savedcpf = yield self.executor.submit( _write_checkplot_picklefile, tempcpdict, **savekwargs ) LOGGER.info( 'saved temp results from ' '%s to checkplot: %s' % (lctool, savedcpf) ) else: LOGGER.warning( 'not saving temp results to checkplot ' ' because readonly = True' ) # # assemble the return dict # fitresults = { 'method':phasedlc['lcfit']['fittype'], 'chisq':phasedlc['lcfit']['fitchisq'], 'redchisq':phasedlc['lcfit']['fitredchisq'], 'period':phasedlc['period'], 'epoch':phasedlc['epoch'], 'plot':phasedlc['plot'], } # add fitparams if there are any if ('finalparams' in funcresults['fitinfo'] and funcresults['fitinfo']['finalparams'] is not None): fitresults['fitparams'] = ( funcresults['fitinfo']['finalparams'] ) resultdict['status'] = 'success' resultdict['message'] = ( 'new results for %s' % lctool ) resultdict['result'] = { 'objectid':objectid, key1:{ key2:fitresults } } self.write(resultdict) self.finish() # if this is the special lcfit subtract tool elif lctool == 'lcfit-subtract': fitmethod, periodind = lctoolargs # find the fit requested # subtract it from the cptimes, cpmags, cperrs # if not readonly, write back to cptimes, cpmags, cperrs # make a new phasedlc plot for the current periodind using # these new cptimes, cpmags, cperrs # return this plot # if this is the special full reset tool elif lctool == 'lctool-reset': if os.path.exists(tempfpath): os.remove(tempfpath) LOGGER.warning('reset all LC tool results ' 'for %s by removing %s' % (tempfpath, cpfpath)) resultdict['status'] = 'success' else: resultdict['status'] = 'error' LOGGER.warning('tried to reset LC tool results for %s, ' 'but temp checkplot result pickle %s ' 'does not exist' % (tempfpath, cpfpath)) resultdict['message'] = ( 'all unsynced results for this object have been purged' ) resultdict['result'] = {'objectid':cpobjectid} self.write(resultdict) self.finish() # if this is the special load results tool elif lctool == 'lctool-results': target = self.get_argument('resultsfor',None) if target is not None: target = xhtml_escape(target) # get rid of invalid targets if (target not in CPTOOLMAP or target == 'lctool-reset' or target == 'lctool-results' or target == 'phasedlc-newplot' or target == 'lcfit-subtract'): LOGGER.error("can't get results for %s" % target) resultdict['status'] = 'error' resultdict['message'] = ( "can't get results for %s" % target ) resultdict['result'] = {'objectid':cpobjectid} self.write(resultdict) raise tornado.web.Finish() # if we're good to go, get the target location targetloc = CPTOOLMAP[target]['resloc'] # first, search the cptempdict for this target # if found, return it # second, search the actual cpdict for this target # if found, return it # otherwise, we're being asked for everything # return the whole else: pass # otherwise, this is an unrecognized lctool else: LOGGER.error('lctool %s, does not exist' % lctool) resultdict['status'] = 'error' resultdict['message'] = ( 'lctool %s does not exist' % lctool ) resultdict['result'] = {'objectid':cpobjectid} self.write(resultdict) raise tornado.web.Finish() # if the cpfile doesn't exist else: LOGGER.error('could not find %s' % self.cpfile) resultdict = {'status':'error', 'message':"This checkplot doesn't exist.", 'readonly':self.readonly, 'result':None} self.write(resultdict) raise tornado.web.Finish() # if no checkplot was provided to load else: resultdict = {'status':'error', 'message':'No checkplot provided to load.', 'readonly':self.readonly, 'result':None} self.write(resultdict) raise tornado.web.Finish()
def initialize(self, executor, secret): ''' This handles initial setup of the `RequestHandler`. ''' self.executor = executor self.secret = secret
def get(self): '''This handles GET requests. Returns the requested checkplot pickle's information as JSON. Requires a pre-shared secret `key` argument for the operation to complete successfully. This is obtained from a command-line argument. ''' provided_key = self.get_argument('key',default=None) if not provided_key: LOGGER.error('standalone URL hit but no secret key provided') retdict = {'status':'error', 'message':('standalone URL hit but ' 'no secret key provided'), 'result':None, 'readonly':True} self.set_status(401) self.write(retdict) raise tornado.web.Finish() else: provided_key = xhtml_escape(provided_key) if not _time_independent_equals(provided_key, self.secret): LOGGER.error('secret key provided does not match known key') retdict = {'status':'error', 'message':('standalone URL hit but ' 'no secret key provided'), 'result':None, 'readonly':True} self.set_status(401) self.write(retdict) raise tornado.web.Finish() # # actually start work here # LOGGER.info('key auth OK') checkplotfname = self.get_argument('cp', default=None) if checkplotfname: try: # do the usual safing cpfpath = xhtml_escape( base64.b64decode(url_unescape(checkplotfname)) ) except Exception as e: msg = 'could not decode the incoming payload' LOGGER.error(msg) resultdict = {'status':'error', 'message':msg, 'result':None, 'readonly':True} self.set_status(400) self.write(resultdict) raise tornado.web.Finish() LOGGER.info('loading %s...' % cpfpath) if not os.path.exists(cpfpath): msg = "couldn't find checkplot %s" % cpfpath LOGGER.error(msg) resultdict = {'status':'error', 'message':msg, 'result':None, 'readonly':True} self.set_status(404) self.write(resultdict) raise tornado.web.Finish() # # load the checkplot # # this is the async call to the executor cpdict = yield self.executor.submit( _read_checkplot_picklefile, cpfpath ) ##################################### ## continue after we're good to go ## ##################################### LOGGER.info('loaded %s' % cpfpath) # break out the initial info objectid = cpdict['objectid'] objectinfo = cpdict['objectinfo'] varinfo = cpdict['varinfo'] if 'pfmethods' in cpdict: pfmethods = cpdict['pfmethods'] else: pfmethods = [] for pfm in PFMETHODS: if pfm in cpdict: pfmethods.append(pfm) # handle neighbors for this object neighbors = [] if ('neighbors' in cpdict and cpdict['neighbors'] is not None and len(cpdict['neighbors'])) > 0: nbrlist = cpdict['neighbors'] # get each neighbor, its info, and its phased LCs for nbr in nbrlist: if 'magdiffs' in nbr: nbrmagdiffs = nbr['magdiffs'] else: nbrmagdiffs = None if 'colordiffs' in nbr: nbrcolordiffs = nbr['colordiffs'] else: nbrcolordiffs = None thisnbrdict = { 'objectid':nbr['objectid'], 'objectinfo':{ 'ra':nbr['ra'], 'decl':nbr['decl'], 'xpix':nbr['xpix'], 'ypix':nbr['ypix'], 'distarcsec':nbr['dist'], 'magdiffs':nbrmagdiffs, 'colordiffs':nbrcolordiffs } } try: nbr_magseries = nbr['magseries']['plot'] thisnbrdict['magseries'] = nbr_magseries except Exception as e: LOGGER.error( "could not load magseries plot for " "neighbor %s for object %s" % (nbr['objectid'], cpdict['objectid']) ) try: for pfm in pfmethods: if pfm in nbr: thisnbrdict[pfm] = { 'plot':nbr[pfm][0]['plot'], 'period':nbr[pfm][0]['period'], 'epoch':nbr[pfm][0]['epoch'] } except Exception as e: LOGGER.error( "could not load phased LC plots for " "neighbor %s for object %s" % (nbr['objectid'], cpdict['objectid']) ) neighbors.append(thisnbrdict) # load object comments if 'comments' in cpdict: objectcomments = cpdict['comments'] else: objectcomments = None # load the xmatch results, if any if 'xmatch' in cpdict: objectxmatch = cpdict['xmatch'] else: objectxmatch = None # load the colormagdiagram object if 'colormagdiagram' in cpdict: colormagdiagram = cpdict['colormagdiagram'] else: colormagdiagram = None # these are base64 which can be provided directly to JS to # generate images (neat!) if 'finderchart' in cpdict: finderchart = cpdict['finderchart'] else: finderchart = None if ('magseries' in cpdict and isinstance(cpdict['magseries'], dict) and 'plot' in cpdict['magseries']): magseries = cpdict['magseries']['plot'] time0 = cpdict['magseries']['times'].min() magseries_ndet = cpdict['magseries']['times'].size else: magseries = None time0 = 0.0 magseries_ndet = 0 LOGGER.warning( "no 'magseries' key present in this " "checkplot, some plots may be broken..." ) if 'status' in cpdict: cpstatus = cpdict['status'] else: cpstatus = 'unknown, possibly incomplete checkplot' # load the uifilters if present if 'uifilters' in cpdict: uifilters = cpdict['uifilters'] else: uifilters = {'psearch_magfilters':None, 'psearch_sigclip':None, 'psearch_timefilters':None} # this is the initial dict resultdict = { 'status':'ok', 'message':'found checkplot %s' % os.path.basename(cpfpath), 'readonly':True, 'result':{ 'time0':'%.3f' % time0, 'objectid':objectid, 'objectinfo':objectinfo, 'colormagdiagram':colormagdiagram, 'objectcomments':objectcomments, 'varinfo':varinfo, 'uifilters':uifilters, 'neighbors':neighbors, 'xmatch':objectxmatch, 'finderchart':finderchart, 'magseries':magseries, # fallback in case objectinfo doesn't have ndet 'magseries_ndet':magseries_ndet, 'cpstatus':cpstatus, 'pfmethods':pfmethods } } # now get the periodograms and phased LCs for key in pfmethods: # get the periodogram for this method periodogram = cpdict[key]['periodogram'] # get the phased LC with best period if 0 in cpdict[key] and isinstance(cpdict[key][0], dict): phasedlc0plot = cpdict[key][0]['plot'] phasedlc0period = float(cpdict[key][0]['period']) phasedlc0epoch = float(cpdict[key][0]['epoch']) else: phasedlc0plot = None phasedlc0period = None phasedlc0epoch = None # get the associated fitinfo for this period if it # exists if (0 in cpdict[key] and isinstance(cpdict[key][0], dict) and 'lcfit' in cpdict[key][0] and isinstance(cpdict[key][0]['lcfit'], dict)): phasedlc0fit = { 'method':( cpdict[key][0]['lcfit']['fittype'] ), 'redchisq':( cpdict[key][0]['lcfit']['fitredchisq'] ), 'chisq':( cpdict[key][0]['lcfit']['fitchisq'] ), 'params':( cpdict[key][0][ 'lcfit' ]['fitinfo']['finalparams'] if 'finalparams' in cpdict[key][0]['lcfit']['fitinfo'] else None ) } else: phasedlc0fit = None # get the phased LC with 2nd best period if 1 in cpdict[key] and isinstance(cpdict[key][1], dict): phasedlc1plot = cpdict[key][1]['plot'] phasedlc1period = float(cpdict[key][1]['period']) phasedlc1epoch = float(cpdict[key][1]['epoch']) else: phasedlc1plot = None phasedlc1period = None phasedlc1epoch = None # get the associated fitinfo for this period if it # exists if (1 in cpdict[key] and isinstance(cpdict[key][1], dict) and 'lcfit' in cpdict[key][1] and isinstance(cpdict[key][1]['lcfit'], dict)): phasedlc1fit = { 'method':( cpdict[key][1]['lcfit']['fittype'] ), 'redchisq':( cpdict[key][1]['lcfit']['fitredchisq'] ), 'chisq':( cpdict[key][1]['lcfit']['fitchisq'] ), 'params':( cpdict[key][1][ 'lcfit' ]['fitinfo']['finalparams'] if 'finalparams' in cpdict[key][1]['lcfit']['fitinfo'] else None ) } else: phasedlc1fit = None # get the phased LC with 3rd best period if 2 in cpdict[key] and isinstance(cpdict[key][2], dict): phasedlc2plot = cpdict[key][2]['plot'] phasedlc2period = float(cpdict[key][2]['period']) phasedlc2epoch = float(cpdict[key][2]['epoch']) else: phasedlc2plot = None phasedlc2period = None phasedlc2epoch = None # get the associated fitinfo for this period if it # exists if (2 in cpdict[key] and isinstance(cpdict[key][2], dict) and 'lcfit' in cpdict[key][2] and isinstance(cpdict[key][2]['lcfit'], dict)): phasedlc2fit = { 'method':( cpdict[key][2]['lcfit']['fittype'] ), 'redchisq':( cpdict[key][2]['lcfit']['fitredchisq'] ), 'chisq':( cpdict[key][2]['lcfit']['fitchisq'] ), 'params':( cpdict[key][2][ 'lcfit' ]['fitinfo']['finalparams'] if 'finalparams' in cpdict[key][2]['lcfit']['fitinfo'] else None ) } else: phasedlc2fit = None resultdict['result'][key] = { 'nbestperiods':cpdict[key]['nbestperiods'], 'periodogram':periodogram, 'bestperiod':cpdict[key]['bestperiod'], 'phasedlc0':{ 'plot':phasedlc0plot, 'period':phasedlc0period, 'epoch':phasedlc0epoch, 'lcfit':phasedlc0fit, }, 'phasedlc1':{ 'plot':phasedlc1plot, 'period':phasedlc1period, 'epoch':phasedlc1epoch, 'lcfit':phasedlc1fit, }, 'phasedlc2':{ 'plot':phasedlc2plot, 'period':phasedlc2period, 'epoch':phasedlc2epoch, 'lcfit':phasedlc2fit, }, } # # end of processing per pfmethod # self.set_header('Content-Type','application/json; charset=UTF-8') self.write(resultdict) self.finish() else: LOGGER.error('no checkplot file requested') resultdict = {'status':'error', 'message':"This checkplot doesn't exist.", 'readonly':True, 'result':None} self.status(400) self.write(resultdict) self.finish()
def extinction_query(lon, lat, coordtype='equatorial', sizedeg=5.0, forcefetch=False, cachedir='~/.astrobase/dust-cache', verbose=True, timeout=10.0, jitter=5.0): '''This queries the 2MASS DUST service to find the extinction parameters for the given `lon`, `lat`. Parameters ---------- lon,lat: float These are decimal right ascension and declination if `coordtype = 'equatorial'`. These are are decimal Galactic longitude and latitude if `coordtype = 'galactic'`. coordtype : {'equatorial','galactic'} Sets the type of coordinates passed in as `lon`, `lat`. sizedeg : float This is the width of the image returned by the DUST service. This can usually be left as-is if you're interested in the extinction only. forcefetch : bool If this is True, the query will be retried even if cached results for it exist. cachedir : str This points to the directory where results will be downloaded. verbose : bool If True, will indicate progress and warn of any issues. timeout : float This sets the amount of time in seconds to wait for the service to respond to our request. jitter : float This is used to control the scale of the random wait in seconds before starting the query. Useful in parallelized situations. Returns ------- dict A dict of the following form is returned:: {'Amag':{dict of extinction A_v values for several mag systems}, 'table': array containing the full extinction table, 'tablefile': the path to the full extinction table file on disk, 'provenance': 'cached' or 'new download', 'request': string repr of the request made to 2MASS DUST} ''' dustparams = DUST_PARAMS.copy() # convert the lon, lat to the required format # and generate the param dict if coordtype == 'equatorial': locstr = '%.3f %.3f Equ J2000' % (lon, lat) elif coordtype == 'galactic': locstr = '%.3f %.3f gal' % (lon, lat) else: LOGERROR('unknown coordinate type: %s' % coordtype) return None dustparams['locstr'] = locstr dustparams['regSize'] = '%.3f' % sizedeg # see if the cachedir exists if '~' in cachedir: cachedir = os.path.expanduser(cachedir) if not os.path.exists(cachedir): os.makedirs(cachedir) # generate the cachekey and cache filename cachekey = '%s - %.1f' % (locstr, sizedeg) cachekey = hashlib.sha256(cachekey.encode()).hexdigest() cachefname = os.path.join(cachedir, '%s.txt' % cachekey) provenance = 'cache' # if this does not exist in cache or if we're forcefetching, do the query if forcefetch or (not os.path.exists(cachefname)): time.sleep(random.randint(1,jitter)) provenance = 'new download' try: if verbose: LOGINFO('submitting 2MASS DUST request for ' 'lon = %.3f, lat = %.3f, type = %s, size = %.1f' % (lon, lat, coordtype, sizedeg)) req = requests.get(DUST_URL, dustparams, timeout=timeout) req.raise_for_status() resp = req.text # see if we got an extinction table URL in the response tableurl = DUST_REGEX.search(resp) # if we did, download it to the cache directory if tableurl: tableurl = tableurl.group(0) req2 = requests.get(tableurl, timeout=timeout) # write the table to the cache directory with open(cachefname,'wb') as outfd: outfd.write(req2.content) tablefname = cachefname else: LOGERROR('could not get extinction parameters for ' '%s (%.3f, %.3f) with size = %.1f' % (coordtype, lon,lat,sizedeg)) LOGERROR('error from DUST service follows:\n%s' % resp) return None except requests.exceptions.Timeout as e: LOGERROR('DUST request timed out for ' '%s (%.3f, %.3f) with size = %.1f' % (coordtype, lon,lat,sizedeg)) return None except Exception as e: LOGEXCEPTION('DUST request failed for ' '%s (%.3f, %.3f) with size = %.1f' % (coordtype, lon,lat,sizedeg)) return None # if this result is available in the cache, get it from there else: if verbose: LOGINFO('getting cached 2MASS DUST result for ' 'lon = %.3f, lat = %.3f, coordtype = %s, size = %.1f' % (lon, lat, coordtype, sizedeg)) tablefname = cachefname # # now we should have the extinction table in some form # # read and parse the extinction table using astropy.Table extinction_table = Table.read(tablefname, format='ascii.ipac') # get the columns we need filters = np.array(extinction_table['Filter_name']) a_sf11_byfilter = np.array(extinction_table['A_SandF']) a_sfd98_byfilter = np.array(extinction_table['A_SFD']) # generate the output dict extdict = {'Amag':{x:{'sf11':y, 'sfd98':z} for x,y,z in zip(filters,a_sf11_byfilter,a_sfd98_byfilter)}, 'table':np.array(extinction_table), 'tablefile':os.path.abspath(cachefname), 'provenance':provenance, 'request':'%s (%.3f, %.3f) with size = %.1f' % (coordtype, lon,lat, sizedeg)} return extdict
def smooth_magseries_gaussfilt(mags, windowsize, windowfwhm=7): '''This smooths the magseries with a Gaussian kernel. Parameters ---------- mags : np.array The input mags/flux time-series to smooth. windowsize : int This is a odd integer containing the smoothing window size. windowfwhm : int This is an odd integer containing the FWHM of the applied Gaussian window function. Returns ------- np.array The smoothed mag/flux time-series array. ''' convkernel = Gaussian1DKernel(windowfwhm, x_size=windowsize) smoothed = convolve(mags, convkernel, boundary='extend') return smoothed
def smooth_magseries_savgol(mags, windowsize, polyorder=2): '''This smooths the magseries with a Savitsky-Golay filter. Parameters ---------- mags : np.array The input mags/flux time-series to smooth. windowsize : int This is a odd integer containing the smoothing window size. polyorder : int This is an integer containing the polynomial degree order to use when generating the Savitsky-Golay filter. Returns ------- np.array The smoothed mag/flux time-series array. ''' smoothed = savgol_filter(mags, windowsize, polyorder) return smoothed
def _old_epd_diffmags(coeff, fsv, fdv, fkv, xcc, ycc, bgv, bge, mag): ''' This calculates the difference in mags after EPD coefficients are calculated. final EPD mags = median(magseries) + epd_diffmags() ''' return -(coeff[0]*fsv**2. + coeff[1]*fsv + coeff[2]*fdv**2. + coeff[3]*fdv + coeff[4]*fkv**2. + coeff[5]*fkv + coeff[6] + coeff[7]*fsv*fdv + coeff[8]*fsv*fkv + coeff[9]*fdv*fkv + coeff[10]*np.sin(2*np.pi*xcc) + coeff[11]*np.cos(2*np.pi*xcc) + coeff[12]*np.sin(2*np.pi*ycc) + coeff[13]*np.cos(2*np.pi*ycc) + coeff[14]*np.sin(4*np.pi*xcc) + coeff[15]*np.cos(4*np.pi*xcc) + coeff[16]*np.sin(4*np.pi*ycc) + coeff[17]*np.cos(4*np.pi*ycc) + coeff[18]*bgv + coeff[19]*bge - mag)
def _old_epd_magseries(times, mags, errs, fsv, fdv, fkv, xcc, ycc, bgv, bge, epdsmooth_windowsize=21, epdsmooth_sigclip=3.0, epdsmooth_func=smooth_magseries_signal_medfilt, epdsmooth_extraparams=None): ''' Detrends a magnitude series given in mag using accompanying values of S in fsv, D in fdv, K in fkv, x coords in xcc, y coords in ycc, background in bgv, and background error in bge. smooth is used to set a smoothing parameter for the fit function. Does EPD voodoo. ''' # find all the finite values of the magsnitude finiteind = np.isfinite(mags) # calculate median and stdev mags_median = np.median(mags[finiteind]) mags_stdev = np.nanstd(mags) # if we're supposed to sigma clip, do so if epdsmooth_sigclip: excludeind = abs(mags - mags_median) < epdsmooth_sigclip*mags_stdev finalind = finiteind & excludeind else: finalind = finiteind final_mags = mags[finalind] final_len = len(final_mags) # smooth the signal if isinstance(epdsmooth_extraparams, dict): smoothedmags = epdsmooth_func(final_mags, epdsmooth_windowsize, **epdsmooth_extraparams) else: smoothedmags = epdsmooth_func(final_mags, epdsmooth_windowsize) # make the linear equation matrix epdmatrix = np.c_[fsv[finalind]**2.0, fsv[finalind], fdv[finalind]**2.0, fdv[finalind], fkv[finalind]**2.0, fkv[finalind], np.ones(final_len), fsv[finalind]*fdv[finalind], fsv[finalind]*fkv[finalind], fdv[finalind]*fkv[finalind], np.sin(2*np.pi*xcc[finalind]), np.cos(2*np.pi*xcc[finalind]), np.sin(2*np.pi*ycc[finalind]), np.cos(2*np.pi*ycc[finalind]), np.sin(4*np.pi*xcc[finalind]), np.cos(4*np.pi*xcc[finalind]), np.sin(4*np.pi*ycc[finalind]), np.cos(4*np.pi*ycc[finalind]), bgv[finalind], bge[finalind]] # solve the matrix equation [epdmatrix] . [x] = [smoothedmags] # return the EPD differential magss if the solution succeeds try: coeffs, residuals, rank, singulars = lstsq(epdmatrix, smoothedmags, rcond=None) if DEBUG: print('coeffs = %s, residuals = %s' % (coeffs, residuals)) retdict = {'times':times, 'mags':(mags_median + _old_epd_diffmags(coeffs, fsv, fdv, fkv, xcc, ycc, bgv, bge, mags)), 'errs':errs, 'fitcoeffs':coeffs, 'residuals':residuals} return retdict # if the solution fails, return nothing except Exception as e: LOGEXCEPTION('EPD solution did not converge') retdict = {'times':times, 'mags':np.full_like(mags, np.nan), 'errs':errs, 'fitcoeffs':coeffs, 'residuals':residuals} return retdict
def _epd_function(coeffs, fsv, fdv, fkv, xcc, ycc, bgv, bge, iha, izd): ''' This is the EPD function to fit using a smoothed mag-series. ''' return (coeffs[0]*fsv*fsv + coeffs[1]*fsv + coeffs[2]*fdv*fdv + coeffs[3]*fdv + coeffs[4]*fkv*fkv + coeffs[5]*fkv + coeffs[6] + coeffs[7]*fsv*fdv + coeffs[8]*fsv*fkv + coeffs[9]*fdv*fkv + coeffs[10]*np.sin(2*pi_value*xcc) + coeffs[11]*np.cos(2*pi_value*xcc) + coeffs[12]*np.sin(2*pi_value*ycc) + coeffs[13]*np.cos(2*pi_value*ycc) + coeffs[14]*np.sin(4*pi_value*xcc) + coeffs[15]*np.cos(4*pi_value*xcc) + coeffs[16]*np.sin(4*pi_value*ycc) + coeffs[17]*np.cos(4*pi_value*ycc) + coeffs[18]*bgv + coeffs[19]*bge + coeffs[20]*iha + coeffs[21]*izd)
def _epd_residual(coeffs, mags, fsv, fdv, fkv, xcc, ycc, bgv, bge, iha, izd): ''' This is the residual function to minimize using scipy.optimize.leastsq. ''' f = _epd_function(coeffs, fsv, fdv, fkv, xcc, ycc, bgv, bge, iha, izd) residual = mags - f return residual
def _epd_residual2(coeffs, times, mags, errs, fsv, fdv, fkv, xcc, ycc, bgv, bge, iha, izd): '''This is the residual function to minimize using scipy.optimize.least_squares. This variant is for :py:func:`.epd_magseries_extparams`. ''' f = _epd_function(coeffs, fsv, fdv, fkv, xcc, ycc, bgv, bge, iha, izd) residual = mags - f return residual
def epd_magseries(times, mags, errs, fsv, fdv, fkv, xcc, ycc, bgv, bge, iha, izd, magsarefluxes=False, epdsmooth_sigclip=3.0, epdsmooth_windowsize=21, epdsmooth_func=smooth_magseries_savgol, epdsmooth_extraparams=None): '''Detrends a magnitude series using External Parameter Decorrelation. Requires a set of external parameters similar to those present in HAT light curves. At the moment, the HAT light-curve-specific external parameters are: - S: the 'fsv' column in light curves, - D: the 'fdv' column in light curves, - K: the 'fkv' column in light curves, - x coords: the 'xcc' column in light curves, - y coords: the 'ycc' column in light curves, - background value: the 'bgv' column in light curves, - background error: the 'bge' column in light curves, - hour angle: the 'iha' column in light curves, - zenith distance: the 'izd' column in light curves S, D, and K are defined as follows: - S -> measure of PSF sharpness (~1/sigma^2 sosmaller S = wider PSF) - D -> measure of PSF ellipticity in xy direction - K -> measure of PSF ellipticity in cross direction S, D, K are related to the PSF's variance and covariance, see eqn 30-33 in A. Pal's thesis: https://arxiv.org/abs/0906.3486 NOTE: The errs are completely ignored and returned unchanged (except for sigclip and finite filtering). Parameters ---------- times,mags,errs : np.array The input mag/flux time-series to detrend. fsv : np.array Array containing the external parameter `S` of the same length as times. fdv : np.array Array containing the external parameter `D` of the same length as times. fkv : np.array Array containing the external parameter `K` of the same length as times. xcc : np.array Array containing the external parameter `x-coords` of the same length as times. ycc : np.array Array containing the external parameter `y-coords` of the same length as times. bgv : np.array Array containing the external parameter `background value` of the same length as times. bge : np.array Array containing the external parameter `background error` of the same length as times. iha : np.array Array containing the external parameter `hour angle` of the same length as times. izd : np.array Array containing the external parameter `zenith distance` of the same length as times. magsarefluxes : bool Set this to True if `mags` actually contains fluxes. epdsmooth_sigclip : float or int or sequence of two floats/ints or None This specifies how to sigma-clip the input LC before fitting the EPD function to it. If a single float or int, a symmetric sigma-clip will be performed using the number provided as the sigma-multiplier to cut out from the input time-series. If a list of two ints/floats is provided, the function will perform an 'asymmetric' sigma-clip. The first element in this list is the sigma value to use for fainter flux/mag values; the second element in this list is the sigma value to use for brighter flux/mag values. For example, `sigclip=[10., 3.]`, will sigclip out greater than 10-sigma dimmings and greater than 3-sigma brightenings. Here the meaning of "dimming" and "brightening" is set by *physics* (not the magnitude system), which is why the `magsarefluxes` kwarg must be correctly set. If `sigclip` is None, no sigma-clipping will be performed, and the time-series (with non-finite elems removed) will be passed through to the output. epdsmooth_windowsize : int This is the number of LC points to smooth over to generate a smoothed light curve that will be used to fit the EPD function. epdsmooth_func : Python function This sets the smoothing filter function to use. A Savitsky-Golay filter is used to smooth the light curve by default. The functions that can be used with this kwarg are listed in `varbase.trends`. If you want to use your own function, it MUST have the following signature:: def smoothfunc(mags_array, window_size, **extraparams) and return a numpy array of the same size as `mags_array` with the smoothed time-series. Any extra params can be provided using the `extraparams` dict. epdsmooth_extraparams : dict This is a dict of any extra filter params to supply to the smoothing function. Returns ------- dict Returns a dict of the following form:: {'times':the input times after non-finite elems removed, 'mags':the EPD detrended mag values (the EPD mags), 'errs':the errs after non-finite elems removed, 'fitcoeffs':EPD fit coefficient values, 'fitinfo':the full tuple returned by scipy.leastsq, 'fitmags':the EPD fit function evaluated at times, 'mags_median': this is median of the EPD mags, 'mags_mad': this is the MAD of EPD mags} ''' finind = np.isfinite(times) & np.isfinite(mags) & np.isfinite(errs) ftimes, fmags, ferrs = times[::][finind], mags[::][finind], errs[::][finind] ffsv, ffdv, ffkv, fxcc, fycc, fbgv, fbge, fiha, fizd = ( fsv[::][finind], fdv[::][finind], fkv[::][finind], xcc[::][finind], ycc[::][finind], bgv[::][finind], bge[::][finind], iha[::][finind], izd[::][finind], ) stimes, smags, serrs, separams = sigclip_magseries_with_extparams( times, mags, errs, [fsv, fdv, fkv, xcc, ycc, bgv, bge, iha, izd], sigclip=epdsmooth_sigclip, magsarefluxes=magsarefluxes ) sfsv, sfdv, sfkv, sxcc, sycc, sbgv, sbge, siha, sizd = separams # smooth the signal if isinstance(epdsmooth_extraparams, dict): smoothedmags = epdsmooth_func(smags, epdsmooth_windowsize, **epdsmooth_extraparams) else: smoothedmags = epdsmooth_func(smags, epdsmooth_windowsize) # initial fit coeffs initcoeffs = np.zeros(22) # fit the smoothed mags and find the EPD function coefficients leastsqfit = leastsq(_epd_residual, initcoeffs, args=(smoothedmags, sfsv, sfdv, sfkv, sxcc, sycc, sbgv, sbge, siha, sizd), full_output=True) # if the fit succeeds, then get the EPD mags if leastsqfit[-1] in (1,2,3,4): fitcoeffs = leastsqfit[0] epdfit = _epd_function(fitcoeffs, ffsv, ffdv, ffkv, fxcc, fycc, fbgv, fbge, fiha, fizd) epdmags = npmedian(fmags) + fmags - epdfit retdict = {'times':ftimes, 'mags':epdmags, 'errs':ferrs, 'fitcoeffs':fitcoeffs, 'fitinfo':leastsqfit, 'fitmags':epdfit, 'mags_median':npmedian(epdmags), 'mags_mad':npmedian(npabs(epdmags - npmedian(epdmags)))} return retdict # if the solution fails, return nothing else: LOGERROR('EPD fit did not converge') return None
def epd_magseries_extparams( times, mags, errs, externalparam_arrs, initial_coeff_guess, magsarefluxes=False, epdsmooth_sigclip=3.0, epdsmooth_windowsize=21, epdsmooth_func=smooth_magseries_savgol, epdsmooth_extraparams=None, objective_func=_epd_residual2, objective_kwargs=None, optimizer_func=least_squares, optimizer_kwargs=None, ): '''This does EPD on a mag-series with arbitrary external parameters. Parameters ---------- times,mags,errs : np.array The input mag/flux time-series to run EPD on. externalparam_arrs : list of np.arrays This is a list of ndarrays of external parameters to decorrelate against. These should all be the same size as `times`, `mags`, `errs`. initial_coeff_guess : np.array An array of initial fit coefficients to pass into the objective function. epdsmooth_sigclip : float or int or sequence of two floats/ints or None This specifies how to sigma-clip the input LC before smoothing it and fitting the EPD function to it. The actual LC will not be sigma-clipped. If a single float or int, a symmetric sigma-clip will be performed using the number provided as the sigma-multiplier to cut out from the input time-series. If a list of two ints/floats is provided, the function will perform an 'asymmetric' sigma-clip. The first element in this list is the sigma value to use for fainter flux/mag values; the second element in this list is the sigma value to use for brighter flux/mag values. For example, `sigclip=[10., 3.]`, will sigclip out greater than 10-sigma dimmings and greater than 3-sigma brightenings. Here the meaning of "dimming" and "brightening" is set by *physics* (not the magnitude system), which is why the `magsarefluxes` kwarg must be correctly set. If `sigclip` is None, no sigma-clipping will be performed, and the time-series (with non-finite elems removed) will be passed through to the output. epdsmooth_windowsize : int This is the number of LC points to smooth over to generate a smoothed light curve that will be used to fit the EPD function. epdsmooth_func : Python function This sets the smoothing filter function to use. A Savitsky-Golay filter is used to smooth the light curve by default. The functions that can be used with this kwarg are listed in `varbase.trends`. If you want to use your own function, it MUST have the following signature:: def smoothfunc(mags_array, window_size, **extraparams) and return a numpy array of the same size as `mags_array` with the smoothed time-series. Any extra params can be provided using the `extraparams` dict. epdsmooth_extraparams : dict This is a dict of any extra filter params to supply to the smoothing function. objective_func : Python function The function that calculates residuals between the model and the smoothed mag-series. This must have the following signature:: def objective_func(fit_coeffs, times, mags, errs, *external_params, **objective_kwargs) where `times`, `mags`, `errs` are arrays of the sigma-clipped and smoothed time-series, `fit_coeffs` is an array of EPD fit coefficients, `external_params` is a tuple of the passed in external parameter arrays, and `objective_kwargs` is a dict of any optional kwargs to pass into the objective function. This should return the value of the residual based on evaluating the model function (and any weights based on errs or times). objective_kwargs : dict or None A dict of kwargs to pass into the `objective_func` function. optimizer_func : Python function The function that minimizes the residual between the model and the smoothed mag-series using the `objective_func`. This should have a signature similar to one of the optimizer functions in `scipy.optimize <https://docs.scipy.org/doc/scipy/reference/optimize.html>`_, i.e.:: def optimizer_func(objective_func, initial_coeffs, args=(), ...) and return a `scipy.optimize.OptimizeResult <https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.OptimizeResult.html>`_. We'll rely on the ``.success`` attribute to determine if the EPD fit was successful, and the ``.x`` attribute to get the values of the fit coefficients. optimizer_kwargs : dict or None A dict of kwargs to pass into the `optimizer_func` function. Returns ------- dict Returns a dict of the following form:: {'times':the input times after non-finite elems removed, 'mags':the EPD detrended mag values (the EPD mags), 'errs':the errs after non-finite elems removed, 'fitcoeffs':EPD fit coefficient values, 'fitinfo':the result returned by the optimizer function, 'mags_median': this is the median of the EPD mags, 'mags_mad': this is the MAD of EPD mags} ''' # get finite times, mags, errs finind = np.isfinite(times) & np.isfinite(mags) & np.isfinite(errs) ftimes, fmags, ferrs = times[::][finind], mags[::][finind], errs[::][finind] finalparam_arrs = [] for ep in externalparam_arrs: finalparam_arrs.append(ep[::][finind]) # sigclip the LC to pass into the smoothing for EPD fit stimes, smags, serrs, eparams = sigclip_magseries_with_extparams( times.copy(), mags.copy(), errs.copy(), [x.copy() for x in externalparam_arrs], sigclip=epdsmooth_sigclip, magsarefluxes=magsarefluxes ) # smooth the signal before fitting the function to it if isinstance(epdsmooth_extraparams, dict): smoothedmags = epdsmooth_func(smags, epdsmooth_windowsize, **epdsmooth_extraparams) else: smoothedmags = epdsmooth_func(smags, epdsmooth_windowsize) # the initial coeffs are passed in here initial_coeffs = initial_coeff_guess # reform the objective function with any optional kwargs if objective_kwargs is not None: obj_func = partial(objective_func, **objective_kwargs) else: obj_func = objective_func # run the optimizer function by passing in the objective function, the # coeffs, and the smoothed mags and external params as part of the `args` # tuple if not optimizer_kwargs: optimizer_kwargs = {} fit_info = optimizer_func( obj_func, initial_coeffs, args=(stimes, smoothedmags, serrs, *eparams), **optimizer_kwargs ) if fit_info.success: fit_coeffs = fit_info.x epd_mags = np.median(fmags) + obj_func(fit_coeffs, ftimes, fmags, ferrs, *finalparam_arrs) retdict = {'times':ftimes, 'mags':epd_mags, 'errs':ferrs, 'fitcoeffs':fit_coeffs, 'fitinfo':fit_info, 'mags_median':npmedian(epd_mags), 'mags_mad':npmedian(npabs(epd_mags - npmedian(epd_mags)))} return retdict # if the solution fails, return nothing else: LOGERROR('EPD fit did not converge') return None
def rfepd_magseries(times, mags, errs, externalparam_arrs, magsarefluxes=False, epdsmooth=True, epdsmooth_sigclip=3.0, epdsmooth_windowsize=21, epdsmooth_func=smooth_magseries_savgol, epdsmooth_extraparams=None, rf_subsample=1.0, rf_ntrees=300, rf_extraparams={'criterion':'mse', 'oob_score':False, 'n_jobs':-1}): '''This uses a `RandomForestRegressor` to de-correlate the given magseries. Parameters ---------- times,mags,errs : np.array The input mag/flux time-series to run EPD on. externalparam_arrs : list of np.arrays This is a list of ndarrays of external parameters to decorrelate against. These should all be the same size as `times`, `mags`, `errs`. epdsmooth : bool If True, sets the training LC for the RandomForestRegress to be a smoothed version of the sigma-clipped light curve provided in `times`, `mags`, `errs`. epdsmooth_sigclip : float or int or sequence of two floats/ints or None This specifies how to sigma-clip the input LC before smoothing it and fitting the EPD function to it. The actual LC will not be sigma-clipped. If a single float or int, a symmetric sigma-clip will be performed using the number provided as the sigma-multiplier to cut out from the input time-series. If a list of two ints/floats is provided, the function will perform an 'asymmetric' sigma-clip. The first element in this list is the sigma value to use for fainter flux/mag values; the second element in this list is the sigma value to use for brighter flux/mag values. For example, `sigclip=[10., 3.]`, will sigclip out greater than 10-sigma dimmings and greater than 3-sigma brightenings. Here the meaning of "dimming" and "brightening" is set by *physics* (not the magnitude system), which is why the `magsarefluxes` kwarg must be correctly set. If `sigclip` is None, no sigma-clipping will be performed, and the time-series (with non-finite elems removed) will be passed through to the output. epdsmooth_windowsize : int This is the number of LC points to smooth over to generate a smoothed light curve that will be used to fit the EPD function. epdsmooth_func : Python function This sets the smoothing filter function to use. A Savitsky-Golay filter is used to smooth the light curve by default. The functions that can be used with this kwarg are listed in `varbase.trends`. If you want to use your own function, it MUST have the following signature:: def smoothfunc(mags_array, window_size, **extraparams) and return a numpy array of the same size as `mags_array` with the smoothed time-series. Any extra params can be provided using the `extraparams` dict. epdsmooth_extraparams : dict This is a dict of any extra filter params to supply to the smoothing function. rf_subsample : float Defines the fraction of the size of the `mags` array to use for training the random forest regressor. rf_ntrees : int This is the number of trees to use for the `RandomForestRegressor`. rf_extraprams : dict This is a dict of any extra kwargs to provide to the `RandomForestRegressor` instance used. Returns ------- dict Returns a dict with decorrelated mags and the usual info from the `RandomForestRegressor`: variable importances, etc. ''' # get finite times, mags, errs finind = np.isfinite(times) & np.isfinite(mags) & np.isfinite(errs) ftimes, fmags, ferrs = times[::][finind], mags[::][finind], errs[::][finind] finalparam_arrs = [] for ep in externalparam_arrs: finalparam_arrs.append(ep[::][finind]) stimes, smags, serrs, eparams = sigclip_magseries_with_extparams( times, mags, errs, externalparam_arrs, sigclip=epdsmooth_sigclip, magsarefluxes=magsarefluxes ) # smoothing is optional for RFR because we train on a fraction of the mag # series and so should not require a smoothed input to fit a function to if epdsmooth: # smooth the signal if isinstance(epdsmooth_extraparams, dict): smoothedmags = epdsmooth_func(smags, epdsmooth_windowsize, **epdsmooth_extraparams) else: smoothedmags = epdsmooth_func(smags, epdsmooth_windowsize) else: smoothedmags = smags # set up the regressor if isinstance(rf_extraparams, dict): RFR = RandomForestRegressor(n_estimators=rf_ntrees, **rf_extraparams) else: RFR = RandomForestRegressor(n_estimators=rf_ntrees) # collect the features features = np.column_stack(eparams) # fit, then generate the predicted values, then get corrected values # we fit on a randomly selected subsample of all the mags if rf_subsample < 1.0: featureindices = np.arange(smoothedmags.size) # these are sorted because time-order should be important training_indices = np.sort( npr.choice(featureindices, size=int(rf_subsample*smoothedmags.size), replace=False) ) else: training_indices = np.arange(smoothedmags.size) RFR.fit(features[training_indices,:], smoothedmags[training_indices]) # predict on the full feature set flux_corrections = RFR.predict(np.column_stack(finalparam_arrs)) corrected_fmags = npmedian(fmags) + fmags - flux_corrections retdict = {'times':ftimes, 'mags':corrected_fmags, 'errs':ferrs, 'feature_importances':RFR.feature_importances_, 'regressor':RFR, 'mags_median':npmedian(corrected_fmags), 'mags_mad':npmedian(npabs(corrected_fmags - npmedian(corrected_fmags)))} return retdict
def lcfit_features(times, mags, errs, period, fourierorder=5, # these are depth, duration, ingress duration transitparams=(-0.01,0.1,0.1), # these are depth, duration, depth ratio, secphase ebparams=(-0.2,0.3,0.7,0.5), sigclip=10.0, magsarefluxes=False, fitfailure_means_featurenan=False, verbose=True): '''This calculates various features related to fitting models to light curves. This function: - calculates `R_ij` and `phi_ij` ratios for Fourier fit amplitudes and phases. - calculates the reduced chi-sq for fourier, EB, and planet transit fits. - calculates the reduced chi-sq for fourier, EB, planet transit fits w/2 x period. Parameters ---------- times,mags,errs : np.array The input mag/flux time-series to calculate periodic features for. period : float The period of variabiity to use to phase the light curve. fourierorder : int The Fourier order to use to generate sinusoidal function and fit that to the phased light curve. transitparams : list of floats The transit depth, duration, and ingress duration to use to generate a trapezoid planet transit model fit to the phased light curve. The period used is the one provided in `period`, while the epoch is automatically obtained from a spline fit to the phased light curve. ebparams : list of floats The primary eclipse depth, eclipse duration, the primary-secondary depth ratio, and the phase of the secondary eclipse to use to generate an eclipsing binary model fit to the phased light curve. The period used is the one provided in `period`, while the epoch is automatically obtained from a spline fit to the phased light curve. sigclip : float or int or sequence of two floats/ints or None If a single float or int, a symmetric sigma-clip will be performed using the number provided as the sigma-multiplier to cut out from the input time-series. If a list of two ints/floats is provided, the function will perform an 'asymmetric' sigma-clip. The first element in this list is the sigma value to use for fainter flux/mag values; the second element in this list is the sigma value to use for brighter flux/mag values. For example, `sigclip=[10., 3.]`, will sigclip out greater than 10-sigma dimmings and greater than 3-sigma brightenings. Here the meaning of "dimming" and "brightening" is set by *physics* (not the magnitude system), which is why the `magsarefluxes` kwarg must be correctly set. If `sigclip` is None, no sigma-clipping will be performed, and the time-series (with non-finite elems removed) will be passed through to the output. magsarefluxes : bool Set this to True if the input measurements in `mags` are actually fluxes. fitfailure_means_featurenan : bool If the planet, EB and EBx2 fits don't return standard errors because the covariance matrix could not be generated, then the fit is suspicious and the features calculated can't be trusted. If `fitfailure_means_featurenan` is True, then the output features for these fits will be set to nan. verbose : bool If True, will indicate progress while working. Returns ------- dict A dict of all the features calculated is returned. ''' # get the finite values finind = np.isfinite(times) & np.isfinite(mags) & np.isfinite(errs) ftimes, fmags, ferrs = times[finind], mags[finind], errs[finind] # get nonzero errors nzind = np.nonzero(ferrs) ftimes, fmags, ferrs = ftimes[nzind], fmags[nzind], ferrs[nzind] # get the MAD of the unphased light curve lightcurve_median = np.median(fmags) lightcurve_mad = np.median(np.abs(fmags - lightcurve_median)) # # fourier fit # # we fit a Fourier series to the light curve using the best period and # extract the amplitudes and phases up to the 8th order to fit the LC. the # various ratios of the amplitudes A_ij and the differences in the phases # phi_ij are also used as periodic variability features # do the fit ffit = lcfit.fourier_fit_magseries(ftimes, fmags, ferrs, period, fourierorder=fourierorder, sigclip=sigclip, magsarefluxes=magsarefluxes, verbose=verbose) # get the coeffs and redchisq fourier_fitcoeffs = ffit['fitinfo']['finalparams'] fourier_chisq = ffit['fitchisq'] fourier_redchisq = ffit['fitredchisq'] if fourier_fitcoeffs is not None: fourier_modelmags, _, _, fpmags, _ = sinusoidal.fourier_sinusoidal_func( [period, ffit['fitinfo']['fitepoch'], ffit['fitinfo']['finalparams'][:fourierorder], ffit['fitinfo']['finalparams'][fourierorder:]], ftimes, fmags, ferrs ) fourier_residuals = fourier_modelmags - fpmags fourier_residual_median = np.median(fourier_residuals) fourier_residual_mad = np.median(np.abs(fourier_residuals - fourier_residual_median)) # break them out into amps and phases famplitudes = fourier_fitcoeffs[:fourierorder] fphases = fourier_fitcoeffs[fourierorder:] famp_combos = combinations(famplitudes,2) famp_cinds = combinations(range(len(famplitudes)),2) fpha_combos = combinations(fphases,2) fpha_cinds = combinations(range(len(fphases)),2) else: LOGERROR('LC fit to sinusoidal series model failed, ' 'using initial params') initfourieramps = [0.6] + [0.2]*(fourierorder - 1) initfourierphas = [0.1] + [0.1]*(fourierorder - 1) fourier_modelmags, _, _, fpmags, _ = sinusoidal.fourier_sinusoidal_func( [period, ffit['fitinfo']['fitepoch'], initfourieramps, initfourierphas], ftimes, fmags, ferrs ) fourier_residuals = fourier_modelmags - fpmags fourier_residual_median = np.median(fourier_residuals) fourier_residual_mad = np.median(np.abs(fourier_residuals - fourier_residual_median)) # break them out into amps and phases famplitudes = initfourieramps fphases = initfourierphas famp_combos = combinations(famplitudes,2) famp_cinds = combinations(range(len(famplitudes)),2) fpha_combos = combinations(fphases,2) fpha_cinds = combinations(range(len(fphases)),2) fampratios = {} fphadiffs = {} # get the ratios for all fourier coeff combinations for ampi, ampc, phai, phac in zip(famp_cinds, famp_combos, fpha_cinds, fpha_combos): ampratind = 'R_%s%s' % (ampi[1]+1, ampi[0]+1) # this is R_ij amprat = ampc[1]/ampc[0] phadiffind = 'phi_%s%s' % (phai[1]+1, phai[0]+1) # this is phi_ij phadiff = phac[1] - phai[0]*phac[0] fampratios[ampratind] = amprat fphadiffs[phadiffind] = phadiff # update the outdict for the Fourier fit results outdict = { 'fourier_ampratios':fampratios, 'fourier_phadiffs':fphadiffs, 'fourier_fitparams':fourier_fitcoeffs, 'fourier_redchisq':fourier_redchisq, 'fourier_chisq':fourier_chisq, 'fourier_residual_median':fourier_residual_median, 'fourier_residual_mad':fourier_residual_mad, 'fourier_residual_mad_over_lcmad':fourier_residual_mad/lightcurve_mad } # EB and planet fits will find the epoch automatically planetfitparams = [period, None, transitparams[0], transitparams[1], transitparams[2]] ebfitparams = [period, None, ebparams[0], ebparams[1], ebparams[2], ebparams[3]] # do the planet and EB fit with this period planet_fit = lcfit.traptransit_fit_magseries(ftimes, fmags, ferrs, planetfitparams, sigclip=sigclip, magsarefluxes=magsarefluxes, verbose=verbose) planetfit_finalparams = planet_fit['fitinfo']['finalparams'] planetfit_finalparamerrs = planet_fit['fitinfo']['finalparamerrs'] if planetfit_finalparamerrs is None and fitfailure_means_featurenan: LOGWARNING('planet fit: no standard errors available ' 'for fit parameters, fit is bad, ' 'setting fit chisq and red-chisq to np.nan') planetfit_chisq = np.nan planetfit_redchisq = np.nan planet_residual_median = np.nan planet_residual_mad = np.nan planet_residual_mad_over_lcmad = np.nan else: planetfit_chisq = planet_fit['fitchisq'] planetfit_redchisq = planet_fit['fitredchisq'] if planetfit_finalparams is not None: planet_modelmags, _, _, ppmags, _ = transits.trapezoid_transit_func( planetfit_finalparams, ftimes, fmags, ferrs ) else: LOGERROR('LC fit to transit planet model ' 'failed, using initial params') planet_modelmags, _, _, ppmags, _ = transits.trapezoid_transit_func( planetfitparams, ftimes, fmags, ferrs ) planet_residuals = planet_modelmags - ppmags planet_residual_median = np.median(planet_residuals) planet_residual_mad = np.median(np.abs(planet_residuals - planet_residual_median)) planet_residual_mad_over_lcmad = planet_residual_mad/lightcurve_mad eb_fit = lcfit.gaussianeb_fit_magseries(ftimes, fmags, ferrs, ebfitparams, sigclip=sigclip, magsarefluxes=magsarefluxes, verbose=verbose) ebfit_finalparams = eb_fit['fitinfo']['finalparams'] ebfit_finalparamerrs = eb_fit['fitinfo']['finalparamerrs'] if ebfit_finalparamerrs is None and fitfailure_means_featurenan: LOGWARNING('EB fit: no standard errors available ' 'for fit parameters, fit is bad, ' 'setting fit chisq and red-chisq to np.nan') ebfit_chisq = np.nan ebfit_redchisq = np.nan eb_residual_median = np.nan eb_residual_mad = np.nan eb_residual_mad_over_lcmad = np.nan else: ebfit_chisq = eb_fit['fitchisq'] ebfit_redchisq = eb_fit['fitredchisq'] if ebfit_finalparams is not None: eb_modelmags, _, _, ebpmags, _ = eclipses.invgauss_eclipses_func( ebfit_finalparams, ftimes, fmags, ferrs ) else: LOGERROR('LC fit to EB model failed, using initial params') eb_modelmags, _, _, ebpmags, _ = eclipses.invgauss_eclipses_func( ebfitparams, ftimes, fmags, ferrs ) eb_residuals = eb_modelmags - ebpmags eb_residual_median = np.median(eb_residuals) eb_residual_mad = np.median(np.abs(eb_residuals - eb_residual_median)) eb_residual_mad_over_lcmad = eb_residual_mad/lightcurve_mad # do the EB fit with 2 x period ebfitparams[0] = ebfitparams[0]*2.0 eb_fitx2 = lcfit.gaussianeb_fit_magseries(ftimes, fmags, ferrs, ebfitparams, sigclip=sigclip, magsarefluxes=magsarefluxes, verbose=verbose) ebfitx2_finalparams = eb_fitx2['fitinfo']['finalparams'] ebfitx2_finalparamerrs = eb_fitx2['fitinfo']['finalparamerrs'] if ebfitx2_finalparamerrs is None and fitfailure_means_featurenan: LOGWARNING('EB x2 period fit: no standard errors available ' 'for fit parameters, fit is bad, ' 'setting fit chisq and red-chisq to np.nan') ebfitx2_chisq = np.nan ebfitx2_redchisq = np.nan ebx2_residual_median = np.nan ebx2_residual_mad = np.nan ebx2_residual_mad_over_lcmad = np.nan else: ebfitx2_chisq = eb_fitx2['fitchisq'] ebfitx2_redchisq = eb_fitx2['fitredchisq'] if ebfitx2_finalparams is not None: ebx2_modelmags, _, _, ebx2pmags, _ = ( eclipses.invgauss_eclipses_func( ebfitx2_finalparams, ftimes, fmags, ferrs ) ) else: LOGERROR('LC fit to EB model with 2xP failed, using initial params') ebx2_modelmags, _, _, ebx2pmags, _ = ( eclipses.invgauss_eclipses_func( ebfitparams, ftimes, fmags, ferrs ) ) ebx2_residuals = ebx2_modelmags - ebx2pmags ebx2_residual_median = np.median(ebx2_residuals) ebx2_residual_mad = np.median(np.abs(ebx2_residuals - ebx2_residual_median)) ebx2_residual_mad_over_lcmad = ebx2_residual_mad/lightcurve_mad # update the outdict outdict.update({ 'planet_fitparams':planetfit_finalparams, 'planet_chisq':planetfit_chisq, 'planet_redchisq':planetfit_redchisq, 'planet_residual_median':planet_residual_median, 'planet_residual_mad':planet_residual_mad, 'planet_residual_mad_over_lcmad':( planet_residual_mad_over_lcmad, ), 'eb_fitparams':ebfit_finalparams, 'eb_chisq':ebfit_chisq, 'eb_redchisq':ebfit_redchisq, 'eb_residual_median':eb_residual_median, 'eb_residual_mad':eb_residual_mad, 'eb_residual_mad_over_lcmad':( eb_residual_mad_over_lcmad, ), 'ebx2_fitparams':ebfitx2_finalparams, 'ebx2_chisq':ebfitx2_chisq, 'ebx2_redchisq':ebfitx2_redchisq, 'ebx2_residual_median':ebx2_residual_median, 'ebx2_residual_mad':ebx2_residual_mad, 'ebx2_residual_mad_over_lcmad':( ebx2_residual_mad_over_lcmad, ), }) return outdict
def periodogram_features(pgramlist, times, mags, errs, sigclip=10.0, pdiff_threshold=1.0e-4, sidereal_threshold=1.0e-4, sampling_peak_multiplier=5.0, sampling_startp=None, sampling_endp=None, verbose=True): '''This calculates various periodogram features (for each periodogram). The following features are obtained: - For all best periods from all periodogram methods in `pgramlist`, calculates the number of these with peaks that are at least `sampling_peak_multiplier` x time-sampling periodogram peak at the same period. This indicates how likely the `pgramlist` periodogram peaks are to being real as opposed to just being caused by time-sampling window-function of the observations. - For all best periods from all periodogram methods in `pgramlist`, calculates the number of best periods which are consistent with a sidereal day (1.0027379 and 0.9972696), likely indicating that they're not real. - For all best periods from all periodogram methods in `pgramlist`, calculates the number of cross-wise period differences for all of these that fall below the `pdiff_threshold` value. If this is high, most of the period-finders in `pgramlist` agree on their best period results, so it's likely the periods found are real. Parameters ---------- pgramlist : list of dicts This is a list of dicts returned by any of the periodfinding methods in :py:mod:`astrobase.periodbase`. This can also be obtained from the resulting pickle from the :py:func:astrobase.lcproc.periodsearch.run_pf` function. It's a good idea to make `pgramlist` a list of periodogram lists from all magnitude columns in the input light curve to test periodic variability across all magnitude columns (e.g. period diffs between EPD and TFA mags) times,mags,errs : np.array The input flux/mag time-series to use to calculate features. These are used to recalculate the time-sampling L-S periodogram (using :py:func:`astrobase.periodbase.zgls.specwindow_lsp`) if one is not present in pgramlist. If it's present, these can all be set to None. sigclip : float or int or sequence of two floats/ints or None If a single float or int, a symmetric sigma-clip will be performed using the number provided as the sigma-multiplier to cut out from the input time-series. If a list of two ints/floats is provided, the function will perform an 'asymmetric' sigma-clip. The first element in this list is the sigma value to use for fainter flux/mag values; the second element in this list is the sigma value to use for brighter flux/mag values. For example, `sigclip=[10., 3.]`, will sigclip out greater than 10-sigma dimmings and greater than 3-sigma brightenings. Here the meaning of "dimming" and "brightening" is set by *physics* (not the magnitude system), which is why the `magsarefluxes` kwarg must be correctly set. If `sigclip` is None, no sigma-clipping will be performed, and the time-series (with non-finite elems removed) will be passed through to the output. pdiff_threshold : float This is the max difference between periods to consider them the same. sidereal_threshold : float This is the max difference between any of the 'best' periods and the sidereal day periods to consider them the same. sampling_peak_multiplier : float This is the minimum multiplicative factor of a 'best' period's normalized periodogram peak over the sampling periodogram peak at the same period required to accept the 'best' period as possibly real. sampling_startp, sampling_endp : float If the `pgramlist` doesn't have a time-sampling Lomb-Scargle periodogram, it will be obtained automatically. Use these kwargs to control the minimum and maximum period interval to be searched when generating this periodogram. verbose : bool If True, will indicate progress and report errors. Returns ------- dict Returns a dict with all of the periodogram features calculated. ''' # run the sampling peak periodogram if necessary pfmethodlist = [pgram['method'] for pgram in pgramlist] if 'win' not in pfmethodlist: # get the finite values finind = np.isfinite(times) & np.isfinite(mags) & np.isfinite(errs) ftimes, fmags, ferrs = times[finind], mags[finind], errs[finind] # get nonzero errors nzind = np.nonzero(ferrs) ftimes, fmags, ferrs = ftimes[nzind], fmags[nzind], ferrs[nzind] sampling_lsp = specwindow_lsp(times, mags, errs, startp=sampling_startp, endp=sampling_endp, sigclip=sigclip, verbose=verbose) else: sampling_lsp = pgramlist[pfmethodlist.index('win')] # get the normalized sampling periodogram peaks normalized_sampling_lspvals = ( sampling_lsp['lspvals']/(np.nanmax(sampling_lsp['lspvals']) - np.nanmin(sampling_lsp['lspvals'])) ) normalized_sampling_periods = sampling_lsp['periods'] # go through the periodograms and calculate normalized peak height of best # periods over the normalized peak height of the sampling periodogram at the # same periods for pfm, pgram in zip(pfmethodlist, pgramlist): if pfm == 'pdm': best_peak_sampling_ratios = [] close_to_sidereal_flag = [] periods = pgram['periods'] peaks = pgram['lspvals'] normalized_peaks = (1.0 - peaks)/(np.nanmax(1.0 - peaks) - np.nanmin(1.0 - peaks)) # get the best period normalized peaks if pgram['nbestperiods'] is None: LOGERROR('no period results for method: %s' % pfm) continue for bp in pgram['nbestperiods']: if np.isfinite(bp): # # first, get the normalized peak ratio # thisp_norm_pgrampeak = normalized_peaks[periods == bp] thisp_sampling_pgramind = ( np.abs(normalized_sampling_periods - bp) < pdiff_threshold ) thisp_sampling_peaks = normalized_sampling_lspvals[ thisp_sampling_pgramind ] if thisp_sampling_peaks.size > 1: thisp_sampling_ratio = ( thisp_norm_pgrampeak/np.mean(thisp_sampling_peaks) ) elif thisp_sampling_peaks.size == 1: thisp_sampling_ratio = ( thisp_norm_pgrampeak/thisp_sampling_peaks ) else: LOGERROR('sampling periodogram is not defined ' 'at period %.5f, ' 'skipping calculation of ratio' % bp) thisp_sampling_ratio = np.nan best_peak_sampling_ratios.append(thisp_sampling_ratio) # # next, see if the best periods are close to a sidereal day # or any multiples of thus # sidereal_a_ratio = (bp - 1.0027379)/bp sidereal_b_ratio = (bp - 0.9972696)/bp if ((sidereal_a_ratio < sidereal_threshold) or (sidereal_b_ratio < sidereal_threshold)): close_to_sidereal_flag.append(True) else: close_to_sidereal_flag.append(False) else: LOGERROR('period is nan') best_peak_sampling_ratios.append(np.nan) close_to_sidereal_flag.append(False) # update the pgram with these pgram['nbestpeakratios'] = best_peak_sampling_ratios pgram['siderealflags'] = close_to_sidereal_flag elif pfm != 'win': best_peak_sampling_ratios = [] close_to_sidereal_flag = [] periods = pgram['periods'] peaks = pgram['lspvals'] normalized_peaks = peaks/(np.nanmax(peaks) - np.nanmin(peaks)) # get the best period normalized peaks if pgram['nbestperiods'] is None: LOGERROR('no period results for method: %s' % pfm) continue # # first, get the best period normalized peaks # for bp in pgram['nbestperiods']: if np.isfinite(bp): thisp_norm_pgrampeak = normalized_peaks[periods == bp] thisp_sampling_pgramind = ( np.abs(normalized_sampling_periods - bp) < pdiff_threshold ) thisp_sampling_peaks = normalized_sampling_lspvals[ thisp_sampling_pgramind ] if thisp_sampling_peaks.size > 1: thisp_sampling_ratio = ( thisp_norm_pgrampeak/np.mean(thisp_sampling_peaks) ) elif thisp_sampling_peaks.size == 1: thisp_sampling_ratio = ( thisp_norm_pgrampeak/thisp_sampling_peaks ) else: LOGERROR('sampling periodogram is not defined ' 'at period %.5f, ' 'skipping calculation of ratio' % bp) thisp_sampling_ratio = np.nan best_peak_sampling_ratios.append(thisp_sampling_ratio) # # next, see if the best periods are close to a sidereal day # or any multiples of thus # sidereal_a_ratio = (bp - 1.0027379)/bp sidereal_b_ratio = (bp - 0.9972696)/bp if ((sidereal_a_ratio < sidereal_threshold) or (sidereal_b_ratio < sidereal_threshold)): close_to_sidereal_flag.append(True) else: close_to_sidereal_flag.append(False) else: LOGERROR('period is nan') best_peak_sampling_ratios.append(np.nan) close_to_sidereal_flag.append(False) # update the pgram with these pgram['nbestpeakratios'] = best_peak_sampling_ratios pgram['siderealflags'] = close_to_sidereal_flag # # done with calculations, get the features we need # # get the best periods across all the period finding methods all_bestperiods = np.concatenate( [x['nbestperiods'] for x in pgramlist if (x['method'] != 'win' and x['nbestperiods'] is not None)] ) all_bestperiod_diffs = np.array( [abs(a-b) for a,b in combinations(all_bestperiods,2)] ) all_sampling_ratios = np.concatenate( [x['nbestpeakratios'] for x in pgramlist if (x['method'] != 'win' and x['nbestperiods'] is not None)] ) all_sidereal_flags = np.concatenate( [x['siderealflags'] for x in pgramlist if (x['method'] != 'win' and x['nbestperiods'] is not None)] ) # bestperiods_n_abovesampling - number of top period estimates with peaks # that are at least sampling_peak_multiplier x # sampling peak height at the same period bestperiods_n_abovesampling = ( all_sampling_ratios[all_sampling_ratios > sampling_peak_multiplier] ).size # bestperiods_n_sidereal - number of top period estimates that are # consistent with a 1 day period (1.0027379 and # 0.9972696 actually, for sidereal day period) bestperiods_n_sidereal = all_sidereal_flags.sum() # bestperiods_diffn_threshold - the number of cross-wise period diffs from # all period finders that fall below the # pdiff_threshold bestperiods_diffn_threshold = ( all_bestperiod_diffs < pdiff_threshold ).size resdict = { 'bestperiods_n_abovesampling':bestperiods_n_abovesampling, 'bestperiods_n_sidereal':bestperiods_n_sidereal, 'bestperiods_diffn_threshold':bestperiods_diffn_threshold } return resdict
def phasedlc_features(times, mags, errs, period, nbrtimes=None, nbrmags=None, nbrerrs=None): '''This calculates various phased LC features for the object. Some of the features calculated here come from: Kim, D.-W., Protopapas, P., Bailer-Jones, C. A. L., et al. 2014, Astronomy and Astrophysics, 566, A43, and references therein (especially Richards, et al. 2011). Parameters ---------- times,mags,errs : np.array The input mag/flux time-series to calculate the phased LC features for. period : float The period used to phase the input mag/flux time-series. nbrtimes,nbrmags,nbrerrs : np.array or None If `nbrtimes`, `nbrmags`, and `nbrerrs` are all provided, they should be ndarrays with `times`, `mags`, `errs` of this object's closest neighbor (close within some small number x FWHM of telescope to check for blending). This function will then also calculate extra features based on the neighbor's phased LC using the `period` provided for the target object. Returns ------- dict Returns a dict with phased LC features. ''' # get the finite values finind = np.isfinite(times) & np.isfinite(mags) & np.isfinite(errs) ftimes, fmags, ferrs = times[finind], mags[finind], errs[finind] # get nonzero errors nzind = np.nonzero(ferrs) ftimes, fmags, ferrs = ftimes[nzind], fmags[nzind], ferrs[nzind] # only operate on LC if enough points if ftimes.size > 49: # get the MAD of the unphased light curve lightcurve_median = np.median(fmags) lightcurve_mad = np.median(np.abs(fmags - lightcurve_median)) # get p2p for raw lightcurve p2p_unphasedlc = lightcurve_ptp_measures(ftimes, fmags, ferrs) inveta_unphasedlc = 1.0/p2p_unphasedlc['eta_normal'] # phase the light curve with the given period, assume epoch is # times.min() phasedlc = lcmath.phase_magseries_with_errs(ftimes, fmags, ferrs, period, ftimes.min(), wrap=False) phase = phasedlc['phase'] pmags = phasedlc['mags'] perrs = phasedlc['errs'] # get ptp measures for best period ptp_bestperiod = lightcurve_ptp_measures(phase,pmags,perrs) # phase the light curve with the given periodx2, assume epoch is # times.min() phasedlc = lcmath.phase_magseries_with_errs(ftimes, fmags, ferrs, period*2.0, ftimes.min(), wrap=False) phasex2 = phasedlc['phase'] pmagsx2 = phasedlc['mags'] perrsx2 = phasedlc['errs'] # get ptp measures for best periodx2 ptp_bestperiodx2 = lightcurve_ptp_measures(phasex2,pmagsx2,perrsx2) # eta_phasedlc_bestperiod - calculate eta for the phased LC with best # period inveta_bestperiod = 1.0/ptp_bestperiod['eta_normal'] # eta_phasedlc_bestperiodx2 - calculate eta for the phased LC with best # period x 2 inveta_bestperiodx2 = 1.0/ptp_bestperiodx2['eta_normal'] # eta_phased_ratio_eta_raw - eta for best period phased LC / eta for raw # LC inveta_ratio_phased_unphased = inveta_bestperiod/inveta_unphasedlc # eta_phasedx2_ratio_eta_raw - eta for best periodx2 phased LC/eta for # raw LC inveta_ratio_phasedx2_unphased = inveta_bestperiodx2/inveta_unphasedlc # freq_model_max_delta_mags - absval of magdiff btw model phased LC # maxima using period x 2. look at points # more than 10 points away for maxima phasedx2_maxval_ind = argrelmax(pmagsx2, order=10) if phasedx2_maxval_ind[0].size > 1: phasedx2_magdiff_maxval = ( np.max(np.abs(np.diff(pmagsx2[phasedx2_maxval_ind[0]]))) ) else: phasedx2_magdiff_maxval = np.nan # freq_model_min_delta_mags - absval of magdiff btw model phased LC # minima using period x 2. look at points # more than 10 points away for minima phasedx2_minval_ind = argrelmin(pmagsx2, order=10) if phasedx2_minval_ind[0].size > 1: phasedx2_magdiff_minval = ( np.max(np.abs(np.diff(pmagsx2[phasedx2_minval_ind[0]]))) ) else: phasedx2_magdiff_minval = np.nan # p2p_scatter_pfold_over_mad - MAD of successive absolute mag diffs of # the phased LC using best period divided # by the MAD of the unphased LC phased_magdiff = np.diff(pmags) phased_magdiff_median = np.median(phased_magdiff) phased_magdiff_mad = np.median(np.abs(phased_magdiff - phased_magdiff_median)) phasedx2_magdiff = np.diff(pmagsx2) phasedx2_magdiff_median = np.median(phasedx2_magdiff) phasedx2_magdiff_mad = np.median(np.abs(phasedx2_magdiff - phasedx2_magdiff_median)) phased_magdiffmad_unphased_mad_ratio = phased_magdiff_mad/lightcurve_mad phasedx2_magdiffmad_unphased_mad_ratio = ( phasedx2_magdiff_mad/lightcurve_mad ) # get the percentiles of the slopes of the adjacent mags for phasedx2 phasedx2_slopes = np.diff(pmagsx2)/np.diff(phasex2) phasedx2_slope_percentiles = np.ravel(np.nanpercentile(phasedx2_slopes, [10.0,90.0])) phasedx2_slope_10percentile = phasedx2_slope_percentiles[0] phasedx2_slope_90percentile = phasedx2_slope_percentiles[1] # check if nbrtimes, _mags, _errs are available if ((nbrtimes is not None) and (nbrmags is not None) and (nbrerrs is not None)): # get the finite values nfinind = (np.isfinite(nbrtimes) & np.isfinite(nbrmags) & np.isfinite(nbrerrs)) nftimes, nfmags, nferrs = (nbrtimes[nfinind], nbrmags[nfinind], nbrerrs[nfinind]) # get nonzero errors nnzind = np.nonzero(nferrs) nftimes, nfmags, nferrs = (nftimes[nnzind], nfmags[nnzind], nferrs[nnzind]) # only operate on LC if enough points if nftimes.size > 49: # get the phased light curve using the same period and epoch as # the actual object nphasedlc = lcmath.phase_magseries_with_errs( nftimes, nfmags, nferrs, period, ftimes.min(), wrap=False ) # normalize the object and neighbor phased mags norm_pmags = pmags - np.median(pmags) norm_npmags = nphasedlc['mags'] - np.median(nphasedlc['mags']) # phase bin them both so we can compare LCs easily phabinned_objectlc = lcmath.phase_bin_magseries(phase, norm_pmags, minbinelems=1) phabinned_nbrlc = lcmath.phase_bin_magseries(nphasedlc['phase'], norm_npmags, minbinelems=1) absdiffs = [] for pha, phamag in zip(phabinned_objectlc['binnedphases'], phabinned_objectlc['binnedmags']): try: # get the matching phase from the neighbor phased LC phadiffs = np.abs(pha - phabinned_nbrlc['binnedphases']) minphadiffind = np.where( (phadiffs < 1.0e-4) & (phadiffs == np.min(phadiffs)) ) absmagdiff = np.abs( phamag - phabinned_nbrlc['binnedmags'][ minphadiffind ] ) if absmagdiff.size > 0: absdiffs.append(absmagdiff.min()) except Exception as e: continue # sum of absdiff between the normalized to 0.0 phased LC of this # object and that of the closest neighbor phased with the same # period and epoch if len(absdiffs) > 0: sum_nbr_phasedlc_magdiff = sum(absdiffs) else: sum_nbr_phasedlc_magdiff = np.nan else: sum_nbr_phasedlc_magdiff = np.nan else: sum_nbr_phasedlc_magdiff = np.nan return { 'inveta_unphasedlc':inveta_unphasedlc, 'inveta_bestperiod':inveta_bestperiod, 'inveta_bestperiodx2':inveta_bestperiodx2, 'inveta_ratio_phased_unphased':inveta_ratio_phased_unphased, 'inveta_ratio_phasedx2_unphased':inveta_ratio_phasedx2_unphased, 'phasedx2_magdiff_maxima':phasedx2_magdiff_maxval, 'phasedx2_magdiff_minina':phasedx2_magdiff_minval, 'phased_unphased_magdiff_mad_ratio':( phased_magdiffmad_unphased_mad_ratio ), 'phasedx2_unphased_magdiff_mad_ratio':( phasedx2_magdiffmad_unphased_mad_ratio ), 'phasedx2_slope_10percentile':phasedx2_slope_10percentile, 'phasedx2_slope_90percentile':phasedx2_slope_90percentile, 'sum_nbr_phasedlc_magdiff':sum_nbr_phasedlc_magdiff, } else: return { 'inveta_unphasedlc':np.nan, 'inveta_bestperiod':np.nan, 'inveta_bestperiodx2':np.nan, 'inveta_ratio_phased_unphased':np.nan, 'inveta_ratio_phasedx2_unphased':np.nan, 'phasedx2_magdiff_maxima':np.nan, 'phasedx2_magdiff_minina':np.nan, 'phased_unphased_magdiff_mad_ratio':np.nan, 'phasedx2_unphased_magdiff_mad_ratio':np.nan, 'phasedx2_slope_10percentile':np.nan, 'phasedx2_slope_90percentile':np.nan, 'sum_nbr_phasedlc_magdiff':np.nan, }
def stellingwerf_pdm_theta(times, mags, errs, frequency, binsize=0.05, minbin=9): ''' This calculates the Stellingwerf PDM theta value at a test frequency. Parameters ---------- times,mags,errs : np.array The input time-series and associated errors. frequency : float The test frequency to calculate the theta statistic at. binsize : float The phase bin size to use. minbin : int The minimum number of items in a phase bin to consider in the calculation of the statistic. Returns ------- theta_pdm : float The value of the theta statistic at the specified `frequency`. ''' period = 1.0/frequency fold_time = times[0] phased = phase_magseries(times, mags, period, fold_time, wrap=False, sort=True) phases = phased['phase'] pmags = phased['mags'] bins = nparange(0.0, 1.0, binsize) binnedphaseinds = npdigitize(phases, bins) binvariances = [] binndets = [] goodbins = 0 for x in npunique(binnedphaseinds): thisbin_inds = binnedphaseinds == x thisbin_mags = pmags[thisbin_inds] if thisbin_mags.size > minbin: thisbin_variance = npvar(thisbin_mags,ddof=1) binvariances.append(thisbin_variance) binndets.append(thisbin_mags.size) goodbins = goodbins + 1 # now calculate theta binvariances = nparray(binvariances) binndets = nparray(binndets) theta_top = npsum(binvariances*(binndets - 1)) / (npsum(binndets) - goodbins) theta_bot = npvar(pmags,ddof=1) theta = theta_top/theta_bot return theta
def _stellingwerf_pdm_worker(task): ''' This is a parallel worker for the function below. Parameters ---------- task : tuple This is of the form below:: task[0] = times task[1] = mags task[2] = errs task[3] = frequency task[4] = binsize task[5] = minbin Returns ------- theta_pdm : float The theta value at the specified frequency. nan if the calculation fails. ''' times, mags, errs, frequency, binsize, minbin = task try: theta = stellingwerf_pdm_theta(times, mags, errs, frequency, binsize=binsize, minbin=minbin) return theta except Exception as e: return npnan
def stellingwerf_pdm(times, mags, errs, magsarefluxes=False, startp=None, endp=None, stepsize=1.0e-4, autofreq=True, normalize=False, phasebinsize=0.05, mindetperbin=9, nbestpeaks=5, periodepsilon=0.1, sigclip=10.0, nworkers=None, verbose=True): '''This runs a parallelized Stellingwerf phase-dispersion minimization (PDM) period search. Parameters ---------- times,mags,errs : np.array The mag/flux time-series with associated measurement errors to run the period-finding on. magsarefluxes : bool If the input measurement values in `mags` and `errs` are in fluxes, set this to True. startp,endp : float or None The minimum and maximum periods to consider for the transit search. stepsize : float The step-size in frequency to use when constructing a frequency grid for the period search. autofreq : bool If this is True, the value of `stepsize` will be ignored and the :py:func:`astrobase.periodbase.get_frequency_grid` function will be used to generate a frequency grid based on `startp`, and `endp`. If these are None as well, `startp` will be set to 0.1 and `endp` will be set to `times.max() - times.min()`. normalize : bool This sets if the input time-series is normalized to 0.0 and rescaled such that its variance = 1.0. This is the recommended procedure by Schwarzenberg-Czerny 1996. phasebinsize : float The bin size in phase to use when calculating the PDM theta statistic at a test frequency. mindetperbin : int The minimum number of elements in a phase bin to consider it valid when calculating the PDM theta statistic at a test frequency. nbestpeaks : int The number of 'best' peaks to return from the periodogram results, starting from the global maximum of the periodogram peak values. periodepsilon : float The fractional difference between successive values of 'best' periods when sorting by periodogram power to consider them as separate periods (as opposed to part of the same periodogram peak). This is used to avoid broad peaks in the periodogram and make sure the 'best' periods returned are all actually independent. sigclip : float or int or sequence of two floats/ints or None If a single float or int, a symmetric sigma-clip will be performed using the number provided as the sigma-multiplier to cut out from the input time-series. If a list of two ints/floats is provided, the function will perform an 'asymmetric' sigma-clip. The first element in this list is the sigma value to use for fainter flux/mag values; the second element in this list is the sigma value to use for brighter flux/mag values. For example, `sigclip=[10., 3.]`, will sigclip out greater than 10-sigma dimmings and greater than 3-sigma brightenings. Here the meaning of "dimming" and "brightening" is set by *physics* (not the magnitude system), which is why the `magsarefluxes` kwarg must be correctly set. If `sigclip` is None, no sigma-clipping will be performed, and the time-series (with non-finite elems removed) will be passed through to the output. nworkers : int The number of parallel workers to use when calculating the periodogram. verbose : bool If this is True, will indicate progress and details about the frequency grid used for the period search. Returns ------- dict This function returns a dict, referred to as an `lspinfo` dict in other astrobase functions that operate on periodogram results. This is a standardized format across all astrobase period-finders, and is of the form below:: {'bestperiod': the best period value in the periodogram, 'bestlspval': the periodogram peak associated with the best period, 'nbestpeaks': the input value of nbestpeaks, 'nbestlspvals': nbestpeaks-size list of best period peak values, 'nbestperiods': nbestpeaks-size list of best periods, 'lspvals': the full array of periodogram powers, 'periods': the full array of periods considered, 'method':'pdm' -> the name of the period-finder method, 'kwargs':{ dict of all of the input kwargs for record-keeping}} ''' # get rid of nans first and sigclip stimes, smags, serrs = sigclip_magseries(times, mags, errs, magsarefluxes=magsarefluxes, sigclip=sigclip) # make sure there are enough points to calculate a spectrum if len(stimes) > 9 and len(smags) > 9 and len(serrs) > 9: # get the frequencies to use if startp: endf = 1.0/startp else: # default start period is 0.1 day endf = 1.0/0.1 if endp: startf = 1.0/endp else: # default end period is length of time series startf = 1.0/(stimes.max() - stimes.min()) # if we're not using autofreq, then use the provided frequencies if not autofreq: frequencies = nparange(startf, endf, stepsize) if verbose: LOGINFO( 'using %s frequency points, start P = %.3f, end P = %.3f' % (frequencies.size, 1.0/endf, 1.0/startf) ) else: # this gets an automatic grid of frequencies to use frequencies = get_frequency_grid(stimes, minfreq=startf, maxfreq=endf) if verbose: LOGINFO( 'using autofreq with %s frequency points, ' 'start P = %.3f, end P = %.3f' % (frequencies.size, 1.0/frequencies.max(), 1.0/frequencies.min()) ) # map to parallel workers if (not nworkers) or (nworkers > NCPUS): nworkers = NCPUS if verbose: LOGINFO('using %s workers...' % nworkers) pool = Pool(nworkers) # renormalize the working mags to zero and scale them so that the # variance = 1 for use with our LSP functions if normalize: nmags = (smags - npmedian(smags))/npstd(smags) else: nmags = smags tasks = [(stimes, nmags, serrs, x, phasebinsize, mindetperbin) for x in frequencies] lsp = pool.map(_stellingwerf_pdm_worker, tasks) pool.close() pool.join() del pool lsp = nparray(lsp) periods = 1.0/frequencies # find the nbestpeaks for the periodogram: 1. sort the lsp array by # lowest value first 2. go down the values until we find five values # that are separated by at least periodepsilon in period # make sure to filter out the non-finite values of lsp finitepeakind = npisfinite(lsp) finlsp = lsp[finitepeakind] finperiods = periods[finitepeakind] # finlsp might not have any finite values if the period finding # failed. if so, argmin will return a ValueError. try: bestperiodind = npargmin(finlsp) except ValueError: LOGERROR('no finite periodogram values for ' 'this mag series, skipping...') return {'bestperiod':npnan, 'bestlspval':npnan, 'nbestpeaks':nbestpeaks, 'nbestlspvals':None, 'nbestperiods':None, 'lspvals':None, 'periods':None, 'method':'pdm', 'kwargs':{'startp':startp, 'endp':endp, 'stepsize':stepsize, 'normalize':normalize, 'phasebinsize':phasebinsize, 'mindetperbin':mindetperbin, 'autofreq':autofreq, 'periodepsilon':periodepsilon, 'nbestpeaks':nbestpeaks, 'sigclip':sigclip}} sortedlspind = npargsort(finlsp) sortedlspperiods = finperiods[sortedlspind] sortedlspvals = finlsp[sortedlspind] # now get the nbestpeaks nbestperiods, nbestlspvals, peakcount = ( [finperiods[bestperiodind]], [finlsp[bestperiodind]], 1 ) prevperiod = sortedlspperiods[0] # find the best nbestpeaks in the lsp and their periods for period, lspval in zip(sortedlspperiods, sortedlspvals): if peakcount == nbestpeaks: break perioddiff = abs(period - prevperiod) bestperiodsdiff = [abs(period - x) for x in nbestperiods] # print('prevperiod = %s, thisperiod = %s, ' # 'perioddiff = %s, peakcount = %s' % # (prevperiod, period, perioddiff, peakcount)) # this ensures that this period is different from the last # period and from all the other existing best periods by # periodepsilon to make sure we jump to an entire different peak # in the periodogram if (perioddiff > (periodepsilon*prevperiod) and all(x > (periodepsilon*period) for x in bestperiodsdiff)): nbestperiods.append(period) nbestlspvals.append(lspval) peakcount = peakcount + 1 prevperiod = period return {'bestperiod':finperiods[bestperiodind], 'bestlspval':finlsp[bestperiodind], 'nbestpeaks':nbestpeaks, 'nbestlspvals':nbestlspvals, 'nbestperiods':nbestperiods, 'lspvals':lsp, 'periods':periods, 'method':'pdm', 'kwargs':{'startp':startp, 'endp':endp, 'stepsize':stepsize, 'normalize':normalize, 'phasebinsize':phasebinsize, 'mindetperbin':mindetperbin, 'autofreq':autofreq, 'periodepsilon':periodepsilon, 'nbestpeaks':nbestpeaks, 'sigclip':sigclip}} else: LOGERROR('no good detections for these times and mags, skipping...') return {'bestperiod':npnan, 'bestlspval':npnan, 'nbestpeaks':nbestpeaks, 'nbestlspvals':None, 'nbestperiods':None, 'lspvals':None, 'periods':None, 'method':'pdm', 'kwargs':{'startp':startp, 'endp':endp, 'stepsize':stepsize, 'normalize':normalize, 'phasebinsize':phasebinsize, 'mindetperbin':mindetperbin, 'autofreq':autofreq, 'periodepsilon':periodepsilon, 'nbestpeaks':nbestpeaks, 'sigclip':sigclip}}
def analytic_false_alarm_probability(lspinfo, times, conservative_nfreq_eff=True, peakvals=None, inplace=True): '''This returns the analytic false alarm probabilities for periodogram peak values. FIXME: this doesn't actually work. Fix later. The calculation follows that on page 3 of Zechmeister & Kurster (2009):: FAP = 1 − [1 − Prob(z > z0)]**M where:: M is the number of independent frequencies Prob(z > z0) is the probability of peak with value > z0 z0 is the peak value we're evaluating For PDM, the Prob(z > z0) is described by the beta distribution, according to: - Schwarzenberg-Czerny (1997; https://ui.adsabs.harvard.edu/#abs/1997ApJ...489..941S) - Zalian, Chadid, and Stellingwerf (2013; http://adsabs.harvard.edu/abs/2014MNRAS.440...68Z) This is given by:: beta( (N-B)/2, (B-1)/2; ((N-B)/(B-1))*theta_pdm ) Where:: N = number of observations B = number of phase bins This translates to a scipy.stats call to the beta distribution CDF:: x = ((N-B)/(B-1))*theta_pdm_best prob_exceeds_val = scipy.stats.beta.cdf(x, (N-B)/2.0, (B-1.0)/2.0) Which we can then plug into the false alarm prob eqn above with the calculation of M. Parameters ---------- lspinfo : dict The dict returned by the :py:func:`~astrobase.periodbase.spdm.stellingwerf_pdm` function. times : np.array The times for which the periodogram result in ``lspinfo`` was calculated. conservative_nfreq_eff : bool If True, will follow the prescription given in Schwarzenberg-Czerny (2003): http://adsabs.harvard.edu/abs/2003ASPC..292..383S and estimate the effective number of independent frequences M_eff as:: min(N_obs, N_freq, DELTA_f/delta_f) peakvals : sequence or None The peak values for which to evaluate the false-alarm probability. If None, will calculate this for each of the peak values in the ``nbestpeaks`` key of the ``lspinfo`` dict. inplace : bool If True, puts the results of the FAP calculation into the ``lspinfo`` dict as a list available as ``lspinfo['falsealarmprob']``. Returns ------- list The calculated false alarm probabilities for each of the peak values in ``peakvals``. ''' from scipy.stats import beta frequencies = 1.0/lspinfo['periods'] M = independent_freq_count(frequencies, times, conservative=conservative_nfreq_eff) if peakvals is None: peakvals = lspinfo['nbestlspvals'] nphasebins = nparange(0.0, 1.0, lspinfo['kwargs']['phasebinsize']).size ndet = times.size false_alarm_probs = [] for peakval in peakvals: prob_xval = ((ndet-nphasebins)/(nphasebins-1.0))*peakval prob_exceeds_val = beta.cdf(prob_xval, (ndet-nphasebins)/2.0, (nphasebins-1.0)/2.0) import ipdb; ipdb.set_trace() false_alarm_probs.append(1.0 - (1.0 - prob_exceeds_val)**M) if inplace: lspinfo['falsealarmprob'] = false_alarm_probs return false_alarm_probs
def keplermag_to_sdssr(keplermag, kic_sdssg, kic_sdssr): '''Converts magnitude measurements in Kepler band to SDSS r band. Parameters ---------- keplermag : float or array-like The Kepler magnitude value(s) to convert to fluxes. kic_sdssg,kic_sdssr : float or array-like The SDSS g and r magnitudes of the object(s) from the Kepler Input Catalog. The .llc.fits MAST light curve file for a Kepler object contains these values in the FITS extension 0 header. Returns ------- float or array-like SDSS r band magnitude(s) converted from the Kepler band magnitude. ''' kic_sdssgr = kic_sdssg - kic_sdssr if kic_sdssgr < 0.8: kepsdssr = (keplermag - 0.2*kic_sdssg)/0.8 else: kepsdssr = (keplermag - 0.1*kic_sdssg)/0.9 return kepsdssr
def read_kepler_fitslc( lcfits, headerkeys=LCHEADERKEYS, datakeys=LCDATAKEYS, sapkeys=LCSAPKEYS, pdckeys=LCPDCKEYS, topkeys=LCTOPKEYS, apkeys=LCAPERTUREKEYS, appendto=None, normalize=False, ): '''This extracts the light curve from a single Kepler or K2 LC FITS file. This works on the light curves available at MAST: - `kplr{kepid}-{somedatething}_llc.fits` files from the Kepler mission - `ktwo{epicid}-c{campaign}_llc.fits` files from the K2 mission Parameters ---------- lcfits : str The filename of a MAST Kepler/K2 light curve FITS file. headerkeys : list A list of FITS header keys that will be extracted from the FITS light curve file. These describe the observations. The default value for this is given in `LCHEADERKEYS` above. datakeys : list A list of FITS column names that correspond to the auxiliary measurements in the light curve. The default is `LCDATAKEYS` above. sapkeys : list A list of FITS column names that correspond to the SAP flux measurements in the light curve. The default is `LCSAPKEYS` above. pdckeys : list A list of FITS column names that correspond to the PDC flux measurements in the light curve. The default is `LCPDCKEYS` above. topkeys : list A list of FITS header keys that describe the object in the light curve. The default is `LCTOPKEYS` above. apkeys : list A list of FITS header keys that describe the flux measurement apertures used by the Kepler/K2 pipeline. The default is `LCAPERTUREKEYS` above. appendto : lcdict or None If appendto is an `lcdict`, will append measurements of this `lcdict` to that `lcdict`. This is used for consolidating light curves for the same object across different files (quarters). The appending does not care about the time order. To consolidate light curves in time order, use `consolidate_kepler_fitslc` below. normalize : bool If True, then each component light curve's SAP_FLUX and PDCSAP_FLUX measurements will be normalized to 1.0 by dividing out the median flux for the component light curve. Returns ------- lcdict Returns an `lcdict` (this is useable by most astrobase functions for LC processing). ''' # read the fits file hdulist = pyfits.open(lcfits) lchdr, lcdata = hdulist[1].header, hdulist[1].data lctophdr, lcaperturehdr, lcaperturedata = (hdulist[0].header, hdulist[2].header, hdulist[2].data) hdulist.close() hdrinfo = {} # now get the values we want from the header for key in headerkeys: if key in lchdr and lchdr[key] is not None: hdrinfo[key.lower()] = lchdr[key] else: hdrinfo[key.lower()] = None # get the number of detections ndet = lchdr['NAXIS2'] # get the info from the topheader for key in topkeys: if key in lctophdr and lctophdr[key] is not None: hdrinfo[key.lower()] = lctophdr[key] else: hdrinfo[key.lower()] = None # get the info from the lcaperturehdr for key in lcaperturehdr: if key in lcaperturehdr and lcaperturehdr[key] is not None: hdrinfo[key.lower()] = lcaperturehdr[key] else: hdrinfo[key.lower()] = None # if we're appending to another lcdict if appendto and isinstance(appendto, dict): lcdict = appendto lcdict['quarter'].append(hdrinfo['quarter']) lcdict['season'].append(hdrinfo['season']) lcdict['datarelease'].append(hdrinfo['data_rel']) lcdict['obsmode'].append(hdrinfo['obsmode']) lcdict['campaign'].append(hdrinfo['campaign']) # we don't update the objectid # update lcinfo lcdict['lcinfo']['timesys'].append(hdrinfo['timesys']) lcdict['lcinfo']['bjdoffset'].append( hdrinfo['bjdrefi'] + hdrinfo['bjdreff'] ) lcdict['lcinfo']['exptime'].append(hdrinfo['exposure']) lcdict['lcinfo']['lcaperture'].append(lcaperturedata) lcdict['lcinfo']['aperpixused'].append(hdrinfo['npixsap']) lcdict['lcinfo']['aperpixunused'].append(hdrinfo['npixmiss']) lcdict['lcinfo']['pixarcsec'].append( (npabs(hdrinfo['cdelt1']) + npabs(hdrinfo['cdelt2']))*3600.0/2.0 ) lcdict['lcinfo']['channel'].append(hdrinfo['channel']) lcdict['lcinfo']['skygroup'].append(hdrinfo['skygroup']) lcdict['lcinfo']['module'].append(hdrinfo['module']) lcdict['lcinfo']['output'].append(hdrinfo['output']) lcdict['lcinfo']['ndet'].append(ndet) # the objectinfo is not updated for the same object when appending to a # light curve. FIXME: maybe it should be? # update the varinfo for this light curve lcdict['varinfo']['cdpp3_0'].append(hdrinfo['cdpp3_0']) lcdict['varinfo']['cdpp6_0'].append(hdrinfo['cdpp6_0']) lcdict['varinfo']['cdpp12_0'].append(hdrinfo['cdpp12_0']) lcdict['varinfo']['pdcvar'].append(hdrinfo['pdcvar']) lcdict['varinfo']['pdcmethod'].append(hdrinfo['pdcmethd']) lcdict['varinfo']['aper_target_total_ratio'].append(hdrinfo['crowdsap']) lcdict['varinfo']['aper_target_frac'].append(hdrinfo['flfrcsap']) # update the light curve columns now for key in datakeys: if key.lower() in lcdict: lcdict[key.lower()] = ( npconcatenate((lcdict[key.lower()], lcdata[key])) ) for key in sapkeys: if key.lower() in lcdict['sap']: sapflux_median = np.nanmedian(lcdata['SAP_FLUX']) # normalize the current flux measurements if needed if normalize and key == 'SAP_FLUX': thislcdata = lcdata[key] / sapflux_median elif normalize and key == 'SAP_FLUX_ERR': thislcdata = lcdata[key] / sapflux_median elif normalize and key == 'SAP_BKG': thislcdata = lcdata[key] / sapflux_median elif normalize and key == 'SAP_BKG_ERR': thislcdata = lcdata[key] / sapflux_median else: thislcdata = lcdata[key] lcdict['sap'][key.lower()] = ( np.concatenate((lcdict['sap'][key.lower()], thislcdata)) ) for key in pdckeys: if key.lower() in lcdict['pdc']: pdcsap_flux_median = np.nanmedian(lcdata['PDCSAP_FLUX']) # normalize the current flux measurements if needed if normalize and key == 'PDCSAP_FLUX': thislcdata = lcdata[key] / pdcsap_flux_median elif normalize and key == 'PDCSAP_FLUX_ERR': thislcdata = lcdata[key] / pdcsap_flux_median else: thislcdata = lcdata[key] lcdict['pdc'][key.lower()] = ( np.concatenate((lcdict['pdc'][key.lower()], thislcdata)) ) # append some of the light curve information into existing numpy arrays # so we can sort on them later lcdict['lc_channel'] = npconcatenate( (lcdict['lc_channel'], npfull_like(lcdata['TIME'], hdrinfo['channel'])) ) lcdict['lc_skygroup'] = npconcatenate( (lcdict['lc_skygroup'], npfull_like(lcdata['TIME'], hdrinfo['skygroup'])) ) lcdict['lc_module'] = npconcatenate( (lcdict['lc_module'], npfull_like(lcdata['TIME'], hdrinfo['module'])) ) lcdict['lc_output'] = npconcatenate( (lcdict['lc_output'], npfull_like(lcdata['TIME'], hdrinfo['output'])) ) lcdict['lc_quarter'] = npconcatenate( (lcdict['lc_quarter'], npfull_like(lcdata['TIME'], hdrinfo['quarter'])) ) lcdict['lc_season'] = npconcatenate( (lcdict['lc_season'], npfull_like(lcdata['TIME'], hdrinfo['season'])) ) lcdict['lc_campaign'] = npconcatenate( (lcdict['lc_campaign'], npfull_like(lcdata['TIME'], hdrinfo['campaign'])) ) # otherwise, this is a new lcdict else: # form the lcdict # the metadata is one-elem arrays because we might add on to them later lcdict = { 'quarter':[hdrinfo['quarter']], 'season':[hdrinfo['season']], 'datarelease':[hdrinfo['data_rel']], 'campaign':[hdrinfo['campaign']], # this is None for KepPrime 'obsmode':[hdrinfo['obsmode']], 'objectid':hdrinfo['object'], 'lcinfo':{ 'timesys':[hdrinfo['timesys']], 'bjdoffset':[hdrinfo['bjdrefi'] + hdrinfo['bjdreff']], 'exptime':[hdrinfo['exposure']], 'lcaperture':[lcaperturedata], 'aperpixused':[hdrinfo['npixsap']], 'aperpixunused':[hdrinfo['npixmiss']], 'pixarcsec':[(npabs(hdrinfo['cdelt1']) + npabs(hdrinfo['cdelt2']))*3600.0/2.0], 'channel':[hdrinfo['channel']], 'skygroup':[hdrinfo['skygroup']], 'module':[hdrinfo['module']], 'output':[hdrinfo['output']], 'ndet':[ndet], }, 'objectinfo':{ 'objectid':hdrinfo['object'], # repeated here for checkplot use 'keplerid':hdrinfo['keplerid'], 'ra':hdrinfo['ra_obj'], 'decl':hdrinfo['dec_obj'], 'pmra':hdrinfo['pmra'], 'pmdecl':hdrinfo['pmdec'], 'pmtotal':hdrinfo['pmtotal'], 'sdssg':hdrinfo['gmag'], 'sdssr':hdrinfo['rmag'], 'sdssi':hdrinfo['imag'], 'sdssz':hdrinfo['zmag'], 'kepmag':hdrinfo['kepmag'], 'teff':hdrinfo['teff'], 'logg':hdrinfo['logg'], 'feh':hdrinfo['feh'], 'ebminusv':hdrinfo['ebminusv'], 'extinction':hdrinfo['av'], 'starradius':hdrinfo['radius'], 'twomassuid':hdrinfo['tmindex'], }, 'varinfo':{ 'cdpp3_0':[hdrinfo['cdpp3_0']], 'cdpp6_0':[hdrinfo['cdpp6_0']], 'cdpp12_0':[hdrinfo['cdpp12_0']], 'pdcvar':[hdrinfo['pdcvar']], 'pdcmethod':[hdrinfo['pdcmethd']], 'aper_target_total_ratio':[hdrinfo['crowdsap']], 'aper_target_frac':[hdrinfo['flfrcsap']], }, 'sap':{}, 'pdc':{}, } # get the LC columns for key in datakeys: lcdict[key.lower()] = lcdata[key] for key in sapkeys: lcdict['sap'][key.lower()] = lcdata[key] for key in pdckeys: lcdict['pdc'][key.lower()] = lcdata[key] # turn some of the light curve information into numpy arrays so we can # sort on them later lcdict['lc_channel'] = npfull_like(lcdict['time'], lcdict['lcinfo']['channel'][0]) lcdict['lc_skygroup'] = npfull_like(lcdict['time'], lcdict['lcinfo']['skygroup'][0]) lcdict['lc_module'] = npfull_like(lcdict['time'], lcdict['lcinfo']['module'][0]) lcdict['lc_output'] = npfull_like(lcdict['time'], lcdict['lcinfo']['output'][0]) lcdict['lc_quarter'] = npfull_like(lcdict['time'], lcdict['quarter'][0]) lcdict['lc_season'] = npfull_like(lcdict['time'], lcdict['season'][0]) lcdict['lc_campaign'] = npfull_like(lcdict['time'], lcdict['campaign'][0]) # normalize the SAP and PDCSAP fluxes if needed if normalize: sapflux_median = np.nanmedian(lcdict['sap']['sap_flux']) pdcsap_flux_median = np.nanmedian(lcdict['pdc']['pdcsap_flux']) lcdict['sap']['sap_flux'] = ( lcdict['sap']['sap_flux'] / sapflux_median ) lcdict['sap']['sap_flux_err'] = ( lcdict['sap']['sap_flux_err'] / sapflux_median ) lcdict['sap']['sap_bkg'] = ( lcdict['sap']['sap_bkg'] / sapflux_median ) lcdict['sap']['sap_bkg_err'] = ( lcdict['sap']['sap_bkg_err'] / sapflux_median ) lcdict['pdc']['pdcsap_flux'] = ( lcdict['pdc']['pdcsap_flux'] / pdcsap_flux_median ) lcdict['pdc']['pdcsap_flux_err'] = ( lcdict['pdc']['pdcsap_flux_err'] / pdcsap_flux_median ) ## END OF LIGHT CURVE CONSTRUCTION ## # update the lcdict columns with the actual columns lcdict['columns'] = ( [x.lower() for x in datakeys] + ['sap.%s' % x.lower() for x in sapkeys] + ['pdc.%s' % x.lower() for x in pdckeys] + ['lc_channel','lc_skygroup','lc_module', 'lc_output','lc_quarter','lc_season'] ) # return the lcdict at the end return lcdict
def consolidate_kepler_fitslc(keplerid, lcfitsdir, normalize=True, headerkeys=LCHEADERKEYS, datakeys=LCDATAKEYS, sapkeys=LCSAPKEYS, pdckeys=LCPDCKEYS, topkeys=LCTOPKEYS, apkeys=LCAPERTUREKEYS): '''This gets all Kepler/K2 light curves for the given `keplerid` in `lcfitsdir`. Searches recursively in `lcfitsdir` for all of the files belonging to the specified `keplerid`. Sorts the light curves by time. Returns an `lcdict`. This is meant to be used to consolidate light curves for a single object across Kepler quarters. NOTE: `keplerid` is an integer (without the leading zeros). This is usually the KIC ID. NOTE: if light curve time arrays contain `nans`, these and their associated measurements will be sorted to the end of the final combined arrays. Parameters ---------- keplerid : int The Kepler ID of the object to consolidate LCs for, as an integer without any leading zeros. This is usually the KIC or EPIC ID. lcfitsdir : str The directory to look in for LCs of the specified object. normalize : bool If True, then each component light curve's SAP_FLUX and PDCSAP_FLUX measurements will be normalized to 1.0 by dividing out the median flux for the component light curve. headerkeys : list A list of FITS header keys that will be extracted from the FITS light curve file. These describe the observations. The default value for this is given in `LCHEADERKEYS` above. datakeys : list A list of FITS column names that correspond to the auxiliary measurements in the light curve. The default is `LCDATAKEYS` above. sapkeys : list A list of FITS column names that correspond to the SAP flux measurements in the light curve. The default is `LCSAPKEYS` above. pdckeys : list A list of FITS column names that correspond to the PDC flux measurements in the light curve. The default is `LCPDCKEYS` above. topkeys : list A list of FITS header keys that describe the object in the light curve. The default is `LCTOPKEYS` above. apkeys : list A list of FITS header keys that describe the flux measurement apertures used by the Kepler/K2 pipeline. The default is `LCAPERTUREKEYS` above. Returns ------- lcdict Returns an `lcdict` (this is useable by most astrobase functions for LC processing). ''' LOGINFO('looking for Kepler light curve FITS in %s for %s...' % (lcfitsdir, keplerid)) # for Python 3.5 and up, use recursive glob, it appears to be absurdly # faster than os.walk if sys.version_info[:2] > (3,4): matching = glob.glob(os.path.join(lcfitsdir, '**', 'kplr%09i-*_llc.fits' % keplerid), recursive=True) LOGINFO('found %s files: %s' % (len(matching), repr(matching))) # for Python < 3.5, use os.walk and glob else: # use the os.walk function to start looking for files in lcfitsdir walker = os.walk(lcfitsdir) matching = [] for root, dirs, _files in walker: for sdir in dirs: searchpath = os.path.join(root, sdir, 'kplr%09i-*_llc.fits' % keplerid) foundfiles = glob.glob(searchpath) if foundfiles: matching.extend(foundfiles) LOGINFO('found %s in dir: %s' % (repr(foundfiles), os.path.join(root,sdir))) # now that we've found everything, read them all in if len(matching) > 0: LOGINFO('consolidating...') # the first file consolidated = read_kepler_fitslc(matching[0], headerkeys=headerkeys, datakeys=datakeys, sapkeys=sapkeys, pdckeys=pdckeys, topkeys=topkeys, apkeys=apkeys, normalize=normalize) # get the rest of the files for lcf in matching: consolidated = read_kepler_fitslc(lcf, appendto=consolidated, headerkeys=headerkeys, datakeys=datakeys, sapkeys=sapkeys, pdckeys=pdckeys, topkeys=topkeys, apkeys=apkeys, normalize=normalize) # get the sort indices # we use time for the columns and quarters for the headers LOGINFO('sorting by time...') # NOTE: nans in time will be sorted to the end of the array finiteind = npisfinite(consolidated['time']) if npsum(finiteind) < consolidated['time'].size: LOGWARNING('some time values are nan! ' 'measurements at these times will be ' 'sorted to the end of the column arrays.') # get the sort index column_sort_ind = npargsort(consolidated['time']) # sort the columns by time for col in consolidated['columns']: if '.' in col: key, subkey = col.split('.') consolidated[key][subkey] = ( consolidated[key][subkey][column_sort_ind] ) else: consolidated[col] = consolidated[col][column_sort_ind] # now sort the headers by quarters header_sort_ind = npargsort(consolidated['quarter']).tolist() # this is a bit convoluted, but whatever: list -> array -> list for key in ('quarter', 'season', 'datarelease', 'obsmode'): consolidated[key] = ( nparray(consolidated[key])[header_sort_ind].tolist() ) for key in ('timesys','bjdoffset','exptime','lcaperture', 'aperpixused','aperpixunused','pixarcsec', 'channel','skygroup','module','output','ndet'): consolidated['lcinfo'][key] = ( nparray(consolidated['lcinfo'][key])[header_sort_ind].tolist() ) for key in ('cdpp3_0','cdpp6_0','cdpp12_0','pdcvar','pdcmethod', 'aper_target_total_ratio','aper_target_frac'): consolidated['varinfo'][key] = ( nparray(consolidated['varinfo'][key])[header_sort_ind].tolist() ) # finally, return the consolidated lcdict return consolidated # if we didn't find anything, complain else: LOGERROR('could not find any light curves ' 'for %s in %s or its subdirectories' % (keplerid, lcfitsdir)) return None
def read_k2sff_lightcurve(lcfits): '''This reads a K2 SFF (Vandenberg+ 2014) light curve into an `lcdict`. Use this with the light curves from the K2 SFF project at MAST. Parameters ---------- lcfits : str The filename of the FITS light curve file downloaded from MAST. Returns ------- lcdict Returns an `lcdict` (this is useable by most astrobase functions for LC processing). ''' # read the fits file hdulist = pyfits.open(lcfits) lchdr, lcdata = hdulist[1].header, hdulist[1].data lctophdr = hdulist[0].header hdulist.close() hdrinfo = {} # get the number of detections ndet = lchdr['NAXIS2'] # get the info from the topheader for key in SFFTOPKEYS: if key in lctophdr and lctophdr[key] is not None: hdrinfo[key.lower()] = lctophdr[key] else: hdrinfo[key.lower()] = None # now get the values we want from the header for key in SFFHEADERKEYS: if key in lchdr and lchdr[key] is not None: hdrinfo[key.lower()] = lchdr[key] else: hdrinfo[key.lower()] = None # form the lcdict # the metadata is one-elem arrays because we might add on to them later lcdict = { 'quarter':[hdrinfo['quarter']], 'season':[hdrinfo['season']], 'datarelease':[hdrinfo['data_rel']], 'obsmode':[hdrinfo['obsmode']], 'objectid':hdrinfo['object'], 'campaign':[hdrinfo['campaign']], 'lcinfo':{ 'timesys':[hdrinfo['timesys']], 'bjdoffset':[hdrinfo['bjdrefi'] + hdrinfo['bjdreff']], 'exptime':[hdrinfo['exposure']], 'lcapermaskidx':[hdrinfo['maskinde']], 'lcapermasktype':[hdrinfo['masktype']], 'aperpixused':[hdrinfo['npixsap']], 'aperpixunused':[None], 'pixarcsec':[None], 'channel':[hdrinfo['channel']], 'skygroup':[hdrinfo['skygroup']], 'module':[hdrinfo['module']], 'output':[hdrinfo['output']], 'ndet':[ndet], }, 'objectinfo':{ 'keplerid':hdrinfo['keplerid'], 'ra':hdrinfo['ra_obj'], 'decl':hdrinfo['dec_obj'], 'pmra':hdrinfo['pmra'], 'pmdecl':hdrinfo['pmdec'], 'pmtotal':hdrinfo['pmtotal'], 'sdssg':hdrinfo['gmag'], 'sdssr':hdrinfo['rmag'], 'sdssi':hdrinfo['imag'], 'sdssz':hdrinfo['zmag'], 'kepmag':hdrinfo['kepmag'], 'teff':hdrinfo['teff'], 'logg':hdrinfo['logg'], 'feh':hdrinfo['feh'], 'ebminusv':hdrinfo['ebminusv'], 'extinction':hdrinfo['av'], 'starradius':hdrinfo['radius'], 'twomassuid':hdrinfo['tmindex'], }, 'varinfo':{ 'cdpp3_0':[hdrinfo['cdpp3_0']], 'cdpp6_0':[hdrinfo['cdpp6_0']], 'cdpp12_0':[hdrinfo['cdpp12_0']], 'pdcvar':[hdrinfo['pdcvar']], 'pdcmethod':[hdrinfo['pdcmethd']], 'aptgttotrat':[hdrinfo['crowdsap']], 'aptgtfrac':[hdrinfo['flfrcsap']], }, } # get the LC columns for key in SFFDATAKEYS: lcdict[key.lower()] = lcdata[key] # add some of the light curve information to the data arrays so we can sort # on them later lcdict['channel'] = npfull_like(lcdict['t'], lcdict['lcinfo']['channel'][0]) lcdict['skygroup'] = npfull_like(lcdict['t'], lcdict['lcinfo']['skygroup'][0]) lcdict['module'] = npfull_like(lcdict['t'], lcdict['lcinfo']['module'][0]) lcdict['output'] = npfull_like(lcdict['t'], lcdict['lcinfo']['output'][0]) lcdict['quarter'] = npfull_like(lcdict['t'], lcdict['quarter'][0]) lcdict['season'] = npfull_like(lcdict['t'], lcdict['season'][0]) lcdict['campaign'] = npfull_like(lcdict['t'], lcdict['campaign'][0]) # update the lcdict columns with the actual columns lcdict['columns'] = ( [x.lower() for x in SFFDATAKEYS] + ['channel','skygroup','module','output','quarter','season','campaign'] ) # return the lcdict at the end return lcdict
def kepler_lcdict_to_pkl(lcdict, outfile=None): '''This writes the `lcdict` to a Python pickle. Parameters ---------- lcdict : lcdict This is the input `lcdict` to write to a pickle. outfile : str or None If this is None, the object's Kepler ID/EPIC ID will determined from the `lcdict` and used to form the filename of the output pickle file. If this is a `str`, the provided filename will be used. Returns ------- str The absolute path to the written pickle file. ''' if not outfile: outfile = '%s-keplc.pkl' % lcdict['objectid'].replace(' ','-') # we're using pickle.HIGHEST_PROTOCOL here, this will make Py3 pickles # unreadable for Python 2.7 with open(outfile,'wb') as outfd: pickle.dump(lcdict, outfd, protocol=pickle.HIGHEST_PROTOCOL) return os.path.abspath(outfile)
def read_kepler_pklc(picklefile): '''This turns the pickled lightcurve file back into an `lcdict`. Parameters ---------- picklefile : str The path to a previously written Kepler LC picklefile generated by `kepler_lcdict_to_pkl` above. Returns ------- lcdict Returns an `lcdict` (this is useable by most astrobase functions for LC processing). ''' if picklefile.endswith('.gz'): infd = gzip.open(picklefile, 'rb') else: infd = open(picklefile, 'rb') try: with infd: lcdict = pickle.load(infd) except UnicodeDecodeError: with open(picklefile,'rb') as infd: lcdict = pickle.load(infd, encoding='latin1') LOGWARNING('pickle %s was probably from Python 2 ' 'and failed to load without using "latin1" encoding. ' 'This is probably a numpy issue: ' 'http://stackoverflow.com/q/11305790' % picklefile) return lcdict
def filter_kepler_lcdict(lcdict, filterflags=True, nanfilter='sap,pdc', timestoignore=None): '''This filters the Kepler `lcdict`, removing nans and bad observations. By default, this function removes points in the Kepler LC that have ANY quality flags set. Parameters ---------- lcdict : lcdict An `lcdict` produced by `consolidate_kepler_fitslc` or `read_kepler_fitslc`. filterflags : bool If True, will remove any measurements that have non-zero quality flags present. This usually indicates an issue with the instrument or spacecraft. nanfilter : {'sap','pdc','sap,pdc'} Indicates the flux measurement type(s) to apply the filtering to. timestoignore : list of tuples or None This is of the form:: [(time1_start, time1_end), (time2_start, time2_end), ...] and indicates the start and end times to mask out of the final lcdict. Use this to remove anything that wasn't caught by the quality flags. Returns ------- lcdict Returns an `lcdict` (this is useable by most astrobase functions for LC processing). The `lcdict` is filtered IN PLACE! ''' cols = lcdict['columns'] # filter all bad LC points as noted by quality flags if filterflags: nbefore = lcdict['time'].size filterind = lcdict['sap_quality'] == 0 for col in cols: if '.' in col: key, subkey = col.split('.') lcdict[key][subkey] = lcdict[key][subkey][filterind] else: lcdict[col] = lcdict[col][filterind] nafter = lcdict['time'].size LOGINFO('applied quality flag filter, ndet before = %s, ndet after = %s' % (nbefore, nafter)) if nanfilter and nanfilter == 'sap,pdc': notnanind = ( npisfinite(lcdict['sap']['sap_flux']) & npisfinite(lcdict['pdc']['pdcsap_flux']) & npisfinite(lcdict['time']) ) elif nanfilter and nanfilter == 'sap': notnanind = ( npisfinite(lcdict['sap']['sap_flux']) & npisfinite(lcdict['time']) ) elif nanfilter and nanfilter == 'pdc': notnanind = ( npisfinite(lcdict['pdc']['pdcsap_flux']) & npisfinite(lcdict['time']) ) # remove nans from all columns if nanfilter: nbefore = lcdict['time'].size for col in cols: if '.' in col: key, subkey = col.split('.') lcdict[key][subkey] = lcdict[key][subkey][notnanind] else: lcdict[col] = lcdict[col][notnanind] nafter = lcdict['time'].size LOGINFO('removed nans, ndet before = %s, ndet after = %s' % (nbefore, nafter)) # exclude all times in timestoignore if (timestoignore and isinstance(timestoignore, list) and len(timestoignore) > 0): exclind = npfull_like(lcdict['time'], True, dtype=np.bool_) nbefore = exclind.size # get all the masks for ignoretime in timestoignore: time0, time1 = ignoretime[0], ignoretime[1] thismask = ~((lcdict['time'] >= time0) & (lcdict['time'] <= time1)) exclind = exclind & thismask # apply the masks for col in cols: if '.' in col: key, subkey = col.split('.') lcdict[key][subkey] = lcdict[key][subkey][exclind] else: lcdict[col] = lcdict[col][exclind] nafter = lcdict['time'].size LOGINFO('removed timestoignore, ndet before = %s, ndet after = %s' % (nbefore, nafter)) return lcdict
def _epd_function(coeffs, fluxes, xcc, ycc, bgv, bge): '''This is the EPD function to fit. Parameters ---------- coeffs : array-like of floats Contains the EPD coefficients that will be used to generate the EPD fit function. fluxes : array-like The flux measurement array being used. xcc,ycc : array-like Arrays of the x and y coordinates associated with each measurement in `fluxes`. bgv,bge : array-like Arrays of the flux background value and the flux background error associated with each measurement in `fluxes`. Returns ------- np.array Contains the fit function evaluated at each flux measurement value. ''' epdf = ( coeffs[0] + coeffs[1]*npsin(2*MPI*xcc) + coeffs[2]*npcos(2*MPI*xcc) + coeffs[3]*npsin(2*MPI*ycc) + coeffs[4]*npcos(2*MPI*ycc) + coeffs[5]*npsin(4*MPI*xcc) + coeffs[6]*npcos(4*MPI*xcc) + coeffs[7]*npsin(4*MPI*ycc) + coeffs[8]*npcos(4*MPI*ycc) + coeffs[9]*bgv + coeffs[10]*bge ) return epdf
def _epd_residual(coeffs, fluxes, xcc, ycc, bgv, bge): '''This is the residual function to minimize using scipy.optimize.leastsq. Parameters ---------- coeffs : array-like of floats Contains the EPD coefficients that will be used to generate the EPD fit function. fluxes : array-like The flux measurement array being used. xcc,ycc : array-like Arrays of the x and y coordinates associated with each measurement in `fluxes`. bgv,bge : array-like Arrays of the flux background value and the flux background error associated with each measurement in `fluxes`. Returns ------- np.array Contains the fit function residual evaluated at each flux measurement value. ''' f = _epd_function(coeffs, fluxes, xcc, ycc, bgv, bge) residual = fluxes - f return residual
def epd_kepler_lightcurve(lcdict, xccol='mom_centr1', yccol='mom_centr2', timestoignore=None, filterflags=True, writetodict=True, epdsmooth=5): '''This runs EPD on the Kepler light curve. Following Huang et al. 2015, we fit the following EPD function to a smoothed light curve, and then subtract it to obtain EPD corrected magnitudes:: f = c0 + c1*sin(2*pi*x) + c2*cos(2*pi*x) + c3*sin(2*pi*y) + c4*cos(2*pi*y) + c5*sin(4*pi*x) + c6*cos(4*pi*x) + c7*sin(4*pi*y) + c8*cos(4*pi*y) + c9*bgv + c10*bge By default, this function removes points in the Kepler LC that have ANY quality flags set. Parameters ---------- lcdict : lcdict An `lcdict` produced by `consolidate_kepler_fitslc` or `read_kepler_fitslc`. xcol,ycol : str Indicates the x and y coordinate column names to use from the Kepler LC in the EPD fit. timestoignore : list of tuples This is of the form:: [(time1_start, time1_end), (time2_start, time2_end), ...] and indicates the start and end times to mask out of the final lcdict. Use this to remove anything that wasn't caught by the quality flags. filterflags : bool If True, will remove any measurements that have non-zero quality flags present. This usually indicates an issue with the instrument or spacecraft. writetodict : bool If writetodict is True, adds the following columns to the lcdict:: epd_time = time array epd_sapflux = uncorrected flux before EPD epd_epdsapflux = corrected flux after EPD epd_epdsapcorr = EPD flux corrections epd_bkg = background array epd_bkg_err = background errors array epd_xcc = xcoord array epd_ycc = ycoord array epd_quality = quality flag array and updates the 'columns' list in the lcdict as well. epdsmooth : int Sets the number of light curve points to smooth over when generating the EPD fit function. Returns ------- tuple Returns a tuple of the form: (times, epdfluxes, fitcoeffs, epdfit) ''' times, fluxes, background, background_err = (lcdict['time'], lcdict['sap']['sap_flux'], lcdict['sap']['sap_bkg'], lcdict['sap']['sap_bkg_err']) xcc = lcdict[xccol] ycc = lcdict[yccol] flags = lcdict['sap_quality'] # filter all bad LC points as noted by quality flags if filterflags: nbefore = times.size filterind = flags == 0 times = times[filterind] fluxes = fluxes[filterind] background = background[filterind] background_err = background_err[filterind] xcc = xcc[filterind] ycc = ycc[filterind] flags = flags[filterind] nafter = times.size LOGINFO('applied quality flag filter, ndet before = %s, ndet after = %s' % (nbefore, nafter)) # remove nans find = (npisfinite(xcc) & npisfinite(ycc) & npisfinite(times) & npisfinite(fluxes) & npisfinite(background) & npisfinite(background_err)) nbefore = times.size times = times[find] fluxes = fluxes[find] background = background[find] background_err = background_err[find] xcc = xcc[find] ycc = ycc[find] flags = flags[find] nafter = times.size LOGINFO('removed nans, ndet before = %s, ndet after = %s' % (nbefore, nafter)) # exclude all times in timestoignore if (timestoignore and isinstance(timestoignore, list) and len(timestoignore) > 0): exclind = npfull_like(times,True) nbefore = times.size # apply all the masks for ignoretime in timestoignore: time0, time1 = ignoretime[0], ignoretime[1] thismask = (times > time0) & (times < time1) exclind = exclind & thismask # quantities after masks have been applied times = times[exclind] fluxes = fluxes[exclind] background = background[exclind] background_err = background_err[exclind] xcc = xcc[exclind] ycc = ycc[exclind] flags = flags[exclind] nafter = times.size LOGINFO('removed timestoignore, ndet before = %s, ndet after = %s' % (nbefore, nafter)) # now that we're all done, we can do EPD # first, smooth the light curve smoothedfluxes = median_filter(fluxes, size=epdsmooth) # initial fit coeffs initcoeffs = npones(11) # fit the the smoothed mags and find better coeffs leastsqfit = leastsq(_epd_residual, initcoeffs, args=(smoothedfluxes, xcc, ycc, background, background_err)) # if the fit succeeds, then get the EPD fluxes if leastsqfit[-1] in (1,2,3,4): fitcoeffs = leastsqfit[0] epdfit = _epd_function(fitcoeffs, fluxes, xcc, ycc, background, background_err) epdfluxes = npmedian(fluxes) + fluxes - epdfit # write these to the dictionary if requested if writetodict: lcdict['epd'] = {} lcdict['epd']['time'] = times lcdict['epd']['sapflux'] = fluxes lcdict['epd']['epdsapflux'] = epdfluxes lcdict['epd']['epdsapcorr'] = epdfit lcdict['epd']['bkg'] = background lcdict['epd']['bkg_err'] = background_err lcdict['epd']['xcc'] = xcc lcdict['epd']['ycc'] = ycc lcdict['epd']['quality'] = flags for newcol in ['epd.time','epd.sapflux', 'epd.epdsapflux','epd.epdsapcorr', 'epd.bkg','epd.bkg.err', 'epd.xcc','epd.ycc', 'epd.quality']: if newcol not in lcdict['columns']: lcdict['columns'].append(newcol) return times, epdfluxes, fitcoeffs, epdfit else: LOGERROR('could not fit EPD function to light curve') return None, None, None, None
def rfepd_kepler_lightcurve( lcdict, xccol='mom_centr1', yccol='mom_centr2', timestoignore=None, filterflags=True, writetodict=True, epdsmooth=23, decorr='xcc,ycc', nrftrees=200 ): '''This uses a `RandomForestRegressor` to fit and decorrelate Kepler light curves. Fits the X and Y positions, the background, and background error. By default, this function removes points in the Kepler LC that have ANY quality flags set. Parameters ---------- lcdict : lcdict An `lcdict` produced by `consolidate_kepler_fitslc` or `read_kepler_fitslc`. xcol,ycol : str Indicates the x and y coordinate column names to use from the Kepler LC in the EPD fit. timestoignore : list of tuples This is of the form:: [(time1_start, time1_end), (time2_start, time2_end), ...] and indicates the start and end times to mask out of the final lcdict. Use this to remove anything that wasn't caught by the quality flags. filterflags : bool If True, will remove any measurements that have non-zero quality flags present. This usually indicates an issue with the instrument or spacecraft. writetodict : bool If writetodict is True, adds the following columns to the lcdict:: rfepd_time = time array rfepd_sapflux = uncorrected flux before EPD rfepd_epdsapflux = corrected flux after EPD rfepd_epdsapcorr = EPD flux corrections rfepd_bkg = background array rfepd_bkg_err = background errors array rfepd_xcc = xcoord array rfepd_ycc = ycoord array rfepd_quality = quality flag array and updates the 'columns' list in the lcdict as well. epdsmooth : int Sets the number of light curve points to smooth over when generating the EPD fit function. decorr : {'xcc,ycc','bgv,bge','xcc,ycc,bgv,bge'} Indicates whether to use the x,y coords alone; background value and error alone; or x,y coords and background value, error in combination as the features to training the `RandomForestRegressor` on and perform the fit. nrftrees : int The number of trees to use in the `RandomForestRegressor`. Returns ------- tuple Returns a tuple of the form: (times, corrected_fluxes, flux_corrections) ''' times, fluxes, background, background_err = ( lcdict['time'], lcdict['sap']['sap_flux'], lcdict['sap']['sap_bkg'], lcdict['sap']['sap_bkg_err'] ) xcc = lcdict[xccol] ycc = lcdict[yccol] flags = lcdict['sap_quality'] # filter all bad LC points as noted by quality flags if filterflags: nbefore = times.size filterind = flags == 0 times = times[filterind] fluxes = fluxes[filterind] background = background[filterind] background_err = background_err[filterind] xcc = xcc[filterind] ycc = ycc[filterind] flags = flags[filterind] nafter = times.size LOGINFO('applied quality flag filter, ndet before = %s, ' 'ndet after = %s' % (nbefore, nafter)) # remove nans find = (npisfinite(xcc) & npisfinite(ycc) & npisfinite(times) & npisfinite(fluxes) & npisfinite(background) & npisfinite(background_err)) nbefore = times.size times = times[find] fluxes = fluxes[find] background = background[find] background_err = background_err[find] xcc = xcc[find] ycc = ycc[find] flags = flags[find] nafter = times.size LOGINFO('removed nans, ndet before = %s, ndet after = %s' % (nbefore, nafter)) # exclude all times in timestoignore if (timestoignore and isinstance(timestoignore, list) and len(timestoignore) > 0): exclind = npfull_like(times,True) nbefore = times.size # apply all the masks for ignoretime in timestoignore: time0, time1 = ignoretime[0], ignoretime[1] thismask = (times > time0) & (times < time1) exclind = exclind & thismask # quantities after masks have been applied times = times[exclind] fluxes = fluxes[exclind] background = background[exclind] background_err = background_err[exclind] xcc = xcc[exclind] ycc = ycc[exclind] flags = flags[exclind] nafter = times.size LOGINFO('removed timestoignore, ndet before = %s, ndet after = %s' % (nbefore, nafter)) # now that we're all done, we can do EPD # set up the regressor RFR = RandomForestRegressor(n_estimators=nrftrees) if decorr == 'xcc,ycc,bgv,bge': # collect the features and target variable features = npcolumn_stack((xcc,ycc,background,background_err)) elif decorr == 'xcc,ycc': # collect the features and target variable features = npcolumn_stack((xcc,ycc)) elif decorr == 'bgv,bge': # collect the features and target variable features = npcolumn_stack((background,background_err)) else: LOGERROR("couldn't understand decorr, not decorrelating...") return None # smooth the light curve if epdsmooth: smoothedfluxes = median_filter(fluxes, size=epdsmooth) else: smoothedfluxes = fluxes # fit, then generate the predicted values, then get corrected values RFR.fit(features, smoothedfluxes) flux_corrections = RFR.predict(features) corrected_fluxes = npmedian(fluxes) + fluxes - flux_corrections # remove the random forest to save RAM del RFR # write these to the dictionary if requested if writetodict: lcdict['rfepd'] = {} lcdict['rfepd']['time'] = times lcdict['rfepd']['sapflux'] = fluxes lcdict['rfepd']['epdsapflux'] = corrected_fluxes lcdict['rfepd']['epdsapcorr'] = flux_corrections lcdict['rfepd']['bkg'] = background lcdict['rfepd']['bkg_err'] = background_err lcdict['rfepd']['xcc'] = xcc lcdict['rfepd']['ycc'] = ycc lcdict['rfepd']['quality'] = flags for newcol in ['rfepd.time','rfepd.sapflux', 'rfepd.epdsapflux','rfepd.epdsapcorr', 'rfepd.bkg','rfepd.bkg.err', 'rfepd.xcc','rfepd.ycc', 'rfepd.quality']: if newcol not in lcdict['columns']: lcdict['columns'].append(newcol) return times, corrected_fluxes, flux_corrections
def detrend_centroid(lcd, detrend='legendre', sigclip=None, mingap=0.5): '''Detrends the x and y coordinate centroids for a Kepler light curve. Given an `lcdict` for a single quarter of Kepler data, returned by `read_kepler_fitslc`, this function returns this same dictionary, appending detrended centroid_x and centroid_y values. Here "detrended" means "finite, SAP quality flag set to 0, sigma clipped, timegroups selected based on `mingap` day gaps, then fit vs time by a legendre polynomial of lowish degree". Parameters ---------- lcd : lcdict An `lcdict` generated by the `read_kepler_fitslc` function. detrend : {'legendre'} Method by which to detrend the LC. 'legendre' is the only thing implemented at the moment. sigclip : None or float or int or sequence of floats/ints Determines the type and amount of sigma-clipping done on the light curve to remove outliers. If None, no sigma-clipping is performed. If a two element sequence of floats/ints, the first element corresponds to the fainter sigma-clip limit, and the second element corresponds to the brighter sigma-clip limit. mingap : float Number of days by which to define "timegroups" (for individual fitting each of timegroup, and to eliminate "burn-in" of Kepler spacecraft. For long cadence data, 0.5 days is typical. Returns ------- tuple This is of the form `(lcd, errflag)`, where: `lcd` : an `lcdict` with the new key `lcd['centroids']`, containing the detrended times, (centroid_x, centroid_y) values, and their errors. `errflag` : boolean error flag, could be raised at various points. ''' qnum = npunique(lcd['quarter']) try: assert qnum.size == 1, 'lcd should be for a unique quarter' assert detrend == 'legendre' qnum = int(qnum) except Exception as e: errflag = True # Get finite, QUALITY_FLAG != 0 times, centroids, and their errors. # Fraquelli & Thompson (2012), or perhaps also newer papers, give the list # of exclusions for quality flags. nbefore = lcd['time'].size # "ctd" for centroid. times = lcd['time'][lcd['sap_quality'] == 0] # Kepler Archive Manual KDMC-10008-006, pg 18. MOM_CENTR1 is the *column* # value for the flux-weighted centroid, MOM_CENTR2 is the row value. ctd_x = lcd['mom_centr2'][lcd['sap_quality'] == 0] ctd_y = lcd['mom_centr1'][lcd['sap_quality'] == 0] ctd_x_err = lcd['mom_centr2_err'][lcd['sap_quality'] == 0] ctd_y_err = lcd['mom_centr1_err'][lcd['sap_quality'] == 0] find = npisfinite(times) & npisfinite(ctd_x) & npisfinite(ctd_y) find &= (npisfinite(ctd_x_err)) & (npisfinite(ctd_y_err)) f_times, f_ctd_x, f_ctd_y = times[find], ctd_x[find], ctd_y[find] f_ctd_x_err, f_ctd_y_err = ctd_x_err[find], ctd_y_err[find] # Sigma clip whopping outliers. It'd be better to have a general purpose # function for this, but sigclip_magseries works. stimes_x, s_ctd_x, s_ctd_x_err = sigclip_magseries( f_times, f_ctd_x, f_ctd_x_err, magsarefluxes=True, sigclip=30.0 ) stimes_y, s_ctd_y, s_ctd_y_err = sigclip_magseries( f_times, f_ctd_y, f_ctd_y_err, magsarefluxes=True, sigclip=30.0 ) # Get times and centroids where everything is finite and sigma clipped. mask_x = npin1d(stimes_x, stimes_y) s_times, s_ctd_x, s_ctd_x_err = ( stimes_x[mask_x], s_ctd_x[mask_x], s_ctd_x_err[mask_x] ) mask_y = npin1d(stimes_y, stimes_x) tmp, s_ctd_y, s_ctd_y_err = ( stimes_y[mask_y], s_ctd_y[mask_y], s_ctd_y_err[mask_y] ) try: np.testing.assert_array_equal(s_times, tmp) assert len(s_ctd_y) == len(s_times) assert len(s_ctd_y_err) == len(s_times) assert len(s_ctd_x) == len(s_times) assert len(s_ctd_x_err) == len(s_times) except AssertionError: return lcd, True nqflag = s_times.size # Drop intra-quarter and interquarter gaps in the timeseries. These are the # same limits set by Armstrong et al (2014): split each quarter's # timegroups by whether points are within 0.5 day limits. Then drop points # within 0.5 days of any boundary. Finally, since the interquarter burn-in # time is more like 1 day, drop a further 0.5 days from the edges of each # quarter. A nicer way to implement this would be with numpy masks, but # this approach just constructs the full arrays for any given quarter. ngroups, groups = find_lc_timegroups(s_times, mingap=mingap) tmp_times, tmp_ctd_x, tmp_ctd_y = [], [], [] tmp_ctd_x_err, tmp_ctd_y_err = [], [] for group in groups: tg_times = s_times[group] tg_ctd_x = s_ctd_x[group] tg_ctd_y = s_ctd_y[group] tg_ctd_x_err = s_ctd_x_err[group] tg_ctd_y_err = s_ctd_y_err[group] try: sel = ((tg_times > npmin(tg_times)+mingap) & (tg_times < npmax(tg_times)-mingap)) except ValueError: # If tgtimes is empty, continue to next timegroup. continue tmp_times.append(tg_times[sel]) tmp_ctd_x.append(tg_ctd_x[sel]) tmp_ctd_y.append(tg_ctd_y[sel]) tmp_ctd_x_err.append(tg_ctd_x_err[sel]) tmp_ctd_y_err.append(tg_ctd_y_err[sel]) s_times,s_ctd_x,s_ctd_y,s_ctd_x_err,s_ctd_y_err = ( nparray([]),nparray([]),nparray([]),nparray([]),nparray([]) ) # N.b.: works fine with empty arrays. for ix, _ in enumerate(tmp_times): s_times = npappend(s_times, tmp_times[ix]) s_ctd_x = npappend(s_ctd_x, tmp_ctd_x[ix]) s_ctd_y = npappend(s_ctd_y, tmp_ctd_y[ix]) s_ctd_x_err = npappend(s_ctd_x_err, tmp_ctd_x_err[ix]) s_ctd_y_err = npappend(s_ctd_y_err, tmp_ctd_y_err[ix]) # Extra inter-quarter burn-in of 0.5 days. try: s_ctd_x = s_ctd_x[(s_times > (npmin(s_times)+mingap)) & (s_times < (npmax(s_times)-mingap))] except Exception as e: # Case: s_times is wonky, all across this quarter. (Implemented because # of a rare bug with a singleton s_times array). LOGERROR('DETREND FAILED, qnum {:d}'.format(qnum)) return npnan, True s_ctd_y = s_ctd_y[(s_times > (npmin(s_times)+mingap)) & (s_times < (npmax(s_times)-mingap))] s_ctd_x_err = s_ctd_x_err[(s_times > (npmin(s_times)+mingap)) & (s_times < (npmax(s_times)-mingap))] s_ctd_y_err = s_ctd_y_err[(s_times > (npmin(s_times)+mingap)) & (s_times < (npmax(s_times)-mingap))] # Careful to do this last... s_times = s_times[(s_times > (npmin(s_times)+mingap)) & (s_times < (npmax(s_times)-mingap))] nafter = s_times.size LOGINFO( 'CLIPPING (SAP), qnum: {:d}'.format(qnum) + '\nndet before qflag & sigclip: {:d} ({:.3g}),'.format( nbefore, 1. ) + '\nndet after qflag & finite & sigclip: {:d} ({:.3g})'.format( nqflag, nqflag/float(nbefore) ) + '\nndet after dropping pts near gaps: {:d} ({:.3g})'.format( nafter, nafter/float(nbefore) ) ) # DETREND: fit a "low" order legendre series (see # "legendredeg_vs_npts_per_timegroup_ctd.pdf"), and save it to the output # dictionary. Save the fit (residuals to be computed after). ctd_dtr = {} if detrend == 'legendre': mingap = 0.5 # days ngroups, groups = find_lc_timegroups(s_times, mingap=mingap) tmpctdxlegfit, tmpctdylegfit, legdegs = [], [], [] for group in groups: tg_times = s_times[group] tg_ctd_x = s_ctd_x[group] tg_ctd_x_err = s_ctd_x_err[group] tg_ctd_y = s_ctd_y[group] tg_ctd_y_err = s_ctd_y_err[group] legdeg = _get_legendre_deg_ctd(len(tg_times)) tg_ctd_x_fit, _, _ = _legendre_dtr(tg_times,tg_ctd_x,tg_ctd_x_err, legendredeg=legdeg) tg_ctd_y_fit, _, _ = _legendre_dtr(tg_times,tg_ctd_y,tg_ctd_y_err, legendredeg=legdeg) tmpctdxlegfit.append(tg_ctd_x_fit) tmpctdylegfit.append(tg_ctd_y_fit) legdegs.append(legdeg) fit_ctd_x, fit_ctd_y = nparray([]), nparray([]) for ix, _ in enumerate(tmpctdxlegfit): fit_ctd_x = npappend(fit_ctd_x, tmpctdxlegfit[ix]) fit_ctd_y = npappend(fit_ctd_y, tmpctdylegfit[ix]) ctd_dtr = {'times':s_times, 'ctd_x':s_ctd_x, 'ctd_x_err':s_ctd_x_err, 'fit_ctd_x':fit_ctd_x, 'ctd_y':s_ctd_y, 'ctd_y_err':s_ctd_y_err, 'fit_ctd_y':fit_ctd_y} lcd['ctd_dtr'] = ctd_dtr return lcd, False
def get_centroid_offsets(lcd, t_ing_egr, oot_buffer_time=0.1, sample_factor=3): '''After running `detrend_centroid`, this gets positions of centroids during transits, and outside of transits. These positions can then be used in a false positive analysis. This routine requires knowing the ingress and egress times for every transit of interest within the quarter this routine is being called for. There is currently no astrobase routine that automates this for periodic transits (it must be done in a calling routine). To get out of transit centroids, this routine takes points outside of the "buffer" set by `oot_buffer_time`, sampling 3x as many points on either side of the transit as are in the transit (or however many are specified by `sample_factor`). Parameters ---------- lcd : lcdict An `lcdict` generated by the `read_kepler_fitslc` function. We assume that the `detrend_centroid` function has been run on this `lcdict`. t_ing_egr : list of tuples This is of the form:: [(ingress time of i^th transit, egress time of i^th transit)] for i the transit number index in this quarter (starts at zero at the beginning of every quarter). Assumes units of BJD. oot_buffer_time : float Number of days away from ingress and egress times to begin sampling "out of transit" centroid points. The number of out of transit points to take per transit is 3x the number of points in transit. sample_factor : float The size of out of transit window from which to sample. Returns ------- dict This is a dictionary keyed by transit number (i.e., the same index as `t_ing_egr`), where each key contains the following value:: {'ctd_x_in_tra':ctd_x_in_tra, 'ctd_y_in_tra':ctd_y_in_tra, 'ctd_x_oot':ctd_x_oot, 'ctd_y_oot':ctd_y_oot, 'npts_in_tra':len(ctd_x_in_tra), 'npts_oot':len(ctd_x_oot), 'in_tra_times':in_tra_times, 'oot_times':oot_times} ''' # NOTE: # Bryson+ (2013) gives a more complicated and more correct approach to this # problem, computing offsets relative to positions defined on the SKY. This # requires using a Kepler focal plane geometry model. I don't have that # model, or know how to get it. So I use a simpler approach. qnum = int(np.unique(lcd['quarter'])) LOGINFO('Getting centroid offsets (qnum: {:d})...'.format(qnum)) # Kepler pixel scale, cf. # https://keplerscience.arc.nasa.gov/the-kepler-space-telescope.html arcsec_per_px = 3.98 # Get the residuals (units: pixel offset). times = lcd['ctd_dtr']['times'] ctd_resid_x = lcd['ctd_dtr']['ctd_x'] - lcd['ctd_dtr']['fit_ctd_x'] ctd_resid_y = lcd['ctd_dtr']['ctd_y'] - lcd['ctd_dtr']['fit_ctd_y'] # Return results in "centroid dictionary" (has keys of transit number). cd = {} for ix,(t_ing,t_egr) in enumerate(t_ing_egr): # We have in-transit times as input. in_tra_times = times[(times > t_ing) & (times < t_egr)] # Compute out of transit times on either side of the in-transit times. transit_dur = t_egr - t_ing oot_window_len = sample_factor * transit_dur oot_before = times[ (times < (t_ing-oot_buffer_time)) & (times > (t_ing-oot_buffer_time-oot_window_len)) ] oot_after = times[ (times > (t_egr+oot_buffer_time)) & (times < (t_egr+oot_buffer_time+oot_window_len)) ] oot_times = npconcatenate([oot_before, oot_after]) mask_tra = npin1d(times, in_tra_times) mask_oot = npin1d(times, oot_times) # Convert to units of arcseconds. ctd_x_in_tra = ctd_resid_x[mask_tra]*arcsec_per_px ctd_y_in_tra = ctd_resid_y[mask_tra]*arcsec_per_px ctd_x_oot = ctd_resid_x[mask_oot]*arcsec_per_px ctd_y_oot = ctd_resid_y[mask_oot]*arcsec_per_px cd[ix] = {'ctd_x_in_tra':ctd_x_in_tra, 'ctd_y_in_tra':ctd_y_in_tra, 'ctd_x_oot':ctd_x_oot, 'ctd_y_oot':ctd_y_oot, 'npts_in_tra':len(ctd_x_in_tra), 'npts_oot':len(ctd_x_oot), 'in_tra_times':in_tra_times, 'oot_times':oot_times} LOGINFO('Got centroid offsets (qnum: {:d}).'.format(qnum)) return cd
def _get_legendre_deg_ctd(npts): '''This is a helper function for centroid detrending. ''' from scipy.interpolate import interp1d degs = nparray([4,5,6,10,15]) pts = nparray([1e2,3e2,5e2,1e3,3e3]) fn = interp1d(pts, degs, kind='linear', bounds_error=False, fill_value=(min(degs), max(degs))) legendredeg = int(npfloor(fn(npts))) return legendredeg
def _legendre_dtr(x, y, y_err, legendredeg=10): '''This calculates the residual and chi-sq values for a Legendre function fit. Parameters ---------- x : np.array Array of the independent variable. y : np.array Array of the dependent variable. y_err : np.array Array of errors associated with each `y` value. Used to calculate fit weights. legendredeg : int The degree of the Legendre function to use when fitting. Returns ------- tuple The tuple returned is of the form: (fit_y, fitchisq, fitredchisq) ''' try: p = Legendre.fit(x, y, legendredeg) fit_y = p(x) except Exception as e: fit_y = npzeros_like(y) fitchisq = npsum( ((fit_y - y)*(fit_y - y)) / (y_err*y_err) ) nparams = legendredeg + 1 fitredchisq = fitchisq/(len(y) - nparams - 1) LOGINFO( 'legendre detrend applied. chisq = %.5f, reduced chisq = %.5f' % (fitchisq, fitredchisq) ) return fit_y, fitchisq, fitredchisq
def timebinlc(lcfile, binsizesec, outdir=None, lcformat='hat-sql', lcformatdir=None, timecols=None, magcols=None, errcols=None, minbinelems=7): '''This bins the given light curve file in time using the specified bin size. Parameters ---------- lcfile : str The file name to process. binsizesec : float The time bin-size in seconds. outdir : str or None If this is a str, the output LC will be written to `outdir`. If this is None, the output LC will be written to the same directory as `lcfile`. lcformat : str This is the `formatkey` associated with your light curve format, which you previously passed in to the `lcproc.register_lcformat` function. This will be used to look up how to find and read the light curve file. lcformatdir : str or None If this is provided, gives the path to a directory when you've stored your lcformat description JSONs, other than the usual directories lcproc knows to search for them in. Use this along with `lcformat` to specify an LC format JSON file that's not currently registered with lcproc. timecols,magcols,errcols : lists of str The keys in the lcdict produced by your light curve reader function that correspond to the times, mags/fluxes, and associated measurement errors that will be used as inputs to the binning process. If these are None, the default values for `timecols`, `magcols`, and `errcols` for your light curve format will be used here. minbinelems : int The minimum number of time-bin elements required to accept a time-bin as valid for the output binned light curve. Returns ------- str The name of the output pickle file with the binned LC. Writes the output binned light curve to a pickle that contains the lcdict with an added `lcdict['binned'][magcol]` key, which contains the binned times, mags/fluxes, and errs as `lcdict['binned'][magcol]['times']`, `lcdict['binned'][magcol]['mags']`, and `lcdict['epd'][magcol]['errs']` for each `magcol` provided in the input or default `magcols` value for this light curve format. ''' try: formatinfo = get_lcformat(lcformat, use_lcformat_dir=lcformatdir) if formatinfo: (dfileglob, readerfunc, dtimecols, dmagcols, derrcols, magsarefluxes, normfunc) = formatinfo else: LOGERROR("can't figure out the light curve format") return None except Exception as e: LOGEXCEPTION("can't figure out the light curve format") return None # override the default timecols, magcols, and errcols # using the ones provided to the function if timecols is None: timecols = dtimecols if magcols is None: magcols = dmagcols if errcols is None: errcols = derrcols # get the LC into a dict lcdict = readerfunc(lcfile) # this should handle lists/tuples being returned by readerfunc # we assume that the first element is the actual lcdict # FIXME: figure out how to not need this assumption if ( (isinstance(lcdict, (list, tuple))) and (isinstance(lcdict[0], dict)) ): lcdict = lcdict[0] # skip already binned light curves if 'binned' in lcdict: LOGERROR('this light curve appears to be binned already, skipping...') return None lcdict['binned'] = {} for tcol, mcol, ecol in zip(timecols, magcols, errcols): # dereference the columns and get them from the lcdict if '.' in tcol: tcolget = tcol.split('.') else: tcolget = [tcol] times = _dict_get(lcdict, tcolget) if '.' in mcol: mcolget = mcol.split('.') else: mcolget = [mcol] mags = _dict_get(lcdict, mcolget) if '.' in ecol: ecolget = ecol.split('.') else: ecolget = [ecol] errs = _dict_get(lcdict, ecolget) # normalize here if not using special normalization if normfunc is None: ntimes, nmags = normalize_magseries( times, mags, magsarefluxes=magsarefluxes ) times, mags, errs = ntimes, nmags, errs # now bin the mag series as requested binned = time_bin_magseries_with_errs(times, mags, errs, binsize=binsizesec, minbinelems=minbinelems) # put this into the special binned key of the lcdict lcdict['binned'][mcol] = {'times':binned['binnedtimes'], 'mags':binned['binnedmags'], 'errs':binned['binnederrs'], 'nbins':binned['nbins'], 'timebins':binned['jdbins'], 'binsizesec':binsizesec} # done with binning for all magcols, now generate the output file # this will always be a pickle if outdir is None: outdir = os.path.dirname(lcfile) outfile = os.path.join(outdir, '%s-binned%.1fsec-%s.pkl' % (squeeze(lcdict['objectid']).replace(' ','-'), binsizesec, lcformat)) with open(outfile, 'wb') as outfd: pickle.dump(lcdict, outfd, protocol=pickle.HIGHEST_PROTOCOL) return outfile
def timebinlc_worker(task): ''' This is a parallel worker for the function below. Parameters ---------- task : tuple This is of the form:: task[0] = lcfile task[1] = binsizesec task[3] = {'outdir','lcformat','lcformatdir', 'timecols','magcols','errcols','minbinelems'} Returns ------- str The output pickle file with the binned LC if successful. None otherwise. ''' lcfile, binsizesec, kwargs = task try: binnedlc = timebinlc(lcfile, binsizesec, **kwargs) LOGINFO('%s binned using %s sec -> %s OK' % (lcfile, binsizesec, binnedlc)) return binnedlc except Exception as e: LOGEXCEPTION('failed to bin %s using binsizesec = %s' % (lcfile, binsizesec)) return None
def parallel_timebin(lclist, binsizesec, maxobjects=None, outdir=None, lcformat='hat-sql', lcformatdir=None, timecols=None, magcols=None, errcols=None, minbinelems=7, nworkers=NCPUS, maxworkertasks=1000): '''This time-bins all the LCs in the list using the specified bin size. Parameters ---------- lclist : list of str The input LCs to process. binsizesec : float The time bin size to use in seconds. maxobjects : int or None If provided, LC processing will stop at `lclist[maxobjects]`. outdir : str or None The directory where output LCs will be written. If None, will write to the same directory as the input LCs. lcformat : str This is the `formatkey` associated with your light curve format, which you previously passed in to the `lcproc.register_lcformat` function. This will be used to look up how to find and read the light curve file. lcformatdir : str or None If this is provided, gives the path to a directory when you've stored your lcformat description JSONs, other than the usual directories lcproc knows to search for them in. Use this along with `lcformat` to specify an LC format JSON file that's not currently registered with lcproc. timecols,magcols,errcols : lists of str The keys in the lcdict produced by your light curve reader function that correspond to the times, mags/fluxes, and associated measurement errors that will be used as inputs to the binning process. If these are None, the default values for `timecols`, `magcols`, and `errcols` for your light curve format will be used here. minbinelems : int The minimum number of time-bin elements required to accept a time-bin as valid for the output binned light curve. nworkers : int Number of parallel workers to launch. maxworkertasks : int The maximum number of tasks a parallel worker will complete before being replaced to guard against memory leaks. Returns ------- dict The returned dict contains keys = input LCs, vals = output LCs. ''' if outdir and not os.path.exists(outdir): os.mkdir(outdir) if maxobjects is not None: lclist = lclist[:maxobjects] tasks = [(x, binsizesec, {'outdir':outdir, 'lcformat':lcformat, 'lcformatdir':lcformatdir, 'timecols':timecols, 'magcols':magcols, 'errcols':errcols, 'minbinelems':minbinelems}) for x in lclist] pool = mp.Pool(nworkers, maxtasksperchild=maxworkertasks) results = pool.map(timebinlc_worker, tasks) pool.close() pool.join() resdict = {os.path.basename(x):y for (x,y) in zip(lclist, results)} return resdict
def parallel_timebin_lcdir(lcdir, binsizesec, maxobjects=None, outdir=None, lcformat='hat-sql', lcformatdir=None, timecols=None, magcols=None, errcols=None, minbinelems=7, nworkers=NCPUS, maxworkertasks=1000): ''' This time bins all the light curves in the specified directory. Parameters ---------- lcdir : list of str Directory containing the input LCs to process. binsizesec : float The time bin size to use in seconds. maxobjects : int or None If provided, LC processing will stop at `lclist[maxobjects]`. outdir : str or None The directory where output LCs will be written. If None, will write to the same directory as the input LCs. lcformat : str This is the `formatkey` associated with your light curve format, which you previously passed in to the `lcproc.register_lcformat` function. This will be used to look up how to find and read the light curve file. lcformatdir : str or None If this is provided, gives the path to a directory when you've stored your lcformat description JSONs, other than the usual directories lcproc knows to search for them in. Use this along with `lcformat` to specify an LC format JSON file that's not currently registered with lcproc. timecols,magcols,errcols : lists of str The keys in the lcdict produced by your light curve reader function that correspond to the times, mags/fluxes, and associated measurement errors that will be used as inputs to the binning process. If these are None, the default values for `timecols`, `magcols`, and `errcols` for your light curve format will be used here. minbinelems : int The minimum number of time-bin elements required to accept a time-bin as valid for the output binned light curve. nworkers : int Number of parallel workers to launch. maxworkertasks : int The maximum number of tasks a parallel worker will complete before being replaced to guard against memory leaks. Returns ------- dict The returned dict contains keys = input LCs, vals = output LCs. ''' try: formatinfo = get_lcformat(lcformat, use_lcformat_dir=lcformatdir) if formatinfo: (fileglob, readerfunc, dtimecols, dmagcols, derrcols, magsarefluxes, normfunc) = formatinfo else: LOGERROR("can't figure out the light curve format") return None except Exception as e: LOGEXCEPTION("can't figure out the light curve format") return None lclist = sorted(glob.glob(os.path.join(lcdir, fileglob))) return parallel_timebin(lclist, binsizesec, maxobjects=maxobjects, outdir=outdir, lcformat=lcformat, timecols=timecols, magcols=magcols, errcols=errcols, minbinelems=minbinelems, nworkers=nworkers, maxworkertasks=maxworkertasks)
def get_varfeatures(lcfile, outdir, timecols=None, magcols=None, errcols=None, mindet=1000, lcformat='hat-sql', lcformatdir=None): '''This runs :py:func:`astrobase.varclass.varfeatures.all_nonperiodic_features` on a single LC file. Parameters ---------- lcfile : str The input light curve to process. outfile : str The filename of the output variable features pickle that will be generated. timecols : list of str or None The timecol keys to use from the lcdict in calculating the features. magcols : list of str or None The magcol keys to use from the lcdict in calculating the features. errcols : list of str or None The errcol keys to use from the lcdict in calculating the features. mindet : int The minimum number of LC points required to generate variability features. lcformat : str This is the `formatkey` associated with your light curve format, which you previously passed in to the `lcproc.register_lcformat` function. This will be used to look up how to find and read the light curves specified in `basedir` or `use_list_of_filenames`. lcformatdir : str or None If this is provided, gives the path to a directory when you've stored your lcformat description JSONs, other than the usual directories lcproc knows to search for them in. Use this along with `lcformat` to specify an LC format JSON file that's not currently registered with lcproc. Returns ------- str The generated variability features pickle for the input LC, with results for each magcol in the input `magcol` or light curve format's default `magcol` list. ''' try: formatinfo = get_lcformat(lcformat, use_lcformat_dir=lcformatdir) if formatinfo: (dfileglob, readerfunc, dtimecols, dmagcols, derrcols, magsarefluxes, normfunc) = formatinfo else: LOGERROR("can't figure out the light curve format") return None except Exception as e: LOGEXCEPTION("can't figure out the light curve format") return None # override the default timecols, magcols, and errcols # using the ones provided to the function if timecols is None: timecols = dtimecols if magcols is None: magcols = dmagcols if errcols is None: errcols = derrcols try: # get the LC into a dict lcdict = readerfunc(lcfile) # this should handle lists/tuples being returned by readerfunc # we assume that the first element is the actual lcdict # FIXME: figure out how to not need this assumption if ( (isinstance(lcdict, (list, tuple))) and (isinstance(lcdict[0], dict)) ): lcdict = lcdict[0] resultdict = {'objectid':lcdict['objectid'], 'info':lcdict['objectinfo'], 'lcfbasename':os.path.basename(lcfile)} # normalize using the special function if specified if normfunc is not None: lcdict = normfunc(lcdict) for tcol, mcol, ecol in zip(timecols, magcols, errcols): # dereference the columns and get them from the lcdict if '.' in tcol: tcolget = tcol.split('.') else: tcolget = [tcol] times = _dict_get(lcdict, tcolget) if '.' in mcol: mcolget = mcol.split('.') else: mcolget = [mcol] mags = _dict_get(lcdict, mcolget) if '.' in ecol: ecolget = ecol.split('.') else: ecolget = [ecol] errs = _dict_get(lcdict, ecolget) # normalize here if not using special normalization if normfunc is None: ntimes, nmags = normalize_magseries( times, mags, magsarefluxes=magsarefluxes ) times, mags, errs = ntimes, nmags, errs # make sure we have finite values finind = np.isfinite(times) & np.isfinite(mags) & np.isfinite(errs) # make sure we have enough finite values if mags[finind].size < mindet: LOGINFO('not enough LC points: %s in normalized %s LC: %s' % (mags[finind].size, mcol, os.path.basename(lcfile))) resultdict[mcol] = None else: # get the features for this magcol lcfeatures = varfeatures.all_nonperiodic_features( times, mags, errs ) resultdict[mcol] = lcfeatures # now that we've collected all the magcols, we can choose which is the # "best" magcol. this is defined as the magcol that gives us the # smallest LC MAD. try: magmads = np.zeros(len(magcols)) for mind, mcol in enumerate(magcols): if '.' in mcol: mcolget = mcol.split('.') else: mcolget = [mcol] magmads[mind] = resultdict[mcol]['mad'] # smallest MAD index bestmagcolind = np.where(magmads == np.min(magmads))[0] resultdict['bestmagcol'] = magcols[bestmagcolind] except Exception as e: resultdict['bestmagcol'] = None outfile = os.path.join(outdir, 'varfeatures-%s.pkl' % squeeze(resultdict['objectid']).replace(' ','-')) with open(outfile, 'wb') as outfd: pickle.dump(resultdict, outfd, protocol=4) return outfile except Exception as e: LOGEXCEPTION('failed to get LC features for %s because: %s' % (os.path.basename(lcfile), e)) return None
def _varfeatures_worker(task): ''' This wraps varfeatures. ''' try: (lcfile, outdir, timecols, magcols, errcols, mindet, lcformat, lcformatdir) = task return get_varfeatures(lcfile, outdir, timecols=timecols, magcols=magcols, errcols=errcols, mindet=mindet, lcformat=lcformat, lcformatdir=lcformatdir) except Exception as e: return None
def serial_varfeatures(lclist, outdir, maxobjects=None, timecols=None, magcols=None, errcols=None, mindet=1000, lcformat='hat-sql', lcformatdir=None): '''This runs variability feature extraction for a list of LCs. Parameters ---------- lclist : list of str The list of light curve file names to process. outdir : str The directory where the output varfeatures pickle files will be written. maxobjects : int The number of LCs to process from `lclist`. timecols : list of str or None The timecol keys to use from the lcdict in calculating the features. magcols : list of str or None The magcol keys to use from the lcdict in calculating the features. errcols : list of str or None The errcol keys to use from the lcdict in calculating the features. mindet : int The minimum number of LC points required to generate variability features. lcformat : str This is the `formatkey` associated with your light curve format, which you previously passed in to the `lcproc.register_lcformat` function. This will be used to look up how to find and read the light curves specified in `basedir` or `use_list_of_filenames`. lcformatdir : str or None If this is provided, gives the path to a directory when you've stored your lcformat description JSONs, other than the usual directories lcproc knows to search for them in. Use this along with `lcformat` to specify an LC format JSON file that's not currently registered with lcproc. Returns ------- list of str List of the generated variability features pickles for the input LCs, with results for each magcol in the input `magcol` or light curve format's default `magcol` list. ''' if maxobjects: lclist = lclist[:maxobjects] tasks = [(x, outdir, timecols, magcols, errcols, mindet, lcformat, lcformatdir) for x in lclist] for task in tqdm(tasks): result = _varfeatures_worker(task) return result
def parallel_varfeatures(lclist, outdir, maxobjects=None, timecols=None, magcols=None, errcols=None, mindet=1000, lcformat='hat-sql', lcformatdir=None, nworkers=NCPUS): '''This runs variable feature extraction in parallel for all LCs in `lclist`. Parameters ---------- lclist : list of str The list of light curve file names to process. outdir : str The directory where the output varfeatures pickle files will be written. maxobjects : int The number of LCs to process from `lclist`. timecols : list of str or None The timecol keys to use from the lcdict in calculating the features. magcols : list of str or None The magcol keys to use from the lcdict in calculating the features. errcols : list of str or None The errcol keys to use from the lcdict in calculating the features. mindet : int The minimum number of LC points required to generate variability features. lcformat : str This is the `formatkey` associated with your light curve format, which you previously passed in to the `lcproc.register_lcformat` function. This will be used to look up how to find and read the light curves specified in `basedir` or `use_list_of_filenames`. lcformatdir : str or None If this is provided, gives the path to a directory when you've stored your lcformat description JSONs, other than the usual directories lcproc knows to search for them in. Use this along with `lcformat` to specify an LC format JSON file that's not currently registered with lcproc. nworkers : int The number of parallel workers to launch. Returns ------- dict A dict with key:val pairs of input LC file name : the generated variability features pickles for each of the input LCs, with results for each magcol in the input `magcol` or light curve format's default `magcol` list. ''' # make sure to make the output directory if it doesn't exist if not os.path.exists(outdir): os.makedirs(outdir) if maxobjects: lclist = lclist[:maxobjects] tasks = [(x, outdir, timecols, magcols, errcols, mindet, lcformat, lcformatdir) for x in lclist] with ProcessPoolExecutor(max_workers=nworkers) as executor: resultfutures = executor.map(varfeatures_worker, tasks) results = [x for x in resultfutures] resdict = {os.path.basename(x):y for (x,y) in zip(lclist, results)} return resdict
def parallel_varfeatures_lcdir(lcdir, outdir, fileglob=None, maxobjects=None, timecols=None, magcols=None, errcols=None, recursive=True, mindet=1000, lcformat='hat-sql', lcformatdir=None, nworkers=NCPUS): '''This runs parallel variable feature extraction for a directory of LCs. Parameters ---------- lcdir : str The directory of light curve files to process. outdir : str The directory where the output varfeatures pickle files will be written. fileglob : str or None The file glob to use when looking for light curve files in `lcdir`. If None, the default file glob associated for this LC format will be used. maxobjects : int The number of LCs to process from `lclist`. timecols : list of str or None The timecol keys to use from the lcdict in calculating the features. magcols : list of str or None The magcol keys to use from the lcdict in calculating the features. errcols : list of str or None The errcol keys to use from the lcdict in calculating the features. mindet : int The minimum number of LC points required to generate variability features. lcformat : str This is the `formatkey` associated with your light curve format, which you previously passed in to the `lcproc.register_lcformat` function. This will be used to look up how to find and read the light curves specified in `basedir` or `use_list_of_filenames`. lcformatdir : str or None If this is provided, gives the path to a directory when you've stored your lcformat description JSONs, other than the usual directories lcproc knows to search for them in. Use this along with `lcformat` to specify an LC format JSON file that's not currently registered with lcproc. nworkers : int The number of parallel workers to launch. Returns ------- dict A dict with key:val pairs of input LC file name : the generated variability features pickles for each of the input LCs, with results for each magcol in the input `magcol` or light curve format's default `magcol` list. ''' try: formatinfo = get_lcformat(lcformat, use_lcformat_dir=lcformatdir) if formatinfo: (dfileglob, readerfunc, dtimecols, dmagcols, derrcols, magsarefluxes, normfunc) = formatinfo else: LOGERROR("can't figure out the light curve format") return None except Exception as e: LOGEXCEPTION("can't figure out the light curve format") return None if not fileglob: fileglob = dfileglob # now find the files LOGINFO('searching for %s light curves in %s ...' % (lcformat, lcdir)) if recursive is False: matching = glob.glob(os.path.join(lcdir, fileglob)) else: # use recursive glob for Python 3.5+ if sys.version_info[:2] > (3,4): matching = glob.glob(os.path.join(lcdir, '**', fileglob), recursive=True) # otherwise, use os.walk and glob else: # use os.walk to go through the directories walker = os.walk(lcdir) matching = [] for root, dirs, _files in walker: for sdir in dirs: searchpath = os.path.join(root, sdir, fileglob) foundfiles = glob.glob(searchpath) if foundfiles: matching.extend(foundfiles) # now that we have all the files, process them if matching and len(matching) > 0: LOGINFO('found %s light curves, getting varfeatures...' % len(matching)) return parallel_varfeatures(matching, outdir, maxobjects=maxobjects, timecols=timecols, magcols=magcols, errcols=errcols, mindet=mindet, lcformat=lcformat, lcformatdir=lcformatdir, nworkers=nworkers) else: LOGERROR('no light curve files in %s format found in %s' % (lcformat, lcdir)) return None
def checkplot_pickle_to_png( checkplotin, outfile, extrarows=None ): '''This reads the checkplot pickle or dict provided, and writes out a PNG. The output PNG contains most of the information in the input checkplot pickle/dict, and can be used to quickly glance through the highlights instead of having to review the checkplot with the `checkplotserver` webapp. This is useful for exporting read-only views of finalized checkplots from the `checkplotserver` as well, to share them with other people. The PNG has 4 x N tiles:: [ finder ] [ objectinfo ] [ varinfo/comments ] [ unphased LC ] [ periodogram1 ] [ phased LC P1 ] [ phased LC P2 ] [ phased LC P3 ] [ periodogram2 ] [ phased LC P1 ] [ phased LC P2 ] [ phased LC P3 ] . . [ periodogramN ] [ phased LC P1 ] [ phased LC P2 ] [ phased LC P3 ] for N independent period-finding methods producing: - periodogram1,2,3...N: the periodograms from each method - phased LC P1,P2,P3: the phased lightcurves using the best 3 peaks in each periodogram Parameters ---------- checkplotin : dict or str This is either a checkplotdict produced by :py:func:`astrobase.checkplot.pkl.checkplot_dict` or a checkplot pickle file produced by :py:func:`astrobase.checkplot.pkl.checkplot_pickle`. outfile : str The filename of the output PNG file to create. extrarows : list of tuples This is a list of 4-element tuples containing paths to PNG files that will be added to the end of the rows generated from the checkplotin pickle/dict. Each tuple represents a row in the final output PNG file. If there are less than 4 elements per tuple, the missing elements will be filled in with white-space. If there are more than 4 elements per tuple, only the first four will be used. The purpose of this kwarg is to incorporate periodograms and phased LC plots (in the form of PNGs) generated from an external period-finding function or program (like VARTOOLS) to allow for comparison with astrobase results. NOTE: the PNG files specified in `extrarows` here will be added to those already present in the input checkplotdict['externalplots'] if that is None because you passed in a similar list of external plots to the :py:func:`astrobase.checkplot.pkl.checkplot_pickle` function earlier. In this case, `extrarows` can be used to add even more external plots if desired. Each external plot PNG will be resized to 750 x 480 pixels to fit into an output image cell. By convention, each 4-element tuple should contain: - a periodiogram PNG - phased LC PNG with 1st best peak period from periodogram - phased LC PNG with 2nd best peak period from periodogram - phased LC PNG with 3rd best peak period from periodogram Example of extrarows:: [('/path/to/external/bls-periodogram.png', '/path/to/external/bls-phasedlc-plot-bestpeak.png', '/path/to/external/bls-phasedlc-plot-peak2.png', '/path/to/external/bls-phasedlc-plot-peak3.png'), ('/path/to/external/pdm-periodogram.png', '/path/to/external/pdm-phasedlc-plot-bestpeak.png', '/path/to/external/pdm-phasedlc-plot-peak2.png', '/path/to/external/pdm-phasedlc-plot-peak3.png'), ...] Returns ------- str The absolute path to the generated checkplot PNG. ''' # figure out if the checkplotpickle is a filename # python 3 if sys.version_info[:2] > (3,2): if (isinstance(checkplotin, str) and os.path.exists(checkplotin)): cpd = _read_checkplot_picklefile(checkplotin) elif isinstance(checkplotin, dict): cpd = checkplotin else: LOGERROR('checkplotin: %s of type %s is not a ' 'valid checkplot filename (or does not exist), or a dict' % (os.path.abspath(checkplotin), type(checkplotin))) return None # check for unicode in python 2.7 else: # get the current checkplotdict if ((isinstance(checkplotin, str) or isinstance(checkplotin, unicode)) and os.path.exists(checkplotin)): cpd = _read_checkplot_picklefile(checkplotin) elif isinstance(checkplotin,dict): cpd = checkplotin else: LOGERROR('checkplotin: %s of type %s is not a ' 'valid checkplot filename (or does not exist), or a dict' % (os.path.abspath(checkplotin), type(checkplotin))) return None # figure out the dimensions of the output png # each cell is 750 x 480 pixels # a row is made of four cells # - the first row is for object info # - the rest are for periodograms and phased LCs, one row per method # if there are more than three phased LC plots per method, we'll only plot 3 if 'pfmethods' in cpd: cplspmethods = cpd['pfmethods'] else: cplspmethods = [] for pfm in METHODSHORTLABELS: if pfm in cpd: cplspmethods.append(pfm) cprows = len(cplspmethods) # add in any extra rows from neighbors if 'neighbors' in cpd and cpd['neighbors'] and len(cpd['neighbors']) > 0: nbrrows = len(cpd['neighbors']) else: nbrrows = 0 # add in any extra rows from keyword arguments if extrarows and len(extrarows) > 0: erows = len(extrarows) else: erows = 0 # add in any extra rows from the checkplot dict if ('externalplots' in cpd and cpd['externalplots'] and len(cpd['externalplots']) > 0): cpderows = len(cpd['externalplots']) else: cpderows = 0 totalwidth = 3000 totalheight = 480 + (cprows + erows + nbrrows + cpderows)*480 # this is the output PNG outimg = Image.new('RGBA',(totalwidth, totalheight),(255,255,255,255)) # now fill in the rows of the output png. we'll use Pillow to build up the # output image from the already stored plots and stuff in the checkplot # dict. ############################### # row 1, cell 1: finder chart # ############################### if cpd['finderchart']: finder = Image.open( _base64_to_file(cpd['finderchart'], None, writetostrio=True) ) bigfinder = finder.resize((450,450), Image.ANTIALIAS) outimg.paste(bigfinder,(150,20)) ##################################### # row 1, cell 2: object information # ##################################### # find the font we need from the package data fontpath = os.path.abspath( os.path.join(os.path.dirname(__file__), '..', 'cpserver', 'cps-assets', 'DejaVuSans.ttf') ) # load the font if os.path.exists(fontpath): cpfontnormal = ImageFont.truetype(fontpath, 20) cpfontlarge = ImageFont.truetype(fontpath, 28) else: LOGWARNING('could not find bundled ' 'DejaVu Sans font in the astrobase package ' 'data, using ugly defaults...') cpfontnormal = ImageFont.load_default() cpfontlarge = ImageFont.load_default() # the image draw object objinfodraw = ImageDraw.Draw(outimg) # write out the object information # objectid objinfodraw.text( (625, 25), cpd['objectid'] if cpd['objectid'] else 'no objectid', font=cpfontlarge, fill=(0,0,255,255) ) # twomass id if 'twomassid' in cpd['objectinfo']: objinfodraw.text( (625, 60), ('2MASS J%s' % cpd['objectinfo']['twomassid'] if cpd['objectinfo']['twomassid'] else ''), font=cpfontnormal, fill=(0,0,0,255) ) # ndet if 'ndet' in cpd['objectinfo']: objinfodraw.text( (625, 85), ('LC points: %s' % cpd['objectinfo']['ndet'] if cpd['objectinfo']['ndet'] is not None else ''), font=cpfontnormal, fill=(0,0,0,255) ) else: objinfodraw.text( (625, 85), ('LC points: %s' % cpd['magseries']['times'].size), font=cpfontnormal, fill=(0,0,0,255) ) # coords and PM objinfodraw.text( (625, 125), ('Coords and PM'), font=cpfontnormal, fill=(0,0,0,255) ) if 'ra' in cpd['objectinfo'] and 'decl' in cpd['objectinfo']: objinfodraw.text( (900, 125), (('RA, Dec: %.3f, %.3f' % (cpd['objectinfo']['ra'], cpd['objectinfo']['decl'])) if (cpd['objectinfo']['ra'] is not None and cpd['objectinfo']['decl'] is not None) else ''), font=cpfontnormal, fill=(0,0,0,255) ) else: objinfodraw.text( (900, 125), 'RA, Dec: nan, nan', font=cpfontnormal, fill=(0,0,0,255) ) if 'propermotion' in cpd['objectinfo']: objinfodraw.text( (900, 150), (('Total PM: %.5f mas/yr' % cpd['objectinfo']['propermotion']) if (cpd['objectinfo']['propermotion'] is not None) else ''), font=cpfontnormal, fill=(0,0,0,255) ) else: objinfodraw.text( (900, 150), 'Total PM: nan', font=cpfontnormal, fill=(0,0,0,255) ) if 'rpmj' in cpd['objectinfo']: objinfodraw.text( (900, 175), (('Reduced PM [Jmag]: %.3f' % cpd['objectinfo']['rpmj']) if (cpd['objectinfo']['rpmj'] is not None) else ''), font=cpfontnormal, fill=(0,0,0,255) ) else: objinfodraw.text( (900, 175), 'Reduced PM [Jmag]: nan', font=cpfontnormal, fill=(0,0,0,255) ) # here, we have to deal with two generations of objectinfo dicts # first, deal with the new generation of objectinfo dicts if 'available_dereddened_bands' in cpd['objectinfo']: # # first, we deal with the bands and mags # # magnitudes objinfodraw.text( (625, 200), 'Magnitudes', font=cpfontnormal, fill=(0,0,0,255) ) # process the various bands # if dereddened mags aren't available, use the observed mags if len(cpd['objectinfo']['available_bands']) > 0: # we'll get all the available mags for bandind, band, label in zip( range(len(cpd['objectinfo']['available_bands'])), cpd['objectinfo']['available_bands'], cpd['objectinfo']['available_band_labels'] ): thisbandmag = cpd['objectinfo'][band] # we'll draw stuff in three rows depending on the number of # bands we have to use if bandind in (0,1,2,3,4): thispos = (900+125*bandind, 200) objinfodraw.text( thispos, '%s: %.3f' % (label, thisbandmag), font=cpfontnormal, fill=(0,0,0,255) ) elif bandind in (5,6,7,8,9): rowbandind = bandind - 5 thispos = (900+125*rowbandind, 225) objinfodraw.text( thispos, '%s: %.3f' % (label, thisbandmag), font=cpfontnormal, fill=(0,0,0,255) ) else: rowbandind = bandind - 10 thispos = (900+125*rowbandind, 250) objinfodraw.text( thispos, '%s: %.3f' % (label, thisbandmag), font=cpfontnormal, fill=(0,0,0,255) ) # # next, deal with the colors # # colors if ('dereddened' in cpd['objectinfo'] and cpd['objectinfo']['dereddened'] is True): deredlabel = "(dereddened)" else: deredlabel = "" objinfodraw.text( (625, 275), 'Colors %s' % deredlabel, font=cpfontnormal, fill=(0,0,0,255) ) if len(cpd['objectinfo']['available_colors']) > 0: # we'll get all the available mags (dereddened versions preferred) for colorind, color, colorlabel in zip( range(len(cpd['objectinfo']['available_colors'])), cpd['objectinfo']['available_colors'], cpd['objectinfo']['available_color_labels'] ): thiscolor = cpd['objectinfo'][color] # we'll draw stuff in three rows depending on the number of # bands we have to use if colorind in (0,1,2,3,4): thispos = (900+150*colorind, 275) objinfodraw.text( thispos, '%s: %.3f' % (colorlabel, thiscolor), font=cpfontnormal, fill=(0,0,0,255) ) elif colorind in (5,6,7,8,9): thisrowind = colorind - 5 thispos = (900+150*thisrowind, 300) objinfodraw.text( thispos, '%s: %.3f' % (colorlabel, thiscolor), font=cpfontnormal, fill=(0,0,0,255) ) elif colorind in (10,11,12,13,14): thisrowind = colorind - 10 thispos = (900+150*thisrowind, 325) objinfodraw.text( thispos, '%s: %.3f' % (colorlabel, thiscolor), font=cpfontnormal, fill=(0,0,0,255) ) else: thisrowind = colorind - 15 thispos = (900+150*thisrowind, 350) objinfodraw.text( thispos, '%s: %.3f' % (colorlabel, thiscolor), font=cpfontnormal, fill=(0,0,0,255) ) # otherwise, deal with older generation of checkplots else: objinfodraw.text( (625, 200), ('Magnitudes'), font=cpfontnormal, fill=(0,0,0,255) ) objinfodraw.text( (900, 200), ('gri: %.3f, %.3f, %.3f' % ((cpd['objectinfo']['sdssg'] if ('sdssg' in cpd['objectinfo'] and cpd['objectinfo']['sdssg'] is not None) else npnan), (cpd['objectinfo']['sdssr'] if ('sdssr' in cpd['objectinfo'] and cpd['objectinfo']['sdssr'] is not None) else npnan), (cpd['objectinfo']['sdssi'] if ('sdssi' in cpd['objectinfo'] and cpd['objectinfo']['sdssi'] is not None) else npnan))), font=cpfontnormal, fill=(0,0,0,255) ) objinfodraw.text( (900, 225), ('JHK: %.3f, %.3f, %.3f' % ((cpd['objectinfo']['jmag'] if ('jmag' in cpd['objectinfo'] and cpd['objectinfo']['jmag'] is not None) else npnan), (cpd['objectinfo']['hmag'] if ('hmag' in cpd['objectinfo'] and cpd['objectinfo']['hmag'] is not None) else npnan), (cpd['objectinfo']['kmag'] if ('kmag' in cpd['objectinfo'] and cpd['objectinfo']['kmag'] is not None) else npnan))), font=cpfontnormal, fill=(0,0,0,255) ) objinfodraw.text( (900, 250), ('BV: %.3f, %.3f' % ((cpd['objectinfo']['bmag'] if ('bmag' in cpd['objectinfo'] and cpd['objectinfo']['bmag'] is not None) else npnan), (cpd['objectinfo']['vmag'] if ('vmag' in cpd['objectinfo'] and cpd['objectinfo']['vmag'] is not None) else npnan))), font=cpfontnormal, fill=(0,0,0,255) ) # colors if ('dereddened' in cpd['objectinfo'] and cpd['objectinfo']['dereddened'] is True): deredlabel = "(dereddened)" else: deredlabel = "" objinfodraw.text( (625, 275), 'Colors %s' % deredlabel, font=cpfontnormal, fill=(0,0,0,255) ) objinfodraw.text( (900, 275), ('B - V: %.3f, V - K: %.3f' % ( (cpd['objectinfo']['bvcolor'] if ('bvcolor' in cpd['objectinfo'] and cpd['objectinfo']['bvcolor'] is not None) else npnan), (cpd['objectinfo']['vkcolor'] if ('vkcolor' in cpd['objectinfo'] and cpd['objectinfo']['vkcolor'] is not None) else npnan) )), font=cpfontnormal, fill=(0,0,0,255) ) objinfodraw.text( (900, 300), ('i - J: %.3f, g - K: %.3f' % ( (cpd['objectinfo']['ijcolor'] if ('ijcolor' in cpd['objectinfo'] and cpd['objectinfo']['ijcolor'] is not None) else npnan), (cpd['objectinfo']['gkcolor'] if ('gkcolor' in cpd['objectinfo'] and cpd['objectinfo']['gkcolor'] is not None) else npnan) )), font=cpfontnormal, fill=(0,0,0,255) ) objinfodraw.text( (900, 325), ('J - K: %.3f' % ( (cpd['objectinfo']['jkcolor'] if ('jkcolor' in cpd['objectinfo'] and cpd['objectinfo']['jkcolor'] is not None) else npnan),) ), font=cpfontnormal, fill=(0,0,0,255) ) # # rest of the object information # # color classification if ('color_classes' in cpd['objectinfo'] and cpd['objectinfo']['color_classes']): objinfodraw.text( (625, 375), ('star classification by color: %s' % (', '.join(cpd['objectinfo']['color_classes']))), font=cpfontnormal, fill=(0,0,0,255) ) # GAIA neighbors if ( ('gaia_neighbors' in cpd['objectinfo']) and (cpd['objectinfo']['gaia_neighbors'] is not None) and (np.isfinite(cpd['objectinfo']['gaia_neighbors'])) and ('searchradarcsec' in cpd['objectinfo']) and (cpd['objectinfo']['searchradarcsec']) ): objinfodraw.text( (625, 400), ('%s GAIA close neighbors within %.1f arcsec' % (cpd['objectinfo']['gaia_neighbors'], cpd['objectinfo']['searchradarcsec'])), font=cpfontnormal, fill=(0,0,0,255) ) # closest GAIA neighbor if ( ('gaia_closest_distarcsec' in cpd['objectinfo']) and (cpd['objectinfo']['gaia_closest_distarcsec'] is not None) and (np.isfinite(cpd['objectinfo']['gaia_closest_distarcsec'])) and ('gaia_closest_gmagdiff' in cpd['objectinfo']) and (cpd['objectinfo']['gaia_closest_gmagdiff'] is not None) and (np.isfinite(cpd['objectinfo']['gaia_closest_gmagdiff'])) ): objinfodraw.text( (625, 425), ('closest GAIA neighbor is %.1f arcsec away, ' 'GAIA mag (obj-nbr): %.3f' % (cpd['objectinfo']['gaia_closest_distarcsec'], cpd['objectinfo']['gaia_closest_gmagdiff'])), font=cpfontnormal, fill=(0,0,0,255) ) # object tags if 'objecttags' in cpd['objectinfo'] and cpd['objectinfo']['objecttags']: objtagsplit = cpd['objectinfo']['objecttags'].split(',') # write three tags per line nobjtaglines = int(np.ceil(len(objtagsplit)/3.0)) for objtagline in range(nobjtaglines): objtagslice = ','.join(objtagsplit[objtagline*3:objtagline*3+3]) objinfodraw.text( (625, 450+objtagline*25), objtagslice, font=cpfontnormal, fill=(135, 54, 0, 255) ) ################################################ # row 1, cell 3: variability info and comments # ################################################ # objectisvar objisvar = cpd['varinfo']['objectisvar'] if objisvar == '0': objvarflag = 'Variable star flag not set' elif objisvar == '1': objvarflag = 'Object is probably a variable star' elif objisvar == '2': objvarflag = 'Object is probably not a variable star' elif objisvar == '3': objvarflag = 'Not sure if this object is a variable star' elif objisvar is None: objvarflag = 'Variable star flag not set' elif objisvar is True: objvarflag = 'Object is probably a variable star' elif objisvar is False: objvarflag = 'Object is probably not a variable star' else: objvarflag = 'Variable star flag: %s' % objisvar objinfodraw.text( (1650, 125), objvarflag, font=cpfontnormal, fill=(0,0,0,255) ) # period objinfodraw.text( (1650, 150), ('Period [days]: %.6f' % (cpd['varinfo']['varperiod'] if cpd['varinfo']['varperiod'] is not None else np.nan)), font=cpfontnormal, fill=(0,0,0,255) ) # epoch objinfodraw.text( (1650, 175), ('Epoch [JD]: %.6f' % (cpd['varinfo']['varepoch'] if cpd['varinfo']['varepoch'] is not None else np.nan)), font=cpfontnormal, fill=(0,0,0,255) ) # variability tags if cpd['varinfo']['vartags']: vartagsplit = cpd['varinfo']['vartags'].split(',') # write three tags per line nvartaglines = int(np.ceil(len(vartagsplit)/3.0)) for vartagline in range(nvartaglines): vartagslice = ','.join(vartagsplit[vartagline*3:vartagline*3+3]) objinfodraw.text( (1650, 225+vartagline*25), vartagslice, font=cpfontnormal, fill=(135, 54, 0, 255) ) # object comments if 'comments' in cpd and cpd['comments']: commentsplit = cpd['comments'].split(' ') # write 10 words per line ncommentlines = int(np.ceil(len(commentsplit)/10.0)) for commentline in range(ncommentlines): commentslice = ' '.join( commentsplit[commentline*10:commentline*10+10] ) objinfodraw.text( (1650, 325+commentline*25), commentslice, font=cpfontnormal, fill=(0,0,0,255) ) # this handles JSON-ified checkplots returned by LCC server elif 'objectcomments' in cpd and cpd['objectcomments']: commentsplit = cpd['objectcomments'].split(' ') # write 10 words per line ncommentlines = int(np.ceil(len(commentsplit)/10.0)) for commentline in range(ncommentlines): commentslice = ' '.join( commentsplit[commentline*10:commentline*10+10] ) objinfodraw.text( (1650, 325+commentline*25), commentslice, font=cpfontnormal, fill=(0,0,0,255) ) ####################################### # row 1, cell 4: unphased light curve # ####################################### if (cpd['magseries'] and 'plot' in cpd['magseries'] and cpd['magseries']['plot']): magseries = Image.open( _base64_to_file(cpd['magseries']['plot'], None, writetostrio=True) ) outimg.paste(magseries,(750*3,0)) # this handles JSON-ified checkplots from LCC server elif ('magseries' in cpd and isinstance(cpd['magseries'],str)): magseries = Image.open( _base64_to_file(cpd['magseries'], None, writetostrio=True) ) outimg.paste(magseries,(750*3,0)) ############################### # the rest of the rows in cpd # ############################### for lspmethodind, lspmethod in enumerate(cplspmethods): ############################### # the periodogram comes first # ############################### if (cpd[lspmethod] and cpd[lspmethod]['periodogram']): pgram = Image.open( _base64_to_file(cpd[lspmethod]['periodogram'], None, writetostrio=True) ) outimg.paste(pgram,(0,480 + 480*lspmethodind)) ############################# # best phased LC comes next # ############################# if (cpd[lspmethod] and 0 in cpd[lspmethod] and cpd[lspmethod][0]): plc1 = Image.open( _base64_to_file(cpd[lspmethod][0]['plot'], None, writetostrio=True) ) outimg.paste(plc1,(750,480 + 480*lspmethodind)) # this handles JSON-ified checkplots from LCC server elif (cpd[lspmethod] and 'phasedlc0' in cpd[lspmethod] and isinstance(cpd[lspmethod]['phasedlc0']['plot'], str)): plc1 = Image.open( _base64_to_file(cpd[lspmethod]['phasedlc0']['plot'], None, writetostrio=True) ) outimg.paste(plc1,(750,480 + 480*lspmethodind)) ################################# # 2nd best phased LC comes next # ################################# if (cpd[lspmethod] and 1 in cpd[lspmethod] and cpd[lspmethod][1]): plc2 = Image.open( _base64_to_file(cpd[lspmethod][1]['plot'], None, writetostrio=True) ) outimg.paste(plc2,(750*2,480 + 480*lspmethodind)) # this handles JSON-ified checkplots from LCC server elif (cpd[lspmethod] and 'phasedlc1' in cpd[lspmethod] and isinstance(cpd[lspmethod]['phasedlc1']['plot'], str)): plc2 = Image.open( _base64_to_file(cpd[lspmethod]['phasedlc1']['plot'], None, writetostrio=True) ) outimg.paste(plc2,(750*2,480 + 480*lspmethodind)) ################################# # 3rd best phased LC comes next # ################################# if (cpd[lspmethod] and 2 in cpd[lspmethod] and cpd[lspmethod][2]): plc3 = Image.open( _base64_to_file(cpd[lspmethod][2]['plot'], None, writetostrio=True) ) outimg.paste(plc3,(750*3,480 + 480*lspmethodind)) # this handles JSON-ified checkplots from LCC server elif (cpd[lspmethod] and 'phasedlc2' in cpd[lspmethod] and isinstance(cpd[lspmethod]['phasedlc2']['plot'], str)): plc3 = Image.open( _base64_to_file(cpd[lspmethod]['phasedlc2']['plot'], None, writetostrio=True) ) outimg.paste(plc3,(750*3,480 + 480*lspmethodind)) ################################ ## ALL DONE WITH BUILDING PNG ## ################################ ######################### # add in any extra rows # ######################### # from the keyword arguments if erows > 0: for erowind, erow in enumerate(extrarows): # make sure we never go above 4 plots in a row for ecolind, ecol in enumerate(erow[:4]): eplot = Image.open(ecol) eplotresized = eplot.resize((750,480), Image.ANTIALIAS) outimg.paste(eplotresized, (750*ecolind, (cprows+1)*480 + 480*erowind)) # from the checkplotdict if cpderows > 0: for cpderowind, cpderow in enumerate(cpd['externalplots']): # make sure we never go above 4 plots in a row for cpdecolind, cpdecol in enumerate(cpderow[:4]): cpdeplot = Image.open(cpdecol) cpdeplotresized = cpdeplot.resize((750,480), Image.ANTIALIAS) outimg.paste(cpdeplotresized, (750*cpdecolind, (cprows+1)*480 + (erows*480) + 480*cpderowind)) # from neighbors: if nbrrows > 0: # we have four tiles # tile 1: neighbor objectid, ra, decl, distance, unphased LC # tile 2: phased LC for gls # tile 3: phased LC for pdm # tile 4: phased LC for any other period finding method # the priority is like so: ['bls','mav','aov','win'] for nbrind, nbr in enumerate(cpd['neighbors']): # figure out which period finding methods are available for this # neighbor. make sure to match the ones from the actual object in # order of priority: 'gls','pdm','bls','aov','mav','acf','win' nbrlspmethods = [] for lspmethod in cpd['pfmethods']: if lspmethod in nbr: nbrlspmethods.append(lspmethod) # restrict to top three in priority nbrlspmethods = nbrlspmethods[:3] try: # first panel: neighbor objectid, ra, decl, distance, unphased # LC nbrlc = Image.open( _base64_to_file( nbr['magseries']['plot'], None, writetostrio=True ) ) outimg.paste(nbrlc, (750*0, (cprows+1)*480 + (erows*480) + (cpderows*480) + 480*nbrind)) # overlay the objectinfo objinfodraw.text( (98, (cprows+1)*480 + (erows*480) + (cpderows*480) + 480*nbrind + 15), ('N%s: %s' % (nbrind + 1, nbr['objectid'])), font=cpfontlarge, fill=(0,0,255,255) ) # overlay the objectinfo objinfodraw.text( (98, (cprows+1)*480 + (erows*480) + (cpderows*480) + 480*nbrind + 50), ('(RA, DEC) = (%.3f, %.3f), distance: %.1f arcsec' % (nbr['ra'], nbr['decl'], nbr['dist'])), font=cpfontnormal, fill=(0,0,255,255) ) # second panel: phased LC for gls lsp1lc = Image.open( _base64_to_file( nbr[nbrlspmethods[0]][0]['plot'], None, writetostrio=True ) ) outimg.paste(lsp1lc, (750*1, (cprows+1)*480 + (erows*480) + (cpderows*480) + 480*nbrind)) # second panel: phased LC for gls lsp2lc = Image.open( _base64_to_file( nbr[nbrlspmethods[1]][0]['plot'], None, writetostrio=True ) ) outimg.paste(lsp2lc, (750*2, (cprows+1)*480 + (erows*480) + (cpderows*480) + 480*nbrind)) # second panel: phased LC for gls lsp3lc = Image.open( _base64_to_file( nbr[nbrlspmethods[2]][0]['plot'], None, writetostrio=True ) ) outimg.paste(lsp3lc, (750*3, (cprows+1)*480 + (erows*480) + (cpderows*480) + 480*nbrind)) except Exception as e: LOGERROR('neighbor %s does not have a magseries plot, ' 'measurements are probably all nan' % nbr['objectid']) # overlay the objectinfo objinfodraw.text( (98, (cprows+1)*480 + (erows*480) + (cpderows*480) + 480*nbrind + 15), ('N%s: %s' % (nbrind + 1, nbr['objectid'])), font=cpfontlarge, fill=(0,0,255,255) ) if 'ra' in nbr and 'decl' in nbr and 'dist' in nbr: # overlay the objectinfo objinfodraw.text( (98, (cprows+1)*480 + (erows*480) + (cpderows*480) + 480*nbrind + 50), ('(RA, DEC) = (%.3f, %.3f), distance: %.1f arcsec' % (nbr['ra'], nbr['decl'], nbr['dist'])), font=cpfontnormal, fill=(0,0,255,255) ) elif 'objectinfo' in nbr: # overlay the objectinfo objinfodraw.text( (98, (cprows+1)*480 + (erows*480) + (cpderows*480) + 480*nbrind + 50), ('(RA, DEC) = (%.3f, %.3f), distance: %.1f arcsec' % (nbr['objectinfo']['ra'], nbr['objectinfo']['decl'], nbr['objectinfo']['distarcsec'])), font=cpfontnormal, fill=(0,0,255,255) ) ##################### ## WRITE FINAL PNG ## ##################### # check if the output filename is actually an instance of StringIO if sys.version_info[:2] < (3,0): is_strio = isinstance(outfile, cStringIO.InputType) else: is_strio = isinstance(outfile, StrIO) if not is_strio: # check if we've stupidly copied over the same filename as the input # pickle to expected output file if outfile.endswith('pkl'): LOGWARNING('expected output PNG filename ends with .pkl, ' 'changed to .png') outfile = outfile.replace('.pkl','.png') outimg.save(outfile, format='PNG', optimize=True) if not is_strio: if os.path.exists(outfile): LOGINFO('checkplot pickle -> checkplot PNG: %s OK' % outfile) return outfile else: LOGERROR('failed to write checkplot PNG') return None else: LOGINFO('checkplot pickle -> StringIO instance OK') return outfile
def cp2png(checkplotin, extrarows=None): '''This is just a shortened form of the function above for convenience. This only handles pickle files as input. Parameters ---------- checkplotin : str File name of a checkplot pickle file to convert to a PNG. extrarows : list of tuples This is a list of 4-element tuples containing paths to PNG files that will be added to the end of the rows generated from the checkplotin pickle/dict. Each tuple represents a row in the final output PNG file. If there are less than 4 elements per tuple, the missing elements will be filled in with white-space. If there are more than 4 elements per tuple, only the first four will be used. The purpose of this kwarg is to incorporate periodograms and phased LC plots (in the form of PNGs) generated from an external period-finding function or program (like VARTOOLS) to allow for comparison with astrobase results. NOTE: the PNG files specified in `extrarows` here will be added to those already present in the input `checkplotdict['externalplots']` if that is None because you passed in a similar list of external plots to the :py:func:`astrobase.checkplot.pkl.checkplot_pickle` function earlier. In this case, `extrarows` can be used to add even more external plots if desired. Each external plot PNG will be resized to 750 x 480 pixels to fit into an output image cell. By convention, each 4-element tuple should contain: - a periodiogram PNG - phased LC PNG with 1st best peak period from periodogram - phased LC PNG with 2nd best peak period from periodogram - phased LC PNG with 3rd best peak period from periodogram Example of extrarows:: [('/path/to/external/bls-periodogram.png', '/path/to/external/bls-phasedlc-plot-bestpeak.png', '/path/to/external/bls-phasedlc-plot-peak2.png', '/path/to/external/bls-phasedlc-plot-peak3.png'), ('/path/to/external/pdm-periodogram.png', '/path/to/external/pdm-phasedlc-plot-bestpeak.png', '/path/to/external/pdm-phasedlc-plot-peak2.png', '/path/to/external/pdm-phasedlc-plot-peak3.png'), ...] Returns ------- str The absolute path to the generated checkplot PNG. ''' if checkplotin.endswith('.gz'): outfile = checkplotin.replace('.pkl.gz','.png') else: outfile = checkplotin.replace('.pkl','.png') return checkplot_pickle_to_png(checkplotin, outfile, extrarows=extrarows)
def flare_model(flareparams, times, mags, errs): '''This is a flare model function, similar to Kowalski+ 2011. From the paper by Pitkin+ 2014: http://adsabs.harvard.edu/abs/2014MNRAS.445.2268P Parameters ---------- flareparams : list of float This defines the flare model:: [amplitude, flare_peak_time, rise_gaussian_stdev, decay_time_constant] where: `amplitude`: the maximum flare amplitude in mags or flux. If flux, then amplitude should be positive. If mags, amplitude should be negative. `flare_peak_time`: time at which the flare maximum happens. `rise_gaussian_stdev`: the stdev of the gaussian describing the rise of the flare. `decay_time_constant`: the time constant of the exponential fall of the flare. times,mags,errs : np.array The input time-series of measurements and associated errors for which the model will be generated. The times will be used to generate model mags. Returns ------- (modelmags, times, mags, errs) : tuple Returns the model mags evaluated at the input time values. Also returns the input `times`, `mags`, and `errs`. ''' (amplitude, flare_peak_time, rise_gaussian_stdev, decay_time_constant) = flareparams zerolevel = np.median(mags) modelmags = np.full_like(times, zerolevel) # before peak gaussian rise... modelmags[times < flare_peak_time] = ( mags[times < flare_peak_time] + amplitude * np.exp( -((times[times < flare_peak_time] - flare_peak_time) * (times[times < flare_peak_time] - flare_peak_time)) / (2.0*rise_gaussian_stdev*rise_gaussian_stdev) ) ) # after peak exponential decay... modelmags[times > flare_peak_time] = ( mags[times > flare_peak_time] + amplitude * np.exp( -((times[times > flare_peak_time] - flare_peak_time)) / (decay_time_constant) ) ) return modelmags, times, mags, errs
def flare_model_residual(flareparams, times, mags, errs): ''' This returns the residual between model mags and the actual mags. Parameters ---------- flareparams : list of float This defines the flare model:: [amplitude, flare_peak_time, rise_gaussian_stdev, decay_time_constant] where: `amplitude`: the maximum flare amplitude in mags or flux. If flux, then amplitude should be positive. If mags, amplitude should be negative. `flare_peak_time`: time at which the flare maximum happens. `rise_gaussian_stdev`: the stdev of the gaussian describing the rise of the flare. `decay_time_constant`: the time constant of the exponential fall of the flare. times,mags,errs : np.array The input time-series of measurements and associated errors for which the model will be generated. The times will be used to generate model mags. Returns ------- np.array The residuals between the input `mags` and generated `modelmags`, weighted by the measurement errors in `errs`. ''' modelmags, _, _, _ = flare_model(flareparams, times, mags, errs) return (mags - modelmags)/errs
def cache_clean_handler(min_age_hours=1): """This periodically cleans up the ~/.astrobase cache to save us from disk-space doom. Parameters ---------- min_age_hours : int Files older than this number of hours from the current time will be deleted. Returns ------- Nothing. """ # find the files to delete cmd = ( "find ~ec2-user/.astrobase -type f -mmin +{mmin} -exec rm -v '{{}}' \;" ) mmin = '%.1f' % (min_age_hours*60.0) cmd = cmd.format(mmin=mmin) try: proc = subprocess.run(cmd, shell=True, stdout=subprocess.PIPE) ndeleted = len(proc.stdout.decode().split('\n')) LOGWARNING('cache clean: %s files older than %s hours deleted' % (ndeleted, min_age_hours)) except Exception as e: LOGEXCEPTION('cache clean: could not delete old files')
def shutdown_check_handler(): """This checks the AWS instance data URL to see if there's a pending shutdown for the instance. This is useful for AWS spot instances. If there is a pending shutdown posted to the instance data URL, we'll use the result of this function break out of the processing loop and shut everything down ASAP before the instance dies. Returns ------- bool - True if the instance is going to die soon. - False if the instance is still safe. """ url = 'http://169.254.169.254/latest/meta-data/spot/instance-action' try: resp = requests.get(url, timeout=1.0) resp.raise_for_status() stopinfo = resp.json() if 'action' in stopinfo and stopinfo['action'] in ('stop', 'terminate', 'hibernate'): stoptime = stopinfo['time'] LOGWARNING('instance is going to %s at %s' % (stopinfo['action'], stoptime)) resp.close() return True else: resp.close() return False except HTTPError as e: resp.close() return False except Exception as e: resp.close() return False
def runcp_producer_loop( lightcurve_list, input_queue, input_bucket, result_queue, result_bucket, pfresult_list=None, runcp_kwargs=None, process_list_slice=None, purge_queues_when_done=False, delete_queues_when_done=False, download_when_done=True, save_state_when_done=True, s3_client=None, sqs_client=None ): """This sends checkplot making tasks to the input queue and monitors the result queue for task completion. Parameters ---------- lightcurve_list : str or list of str This is either a string pointing to a file containing a list of light curves filenames to process or the list itself. The names must correspond to the full filenames of files stored on S3, including all prefixes, but not include the 's3://<bucket name>/' bit (these will be added automatically). input_queue : str This is the name of the SQS queue which will receive processing tasks generated by this function. The queue URL will automatically be obtained from AWS. input_bucket : str The name of the S3 bucket containing the light curve files to process. result_queue : str This is the name of the SQS queue that this function will listen to for messages from the workers as they complete processing on their input elements. This function will attempt to match input sent to the `input_queue` with results coming into the `result_queue` so it knows how many objects have been successfully processed. If this function receives task results that aren't in its own input queue, it will acknowledge them so they complete successfully, but not download them automatically. This handles leftover tasks completing from a previous run of this function. result_bucket : str The name of the S3 bucket which will receive the results from the workers. pfresult_list : list of str or None This is a list of periodfinder result pickle S3 URLs associated with each light curve. If provided, this will be used to add in phased light curve plots to each checkplot pickle. If this is None, the worker loop will produce checkplot pickles that only contain object information, neighbor information, and unphased light curves. runcp_kwargs : dict This is a dict used to pass any extra keyword arguments to the `lcproc.checkplotgen.runcp` function that will be run by the worker loop. process_list_slice : list This is used to index into the input light curve list so a subset of the full list can be processed in this specific run of this function. Use None for a slice index elem to emulate single slice spec behavior: process_list_slice = [10, None] -> lightcurve_list[10:] process_list_slice = [None, 500] -> lightcurve_list[:500] purge_queues_when_done : bool If this is True, and this function exits (either when all done, or when it is interrupted with a Ctrl+C), all outstanding elements in the input/output queues that have not yet been acknowledged by workers or by this function will be purged. This effectively cancels all outstanding work. delete_queues_when_done : bool If this is True, and this function exits (either when all done, or when it is interrupted with a Ctrl+C'), all outstanding work items will be purged from the input/queues and the queues themselves will be deleted. download_when_done : bool If this is True, the generated checkplot pickle for each input work item will be downloaded immediately to the current working directory when the worker functions report they're done with it. save_state_when_done : bool If this is True, will save the current state of the work item queue and the work items acknowledged as completed to a pickle in the current working directory. Call the `runcp_producer_loop_savedstate` function below to resume processing from this saved state later. s3_client : boto3.Client or None If None, this function will instantiate a new `boto3.Client` object to use in its S3 download operations. Alternatively, pass in an existing `boto3.Client` instance to re-use it here. sqs_client : boto3.Client or None If None, this function will instantiate a new `boto3.Client` object to use in its SQS operations. Alternatively, pass in an existing `boto3.Client` instance to re-use it here. Returns ------- dict or str Returns the current work state as a dict or str path to the generated work state pickle depending on if `save_state_when_done` is True. """ if not sqs_client: sqs_client = boto3.client('sqs') if not s3_client: s3_client = boto3.client('s3') if isinstance(lightcurve_list, str) and os.path.exists(lightcurve_list): # get the LC list with open(lightcurve_list, 'r') as infd: lclist = infd.readlines() lclist = [x.replace('\n','') for x in lclist if len(x) > 0] if process_list_slice is not None: lclist = lclist[process_list_slice[0]:process_list_slice[1]] lclist = [x[1:] for x in lclist if x.startswith('/')] lclist = ['s3://%s/%s' % (input_bucket, x) for x in lclist] # this handles direct invocation using lists of s3:// urls of light curves elif isinstance(lightcurve_list, list): lclist = lightcurve_list # set up the input and output queues # check if the queues by the input and output names given exist already # if they do, go ahead and use them # if they don't, make new ones. try: inq = sqs_client.get_queue_url(QueueName=input_queue) inq_url = inq['QueueUrl'] LOGINFO('input queue already exists, skipping creation...') except ClientError as e: inq = awsutils.sqs_create_queue(input_queue, client=sqs_client) inq_url = inq['url'] try: outq = sqs_client.get_queue_url(QueueName=result_queue) outq_url = outq['QueueUrl'] LOGINFO('result queue already exists, skipping creation...') except ClientError as e: outq = awsutils.sqs_create_queue(result_queue, client=sqs_client) outq_url = outq['url'] LOGINFO('input queue: %s' % inq_url) LOGINFO('output queue: %s' % outq_url) # wait until queues are up LOGINFO('waiting for queues to become ready...') time.sleep(10.0) # for each item in the lightcurve_list, send it to the input queue and wait # until it's done to send another one if pfresult_list is None: pfresult_list = [None for x in lclist] for lc, pf in zip(lclist, pfresult_list): this_item = { 'target': lc, 'action': 'runcp', 'args': (pf,), 'kwargs':runcp_kwargs if runcp_kwargs is not None else {}, 'outbucket': result_bucket, 'outqueue': outq_url } resp = awsutils.sqs_put_item(inq_url, this_item, client=sqs_client) if resp: LOGINFO('sent %s to queue: %s' % (lc,inq_url)) # now block until all objects are done done_objects = {} LOGINFO('all items queued, waiting for results...') # listen to the kill and term signals and raise KeyboardInterrupt when # called signal.signal(signal.SIGINT, kill_handler) signal.signal(signal.SIGTERM, kill_handler) while len(list(done_objects.keys())) < len(lclist): try: result = awsutils.sqs_get_item(outq_url, client=sqs_client) if result is not None and len(result) > 0: recv = result[0] try: processed_object = recv['item']['target'] except KeyError: LOGWARNING('unknown target in received item: %s' % recv) processed_object = 'unknown-lc' cpf = recv['item']['cpf'] receipt = recv['receipt_handle'] if processed_object in lclist: if processed_object not in done_objects: done_objects[processed_object] = [cpf] else: done_objects[processed_object].append(cpf) LOGINFO('done with %s -> %s' % (processed_object, cpf)) if download_when_done: getobj = awsutils.awsutils.s3_get_url( cpf, client=s3_client ) LOGINFO('downloaded %s -> %s' % (cpf, getobj)) else: LOGWARNING('processed object returned is not in ' 'queued target list, probably from an ' 'earlier run. accepting but not downloading.') awsutils.sqs_delete_item(outq_url, receipt) except KeyboardInterrupt as e: LOGWARNING('breaking out of producer wait-loop') break # delete the input and output queues when we're done LOGINFO('done with processing.') time.sleep(1.0) if purge_queues_when_done: LOGWARNING('purging queues at exit, please wait 10 seconds...') sqs_client.purge_queue(QueueUrl=inq_url) sqs_client.purge_queue(QueueUrl=outq_url) time.sleep(10.0) if delete_queues_when_done: LOGWARNING('deleting queues at exit') awsutils.sqs_delete_queue(inq_url) awsutils.sqs_delete_queue(outq_url) work_state = { 'done': done_objects, 'in_progress': list(set(lclist) - set(done_objects.keys())), 'args':((os.path.abspath(lightcurve_list) if isinstance(lightcurve_list, str) else lightcurve_list), input_queue, input_bucket, result_queue, result_bucket), 'kwargs':{'pfresult_list':pfresult_list, 'runcp_kwargs':runcp_kwargs, 'process_list_slice':process_list_slice, 'download_when_done':download_when_done, 'purge_queues_when_done':purge_queues_when_done, 'save_state_when_done':save_state_when_done, 'delete_queues_when_done':delete_queues_when_done} } if save_state_when_done: with open('runcp-queue-producer-loop-state.pkl','wb') as outfd: pickle.dump(work_state, outfd, pickle.HIGHEST_PROTOCOL) # at the end, return the done_objects dict # also return the list of unprocessed items if any return work_state
def runcp_producer_loop_savedstate( use_saved_state=None, lightcurve_list=None, input_queue=None, input_bucket=None, result_queue=None, result_bucket=None, pfresult_list=None, runcp_kwargs=None, process_list_slice=None, download_when_done=True, purge_queues_when_done=True, save_state_when_done=True, delete_queues_when_done=False, s3_client=None, sqs_client=None ): """This wraps the function above to allow for loading previous state from a file. Parameters ---------- use_saved_state : str or None This is the path to the saved state pickle file produced by a previous run of `runcp_producer_loop`. Will get all of the arguments to run another instance of the loop from that pickle file. If this is None, you MUST provide all of the appropriate arguments to that function. lightcurve_list : str or list of str or None This is either a string pointing to a file containing a list of light curves filenames to process or the list itself. The names must correspond to the full filenames of files stored on S3, including all prefixes, but not include the 's3://<bucket name>/' bit (these will be added automatically). input_queue : str or None This is the name of the SQS queue which will receive processing tasks generated by this function. The queue URL will automatically be obtained from AWS. input_bucket : str or None The name of the S3 bucket containing the light curve files to process. result_queue : str or None This is the name of the SQS queue that this function will listen to for messages from the workers as they complete processing on their input elements. This function will attempt to match input sent to the `input_queue` with results coming into the `result_queue` so it knows how many objects have been successfully processed. If this function receives task results that aren't in its own input queue, it will acknowledge them so they complete successfully, but not download them automatically. This handles leftover tasks completing from a previous run of this function. result_bucket : str or None The name of the S3 bucket which will receive the results from the workers. pfresult_list : list of str or None This is a list of periodfinder result pickle S3 URLs associated with each light curve. If provided, this will be used to add in phased light curve plots to each checkplot pickle. If this is None, the worker loop will produce checkplot pickles that only contain object information, neighbor information, and unphased light curves. runcp_kwargs : dict or None This is a dict used to pass any extra keyword arguments to the `lcproc.checkplotgen.runcp` function that will be run by the worker loop. process_list_slice : list or None This is used to index into the input light curve list so a subset of the full list can be processed in this specific run of this function. Use None for a slice index elem to emulate single slice spec behavior: process_list_slice = [10, None] -> lightcurve_list[10:] process_list_slice = [None, 500] -> lightcurve_list[:500] purge_queues_when_done : bool or None If this is True, and this function exits (either when all done, or when it is interrupted with a Ctrl+C), all outstanding elements in the input/output queues that have not yet been acknowledged by workers or by this function will be purged. This effectively cancels all outstanding work. delete_queues_when_done : bool or None If this is True, and this function exits (either when all done, or when it is interrupted with a Ctrl+C'), all outstanding work items will be purged from the input/queues and the queues themselves will be deleted. download_when_done : bool or None If this is True, the generated checkplot pickle for each input work item will be downloaded immediately to the current working directory when the worker functions report they're done with it. save_state_when_done : bool or None If this is True, will save the current state of the work item queue and the work items acknowledged as completed to a pickle in the current working directory. Call the `runcp_producer_loop_savedstate` function below to resume processing from this saved state later. s3_client : boto3.Client or None If None, this function will instantiate a new `boto3.Client` object to use in its S3 download operations. Alternatively, pass in an existing `boto3.Client` instance to re-use it here. sqs_client : boto3.Client or None If None, this function will instantiate a new `boto3.Client` object to use in its SQS operations. Alternatively, pass in an existing `boto3.Client` instance to re-use it here. Returns ------- dict or str Returns the current work state as a dict or str path to the generated work state pickle depending on if `save_state_when_done` is True. """ if use_saved_state is not None and os.path.exists(use_saved_state): with open(use_saved_state,'rb') as infd: saved_state = pickle.load(infd) # run the producer loop using the saved state's todo list return runcp_producer_loop( saved_state['in_progress'], saved_state['args'][1], saved_state['args'][2], saved_state['args'][3], saved_state['args'][4], **saved_state['kwargs'] ) else: return runcp_producer_loop( lightcurve_list, input_queue, input_bucket, result_queue, result_bucket, pfresult_list=pfresult_list, runcp_kwargs=runcp_kwargs, process_list_slice=process_list_slice, download_when_done=download_when_done, purge_queues_when_done=purge_queues_when_done, save_state_when_done=save_state_when_done, delete_queues_when_done=delete_queues_when_done, s3_client=s3_client, sqs_client=sqs_client )
def runcp_consumer_loop( in_queue_url, workdir, lclist_pkl_s3url, lc_altexts=('',), wait_time_seconds=5, cache_clean_timer_seconds=3600.0, shutdown_check_timer_seconds=60.0, sqs_client=None, s3_client=None ): """This runs checkplot pickle making in a loop until interrupted. Consumes work task items from an input queue set up by `runcp_producer_loop` above. For the moment, we don't generate neighbor light curves since this would require a lot more S3 calls. Parameters ---------- in_queue_url : str The SQS URL of the input queue to listen to for work assignment messages. The task orders will include the input and output S3 bucket names, as well as the URL of the output queue to where this function will report its work-complete or work-failed status. workdir : str The directory on the local machine where this worker loop will download the input light curves and associated period-finder results (if any), process them, and produce its output checkplot pickles. These will then be uploaded to the specified S3 output bucket and then deleted from the workdir when the upload is confirmed to make it safely to S3. lclist_pkl : str S3 URL of a catalog pickle generated by `lcproc.catalogs.make_lclist` that contains objectids and coordinates, as well as a kdtree for all of the objects in the current light curve collection being processed. This is used to look up neighbors for each object being processed. lc_altexts : sequence of str If not None, this is a sequence of alternate extensions to try for the input light curve file other than the one provided in the input task order. For example, to get anything that's an .sqlite where .sqlite.gz is expected, use altexts=[''] to strip the .gz. wait_time_seconds : int The amount of time to wait in the input SQS queue for an input task order. If this timeout expires and no task has been received, this function goes back to the top of the work loop. cache_clean_timer_seconds : float The amount of time in seconds to wait before periodically removing old files (such as finder chart FITS, external service result pickles) from the astrobase cache directory. These accumulate as the work items are processed, and take up significant space, so must be removed periodically. shutdown_check_timer_seconds : float The amount of time to wait before checking for a pending EC2 shutdown message for the instance this worker loop is operating on. If a shutdown is noticed, the worker loop is cancelled in preparation for instance shutdown. sqs_client : boto3.Client or None If None, this function will instantiate a new `boto3.Client` object to use in its SQS operations. Alternatively, pass in an existing `boto3.Client` instance to re-use it here. s3_client : boto3.Client or None If None, this function will instantiate a new `boto3.Client` object to use in its S3 operations. Alternatively, pass in an existing `boto3.Client` instance to re-use it here. Returns ------- Nothing. """ if not sqs_client: sqs_client = boto3.client('sqs') if not s3_client: s3_client = boto3.client('s3') lclist_pklf = lclist_pkl_s3url.split('/')[-1] if not os.path.exists(lclist_pklf): # get the lclist pickle from S3 to help with neighbor queries lclist_pklf = awsutils.s3_get_url( lclist_pkl_s3url, client=s3_client ) with open(lclist_pklf,'rb') as infd: lclistpkl = pickle.load(infd) # listen to the kill and term signals and raise KeyboardInterrupt when # called signal.signal(signal.SIGINT, kill_handler) signal.signal(signal.SIGTERM, kill_handler) shutdown_last_time = time.monotonic() diskspace_last_time = time.monotonic() while True: curr_time = time.monotonic() if (curr_time - shutdown_last_time) > shutdown_check_timer_seconds: shutdown_check = shutdown_check_handler() if shutdown_check: LOGWARNING('instance will die soon, breaking loop') break shutdown_last_time = time.monotonic() if (curr_time - diskspace_last_time) > cache_clean_timer_seconds: cache_clean_handler() diskspace_last_time = time.monotonic() try: # receive a single message from the inqueue work = awsutils.sqs_get_item(in_queue_url, client=sqs_client, raiseonfail=True) # JSON deserialize the work item if work is not None and len(work) > 0: recv = work[0] # skip any messages that don't tell us to runcp # FIXME: use the MessageAttributes for setting topics instead action = recv['item']['action'] if action != 'runcp': continue target = recv['item']['target'] args = recv['item']['args'] kwargs = recv['item']['kwargs'] outbucket = recv['item']['outbucket'] if 'outqueue' in recv['item']: out_queue_url = recv['item']['outqueue'] else: out_queue_url = None receipt = recv['receipt_handle'] # download the target from S3 to a file in the work directory try: lc_filename = awsutils.s3_get_url( target, altexts=lc_altexts, client=s3_client, ) # get the period-finder pickle if present in args if len(args) > 0 and args[0] is not None: pf_pickle = awsutils.s3_get_url( args[0], client=s3_client ) else: pf_pickle = None # now runcp cpfs = runcp( pf_pickle, workdir, workdir, lcfname=lc_filename, lclistpkl=lclistpkl, makeneighborlcs=False, **kwargs ) if cpfs and all(os.path.exists(x) for x in cpfs): LOGINFO('runcp OK for LC: %s, PF: %s -> %s' % (lc_filename, pf_pickle, cpfs)) # check if the file exists already because it's been # processed somewhere else resp = s3_client.list_objects_v2( Bucket=outbucket, MaxKeys=1, Prefix=cpfs[0] ) outbucket_list = resp.get('Contents',[]) if outbucket_list and len(outbucket_list) > 0: LOGWARNING( 'not uploading runcp results for %s because ' 'they exist in the output bucket already' % target ) awsutils.sqs_delete_item(in_queue_url, receipt) continue for cpf in cpfs: put_url = awsutils.s3_put_file(cpf, outbucket, client=s3_client) if put_url is not None: LOGINFO('result uploaded to %s' % put_url) # put the S3 URL of the output into the output # queue if requested if out_queue_url is not None: awsutils.sqs_put_item( out_queue_url, {'cpf':put_url, 'target': target, 'lc_filename':lc_filename, 'lclistpkl':lclist_pklf, 'kwargs':kwargs}, raiseonfail=True ) # delete the result from the local directory os.remove(cpf) # if the upload fails, don't acknowledge the # message. might be a temporary S3 failure, so # another worker might succeed later. else: LOGERROR('failed to upload %s to S3' % cpf) # delete the input item from the input queue to # acknowledge its receipt and indicate that # processing is done and successful awsutils.sqs_delete_item(in_queue_url, receipt) # delete the light curve file when we're done with it if ( (lc_filename is not None) and (os.path.exists(lc_filename)) ): os.remove(lc_filename) # if runcp failed outright, don't requeue. instead, write a # ('failed-checkplot-%s.pkl' % lc_filename) file to the # output S3 bucket. else: LOGWARNING('runcp failed for LC: %s, PF: %s' % (lc_filename, pf_pickle)) with open('failed-checkplot-%s.pkl' % lc_filename, 'wb') as outfd: pickle.dump( {'in_queue_url':in_queue_url, 'target':target, 'lc_filename':lc_filename, 'lclistpkl':lclist_pklf, 'kwargs':kwargs, 'outbucket':outbucket, 'out_queue_url':out_queue_url}, outfd, pickle.HIGHEST_PROTOCOL ) put_url = awsutils.s3_put_file( 'failed-checkplot-%s.pkl' % lc_filename, outbucket, client=s3_client ) # put the S3 URL of the output into the output # queue if requested if out_queue_url is not None: awsutils.sqs_put_item( out_queue_url, {'cpf':put_url, 'lc_filename':lc_filename, 'lclistpkl':lclist_pklf, 'kwargs':kwargs}, raiseonfail=True ) # delete the input item from the input queue to # acknowledge its receipt and indicate that # processing is done awsutils.sqs_delete_item(in_queue_url, receipt, raiseonfail=True) # delete the light curve file when we're done with it if ( (lc_filename is not None) and (os.path.exists(lc_filename)) ): os.remove(lc_filename) except ClientError as e: LOGWARNING('queues have disappeared. stopping worker loop') break # if there's any other exception, put a failed response into the # output bucket and queue except Exception as e: LOGEXCEPTION('could not process input from queue') if 'lc_filename' in locals(): with open('failed-checkplot-%s.pkl' % lc_filename,'wb') as outfd: pickle.dump( {'in_queue_url':in_queue_url, 'target':target, 'lc_filename':lc_filename, 'lclistpkl':lclist_pklf, 'kwargs':kwargs, 'outbucket':outbucket, 'out_queue_url':out_queue_url}, outfd, pickle.HIGHEST_PROTOCOL ) put_url = awsutils.s3_put_file( 'failed-checkplot-%s.pkl' % lc_filename, outbucket, client=s3_client ) # put the S3 URL of the output into the output # queue if requested if out_queue_url is not None: awsutils.sqs_put_item( out_queue_url, {'cpf':put_url, 'lc_filename':lc_filename, 'lclistpkl':lclist_pklf, 'kwargs':kwargs}, raiseonfail=True ) if ( (lc_filename is not None) and (os.path.exists(lc_filename)) ): os.remove(lc_filename) # delete the input item from the input queue to # acknowledge its receipt and indicate that # processing is done awsutils.sqs_delete_item(in_queue_url, receipt, raiseonfail=True) # a keyboard interrupt kills the loop except KeyboardInterrupt: LOGWARNING('breaking out of the processing loop.') break # if the queues disappear, then the producer loop is done and we should # exit except ClientError as e: LOGWARNING('queues have disappeared. stopping worker loop') break # any other exception continues the loop we'll write the output file to # the output S3 bucket (and any optional output queue), but add a # failed-* prefix to it to indicate that processing failed. FIXME: could # use a dead-letter queue for this instead except Exception as e: LOGEXCEPTION('could not process input from queue') if 'lc_filename' in locals(): with open('failed-checkplot-%s.pkl' % lc_filename,'wb') as outfd: pickle.dump( {'in_queue_url':in_queue_url, 'target':target, 'lclistpkl':lclist_pklf, 'kwargs':kwargs, 'outbucket':outbucket, 'out_queue_url':out_queue_url}, outfd, pickle.HIGHEST_PROTOCOL ) put_url = awsutils.s3_put_file( 'failed-checkplot-%s.pkl' % lc_filename, outbucket, client=s3_client ) # put the S3 URL of the output into the output # queue if requested if out_queue_url is not None: awsutils.sqs_put_item( out_queue_url, {'cpf':put_url, 'lclistpkl':lclist_pklf, 'kwargs':kwargs}, raiseonfail=True ) if ( (lc_filename is not None) and (os.path.exists(lc_filename)) ): os.remove(lc_filename) # delete the input item from the input queue to # acknowledge its receipt and indicate that # processing is done awsutils.sqs_delete_item(in_queue_url, receipt, raiseonfail=True)
def runpf_consumer_loop( in_queue_url, workdir, lc_altexts=('',), wait_time_seconds=5, shutdown_check_timer_seconds=60.0, sqs_client=None, s3_client=None ): """This runs period-finding in a loop until interrupted. Consumes work task items from an input queue set up by `runpf_producer_loop` above. Parameters ---------- in_queue_url : str The SQS URL of the input queue to listen to for work assignment messages. The task orders will include the input and output S3 bucket names, as well as the URL of the output queue to where this function will report its work-complete or work-failed status. workdir : str The directory on the local machine where this worker loop will download the input light curves, process them, and produce its output periodfinding result pickles. These will then be uploaded to the specified S3 output bucket, and then deleted from the local disk. lc_altexts : sequence of str If not None, this is a sequence of alternate extensions to try for the input light curve file other than the one provided in the input task order. For example, to get anything that's an .sqlite where .sqlite.gz is expected, use altexts=[''] to strip the .gz. wait_time_seconds : int The amount of time to wait in the input SQS queue for an input task order. If this timeout expires and no task has been received, this function goes back to the top of the work loop. shutdown_check_timer_seconds : float The amount of time to wait before checking for a pending EC2 shutdown message for the instance this worker loop is operating on. If a shutdown is noticed, the worker loop is cancelled in preparation for instance shutdown. sqs_client : boto3.Client or None If None, this function will instantiate a new `boto3.Client` object to use in its SQS operations. Alternatively, pass in an existing `boto3.Client` instance to re-use it here. s3_client : boto3.Client or None If None, this function will instantiate a new `boto3.Client` object to use in its S3 operations. Alternatively, pass in an existing `boto3.Client` instance to re-use it here. Returns ------- Nothing. """ if not sqs_client: sqs_client = boto3.client('sqs') if not s3_client: s3_client = boto3.client('s3') # listen to the kill and term signals and raise KeyboardInterrupt when # called signal.signal(signal.SIGINT, kill_handler) signal.signal(signal.SIGTERM, kill_handler) shutdown_last_time = time.monotonic() while True: curr_time = time.monotonic() if (curr_time - shutdown_last_time) > shutdown_check_timer_seconds: shutdown_check = shutdown_check_handler() if shutdown_check: LOGWARNING('instance will die soon, breaking loop') break shutdown_last_time = time.monotonic() try: # receive a single message from the inqueue work = awsutils.sqs_get_item(in_queue_url, client=sqs_client, raiseonfail=True) # JSON deserialize the work item if work is not None and len(work) > 0: recv = work[0] # skip any messages that don't tell us to runpf action = recv['item']['action'] if action != 'runpf': continue target = recv['item']['target'] args = recv['item']['args'] kwargs = recv['item']['kwargs'] outbucket = recv['item']['outbucket'] if 'outqueue' in recv['item']: out_queue_url = recv['item']['outqueue'] else: out_queue_url = None receipt = recv['receipt_handle'] # download the target from S3 to a file in the work directory try: lc_filename = awsutils.s3_get_url( target, altexts=lc_altexts, client=s3_client ) runpf_args = (lc_filename, args[0]) # now runpf pfresult = runpf( *runpf_args, **kwargs ) if pfresult and os.path.exists(pfresult): LOGINFO('runpf OK for LC: %s -> %s' % (lc_filename, pfresult)) # check if the file exists already because it's been # processed somewhere else resp = s3_client.list_objects_v2( Bucket=outbucket, MaxKeys=1, Prefix=pfresult ) outbucket_list = resp.get('Contents',[]) if outbucket_list and len(outbucket_list) > 0: LOGWARNING( 'not uploading pfresult for %s because ' 'it exists in the output bucket already' % target ) awsutils.sqs_delete_item(in_queue_url, receipt) continue put_url = awsutils.s3_put_file(pfresult, outbucket, client=s3_client) if put_url is not None: LOGINFO('result uploaded to %s' % put_url) # put the S3 URL of the output into the output # queue if requested if out_queue_url is not None: awsutils.sqs_put_item( out_queue_url, {'pfresult':put_url, 'target': target, 'lc_filename':lc_filename, 'kwargs':kwargs}, raiseonfail=True ) # delete the result from the local directory os.remove(pfresult) # if the upload fails, don't acknowledge the # message. might be a temporary S3 failure, so # another worker might succeed later. # FIXME: add SNS bits to warn us of failures else: LOGERROR('failed to upload %s to S3' % pfresult) os.remove(pfresult) # delete the input item from the input queue to # acknowledge its receipt and indicate that # processing is done and successful awsutils.sqs_delete_item(in_queue_url, receipt) # delete the light curve file when we're done with it if ( (lc_filename is not None) and (os.path.exists(lc_filename)) ): os.remove(lc_filename) # if runcp failed outright, don't requeue. instead, write a # ('failed-checkplot-%s.pkl' % lc_filename) file to the # output S3 bucket. else: LOGWARNING('runpf failed for LC: %s' % (lc_filename,)) with open('failed-periodfinding-%s.pkl' % lc_filename, 'wb') as outfd: pickle.dump( {'in_queue_url':in_queue_url, 'target':target, 'lc_filename':lc_filename, 'kwargs':kwargs, 'outbucket':outbucket, 'out_queue_url':out_queue_url}, outfd, pickle.HIGHEST_PROTOCOL ) put_url = awsutils.s3_put_file( 'failed-periodfinding-%s.pkl' % lc_filename, outbucket, client=s3_client ) # put the S3 URL of the output into the output # queue if requested if out_queue_url is not None: awsutils.sqs_put_item( out_queue_url, {'pfresult':put_url, 'lc_filename':lc_filename, 'kwargs':kwargs}, raiseonfail=True ) # delete the input item from the input queue to # acknowledge its receipt and indicate that # processing is done awsutils.sqs_delete_item(in_queue_url, receipt, raiseonfail=True) # delete the light curve file when we're done with it if ( (lc_filename is not None) and (os.path.exists(lc_filename)) ): os.remove(lc_filename) except ClientError as e: LOGWARNING('queues have disappeared. stopping worker loop') break # if there's any other exception, put a failed response into the # output bucket and queue except Exception as e: LOGEXCEPTION('could not process input from queue') if 'lc_filename' in locals(): with open('failed-periodfinding-%s.pkl' % lc_filename,'wb') as outfd: pickle.dump( {'in_queue_url':in_queue_url, 'target':target, 'lc_filename':lc_filename, 'kwargs':kwargs, 'outbucket':outbucket, 'out_queue_url':out_queue_url}, outfd, pickle.HIGHEST_PROTOCOL ) put_url = awsutils.s3_put_file( 'failed-periodfinding-%s.pkl' % lc_filename, outbucket, client=s3_client ) # put the S3 URL of the output into the output # queue if requested if out_queue_url is not None: awsutils.sqs_put_item( out_queue_url, {'pfresult':put_url, 'lc_filename':lc_filename, 'kwargs':kwargs}, raiseonfail=True ) # delete the light curve file when we're done with it if ( (lc_filename is not None) and (os.path.exists(lc_filename)) ): os.remove(lc_filename) # delete the input item from the input queue to # acknowledge its receipt and indicate that # processing is done awsutils.sqs_delete_item(in_queue_url, receipt, raiseonfail=True) # a keyboard interrupt kills the loop except KeyboardInterrupt: LOGWARNING('breaking out of the processing loop.') break # if the queues disappear, then the producer loop is done and we should # exit except ClientError as e: LOGWARNING('queues have disappeared. stopping worker loop') break # any other exception continues the loop we'll write the output file to # the output S3 bucket (and any optional output queue), but add a # failed-* prefix to it to indicate that processing failed. FIXME: could # use a dead-letter queue for this instead except Exception as e: LOGEXCEPTION('could not process input from queue') if 'lc_filename' in locals(): with open('failed-periodfinding-%s.pkl' % lc_filename,'wb') as outfd: pickle.dump( {'in_queue_url':in_queue_url, 'target':target, 'kwargs':kwargs, 'outbucket':outbucket, 'out_queue_url':out_queue_url}, outfd, pickle.HIGHEST_PROTOCOL ) put_url = awsutils.s3_put_file( 'failed-periodfinding-%s.pkl' % lc_filename, outbucket, client=s3_client ) # put the S3 URL of the output into the output # queue if requested if out_queue_url is not None: awsutils.sqs_put_item( out_queue_url, {'cpf':put_url, 'kwargs':kwargs}, raiseonfail=True ) if ( (lc_filename is not None) and (os.path.exists(lc_filename)) ): os.remove(lc_filename) # delete the input item from the input queue to # acknowledge its receipt and indicate that # processing is done awsutils.sqs_delete_item(in_queue_url, receipt, raiseonfail=True)
def gaussianeb_fit_magseries(times, mags, errs, ebparams, sigclip=10.0, plotfit=False, magsarefluxes=False, verbose=True): '''This fits a double inverted gaussian EB model to a magnitude time series. Parameters ---------- times,mags,errs : np.array The input mag/flux time-series to fit the EB model to. period : float The period to use for EB fit. ebparams : list of float This is a list containing the eclipsing binary parameters:: ebparams = [period (time), epoch (time), pdepth (mags), pduration (phase), psdepthratio, secondaryphase] `period` is the period in days. `epoch` is the time of primary minimum in JD. `pdepth` is the depth of the primary eclipse: - for magnitudes -> `pdepth` should be < 0 - for fluxes -> `pdepth` should be > 0 `pduration` is the length of the primary eclipse in phase. `psdepthratio` is the ratio of the secondary eclipse depth to that of the primary eclipse. `secondaryphase` is the phase at which the minimum of the secondary eclipse is located. This effectively parameterizes eccentricity. If `epoch` is None, this function will do an initial spline fit to find an approximate minimum of the phased light curve using the given period. The `pdepth` provided is checked against the value of `magsarefluxes`. if `magsarefluxes = True`, the `ebdepth` is forced to be > 0; if `magsarefluxes = False`, the `ebdepth` is forced to be < 0. sigclip : float or int or sequence of two floats/ints or None If a single float or int, a symmetric sigma-clip will be performed using the number provided as the sigma-multiplier to cut out from the input time-series. If a list of two ints/floats is provided, the function will perform an 'asymmetric' sigma-clip. The first element in this list is the sigma value to use for fainter flux/mag values; the second element in this list is the sigma value to use for brighter flux/mag values. For example, `sigclip=[10., 3.]`, will sigclip out greater than 10-sigma dimmings and greater than 3-sigma brightenings. Here the meaning of "dimming" and "brightening" is set by *physics* (not the magnitude system), which is why the `magsarefluxes` kwarg must be correctly set. If `sigclip` is None, no sigma-clipping will be performed, and the time-series (with non-finite elems removed) will be passed through to the output. magsarefluxes : bool If True, will treat the input values of `mags` as fluxes for purposes of plotting the fit and sig-clipping. plotfit : str or False If this is a string, this function will make a plot for the fit to the mag/flux time-series and writes the plot to the path specified here. ignoreinitfail : bool If this is True, ignores the initial failure to find a set of optimized Fourier parameters using the global optimization function and proceeds to do a least-squares fit anyway. verbose : bool If True, will indicate progress and warn of any problems. Returns ------- dict This function returns a dict containing the model fit parameters, the minimized chi-sq value and the reduced chi-sq value. The form of this dict is mostly standardized across all functions in this module:: { 'fittype':'gaussianeb', 'fitinfo':{ 'initialparams':the initial EB params provided, 'finalparams':the final model fit EB params, 'finalparamerrs':formal errors in the params, 'leastsqfit':the full tuple returned by scipy.leastsq, 'fitmags': the model fit mags, 'fitepoch': the epoch of minimum light for the fit, }, 'fitchisq': the minimized value of the fit's chi-sq, 'fitredchisq':the reduced chi-sq value, 'fitplotfile': the output fit plot if fitplot is not None, 'magseries':{ 'times':input times in phase order of the model, 'phase':the phases of the model mags, 'mags':input mags/fluxes in the phase order of the model, 'errs':errs in the phase order of the model, 'magsarefluxes':input value of magsarefluxes kwarg } } ''' stimes, smags, serrs = sigclip_magseries(times, mags, errs, sigclip=sigclip, magsarefluxes=magsarefluxes) # get rid of zero errs nzind = npnonzero(serrs) stimes, smags, serrs = stimes[nzind], smags[nzind], serrs[nzind] # check the ebparams ebperiod, ebepoch, ebdepth = ebparams[0:3] # check if we have a ebepoch to use if ebepoch is None: if verbose: LOGWARNING('no ebepoch given in ebparams, ' 'trying to figure it out automatically...') # do a spline fit to figure out the approximate min of the LC try: spfit = spline_fit_magseries(times, mags, errs, ebperiod, sigclip=sigclip, magsarefluxes=magsarefluxes, verbose=verbose) ebepoch = spfit['fitinfo']['fitepoch'] # if the spline-fit fails, try a savgol fit instead except Exception as e: sgfit = savgol_fit_magseries(times, mags, errs, ebperiod, sigclip=sigclip, magsarefluxes=magsarefluxes, verbose=verbose) ebepoch = sgfit['fitinfo']['fitepoch'] # if everything failed, then bail out and ask for the ebepoch finally: if ebepoch is None: LOGERROR("couldn't automatically figure out the eb epoch, " "can't continue. please provide it in ebparams.") # assemble the returndict returndict = { 'fittype':'gaussianeb', 'fitinfo':{ 'initialparams':ebparams, 'finalparams':None, 'leastsqfit':None, 'fitmags':None, 'fitepoch':None, }, 'fitchisq':npnan, 'fitredchisq':npnan, 'fitplotfile':None, 'magseries':{ 'phase':None, 'times':None, 'mags':None, 'errs':None, 'magsarefluxes':magsarefluxes, }, } return returndict else: if ebepoch.size > 1: if verbose: LOGWARNING('could not auto-find a single minimum ' 'for ebepoch, using the first one returned') ebparams[1] = ebepoch[0] else: if verbose: LOGWARNING( 'using automatically determined ebepoch = %.5f' % ebepoch ) ebparams[1] = ebepoch.item() # next, check the ebdepth and fix it to the form required if magsarefluxes: if ebdepth < 0.0: ebparams[2] = -ebdepth[2] else: if ebdepth > 0.0: ebparams[2] = -ebdepth[2] # finally, do the fit try: leastsqfit = spleastsq(eclipses.invgauss_eclipses_residual, ebparams, args=(stimes, smags, serrs), full_output=True) except Exception as e: leastsqfit = None # if the fit succeeded, then we can return the final parameters if leastsqfit and leastsqfit[-1] in (1,2,3,4): finalparams = leastsqfit[0] covxmatrix = leastsqfit[1] # calculate the chisq and reduced chisq fitmags, phase, ptimes, pmags, perrs = eclipses.invgauss_eclipses_func( finalparams, stimes, smags, serrs ) fitchisq = npsum( ((fitmags - pmags)*(fitmags - pmags)) / (perrs*perrs) ) fitredchisq = fitchisq/(len(pmags) - len(finalparams) - 1) # get the residual variance and calculate the formal 1-sigma errs on the # final parameters residuals = leastsqfit[2]['fvec'] residualvariance = ( npsum(residuals*residuals)/(pmags.size - finalparams.size) ) if covxmatrix is not None: covmatrix = residualvariance*covxmatrix stderrs = npsqrt(npdiag(covmatrix)) else: LOGERROR('covxmatrix not available, fit probably failed!') stderrs = None if verbose: LOGINFO( 'final fit done. chisq = %.5f, reduced chisq = %.5f' % (fitchisq, fitredchisq) ) # get the fit epoch fperiod, fepoch = finalparams[:2] # assemble the returndict returndict = { 'fittype':'gaussianeb', 'fitinfo':{ 'initialparams':ebparams, 'finalparams':finalparams, 'finalparamerrs':stderrs, 'leastsqfit':leastsqfit, 'fitmags':fitmags, 'fitepoch':fepoch, }, 'fitchisq':fitchisq, 'fitredchisq':fitredchisq, 'fitplotfile':None, 'magseries':{ 'phase':phase, 'times':ptimes, 'mags':pmags, 'errs':perrs, 'magsarefluxes':magsarefluxes, }, } # make the fit plot if required if plotfit and isinstance(plotfit, str): make_fit_plot(phase, pmags, perrs, fitmags, fperiod, ptimes.min(), fepoch, plotfit, magsarefluxes=magsarefluxes) returndict['fitplotfile'] = plotfit return returndict # if the leastsq fit failed, return nothing else: LOGERROR('eb-fit: least-squared fit to the light curve failed!') # assemble the returndict returndict = { 'fittype':'gaussianeb', 'fitinfo':{ 'initialparams':ebparams, 'finalparams':None, 'finalparamerrs':None, 'leastsqfit':leastsqfit, 'fitmags':None, 'fitepoch':None, }, 'fitchisq':npnan, 'fitredchisq':npnan, 'fitplotfile':None, 'magseries':{ 'phase':None, 'times':None, 'mags':None, 'errs':None, 'magsarefluxes':magsarefluxes, }, } return returndict
def spline_fit_magseries(times, mags, errs, period, knotfraction=0.01, maxknots=30, sigclip=30.0, plotfit=False, ignoreinitfail=False, magsarefluxes=False, verbose=True): '''This fits a univariate cubic spline to the phased light curve. This fit may be better than the Fourier fit for sharply variable objects, like EBs, so can be used to distinguish them from other types of variables. Parameters ---------- times,mags,errs : np.array The input mag/flux time-series to fit a spline to. period : float The period to use for the spline fit. knotfraction : float The knot fraction is the number of internal knots to use for the spline. A value of 0.01 (or 1%) of the total number of non-nan observations appears to work quite well, without over-fitting. maxknots controls the maximum number of knots that will be allowed. maxknots : int The maximum number of knots that will be used even if `knotfraction` gives a value to use larger than `maxknots`. This helps dealing with over-fitting to short time-scale variations. sigclip : float or int or sequence of two floats/ints or None If a single float or int, a symmetric sigma-clip will be performed using the number provided as the sigma-multiplier to cut out from the input time-series. If a list of two ints/floats is provided, the function will perform an 'asymmetric' sigma-clip. The first element in this list is the sigma value to use for fainter flux/mag values; the second element in this list is the sigma value to use for brighter flux/mag values. For example, `sigclip=[10., 3.]`, will sigclip out greater than 10-sigma dimmings and greater than 3-sigma brightenings. Here the meaning of "dimming" and "brightening" is set by *physics* (not the magnitude system), which is why the `magsarefluxes` kwarg must be correctly set. If `sigclip` is None, no sigma-clipping will be performed, and the time-series (with non-finite elems removed) will be passed through to the output. magsarefluxes : bool If True, will treat the input values of `mags` as fluxes for purposes of plotting the fit and sig-clipping. plotfit : str or False If this is a string, this function will make a plot for the fit to the mag/flux time-series and writes the plot to the path specified here. ignoreinitfail : bool If this is True, ignores the initial failure to find a set of optimized Fourier parameters using the global optimization function and proceeds to do a least-squares fit anyway. verbose : bool If True, will indicate progress and warn of any problems. Returns ------- dict This function returns a dict containing the model fit parameters, the minimized chi-sq value and the reduced chi-sq value. The form of this dict is mostly standardized across all functions in this module:: { 'fittype':'spline', 'fitinfo':{ 'nknots': the number of knots used for the fit 'fitmags': the model fit mags, 'fitepoch': the epoch of minimum light for the fit, }, 'fitchisq': the minimized value of the fit's chi-sq, 'fitredchisq':the reduced chi-sq value, 'fitplotfile': the output fit plot if fitplot is not None, 'magseries':{ 'times':input times in phase order of the model, 'phase':the phases of the model mags, 'mags':input mags/fluxes in the phase order of the model, 'errs':errs in the phase order of the model, 'magsarefluxes':input value of magsarefluxes kwarg } } ''' # this is required to fit the spline correctly if errs is None: errs = npfull_like(mags, 0.005) # sigclip the magnitude time series stimes, smags, serrs = sigclip_magseries(times, mags, errs, sigclip=sigclip, magsarefluxes=magsarefluxes) # get rid of zero errs nzind = npnonzero(serrs) stimes, smags, serrs = stimes[nzind], smags[nzind], serrs[nzind] # phase the mag series phase, pmags, perrs, ptimes, mintime = ( get_phased_quantities(stimes, smags, serrs, period) ) # now figure out the number of knots up to max knots (=100) nobs = len(phase) nknots = int(npfloor(knotfraction*nobs)) nknots = maxknots if nknots > maxknots else nknots splineknots = nplinspace(phase[0] + 0.01, phase[-1] - 0.01, num=nknots) # NOTE: newer scipy needs x to be strictly increasing. this means we should # filter out anything that doesn't have np.diff(phase) > 0.0 # FIXME: this needs to be tested phase_diffs_ind = npdiff(phase) > 0.0 incphase_ind = npconcatenate((nparray([True]), phase_diffs_ind)) phase, pmags, perrs = (phase[incphase_ind], pmags[incphase_ind], perrs[incphase_ind]) # generate and fit the spline spl = LSQUnivariateSpline(phase, pmags, t=splineknots, w=1.0/perrs) # calculate the spline fit to the actual phases, the chisq and red-chisq fitmags = spl(phase) fitchisq = npsum( ((fitmags - pmags)*(fitmags - pmags)) / (perrs*perrs) ) fitredchisq = fitchisq/(len(pmags) - nknots - 1) if verbose: LOGINFO( 'spline fit done. nknots = %s, ' 'chisq = %.5f, reduced chisq = %.5f' % (nknots, fitchisq, fitredchisq) ) # figure out the time of light curve minimum (i.e. the fit epoch) # this is when the fit mag is maximum (i.e. the faintest) # or if magsarefluxes = True, then this is when fit flux is minimum if not magsarefluxes: fitmagminind = npwhere(fitmags == npmax(fitmags)) else: fitmagminind = npwhere(fitmags == npmin(fitmags)) if len(fitmagminind[0]) > 1: fitmagminind = (fitmagminind[0][0],) magseriesepoch = ptimes[fitmagminind] # assemble the returndict returndict = { 'fittype':'spline', 'fitinfo':{ 'nknots':nknots, 'fitmags':fitmags, 'fitepoch':magseriesepoch }, 'fitchisq':fitchisq, 'fitredchisq':fitredchisq, 'fitplotfile':None, 'magseries':{ 'times':ptimes, 'phase':phase, 'mags':pmags, 'errs':perrs, 'magsarefluxes':magsarefluxes }, } # make the fit plot if required if plotfit and isinstance(plotfit, str): make_fit_plot(phase, pmags, perrs, fitmags, period, mintime, magseriesepoch, plotfit, magsarefluxes=magsarefluxes) returndict['fitplotfile'] = plotfit return returndict
def savgol_fit_magseries(times, mags, errs, period, windowlength=None, polydeg=2, sigclip=30.0, plotfit=False, magsarefluxes=False, verbose=True): '''Fit a Savitzky-Golay filter to the magnitude/flux time series. SG fits successive sub-sets (windows) of adjacent data points with a low-order polynomial via least squares. At each point (magnitude), it returns the value of the polynomial at that magnitude's time. This is made significantly cheaper than *actually* performing least squares for each window through linear algebra tricks that are possible when specifying the window size and polynomial order beforehand. Numerical Recipes Ch 14.8 gives an overview, Eq. 14.8.6 is what Scipy has implemented. The idea behind Savitzky-Golay is to preserve higher moments (>=2) of the input data series than would be done by a simple moving window average. Note that the filter assumes evenly spaced data, which magnitude time series are not. By *pretending* the data points are evenly spaced, we introduce an additional noise source in the function values. This is a relatively small noise source provided that the changes in the magnitude values across the full width of the N=windowlength point window is < sqrt(N/2) times the measurement noise on a single point. TODO: - Find correct dof for reduced chi squared in savgol_fit_magseries Parameters ---------- times,mags,errs : np.array The input mag/flux time-series to fit the Savitsky-Golay model to. period : float The period to use for the model fit. windowlength : None or int The length of the filter window (the number of coefficients). Must be either positive and odd, or None. (The window is the number of points to the left, and to the right, of whatever point is having a polynomial fit to it locally). Bigger windows at fixed polynomial order risk lowering the amplitude of sharp features. If None, this routine (arbitrarily) sets the `windowlength` for phased LCs to be either the number of finite data points divided by 300, or polydeg+3, whichever is bigger. polydeg : int This is the order of the polynomial used to fit the samples. Must be less than `windowlength`. "Higher-order filters do better at preserving feature heights and widths, but do less smoothing on broader features." (Numerical Recipes). sigclip : float or int or sequence of two floats/ints or None If a single float or int, a symmetric sigma-clip will be performed using the number provided as the sigma-multiplier to cut out from the input time-series. If a list of two ints/floats is provided, the function will perform an 'asymmetric' sigma-clip. The first element in this list is the sigma value to use for fainter flux/mag values; the second element in this list is the sigma value to use for brighter flux/mag values. For example, `sigclip=[10., 3.]`, will sigclip out greater than 10-sigma dimmings and greater than 3-sigma brightenings. Here the meaning of "dimming" and "brightening" is set by *physics* (not the magnitude system), which is why the `magsarefluxes` kwarg must be correctly set. If `sigclip` is None, no sigma-clipping will be performed, and the time-series (with non-finite elems removed) will be passed through to the output. magsarefluxes : bool If True, will treat the input values of `mags` as fluxes for purposes of plotting the fit and sig-clipping. plotfit : str or False If this is a string, this function will make a plot for the fit to the mag/flux time-series and writes the plot to the path specified here. ignoreinitfail : bool If this is True, ignores the initial failure to find a set of optimized Fourier parameters using the global optimization function and proceeds to do a least-squares fit anyway. verbose : bool If True, will indicate progress and warn of any problems. Returns ------- dict This function returns a dict containing the model fit parameters, the minimized chi-sq value and the reduced chi-sq value. The form of this dict is mostly standardized across all functions in this module:: { 'fittype':'savgol', 'fitinfo':{ 'windowlength': the window length used for the fit, 'polydeg':the polynomial degree used for the fit, 'fitmags': the model fit mags, 'fitepoch': the epoch of minimum light for the fit, }, 'fitchisq': the minimized value of the fit's chi-sq, 'fitredchisq':the reduced chi-sq value, 'fitplotfile': the output fit plot if fitplot is not None, 'magseries':{ 'times':input times in phase order of the model, 'phase':the phases of the model mags, 'mags':input mags/fluxes in the phase order of the model, 'errs':errs in the phase order of the model, 'magsarefluxes':input value of magsarefluxes kwarg } } ''' stimes, smags, serrs = sigclip_magseries(times, mags, errs, sigclip=sigclip, magsarefluxes=magsarefluxes) # get rid of zero errs nzind = npnonzero(serrs) stimes, smags, serrs = stimes[nzind], smags[nzind], serrs[nzind] phase, pmags, perrs, ptimes, mintime = ( get_phased_quantities(stimes, smags, serrs, period) ) if not isinstance(windowlength, int): windowlength = max( polydeg + 3, int(len(phase)/300) ) if windowlength % 2 == 0: windowlength += 1 if verbose: LOGINFO('applying Savitzky-Golay filter with ' 'window length %s and polynomial degree %s to ' 'mag series with %s observations, ' 'using period %.6f, folded at %.6f' % (windowlength, polydeg, len(pmags), period, mintime)) # generate the function values obtained by applying the SG filter. The # "wrap" option is best for phase-folded LCs. sgf = savgol_filter(pmags, windowlength, polydeg, mode='wrap') # here the "fit" to the phases is the function produced by the # Savitzky-Golay filter. then compute the chisq and red-chisq. fitmags = sgf fitchisq = npsum( ((fitmags - pmags)*(fitmags - pmags)) / (perrs*perrs) ) # TODO: quantify dof for SG filter. nparams = int(len(pmags)/windowlength) * polydeg fitredchisq = fitchisq/(len(pmags) - nparams - 1) fitredchisq = -99. if verbose: LOGINFO( 'SG filter applied. chisq = %.5f, reduced chisq = %.5f' % (fitchisq, fitredchisq) ) # figure out the time of light curve minimum (i.e. the fit epoch) # this is when the fit mag is maximum (i.e. the faintest) # or if magsarefluxes = True, then this is when fit flux is minimum if not magsarefluxes: fitmagminind = npwhere(fitmags == npmax(fitmags)) else: fitmagminind = npwhere(fitmags == npmin(fitmags)) if len(fitmagminind[0]) > 1: fitmagminind = (fitmagminind[0][0],) magseriesepoch = ptimes[fitmagminind] # assemble the returndict returndict = { 'fittype':'savgol', 'fitinfo':{ 'windowlength':windowlength, 'polydeg':polydeg, 'fitmags':fitmags, 'fitepoch':magseriesepoch }, 'fitchisq':fitchisq, 'fitredchisq':fitredchisq, 'fitplotfile':None, 'magseries':{ 'times':ptimes, 'phase':phase, 'mags':pmags, 'errs':perrs, 'magsarefluxes':magsarefluxes } } # make the fit plot if required if plotfit and isinstance(plotfit, str): make_fit_plot(phase, pmags, perrs, fitmags, period, mintime, magseriesepoch, plotfit, magsarefluxes=magsarefluxes) returndict['fitplotfile'] = plotfit return returndict
def legendre_fit_magseries(times, mags, errs, period, legendredeg=10, sigclip=30.0, plotfit=False, magsarefluxes=False, verbose=True): '''Fit an arbitrary-order Legendre series, via least squares, to the magnitude/flux time series. This is a series of the form:: p(x) = c_0*L_0(x) + c_1*L_1(x) + c_2*L_2(x) + ... + c_n*L_n(x) where L_i's are Legendre polynomials (also called "Legendre functions of the first kind") and c_i's are the coefficients being fit. This function is mainly just a wrapper to `numpy.polynomial.legendre.Legendre.fit`. Parameters ---------- times,mags,errs : np.array The input mag/flux time-series to fit a Legendre series polynomial to. period : float The period to use for the Legendre fit. legendredeg : int This is `n` in the equation above, e.g. if you give `n=5`, you will get 6 coefficients. This number should be much less than the number of data points you are fitting. sigclip : float or int or sequence of two floats/ints or None If a single float or int, a symmetric sigma-clip will be performed using the number provided as the sigma-multiplier to cut out from the input time-series. If a list of two ints/floats is provided, the function will perform an 'asymmetric' sigma-clip. The first element in this list is the sigma value to use for fainter flux/mag values; the second element in this list is the sigma value to use for brighter flux/mag values. For example, `sigclip=[10., 3.]`, will sigclip out greater than 10-sigma dimmings and greater than 3-sigma brightenings. Here the meaning of "dimming" and "brightening" is set by *physics* (not the magnitude system), which is why the `magsarefluxes` kwarg must be correctly set. If `sigclip` is None, no sigma-clipping will be performed, and the time-series (with non-finite elems removed) will be passed through to the output. magsarefluxes : bool If True, will treat the input values of `mags` as fluxes for purposes of plotting the fit and sig-clipping. plotfit : str or False If this is a string, this function will make a plot for the fit to the mag/flux time-series and writes the plot to the path specified here. ignoreinitfail : bool If this is True, ignores the initial failure to find a set of optimized Fourier parameters using the global optimization function and proceeds to do a least-squares fit anyway. verbose : bool If True, will indicate progress and warn of any problems. Returns ------- dict This function returns a dict containing the model fit parameters, the minimized chi-sq value and the reduced chi-sq value. The form of this dict is mostly standardized across all functions in this module:: { 'fittype':'legendre', 'fitinfo':{ 'legendredeg': the Legendre polynomial degree used, 'fitmags': the model fit mags, 'fitepoch': the epoch of minimum light for the fit, }, 'fitchisq': the minimized value of the fit's chi-sq, 'fitredchisq':the reduced chi-sq value, 'fitplotfile': the output fit plot if fitplot is not None, 'magseries':{ 'times':input times in phase order of the model, 'phase':the phases of the model mags, 'mags':input mags/fluxes in the phase order of the model, 'errs':errs in the phase order of the model, 'magsarefluxes':input value of magsarefluxes kwarg } } ''' stimes, smags, serrs = sigclip_magseries(times, mags, errs, sigclip=sigclip, magsarefluxes=magsarefluxes) # get rid of zero errs nzind = npnonzero(serrs) stimes, smags, serrs = stimes[nzind], smags[nzind], serrs[nzind] phase, pmags, perrs, ptimes, mintime = ( get_phased_quantities(stimes, smags, serrs, period) ) if verbose: LOGINFO('fitting Legendre series with ' 'maximum Legendre polynomial order %s to ' 'mag series with %s observations, ' 'using period %.6f, folded at %.6f' % (legendredeg, len(pmags), period, mintime)) # Least squares fit of Legendre polynomial series to the data. The window # and domain (see "Using the Convenience Classes" in the numpy # documentation) are handled automatically, scaling the times to a minimal # domain in [-1,1], in which Legendre polynomials are a complete basis. p = Legendre.fit(phase, pmags, legendredeg) coeffs = p.coef fitmags = p(phase) # Now compute the chisq and red-chisq. fitchisq = npsum( ((fitmags - pmags)*(fitmags - pmags)) / (perrs*perrs) ) nparams = legendredeg + 1 fitredchisq = fitchisq/(len(pmags) - nparams - 1) if verbose: LOGINFO( 'Legendre fit done. chisq = %.5f, reduced chisq = %.5f' % (fitchisq, fitredchisq) ) # figure out the time of light curve minimum (i.e. the fit epoch) # this is when the fit mag is maximum (i.e. the faintest) # or if magsarefluxes = True, then this is when fit flux is minimum if not magsarefluxes: fitmagminind = npwhere(fitmags == npmax(fitmags)) else: fitmagminind = npwhere(fitmags == npmin(fitmags)) if len(fitmagminind[0]) > 1: fitmagminind = (fitmagminind[0][0],) magseriesepoch = ptimes[fitmagminind] # assemble the returndict returndict = { 'fittype':'legendre', 'fitinfo':{ 'legendredeg':legendredeg, 'fitmags':fitmags, 'fitepoch':magseriesepoch, 'finalparams':coeffs, }, 'fitchisq':fitchisq, 'fitredchisq':fitredchisq, 'fitplotfile':None, 'magseries':{ 'times':ptimes, 'phase':phase, 'mags':pmags, 'errs':perrs, 'magsarefluxes':magsarefluxes } } # make the fit plot if required if plotfit and isinstance(plotfit, str): make_fit_plot(phase, pmags, perrs, fitmags, period, mintime, magseriesepoch, plotfit, magsarefluxes=magsarefluxes) returndict['fitplotfile'] = plotfit return returndict
def update_checkplotdict_nbrlcs( checkplotdict, timecol, magcol, errcol, lcformat='hat-sql', lcformatdir=None, verbose=True, ): '''For all neighbors in a checkplotdict, make LCs and phased LCs. Parameters ---------- checkplotdict : dict This is the checkplot to process. The light curves for the neighbors to the object here will be extracted from the stored file paths, and this function will make plots of these time-series. If the object has 'best' periods and epochs generated by period-finder functions in this checkplotdict, phased light curve plots of each neighbor will be made using these to check the effects of blending. timecol,magcol,errcol : str The timecol, magcol, and errcol keys used to generate this object's checkplot. This is used to extract the correct times-series from the neighbors' light curves. lcformat : str This is the `formatkey` associated with your light curve format, which you previously passed in to the `lcproc.register_lcformat` function. This will be used to look up how to find and read the light curves specified in `basedir` or `use_list_of_filenames`. lcformatdir : str or None If this is provided, gives the path to a directory when you've stored your lcformat description JSONs, other than the usual directories lcproc knows to search for them in. Use this along with `lcformat` to specify an LC format JSON file that's not currently registered with lcproc. Returns ------- dict The input checkplotdict is returned with the neighor light curve plots added in. ''' try: formatinfo = get_lcformat(lcformat, use_lcformat_dir=lcformatdir) if formatinfo: (dfileglob, readerfunc, dtimecols, dmagcols, derrcols, magsarefluxes, normfunc) = formatinfo else: LOGERROR("can't figure out the light curve format") return checkplotdict except Exception as e: LOGEXCEPTION("can't figure out the light curve format") return checkplotdict if not ('neighbors' in checkplotdict and checkplotdict['neighbors'] and len(checkplotdict['neighbors']) > 0): LOGERROR('no neighbors for %s, not updating...' % (checkplotdict['objectid'])) return checkplotdict # get our object's magkeys to compare to the neighbor objmagkeys = {} # handle diff generations of checkplots if 'available_bands' in checkplotdict['objectinfo']: mclist = checkplotdict['objectinfo']['available_bands'] else: mclist = ('bmag','vmag','rmag','imag','jmag','hmag','kmag', 'sdssu','sdssg','sdssr','sdssi','sdssz') for mc in mclist: if (mc in checkplotdict['objectinfo'] and checkplotdict['objectinfo'][mc] is not None and np.isfinite(checkplotdict['objectinfo'][mc])): objmagkeys[mc] = checkplotdict['objectinfo'][mc] # if there are actually neighbors, go through them in order for nbr in checkplotdict['neighbors']: objectid, lcfpath = (nbr['objectid'], nbr['lcfpath']) # get the light curve if not os.path.exists(lcfpath): LOGERROR('objectid: %s, neighbor: %s, ' 'lightcurve: %s not found, skipping...' % (checkplotdict['objectid'], objectid, lcfpath)) continue lcdict = readerfunc(lcfpath) # this should handle lists/tuples being returned by readerfunc # we assume that the first element is the actual lcdict # FIXME: figure out how to not need this assumption if ( (isinstance(lcdict, (list, tuple))) and (isinstance(lcdict[0], dict)) ): lcdict = lcdict[0] # 0. get this neighbor's magcols and get the magdiff and colordiff # between it and the object nbrmagkeys = {} for mc in objmagkeys: if (('objectinfo' in lcdict) and (isinstance(lcdict['objectinfo'], dict)) and (mc in lcdict['objectinfo']) and (lcdict['objectinfo'][mc] is not None) and (np.isfinite(lcdict['objectinfo'][mc]))): nbrmagkeys[mc] = lcdict['objectinfo'][mc] # now calculate the magdiffs magdiffs = {} for omc in objmagkeys: if omc in nbrmagkeys: magdiffs[omc] = objmagkeys[omc] - nbrmagkeys[omc] # calculate colors and colordiffs colordiffs = {} # generate the list of colors to get # NOTE: here, we don't really bother with new/old gen checkplots # maybe change this later to handle arbitrary colors for ctrio in (['bmag','vmag','bvcolor'], ['vmag','kmag','vkcolor'], ['jmag','kmag','jkcolor'], ['sdssi','jmag','ijcolor'], ['sdssg','kmag','gkcolor'], ['sdssg','sdssr','grcolor']): m1, m2, color = ctrio if (m1 in objmagkeys and m2 in objmagkeys and m1 in nbrmagkeys and m2 in nbrmagkeys): objcolor = objmagkeys[m1] - objmagkeys[m2] nbrcolor = nbrmagkeys[m1] - nbrmagkeys[m2] colordiffs[color] = objcolor - nbrcolor # finally, add all the color and magdiff info to the nbr dict nbr.update({'magdiffs':magdiffs, 'colordiffs':colordiffs}) # # process magcols # # normalize using the special function if specified if normfunc is not None: lcdict = normfunc(lcdict) try: # get the times, mags, and errs # dereference the columns and get them from the lcdict if '.' in timecol: timecolget = timecol.split('.') else: timecolget = [timecol] times = _dict_get(lcdict, timecolget) if '.' in magcol: magcolget = magcol.split('.') else: magcolget = [magcol] mags = _dict_get(lcdict, magcolget) if '.' in errcol: errcolget = errcol.split('.') else: errcolget = [errcol] errs = _dict_get(lcdict, errcolget) except KeyError: LOGERROR('LC for neighbor: %s (target object: %s) does not ' 'have one or more of the required columns: %s, ' 'skipping...' % (objectid, checkplotdict['objectid'], ', '.join([timecol, magcol, errcol]))) continue # filter the input times, mags, errs; do sigclipping and normalization stimes, smags, serrs = sigclip_magseries(times, mags, errs, magsarefluxes=magsarefluxes, sigclip=4.0) # normalize here if not using special normalization if normfunc is None: ntimes, nmags = normalize_magseries( stimes, smags, magsarefluxes=magsarefluxes ) xtimes, xmags, xerrs = ntimes, nmags, serrs else: xtimes, xmags, xerrs = stimes, smags, serrs # check if this neighbor has enough finite points in its LC # fail early if not enough light curve points if ((xtimes is None) or (xmags is None) or (xerrs is None) or (xtimes.size < 49) or (xmags.size < 49) or (xerrs.size < 49)): LOGERROR("one or more of times, mags, errs appear to be None " "after sig-clipping. are the measurements all nan? " "can't make neighbor light curve plots " "for target: %s, neighbor: %s, neighbor LC: %s" % (checkplotdict['objectid'], nbr['objectid'], nbr['lcfpath'])) continue # # now we can start doing stuff if everything checks out # # make an unphased mag-series plot nbrdict = _pkl_magseries_plot(xtimes, xmags, xerrs, magsarefluxes=magsarefluxes) # update the nbr nbr.update(nbrdict) # for each lspmethod in the checkplot, make a corresponding plot for # this neighbor # figure out the period finder methods present if 'pfmethods' in checkplotdict: pfmethods = checkplotdict['pfmethods'] else: pfmethods = [] for cpkey in checkplotdict: for pfkey in PFMETHODS: if pfkey in cpkey: pfmethods.append(pfkey) for lspt in pfmethods: # initialize this lspmethod entry nbr[lspt] = {} # we only care about the best period and its options operiod, oepoch = (checkplotdict[lspt][0]['period'], checkplotdict[lspt][0]['epoch']) (ophasewrap, ophasesort, ophasebin, ominbinelems, oplotxlim) = ( checkplotdict[lspt][0]['phasewrap'], checkplotdict[lspt][0]['phasesort'], checkplotdict[lspt][0]['phasebin'], checkplotdict[lspt][0]['minbinelems'], checkplotdict[lspt][0]['plotxlim'], ) # make the phasedlc plot for this period nbr = _pkl_phased_magseries_plot( nbr, lspt.split('-')[1], # this splits '<pfindex>-<pfmethod>' 0, xtimes, xmags, xerrs, operiod, oepoch, phasewrap=ophasewrap, phasesort=ophasesort, phasebin=ophasebin, minbinelems=ominbinelems, plotxlim=oplotxlim, magsarefluxes=magsarefluxes, verbose=verbose, override_pfmethod=lspt ) # at this point, this neighbor's dict should be up to date with all # info, magseries plot, and all phased LC plots # return the updated checkplotdict return checkplotdict
def runcp( pfpickle, outdir, lcbasedir, lcfname=None, cprenorm=False, lclistpkl=None, nbrradiusarcsec=60.0, maxnumneighbors=5, makeneighborlcs=True, fast_mode=False, gaia_max_timeout=60.0, gaia_mirror=None, xmatchinfo=None, xmatchradiusarcsec=3.0, minobservations=99, sigclip=10.0, lcformat='hat-sql', lcformatdir=None, timecols=None, magcols=None, errcols=None, skipdone=False, done_callback=None, done_callback_args=None, done_callback_kwargs=None ): '''This makes a checkplot pickle for the given period-finding result pickle produced by `lcproc.periodfinding.runpf`. Parameters ---------- pfpickle : str or None This is the filename of the period-finding result pickle file created by `lcproc.periodfinding.runpf`. If this is None, the checkplot will be made anyway, but no phased LC information will be collected into the output checkplot pickle. This can be useful for just collecting GAIA and other external information and making LC plots for an object. outdir : str This is the directory to which the output checkplot pickle will be written. lcbasedir : str The base directory where this function will look for the light curve file associated with the object in the input period-finding result pickle file. lcfname : str or None This is usually None because we'll get the path to the light curve associated with this period-finding pickle from the pickle itself. If `pfpickle` is None, however, this function will use `lcfname` to look up the light curve file instead. If both are provided, the value of `lcfname` takes precedence. Providing the light curve file name in this kwarg is useful when you're making checkplots directly from light curve files and not including period-finder results (perhaps because period-finding takes a long time for large collections of LCs). cprenorm : bool Set this to True if the light curves should be renormalized by `checkplot.checkplot_pickle`. This is set to False by default because we do our own normalization in this function using the light curve's registered normalization function and pass the normalized times, mags, errs to the `checkplot.checkplot_pickle` function. lclistpkl : str or dict This is either the filename of a pickle or the actual dict produced by lcproc.make_lclist. This is used to gather neighbor information. nbrradiusarcsec : float The radius in arcseconds to use for a search conducted around the coordinates of this object to look for any potential confusion and blending of variability amplitude caused by their proximity. maxnumneighbors : int The maximum number of neighbors that will have their light curves and magnitudes noted in this checkplot as potential blends with the target object. makeneighborlcs : bool If True, will make light curve and phased light curve plots for all neighbors to the current object found in the catalog passed in using `lclistpkl`. fast_mode : bool or float This runs the external catalog operations in a "fast" mode, with short timeouts and not trying to hit external catalogs that take a long time to respond. If this is set to True, the default settings for the external requests will then become:: skyview_lookup = False skyview_timeout = 10.0 skyview_retry_failed = False dust_timeout = 10.0 gaia_submit_timeout = 7.0 gaia_max_timeout = 10.0 gaia_submit_tries = 2 complete_query_later = False search_simbad = False If this is a float, will run in "fast" mode with the provided timeout value in seconds and the following settings:: skyview_lookup = True skyview_timeout = fast_mode skyview_retry_failed = False dust_timeout = fast_mode gaia_submit_timeout = 0.66*fast_mode gaia_max_timeout = fast_mode gaia_submit_tries = 2 complete_query_later = False search_simbad = False gaia_max_timeout : float Sets the timeout in seconds to use when waiting for the GAIA service to respond to our request for the object's information. Note that if `fast_mode` is set, this is ignored. gaia_mirror : str or None This sets the GAIA mirror to use. This is a key in the `services.gaia.GAIA_URLS` dict which defines the URLs to hit for each mirror. xmatchinfo : str or dict This is either the xmatch dict produced by the function `load_xmatch_external_catalogs` above, or the path to the xmatch info pickle file produced by that function. xmatchradiusarcsec : float This is the cross-matching radius to use in arcseconds. minobservations : int The minimum of observations the input object's mag/flux time-series must have for this function to plot its light curve and phased light curve. If the object has less than this number, no light curves will be plotted, but the checkplotdict will still contain all of the other information. sigclip : float or int or sequence of two floats/ints or None If a single float or int, a symmetric sigma-clip will be performed using the number provided as the sigma-multiplier to cut out from the input time-series. If a list of two ints/floats is provided, the function will perform an 'asymmetric' sigma-clip. The first element in this list is the sigma value to use for fainter flux/mag values; the second element in this list is the sigma value to use for brighter flux/mag values. For example, `sigclip=[10., 3.]`, will sigclip out greater than 10-sigma dimmings and greater than 3-sigma brightenings. Here the meaning of "dimming" and "brightening" is set by *physics* (not the magnitude system), which is why the `magsarefluxes` kwarg must be correctly set. If `sigclip` is None, no sigma-clipping will be performed, and the time-series (with non-finite elems removed) will be passed through to the output. lcformat : str This is the `formatkey` associated with your light curve format, which you previously passed in to the `lcproc.register_lcformat` function. This will be used to look up how to find and read the light curves specified in `basedir` or `use_list_of_filenames`. lcformatdir : str or None If this is provided, gives the path to a directory when you've stored your lcformat description JSONs, other than the usual directories lcproc knows to search for them in. Use this along with `lcformat` to specify an LC format JSON file that's not currently registered with lcproc. timecols : list of str or None The timecol keys to use from the lcdict in generating this checkplot. magcols : list of str or None The magcol keys to use from the lcdict in generating this checkplot. errcols : list of str or None The errcol keys to use from the lcdict in generating this checkplot. skipdone : bool This indicates if this function will skip creating checkplots that already exist corresponding to the current `objectid` and `magcol`. If `skipdone` is set to True, this will be done. done_callback : Python function or None This is used to provide a function to execute after the checkplot pickles are generated. This is useful if you want to stream the results of checkplot making to some other process, e.g. directly running an ingestion into an LCC-Server collection. The function will always get the list of the generated checkplot pickles as its first arg, and all of the kwargs for runcp in the kwargs dict. Additional args and kwargs can be provided by giving a list in the `done_callbacks_args` kwarg and a dict in the `done_callbacks_kwargs` kwarg. NOTE: the function you pass in here should be pickleable by normal Python if you want to use it with the parallel_cp and parallel_cp_lcdir functions below. done_callback_args : tuple or None If not None, contains any args to pass into the `done_callback` function. done_callback_kwargs : dict or None If not None, contains any kwargs to pass into the `done_callback` function. Returns ------- list of str This returns a list of checkplot pickle filenames with one element for each (timecol, magcol, errcol) combination provided in the default lcformat config or in the timecols, magcols, errcols kwargs. ''' try: formatinfo = get_lcformat(lcformat, use_lcformat_dir=lcformatdir) if formatinfo: (fileglob, readerfunc, dtimecols, dmagcols, derrcols, magsarefluxes, normfunc) = formatinfo else: LOGERROR("can't figure out the light curve format") return None except Exception as e: LOGEXCEPTION("can't figure out the light curve format") return None if pfpickle is not None: if pfpickle.endswith('.gz'): infd = gzip.open(pfpickle,'rb') else: infd = open(pfpickle,'rb') pfresults = pickle.load(infd) infd.close() # override the default timecols, magcols, and errcols # using the ones provided to the function if timecols is None: timecols = dtimecols if magcols is None: magcols = dmagcols if errcols is None: errcols = derrcols if ((lcfname is not None or pfpickle is None) and os.path.exists(lcfname)): lcfpath = lcfname objectid = None else: if pfpickle is not None: objectid = pfresults['objectid'] lcfbasename = pfresults['lcfbasename'] lcfsearchpath = os.path.join(lcbasedir, lcfbasename) if os.path.exists(lcfsearchpath): lcfpath = lcfsearchpath elif lcfname is not None and os.path.exists(lcfname): lcfpath = lcfname else: LOGERROR('could not find light curve for ' 'pfresult %s, objectid %s, ' 'used search path: %s, lcfname kwarg: %s' % (pfpickle, objectid, lcfsearchpath, lcfname)) return None else: LOGERROR("no light curve provided and pfpickle is None, " "can't continue") return None lcdict = readerfunc(lcfpath) # this should handle lists/tuples being returned by readerfunc # we assume that the first element is the actual lcdict # FIXME: figure out how to not need this assumption if ( (isinstance(lcdict, (list, tuple))) and (isinstance(lcdict[0], dict)) ): lcdict = lcdict[0] # get the object ID from the light curve if pfpickle is None or we used # lcfname directly if objectid is None: if 'objectid' in lcdict: objectid = lcdict['objectid'] elif ('objectid' in lcdict['objectinfo'] and lcdict['objectinfo']['objectid']): objectid = lcdict['objectinfo']['objectid'] elif 'hatid' in lcdict['objectinfo'] and lcdict['objectinfo']['hatid']: objectid = lcdict['objectinfo']['hatid'] else: objectid = uuid.uuid4().hex[:5] LOGWARNING('no objectid found for this object, ' 'generated a random one: %s' % objectid) # normalize using the special function if specified if normfunc is not None: lcdict = normfunc(lcdict) cpfs = [] for tcol, mcol, ecol in zip(timecols, magcols, errcols): # dereference the columns and get them from the lcdict if '.' in tcol: tcolget = tcol.split('.') else: tcolget = [tcol] times = _dict_get(lcdict, tcolget) if '.' in mcol: mcolget = mcol.split('.') else: mcolget = [mcol] mags = _dict_get(lcdict, mcolget) if '.' in ecol: ecolget = ecol.split('.') else: ecolget = [ecol] errs = _dict_get(lcdict, ecolget) # get all the period-finder results from this magcol if pfpickle is not None: if 'pfmethods' in pfresults[mcol]: pflist = [ pfresults[mcol][x] for x in pfresults[mcol]['pfmethods'] if len(pfresults[mcol][x].keys()) > 0 ] else: pflist = [] for pfm in PFMETHODS: if (pfm in pfresults[mcol] and len(pfresults[mcol][pfm].keys()) > 0): pflist.append(pfresults[mcol][pfm]) # special case of generating a checkplot with no phased LCs else: pflist = [] # generate the output filename outfile = os.path.join(outdir, 'checkplot-%s-%s.pkl' % ( squeeze(objectid).replace(' ','-'), mcol )) if skipdone and os.path.exists(outfile): LOGWARNING('skipdone = True and ' 'checkplot for this objectid/magcol combination ' 'exists already: %s, skipping...' % outfile) return outfile # make sure the checkplot has a valid objectid if 'objectid' not in lcdict['objectinfo']: lcdict['objectinfo']['objectid'] = objectid # normalize here if not using special normalization if normfunc is None: ntimes, nmags = normalize_magseries( times, mags, magsarefluxes=magsarefluxes ) xtimes, xmags, xerrs = ntimes, nmags, errs else: xtimes, xmags, xerrs = times, mags, errs # generate the checkplotdict cpd = checkplot_dict( pflist, xtimes, xmags, xerrs, objectinfo=lcdict['objectinfo'], gaia_max_timeout=gaia_max_timeout, gaia_mirror=gaia_mirror, lclistpkl=lclistpkl, nbrradiusarcsec=nbrradiusarcsec, maxnumneighbors=maxnumneighbors, xmatchinfo=xmatchinfo, xmatchradiusarcsec=xmatchradiusarcsec, sigclip=sigclip, mindet=minobservations, verbose=False, fast_mode=fast_mode, magsarefluxes=magsarefluxes, normto=cprenorm # we've done the renormalization already, so this # should be False by default. just messes up the # plots otherwise, destroying LPVs in particular ) if makeneighborlcs: # include any neighbor information as well cpdupdated = update_checkplotdict_nbrlcs( cpd, tcol, mcol, ecol, lcformat=lcformat, verbose=False ) else: cpdupdated = cpd # write the update checkplot dict to disk cpf = _write_checkplot_picklefile( cpdupdated, outfile=outfile, protocol=pickle.HIGHEST_PROTOCOL, outgzip=False ) cpfs.append(cpf) # # done with checkplot making # LOGINFO('done with %s -> %s' % (objectid, repr(cpfs))) if done_callback is not None: if (done_callback_args is not None and isinstance(done_callback_args,list)): done_callback_args = tuple([cpfs] + done_callback_args) else: done_callback_args = (cpfs,) if (done_callback_kwargs is not None and isinstance(done_callback_kwargs, dict)): done_callback_kwargs.update(dict( fast_mode=fast_mode, lcfname=lcfname, cprenorm=cprenorm, lclistpkl=lclistpkl, nbrradiusarcsec=nbrradiusarcsec, maxnumneighbors=maxnumneighbors, gaia_max_timeout=gaia_max_timeout, gaia_mirror=gaia_mirror, xmatchinfo=xmatchinfo, xmatchradiusarcsec=xmatchradiusarcsec, minobservations=minobservations, sigclip=sigclip, lcformat=lcformat, fileglob=fileglob, readerfunc=readerfunc, normfunc=normfunc, magsarefluxes=magsarefluxes, timecols=timecols, magcols=magcols, errcols=errcols, skipdone=skipdone, )) else: done_callback_kwargs = dict( fast_mode=fast_mode, lcfname=lcfname, cprenorm=cprenorm, lclistpkl=lclistpkl, nbrradiusarcsec=nbrradiusarcsec, maxnumneighbors=maxnumneighbors, gaia_max_timeout=gaia_max_timeout, gaia_mirror=gaia_mirror, xmatchinfo=xmatchinfo, xmatchradiusarcsec=xmatchradiusarcsec, minobservations=minobservations, sigclip=sigclip, lcformat=lcformat, fileglob=fileglob, readerfunc=readerfunc, normfunc=normfunc, magsarefluxes=magsarefluxes, timecols=timecols, magcols=magcols, errcols=errcols, skipdone=skipdone, ) # fire the callback try: done_callback(*done_callback_args, **done_callback_kwargs) LOGINFO('callback fired successfully for %r' % cpfs) except Exception as e: LOGEXCEPTION('callback function failed for %r' % cpfs) # at the end, return the list of checkplot files generated return cpfs
def runcp_worker(task): ''' This is the worker for running checkplots. Parameters ---------- task : tuple This is of the form: (pfpickle, outdir, lcbasedir, kwargs). Returns ------- list of str The list of checkplot pickles returned by the `runcp` function. ''' pfpickle, outdir, lcbasedir, kwargs = task try: return runcp(pfpickle, outdir, lcbasedir, **kwargs) except Exception as e: LOGEXCEPTION(' could not make checkplots for %s: %s' % (pfpickle, e)) return None
def parallel_cp( pfpicklelist, outdir, lcbasedir, fast_mode=False, lcfnamelist=None, cprenorm=False, lclistpkl=None, gaia_max_timeout=60.0, gaia_mirror=None, nbrradiusarcsec=60.0, maxnumneighbors=5, makeneighborlcs=True, xmatchinfo=None, xmatchradiusarcsec=3.0, sigclip=10.0, minobservations=99, lcformat='hat-sql', lcformatdir=None, timecols=None, magcols=None, errcols=None, skipdone=False, done_callback=None, done_callback_args=None, done_callback_kwargs=None, liststartindex=None, maxobjects=None, nworkers=NCPUS, ): '''This drives the parallel execution of `runcp` for a list of periodfinding result pickles. Parameters ---------- pfpicklelist : list of str or list of Nones This is the list of the filenames of the period-finding result pickles to process. To make checkplots using the light curves directly, set this to a list of Nones with the same length as the list of light curve files that you provide in `lcfnamelist`. outdir : str The directory the checkplot pickles will be written to. lcbasedir : str The base directory that this function will look in to find the light curves pointed to by the period-finding result files. If you're using `lcfnamelist` to provide a list of light curve filenames directly, this arg is ignored. lcfnamelist : list of str or None If this is provided, it must be a list of the input light curve filenames to process. These can either be associated with each input period-finder result pickle, or can be provided standalone to make checkplots without phased LC plots in them. In the second case, you must set `pfpicklelist` to a list of Nones that matches the length of `lcfnamelist`. cprenorm : bool Set this to True if the light curves should be renormalized by `checkplot.checkplot_pickle`. This is set to False by default because we do our own normalization in this function using the light curve's registered normalization function and pass the normalized times, mags, errs to the `checkplot.checkplot_pickle` function. lclistpkl : str or dict This is either the filename of a pickle or the actual dict produced by lcproc.make_lclist. This is used to gather neighbor information. nbrradiusarcsec : float The radius in arcseconds to use for a search conducted around the coordinates of this object to look for any potential confusion and blending of variability amplitude caused by their proximity. maxnumneighbors : int The maximum number of neighbors that will have their light curves and magnitudes noted in this checkplot as potential blends with the target object. makeneighborlcs : bool If True, will make light curve and phased light curve plots for all neighbors found in the object collection for each input object. fast_mode : bool or float This runs the external catalog operations in a "fast" mode, with short timeouts and not trying to hit external catalogs that take a long time to respond. If this is set to True, the default settings for the external requests will then become:: skyview_lookup = False skyview_timeout = 10.0 skyview_retry_failed = False dust_timeout = 10.0 gaia_submit_timeout = 7.0 gaia_max_timeout = 10.0 gaia_submit_tries = 2 complete_query_later = False search_simbad = False If this is a float, will run in "fast" mode with the provided timeout value in seconds and the following settings:: skyview_lookup = True skyview_timeout = fast_mode skyview_retry_failed = False dust_timeout = fast_mode gaia_submit_timeout = 0.66*fast_mode gaia_max_timeout = fast_mode gaia_submit_tries = 2 complete_query_later = False search_simbad = False gaia_max_timeout : float Sets the timeout in seconds to use when waiting for the GAIA service to respond to our request for the object's information. Note that if `fast_mode` is set, this is ignored. gaia_mirror : str or None This sets the GAIA mirror to use. This is a key in the `services.gaia.GAIA_URLS` dict which defines the URLs to hit for each mirror. xmatchinfo : str or dict This is either the xmatch dict produced by the function `load_xmatch_external_catalogs` above, or the path to the xmatch info pickle file produced by that function. xmatchradiusarcsec : float This is the cross-matching radius to use in arcseconds. minobservations : int The minimum of observations the input object's mag/flux time-series must have for this function to plot its light curve and phased light curve. If the object has less than this number, no light curves will be plotted, but the checkplotdict will still contain all of the other information. sigclip : float or int or sequence of two floats/ints or None If a single float or int, a symmetric sigma-clip will be performed using the number provided as the sigma-multiplier to cut out from the input time-series. If a list of two ints/floats is provided, the function will perform an 'asymmetric' sigma-clip. The first element in this list is the sigma value to use for fainter flux/mag values; the second element in this list is the sigma value to use for brighter flux/mag values. For example, `sigclip=[10., 3.]`, will sigclip out greater than 10-sigma dimmings and greater than 3-sigma brightenings. Here the meaning of "dimming" and "brightening" is set by *physics* (not the magnitude system), which is why the `magsarefluxes` kwarg must be correctly set. If `sigclip` is None, no sigma-clipping will be performed, and the time-series (with non-finite elems removed) will be passed through to the output. lcformat : str This is the `formatkey` associated with your light curve format, which you previously passed in to the `lcproc.register_lcformat` function. This will be used to look up how to find and read the light curves specified in `basedir` or `use_list_of_filenames`. lcformatdir : str or None If this is provided, gives the path to a directory when you've stored your lcformat description JSONs, other than the usual directories lcproc knows to search for them in. Use this along with `lcformat` to specify an LC format JSON file that's not currently registered with lcproc. timecols : list of str or None The timecol keys to use from the lcdict in generating this checkplot. magcols : list of str or None The magcol keys to use from the lcdict in generating this checkplot. errcols : list of str or None The errcol keys to use from the lcdict in generating this checkplot. skipdone : bool This indicates if this function will skip creating checkplots that already exist corresponding to the current `objectid` and `magcol`. If `skipdone` is set to True, this will be done. done_callback : Python function or None This is used to provide a function to execute after the checkplot pickles are generated. This is useful if you want to stream the results of checkplot making to some other process, e.g. directly running an ingestion into an LCC-Server collection. The function will always get the list of the generated checkplot pickles as its first arg, and all of the kwargs for runcp in the kwargs dict. Additional args and kwargs can be provided by giving a list in the `done_callbacks_args` kwarg and a dict in the `done_callbacks_kwargs` kwarg. NOTE: the function you pass in here should be pickleable by normal Python if you want to use it with the parallel_cp and parallel_cp_lcdir functions below. done_callback_args : tuple or None If not None, contains any args to pass into the `done_callback` function. done_callback_kwargs : dict or None If not None, contains any kwargs to pass into the `done_callback` function. liststartindex : int The index of the `pfpicklelist` (and `lcfnamelist` if provided) to start working at. maxobjects : int The maximum number of objects to process in this run. Use this with `liststartindex` to effectively distribute working on a large list of input period-finding result pickles (and light curves if `lcfnamelist` is also provided) over several sessions or machines. nworkers : int The number of parallel workers that will work on the checkplot generation process. Returns ------- dict This returns a dict with keys = input period-finding pickles and vals = list of the corresponding checkplot pickles produced. ''' # work around the Darwin segfault after fork if no network activity in # main thread bug: https://bugs.python.org/issue30385#msg293958 if sys.platform == 'darwin': import requests requests.get('http://captive.apple.com/hotspot-detect.html') if not os.path.exists(outdir): os.mkdir(outdir) # handle the start and end indices if (liststartindex is not None) and (maxobjects is None): pfpicklelist = pfpicklelist[liststartindex:] if lcfnamelist is not None: lcfnamelist = lcfnamelist[liststartindex:] elif (liststartindex is None) and (maxobjects is not None): pfpicklelist = pfpicklelist[:maxobjects] if lcfnamelist is not None: lcfnamelist = lcfnamelist[:maxobjects] elif (liststartindex is not None) and (maxobjects is not None): pfpicklelist = ( pfpicklelist[liststartindex:liststartindex+maxobjects] ) if lcfnamelist is not None: lcfnamelist = lcfnamelist[liststartindex:liststartindex+maxobjects] # if the lcfnamelist is not provided, create a dummy if lcfnamelist is None: lcfnamelist = [None]*len(pfpicklelist) tasklist = [(x, outdir, lcbasedir, {'lcformat':lcformat, 'lcformatdir':lcformatdir, 'lcfname':y, 'timecols':timecols, 'magcols':magcols, 'errcols':errcols, 'lclistpkl':lclistpkl, 'gaia_max_timeout':gaia_max_timeout, 'gaia_mirror':gaia_mirror, 'nbrradiusarcsec':nbrradiusarcsec, 'maxnumneighbors':maxnumneighbors, 'makeneighborlcs':makeneighborlcs, 'xmatchinfo':xmatchinfo, 'xmatchradiusarcsec':xmatchradiusarcsec, 'sigclip':sigclip, 'minobservations':minobservations, 'skipdone':skipdone, 'cprenorm':cprenorm, 'fast_mode':fast_mode, 'done_callback':done_callback, 'done_callback_args':done_callback_args, 'done_callback_kwargs':done_callback_kwargs}) for x,y in zip(pfpicklelist, lcfnamelist)] resultfutures = [] results = [] with ProcessPoolExecutor(max_workers=nworkers) as executor: resultfutures = executor.map(runcp_worker, tasklist) results = [x for x in resultfutures] executor.shutdown() return results
def parallel_cp_pfdir(pfpickledir, outdir, lcbasedir, pfpickleglob='periodfinding-*.pkl*', lclistpkl=None, cprenorm=False, nbrradiusarcsec=60.0, maxnumneighbors=5, makeneighborlcs=True, fast_mode=False, gaia_max_timeout=60.0, gaia_mirror=None, xmatchinfo=None, xmatchradiusarcsec=3.0, minobservations=99, sigclip=10.0, lcformat='hat-sql', lcformatdir=None, timecols=None, magcols=None, errcols=None, skipdone=False, done_callback=None, done_callback_args=None, done_callback_kwargs=None, maxobjects=None, nworkers=32): '''This drives the parallel execution of `runcp` for a directory of periodfinding pickles. Parameters ---------- pfpickledir : str This is the directory containing all of the period-finding pickles to process. outdir : str The directory the checkplot pickles will be written to. lcbasedir : str The base directory that this function will look in to find the light curves pointed to by the period-finding result files. If you're using `lcfnamelist` to provide a list of light curve filenames directly, this arg is ignored. pkpickleglob : str This is a UNIX file glob to select period-finding result pickles in the specified `pfpickledir`. lclistpkl : str or dict This is either the filename of a pickle or the actual dict produced by lcproc.make_lclist. This is used to gather neighbor information. cprenorm : bool Set this to True if the light curves should be renormalized by `checkplot.checkplot_pickle`. This is set to False by default because we do our own normalization in this function using the light curve's registered normalization function and pass the normalized times, mags, errs to the `checkplot.checkplot_pickle` function. nbrradiusarcsec : float The radius in arcseconds to use for a search conducted around the coordinates of this object to look for any potential confusion and blending of variability amplitude caused by their proximity. maxnumneighbors : int The maximum number of neighbors that will have their light curves and magnitudes noted in this checkplot as potential blends with the target object. makeneighborlcs : bool If True, will make light curve and phased light curve plots for all neighbors found in the object collection for each input object. fast_mode : bool or float This runs the external catalog operations in a "fast" mode, with short timeouts and not trying to hit external catalogs that take a long time to respond. If this is set to True, the default settings for the external requests will then become:: skyview_lookup = False skyview_timeout = 10.0 skyview_retry_failed = False dust_timeout = 10.0 gaia_submit_timeout = 7.0 gaia_max_timeout = 10.0 gaia_submit_tries = 2 complete_query_later = False search_simbad = False If this is a float, will run in "fast" mode with the provided timeout value in seconds and the following settings:: skyview_lookup = True skyview_timeout = fast_mode skyview_retry_failed = False dust_timeout = fast_mode gaia_submit_timeout = 0.66*fast_mode gaia_max_timeout = fast_mode gaia_submit_tries = 2 complete_query_later = False search_simbad = False gaia_max_timeout : float Sets the timeout in seconds to use when waiting for the GAIA service to respond to our request for the object's information. Note that if `fast_mode` is set, this is ignored. gaia_mirror : str or None This sets the GAIA mirror to use. This is a key in the `services.gaia.GAIA_URLS` dict which defines the URLs to hit for each mirror. xmatchinfo : str or dict This is either the xmatch dict produced by the function `load_xmatch_external_catalogs` above, or the path to the xmatch info pickle file produced by that function. xmatchradiusarcsec : float This is the cross-matching radius to use in arcseconds. minobservations : int The minimum of observations the input object's mag/flux time-series must have for this function to plot its light curve and phased light curve. If the object has less than this number, no light curves will be plotted, but the checkplotdict will still contain all of the other information. sigclip : float or int or sequence of two floats/ints or None If a single float or int, a symmetric sigma-clip will be performed using the number provided as the sigma-multiplier to cut out from the input time-series. If a list of two ints/floats is provided, the function will perform an 'asymmetric' sigma-clip. The first element in this list is the sigma value to use for fainter flux/mag values; the second element in this list is the sigma value to use for brighter flux/mag values. For example, `sigclip=[10., 3.]`, will sigclip out greater than 10-sigma dimmings and greater than 3-sigma brightenings. Here the meaning of "dimming" and "brightening" is set by *physics* (not the magnitude system), which is why the `magsarefluxes` kwarg must be correctly set. If `sigclip` is None, no sigma-clipping will be performed, and the time-series (with non-finite elems removed) will be passed through to the output. lcformat : str This is the `formatkey` associated with your light curve format, which you previously passed in to the `lcproc.register_lcformat` function. This will be used to look up how to find and read the light curves specified in `basedir` or `use_list_of_filenames`. lcformatdir : str or None If this is provided, gives the path to a directory when you've stored your lcformat description JSONs, other than the usual directories lcproc knows to search for them in. Use this along with `lcformat` to specify an LC format JSON file that's not currently registered with lcproc. timecols : list of str or None The timecol keys to use from the lcdict in generating this checkplot. magcols : list of str or None The magcol keys to use from the lcdict in generating this checkplot. errcols : list of str or None The errcol keys to use from the lcdict in generating this checkplot. skipdone : bool This indicates if this function will skip creating checkplots that already exist corresponding to the current `objectid` and `magcol`. If `skipdone` is set to True, this will be done. done_callback : Python function or None This is used to provide a function to execute after the checkplot pickles are generated. This is useful if you want to stream the results of checkplot making to some other process, e.g. directly running an ingestion into an LCC-Server collection. The function will always get the list of the generated checkplot pickles as its first arg, and all of the kwargs for runcp in the kwargs dict. Additional args and kwargs can be provided by giving a list in the `done_callbacks_args` kwarg and a dict in the `done_callbacks_kwargs` kwarg. NOTE: the function you pass in here should be pickleable by normal Python if you want to use it with the parallel_cp and parallel_cp_lcdir functions below. done_callback_args : tuple or None If not None, contains any args to pass into the `done_callback` function. done_callback_kwargs : dict or None If not None, contains any kwargs to pass into the `done_callback` function. maxobjects : int The maximum number of objects to process in this run. nworkers : int The number of parallel workers that will work on the checkplot generation process. Returns ------- dict This returns a dict with keys = input period-finding pickles and vals = list of the corresponding checkplot pickles produced. ''' pfpicklelist = sorted(glob.glob(os.path.join(pfpickledir, pfpickleglob))) LOGINFO('found %s period-finding pickles, running cp...' % len(pfpicklelist)) return parallel_cp(pfpicklelist, outdir, lcbasedir, fast_mode=fast_mode, lclistpkl=lclistpkl, nbrradiusarcsec=nbrradiusarcsec, gaia_max_timeout=gaia_max_timeout, gaia_mirror=gaia_mirror, maxnumneighbors=maxnumneighbors, makeneighborlcs=makeneighborlcs, xmatchinfo=xmatchinfo, xmatchradiusarcsec=xmatchradiusarcsec, sigclip=sigclip, minobservations=minobservations, cprenorm=cprenorm, maxobjects=maxobjects, lcformat=lcformat, lcformatdir=lcformatdir, timecols=timecols, magcols=magcols, errcols=errcols, skipdone=skipdone, nworkers=nworkers, done_callback=done_callback, done_callback_args=done_callback_args, done_callback_kwargs=done_callback_kwargs)
def runpf(lcfile, outdir, timecols=None, magcols=None, errcols=None, lcformat='hat-sql', lcformatdir=None, pfmethods=('gls','pdm','mav','win'), pfkwargs=({},{},{},{}), sigclip=10.0, getblssnr=False, nworkers=NCPUS, minobservations=500, excludeprocessed=False, raiseonfail=False): '''This runs the period-finding for a single LC. Parameters ---------- lcfile : str The light curve file to run period-finding on. outdir : str The output directory where the result pickle will go. timecols : list of str or None The timecol keys to use from the lcdict in calculating the features. magcols : list of str or None The magcol keys to use from the lcdict in calculating the features. errcols : list of str or None The errcol keys to use from the lcdict in calculating the features. lcformat : str This is the `formatkey` associated with your light curve format, which you previously passed in to the `lcproc.register_lcformat` function. This will be used to look up how to find and read the light curves specified in `basedir` or `use_list_of_filenames`. lcformatdir : str or None If this is provided, gives the path to a directory when you've stored your lcformat description JSONs, other than the usual directories lcproc knows to search for them in. Use this along with `lcformat` to specify an LC format JSON file that's not currently registered with lcproc. pfmethods : list of str This is a list of period finding methods to run. Each element is a string matching the keys of the `PFMETHODS` dict above. By default, this runs GLS, PDM, AoVMH, and the spectral window Lomb-Scargle periodogram. pfkwargs : list of dicts This is used to provide any special kwargs as dicts to each period-finding method function specified in `pfmethods`. sigclip : float or int or sequence of two floats/ints or None If a single float or int, a symmetric sigma-clip will be performed using the number provided as the sigma-multiplier to cut out from the input time-series. If a list of two ints/floats is provided, the function will perform an 'asymmetric' sigma-clip. The first element in this list is the sigma value to use for fainter flux/mag values; the second element in this list is the sigma value to use for brighter flux/mag values. For example, `sigclip=[10., 3.]`, will sigclip out greater than 10-sigma dimmings and greater than 3-sigma brightenings. Here the meaning of "dimming" and "brightening" is set by *physics* (not the magnitude system), which is why the `magsarefluxes` kwarg must be correctly set. If `sigclip` is None, no sigma-clipping will be performed, and the time-series (with non-finite elems removed) will be passed through to the output. getblssnr : bool If this is True and BLS is one of the methods specified in `pfmethods`, will also calculate the stats for each best period in the BLS results: transit depth, duration, ingress duration, refit period and epoch, and the SNR of the transit. nworkers : int The number of parallel period-finding workers to launch. minobservations : int The minimum number of finite LC points required to process a light curve. excludeprocessed : bool If this is True, light curves that have existing period-finding result pickles in `outdir` will not be processed. FIXME: currently, this uses a dumb method of excluding already-processed files. A smarter way to do this is to (i) generate a SHA512 cachekey based on a repr of `{'lcfile', 'timecols', 'magcols', 'errcols', 'lcformat', 'pfmethods', 'sigclip', 'getblssnr', 'pfkwargs'}`, (ii) make sure all list kwargs in the dict are sorted, (iii) check if the output file has the same cachekey in its filename (last 8 chars of cachekey should work), so the result was processed in exactly the same way as specifed in the input to this function, and can therefore be ignored. Will implement this later. raiseonfail : bool If something fails and this is True, will raise an Exception instead of returning None at the end. Returns ------- str The path to the output period-finding result pickle. ''' try: formatinfo = get_lcformat(lcformat, use_lcformat_dir=lcformatdir) if formatinfo: (dfileglob, readerfunc, dtimecols, dmagcols, derrcols, magsarefluxes, normfunc) = formatinfo else: LOGERROR("can't figure out the light curve format") return None except Exception as e: LOGEXCEPTION("can't figure out the light curve format") return None # override the default timecols, magcols, and errcols # using the ones provided to the function if timecols is None: timecols = dtimecols if magcols is None: magcols = dmagcols if errcols is None: errcols = derrcols try: # get the LC into a dict lcdict = readerfunc(lcfile) # this should handle lists/tuples being returned by readerfunc # we assume that the first element is the actual lcdict # FIXME: figure out how to not need this assumption if ( (isinstance(lcdict, (list, tuple))) and (isinstance(lcdict[0], dict)) ): lcdict = lcdict[0] outfile = os.path.join(outdir, 'periodfinding-%s.pkl' % squeeze(lcdict['objectid']).replace(' ', '-')) # if excludeprocessed is True, return the output file if it exists and # has a size that is at least 100 kilobytes (this should be enough to # contain the minimal results of this function). if excludeprocessed: test_outfile = os.path.exists(outfile) test_outfile_gz = os.path.exists(outfile+'.gz') if (test_outfile and os.stat(outfile).st_size > 102400): LOGWARNING('periodfinding result for %s already exists at %s, ' 'skipping because excludeprocessed=True' % (lcfile, outfile)) return outfile elif (test_outfile_gz and os.stat(outfile+'.gz').st_size > 102400): LOGWARNING( 'gzipped periodfinding result for %s already ' 'exists at %s, skipping because excludeprocessed=True' % (lcfile, outfile+'.gz') ) return outfile+'.gz' # this is the final returndict resultdict = { 'objectid':lcdict['objectid'], 'lcfbasename':os.path.basename(lcfile), 'kwargs':{'timecols':timecols, 'magcols':magcols, 'errcols':errcols, 'lcformat':lcformat, 'lcformatdir':lcformatdir, 'pfmethods':pfmethods, 'pfkwargs':pfkwargs, 'sigclip':sigclip, 'getblssnr':getblssnr} } # normalize using the special function if specified if normfunc is not None: lcdict = normfunc(lcdict) for tcol, mcol, ecol in zip(timecols, magcols, errcols): # dereference the columns and get them from the lcdict if '.' in tcol: tcolget = tcol.split('.') else: tcolget = [tcol] times = _dict_get(lcdict, tcolget) if '.' in mcol: mcolget = mcol.split('.') else: mcolget = [mcol] mags = _dict_get(lcdict, mcolget) if '.' in ecol: ecolget = ecol.split('.') else: ecolget = [ecol] errs = _dict_get(lcdict, ecolget) # normalize here if not using special normalization if normfunc is None: ntimes, nmags = normalize_magseries( times, mags, magsarefluxes=magsarefluxes ) times, mags, errs = ntimes, nmags, errs # run each of the requested period-finder functions resultdict[mcol] = {} # check if we have enough non-nan observations to proceed finmags = mags[np.isfinite(mags)] if finmags.size < minobservations: LOGERROR('not enough non-nan observations for ' 'this LC. have: %s, required: %s, ' 'magcol: %s, skipping...' % (finmags.size, minobservations, mcol)) continue pfmkeys = [] for pfmind, pfm, pfkw in zip(range(len(pfmethods)), pfmethods, pfkwargs): pf_func = PFMETHODS[pfm] # get any optional kwargs for this function pf_kwargs = pfkw pf_kwargs.update({'verbose':False, 'nworkers':nworkers, 'magsarefluxes':magsarefluxes, 'sigclip':sigclip}) # we'll always prefix things with their index to allow multiple # invocations and results from the same period-finder (for # different period ranges, for example). pfmkey = '%s-%s' % (pfmind, pfm) pfmkeys.append(pfmkey) # run this period-finder and save its results to the output dict resultdict[mcol][pfmkey] = pf_func( times, mags, errs, **pf_kwargs ) # # done with running the period finders # # append the pfmkeys list to the magcol dict resultdict[mcol]['pfmethods'] = pfmkeys # check if we need to get the SNR from any BLS pfresults if 'bls' in pfmethods and getblssnr: # we need to scan thru the pfmethods to get to any BLS pfresults for pfmk in resultdict[mcol]['pfmethods']: if 'bls' in pfmk: try: bls = resultdict[mcol][pfmk] # calculate the SNR for the BLS as well blssnr = bls_snr(bls, times, mags, errs, magsarefluxes=magsarefluxes, verbose=False) # add the SNR results to the BLS result dict resultdict[mcol][pfmk].update({ 'snr':blssnr['snr'], 'transitdepth':blssnr['transitdepth'], 'transitduration':blssnr['transitduration'], }) # update the BLS result dict with the refit periods # and epochs using the results from bls_snr resultdict[mcol][pfmk].update({ 'nbestperiods':blssnr['period'], 'epochs':blssnr['epoch'] }) except Exception as e: LOGEXCEPTION('could not calculate BLS SNR for %s' % lcfile) # add the SNR null results to the BLS result dict resultdict[mcol][pfmk].update({ 'snr':[np.nan,np.nan,np.nan,np.nan,np.nan], 'transitdepth':[np.nan,np.nan,np.nan, np.nan,np.nan], 'transitduration':[np.nan,np.nan,np.nan, np.nan,np.nan], }) elif 'bls' in pfmethods: # we need to scan thru the pfmethods to get to any BLS pfresults for pfmk in resultdict[mcol]['pfmethods']: if 'bls' in pfmk: # add the SNR null results to the BLS result dict resultdict[mcol][pfmk].update({ 'snr':[np.nan,np.nan,np.nan,np.nan,np.nan], 'transitdepth':[np.nan,np.nan,np.nan, np.nan,np.nan], 'transitduration':[np.nan,np.nan,np.nan, np.nan,np.nan], }) # once all mag cols have been processed, write out the pickle with open(outfile, 'wb') as outfd: pickle.dump(resultdict, outfd, protocol=pickle.HIGHEST_PROTOCOL) return outfile except Exception as e: LOGEXCEPTION('failed to run for %s, because: %s' % (lcfile, e)) if raiseonfail: raise return None
def _runpf_worker(task): ''' This runs the runpf function. ''' (lcfile, outdir, timecols, magcols, errcols, lcformat, lcformatdir, pfmethods, pfkwargs, getblssnr, sigclip, nworkers, minobservations, excludeprocessed) = task if os.path.exists(lcfile): pfresult = runpf(lcfile, outdir, timecols=timecols, magcols=magcols, errcols=errcols, lcformat=lcformat, lcformatdir=lcformatdir, pfmethods=pfmethods, pfkwargs=pfkwargs, getblssnr=getblssnr, sigclip=sigclip, nworkers=nworkers, minobservations=minobservations, excludeprocessed=excludeprocessed) return pfresult else: LOGERROR('LC does not exist for requested file %s' % lcfile) return None