Search is not available for this dataset
text
stringlengths
75
104k
def phonix(word, max_length=4, zero_pad=True): """Return the Phonix code for a word. This is a wrapper for :py:meth:`Phonix.encode`. Parameters ---------- word : str The word to transform max_length : int The length of the code returned (defaults to 4) zero_pad : bool Pad the end of the return value with 0s to achieve a max_length string Returns ------- str The Phonix value Examples -------- >>> phonix('Christopher') 'K683' >>> phonix('Niall') 'N400' >>> phonix('Smith') 'S530' >>> phonix('Schmidt') 'S530' """ return Phonix().encode(word, max_length, zero_pad)
def encode(self, word, max_length=4, zero_pad=True): """Return the Phonix code for a word. Parameters ---------- word : str The word to transform max_length : int The length of the code returned (defaults to 4) zero_pad : bool Pad the end of the return value with 0s to achieve a max_length string Returns ------- str The Phonix value Examples -------- >>> pe = Phonix() >>> pe.encode('Christopher') 'K683' >>> pe.encode('Niall') 'N400' >>> pe.encode('Smith') 'S530' >>> pe.encode('Schmidt') 'S530' """ def _start_repl(word, src, tar, post=None): """Replace src with tar at the start of word. Parameters ---------- word : str The word to modify src : str Substring to match tar : str Substring to substitute post : set Following characters Returns ------- str Modified string """ if post: for i in post: if word.startswith(src + i): return tar + word[len(src) :] elif word.startswith(src): return tar + word[len(src) :] return word def _end_repl(word, src, tar, pre=None): """Replace src with tar at the end of word. Parameters ---------- word : str The word to modify src : str Substring to match tar : str Substring to substitute pre : set Preceding characters Returns ------- str Modified string """ if pre: for i in pre: if word.endswith(i + src): return word[: -len(src)] + tar elif word.endswith(src): return word[: -len(src)] + tar return word def _mid_repl(word, src, tar, pre=None, post=None): """Replace src with tar in the middle of word. Parameters ---------- word : str The word to modify src : str Substring to match tar : str Substring to substitute pre : set Preceding characters post : set Following characters Returns ------- str Modified string """ if pre or post: if not pre: return word[0] + _all_repl(word[1:], src, tar, pre, post) elif not post: return _all_repl(word[:-1], src, tar, pre, post) + word[-1] return _all_repl(word, src, tar, pre, post) return ( word[0] + _all_repl(word[1:-1], src, tar, pre, post) + word[-1] ) def _all_repl(word, src, tar, pre=None, post=None): """Replace src with tar anywhere in word. Parameters ---------- word : str The word to modify src : str Substring to match tar : str Substring to substitute pre : set Preceding characters post : set Following characters Returns ------- str Modified string """ if pre or post: if post: post = post else: post = frozenset(('',)) if pre: pre = pre else: pre = frozenset(('',)) for i, j in ((i, j) for i in pre for j in post): word = word.replace(i + src + j, i + tar + j) return word else: return word.replace(src, tar) repl_at = (_start_repl, _end_repl, _mid_repl, _all_repl) sdx = '' word = unicode_normalize('NFKD', text_type(word.upper())) word = word.replace('ß', 'SS') word = ''.join(c for c in word if c in self._uc_set) if word: for trans in self._substitutions: word = repl_at[trans[0]](word, *trans[1:]) if word[0] in self._uc_vy_set: sdx = 'v' + word[1:].translate(self._trans) else: sdx = word[0] + word[1:].translate(self._trans) sdx = self._delete_consecutive_repeats(sdx) sdx = sdx.replace('0', '') # Clamp max_length to [4, 64] if max_length != -1: max_length = min(max(4, max_length), 64) else: max_length = 64 if zero_pad: sdx += '0' * max_length if not sdx: sdx = '0' return sdx[:max_length]
def editex(src, tar, cost=(0, 1, 2), local=False): """Return the Editex distance between two strings. This is a wrapper for :py:meth:`Editex.dist_abs`. Parameters ---------- src : str Source string for comparison tar : str Target string for comparison cost : tuple A 3-tuple representing the cost of the four possible edits: match, same-group, and mismatch respectively (by default: (0, 1, 2)) local : bool If True, the local variant of Editex is used Returns ------- int Editex distance Examples -------- >>> editex('cat', 'hat') 2 >>> editex('Niall', 'Neil') 2 >>> editex('aluminum', 'Catalan') 12 >>> editex('ATCG', 'TAGC') 6 """ return Editex().dist_abs(src, tar, cost, local)
def dist_editex(src, tar, cost=(0, 1, 2), local=False): """Return the normalized Editex distance between two strings. This is a wrapper for :py:meth:`Editex.dist`. Parameters ---------- src : str Source string for comparison tar : str Target string for comparison cost : tuple A 3-tuple representing the cost of the four possible edits: match, same-group, and mismatch respectively (by default: (0, 1, 2)) local : bool If True, the local variant of Editex is used Returns ------- int Normalized Editex distance Examples -------- >>> round(dist_editex('cat', 'hat'), 12) 0.333333333333 >>> round(dist_editex('Niall', 'Neil'), 12) 0.2 >>> dist_editex('aluminum', 'Catalan') 0.75 >>> dist_editex('ATCG', 'TAGC') 0.75 """ return Editex().dist(src, tar, cost, local)
def sim_editex(src, tar, cost=(0, 1, 2), local=False): """Return the normalized Editex similarity of two strings. This is a wrapper for :py:meth:`Editex.sim`. Parameters ---------- src : str Source string for comparison tar : str Target string for comparison cost : tuple A 3-tuple representing the cost of the four possible edits: match, same-group, and mismatch respectively (by default: (0, 1, 2)) local : bool If True, the local variant of Editex is used Returns ------- int Normalized Editex similarity Examples -------- >>> round(sim_editex('cat', 'hat'), 12) 0.666666666667 >>> round(sim_editex('Niall', 'Neil'), 12) 0.8 >>> sim_editex('aluminum', 'Catalan') 0.25 >>> sim_editex('ATCG', 'TAGC') 0.25 """ return Editex().sim(src, tar, cost, local)
def dist_abs(self, src, tar, cost=(0, 1, 2), local=False): """Return the Editex distance between two strings. Parameters ---------- src : str Source string for comparison tar : str Target string for comparison cost : tuple A 3-tuple representing the cost of the four possible edits: match, same-group, and mismatch respectively (by default: (0, 1, 2)) local : bool If True, the local variant of Editex is used Returns ------- int Editex distance Examples -------- >>> cmp = Editex() >>> cmp.dist_abs('cat', 'hat') 2 >>> cmp.dist_abs('Niall', 'Neil') 2 >>> cmp.dist_abs('aluminum', 'Catalan') 12 >>> cmp.dist_abs('ATCG', 'TAGC') 6 """ match_cost, group_cost, mismatch_cost = cost def r_cost(ch1, ch2): """Return r(a,b) according to Zobel & Dart's definition. Parameters ---------- ch1 : str The first character to compare ch2 : str The second character to compare Returns ------- int r(a,b) according to Zobel & Dart's definition """ if ch1 == ch2: return match_cost if ch1 in self._all_letters and ch2 in self._all_letters: for group in self._letter_groups: if ch1 in group and ch2 in group: return group_cost return mismatch_cost def d_cost(ch1, ch2): """Return d(a,b) according to Zobel & Dart's definition. Parameters ---------- ch1 : str The first character to compare ch2 : str The second character to compare Returns ------- int d(a,b) according to Zobel & Dart's definition """ if ch1 != ch2 and (ch1 == 'H' or ch1 == 'W'): return group_cost return r_cost(ch1, ch2) # convert both src & tar to NFKD normalized unicode src = unicode_normalize('NFKD', text_type(src.upper())) tar = unicode_normalize('NFKD', text_type(tar.upper())) # convert ß to SS (for Python2) src = src.replace('ß', 'SS') tar = tar.replace('ß', 'SS') if src == tar: return 0.0 if not src: return len(tar) * mismatch_cost if not tar: return len(src) * mismatch_cost d_mat = np_zeros((len(src) + 1, len(tar) + 1), dtype=np_int) lens = len(src) lent = len(tar) src = ' ' + src tar = ' ' + tar if not local: for i in range(1, lens + 1): d_mat[i, 0] = d_mat[i - 1, 0] + d_cost(src[i - 1], src[i]) for j in range(1, lent + 1): d_mat[0, j] = d_mat[0, j - 1] + d_cost(tar[j - 1], tar[j]) for i in range(1, lens + 1): for j in range(1, lent + 1): d_mat[i, j] = min( d_mat[i - 1, j] + d_cost(src[i - 1], src[i]), d_mat[i, j - 1] + d_cost(tar[j - 1], tar[j]), d_mat[i - 1, j - 1] + r_cost(src[i], tar[j]), ) return d_mat[lens, lent]
def dist(self, src, tar, cost=(0, 1, 2), local=False): """Return the normalized Editex distance between two strings. The Editex distance is normalized by dividing the Editex distance (calculated by any of the three supported methods) by the greater of the number of characters in src times the cost of a delete and the number of characters in tar times the cost of an insert. For the case in which all operations have :math:`cost = 1`, this is equivalent to the greater of the length of the two strings src & tar. Parameters ---------- src : str Source string for comparison tar : str Target string for comparison cost : tuple A 3-tuple representing the cost of the four possible edits: match, same-group, and mismatch respectively (by default: (0, 1, 2)) local : bool If True, the local variant of Editex is used Returns ------- int Normalized Editex distance Examples -------- >>> cmp = Editex() >>> round(cmp.dist('cat', 'hat'), 12) 0.333333333333 >>> round(cmp.dist('Niall', 'Neil'), 12) 0.2 >>> cmp.dist('aluminum', 'Catalan') 0.75 >>> cmp.dist('ATCG', 'TAGC') 0.75 """ if src == tar: return 0.0 mismatch_cost = cost[2] return self.dist_abs(src, tar, cost, local) / ( max(len(src) * mismatch_cost, len(tar) * mismatch_cost) )
def position_fingerprint( word, n_bits=16, most_common=MOST_COMMON_LETTERS_CG, bits_per_letter=3 ): """Return the position fingerprint. This is a wrapper for :py:meth:`Position.fingerprint`. Parameters ---------- word : str The word to fingerprint n_bits : int Number of bits in the fingerprint returned most_common : list The most common tokens in the target language, ordered by frequency bits_per_letter : int The bits to assign for letter position Returns ------- int The position fingerprint Examples -------- >>> bin(position_fingerprint('hat')) '0b1110100011111111' >>> bin(position_fingerprint('niall')) '0b1111110101110010' >>> bin(position_fingerprint('colin')) '0b1111111110010111' >>> bin(position_fingerprint('atcg')) '0b1110010001111111' >>> bin(position_fingerprint('entreatment')) '0b101011111111' """ return Position().fingerprint(word, n_bits, most_common, bits_per_letter)
def fingerprint( self, word, n_bits=16, most_common=MOST_COMMON_LETTERS_CG, bits_per_letter=3, ): """Return the position fingerprint. Parameters ---------- word : str The word to fingerprint n_bits : int Number of bits in the fingerprint returned most_common : list The most common tokens in the target language, ordered by frequency bits_per_letter : int The bits to assign for letter position Returns ------- int The position fingerprint Examples -------- >>> bin(position_fingerprint('hat')) '0b1110100011111111' >>> bin(position_fingerprint('niall')) '0b1111110101110010' >>> bin(position_fingerprint('colin')) '0b1111111110010111' >>> bin(position_fingerprint('atcg')) '0b1110010001111111' >>> bin(position_fingerprint('entreatment')) '0b101011111111' """ position = {} for pos, letter in enumerate(word): if letter not in position and letter in most_common: position[letter] = min(pos, 2 ** bits_per_letter - 1) fingerprint = 0 for letter in most_common: if n_bits: fingerprint <<= min(bits_per_letter, n_bits) if letter in position: fingerprint += min(position[letter], 2 ** n_bits - 1) else: fingerprint += min( 2 ** bits_per_letter - 1, 2 ** n_bits - 1 ) n_bits -= min(bits_per_letter, n_bits) else: break for _ in range(n_bits): fingerprint <<= 1 fingerprint += 1 return fingerprint
def stem(self, word): """Return Caumanns German stem. Parameters ---------- word : str The word to stem Returns ------- str Word stem Examples -------- >>> stmr = Caumanns() >>> stmr.stem('lesen') 'les' >>> stmr.stem('graues') 'grau' >>> stmr.stem('buchstabieren') 'buchstabier' """ if not word: return '' upper_initial = word[0].isupper() word = normalize('NFC', text_type(word.lower())) # # Part 2: Substitution # 1. Change umlauts to corresponding vowels & ß to ss word = word.translate(self._umlauts) word = word.replace('ß', 'ss') # 2. Change second of doubled characters to * new_word = word[0] for i in range(1, len(word)): if new_word[i - 1] == word[i]: new_word += '*' else: new_word += word[i] word = new_word # 3. Replace sch, ch, ei, ie with $, §, %, & word = word.replace('sch', '$') word = word.replace('ch', '§') word = word.replace('ei', '%') word = word.replace('ie', '&') word = word.replace('ig', '#') word = word.replace('st', '!') # # Part 1: Recursive Context-Free Stripping # 1. Remove the following 7 suffixes recursively while len(word) > 3: if (len(word) > 4 and word[-2:] in {'em', 'er'}) or ( len(word) > 5 and word[-2:] == 'nd' ): word = word[:-2] elif (word[-1] in {'e', 's', 'n'}) or ( not upper_initial and word[-1] in {'t', '!'} ): word = word[:-1] else: break # Additional optimizations: if len(word) > 5 and word[-5:] == 'erin*': word = word[:-1] if word[-1] == 'z': word = word[:-1] + 'x' # Reverse substitutions: word = word.replace('$', 'sch') word = word.replace('§', 'ch') word = word.replace('%', 'ei') word = word.replace('&', 'ie') word = word.replace('#', 'ig') word = word.replace('!', 'st') # Expand doubled word = ''.join( [word[0]] + [ word[i - 1] if word[i] == '*' else word[i] for i in range(1, len(word)) ] ) # Finally, convert gege to ge if len(word) > 4: word = word.replace('gege', 'ge', 1) return word
def dist(self, src, tar, probs=None): """Return the NCD between two strings using arithmetic coding. Parameters ---------- src : str Source string for comparison tar : str Target string for comparison probs : dict A dictionary trained with :py:meth:`Arithmetic.train` Returns ------- float Compression distance Examples -------- >>> cmp = NCDarith() >>> cmp.dist('cat', 'hat') 0.5454545454545454 >>> cmp.dist('Niall', 'Neil') 0.6875 >>> cmp.dist('aluminum', 'Catalan') 0.8275862068965517 >>> cmp.dist('ATCG', 'TAGC') 0.6923076923076923 """ if src == tar: return 0.0 if probs is None: # lacking a reasonable dictionary, train on the strings themselves self._coder.train(src + tar) else: self._coder.set_probs(probs) src_comp = self._coder.encode(src)[1] tar_comp = self._coder.encode(tar)[1] concat_comp = self._coder.encode(src + tar)[1] concat_comp2 = self._coder.encode(tar + src)[1] return ( min(concat_comp, concat_comp2) - min(src_comp, tar_comp) ) / max(src_comp, tar_comp)
def readfile(fn): """Read fn and return the contents. Parameters ---------- fn : str A filename Returns ------- str The content of the file """ with open(path.join(HERE, fn), 'r', encoding='utf-8') as f: return f.read()
def spanish_metaphone(word, max_length=6, modified=False): """Return the Spanish Metaphone of a word. This is a wrapper for :py:meth:`SpanishMetaphone.encode`. Parameters ---------- word : str The word to transform max_length : int The length of the code returned (defaults to 6) modified : bool Set to True to use del Pilar Angeles & Bailón-Miguel's modified version of the algorithm Returns ------- str The Spanish Metaphone code Examples -------- >>> spanish_metaphone('Perez') 'PRZ' >>> spanish_metaphone('Martinez') 'MRTNZ' >>> spanish_metaphone('Gutierrez') 'GTRRZ' >>> spanish_metaphone('Santiago') 'SNTG' >>> spanish_metaphone('Nicolás') 'NKLS' """ return SpanishMetaphone().encode(word, max_length, modified)
def encode(self, word, max_length=6, modified=False): """Return the Spanish Metaphone of a word. Parameters ---------- word : str The word to transform max_length : int The length of the code returned (defaults to 6) modified : bool Set to True to use del Pilar Angeles & Bailón-Miguel's modified version of the algorithm Returns ------- str The Spanish Metaphone code Examples -------- >>> pe = SpanishMetaphone() >>> pe.encode('Perez') 'PRZ' >>> pe.encode('Martinez') 'MRTNZ' >>> pe.encode('Gutierrez') 'GTRRZ' >>> pe.encode('Santiago') 'SNTG' >>> pe.encode('Nicolás') 'NKLS' """ def _is_vowel(pos): """Return True if the character at word[pos] is a vowel. Parameters ---------- pos : int Position to check for a vowel Returns ------- bool True if word[pos] is a vowel """ return pos < len(word) and word[pos] in {'A', 'E', 'I', 'O', 'U'} word = unicode_normalize('NFC', text_type(word.upper())) meta_key = '' pos = 0 # do some replacements for the modified version if modified: word = word.replace('MB', 'NB') word = word.replace('MP', 'NP') word = word.replace('BS', 'S') if word[:2] == 'PS': word = word[1:] # simple replacements word = word.replace('Á', 'A') word = word.replace('CH', 'X') word = word.replace('Ç', 'S') word = word.replace('É', 'E') word = word.replace('Í', 'I') word = word.replace('Ó', 'O') word = word.replace('Ú', 'U') word = word.replace('Ñ', 'NY') word = word.replace('GÜ', 'W') word = word.replace('Ü', 'U') word = word.replace('B', 'V') word = word.replace('LL', 'Y') while len(meta_key) < max_length: if pos >= len(word): break # get the next character current_char = word[pos] # if a vowel in pos 0, add to key if _is_vowel(pos) and pos == 0: meta_key += current_char pos += 1 # otherwise, do consonant rules else: # simple consonants (unmutated) if current_char in { 'D', 'F', 'J', 'K', 'M', 'N', 'P', 'T', 'V', 'L', 'Y', }: meta_key += current_char # skip doubled consonants if word[pos + 1 : pos + 2] == current_char: pos += 2 else: pos += 1 else: if current_char == 'C': # special case 'acción', 'reacción',etc. if word[pos + 1 : pos + 2] == 'C': meta_key += 'X' pos += 2 # special case 'cesar', 'cien', 'cid', 'conciencia' elif word[pos + 1 : pos + 2] in {'E', 'I'}: meta_key += 'Z' pos += 2 # base case else: meta_key += 'K' pos += 1 elif current_char == 'G': # special case 'gente', 'ecologia',etc if word[pos + 1 : pos + 2] in {'E', 'I'}: meta_key += 'J' pos += 2 # base case else: meta_key += 'G' pos += 1 elif current_char == 'H': # since the letter 'H' is silent in Spanish, # set the meta key to the vowel after the letter 'H' if _is_vowel(pos + 1): meta_key += word[pos + 1] pos += 2 else: meta_key += 'H' pos += 1 elif current_char == 'Q': if word[pos + 1 : pos + 2] == 'U': pos += 2 else: pos += 1 meta_key += 'K' elif current_char == 'W': meta_key += 'U' pos += 1 elif current_char == 'R': meta_key += 'R' pos += 1 elif current_char == 'S': if not _is_vowel(pos + 1) and pos == 0: meta_key += 'ES' pos += 1 else: meta_key += 'S' pos += 1 elif current_char == 'Z': meta_key += 'Z' pos += 1 elif current_char == 'X': if ( len(word) > 1 and pos == 0 and not _is_vowel(pos + 1) ): meta_key += 'EX' pos += 1 else: meta_key += 'X' pos += 1 else: pos += 1 # Final change from S to Z in modified version if modified: meta_key = meta_key.replace('S', 'Z') return meta_key
def encode(self, word): """Return the FONEM code of a word. Parameters ---------- word : str The word to transform Returns ------- str The FONEM code Examples -------- >>> pe = FONEM() >>> pe.encode('Marchand') 'MARCHEN' >>> pe.encode('Beaulieu') 'BOLIEU' >>> pe.encode('Beaumont') 'BOMON' >>> pe.encode('Legrand') 'LEGREN' >>> pe.encode('Pelletier') 'PELETIER' """ # normalize, upper-case, and filter non-French letters word = unicode_normalize('NFKD', text_type(word.upper())) word = word.translate({198: 'AE', 338: 'OE'}) word = ''.join(c for c in word if c in self._uc_set) for rule in self._rule_order: regex, repl = self._rule_table[rule] if isinstance(regex, text_type): word = word.replace(regex, repl) else: word = regex.sub(repl, word) return word
def encode(self, word, max_length=4): """Return the Statistics Canada code for a word. Parameters ---------- word : str The word to transform max_length : int The maximum length (default 4) of the code to return Returns ------- str The Statistics Canada name code value Examples -------- >>> pe = StatisticsCanada() >>> pe.encode('Christopher') 'CHRS' >>> pe.encode('Niall') 'NL' >>> pe.encode('Smith') 'SMTH' >>> pe.encode('Schmidt') 'SCHM' """ # uppercase, normalize, decompose, and filter non-A-Z out word = unicode_normalize('NFKD', text_type(word.upper())) word = word.replace('ß', 'SS') word = ''.join(c for c in word if c in self._uc_set) if not word: return '' code = word[1:] for vowel in self._uc_vy_set: code = code.replace(vowel, '') code = word[0] + code code = self._delete_consecutive_repeats(code) code = code.replace(' ', '') return code[:max_length]
def synoname( src, tar, word_approx_min=0.3, char_approx_min=0.73, tests=2 ** 12 - 1, ret_name=False, ): """Return the Synoname similarity type of two words. This is a wrapper for :py:meth:`Synoname.dist_abs`. Parameters ---------- src : str Source string for comparison tar : str Target string for comparison word_approx_min : float The minimum word approximation value to signal a 'word_approx' match char_approx_min : float The minimum character approximation value to signal a 'char_approx' match tests : int or Iterable Either an integer indicating tests to perform or a list of test names to perform (defaults to performing all tests) ret_name : bool If True, returns the match name rather than its integer equivalent Returns ------- int (or str if ret_name is True) Synoname value Examples -------- >>> synoname(('Breghel', 'Pieter', ''), ('Brueghel', 'Pieter', '')) 2 >>> synoname(('Breghel', 'Pieter', ''), ('Brueghel', 'Pieter', ''), ... ret_name=True) 'omission' >>> synoname(('Dore', 'Gustave', ''), ... ('Dore', 'Paul Gustave Louis Christophe', ''), ret_name=True) 'inclusion' >>> synoname(('Pereira', 'I. R.', ''), ('Pereira', 'I. Smith', ''), ... ret_name=True) 'word_approx' """ return Synoname().dist_abs( src, tar, word_approx_min, char_approx_min, tests, ret_name )
def _synoname_strip_punct(self, word): """Return a word with punctuation stripped out. Parameters ---------- word : str A word to strip punctuation from Returns ------- str The word stripped of punctuation Examples -------- >>> pe = Synoname() >>> pe._synoname_strip_punct('AB;CD EF-GH$IJ') 'ABCD EFGHIJ' """ stripped = '' for char in word: if char not in set(',-./:;"&\'()!{|}?$%*+<=>[\\]^_`~'): stripped += char return stripped.strip()
def _synoname_word_approximation( self, src_ln, tar_ln, src_fn='', tar_fn='', features=None ): """Return the Synoname word approximation score for two names. Parameters ---------- src_ln : str Last name of the source tar_ln : str Last name of the target src_fn : str First name of the source (optional) tar_fn : str First name of the target (optional) features : dict A dict containing special features calculated using :py:class:`fingerprint.SynonameToolcode` (optional) Returns ------- float The word approximation score Examples -------- >>> pe = Synoname() >>> pe._synoname_word_approximation('Smith Waterman', 'Waterman', ... 'Tom Joe Bob', 'Tom Joe') 0.6 """ if features is None: features = {} if 'src_specials' not in features: features['src_specials'] = [] if 'tar_specials' not in features: features['tar_specials'] = [] src_len_specials = len(features['src_specials']) tar_len_specials = len(features['tar_specials']) # 1 if ('gen_conflict' in features and features['gen_conflict']) or ( 'roman_conflict' in features and features['roman_conflict'] ): return 0 # 3 & 7 full_tar1 = ' '.join((tar_ln, tar_fn)).replace('-', ' ').strip() for s_pos, s_type in features['tar_specials']: if s_type == 'a': full_tar1 = full_tar1[ : -( 1 + len( self._stc._synoname_special_table[ # noqa: SF01 s_pos ][1] ) ) ] elif s_type == 'b': loc = ( full_tar1.find( ' ' + self._stc._synoname_special_table[ # noqa: SF01 s_pos ][1] + ' ' ) + 1 ) full_tar1 = ( full_tar1[:loc] + full_tar1[ loc + len( self._stc._synoname_special_table[ # noqa: SF01 s_pos ][1] ) : ] ) elif s_type == 'c': full_tar1 = full_tar1[ 1 + len( self._stc._synoname_special_table[s_pos][ # noqa: SF01 1 ] ) : ] full_src1 = ' '.join((src_ln, src_fn)).replace('-', ' ').strip() for s_pos, s_type in features['src_specials']: if s_type == 'a': full_src1 = full_src1[ : -( 1 + len( self._stc._synoname_special_table[ # noqa: SF01 s_pos ][1] ) ) ] elif s_type == 'b': loc = ( full_src1.find( ' ' + self._stc._synoname_special_table[ # noqa: SF01 s_pos ][1] + ' ' ) + 1 ) full_src1 = ( full_src1[:loc] + full_src1[ loc + len( self._stc._synoname_special_table[ # noqa: SF01 s_pos ][1] ) : ] ) elif s_type == 'c': full_src1 = full_src1[ 1 + len( self._stc._synoname_special_table[s_pos][ # noqa: SF01 1 ] ) : ] full_tar2 = full_tar1 for s_pos, s_type in features['tar_specials']: if s_type == 'd': full_tar2 = full_tar2[ len( self._stc._synoname_special_table[s_pos][ # noqa: SF01 1 ] ) : ] elif ( s_type == 'X' and self._stc._synoname_special_table[s_pos][1] # noqa: SF01 in full_tar2 ): loc = full_tar2.find( ' ' + self._stc._synoname_special_table[s_pos][1] # noqa: SF01 ) full_tar2 = ( full_tar2[:loc] + full_tar2[ loc + len( self._stc._synoname_special_table[ # noqa: SF01 s_pos ][1] ) : ] ) full_src2 = full_src1 for s_pos, s_type in features['src_specials']: if s_type == 'd': full_src2 = full_src2[ len( self._stc._synoname_special_table[s_pos][ # noqa: SF01 1 ] ) : ] elif ( s_type == 'X' and self._stc._synoname_special_table[s_pos][1] # noqa: SF01 in full_src2 ): loc = full_src2.find( ' ' + self._stc._synoname_special_table[s_pos][1] # noqa: SF01 ) full_src2 = ( full_src2[:loc] + full_src2[ loc + len( self._stc._synoname_special_table[ # noqa: SF01 s_pos ][1] ) : ] ) full_tar1 = self._synoname_strip_punct(full_tar1) tar1_words = full_tar1.split() tar1_num_words = len(tar1_words) full_src1 = self._synoname_strip_punct(full_src1) src1_words = full_src1.split() src1_num_words = len(src1_words) full_tar2 = self._synoname_strip_punct(full_tar2) tar2_words = full_tar2.split() tar2_num_words = len(tar2_words) full_src2 = self._synoname_strip_punct(full_src2) src2_words = full_src2.split() src2_num_words = len(src2_words) # 2 if ( src1_num_words < 2 and src_len_specials == 0 and src2_num_words < 2 and tar_len_specials == 0 ): return 0 # 4 if ( tar1_num_words == 1 and src1_num_words == 1 and tar1_words[0] == src1_words[0] ): return 1 if tar1_num_words < 2 and tar_len_specials == 0: return 0 # 5 last_found = False for word in tar1_words: if src_ln.endswith(word) or word + ' ' in src_ln: last_found = True if not last_found: for word in src1_words: if tar_ln.endswith(word) or word + ' ' in tar_ln: last_found = True # 6 matches = 0 if last_found: for i, s_word in enumerate(src1_words): for j, t_word in enumerate(tar1_words): if s_word == t_word: src1_words[i] = '@' tar1_words[j] = '@' matches += 1 w_ratio = matches / max(tar1_num_words, src1_num_words) if matches > 1 or ( matches == 1 and src1_num_words == 1 and tar1_num_words == 1 and (tar_len_specials > 0 or src_len_specials > 0) ): return w_ratio # 8 if ( tar2_num_words == 1 and src2_num_words == 1 and tar2_words[0] == src2_words[0] ): return 1 # I see no way that the following can be True if the equivalent in # #4 was False. if tar2_num_words < 2 and tar_len_specials == 0: # pragma: no cover return 0 # 9 last_found = False for word in tar2_words: if src_ln.endswith(word) or word + ' ' in src_ln: last_found = True if not last_found: for word in src2_words: if tar_ln.endswith(word) or word + ' ' in tar_ln: last_found = True if not last_found: return 0 # 10 matches = 0 if last_found: for i, s_word in enumerate(src2_words): for j, t_word in enumerate(tar2_words): if s_word == t_word: src2_words[i] = '@' tar2_words[j] = '@' matches += 1 w_ratio = matches / max(tar2_num_words, src2_num_words) if matches > 1 or ( matches == 1 and src2_num_words == 1 and tar2_num_words == 1 and (tar_len_specials > 0 or src_len_specials > 0) ): return w_ratio return 0
def dist_abs( self, src, tar, word_approx_min=0.3, char_approx_min=0.73, tests=2 ** 12 - 1, ret_name=False, ): """Return the Synoname similarity type of two words. Parameters ---------- src : str Source string for comparison tar : str Target string for comparison word_approx_min : float The minimum word approximation value to signal a 'word_approx' match char_approx_min : float The minimum character approximation value to signal a 'char_approx' match tests : int or Iterable Either an integer indicating tests to perform or a list of test names to perform (defaults to performing all tests) ret_name : bool If True, returns the match name rather than its integer equivalent Returns ------- int (or str if ret_name is True) Synoname value Examples -------- >>> cmp = Synoname() >>> cmp.dist_abs(('Breghel', 'Pieter', ''), ('Brueghel', 'Pieter', '')) 2 >>> cmp.dist_abs(('Breghel', 'Pieter', ''), ('Brueghel', 'Pieter', ''), ... ret_name=True) 'omission' >>> cmp.dist_abs(('Dore', 'Gustave', ''), ... ('Dore', 'Paul Gustave Louis Christophe', ''), ret_name=True) 'inclusion' >>> cmp.dist_abs(('Pereira', 'I. R.', ''), ('Pereira', 'I. Smith', ''), ... ret_name=True) 'word_approx' """ if isinstance(tests, Iterable): new_tests = 0 for term in tests: if term in self._test_dict: new_tests += self._test_dict[term] tests = new_tests if isinstance(src, tuple): src_ln, src_fn, src_qual = src elif '#' in src: src_ln, src_fn, src_qual = src.split('#')[-3:] else: src_ln, src_fn, src_qual = src, '', '' if isinstance(tar, tuple): tar_ln, tar_fn, tar_qual = tar elif '#' in tar: tar_ln, tar_fn, tar_qual = tar.split('#')[-3:] else: tar_ln, tar_fn, tar_qual = tar, '', '' def _split_special(spec): spec_list = [] while spec: spec_list.append((int(spec[:3]), spec[3:4])) spec = spec[4:] return spec_list def _fmt_retval(val): if ret_name: return self._match_name[val] return val # 1. Preprocessing # Lowercasing src_fn = src_fn.strip().lower() src_ln = src_ln.strip().lower() src_qual = src_qual.strip().lower() tar_fn = tar_fn.strip().lower() tar_ln = tar_ln.strip().lower() tar_qual = tar_qual.strip().lower() # Create toolcodes src_ln, src_fn, src_tc = self._stc.fingerprint( src_ln, src_fn, src_qual ) tar_ln, tar_fn, tar_tc = self._stc.fingerprint( tar_ln, tar_fn, tar_qual ) src_generation = int(src_tc[2]) src_romancode = int(src_tc[3:6]) src_len_fn = int(src_tc[6:8]) src_tc = src_tc.split('$') src_specials = _split_special(src_tc[1]) tar_generation = int(tar_tc[2]) tar_romancode = int(tar_tc[3:6]) tar_len_fn = int(tar_tc[6:8]) tar_tc = tar_tc.split('$') tar_specials = _split_special(tar_tc[1]) gen_conflict = (src_generation != tar_generation) and bool( src_generation or tar_generation ) roman_conflict = (src_romancode != tar_romancode) and bool( src_romancode or tar_romancode ) ln_equal = src_ln == tar_ln fn_equal = src_fn == tar_fn # approx_c def _approx_c(): if gen_conflict or roman_conflict: return False, 0 full_src = ' '.join((src_ln, src_fn)) if full_src.startswith('master '): full_src = full_src[len('master ') :] for intro in [ 'of the ', 'of ', 'known as the ', 'with the ', 'with ', ]: if full_src.startswith(intro): full_src = full_src[len(intro) :] full_tar = ' '.join((tar_ln, tar_fn)) if full_tar.startswith('master '): full_tar = full_tar[len('master ') :] for intro in [ 'of the ', 'of ', 'known as the ', 'with the ', 'with ', ]: if full_tar.startswith(intro): full_tar = full_tar[len(intro) :] loc_ratio = sim_ratcliff_obershelp(full_src, full_tar) return loc_ratio >= char_approx_min, loc_ratio approx_c_result, ca_ratio = _approx_c() if tests & self._test_dict['exact'] and fn_equal and ln_equal: return _fmt_retval(self._match_type_dict['exact']) if tests & self._test_dict['omission']: if ( fn_equal and levenshtein(src_ln, tar_ln, cost=(1, 1, 99, 99)) == 1 ): if not roman_conflict: return _fmt_retval(self._match_type_dict['omission']) elif ( ln_equal and levenshtein(src_fn, tar_fn, cost=(1, 1, 99, 99)) == 1 ): return _fmt_retval(self._match_type_dict['omission']) if tests & self._test_dict['substitution']: if ( fn_equal and levenshtein(src_ln, tar_ln, cost=(99, 99, 1, 99)) == 1 ): return _fmt_retval(self._match_type_dict['substitution']) elif ( ln_equal and levenshtein(src_fn, tar_fn, cost=(99, 99, 1, 99)) == 1 ): return _fmt_retval(self._match_type_dict['substitution']) if tests & self._test_dict['transposition']: if fn_equal and ( levenshtein(src_ln, tar_ln, mode='osa', cost=(99, 99, 99, 1)) == 1 ): return _fmt_retval(self._match_type_dict['transposition']) elif ln_equal and ( levenshtein(src_fn, tar_fn, mode='osa', cost=(99, 99, 99, 1)) == 1 ): return _fmt_retval(self._match_type_dict['transposition']) if tests & self._test_dict['punctuation']: np_src_fn = self._synoname_strip_punct(src_fn) np_tar_fn = self._synoname_strip_punct(tar_fn) np_src_ln = self._synoname_strip_punct(src_ln) np_tar_ln = self._synoname_strip_punct(tar_ln) if (np_src_fn == np_tar_fn) and (np_src_ln == np_tar_ln): return _fmt_retval(self._match_type_dict['punctuation']) np_src_fn = self._synoname_strip_punct(src_fn.replace('-', ' ')) np_tar_fn = self._synoname_strip_punct(tar_fn.replace('-', ' ')) np_src_ln = self._synoname_strip_punct(src_ln.replace('-', ' ')) np_tar_ln = self._synoname_strip_punct(tar_ln.replace('-', ' ')) if (np_src_fn == np_tar_fn) and (np_src_ln == np_tar_ln): return _fmt_retval(self._match_type_dict['punctuation']) if tests & self._test_dict['initials'] and ln_equal: if src_fn and tar_fn: src_initials = self._synoname_strip_punct(src_fn).split() tar_initials = self._synoname_strip_punct(tar_fn).split() initials = bool( (len(src_initials) == len(''.join(src_initials))) or (len(tar_initials) == len(''.join(tar_initials))) ) if initials: src_initials = ''.join(_[0] for _ in src_initials) tar_initials = ''.join(_[0] for _ in tar_initials) if src_initials == tar_initials: return _fmt_retval(self._match_type_dict['initials']) initial_diff = abs(len(src_initials) - len(tar_initials)) if initial_diff and ( ( initial_diff == levenshtein( src_initials, tar_initials, cost=(1, 99, 99, 99), ) ) or ( initial_diff == levenshtein( tar_initials, src_initials, cost=(1, 99, 99, 99), ) ) ): return _fmt_retval(self._match_type_dict['initials']) if tests & self._test_dict['extension']: if src_ln[1] == tar_ln[1] and ( src_ln.startswith(tar_ln) or tar_ln.startswith(src_ln) ): if ( (not src_len_fn and not tar_len_fn) or (tar_fn and src_fn.startswith(tar_fn)) or (src_fn and tar_fn.startswith(src_fn)) ) and not roman_conflict: return _fmt_retval(self._match_type_dict['extension']) if tests & self._test_dict['inclusion'] and ln_equal: if (src_fn and src_fn in tar_fn) or (tar_fn and tar_fn in src_ln): return _fmt_retval(self._match_type_dict['inclusion']) if tests & self._test_dict['no_first'] and ln_equal: if src_fn == '' or tar_fn == '': return _fmt_retval(self._match_type_dict['no_first']) if tests & self._test_dict['word_approx']: ratio = self._synoname_word_approximation( src_ln, tar_ln, src_fn, tar_fn, { 'gen_conflict': gen_conflict, 'roman_conflict': roman_conflict, 'src_specials': src_specials, 'tar_specials': tar_specials, }, ) if ratio == 1 and tests & self._test_dict['confusions']: if ( ' '.join((src_fn, src_ln)).strip() == ' '.join((tar_fn, tar_ln)).strip() ): return _fmt_retval(self._match_type_dict['confusions']) if ratio >= word_approx_min: return _fmt_retval(self._match_type_dict['word_approx']) if tests & self._test_dict['char_approx']: if ca_ratio >= char_approx_min: return _fmt_retval(self._match_type_dict['char_approx']) return _fmt_retval(self._match_type_dict['no_match'])
def dist( self, src, tar, word_approx_min=0.3, char_approx_min=0.73, tests=2 ** 12 - 1, ): """Return the normalized Synoname distance between two words. Parameters ---------- src : str Source string for comparison tar : str Target string for comparison word_approx_min : float The minimum word approximation value to signal a 'word_approx' match char_approx_min : float The minimum character approximation value to signal a 'char_approx' match tests : int or Iterable Either an integer indicating tests to perform or a list of test names to perform (defaults to performing all tests) Returns ------- float Normalized Synoname distance """ return ( synoname(src, tar, word_approx_min, char_approx_min, tests, False) / 14 )
def sim(self, src, tar, qval=2): r"""Return the Jaccard similarity of two strings. Parameters ---------- src : str Source string (or QGrams/Counter objects) for comparison tar : str Target string (or QGrams/Counter objects) for comparison qval : int The length of each q-gram; 0 for non-q-gram version Returns ------- float Jaccard similarity Examples -------- >>> cmp = Jaccard() >>> cmp.sim('cat', 'hat') 0.3333333333333333 >>> cmp.sim('Niall', 'Neil') 0.2222222222222222 >>> cmp.sim('aluminum', 'Catalan') 0.0625 >>> cmp.sim('ATCG', 'TAGC') 0.0 """ return super(self.__class__, self).sim(src, tar, qval, 1, 1)
def tanimoto_coeff(self, src, tar, qval=2): """Return the Tanimoto distance between two strings. Tanimoto distance :cite:`Tanimoto:1958` is :math:`-log_{2} sim_{Tanimoto}(X, Y)`. Parameters ---------- src : str Source string (or QGrams/Counter objects) for comparison tar : str Target string (or QGrams/Counter objects) for comparison qval : int The length of each q-gram; 0 for non-q-gram version Returns ------- float Tanimoto distance Examples -------- >>> cmp = Jaccard() >>> cmp.tanimoto_coeff('cat', 'hat') -1.5849625007211563 >>> cmp.tanimoto_coeff('Niall', 'Neil') -2.1699250014423126 >>> cmp.tanimoto_coeff('aluminum', 'Catalan') -4.0 >>> cmp.tanimoto_coeff('ATCG', 'TAGC') -inf """ coeff = self.sim(src, tar, qval) if coeff != 0: return log(coeff, 2) return float('-inf')
def sift4_common(src, tar, max_offset=5, max_distance=0): """Return the "common" Sift4 distance between two terms. This is a wrapper for :py:meth:`Sift4.dist_abs`. Parameters ---------- src : str Source string for comparison tar : str Target string for comparison max_offset : int The number of characters to search for matching letters max_distance : int The distance at which to stop and exit Returns ------- int The Sift4 distance according to the common formula Examples -------- >>> sift4_common('cat', 'hat') 1 >>> sift4_common('Niall', 'Neil') 2 >>> sift4_common('Colin', 'Cuilen') 3 >>> sift4_common('ATCG', 'TAGC') 2 """ return Sift4().dist_abs(src, tar, max_offset, max_distance)
def dist_sift4(src, tar, max_offset=5, max_distance=0): """Return the normalized "common" Sift4 distance between two terms. This is a wrapper for :py:meth:`Sift4.dist`. Parameters ---------- src : str Source string for comparison tar : str Target string for comparison max_offset : int The number of characters to search for matching letters max_distance : int The distance at which to stop and exit Returns ------- float The normalized Sift4 distance Examples -------- >>> round(dist_sift4('cat', 'hat'), 12) 0.333333333333 >>> dist_sift4('Niall', 'Neil') 0.4 >>> dist_sift4('Colin', 'Cuilen') 0.5 >>> dist_sift4('ATCG', 'TAGC') 0.5 """ return Sift4().dist(src, tar, max_offset, max_distance)
def sim_sift4(src, tar, max_offset=5, max_distance=0): """Return the normalized "common" Sift4 similarity of two terms. This is a wrapper for :py:meth:`Sift4.sim`. Parameters ---------- src : str Source string for comparison tar : str Target string for comparison max_offset : int The number of characters to search for matching letters max_distance : int The distance at which to stop and exit Returns ------- float The normalized Sift4 similarity Examples -------- >>> round(sim_sift4('cat', 'hat'), 12) 0.666666666667 >>> sim_sift4('Niall', 'Neil') 0.6 >>> sim_sift4('Colin', 'Cuilen') 0.5 >>> sim_sift4('ATCG', 'TAGC') 0.5 """ return Sift4().sim(src, tar, max_offset, max_distance)
def dist_abs(self, src, tar, max_offset=5, max_distance=0): """Return the "common" Sift4 distance between two terms. Parameters ---------- src : str Source string for comparison tar : str Target string for comparison max_offset : int The number of characters to search for matching letters max_distance : int The distance at which to stop and exit Returns ------- int The Sift4 distance according to the common formula Examples -------- >>> cmp = Sift4() >>> cmp.dist_abs('cat', 'hat') 1 >>> cmp.dist_abs('Niall', 'Neil') 2 >>> cmp.dist_abs('Colin', 'Cuilen') 3 >>> cmp.dist_abs('ATCG', 'TAGC') 2 """ if not src: return len(tar) if not tar: return len(src) src_len = len(src) tar_len = len(tar) src_cur = 0 tar_cur = 0 lcss = 0 local_cs = 0 trans = 0 offset_arr = [] while (src_cur < src_len) and (tar_cur < tar_len): if src[src_cur] == tar[tar_cur]: local_cs += 1 is_trans = False i = 0 while i < len(offset_arr): ofs = offset_arr[i] if src_cur <= ofs['src_cur'] or tar_cur <= ofs['tar_cur']: is_trans = abs(tar_cur - src_cur) >= abs( ofs['tar_cur'] - ofs['src_cur'] ) if is_trans: trans += 1 elif not ofs['trans']: ofs['trans'] = True trans += 1 break elif src_cur > ofs['tar_cur'] and tar_cur > ofs['src_cur']: del offset_arr[i] else: i += 1 offset_arr.append( {'src_cur': src_cur, 'tar_cur': tar_cur, 'trans': is_trans} ) else: lcss += local_cs local_cs = 0 if src_cur != tar_cur: src_cur = tar_cur = min(src_cur, tar_cur) for i in range(max_offset): if not ( (src_cur + i < src_len) or (tar_cur + i < tar_len) ): break if (src_cur + i < src_len) and ( src[src_cur + i] == tar[tar_cur] ): src_cur += i - 1 tar_cur -= 1 break if (tar_cur + i < tar_len) and ( src[src_cur] == tar[tar_cur + i] ): src_cur -= 1 tar_cur += i - 1 break src_cur += 1 tar_cur += 1 if max_distance: temporary_distance = max(src_cur, tar_cur) - lcss + trans if temporary_distance >= max_distance: return round(temporary_distance) if (src_cur >= src_len) or (tar_cur >= tar_len): lcss += local_cs local_cs = 0 src_cur = tar_cur = min(src_cur, tar_cur) lcss += local_cs return round(max(src_len, tar_len) - lcss + trans)
def dist(self, src, tar, max_offset=5, max_distance=0): """Return the normalized "common" Sift4 distance between two terms. This is Sift4 distance, normalized to [0, 1]. Parameters ---------- src : str Source string for comparison tar : str Target string for comparison max_offset : int The number of characters to search for matching letters max_distance : int The distance at which to stop and exit Returns ------- float The normalized Sift4 distance Examples -------- >>> cmp = Sift4() >>> round(cmp.dist('cat', 'hat'), 12) 0.333333333333 >>> cmp.dist('Niall', 'Neil') 0.4 >>> cmp.dist('Colin', 'Cuilen') 0.5 >>> cmp.dist('ATCG', 'TAGC') 0.5 """ return self.dist_abs(src, tar, max_offset, max_distance) / ( max(len(src), len(tar), 1) )
def dist(self, src, tar): """Return the NCD between two strings using bzip2 compression. Parameters ---------- src : str Source string for comparison tar : str Target string for comparison Returns ------- float Compression distance Examples -------- >>> cmp = NCDbz2() >>> cmp.dist('cat', 'hat') 0.06666666666666667 >>> cmp.dist('Niall', 'Neil') 0.03125 >>> cmp.dist('aluminum', 'Catalan') 0.17647058823529413 >>> cmp.dist('ATCG', 'TAGC') 0.03125 """ if src == tar: return 0.0 src = src.encode('utf-8') tar = tar.encode('utf-8') src_comp = bz2.compress(src, self._level)[10:] tar_comp = bz2.compress(tar, self._level)[10:] concat_comp = bz2.compress(src + tar, self._level)[10:] concat_comp2 = bz2.compress(tar + src, self._level)[10:] return ( min(len(concat_comp), len(concat_comp2)) - min(len(src_comp), len(tar_comp)) ) / max(len(src_comp), len(tar_comp))
def encode(self, word, lang='en'): """Return the MetaSoundex code for a word. Parameters ---------- word : str The word to transform lang : str Either ``en`` for English or ``es`` for Spanish Returns ------- str The MetaSoundex code Examples -------- >>> pe = MetaSoundex() >>> pe.encode('Smith') '4500' >>> pe.encode('Waters') '7362' >>> pe.encode('James') '1520' >>> pe.encode('Schmidt') '4530' >>> pe.encode('Ashcroft') '0261' >>> pe.encode('Perez', lang='es') '094' >>> pe.encode('Martinez', lang='es') '69364' >>> pe.encode('Gutierrez', lang='es') '83994' >>> pe.encode('Santiago', lang='es') '4638' >>> pe.encode('Nicolás', lang='es') '6754' """ if lang == 'es': return self._phonetic_spanish.encode( self._spanish_metaphone.encode(word) ) word = self._soundex.encode(self._metaphone.encode(word)) word = word[0].translate(self._trans) + word[1:] return word
def stem(self, word): """Return the S-stemmed form of a word. Parameters ---------- word : str The word to stem Returns ------- str Word stem Examples -------- >>> stmr = SStemmer() >>> stmr.stem('summaries') 'summary' >>> stmr.stem('summary') 'summary' >>> stmr.stem('towers') 'tower' >>> stmr.stem('reading') 'reading' >>> stmr.stem('census') 'census' """ lowered = word.lower() if lowered[-3:] == 'ies' and lowered[-4:-3] not in {'e', 'a'}: return word[:-3] + ('Y' if word[-1:].isupper() else 'y') if lowered[-2:] == 'es' and lowered[-3:-2] not in {'a', 'e', 'o'}: return word[:-1] if lowered[-1:] == 's' and lowered[-2:-1] not in {'u', 's'}: return word[:-1] return word
def sim(self, src, tar): """Return the Ratcliff-Obershelp similarity of two strings. Parameters ---------- src : str Source string for comparison tar : str Target string for comparison Returns ------- float Ratcliff-Obershelp similarity Examples -------- >>> cmp = RatcliffObershelp() >>> round(cmp.sim('cat', 'hat'), 12) 0.666666666667 >>> round(cmp.sim('Niall', 'Neil'), 12) 0.666666666667 >>> round(cmp.sim('aluminum', 'Catalan'), 12) 0.4 >>> cmp.sim('ATCG', 'TAGC') 0.5 """ def _lcsstr_stl(src, tar): """Return start positions & length for Ratcliff-Obershelp. Parameters ---------- src : str Source string for comparison tar : str Target string for comparison Returns ------- tuple The start position in the source string, start position in the target string, and length of the longest common substring of strings src and tar. """ lengths = np_zeros((len(src) + 1, len(tar) + 1), dtype=np_int) longest, src_longest, tar_longest = 0, 0, 0 for i in range(1, len(src) + 1): for j in range(1, len(tar) + 1): if src[i - 1] == tar[j - 1]: lengths[i, j] = lengths[i - 1, j - 1] + 1 if lengths[i, j] > longest: longest = lengths[i, j] src_longest = i tar_longest = j else: lengths[i, j] = 0 return src_longest - longest, tar_longest - longest, longest def _sstr_matches(src, tar): """Return the sum of substring match lengths. This follows the Ratcliff-Obershelp algorithm :cite:`Ratcliff:1988`: 1. Find the length of the longest common substring in src & tar. 2. Recurse on the strings to the left & right of each this substring in src & tar. 3. Base case is a 0 length common substring, in which case, return 0. 4. Return the sum. Parameters ---------- src : str Source string for comparison tar : str Target string for comparison Returns ------- int Sum of substring match lengths """ src_start, tar_start, length = _lcsstr_stl(src, tar) if length == 0: return 0 return ( _sstr_matches(src[:src_start], tar[:tar_start]) + length + _sstr_matches( src[src_start + length :], tar[tar_start + length :] ) ) if src == tar: return 1.0 elif not src or not tar: return 0.0 return 2 * _sstr_matches(src, tar) / (len(src) + len(tar))
def refined_soundex(word, max_length=-1, zero_pad=False, retain_vowels=False): """Return the Refined Soundex code for a word. This is a wrapper for :py:meth:`RefinedSoundex.encode`. Parameters ---------- word : str The word to transform max_length : int The length of the code returned (defaults to unlimited) zero_pad : bool Pad the end of the return value with 0s to achieve a max_length string retain_vowels : bool Retain vowels (as 0) in the resulting code Returns ------- str The Refined Soundex value Examples -------- >>> refined_soundex('Christopher') 'C393619' >>> refined_soundex('Niall') 'N87' >>> refined_soundex('Smith') 'S386' >>> refined_soundex('Schmidt') 'S386' """ return RefinedSoundex().encode(word, max_length, zero_pad, retain_vowels)
def encode(self, word, max_length=-1, zero_pad=False, retain_vowels=False): """Return the Refined Soundex code for a word. Parameters ---------- word : str The word to transform max_length : int The length of the code returned (defaults to unlimited) zero_pad : bool Pad the end of the return value with 0s to achieve a max_length string retain_vowels : bool Retain vowels (as 0) in the resulting code Returns ------- str The Refined Soundex value Examples -------- >>> pe = RefinedSoundex() >>> pe.encode('Christopher') 'C393619' >>> pe.encode('Niall') 'N87' >>> pe.encode('Smith') 'S386' >>> pe.encode('Schmidt') 'S386' """ # uppercase, normalize, decompose, and filter non-A-Z out word = unicode_normalize('NFKD', text_type(word.upper())) word = word.replace('ß', 'SS') word = ''.join(c for c in word if c in self._uc_set) # apply the Soundex algorithm sdx = word[:1] + word.translate(self._trans) sdx = self._delete_consecutive_repeats(sdx) if not retain_vowels: sdx = sdx.replace('0', '') # Delete vowels, H, W, Y if max_length > 0: if zero_pad: sdx += '0' * max_length sdx = sdx[:max_length] return sdx
def dist_abs(self, src, tar): """Return the MRA comparison rating of two strings. Parameters ---------- src : str Source string for comparison tar : str Target string for comparison Returns ------- int MRA comparison rating Examples -------- >>> cmp = MRA() >>> cmp.dist_abs('cat', 'hat') 5 >>> cmp.dist_abs('Niall', 'Neil') 6 >>> cmp.dist_abs('aluminum', 'Catalan') 0 >>> cmp.dist_abs('ATCG', 'TAGC') 5 """ if src == tar: return 6 if src == '' or tar == '': return 0 src = list(mra(src)) tar = list(mra(tar)) if abs(len(src) - len(tar)) > 2: return 0 length_sum = len(src) + len(tar) if length_sum < 5: min_rating = 5 elif length_sum < 8: min_rating = 4 elif length_sum < 12: min_rating = 3 else: min_rating = 2 for _ in range(2): new_src = [] new_tar = [] minlen = min(len(src), len(tar)) for i in range(minlen): if src[i] != tar[i]: new_src.append(src[i]) new_tar.append(tar[i]) src = new_src + src[minlen:] tar = new_tar + tar[minlen:] src.reverse() tar.reverse() similarity = 6 - max(len(src), len(tar)) if similarity >= min_rating: return similarity return 0
def encode(self, word): """Return the Parmar-Kumbharana encoding of a word. Parameters ---------- word : str The word to transform Returns ------- str The Parmar-Kumbharana encoding Examples -------- >>> pe = ParmarKumbharana() >>> pe.encode('Gough') 'GF' >>> pe.encode('pneuma') 'NM' >>> pe.encode('knight') 'NT' >>> pe.encode('trice') 'TRS' >>> pe.encode('judge') 'JJ' """ word = word.upper() # Rule 3 word = self._delete_consecutive_repeats(word) # Rule 4 # Rule 5 i = 0 while i < len(word): for match_len in range(4, 1, -1): if word[i : i + match_len] in self._rules[match_len]: repl = self._rules[match_len][word[i : i + match_len]] word = word[:i] + repl + word[i + match_len :] i += len(repl) break else: i += 1 word = word[:1] + word[1:].translate(self._del_trans) # Rule 6 return word
def eudex_hamming( src, tar, weights='exponential', max_length=8, normalized=False ): """Calculate the Hamming distance between the Eudex hashes of two terms. This is a wrapper for :py:meth:`Eudex.eudex_hamming`. Parameters ---------- src : str Source string for comparison tar : str Target string for comparison weights : str, iterable, or generator function The weights or weights generator function max_length : int The number of characters to encode as a eudex hash normalized : bool Normalizes to [0, 1] if True Returns ------- int The Eudex Hamming distance Examples -------- >>> eudex_hamming('cat', 'hat') 128 >>> eudex_hamming('Niall', 'Neil') 2 >>> eudex_hamming('Colin', 'Cuilen') 10 >>> eudex_hamming('ATCG', 'TAGC') 403 >>> eudex_hamming('cat', 'hat', weights='fibonacci') 34 >>> eudex_hamming('Niall', 'Neil', weights='fibonacci') 2 >>> eudex_hamming('Colin', 'Cuilen', weights='fibonacci') 7 >>> eudex_hamming('ATCG', 'TAGC', weights='fibonacci') 117 >>> eudex_hamming('cat', 'hat', weights=None) 1 >>> eudex_hamming('Niall', 'Neil', weights=None) 1 >>> eudex_hamming('Colin', 'Cuilen', weights=None) 2 >>> eudex_hamming('ATCG', 'TAGC', weights=None) 9 >>> # Using the OEIS A000142: >>> eudex_hamming('cat', 'hat', [1, 1, 2, 6, 24, 120, 720, 5040]) 1 >>> eudex_hamming('Niall', 'Neil', [1, 1, 2, 6, 24, 120, 720, 5040]) 720 >>> eudex_hamming('Colin', 'Cuilen', [1, 1, 2, 6, 24, 120, 720, 5040]) 744 >>> eudex_hamming('ATCG', 'TAGC', [1, 1, 2, 6, 24, 120, 720, 5040]) 6243 """ return Eudex().dist_abs(src, tar, weights, max_length, normalized)
def dist_eudex(src, tar, weights='exponential', max_length=8): """Return normalized Hamming distance between Eudex hashes of two terms. This is a wrapper for :py:meth:`Eudex.dist`. Parameters ---------- src : str Source string for comparison tar : str Target string for comparison weights : str, iterable, or generator function The weights or weights generator function max_length : int The number of characters to encode as a eudex hash Returns ------- int The normalized Eudex Hamming distance Examples -------- >>> round(dist_eudex('cat', 'hat'), 12) 0.062745098039 >>> round(dist_eudex('Niall', 'Neil'), 12) 0.000980392157 >>> round(dist_eudex('Colin', 'Cuilen'), 12) 0.004901960784 >>> round(dist_eudex('ATCG', 'TAGC'), 12) 0.197549019608 """ return Eudex().dist(src, tar, weights, max_length)
def sim_eudex(src, tar, weights='exponential', max_length=8): """Return normalized Hamming similarity between Eudex hashes of two terms. This is a wrapper for :py:meth:`Eudex.sim`. Parameters ---------- src : str Source string for comparison tar : str Target string for comparison weights : str, iterable, or generator function The weights or weights generator function max_length : int The number of characters to encode as a eudex hash Returns ------- int The normalized Eudex Hamming similarity Examples -------- >>> round(sim_eudex('cat', 'hat'), 12) 0.937254901961 >>> round(sim_eudex('Niall', 'Neil'), 12) 0.999019607843 >>> round(sim_eudex('Colin', 'Cuilen'), 12) 0.995098039216 >>> round(sim_eudex('ATCG', 'TAGC'), 12) 0.802450980392 """ return Eudex().sim(src, tar, weights, max_length)
def gen_fibonacci(): """Yield the next Fibonacci number. Based on https://www.python-course.eu/generators.php Starts at Fibonacci number 3 (the second 1) Yields ------ int The next Fibonacci number """ num_a, num_b = 1, 2 while True: yield num_a num_a, num_b = num_b, num_a + num_b
def dist_abs( self, src, tar, weights='exponential', max_length=8, normalized=False ): """Calculate the distance between the Eudex hashes of two terms. Parameters ---------- src : str Source string for comparison tar : str Target string for comparison weights : str, iterable, or generator function The weights or weights generator function - If set to ``None``, a simple Hamming distance is calculated. - If set to ``exponential``, weight decays by powers of 2, as proposed in the eudex specification: https://github.com/ticki/eudex. - If set to ``fibonacci``, weight decays through the Fibonacci series, as in the eudex reference implementation. - If set to a callable function, this assumes it creates a generator and the generator is used to populate a series of weights. - If set to an iterable, the iterable's values should be integers and will be used as the weights. max_length : int The number of characters to encode as a eudex hash normalized : bool Normalizes to [0, 1] if True Returns ------- int The Eudex Hamming distance Examples -------- >>> cmp = Eudex() >>> cmp.dist_abs('cat', 'hat') 128 >>> cmp.dist_abs('Niall', 'Neil') 2 >>> cmp.dist_abs('Colin', 'Cuilen') 10 >>> cmp.dist_abs('ATCG', 'TAGC') 403 >>> cmp.dist_abs('cat', 'hat', weights='fibonacci') 34 >>> cmp.dist_abs('Niall', 'Neil', weights='fibonacci') 2 >>> cmp.dist_abs('Colin', 'Cuilen', weights='fibonacci') 7 >>> cmp.dist_abs('ATCG', 'TAGC', weights='fibonacci') 117 >>> cmp.dist_abs('cat', 'hat', weights=None) 1 >>> cmp.dist_abs('Niall', 'Neil', weights=None) 1 >>> cmp.dist_abs('Colin', 'Cuilen', weights=None) 2 >>> cmp.dist_abs('ATCG', 'TAGC', weights=None) 9 >>> # Using the OEIS A000142: >>> cmp.dist_abs('cat', 'hat', [1, 1, 2, 6, 24, 120, 720, 5040]) 1 >>> cmp.dist_abs('Niall', 'Neil', [1, 1, 2, 6, 24, 120, 720, 5040]) 720 >>> cmp.dist_abs('Colin', 'Cuilen', ... [1, 1, 2, 6, 24, 120, 720, 5040]) 744 >>> cmp.dist_abs('ATCG', 'TAGC', [1, 1, 2, 6, 24, 120, 720, 5040]) 6243 """ # Calculate the eudex hashes and XOR them xored = eudex(src, max_length=max_length) ^ eudex( tar, max_length=max_length ) # Simple hamming distance (all bits are equal) if not weights: binary = bin(xored) distance = binary.count('1') if normalized: return distance / (len(binary) - 2) return distance # If weights is a function, it should create a generator, # which we now use to populate a list if callable(weights): weights = weights() elif weights == 'exponential': weights = Eudex.gen_exponential() elif weights == 'fibonacci': weights = Eudex.gen_fibonacci() if isinstance(weights, GeneratorType): weights = [next(weights) for _ in range(max_length)][::-1] # Sum the weighted hamming distance distance = 0 max_distance = 0 while (xored or normalized) and weights: max_distance += 8 * weights[-1] distance += bin(xored & 0xFF).count('1') * weights.pop() xored >>= 8 if normalized: distance /= max_distance return distance
def dist(self, src, tar, weights='exponential', max_length=8): """Return normalized distance between the Eudex hashes of two terms. This is Eudex distance normalized to [0, 1]. Parameters ---------- src : str Source string for comparison tar : str Target string for comparison weights : str, iterable, or generator function The weights or weights generator function max_length : int The number of characters to encode as a eudex hash Returns ------- int The normalized Eudex Hamming distance Examples -------- >>> cmp = Eudex() >>> round(cmp.dist('cat', 'hat'), 12) 0.062745098039 >>> round(cmp.dist('Niall', 'Neil'), 12) 0.000980392157 >>> round(cmp.dist('Colin', 'Cuilen'), 12) 0.004901960784 >>> round(cmp.dist('ATCG', 'TAGC'), 12) 0.197549019608 """ return self.dist_abs(src, tar, weights, max_length, True)
def euclidean(src, tar, qval=2, normalized=False, alphabet=None): """Return the Euclidean distance between two strings. This is a wrapper for :py:meth:`Euclidean.dist_abs`. Parameters ---------- src : str Source string (or QGrams/Counter objects) for comparison tar : str Target string (or QGrams/Counter objects) for comparison qval : int The length of each q-gram; 0 for non-q-gram version normalized : bool Normalizes to [0, 1] if True alphabet : collection or int The values or size of the alphabet Returns ------- float: The Euclidean distance Examples -------- >>> euclidean('cat', 'hat') 2.0 >>> round(euclidean('Niall', 'Neil'), 12) 2.645751311065 >>> euclidean('Colin', 'Cuilen') 3.0 >>> round(euclidean('ATCG', 'TAGC'), 12) 3.162277660168 """ return Euclidean().dist_abs(src, tar, qval, normalized, alphabet)
def dist_euclidean(src, tar, qval=2, alphabet=None): """Return the normalized Euclidean distance between two strings. This is a wrapper for :py:meth:`Euclidean.dist`. Parameters ---------- src : str Source string (or QGrams/Counter objects) for comparison tar : str Target string (or QGrams/Counter objects) for comparison qval : int The length of each q-gram; 0 for non-q-gram version alphabet : collection or int The values or size of the alphabet Returns ------- float The normalized Euclidean distance Examples -------- >>> round(dist_euclidean('cat', 'hat'), 12) 0.57735026919 >>> round(dist_euclidean('Niall', 'Neil'), 12) 0.683130051064 >>> round(dist_euclidean('Colin', 'Cuilen'), 12) 0.727606875109 >>> dist_euclidean('ATCG', 'TAGC') 1.0 """ return Euclidean().dist(src, tar, qval, alphabet)
def sim_euclidean(src, tar, qval=2, alphabet=None): """Return the normalized Euclidean similarity of two strings. This is a wrapper for :py:meth:`Euclidean.sim`. Parameters ---------- src : str Source string (or QGrams/Counter objects) for comparison tar : str Target string (or QGrams/Counter objects) for comparison qval : int The length of each q-gram; 0 for non-q-gram version alphabet : collection or int The values or size of the alphabet Returns ------- float The normalized Euclidean similarity Examples -------- >>> round(sim_euclidean('cat', 'hat'), 12) 0.42264973081 >>> round(sim_euclidean('Niall', 'Neil'), 12) 0.316869948936 >>> round(sim_euclidean('Colin', 'Cuilen'), 12) 0.272393124891 >>> sim_euclidean('ATCG', 'TAGC') 0.0 """ return Euclidean().sim(src, tar, qval, alphabet)
def _cond_k(self, word, suffix_len): """Return Lovins' condition K. Parameters ---------- word : str Word to check suffix_len : int Suffix length Returns ------- bool True if condition is met """ return (len(word) - suffix_len >= 3) and ( word[-suffix_len - 1] in {'i', 'l'} or (word[-suffix_len - 3] == 'u' and word[-suffix_len - 1] == 'e') )
def _cond_n(self, word, suffix_len): """Return Lovins' condition N. Parameters ---------- word : str Word to check suffix_len : int Suffix length Returns ------- bool True if condition is met """ if len(word) - suffix_len >= 3: if word[-suffix_len - 3] == 's': if len(word) - suffix_len >= 4: return True else: return True return False
def _cond_s(self, word, suffix_len): """Return Lovins' condition S. Parameters ---------- word : str Word to check suffix_len : int Suffix length Returns ------- bool True if condition is met """ return word[-suffix_len - 2 : -suffix_len] == 'dr' or ( word[-suffix_len - 1] == 't' and word[-suffix_len - 2 : -suffix_len] != 'tt' )
def _cond_x(self, word, suffix_len): """Return Lovins' condition X. Parameters ---------- word : str Word to check suffix_len : int Suffix length Returns ------- bool True if condition is met """ return word[-suffix_len - 1] in {'i', 'l'} or ( word[-suffix_len - 3 : -suffix_len] == 'u' and word[-suffix_len - 1] == 'e' )
def _cond_bb(self, word, suffix_len): """Return Lovins' condition BB. Parameters ---------- word : str Word to check suffix_len : int Suffix length Returns ------- bool True if condition is met """ return ( len(word) - suffix_len >= 3 and word[-suffix_len - 3 : -suffix_len] != 'met' and word[-suffix_len - 4 : -suffix_len] != 'ryst' )
def stem(self, word): """Return Lovins stem. Parameters ---------- word : str The word to stem Returns ------- str Word stem Examples -------- >>> stmr = Lovins() >>> stmr.stem('reading') 'read' >>> stmr.stem('suspension') 'suspens' >>> stmr.stem('elusiveness') 'elus' """ # lowercase, normalize, and compose word = normalize('NFC', text_type(word.lower())) for suffix_len in range(11, 0, -1): ending = word[-suffix_len:] if ( ending in self._suffix and len(word) - suffix_len >= 2 and ( self._suffix[ending] is None or self._suffix[ending](word, suffix_len) ) ): word = word[:-suffix_len] break if word[-2:] in { 'bb', 'dd', 'gg', 'll', 'mm', 'nn', 'pp', 'rr', 'ss', 'tt', }: word = word[:-1] for ending, replacement in self._recode: if word.endswith(ending): if callable(replacement): word = replacement(word) else: word = word[: -len(ending)] + replacement return word
def dist_abs(self, src, tar, cost=(1, 1, 1, 1)): """Return the Damerau-Levenshtein distance between two strings. Parameters ---------- src : str Source string for comparison tar : str Target string for comparison cost : tuple A 4-tuple representing the cost of the four possible edits: inserts, deletes, substitutions, and transpositions, respectively (by default: (1, 1, 1, 1)) Returns ------- int (may return a float if cost has float values) The Damerau-Levenshtein distance between src & tar Raises ------ ValueError Unsupported cost assignment; the cost of two transpositions must not be less than the cost of an insert plus a delete. Examples -------- >>> cmp = DamerauLevenshtein() >>> cmp.dist_abs('cat', 'hat') 1 >>> cmp.dist_abs('Niall', 'Neil') 3 >>> cmp.dist_abs('aluminum', 'Catalan') 7 >>> cmp.dist_abs('ATCG', 'TAGC') 2 """ ins_cost, del_cost, sub_cost, trans_cost = cost if src == tar: return 0 if not src: return len(tar) * ins_cost if not tar: return len(src) * del_cost if 2 * trans_cost < ins_cost + del_cost: raise ValueError( 'Unsupported cost assignment; the cost of two transpositions ' + 'must not be less than the cost of an insert plus a delete.' ) d_mat = np_zeros((len(src)) * (len(tar)), dtype=np_int).reshape( (len(src), len(tar)) ) if src[0] != tar[0]: d_mat[0, 0] = min(sub_cost, ins_cost + del_cost) src_index_by_character = {src[0]: 0} for i in range(1, len(src)): del_distance = d_mat[i - 1, 0] + del_cost ins_distance = (i + 1) * del_cost + ins_cost match_distance = i * del_cost + ( 0 if src[i] == tar[0] else sub_cost ) d_mat[i, 0] = min(del_distance, ins_distance, match_distance) for j in range(1, len(tar)): del_distance = (j + 1) * ins_cost + del_cost ins_distance = d_mat[0, j - 1] + ins_cost match_distance = j * ins_cost + ( 0 if src[0] == tar[j] else sub_cost ) d_mat[0, j] = min(del_distance, ins_distance, match_distance) for i in range(1, len(src)): max_src_letter_match_index = 0 if src[i] == tar[0] else -1 for j in range(1, len(tar)): candidate_swap_index = ( -1 if tar[j] not in src_index_by_character else src_index_by_character[tar[j]] ) j_swap = max_src_letter_match_index del_distance = d_mat[i - 1, j] + del_cost ins_distance = d_mat[i, j - 1] + ins_cost match_distance = d_mat[i - 1, j - 1] if src[i] != tar[j]: match_distance += sub_cost else: max_src_letter_match_index = j if candidate_swap_index != -1 and j_swap != -1: i_swap = candidate_swap_index if i_swap == 0 and j_swap == 0: pre_swap_cost = 0 else: pre_swap_cost = d_mat[ max(0, i_swap - 1), max(0, j_swap - 1) ] swap_distance = ( pre_swap_cost + (i - i_swap - 1) * del_cost + (j - j_swap - 1) * ins_cost + trans_cost ) else: swap_distance = maxsize d_mat[i, j] = min( del_distance, ins_distance, match_distance, swap_distance ) src_index_by_character[src[i]] = i return d_mat[len(src) - 1, len(tar) - 1]
def dist(self, src, tar): """Return the NCD between two strings using zlib compression. Parameters ---------- src : str Source string for comparison tar : str Target string for comparison Returns ------- float Compression distance Examples -------- >>> cmp = NCDzlib() >>> cmp.dist('cat', 'hat') 0.3333333333333333 >>> cmp.dist('Niall', 'Neil') 0.45454545454545453 >>> cmp.dist('aluminum', 'Catalan') 0.5714285714285714 >>> cmp.dist('ATCG', 'TAGC') 0.4 """ if src == tar: return 0.0 src = src.encode('utf-8') tar = tar.encode('utf-8') self._compressor.compress(src) src_comp = self._compressor.flush(zlib.Z_FULL_FLUSH) self._compressor.compress(tar) tar_comp = self._compressor.flush(zlib.Z_FULL_FLUSH) self._compressor.compress(src + tar) concat_comp = self._compressor.flush(zlib.Z_FULL_FLUSH) self._compressor.compress(tar + src) concat_comp2 = self._compressor.flush(zlib.Z_FULL_FLUSH) return ( min(len(concat_comp), len(concat_comp2)) - min(len(src_comp), len(tar_comp)) ) / max(len(src_comp), len(tar_comp))
def phonex(word, max_length=4, zero_pad=True): """Return the Phonex code for a word. This is a wrapper for :py:meth:`Phonex.encode`. Parameters ---------- word : str The word to transform max_length : int The length of the code returned (defaults to 4) zero_pad : bool Pad the end of the return value with 0s to achieve a max_length string Returns ------- str The Phonex value Examples -------- >>> phonex('Christopher') 'C623' >>> phonex('Niall') 'N400' >>> phonex('Schmidt') 'S253' >>> phonex('Smith') 'S530' """ return Phonex().encode(word, max_length, zero_pad)
def encode(self, word, max_length=4, zero_pad=True): """Return the Phonex code for a word. Parameters ---------- word : str The word to transform max_length : int The length of the code returned (defaults to 4) zero_pad : bool Pad the end of the return value with 0s to achieve a max_length string Returns ------- str The Phonex value Examples -------- >>> pe = Phonex() >>> pe.encode('Christopher') 'C623' >>> pe.encode('Niall') 'N400' >>> pe.encode('Schmidt') 'S253' >>> pe.encode('Smith') 'S530' """ name = unicode_normalize('NFKD', text_type(word.upper())) name = name.replace('ß', 'SS') # Clamp max_length to [4, 64] if max_length != -1: max_length = min(max(4, max_length), 64) else: max_length = 64 name_code = last = '' # Deletions effected by replacing with next letter which # will be ignored due to duplicate handling of Soundex code. # This is faster than 'moving' all subsequent letters. # Remove any trailing Ss while name[-1:] == 'S': name = name[:-1] # Phonetic equivalents of first 2 characters # Works since duplicate letters are ignored if name[:2] == 'KN': name = 'N' + name[2:] # KN.. == N.. elif name[:2] == 'PH': name = 'F' + name[2:] # PH.. == F.. (H ignored anyway) elif name[:2] == 'WR': name = 'R' + name[2:] # WR.. == R.. if name: # Special case, ignore H first letter (subsequent Hs ignored # anyway) # Works since duplicate letters are ignored if name[0] == 'H': name = name[1:] if name: # Phonetic equivalents of first character if name[0] in self._uc_vy_set: name = 'A' + name[1:] elif name[0] in {'B', 'P'}: name = 'B' + name[1:] elif name[0] in {'V', 'F'}: name = 'F' + name[1:] elif name[0] in {'C', 'K', 'Q'}: name = 'C' + name[1:] elif name[0] in {'G', 'J'}: name = 'G' + name[1:] elif name[0] in {'S', 'Z'}: name = 'S' + name[1:] name_code = last = name[0] # Modified Soundex code for i in range(1, len(name)): code = '0' if name[i] in {'B', 'F', 'P', 'V'}: code = '1' elif name[i] in {'C', 'G', 'J', 'K', 'Q', 'S', 'X', 'Z'}: code = '2' elif name[i] in {'D', 'T'}: if name[i + 1 : i + 2] != 'C': code = '3' elif name[i] == 'L': if name[i + 1 : i + 2] in self._uc_vy_set or i + 1 == len( name ): code = '4' elif name[i] in {'M', 'N'}: if name[i + 1 : i + 2] in {'D', 'G'}: name = name[: i + 1] + name[i] + name[i + 2 :] code = '5' elif name[i] == 'R': if name[i + 1 : i + 2] in self._uc_vy_set or i + 1 == len( name ): code = '6' if code != last and code != '0' and i != 0: name_code += code last = name_code[-1] if zero_pad: name_code += '0' * max_length if not name_code: name_code = '0' return name_code[:max_length]
def pylint_color(score): """Return Pylint badge color. Parameters ---------- score : float A Pylint score Returns ------- str Badge color """ # These are the score cutoffs for each color above. # I.e. score==10 -> brightgreen, down to 7.5 > score >= 5 -> orange score_cutoffs = (10, 9.5, 8.5, 7.5, 5) for i in range(len(score_cutoffs)): if score >= score_cutoffs[i]: return BADGE_COLORS[i] # and score < 5 -> red return BADGE_COLORS[-1]
def pydocstyle_color(score): """Return pydocstyle badge color. Parameters ---------- score : float A pydocstyle score Returns ------- str Badge color """ # These are the score cutoffs for each color above. # I.e. score==0 -> brightgreen, down to 100 < score <= 200 -> orange score_cutoffs = (0, 10, 25, 50, 100) for i in range(len(score_cutoffs)): if score <= score_cutoffs[i]: return BADGE_COLORS[i] # and score > 200 -> red return BADGE_COLORS[-1]
def flake8_color(score): """Return flake8 badge color. Parameters ---------- score : float A flake8 score Returns ------- str Badge color """ # These are the score cutoffs for each color above. # I.e. score==0 -> brightgreen, down to 100 < score <= 200 -> orange score_cutoffs = (0, 20, 50, 100, 200) for i in range(len(score_cutoffs)): if score <= score_cutoffs[i]: return BADGE_COLORS[i] # and score > 200 -> red return BADGE_COLORS[-1]
def gotoh(src, tar, gap_open=1, gap_ext=0.4, sim_func=sim_ident): """Return the Gotoh score of two strings. This is a wrapper for :py:meth:`Gotoh.dist_abs`. Parameters ---------- src : str Source string for comparison tar : str Target string for comparison gap_open : float The cost of an open alignment gap (1 by default) gap_ext : float The cost of an alignment gap extension (0.4 by default) sim_func : function A function that returns the similarity of two characters (identity similarity by default) Returns ------- float Gotoh score Examples -------- >>> gotoh('cat', 'hat') 2.0 >>> gotoh('Niall', 'Neil') 1.0 >>> round(gotoh('aluminum', 'Catalan'), 12) -0.4 >>> gotoh('cat', 'hat') 2.0 """ return Gotoh().dist_abs(src, tar, gap_open, gap_ext, sim_func)
def dist_abs(self, src, tar, gap_open=1, gap_ext=0.4, sim_func=sim_ident): """Return the Gotoh score of two strings. Parameters ---------- src : str Source string for comparison tar : str Target string for comparison gap_open : float The cost of an open alignment gap (1 by default) gap_ext : float The cost of an alignment gap extension (0.4 by default) sim_func : function A function that returns the similarity of two characters (identity similarity by default) Returns ------- float Gotoh score Examples -------- >>> cmp = Gotoh() >>> cmp.dist_abs('cat', 'hat') 2.0 >>> cmp.dist_abs('Niall', 'Neil') 1.0 >>> round(cmp.dist_abs('aluminum', 'Catalan'), 12) -0.4 >>> cmp.dist_abs('cat', 'hat') 2.0 """ d_mat = np_zeros((len(src) + 1, len(tar) + 1), dtype=np_float32) p_mat = np_zeros((len(src) + 1, len(tar) + 1), dtype=np_float32) q_mat = np_zeros((len(src) + 1, len(tar) + 1), dtype=np_float32) d_mat[0, 0] = 0 p_mat[0, 0] = float('-inf') q_mat[0, 0] = float('-inf') for i in range(1, len(src) + 1): d_mat[i, 0] = float('-inf') p_mat[i, 0] = -gap_open - gap_ext * (i - 1) q_mat[i, 0] = float('-inf') q_mat[i, 1] = -gap_open for j in range(1, len(tar) + 1): d_mat[0, j] = float('-inf') p_mat[0, j] = float('-inf') p_mat[1, j] = -gap_open q_mat[0, j] = -gap_open - gap_ext * (j - 1) for i in range(1, len(src) + 1): for j in range(1, len(tar) + 1): sim_val = sim_func(src[i - 1], tar[j - 1]) d_mat[i, j] = max( d_mat[i - 1, j - 1] + sim_val, p_mat[i - 1, j - 1] + sim_val, q_mat[i - 1, j - 1] + sim_val, ) p_mat[i, j] = max( d_mat[i - 1, j] - gap_open, p_mat[i - 1, j] - gap_ext ) q_mat[i, j] = max( d_mat[i, j - 1] - gap_open, q_mat[i, j - 1] - gap_ext ) i, j = (n - 1 for n in d_mat.shape) return max(d_mat[i, j], p_mat[i, j], q_mat[i, j])
def dist_abs(self, src, tar): """Return the bag distance between two strings. Parameters ---------- src : str Source string for comparison tar : str Target string for comparison Returns ------- int Bag distance Examples -------- >>> cmp = Bag() >>> cmp.dist_abs('cat', 'hat') 1 >>> cmp.dist_abs('Niall', 'Neil') 2 >>> cmp.dist_abs('aluminum', 'Catalan') 5 >>> cmp.dist_abs('ATCG', 'TAGC') 0 >>> cmp.dist_abs('abcdefg', 'hijklm') 7 >>> cmp.dist_abs('abcdefg', 'hijklmno') 8 """ if tar == src: return 0 elif not src: return len(tar) elif not tar: return len(src) src_bag = Counter(src) tar_bag = Counter(tar) return max( sum((src_bag - tar_bag).values()), sum((tar_bag - src_bag).values()), )
def dist(self, src, tar): """Return the normalized bag distance between two strings. Bag distance is normalized by dividing by :math:`max( |src|, |tar| )`. Parameters ---------- src : str Source string for comparison tar : str Target string for comparison Returns ------- float Normalized bag distance Examples -------- >>> cmp = Bag() >>> cmp.dist('cat', 'hat') 0.3333333333333333 >>> cmp.dist('Niall', 'Neil') 0.4 >>> cmp.dist('aluminum', 'Catalan') 0.625 >>> cmp.dist('ATCG', 'TAGC') 0.0 """ if tar == src: return 0.0 if not src or not tar: return 1.0 max_length = max(len(src), len(tar)) return self.dist_abs(src, tar) / max_length
def stem(self, word): """Return 'CLEF German stemmer plus' stem. Parameters ---------- word : str The word to stem Returns ------- str Word stem Examples -------- >>> stmr = CLEFGermanPlus() >>> clef_german_plus('lesen') 'les' >>> clef_german_plus('graues') 'grau' >>> clef_german_plus('buchstabieren') 'buchstabi' """ # lowercase, normalize, and compose word = normalize('NFC', text_type(word.lower())) # remove umlauts word = word.translate(self._accents) # Step 1 wlen = len(word) - 1 if wlen > 4 and word[-3:] == 'ern': word = word[:-3] elif wlen > 3 and word[-2:] in {'em', 'en', 'er', 'es'}: word = word[:-2] elif wlen > 2 and ( word[-1] == 'e' or (word[-1] == 's' and word[-2] in self._st_ending) ): word = word[:-1] # Step 2 wlen = len(word) - 1 if wlen > 4 and word[-3:] == 'est': word = word[:-3] elif wlen > 3 and ( word[-2:] in {'er', 'en'} or (word[-2:] == 'st' and word[-3] in self._st_ending) ): word = word[:-2] return word
def sim_mlipns(src, tar, threshold=0.25, max_mismatches=2): """Return the MLIPNS similarity of two strings. This is a wrapper for :py:meth:`MLIPNS.sim`. Parameters ---------- src : str Source string for comparison tar : str Target string for comparison threshold : float A number [0, 1] indicating the maximum similarity score, below which the strings are considered 'similar' (0.25 by default) max_mismatches : int A number indicating the allowable number of mismatches to remove before declaring two strings not similar (2 by default) Returns ------- float MLIPNS similarity Examples -------- >>> sim_mlipns('cat', 'hat') 1.0 >>> sim_mlipns('Niall', 'Neil') 0.0 >>> sim_mlipns('aluminum', 'Catalan') 0.0 >>> sim_mlipns('ATCG', 'TAGC') 0.0 """ return MLIPNS().sim(src, tar, threshold, max_mismatches)
def dist_mlipns(src, tar, threshold=0.25, max_mismatches=2): """Return the MLIPNS distance between two strings. This is a wrapper for :py:meth:`MLIPNS.dist`. Parameters ---------- src : str Source string for comparison tar : str Target string for comparison threshold : float A number [0, 1] indicating the maximum similarity score, below which the strings are considered 'similar' (0.25 by default) max_mismatches : int A number indicating the allowable number of mismatches to remove before declaring two strings not similar (2 by default) Returns ------- float MLIPNS distance Examples -------- >>> dist_mlipns('cat', 'hat') 0.0 >>> dist_mlipns('Niall', 'Neil') 1.0 >>> dist_mlipns('aluminum', 'Catalan') 1.0 >>> dist_mlipns('ATCG', 'TAGC') 1.0 """ return MLIPNS().dist(src, tar, threshold, max_mismatches)
def sim(self, src, tar, threshold=0.25, max_mismatches=2): """Return the MLIPNS similarity of two strings. Parameters ---------- src : str Source string for comparison tar : str Target string for comparison threshold : float A number [0, 1] indicating the maximum similarity score, below which the strings are considered 'similar' (0.25 by default) max_mismatches : int A number indicating the allowable number of mismatches to remove before declaring two strings not similar (2 by default) Returns ------- float MLIPNS similarity Examples -------- >>> sim_mlipns('cat', 'hat') 1.0 >>> sim_mlipns('Niall', 'Neil') 0.0 >>> sim_mlipns('aluminum', 'Catalan') 0.0 >>> sim_mlipns('ATCG', 'TAGC') 0.0 """ if tar == src: return 1.0 if not src or not tar: return 0.0 mismatches = 0 ham = Hamming().dist_abs(src, tar, diff_lens=True) max_length = max(len(src), len(tar)) while src and tar and mismatches <= max_mismatches: if ( max_length < 1 or (1 - (max_length - ham) / max_length) <= threshold ): return 1.0 else: mismatches += 1 ham -= 1 max_length -= 1 if max_length < 1: return 1.0 return 0.0
def sim(src, tar, method=sim_levenshtein): """Return a similarity of two strings. This is a generalized function for calling other similarity functions. Parameters ---------- src : str Source string for comparison tar : str Target string for comparison method : function Specifies the similarity metric (:py:func:`sim_levenshtein` by default) Returns ------- float Similarity according to the specified function Raises ------ AttributeError Unknown distance function Examples -------- >>> round(sim('cat', 'hat'), 12) 0.666666666667 >>> round(sim('Niall', 'Neil'), 12) 0.4 >>> sim('aluminum', 'Catalan') 0.125 >>> sim('ATCG', 'TAGC') 0.25 """ if callable(method): return method(src, tar) else: raise AttributeError('Unknown similarity function: ' + str(method))
def dist(src, tar, method=sim_levenshtein): """Return a distance between two strings. This is a generalized function for calling other distance functions. Parameters ---------- src : str Source string for comparison tar : str Target string for comparison method : function Specifies the similarity metric (:py:func:`sim_levenshtein` by default) -- Note that this takes a similarity metric function, not a distance metric function. Returns ------- float Distance according to the specified function Raises ------ AttributeError Unknown distance function Examples -------- >>> round(dist('cat', 'hat'), 12) 0.333333333333 >>> round(dist('Niall', 'Neil'), 12) 0.6 >>> dist('aluminum', 'Catalan') 0.875 >>> dist('ATCG', 'TAGC') 0.75 """ if callable(method): return 1 - method(src, tar) else: raise AttributeError('Unknown distance function: ' + str(method))
def encode(self, word): """Return the MRA personal numeric identifier (PNI) for a word. Parameters ---------- word : str The word to transform Returns ------- str The MRA PNI Examples -------- >>> pe = MRA() >>> pe.encode('Christopher') 'CHRPHR' >>> pe.encode('Niall') 'NL' >>> pe.encode('Smith') 'SMTH' >>> pe.encode('Schmidt') 'SCHMDT' """ if not word: return word word = word.upper() word = word.replace('ß', 'SS') word = word[0] + ''.join( c for c in word[1:] if c not in self._uc_v_set ) word = self._delete_consecutive_repeats(word) if len(word) > 6: word = word[:3] + word[-3:] return word
def _m_degree(self, term): """Return Porter helper function _m_degree value. m-degree is equal to the number of V to C transitions Parameters ---------- term : str The word for which to calculate the m-degree Returns ------- int The m-degree as defined in the Porter stemmer definition """ mdeg = 0 last_was_vowel = False for letter in term: if letter in self._vowels: last_was_vowel = True else: if last_was_vowel: mdeg += 1 last_was_vowel = False return mdeg
def _has_vowel(self, term): """Return Porter helper function _has_vowel value. Parameters ---------- term : str The word to scan for vowels Returns ------- bool True iff a vowel exists in the term (as defined in the Porter stemmer definition) """ for letter in term: if letter in self._vowels: return True return False
def _ends_in_doubled_cons(self, term): """Return Porter helper function _ends_in_doubled_cons value. Parameters ---------- term : str The word to check for a final doubled consonant Returns ------- bool True iff the stem ends in a doubled consonant (as defined in the Porter stemmer definition) """ return ( len(term) > 1 and term[-1] not in self._vowels and term[-2] == term[-1] )
def _ends_in_cvc(self, term): """Return Porter helper function _ends_in_cvc value. Parameters ---------- term : str The word to scan for cvc Returns ------- bool True iff the stem ends in cvc (as defined in the Porter stemmer definition) """ return len(term) > 2 and ( term[-1] not in self._vowels and term[-2] in self._vowels and term[-3] not in self._vowels and term[-1] not in tuple('wxY') )
def stem(self, word, early_english=False): """Return Porter stem. Parameters ---------- word : str The word to stem early_english : bool Set to True in order to remove -eth & -est (2nd & 3rd person singular verbal agreement suffixes) Returns ------- str Word stem Examples -------- >>> stmr = Porter() >>> stmr.stem('reading') 'read' >>> stmr.stem('suspension') 'suspens' >>> stmr.stem('elusiveness') 'elus' >>> stmr.stem('eateth', early_english=True) 'eat' """ # lowercase, normalize, and compose word = normalize('NFC', text_type(word.lower())) # Return word if stem is shorter than 2 if len(word) < 3: return word # Re-map consonantal y to Y (Y will be C, y will be V) if word[0] == 'y': word = 'Y' + word[1:] for i in range(1, len(word)): if word[i] == 'y' and word[i - 1] in self._vowels: word = word[:i] + 'Y' + word[i + 1 :] # Step 1a if word[-1] == 's': if word[-4:] == 'sses': word = word[:-2] elif word[-3:] == 'ies': word = word[:-2] elif word[-2:] == 'ss': pass else: word = word[:-1] # Step 1b step1b_flag = False if word[-3:] == 'eed': if self._m_degree(word[:-3]) > 0: word = word[:-1] elif word[-2:] == 'ed': if self._has_vowel(word[:-2]): word = word[:-2] step1b_flag = True elif word[-3:] == 'ing': if self._has_vowel(word[:-3]): word = word[:-3] step1b_flag = True elif early_english: if word[-3:] == 'est': if self._has_vowel(word[:-3]): word = word[:-3] step1b_flag = True elif word[-3:] == 'eth': if self._has_vowel(word[:-3]): word = word[:-3] step1b_flag = True if step1b_flag: if word[-2:] in {'at', 'bl', 'iz'}: word += 'e' elif self._ends_in_doubled_cons(word) and word[-1] not in { 'l', 's', 'z', }: word = word[:-1] elif self._m_degree(word) == 1 and self._ends_in_cvc(word): word += 'e' # Step 1c if word[-1] in {'Y', 'y'} and self._has_vowel(word[:-1]): word = word[:-1] + 'i' # Step 2 if len(word) > 1: if word[-2] == 'a': if word[-7:] == 'ational': if self._m_degree(word[:-7]) > 0: word = word[:-5] + 'e' elif word[-6:] == 'tional': if self._m_degree(word[:-6]) > 0: word = word[:-2] elif word[-2] == 'c': if word[-4:] in {'enci', 'anci'}: if self._m_degree(word[:-4]) > 0: word = word[:-1] + 'e' elif word[-2] == 'e': if word[-4:] == 'izer': if self._m_degree(word[:-4]) > 0: word = word[:-1] elif word[-2] == 'g': if word[-4:] == 'logi': if self._m_degree(word[:-4]) > 0: word = word[:-1] elif word[-2] == 'l': if word[-3:] == 'bli': if self._m_degree(word[:-3]) > 0: word = word[:-1] + 'e' elif word[-4:] == 'alli': if self._m_degree(word[:-4]) > 0: word = word[:-2] elif word[-5:] == 'entli': if self._m_degree(word[:-5]) > 0: word = word[:-2] elif word[-3:] == 'eli': if self._m_degree(word[:-3]) > 0: word = word[:-2] elif word[-5:] == 'ousli': if self._m_degree(word[:-5]) > 0: word = word[:-2] elif word[-2] == 'o': if word[-7:] == 'ization': if self._m_degree(word[:-7]) > 0: word = word[:-5] + 'e' elif word[-5:] == 'ation': if self._m_degree(word[:-5]) > 0: word = word[:-3] + 'e' elif word[-4:] == 'ator': if self._m_degree(word[:-4]) > 0: word = word[:-2] + 'e' elif word[-2] == 's': if word[-5:] == 'alism': if self._m_degree(word[:-5]) > 0: word = word[:-3] elif word[-7:] in {'iveness', 'fulness', 'ousness'}: if self._m_degree(word[:-7]) > 0: word = word[:-4] elif word[-2] == 't': if word[-5:] == 'aliti': if self._m_degree(word[:-5]) > 0: word = word[:-3] elif word[-5:] == 'iviti': if self._m_degree(word[:-5]) > 0: word = word[:-3] + 'e' elif word[-6:] == 'biliti': if self._m_degree(word[:-6]) > 0: word = word[:-5] + 'le' # Step 3 if word[-5:] in 'icate': if self._m_degree(word[:-5]) > 0: word = word[:-3] elif word[-5:] == 'ative': if self._m_degree(word[:-5]) > 0: word = word[:-5] elif word[-5:] in {'alize', 'iciti'}: if self._m_degree(word[:-5]) > 0: word = word[:-3] elif word[-4:] == 'ical': if self._m_degree(word[:-4]) > 0: word = word[:-2] elif word[-3:] == 'ful': if self._m_degree(word[:-3]) > 0: word = word[:-3] elif word[-4:] == 'ness': if self._m_degree(word[:-4]) > 0: word = word[:-4] # Step 4 if word[-2:] == 'al': if self._m_degree(word[:-2]) > 1: word = word[:-2] elif word[-4:] in {'ance', 'ence'}: if self._m_degree(word[:-4]) > 1: word = word[:-4] elif word[-2:] in {'er', 'ic'}: if self._m_degree(word[:-2]) > 1: word = word[:-2] elif word[-4:] in {'able', 'ible'}: if self._m_degree(word[:-4]) > 1: word = word[:-4] elif word[-3:] == 'ant': if self._m_degree(word[:-3]) > 1: word = word[:-3] elif word[-5:] == 'ement': if self._m_degree(word[:-5]) > 1: word = word[:-5] elif word[-4:] == 'ment': if self._m_degree(word[:-4]) > 1: word = word[:-4] elif word[-3:] == 'ent': if self._m_degree(word[:-3]) > 1: word = word[:-3] elif word[-4:] in {'sion', 'tion'}: if self._m_degree(word[:-3]) > 1: word = word[:-3] elif word[-2:] == 'ou': if self._m_degree(word[:-2]) > 1: word = word[:-2] elif word[-3:] in {'ism', 'ate', 'iti', 'ous', 'ive', 'ize'}: if self._m_degree(word[:-3]) > 1: word = word[:-3] # Step 5a if word[-1] == 'e': if self._m_degree(word[:-1]) > 1: word = word[:-1] elif self._m_degree(word[:-1]) == 1 and not self._ends_in_cvc( word[:-1] ): word = word[:-1] # Step 5b if word[-2:] == 'll' and self._m_degree(word) > 1: word = word[:-1] # Change 'Y' back to 'y' if it survived stemming for i in range(len(word)): if word[i] == 'Y': word = word[:i] + 'y' + word[i + 1 :] return word
def soundex_br(word, max_length=4, zero_pad=True): """Return the SoundexBR encoding of a word. This is a wrapper for :py:meth:`SoundexBR.encode`. Parameters ---------- word : str The word to transform max_length : int The length of the code returned (defaults to 4) zero_pad : bool Pad the end of the return value with 0s to achieve a max_length string Returns ------- str The SoundexBR code Examples -------- >>> soundex_br('Oliveira') 'O416' >>> soundex_br('Almeida') 'A453' >>> soundex_br('Barbosa') 'B612' >>> soundex_br('Araújo') 'A620' >>> soundex_br('Gonçalves') 'G524' >>> soundex_br('Goncalves') 'G524' """ return SoundexBR().encode(word, max_length, zero_pad)
def encode(self, word, max_length=4, zero_pad=True): """Return the SoundexBR encoding of a word. Parameters ---------- word : str The word to transform max_length : int The length of the code returned (defaults to 4) zero_pad : bool Pad the end of the return value with 0s to achieve a max_length string Returns ------- str The SoundexBR code Examples -------- >>> soundex_br('Oliveira') 'O416' >>> soundex_br('Almeida') 'A453' >>> soundex_br('Barbosa') 'B612' >>> soundex_br('Araújo') 'A620' >>> soundex_br('Gonçalves') 'G524' >>> soundex_br('Goncalves') 'G524' """ word = unicode_normalize('NFKD', text_type(word.upper())) word = ''.join(c for c in word if c in self._uc_set) if word[:2] == 'WA': first = 'V' elif word[:1] == 'K' and word[1:2] in {'A', 'O', 'U'}: first = 'C' elif word[:1] == 'C' and word[1:2] in {'I', 'E'}: first = 'S' elif word[:1] == 'G' and word[1:2] in {'E', 'I'}: first = 'J' elif word[:1] == 'Y': first = 'I' elif word[:1] == 'H': first = word[1:2] word = word[1:] else: first = word[:1] sdx = first + word[1:].translate(self._trans) sdx = self._delete_consecutive_repeats(sdx) sdx = sdx.replace('0', '') if zero_pad: sdx += '0' * max_length return sdx[:max_length]
def filter_symlog(y, base=10.0): """Symmetrical logarithmic scale. Optional arguments: *base*: The base of the logarithm. """ log_base = np.log(base) sign = np.sign(y) logs = np.log(np.abs(y) / log_base) return sign * logs
def filter_savitzky_golay(y, window_size=5, order=2, deriv=0, rate=1): """Smooth (and optionally differentiate) with a Savitzky-Golay filter.""" try: window_size = np.abs(np.int(window_size)) order = np.abs(np.int(order)) except ValueError: raise ValueError('window_size and order must be integers') if window_size % 2 != 1 or window_size < 1: raise ValueError('window_size size must be a positive odd number') if window_size < order + 2: raise ValueError('window_size is too small for the polynomials order') order_range = range(order + 1) half_window = (window_size - 1) // 2 # precompute limits minimum = np.min(y) maximum = np.max(y) # precompute coefficients b = np.mat([ [k ** i for i in order_range] for k in range(-half_window, half_window + 1) ]) m = np.linalg.pinv(b).A[deriv] * rate ** deriv * math.factorial(deriv) # pad the signal at the extremes with values taken from the original signal firstvals = y[0] - np.abs(y[1:half_window+1][::-1] - y[0]) lastvals = y[-1] + np.abs(y[-half_window-1:-1][::-1] - y[-1]) y = np.concatenate((firstvals, y, lastvals)) return np.clip( np.convolve(m[::-1], y, mode='valid'), minimum, maximum, )
def usage_function(parser): """Show usage and available curve functions.""" parser.print_usage() print('') print('available functions:') for function in sorted(FUNCTION): doc = FUNCTION[function].__doc__.strip().splitlines()[0] print(' %-12s %s' % (function + ':', doc)) return 0
def usage_palette(parser): """Show usage and available palettes.""" parser.print_usage() print('') print('available palettes:') for palette in sorted(PALETTE): print(' %-12s' % (palette,)) return 0
def run(): """Main entrypoint if invoked via the command line.""" import argparse parser = argparse.ArgumentParser( description=( 'Text mode diagrams using UTF-8 characters and fancy colors.' ), epilog=""" (1): only works for the horizontal bar graph, the first argument is the key and the second value is the data point. """, ) group = parser.add_argument_group('optional drawing mode') group.add_argument( '-G', '--graph', dest='mode', action='store_const', const='g', help='axis drawing mode (default)', ) group.add_argument( '-H', '--horizontal-bars', dest='mode', action='store_const', const='h', help='horizontal drawing mode', ) group.add_argument( '-V', '--vertical-bars', dest='mode', action='store_const', const='v', help='vertical drawing mode', ) group = parser.add_argument_group('optional drawing arguments') group.add_argument( '-a', '--axis', dest='axis', action='store_const', const=True, default=True, help='draw axis (default: yes)', ) group.add_argument( '-A', '--no-axis', dest='axis', action='store_const', const=False, help="don't draw axis", ) group.add_argument( '-c', '--color', dest='color', action='store_const', const=True, default=True, help='use colors (default: yes)', ) group.add_argument( '-C', '--no-color', dest='color', action='store_const', const=False, help="don't use colors", ) group.add_argument( '-l', '--legend', dest='legend', action='store_const', const=True, default=True, help='draw y-axis legend (default: yes)', ) group.add_argument( '-L', '--no-legend', dest='legend', action='store_const', const=False, help="don't draw y-axis legend", ) group.add_argument( '-f', '--function', default=None, metavar='function', help='curve manipulation function, use "help" for a list', ) group.add_argument( '-p', '--palette', default='default', metavar='palette', help='palette name, use "help" for a list', ) group.add_argument( '-x', '--width', default=0, type=int, metavar='characters', help='drawing width (default: auto)', ) group.add_argument( '-y', '--height', default=0, type=int, metavar='characters', help='drawing height (default: auto)', ) group.add_argument( '-r', '--reverse', default=False, action='store_true', help='reverse draw graph', ) group.add_argument( '--sort-by-column', default=0, type=int, metavar='index', help='sort input data based on given column', ) group = parser.add_argument_group('optional input and output arguments') group.add_argument( '-b', '--batch', default=False, action='store_true', help='batch mode (default: no)', ) group.add_argument( '-k', '--keys', default=False, action='store_true', help='input are key-value pairs (default: no) (1)', ) group.add_argument( '-s', '--sleep', default=0, type=float, help='batch poll sleep time (default: none)', ) group.add_argument( '-i', '--input', default='-', metavar='file', help='input file (default: stdin)', ) group.add_argument( '-o', '--output', default='-', metavar='file', help='output file (default: stdout)', ) group.add_argument( '-e', '--encoding', dest='encoding', default='', help='output encoding (default: auto)', ) option = parser.parse_args() if option.function == 'help': return usage_function(parser) if option.palette == 'help': return usage_palette(parser) option.mode = option.mode or 'g' option.size = Point((option.width, option.height)) if option.input in ['-', 'stdin']: istream = sys.stdin else: istream = open(option.input, 'r') if option.output in ['-', 'stdout']: try: ostream = sys.stdout.buffer except AttributeError: ostream = sys.stdout else: ostream = open(option.output, 'wb') option.encoding = option.encoding or Terminal().encoding if option.mode == 'g': engine = AxisGraph(option.size, option) elif option.mode == 'h': engine = HorizontalBarGraph(option.size, option) elif option.mode == 'v': engine = VerticalBarGraph(option.size, option) else: parser.error('invalid mode') return 1 engine.consume(istream, ostream, batch=option.batch)
def size(self): """Get the current terminal size.""" for fd in range(3): cr = self._ioctl_GWINSZ(fd) if cr: break if not cr: try: fd = os.open(os.ctermid(), os.O_RDONLY) cr = self._ioctl_GWINSZ(fd) os.close(fd) except Exception: pass if not cr: env = os.environ cr = (env.get('LINES', 25), env.get('COLUMNS', 80)) return int(cr[1]), int(cr[0])
def color(self, index): """Get the escape sequence for indexed color ``index``. The ``index`` is a color index in the 256 color space. The color space consists of: * 0x00-0x0f: default EGA colors * 0x10-0xe7: 6x6x6 RGB cubes * 0xe8-0xff: gray scale ramp """ if self.colors == 16: if index >= 8: return self.csi('bold') + self.csi('setaf', index - 8) else: return self.csi('sgr0') + self.csi('setaf', index) else: return self.csi('setaf', index)
def csi(self, capname, *args): """Return the escape sequence for the selected Control Sequence.""" value = curses.tigetstr(capname) if value is None: return b'' else: return curses.tparm(value, *args)
def csi_wrap(self, value, capname, *args): """Return a value wrapped in the selected CSI and does a reset.""" if isinstance(value, str): value = value.encode('utf-8') return b''.join([ self.csi(capname, *args), value, self.csi('sgr0'), ])
def consume(self, istream, ostream, batch=False): """Read points from istream and output to ostream.""" datapoints = [] # List of 2-tuples if batch: sleep = max(0.01, self.option.sleep) fd = istream.fileno() while True: try: if select.select([fd], [], [], sleep): try: line = istream.readline() if line == '': break datapoints.append(self.consume_line(line)) except ValueError: continue if self.option.sort_by_column: datapoints = sorted(datapoints, key=itemgetter(self.option.sort_by_column - 1)) if len(datapoints) > 1: datapoints = datapoints[-self.maximum_points:] self.update([dp[0] for dp in datapoints], [dp[1] for dp in datapoints]) self.render(ostream) time.sleep(sleep) except KeyboardInterrupt: break else: for line in istream: try: datapoints.append(self.consume_line(line)) except ValueError: pass if self.option.sort_by_column: datapoints = sorted(datapoints, key=itemgetter(self.option.sort_by_column - 1)) self.update([dp[0] for dp in datapoints], [dp[1] for dp in datapoints]) self.render(ostream)
def consume_line(self, line): """Consume data from a line.""" data = RE_VALUE_KEY.split(line.strip(), 1) if len(data) == 1: return float(data[0]), None else: return float(data[0]), data[1].strip()
def update(self, points, values=None): """Add a set of data points.""" self.values = values or [None] * len(points) if np is None: if self.option.function: warnings.warn('numpy not available, function ignored') self.points = points self.minimum = min(self.points) self.maximum = max(self.points) self.current = self.points[-1] else: self.points = self.apply_function(points) self.minimum = np.min(self.points) self.maximum = np.max(self.points) self.current = self.points[-1] if self.maximum == self.minimum: self.extents = 1 else: self.extents = (self.maximum - self.minimum) self.extents = (self.maximum - self.minimum)
def color_ramp(self, size): """Generate a color ramp for the current screen height.""" color = PALETTE.get(self.option.palette, {}) color = color.get(self.term.colors, None) color_ramp = [] if color is not None: ratio = len(color) / float(size) for i in range(int(size)): color_ramp.append(self.term.color(color[int(ratio * i)])) return color_ramp
def human(self, size, base=1000, units=' kMGTZ'): """Convert the input ``size`` to human readable, short form.""" sign = '+' if size >= 0 else '-' size = abs(size) if size < 1000: return '%s%d' % (sign, size) for i, suffix in enumerate(units): unit = 1000 ** (i + 1) if size < unit: return ('%s%.01f%s' % ( sign, size / float(unit) * base, suffix, )).strip() raise OverflowError
def apply_function(self, points): """Run the filter function on the provided points.""" if not self.option.function: return points if np is None: raise ImportError('numpy is not available') if ':' in self.option.function: function, arguments = self.option.function.split(':', 1) arguments = arguments.split(',') else: function = self.option.function arguments = [] # Resolve arguments arguments = list(map(self._function_argument, arguments)) # Resolve function filter_function = FUNCTION.get(function) if filter_function is None: raise TypeError('Invalid function "%s"' % (function,)) else: # We wrap in ``list()`` to consume generators and iterators, as # ``np.array`` doesn't do this for us. return filter_function(np.array(list(points)), *arguments)
def line(self, p1, p2, resolution=1): """Resolve the points to make a line between two points.""" xdiff = max(p1.x, p2.x) - min(p1.x, p2.x) ydiff = max(p1.y, p2.y) - min(p1.y, p2.y) xdir = [-1, 1][int(p1.x <= p2.x)] ydir = [-1, 1][int(p1.y <= p2.y)] r = int(round(max(xdiff, ydiff))) if r == 0: return for i in range((r + 1) * resolution): x = p1.x y = p1.y if xdiff: x += (float(i) * xdiff) / r * xdir / resolution if ydiff: y += (float(i) * ydiff) / r * ydir / resolution yield Point((x, y))
def set_text(self, point, text): """Set a text value in the screen canvas.""" if not self.option.legend: return if not isinstance(point, Point): point = Point(point) for offset, char in enumerate(str(text)): self.screen.canvas[point.y][point.x + offset] = char
def render(self, stream): """Render graph to stream.""" encoding = self.option.encoding or self.term.encoding or "utf8" if self.option.color: ramp = self.color_ramp(self.size.y)[::-1] else: ramp = None if self.cycle >= 1 and self.lines: stream.write(self.term.csi('cuu', self.lines)) zero = int(self.null / 4) # Zero crossing lines = 0 for y in range(self.screen.size.y): if y == zero and self.size.y > 1: stream.write(self.term.csi('smul')) if ramp: stream.write(ramp[y]) for x in range(self.screen.size.x): point = Point((x, y)) if point in self.screen: value = self.screen[point] if isinstance(value, int): stream.write(chr(self.base + value).encode(encoding)) else: stream.write(self.term.csi('sgr0')) stream.write(self.term.csi_wrap( value.encode(encoding), 'bold' )) if y == zero and self.size.y > 1: stream.write(self.term.csi('smul')) if ramp: stream.write(ramp[y]) else: stream.write(b' ') if y == zero and self.size.y > 1: stream.write(self.term.csi('rmul')) if ramp: stream.write(self.term.csi('sgr0')) stream.write(b'\n') lines += 1 stream.flush() self.cycle = self.cycle + 1 self.lines = lines
def _normalised_numpy(self): """Normalised data points using numpy.""" dx = (self.screen.width / float(len(self.points))) oy = (self.screen.height) points = np.array(self.points) - self.minimum points = points * 4.0 / self.extents * self.size.y for x, y in enumerate(points): yield Point(( dx * x, min(oy, oy - y), ))
def _normalised_python(self): """Normalised data points using pure Python.""" dx = (self.screen.width / float(len(self.points))) oy = (self.screen.height) for x, point in enumerate(self.points): y = (point - self.minimum) * 4.0 / self.extents * self.size.y yield Point(( dx * x, min(oy, oy - y), ))
def null(self): """Zero crossing value.""" if not self.option.axis: return -1 else: return self.screen.height - ( -self.minimum * 4.0 / self.extents * self.size.y )
def set(self, point): """Set pixel at (x, y) point.""" if not isinstance(point, Point): point = Point(point) rx = self.round(point.x) ry = self.round(point.y) item = Point((rx >> 1, min(ry >> 2, self.size.y))) self.screen[item] |= self.pixels[ry & 3][rx & 1]
def unset(self, point): """Unset pixel at (x, y) point.""" if not isinstance(point, Point): point = Point(point) x, y = self.round(point.x) >> 1, self.round(point.y) >> 2 if (x, y) not in self.screen: return if isinstance(self.screen[y][x], int): self.screen[(x, y)] &= ~self.pixels[y & 3][x & 1] else: del self.screen[(x, y)] if not self.screen.canvas.get(y): del self.screen[y]
def mem_size(self): '''used when allocating memory ingame''' data_len = self._data_mem_size node_count = len(list(self.xml_doc.iter(tag=etree.Element))) if self.compressed: size = 52 * node_count + data_len + 630 else: tags_len = 0 for e in self.xml_doc.iter(tag=etree.Element): e_len = max(len(e.tag), 8) e_len = (e_len + 3) & ~3 tags_len += e_len size = 56 * node_count + data_len + 630 + tags_len # debugging #print('nodes:{} ({}) data:{} ({})'.format(node_count,hex(node_count), data_len, hex(data_len))) return (size + 8) & ~7