Search is not available for this dataset
text
stringlengths 75
104k
|
---|
def davidson(lname, fname='.', omit_fname=False):
"""Return Davidson's Consonant Code.
This is a wrapper for :py:meth:`Davidson.encode`.
Parameters
----------
lname : str
Last name (or word) to be encoded
fname : str
First name (optional), of which the first character is included in the
code.
omit_fname : bool
Set to True to completely omit the first character of the first name
Returns
-------
str
Davidson's Consonant Code
Example
-------
>>> davidson('Gough')
'G .'
>>> davidson('pneuma')
'PNM .'
>>> davidson('knight')
'KNGT.'
>>> davidson('trice')
'TRC .'
>>> davidson('judge')
'JDG .'
>>> davidson('Smith', 'James')
'SMT J'
>>> davidson('Wasserman', 'Tabitha')
'WSRMT'
"""
return Davidson().encode(lname, fname, omit_fname)
|
def encode(self, lname, fname='.', omit_fname=False):
"""Return Davidson's Consonant Code.
Parameters
----------
lname : str
Last name (or word) to be encoded
fname : str
First name (optional), of which the first character is included in
the code.
omit_fname : bool
Set to True to completely omit the first character of the first
name
Returns
-------
str
Davidson's Consonant Code
Example
-------
>>> pe = Davidson()
>>> pe.encode('Gough')
'G .'
>>> pe.encode('pneuma')
'PNM .'
>>> pe.encode('knight')
'KNGT.'
>>> pe.encode('trice')
'TRC .'
>>> pe.encode('judge')
'JDG .'
>>> pe.encode('Smith', 'James')
'SMT J'
>>> pe.encode('Wasserman', 'Tabitha')
'WSRMT'
"""
lname = text_type(lname.upper())
code = self._delete_consecutive_repeats(
lname[:1] + lname[1:].translate(self._trans)
)
code = code[:4] + (4 - len(code)) * ' '
if not omit_fname:
code += fname[:1].upper()
return code
|
def ac_encode(text, probs):
"""Encode a text using arithmetic coding with the provided probabilities.
This is a wrapper for :py:meth:`Arithmetic.encode`.
Parameters
----------
text : str
A string to encode
probs : dict
A probability statistics dictionary generated by
:py:meth:`Arithmetic.train`
Returns
-------
tuple
The arithmetically coded text
Example
-------
>>> pr = ac_train('the quick brown fox jumped over the lazy dog')
>>> ac_encode('align', pr)
(16720586181, 34)
"""
coder = Arithmetic()
coder.set_probs(probs)
return coder.encode(text)
|
def ac_decode(longval, nbits, probs):
"""Decode the number to a string using the given statistics.
This is a wrapper for :py:meth:`Arithmetic.decode`.
Parameters
----------
longval : int
The first part of an encoded tuple from ac_encode
nbits : int
The second part of an encoded tuple from ac_encode
probs : dict
A probability statistics dictionary generated by
:py:meth:`Arithmetic.train`
Returns
-------
str
The arithmetically decoded text
Example
-------
>>> pr = ac_train('the quick brown fox jumped over the lazy dog')
>>> ac_decode(16720586181, 34, pr)
'align'
"""
coder = Arithmetic()
coder.set_probs(probs)
return coder.decode(longval, nbits)
|
def train(self, text):
r"""Generate a probability dict from the provided text.
Text to 0-order probability statistics as a dict
Parameters
----------
text : str
The text data over which to calculate probability statistics. This
must not contain the NUL (0x00) character because that is used to
indicate the end of data.
Example
-------
>>> ac = Arithmetic()
>>> ac.train('the quick brown fox jumped over the lazy dog')
>>> ac.get_probs()
{' ': (Fraction(0, 1), Fraction(8, 45)),
'o': (Fraction(8, 45), Fraction(4, 15)),
'e': (Fraction(4, 15), Fraction(16, 45)),
'u': (Fraction(16, 45), Fraction(2, 5)),
't': (Fraction(2, 5), Fraction(4, 9)),
'r': (Fraction(4, 9), Fraction(22, 45)),
'h': (Fraction(22, 45), Fraction(8, 15)),
'd': (Fraction(8, 15), Fraction(26, 45)),
'z': (Fraction(26, 45), Fraction(3, 5)),
'y': (Fraction(3, 5), Fraction(28, 45)),
'x': (Fraction(28, 45), Fraction(29, 45)),
'w': (Fraction(29, 45), Fraction(2, 3)),
'v': (Fraction(2, 3), Fraction(31, 45)),
'q': (Fraction(31, 45), Fraction(32, 45)),
'p': (Fraction(32, 45), Fraction(11, 15)),
'n': (Fraction(11, 15), Fraction(34, 45)),
'm': (Fraction(34, 45), Fraction(7, 9)),
'l': (Fraction(7, 9), Fraction(4, 5)),
'k': (Fraction(4, 5), Fraction(37, 45)),
'j': (Fraction(37, 45), Fraction(38, 45)),
'i': (Fraction(38, 45), Fraction(13, 15)),
'g': (Fraction(13, 15), Fraction(8, 9)),
'f': (Fraction(8, 9), Fraction(41, 45)),
'c': (Fraction(41, 45), Fraction(14, 15)),
'b': (Fraction(14, 15), Fraction(43, 45)),
'a': (Fraction(43, 45), Fraction(44, 45)),
'\x00': (Fraction(44, 45), Fraction(1, 1))}
"""
text = text_type(text)
if '\x00' in text:
text = text.replace('\x00', ' ')
counts = Counter(text)
counts['\x00'] = 1
tot_letters = sum(counts.values())
tot = 0
self._probs = {}
prev = Fraction(0)
for char, count in sorted(
counts.items(), key=lambda x: (x[1], x[0]), reverse=True
):
follow = Fraction(tot + count, tot_letters)
self._probs[char] = (prev, follow)
prev = follow
tot = tot + count
|
def encode(self, text):
"""Encode a text using arithmetic coding.
Text and the 0-order probability statistics -> longval, nbits
The encoded number is Fraction(longval, 2**nbits)
Parameters
----------
text : str
A string to encode
Returns
-------
tuple
The arithmetically coded text
Example
-------
>>> ac = Arithmetic('the quick brown fox jumped over the lazy dog')
>>> ac.encode('align')
(16720586181, 34)
"""
text = text_type(text)
if '\x00' in text:
text = text.replace('\x00', ' ')
minval = Fraction(0)
maxval = Fraction(1)
for char in text + '\x00':
prob_range = self._probs[char]
delta = maxval - minval
maxval = minval + prob_range[1] * delta
minval = minval + prob_range[0] * delta
# I tried without the /2 just to check. Doesn't work.
# Keep scaling up until the error range is >= 1. That
# gives me the minimum number of bits needed to resolve
# down to the end-of-data character.
delta = (maxval - minval) / 2
nbits = long(0)
while delta < 1:
nbits += 1
delta *= 2
# The below condition shouldn't ever be false
if nbits == 0: # pragma: no cover
return 0, 0
# using -1 instead of /2
avg = (maxval + minval) * 2 ** (nbits - 1)
# Could return a rational instead ...
# the division truncation is deliberate
return avg.numerator // avg.denominator, nbits
|
def decode(self, longval, nbits):
"""Decode the number to a string using the given statistics.
Parameters
----------
longval : int
The first part of an encoded tuple from encode
nbits : int
The second part of an encoded tuple from encode
Returns
-------
str
The arithmetically decoded text
Example
-------
>>> ac = Arithmetic('the quick brown fox jumped over the lazy dog')
>>> ac.decode(16720586181, 34)
'align'
"""
val = Fraction(longval, long(1) << nbits)
letters = []
probs_items = [
(char, minval, maxval)
for (char, (minval, maxval)) in self._probs.items()
]
char = '\x00'
while True:
for (char, minval, maxval) in probs_items: # noqa: B007
if minval <= val < maxval:
break
if char == '\x00':
break
letters.append(char)
delta = maxval - minval
val = (val - minval) / delta
return ''.join(letters)
|
def fuzzy_soundex(word, max_length=5, zero_pad=True):
"""Return the Fuzzy Soundex code for a word.
This is a wrapper for :py:meth:`FuzzySoundex.encode`.
Parameters
----------
word : str
The word to transform
max_length : int
The length of the code returned (defaults to 4)
zero_pad : bool
Pad the end of the return value with 0s to achieve a max_length string
Returns
-------
str
The Fuzzy Soundex value
Examples
--------
>>> fuzzy_soundex('Christopher')
'K6931'
>>> fuzzy_soundex('Niall')
'N4000'
>>> fuzzy_soundex('Smith')
'S5300'
>>> fuzzy_soundex('Smith')
'S5300'
"""
return FuzzySoundex().encode(word, max_length, zero_pad)
|
def encode(self, word, max_length=5, zero_pad=True):
"""Return the Fuzzy Soundex code for a word.
Parameters
----------
word : str
The word to transform
max_length : int
The length of the code returned (defaults to 4)
zero_pad : bool
Pad the end of the return value with 0s to achieve a max_length
string
Returns
-------
str
The Fuzzy Soundex value
Examples
--------
>>> pe = FuzzySoundex()
>>> pe.encode('Christopher')
'K6931'
>>> pe.encode('Niall')
'N4000'
>>> pe.encode('Smith')
'S5300'
>>> pe.encode('Smith')
'S5300'
"""
word = unicode_normalize('NFKD', text_type(word.upper()))
word = word.replace('ß', 'SS')
# Clamp max_length to [4, 64]
if max_length != -1:
max_length = min(max(4, max_length), 64)
else:
max_length = 64
if not word:
if zero_pad:
return '0' * max_length
return '0'
if word[:2] in {'CS', 'CZ', 'TS', 'TZ'}:
word = 'SS' + word[2:]
elif word[:2] == 'GN':
word = 'NN' + word[2:]
elif word[:2] in {'HR', 'WR'}:
word = 'RR' + word[2:]
elif word[:2] == 'HW':
word = 'WW' + word[2:]
elif word[:2] in {'KN', 'NG'}:
word = 'NN' + word[2:]
if word[-2:] == 'CH':
word = word[:-2] + 'KK'
elif word[-2:] == 'NT':
word = word[:-2] + 'TT'
elif word[-2:] == 'RT':
word = word[:-2] + 'RR'
elif word[-3:] == 'RDT':
word = word[:-3] + 'RR'
word = word.replace('CA', 'KA')
word = word.replace('CC', 'KK')
word = word.replace('CK', 'KK')
word = word.replace('CE', 'SE')
word = word.replace('CHL', 'KL')
word = word.replace('CL', 'KL')
word = word.replace('CHR', 'KR')
word = word.replace('CR', 'KR')
word = word.replace('CI', 'SI')
word = word.replace('CO', 'KO')
word = word.replace('CU', 'KU')
word = word.replace('CY', 'SY')
word = word.replace('DG', 'GG')
word = word.replace('GH', 'HH')
word = word.replace('MAC', 'MK')
word = word.replace('MC', 'MK')
word = word.replace('NST', 'NSS')
word = word.replace('PF', 'FF')
word = word.replace('PH', 'FF')
word = word.replace('SCH', 'SSS')
word = word.replace('TIO', 'SIO')
word = word.replace('TIA', 'SIO')
word = word.replace('TCH', 'CHH')
sdx = word.translate(self._trans)
sdx = sdx.replace('-', '')
# remove repeating characters
sdx = self._delete_consecutive_repeats(sdx)
if word[0] in {'H', 'W', 'Y'}:
sdx = word[0] + sdx
else:
sdx = word[0] + sdx[1:]
sdx = sdx.replace('0', '')
if zero_pad:
sdx += '0' * max_length
return sdx[:max_length]
|
def corpus_importer(self, corpus, n_val=1, bos='_START_', eos='_END_'):
r"""Fill in self.ngcorpus from a Corpus argument.
Parameters
----------
corpus :Corpus
The Corpus from which to initialize the n-gram corpus
n_val : int
Maximum n value for n-grams
bos : str
String to insert as an indicator of beginning of sentence
eos : str
String to insert as an indicator of end of sentence
Raises
------
TypeError
Corpus argument of the Corpus class required.
Example
-------
>>> tqbf = 'The quick brown fox jumped over the lazy dog.\n'
>>> tqbf += 'And then it slept.\n And the dog ran off.'
>>> ngcorp = NGramCorpus()
>>> ngcorp.corpus_importer(Corpus(tqbf))
"""
if not corpus or not isinstance(corpus, Corpus):
raise TypeError('Corpus argument of the Corpus class required.')
sentences = corpus.sents()
for sent in sentences:
ngs = Counter(sent)
for key in ngs.keys():
self._add_to_ngcorpus(self.ngcorpus, [key], ngs[key])
if n_val > 1:
if bos and bos != '':
sent = [bos] + sent
if eos and eos != '':
sent += [eos]
for i in range(2, n_val + 1):
for j in range(len(sent) - i + 1):
self._add_to_ngcorpus(
self.ngcorpus, sent[j : j + i], 1
)
|
def get_count(self, ngram, corpus=None):
r"""Get the count of an n-gram in the corpus.
Parameters
----------
ngram : str
The n-gram to retrieve the count of from the n-gram corpus
corpus : Corpus
The corpus
Returns
-------
int
The n-gram count
Examples
--------
>>> tqbf = 'The quick brown fox jumped over the lazy dog.\n'
>>> tqbf += 'And then it slept.\n And the dog ran off.'
>>> ngcorp = NGramCorpus(Corpus(tqbf))
>>> NGramCorpus(Corpus(tqbf)).get_count('the')
2
>>> NGramCorpus(Corpus(tqbf)).get_count('fox')
1
"""
if not corpus:
corpus = self.ngcorpus
# if ngram is empty, we're at our leaf node and should return the
# value in None
if not ngram:
return corpus[None]
# support strings or lists/tuples by splitting strings
if isinstance(ngram, (text_type, str)):
ngram = text_type(ngram).split()
# if ngram is not empty, check whether the next element is in the
# corpus; if so, recurse--if not, return 0
if ngram[0] in corpus:
return self.get_count(ngram[1:], corpus[ngram[0]])
return 0
|
def _add_to_ngcorpus(self, corpus, words, count):
"""Build up a corpus entry recursively.
Parameters
----------
corpus : Corpus
The corpus
words : [str]
Words to add to the corpus
count : int
Count of words
"""
if words[0] not in corpus:
corpus[words[0]] = Counter()
if len(words) == 1:
corpus[words[0]][None] += count
else:
self._add_to_ngcorpus(corpus[words[0]], words[1:], count)
|
def gng_importer(self, corpus_file):
"""Fill in self.ngcorpus from a Google NGram corpus file.
Parameters
----------
corpus_file : file
The Google NGram file from which to initialize the n-gram corpus
"""
with c_open(corpus_file, 'r', encoding='utf-8') as gng:
for line in gng:
line = line.rstrip().split('\t')
words = line[0].split()
self._add_to_ngcorpus(self.ngcorpus, words, int(line[2]))
|
def tf(self, term):
r"""Return term frequency.
Parameters
----------
term : str
The term for which to calculate tf
Returns
-------
float
The term frequency (tf)
Raises
------
ValueError
tf can only calculate the frequency of individual words
Examples
--------
>>> tqbf = 'The quick brown fox jumped over the lazy dog.\n'
>>> tqbf += 'And then it slept.\n And the dog ran off.'
>>> ngcorp = NGramCorpus(Corpus(tqbf))
>>> NGramCorpus(Corpus(tqbf)).tf('the')
1.3010299956639813
>>> NGramCorpus(Corpus(tqbf)).tf('fox')
1.0
"""
if ' ' in term:
raise ValueError(
'tf can only calculate the term frequency of individual words'
)
tcount = self.get_count(term)
if tcount == 0:
return 0.0
return 1 + log10(tcount)
|
def encode(self, word):
"""Return the Standardized Phonetic Frequency Code (SPFC) of a word.
Parameters
----------
word : str
The word to transform
Returns
-------
str
The SPFC value
Raises
------
AttributeError
Word attribute must be a string with a space or period dividing the
first and last names or a tuple/list consisting of the first and
last names
Examples
--------
>>> pe = SPFC()
>>> pe.encode('Christopher Smith')
'01160'
>>> pe.encode('Christopher Schmidt')
'01160'
>>> pe.encode('Niall Smith')
'01660'
>>> pe.encode('Niall Schmidt')
'01660'
>>> pe.encode('L.Smith')
'01960'
>>> pe.encode('R.Miller')
'65490'
>>> pe.encode(('L', 'Smith'))
'01960'
>>> pe.encode(('R', 'Miller'))
'65490'
"""
def _raise_word_ex():
"""Raise an AttributeError.
Raises
------
AttributeError
Word attribute must be a string with a space or period dividing
the first and last names or a tuple/list consisting of the
first and last names
"""
raise AttributeError(
'Word attribute must be a string with a space or period '
+ 'dividing the first and last names or a tuple/list '
+ 'consisting of the first and last names'
)
if not word:
return ''
names = []
if isinstance(word, (str, text_type)):
names = word.split('.', 1)
if len(names) != 2:
names = word.split(' ', 1)
if len(names) != 2:
_raise_word_ex()
elif hasattr(word, '__iter__'):
if len(word) != 2:
_raise_word_ex()
names = word
else:
_raise_word_ex()
names = [
unicode_normalize(
'NFKD', text_type(_.strip().replace('ß', 'SS').upper())
)
for _ in names
]
code = ''
def _steps_one_to_three(name):
"""Perform the first three steps of SPFC.
Parameters
----------
name : str
Name to transform
Returns
-------
str
Transformed name
"""
# filter out non A-Z
name = ''.join(_ for _ in name if _ in self._uc_set)
# 1. In the field, convert DK to K, DT to T, SC to S, KN to N,
# and MN to N
for subst in self._substitutions:
name = name.replace(subst[0], subst[1])
# 2. In the name field, replace multiple letters with a single
# letter
name = self._delete_consecutive_repeats(name)
# 3. Remove vowels, W, H, and Y, but keep the first letter in the
# name field.
if name:
name = name[0] + ''.join(
_
for _ in name[1:]
if _ not in {'A', 'E', 'H', 'I', 'O', 'U', 'W', 'Y'}
)
return name
names = [_steps_one_to_three(_) for _ in names]
# 4. The first digit of the code is obtained using PF1 and the first
# letter of the name field. Remove this letter after coding.
if names[1]:
code += names[1][0].translate(self._pf1)
names[1] = names[1][1:]
# 5. Using the last letters of the name, use Table PF3 to obtain the
# second digit of the code. Use as many letters as possible and remove
# after coding.
if names[1]:
if names[1][-3:] == 'STN' or names[1][-3:] == 'PRS':
code += '8'
names[1] = names[1][:-3]
elif names[1][-2:] == 'SN':
code += '8'
names[1] = names[1][:-2]
elif names[1][-3:] == 'STR':
code += '9'
names[1] = names[1][:-3]
elif names[1][-2:] in {'SR', 'TN', 'TD'}:
code += '9'
names[1] = names[1][:-2]
elif names[1][-3:] == 'DRS':
code += '7'
names[1] = names[1][:-3]
elif names[1][-2:] in {'TR', 'MN'}:
code += '7'
names[1] = names[1][:-2]
else:
code += names[1][-1].translate(self._pf3)
names[1] = names[1][:-1]
# 6. The third digit is found using Table PF2 and the first character
# of the first name. Remove after coding.
if names[0]:
code += names[0][0].translate(self._pf2)
names[0] = names[0][1:]
# 7. The fourth digit is found using Table PF2 and the first character
# of the name field. If no letters remain use zero. After coding remove
# the letter.
# 8. The fifth digit is found in the same manner as the fourth using
# the remaining characters of the name field if any.
for _ in range(2):
if names[1]:
code += names[1][0].translate(self._pf2)
names[1] = names[1][1:]
else:
code += '0'
return code
|
def encode(self, word, terminator='\0'):
r"""Return the Burrows-Wheeler transformed form of a word.
Parameters
----------
word : str
The word to transform using BWT
terminator : str
A character added to signal the end of the string
Returns
-------
str
Word encoded by BWT
Raises
------
ValueError
Specified terminator absent from code.
Examples
--------
>>> bwt = BWT()
>>> bwt.encode('align')
'n\x00ilag'
>>> bwt.encode('banana')
'annb\x00aa'
>>> bwt.encode('banana', '@')
'annb@aa'
"""
if word:
if terminator in word:
raise ValueError(
'Specified terminator, {}, already in word.'.format(
terminator if terminator != '\0' else '\\0'
)
)
else:
word += terminator
wordlist = sorted(
word[i:] + word[:i] for i in range(len(word))
)
return ''.join([w[-1] for w in wordlist])
else:
return terminator
|
def decode(self, code, terminator='\0'):
r"""Return a word decoded from BWT form.
Parameters
----------
code : str
The word to transform from BWT form
terminator : str
A character added to signal the end of the string
Returns
-------
str
Word decoded by BWT
Raises
------
ValueError
Specified terminator absent from code.
Examples
--------
>>> bwt = BWT()
>>> bwt.decode('n\x00ilag')
'align'
>>> bwt.decode('annb\x00aa')
'banana'
>>> bwt.decode('annb@aa', '@')
'banana'
"""
if code:
if terminator not in code:
raise ValueError(
'Specified terminator, {}, absent from code.'.format(
terminator if terminator != '\0' else '\\0'
)
)
else:
wordlist = [''] * len(code)
for i in range(len(code)):
wordlist = sorted(
code[i] + wordlist[i] for i in range(len(code))
)
rows = [w for w in wordlist if w[-1] == terminator][0]
return rows.rstrip(terminator)
else:
return ''
|
def dist_abs(self, src, tar):
"""Return the indel distance between two strings.
Parameters
----------
src : str
Source string for comparison
tar : str
Target string for comparison
Returns
-------
int
Indel distance
Examples
--------
>>> cmp = Indel()
>>> cmp.dist_abs('cat', 'hat')
2
>>> cmp.dist_abs('Niall', 'Neil')
3
>>> cmp.dist_abs('Colin', 'Cuilen')
5
>>> cmp.dist_abs('ATCG', 'TAGC')
4
"""
return self._lev.dist_abs(
src, tar, mode='lev', cost=(1, 1, 9999, 9999)
)
|
def dist(self, src, tar):
"""Return the normalized indel distance between two strings.
This is equivalent to normalized Levenshtein distance, when only
inserts and deletes are possible.
Parameters
----------
src : str
Source string for comparison
tar : str
Target string for comparison
Returns
-------
float
Normalized indel distance
Examples
--------
>>> cmp = Indel()
>>> round(cmp.dist('cat', 'hat'), 12)
0.333333333333
>>> round(cmp.dist('Niall', 'Neil'), 12)
0.333333333333
>>> round(cmp.dist('Colin', 'Cuilen'), 12)
0.454545454545
>>> cmp.dist('ATCG', 'TAGC')
0.5
"""
if src == tar:
return 0.0
return self.dist_abs(src, tar) / (len(src) + len(tar))
|
def encode(self, word, primary_only=False):
"""Return the Haase Phonetik (numeric output) code for a word.
While the output code is numeric, it is nevertheless a str.
Parameters
----------
word : str
The word to transform
primary_only : bool
If True, only the primary code is returned
Returns
-------
tuple
The Haase Phonetik value as a numeric string
Examples
--------
>>> pe = Haase()
>>> pe.encode('Joachim')
('9496',)
>>> pe.encode('Christoph')
('4798293', '8798293')
>>> pe.encode('Jörg')
('974',)
>>> pe.encode('Smith')
('8692',)
>>> pe.encode('Schmidt')
('8692', '4692')
"""
def _after(word, pos, letters):
"""Return True if word[pos] follows one of the supplied letters.
Parameters
----------
word : str
Word to modify
pos : int
Position to examine
letters : set
Letters to check for
Returns
-------
bool
True if word[pos] follows one of letters
"""
if pos > 0 and word[pos - 1] in letters:
return True
return False
def _before(word, pos, letters):
"""Return True if word[pos] precedes one of the supplied letters.
Parameters
----------
word : str
Word to modify
pos : int
Position to examine
letters : set
Letters to check for
Returns
-------
bool
True if word[pos] precedes one of letters
"""
if pos + 1 < len(word) and word[pos + 1] in letters:
return True
return False
word = unicode_normalize('NFKD', text_type(word.upper()))
word = word.replace('ß', 'SS')
word = word.replace('Ä', 'AE')
word = word.replace('Ö', 'OE')
word = word.replace('Ü', 'UE')
word = ''.join(c for c in word if c in self._uc_set)
variants = []
if primary_only:
variants = [word]
else:
pos = 0
if word[:2] == 'CH':
variants.append(('CH', 'SCH'))
pos += 2
len_3_vars = {
'OWN': 'AUN',
'WSK': 'RSK',
'SCH': 'CH',
'GLI': 'LI',
'AUX': 'O',
'EUX': 'O',
}
while pos < len(word):
if word[pos : pos + 4] == 'ILLE':
variants.append(('ILLE', 'I'))
pos += 4
elif word[pos : pos + 3] in len_3_vars:
variants.append(
(word[pos : pos + 3], len_3_vars[word[pos : pos + 3]])
)
pos += 3
elif word[pos : pos + 2] == 'RB':
variants.append(('RB', 'RW'))
pos += 2
elif len(word[pos:]) == 3 and word[pos:] == 'EAU':
variants.append(('EAU', 'O'))
pos += 3
elif len(word[pos:]) == 1 and word[pos:] in {'A', 'O'}:
if word[pos:] == 'O':
variants.append(('O', 'OW'))
else:
variants.append(('A', 'AR'))
pos += 1
else:
variants.append((word[pos],))
pos += 1
variants = [''.join(letters) for letters in product(*variants)]
def _haase_code(word):
sdx = ''
for i in range(len(word)):
if word[i] in self._uc_v_set:
sdx += '9'
elif word[i] == 'B':
sdx += '1'
elif word[i] == 'P':
if _before(word, i, {'H'}):
sdx += '3'
else:
sdx += '1'
elif word[i] in {'D', 'T'}:
if _before(word, i, {'C', 'S', 'Z'}):
sdx += '8'
else:
sdx += '2'
elif word[i] in {'F', 'V', 'W'}:
sdx += '3'
elif word[i] in {'G', 'K', 'Q'}:
sdx += '4'
elif word[i] == 'C':
if _after(word, i, {'S', 'Z'}):
sdx += '8'
elif i == 0:
if _before(
word,
i,
{'A', 'H', 'K', 'L', 'O', 'Q', 'R', 'U', 'X'},
):
sdx += '4'
else:
sdx += '8'
elif _before(word, i, {'A', 'H', 'K', 'O', 'Q', 'U', 'X'}):
sdx += '4'
else:
sdx += '8'
elif word[i] == 'X':
if _after(word, i, {'C', 'K', 'Q'}):
sdx += '8'
else:
sdx += '48'
elif word[i] == 'L':
sdx += '5'
elif word[i] in {'M', 'N'}:
sdx += '6'
elif word[i] == 'R':
sdx += '7'
elif word[i] in {'S', 'Z'}:
sdx += '8'
sdx = self._delete_consecutive_repeats(sdx)
return sdx
encoded = tuple(_haase_code(word) for word in variants)
if len(encoded) > 1:
encoded_set = set()
encoded_single = []
for code in encoded:
if code not in encoded_set:
encoded_set.add(code)
encoded_single.append(code)
return tuple(encoded_single)
return encoded
|
def sim(self, src, tar, *args, **kwargs):
"""Return similarity.
Parameters
----------
src : str
Source string for comparison
tar : str
Target string for comparison
*args
Variable length argument list.
**kwargs
Arbitrary keyword arguments.
Returns
-------
float
Similarity
"""
return 1.0 - self.dist(src, tar, *args, **kwargs)
|
def dist_abs(self, src, tar, *args, **kwargs):
"""Return absolute distance.
Parameters
----------
src : str
Source string for comparison
tar : str
Target string for comparison
*args
Variable length argument list.
**kwargs
Arbitrary keyword arguments.
Returns
-------
int
Absolute distance
"""
return self.dist(src, tar, *args, **kwargs)
|
def occurrence_fingerprint(
word, n_bits=16, most_common=MOST_COMMON_LETTERS_CG
):
"""Return the occurrence fingerprint.
This is a wrapper for :py:meth:`Occurrence.fingerprint`.
Parameters
----------
word : str
The word to fingerprint
n_bits : int
Number of bits in the fingerprint returned
most_common : list
The most common tokens in the target language, ordered by frequency
Returns
-------
int
The occurrence fingerprint
Examples
--------
>>> bin(occurrence_fingerprint('hat'))
'0b110000100000000'
>>> bin(occurrence_fingerprint('niall'))
'0b10110000100000'
>>> bin(occurrence_fingerprint('colin'))
'0b1110000110000'
>>> bin(occurrence_fingerprint('atcg'))
'0b110000000010000'
>>> bin(occurrence_fingerprint('entreatment'))
'0b1110010010000100'
"""
return Occurrence().fingerprint(word, n_bits, most_common)
|
def fingerprint(self, word, n_bits=16, most_common=MOST_COMMON_LETTERS_CG):
"""Return the occurrence fingerprint.
Parameters
----------
word : str
The word to fingerprint
n_bits : int
Number of bits in the fingerprint returned
most_common : list
The most common tokens in the target language, ordered by frequency
Returns
-------
int
The occurrence fingerprint
Examples
--------
>>> of = Occurrence()
>>> bin(of.fingerprint('hat'))
'0b110000100000000'
>>> bin(of.fingerprint('niall'))
'0b10110000100000'
>>> bin(of.fingerprint('colin'))
'0b1110000110000'
>>> bin(of.fingerprint('atcg'))
'0b110000000010000'
>>> bin(of.fingerprint('entreatment'))
'0b1110010010000100'
"""
word = set(word)
fingerprint = 0
for letter in most_common:
if letter in word:
fingerprint += 1
n_bits -= 1
if n_bits:
fingerprint <<= 1
else:
break
n_bits -= 1
if n_bits > 0:
fingerprint <<= n_bits
return fingerprint
|
def sim_baystat(src, tar, min_ss_len=None, left_ext=None, right_ext=None):
"""Return the Baystat similarity.
This is a wrapper for :py:meth:`Baystat.sim`.
Parameters
----------
src : str
Source string for comparison
tar : str
Target string for comparison
min_ss_len : int
Minimum substring length to be considered
left_ext :int
Left-side extension length
right_ext :int
Right-side extension length
Returns
-------
float
The Baystat similarity
Examples
--------
>>> round(sim_baystat('cat', 'hat'), 12)
0.666666666667
>>> sim_baystat('Niall', 'Neil')
0.4
>>> round(sim_baystat('Colin', 'Cuilen'), 12)
0.166666666667
>>> sim_baystat('ATCG', 'TAGC')
0.0
"""
return Baystat().sim(src, tar, min_ss_len, left_ext, right_ext)
|
def dist_baystat(src, tar, min_ss_len=None, left_ext=None, right_ext=None):
"""Return the Baystat distance.
This is a wrapper for :py:meth:`Baystat.dist`.
Parameters
----------
src : str
Source string for comparison
tar : str
Target string for comparison
min_ss_len : int
Minimum substring length to be considered
left_ext : int
Left-side extension length
right_ext : int
Right-side extension length
Returns
-------
float
The Baystat distance
Examples
--------
>>> round(dist_baystat('cat', 'hat'), 12)
0.333333333333
>>> dist_baystat('Niall', 'Neil')
0.6
>>> round(dist_baystat('Colin', 'Cuilen'), 12)
0.833333333333
>>> dist_baystat('ATCG', 'TAGC')
1.0
"""
return Baystat().dist(src, tar, min_ss_len, left_ext, right_ext)
|
def sim(self, src, tar, min_ss_len=None, left_ext=None, right_ext=None):
"""Return the Baystat similarity.
Parameters
----------
src : str
Source string for comparison
tar : str
Target string for comparison
min_ss_len : int
Minimum substring length to be considered
left_ext :int
Left-side extension length
right_ext :int
Right-side extension length
Returns
-------
float
The Baystat similarity
Examples
--------
>>> cmp = Baystat()
>>> round(cmp.sim('cat', 'hat'), 12)
0.666666666667
>>> cmp.sim('Niall', 'Neil')
0.4
>>> round(cmp.sim('Colin', 'Cuilen'), 12)
0.166666666667
>>> cmp.sim('ATCG', 'TAGC')
0.0
"""
if src == tar:
return 1.0
if not src or not tar:
return 0.0
max_len = max(len(src), len(tar))
if not (min_ss_len and left_ext and right_ext):
# These can be set via arguments to the function. Otherwise they
# are set automatically based on values from the article.
if max_len >= 7:
min_ss_len = 2
left_ext = 2
right_ext = 2
else:
# The paper suggests that for short names, (exclusively) one or
# the other of left_ext and right_ext can be 1, with good
# results. I use 0 & 0 as the default in this case.
min_ss_len = 1
left_ext = 0
right_ext = 0
pos = 0
match_len = 0
while True:
if pos + min_ss_len > len(src):
return match_len / max_len
hit_len = 0
ix = 1
substring = src[pos : pos + min_ss_len]
search_begin = pos - left_ext
if search_begin < 0:
search_begin = 0
left_ext_len = pos
else:
left_ext_len = left_ext
if pos + min_ss_len + right_ext >= len(tar):
right_ext_len = len(tar) - pos - min_ss_len
else:
right_ext_len = right_ext
if (
search_begin + left_ext_len + min_ss_len + right_ext_len
> search_begin
):
search_val = tar[
search_begin : (
search_begin
+ left_ext_len
+ min_ss_len
+ right_ext_len
)
]
else:
search_val = ''
flagged_tar = ''
while substring in search_val and pos + ix <= len(src):
hit_len = len(substring)
flagged_tar = tar.replace(substring, '#' * hit_len)
if pos + min_ss_len + ix <= len(src):
substring = src[pos : pos + min_ss_len + ix]
if pos + min_ss_len + right_ext_len + 1 <= len(tar):
right_ext_len += 1
# The following is unnecessary, I think
# if (search_begin + left_ext_len + min_ss_len + right_ext_len
# <= len(tar)):
search_val = tar[
search_begin : (
search_begin
+ left_ext_len
+ min_ss_len
+ right_ext_len
)
]
ix += 1
if hit_len > 0:
tar = flagged_tar
match_len += hit_len
pos += ix
|
def sim_tversky(src, tar, qval=2, alpha=1, beta=1, bias=None):
"""Return the Tversky index of two strings.
This is a wrapper for :py:meth:`Tversky.sim`.
Parameters
----------
src : str
Source string (or QGrams/Counter objects) for comparison
tar : str
Target string (or QGrams/Counter objects) for comparison
qval : int
The length of each q-gram; 0 for non-q-gram version
alpha : float
Tversky index parameter as described above
beta : float
Tversky index parameter as described above
bias : float
The symmetric Tversky index bias parameter
Returns
-------
float
Tversky similarity
Examples
--------
>>> sim_tversky('cat', 'hat')
0.3333333333333333
>>> sim_tversky('Niall', 'Neil')
0.2222222222222222
>>> sim_tversky('aluminum', 'Catalan')
0.0625
>>> sim_tversky('ATCG', 'TAGC')
0.0
"""
return Tversky().sim(src, tar, qval, alpha, beta, bias)
|
def dist_tversky(src, tar, qval=2, alpha=1, beta=1, bias=None):
"""Return the Tversky distance between two strings.
This is a wrapper for :py:meth:`Tversky.dist`.
Parameters
----------
src : str
Source string (or QGrams/Counter objects) for comparison
tar : str
Target string (or QGrams/Counter objects) for comparison
qval : int
The length of each q-gram; 0 for non-q-gram version
alpha : float
Tversky index parameter as described above
beta : float
Tversky index parameter as described above
bias : float
The symmetric Tversky index bias parameter
Returns
-------
float
Tversky distance
Examples
--------
>>> dist_tversky('cat', 'hat')
0.6666666666666667
>>> dist_tversky('Niall', 'Neil')
0.7777777777777778
>>> dist_tversky('aluminum', 'Catalan')
0.9375
>>> dist_tversky('ATCG', 'TAGC')
1.0
"""
return Tversky().dist(src, tar, qval, alpha, beta, bias)
|
def sim(self, src, tar, qval=2, alpha=1, beta=1, bias=None):
"""Return the Tversky index of two strings.
Parameters
----------
src : str
Source string (or QGrams/Counter objects) for comparison
tar : str
Target string (or QGrams/Counter objects) for comparison
qval : int
The length of each q-gram; 0 for non-q-gram version
alpha : float
Tversky index parameter as described above
beta : float
Tversky index parameter as described above
bias : float
The symmetric Tversky index bias parameter
Returns
-------
float
Tversky similarity
Raises
------
ValueError
Unsupported weight assignment; alpha and beta must be greater than
or equal to 0.
Examples
--------
>>> cmp = Tversky()
>>> cmp.sim('cat', 'hat')
0.3333333333333333
>>> cmp.sim('Niall', 'Neil')
0.2222222222222222
>>> cmp.sim('aluminum', 'Catalan')
0.0625
>>> cmp.sim('ATCG', 'TAGC')
0.0
"""
if alpha < 0 or beta < 0:
raise ValueError(
'Unsupported weight assignment; alpha and beta '
+ 'must be greater than or equal to 0.'
)
if src == tar:
return 1.0
elif not src or not tar:
return 0.0
q_src, q_tar = self._get_qgrams(src, tar, qval)
q_src_mag = sum(q_src.values())
q_tar_mag = sum(q_tar.values())
q_intersection_mag = sum((q_src & q_tar).values())
if not q_src or not q_tar:
return 0.0
if bias is None:
return q_intersection_mag / (
q_intersection_mag
+ alpha * (q_src_mag - q_intersection_mag)
+ beta * (q_tar_mag - q_intersection_mag)
)
a_val = min(
q_src_mag - q_intersection_mag, q_tar_mag - q_intersection_mag
)
b_val = max(
q_src_mag - q_intersection_mag, q_tar_mag - q_intersection_mag
)
c_val = q_intersection_mag + bias
return c_val / (beta * (alpha * a_val + (1 - alpha) * b_val) + c_val)
|
def lcsseq(self, src, tar):
"""Return the longest common subsequence of two strings.
Based on the dynamic programming algorithm from
http://rosettacode.org/wiki/Longest_common_subsequence
:cite:`rosettacode:2018b`. This is licensed GFDL 1.2.
Modifications include:
conversion to a numpy array in place of a list of lists
Parameters
----------
src : str
Source string for comparison
tar : str
Target string for comparison
Returns
-------
str
The longest common subsequence
Examples
--------
>>> sseq = LCSseq()
>>> sseq.lcsseq('cat', 'hat')
'at'
>>> sseq.lcsseq('Niall', 'Neil')
'Nil'
>>> sseq.lcsseq('aluminum', 'Catalan')
'aln'
>>> sseq.lcsseq('ATCG', 'TAGC')
'AC'
"""
lengths = np_zeros((len(src) + 1, len(tar) + 1), dtype=np_int)
# row 0 and column 0 are initialized to 0 already
for i, src_char in enumerate(src):
for j, tar_char in enumerate(tar):
if src_char == tar_char:
lengths[i + 1, j + 1] = lengths[i, j] + 1
else:
lengths[i + 1, j + 1] = max(
lengths[i + 1, j], lengths[i, j + 1]
)
# read the substring out from the matrix
result = ''
i, j = len(src), len(tar)
while i != 0 and j != 0:
if lengths[i, j] == lengths[i - 1, j]:
i -= 1
elif lengths[i, j] == lengths[i, j - 1]:
j -= 1
else:
result = src[i - 1] + result
i -= 1
j -= 1
return result
|
def sim(self, src, tar):
r"""Return the longest common subsequence similarity of two strings.
Longest common subsequence similarity (:math:`sim_{LCSseq}`).
This employs the LCSseq function to derive a similarity metric:
:math:`sim_{LCSseq}(s,t) = \frac{|LCSseq(s,t)|}{max(|s|, |t|)}`
Parameters
----------
src : str
Source string for comparison
tar : str
Target string for comparison
Returns
-------
float
LCSseq similarity
Examples
--------
>>> sseq = LCSseq()
>>> sseq.sim('cat', 'hat')
0.6666666666666666
>>> sseq.sim('Niall', 'Neil')
0.6
>>> sseq.sim('aluminum', 'Catalan')
0.375
>>> sseq.sim('ATCG', 'TAGC')
0.5
"""
if src == tar:
return 1.0
elif not src or not tar:
return 0.0
return len(self.lcsseq(src, tar)) / max(len(src), len(tar))
|
def sim(self, src, tar):
"""Return the prefix similarity of two strings.
Prefix similarity is the ratio of the length of the shorter term that
exactly matches the longer term to the length of the shorter term,
beginning at the start of both terms.
Parameters
----------
src : str
Source string for comparison
tar : str
Target string for comparison
Returns
-------
float
Prefix similarity
Examples
--------
>>> cmp = Prefix()
>>> cmp.sim('cat', 'hat')
0.0
>>> cmp.sim('Niall', 'Neil')
0.25
>>> cmp.sim('aluminum', 'Catalan')
0.0
>>> cmp.sim('ATCG', 'TAGC')
0.0
"""
if src == tar:
return 1.0
if not src or not tar:
return 0.0
min_word, max_word = (src, tar) if len(src) < len(tar) else (tar, src)
min_len = len(min_word)
for i in range(min_len, 0, -1):
if min_word[:i] == max_word[:i]:
return i / min_len
return 0.0
|
def count_fingerprint(word, n_bits=16, most_common=MOST_COMMON_LETTERS_CG):
"""Return the count fingerprint.
This is a wrapper for :py:meth:`Count.fingerprint`.
Parameters
----------
word : str
The word to fingerprint
n_bits : int
Number of bits in the fingerprint returned
most_common : list
The most common tokens in the target language, ordered by frequency
Returns
-------
int
The count fingerprint
Examples
--------
>>> bin(count_fingerprint('hat'))
'0b1010000000001'
>>> bin(count_fingerprint('niall'))
'0b10001010000'
>>> bin(count_fingerprint('colin'))
'0b101010000'
>>> bin(count_fingerprint('atcg'))
'0b1010000000000'
>>> bin(count_fingerprint('entreatment'))
'0b1111010000100000'
"""
return Count().fingerprint(word, n_bits, most_common)
|
def fingerprint(self, word, n_bits=16, most_common=MOST_COMMON_LETTERS_CG):
"""Return the count fingerprint.
Parameters
----------
word : str
The word to fingerprint
n_bits : int
Number of bits in the fingerprint returned
most_common : list
The most common tokens in the target language, ordered by frequency
Returns
-------
int
The count fingerprint
Examples
--------
>>> cf = Count()
>>> bin(cf.fingerprint('hat'))
'0b1010000000001'
>>> bin(cf.fingerprint('niall'))
'0b10001010000'
>>> bin(cf.fingerprint('colin'))
'0b101010000'
>>> bin(cf.fingerprint('atcg'))
'0b1010000000000'
>>> bin(cf.fingerprint('entreatment'))
'0b1111010000100000'
"""
if n_bits % 2:
n_bits += 1
word = Counter(word)
fingerprint = 0
for letter in most_common:
if n_bits:
fingerprint <<= 2
fingerprint += word[letter] & 3
n_bits -= 2
else:
break
if n_bits:
fingerprint <<= n_bits
return fingerprint
|
def phonetic_fingerprint(
phrase, phonetic_algorithm=double_metaphone, joiner=' ', *args, **kwargs
):
"""Return the phonetic fingerprint of a phrase.
This is a wrapper for :py:meth:`Phonetic.fingerprint`.
Parameters
----------
phrase : str
The string from which to calculate the phonetic fingerprint
phonetic_algorithm : function
A phonetic algorithm that takes a string and returns a string
(presumably a phonetic representation of the original string). By
default, this function uses :py:func:`.double_metaphone`.
joiner : str
The string that will be placed between each word
*args
Variable length argument list
**kwargs
Arbitrary keyword arguments
Returns
-------
str
The phonetic fingerprint of the phrase
Examples
--------
>>> phonetic_fingerprint('The quick brown fox jumped over the lazy dog.')
'0 afr fks jmpt kk ls prn tk'
>>> from abydos.phonetic import soundex
>>> phonetic_fingerprint('The quick brown fox jumped over the lazy dog.',
... phonetic_algorithm=soundex)
'b650 d200 f200 j513 l200 o160 q200 t000'
"""
return Phonetic().fingerprint(
phrase, phonetic_algorithm, joiner, *args, **kwargs
)
|
def fingerprint(
self,
phrase,
phonetic_algorithm=double_metaphone,
joiner=' ',
*args,
**kwargs
):
"""Return the phonetic fingerprint of a phrase.
Parameters
----------
phrase : str
The string from which to calculate the phonetic fingerprint
phonetic_algorithm : function
A phonetic algorithm that takes a string and returns a string
(presumably a phonetic representation of the original string). By
default, this function uses :py:func:`.double_metaphone`.
joiner : str
The string that will be placed between each word
*args
Variable length argument list
**kwargs
Arbitrary keyword arguments
Returns
-------
str
The phonetic fingerprint of the phrase
Examples
--------
>>> pf = Phonetic()
>>> pf.fingerprint('The quick brown fox jumped over the lazy dog.')
'0 afr fks jmpt kk ls prn tk'
>>> from abydos.phonetic import soundex
>>> pf.fingerprint('The quick brown fox jumped over the lazy dog.',
... phonetic_algorithm=soundex)
'b650 d200 f200 j513 l200 o160 q200 t000'
"""
phonetic = ''
for word in phrase.split():
word = phonetic_algorithm(word, *args, **kwargs)
if not isinstance(word, text_type) and hasattr(word, '__iter__'):
word = word[0]
phonetic += word + joiner
phonetic = phonetic[: -len(joiner)]
return super(self.__class__, self).fingerprint(phonetic)
|
def docs_of_words(self):
r"""Return the docs in the corpus, with sentences flattened.
Each list within the corpus represents all the words of that document.
Thus the sentence level of lists has been flattened.
Returns
-------
[[str]]
The docs in the corpus as a list of list of strs
Example
-------
>>> tqbf = 'The quick brown fox jumped over the lazy dog.\n'
>>> tqbf += 'And then it slept.\n And the dog ran off.'
>>> corp = Corpus(tqbf)
>>> corp.docs_of_words()
[['The', 'quick', 'brown', 'fox', 'jumped', 'over', 'the', 'lazy',
'dog.', 'And', 'then', 'it', 'slept.', 'And', 'the', 'dog', 'ran',
'off.']]
>>> len(corp.docs_of_words())
1
"""
return [
[words for sents in doc for words in sents] for doc in self.corpus
]
|
def raw(self):
r"""Return the raw corpus.
This is reconstructed by joining sub-components with the corpus' split
characters
Returns
-------
str
The raw corpus
Example
-------
>>> tqbf = 'The quick brown fox jumped over the lazy dog.\n'
>>> tqbf += 'And then it slept.\n And the dog ran off.'
>>> corp = Corpus(tqbf)
>>> print(corp.raw())
The quick brown fox jumped over the lazy dog.
And then it slept.
And the dog ran off.
>>> len(corp.raw())
85
"""
doc_list = []
for doc in self.corpus:
sent_list = []
for sent in doc:
sent_list.append(' '.join(sent))
doc_list.append(self.sent_split.join(sent_list))
del sent_list
return self.doc_split.join(doc_list)
|
def idf(self, term, transform=None):
r"""Calculate the Inverse Document Frequency of a term in the corpus.
Parameters
----------
term : str
The term to calculate the IDF of
transform : function
A function to apply to each document term before checking for the
presence of term
Returns
-------
float
The IDF
Examples
--------
>>> tqbf = 'The quick brown fox jumped over the lazy dog.\n\n'
>>> tqbf += 'And then it slept.\n\n And the dog ran off.'
>>> corp = Corpus(tqbf)
>>> print(corp.docs())
[[['The', 'quick', 'brown', 'fox', 'jumped', 'over', 'the', 'lazy',
'dog.']],
[['And', 'then', 'it', 'slept.']],
[['And', 'the', 'dog', 'ran', 'off.']]]
>>> round(corp.idf('dog'), 10)
0.4771212547
>>> round(corp.idf('the'), 10)
0.1760912591
"""
docs_with_term = 0
docs = self.docs_of_words()
for doc in docs:
doc_set = set(doc)
if transform:
transformed_doc = []
for word in doc_set:
transformed_doc.append(transform(word))
doc_set = set(transformed_doc)
if term in doc_set:
docs_with_term += 1
if docs_with_term == 0:
return float('inf')
return log10(len(docs) / docs_with_term)
|
def stem(self, word):
"""Return Paice-Husk stem.
Parameters
----------
word : str
The word to stem
Returns
-------
str
Word stem
Examples
--------
>>> stmr = PaiceHusk()
>>> stmr.stem('assumption')
'assum'
>>> stmr.stem('verifiable')
'ver'
>>> stmr.stem('fancies')
'fant'
>>> stmr.stem('fanciful')
'fancy'
>>> stmr.stem('torment')
'tor'
"""
terminate = False
intact = True
while not terminate:
for n in range(6, 0, -1):
if word[-n:] in self._rule_table[n]:
accept = False
if len(self._rule_table[n][word[-n:]]) < 4:
for rule in self._rule_table[n][word[-n:]]:
(
word,
accept,
intact,
terminate,
) = self._apply_rule(word, rule, intact, terminate)
if accept:
break
else:
rule = self._rule_table[n][word[-n:]]
(word, accept, intact, terminate) = self._apply_rule(
word, rule, intact, terminate
)
if accept:
break
else:
break
return word
|
def encode(self, word):
"""Return Reth-Schek Phonetik code for a word.
Parameters
----------
word : str
The word to transform
Returns
-------
str
The Reth-Schek Phonetik code
Examples
--------
>>> reth_schek_phonetik('Joachim')
'JOAGHIM'
>>> reth_schek_phonetik('Christoph')
'GHRISDOF'
>>> reth_schek_phonetik('Jörg')
'JOERG'
>>> reth_schek_phonetik('Smith')
'SMID'
>>> reth_schek_phonetik('Schmidt')
'SCHMID'
"""
# Uppercase
word = word.upper()
# Replace umlauts/eszett
word = word.replace('Ä', 'AE')
word = word.replace('Ö', 'OE')
word = word.replace('Ü', 'UE')
word = word.replace('ß', 'SS')
# Main loop, using above replacements table
pos = 0
while pos < len(word):
for num in range(3, 0, -1):
if word[pos : pos + num] in self._replacements[num]:
word = (
word[:pos]
+ self._replacements[num][word[pos : pos + num]]
+ word[pos + num :]
)
pos += 1
break
else:
pos += 1 # Advance if nothing is recognized
# Change 'CH' back(?) to 'SCH'
word = word.replace('CH', 'SCH')
# Replace final sequences
if word[-2:] == 'ER':
word = word[:-2] + 'R'
elif word[-2:] == 'EL':
word = word[:-2] + 'L'
elif word[-1:] == 'H':
word = word[:-1]
return word
|
def encode(self, word, max_length=-1):
"""Return the SfinxBis code for a word.
Parameters
----------
word : str
The word to transform
max_length : int
The length of the code returned (defaults to unlimited)
Returns
-------
tuple
The SfinxBis value
Examples
--------
>>> pe = SfinxBis()
>>> pe.encode('Christopher')
('K68376',)
>>> pe.encode('Niall')
('N4',)
>>> pe.encode('Smith')
('S53',)
>>> pe.encode('Schmidt')
('S53',)
>>> pe.encode('Johansson')
('J585',)
>>> pe.encode('Sjöberg')
('#162',)
"""
def _foersvensker(lokal_ordet):
"""Return the Swedish-ized form of the word.
Parameters
----------
lokal_ordet : str
Word to transform
Returns
-------
str
Transformed word
"""
lokal_ordet = lokal_ordet.replace('STIERN', 'STJÄRN')
lokal_ordet = lokal_ordet.replace('HIE', 'HJ')
lokal_ordet = lokal_ordet.replace('SIÖ', 'SJÖ')
lokal_ordet = lokal_ordet.replace('SCH', 'SH')
lokal_ordet = lokal_ordet.replace('QU', 'KV')
lokal_ordet = lokal_ordet.replace('IO', 'JO')
lokal_ordet = lokal_ordet.replace('PH', 'F')
for i in self._harde_vokaler:
lokal_ordet = lokal_ordet.replace(i + 'Ü', i + 'J')
lokal_ordet = lokal_ordet.replace(i + 'Y', i + 'J')
lokal_ordet = lokal_ordet.replace(i + 'I', i + 'J')
for i in self._mjuka_vokaler:
lokal_ordet = lokal_ordet.replace(i + 'Ü', i + 'J')
lokal_ordet = lokal_ordet.replace(i + 'Y', i + 'J')
lokal_ordet = lokal_ordet.replace(i + 'I', i + 'J')
if 'H' in lokal_ordet:
for i in self._uc_c_set:
lokal_ordet = lokal_ordet.replace('H' + i, i)
lokal_ordet = lokal_ordet.translate(self._substitutions)
lokal_ordet = lokal_ordet.replace('Ð', 'ETH')
lokal_ordet = lokal_ordet.replace('Þ', 'TH')
lokal_ordet = lokal_ordet.replace('ß', 'SS')
return lokal_ordet
def _koda_foersta_ljudet(lokal_ordet):
"""Return the word with the first sound coded.
Parameters
----------
lokal_ordet : str
Word to transform
Returns
-------
str
Transformed word
"""
if (
lokal_ordet[0:1] in self._mjuka_vokaler
or lokal_ordet[0:1] in self._harde_vokaler
):
lokal_ordet = '$' + lokal_ordet[1:]
elif lokal_ordet[0:2] in ('DJ', 'GJ', 'HJ', 'LJ'):
lokal_ordet = 'J' + lokal_ordet[2:]
elif (
lokal_ordet[0:1] == 'G'
and lokal_ordet[1:2] in self._mjuka_vokaler
):
lokal_ordet = 'J' + lokal_ordet[1:]
elif lokal_ordet[0:1] == 'Q':
lokal_ordet = 'K' + lokal_ordet[1:]
elif lokal_ordet[0:2] == 'CH' and lokal_ordet[2:3] in frozenset(
self._mjuka_vokaler | self._harde_vokaler
):
lokal_ordet = '#' + lokal_ordet[2:]
elif (
lokal_ordet[0:1] == 'C'
and lokal_ordet[1:2] in self._harde_vokaler
):
lokal_ordet = 'K' + lokal_ordet[1:]
elif (
lokal_ordet[0:1] == 'C' and lokal_ordet[1:2] in self._uc_c_set
):
lokal_ordet = 'K' + lokal_ordet[1:]
elif lokal_ordet[0:1] == 'X':
lokal_ordet = 'S' + lokal_ordet[1:]
elif (
lokal_ordet[0:1] == 'C'
and lokal_ordet[1:2] in self._mjuka_vokaler
):
lokal_ordet = 'S' + lokal_ordet[1:]
elif lokal_ordet[0:3] in ('SKJ', 'STJ', 'SCH'):
lokal_ordet = '#' + lokal_ordet[3:]
elif lokal_ordet[0:2] in ('SH', 'KJ', 'TJ', 'SJ'):
lokal_ordet = '#' + lokal_ordet[2:]
elif (
lokal_ordet[0:2] == 'SK'
and lokal_ordet[2:3] in self._mjuka_vokaler
):
lokal_ordet = '#' + lokal_ordet[2:]
elif (
lokal_ordet[0:1] == 'K'
and lokal_ordet[1:2] in self._mjuka_vokaler
):
lokal_ordet = '#' + lokal_ordet[1:]
return lokal_ordet
# Steg 1, Versaler
word = unicode_normalize('NFC', text_type(word.upper()))
word = word.replace('ß', 'SS')
word = word.replace('-', ' ')
# Steg 2, Ta bort adelsprefix
for adelstitel in self._adelstitler:
while adelstitel in word:
word = word.replace(adelstitel, ' ')
if word.startswith(adelstitel[1:]):
word = word[len(adelstitel) - 1 :]
# Split word into tokens
ordlista = word.split()
# Steg 3, Ta bort dubbelteckning i början på namnet
ordlista = [
self._delete_consecutive_repeats(ordet) for ordet in ordlista
]
if not ordlista:
# noinspection PyRedundantParentheses
return ('',)
# Steg 4, Försvenskning
ordlista = [_foersvensker(ordet) for ordet in ordlista]
# Steg 5, Ta bort alla tecken som inte är A-Ö (65-90,196,197,214)
ordlista = [
''.join(c for c in ordet if c in self._uc_set)
for ordet in ordlista
]
# Steg 6, Koda första ljudet
ordlista = [_koda_foersta_ljudet(ordet) for ordet in ordlista]
# Steg 7, Dela upp namnet i två delar
rest = [ordet[1:] for ordet in ordlista]
# Steg 8, Utför fonetisk transformation i resten
rest = [ordet.replace('DT', 'T') for ordet in rest]
rest = [ordet.replace('X', 'KS') for ordet in rest]
# Steg 9, Koda resten till en sifferkod
for vokal in self._mjuka_vokaler:
rest = [ordet.replace('C' + vokal, '8' + vokal) for ordet in rest]
rest = [ordet.translate(self._trans) for ordet in rest]
# Steg 10, Ta bort intilliggande dubbletter
rest = [self._delete_consecutive_repeats(ordet) for ordet in rest]
# Steg 11, Ta bort alla "9"
rest = [ordet.replace('9', '') for ordet in rest]
# Steg 12, Sätt ihop delarna igen
ordlista = [
''.join(ordet) for ordet in zip((_[0:1] for _ in ordlista), rest)
]
# truncate, if max_length is set
if max_length > 0:
ordlista = [ordet[:max_length] for ordet in ordlista]
return tuple(ordlista)
|
def bmpm(
word,
language_arg=0,
name_mode='gen',
match_mode='approx',
concat=False,
filter_langs=False,
):
"""Return the Beider-Morse Phonetic Matching encoding(s) of a term.
This is a wrapper for :py:meth:`BeiderMorse.encode`.
Parameters
----------
word : str
The word to transform
language_arg : str
The language of the term; supported values include:
- ``any``
- ``arabic``
- ``cyrillic``
- ``czech``
- ``dutch``
- ``english``
- ``french``
- ``german``
- ``greek``
- ``greeklatin``
- ``hebrew``
- ``hungarian``
- ``italian``
- ``latvian``
- ``polish``
- ``portuguese``
- ``romanian``
- ``russian``
- ``spanish``
- ``turkish``
name_mode : str
The name mode of the algorithm:
- ``gen`` -- general (default)
- ``ash`` -- Ashkenazi
- ``sep`` -- Sephardic
match_mode : str
Matching mode: ``approx`` or ``exact``
concat : bool
Concatenation mode
filter_langs : bool
Filter out incompatible languages
Returns
-------
tuple
The Beider-Morse phonetic value(s)
Examples
--------
>>> bmpm('Christopher')
'xrQstopir xrQstYpir xristopir xristYpir xrQstofir xrQstYfir xristofir
xristYfir xristopi xritopir xritopi xristofi xritofir xritofi
tzristopir tzristofir zristopir zristopi zritopir zritopi zristofir
zristofi zritofir zritofi'
>>> bmpm('Niall')
'nial niol'
>>> bmpm('Smith')
'zmit'
>>> bmpm('Schmidt')
'zmit stzmit'
>>> bmpm('Christopher', language_arg='German')
'xrQstopir xrQstYpir xristopir xristYpir xrQstofir xrQstYfir xristofir
xristYfir'
>>> bmpm('Christopher', language_arg='English')
'tzristofir tzrQstofir tzristafir tzrQstafir xristofir xrQstofir
xristafir xrQstafir'
>>> bmpm('Christopher', language_arg='German', name_mode='ash')
'xrQstopir xrQstYpir xristopir xristYpir xrQstofir xrQstYfir xristofir
xristYfir'
>>> bmpm('Christopher', language_arg='German', match_mode='exact')
'xriStopher xriStofer xristopher xristofer'
"""
return BeiderMorse().encode(
word, language_arg, name_mode, match_mode, concat, filter_langs
)
|
def _language(self, name, name_mode):
"""Return the best guess language ID for the word and language choices.
Parameters
----------
name : str
The term to guess the language of
name_mode : str
The name mode of the algorithm: ``gen`` (default),
``ash`` (Ashkenazi), or ``sep`` (Sephardic)
Returns
-------
int
Language ID
"""
name = name.strip().lower()
rules = BMDATA[name_mode]['language_rules']
all_langs = (
sum(_LANG_DICT[_] for _ in BMDATA[name_mode]['languages']) - 1
)
choices_remaining = all_langs
for rule in rules:
letters, languages, accept = rule
if search(letters, name) is not None:
if accept:
choices_remaining &= languages
else:
choices_remaining &= (~languages) % (all_langs + 1)
if choices_remaining == L_NONE:
choices_remaining = L_ANY
return choices_remaining
|
def _redo_language(
self, term, name_mode, rules, final_rules1, final_rules2, concat
):
"""Reassess the language of the terms and call the phonetic encoder.
Uses a split multi-word term.
Parameters
----------
term : str
The term to encode via Beider-Morse
name_mode : str
The name mode of the algorithm: ``gen`` (default),
``ash`` (Ashkenazi), or ``sep`` (Sephardic)
rules : tuple
The set of initial phonetic transform regexps
final_rules1 : tuple
The common set of final phonetic transform regexps
final_rules2 : tuple
The specific set of final phonetic transform regexps
concat : bool
A flag to indicate concatenation
Returns
-------
str
A Beider-Morse phonetic code
"""
language_arg = self._language(term, name_mode)
return self._phonetic(
term,
name_mode,
rules,
final_rules1,
final_rules2,
language_arg,
concat,
)
|
def _phonetic(
self,
term,
name_mode,
rules,
final_rules1,
final_rules2,
language_arg=0,
concat=False,
):
"""Return the Beider-Morse encoding(s) of a term.
Parameters
----------
term : str
The term to encode via Beider-Morse
name_mode : str
The name mode of the algorithm: ``gen`` (default),
``ash`` (Ashkenazi), or ``sep`` (Sephardic)
rules : tuple
The set of initial phonetic transform regexps
final_rules1 : tuple
The common set of final phonetic transform regexps
final_rules2 : tuple
The specific set of final phonetic transform regexps
language_arg : int
The language of the term
concat : bool
A flag to indicate concatenation
Returns
-------
str
A Beider-Morse phonetic code
"""
term = term.replace('-', ' ').strip()
if name_mode == 'gen': # generic case
# discard and concatenate certain words if at the start of the name
for pfx in BMDATA['gen']['discards']:
if term.startswith(pfx):
remainder = term[len(pfx) :]
combined = pfx[:-1] + remainder
result = (
self._redo_language(
remainder,
name_mode,
rules,
final_rules1,
final_rules2,
concat,
)
+ '-'
+ self._redo_language(
combined,
name_mode,
rules,
final_rules1,
final_rules2,
concat,
)
)
return result
words = (
term.split()
) # create array of the individual words in the name
words2 = []
if name_mode == 'sep': # Sephardic case
# for each word in the name, delete portions of word preceding
# apostrophe
# ex: d'avila d'aguilar --> avila aguilar
# also discard certain words in the name
# note that we can never get a match on "de la" because we are
# checking single words below
# this is a bug, but I won't try to fix it now
for word in words:
word = word[word.rfind('\'') + 1 :]
if word not in BMDATA['sep']['discards']:
words2.append(word)
elif name_mode == 'ash': # Ashkenazic case
# discard certain words if at the start of the name
if len(words) > 1 and words[0] in BMDATA['ash']['discards']:
words2 = words[1:]
else:
words2 = list(words)
else:
words2 = list(words)
if concat:
# concatenate the separate words of a multi-word name
# (normally used for exact matches)
term = ' '.join(words2)
elif len(words2) == 1: # not a multi-word name
term = words2[0]
else:
# encode each word in a multi-word name separately
# (normally used for approx matches)
result = '-'.join(
[
self._redo_language(
w, name_mode, rules, final_rules1, final_rules2, concat
)
for w in words2
]
)
return result
term_length = len(term)
# apply language rules to map to phonetic alphabet
phonetic = ''
skip = 0
for i in range(term_length):
if skip:
skip -= 1
continue
found = False
for rule in rules:
pattern = rule[_PATTERN_POS]
pattern_length = len(pattern)
lcontext = rule[_LCONTEXT_POS]
rcontext = rule[_RCONTEXT_POS]
# check to see if next sequence in input matches the string in
# the rule
if (pattern_length > term_length - i) or (
term[i : i + pattern_length] != pattern
): # no match
continue
right = '^' + rcontext
left = lcontext + '$'
# check that right context is satisfied
if rcontext != '':
if not search(right, term[i + pattern_length :]):
continue
# check that left context is satisfied
if lcontext != '':
if not search(left, term[:i]):
continue
# check for incompatible attributes
candidate = self._apply_rule_if_compat(
phonetic, rule[_PHONETIC_POS], language_arg
)
# The below condition shouldn't ever be false
if candidate is not None: # pragma: no branch
phonetic = candidate
found = True
break
if (
not found
): # character in name that is not in table -- e.g., space
pattern_length = 1
skip = pattern_length - 1
# apply final rules on phonetic-alphabet,
# doing a substitution of certain characters
phonetic = self._apply_final_rules(
phonetic, final_rules1, language_arg, False
) # apply common rules
# final_rules1 are the common approx rules,
# final_rules2 are approx rules for specific language
phonetic = self._apply_final_rules(
phonetic, final_rules2, language_arg, True
) # apply lang specific rules
return phonetic
|
def _apply_final_rules(self, phonetic, final_rules, language_arg, strip):
"""Apply a set of final rules to the phonetic encoding.
Parameters
----------
phonetic : str
The term to which to apply the final rules
final_rules : tuple
The set of final phonetic transform regexps
language_arg : int
An integer representing the target language of the phonetic
encoding
strip : bool
Flag to indicate whether to normalize the language attributes
Returns
-------
str
A Beider-Morse phonetic code
"""
# optimization to save time
if not final_rules:
return phonetic
# expand the result
phonetic = self._expand_alternates(phonetic)
phonetic_array = phonetic.split('|')
for k in range(len(phonetic_array)):
phonetic = phonetic_array[k]
phonetic2 = ''
phoneticx = self._normalize_lang_attrs(phonetic, True)
i = 0
while i < len(phonetic):
found = False
if phonetic[i] == '[': # skip over language attribute
attrib_start = i
i += 1
while True:
if phonetic[i] == ']':
i += 1
phonetic2 += phonetic[attrib_start:i]
break
i += 1
continue
for rule in final_rules:
pattern = rule[_PATTERN_POS]
pattern_length = len(pattern)
lcontext = rule[_LCONTEXT_POS]
rcontext = rule[_RCONTEXT_POS]
right = '^' + rcontext
left = lcontext + '$'
# check to see if next sequence in phonetic matches the
# string in the rule
if (pattern_length > len(phoneticx) - i) or phoneticx[
i : i + pattern_length
] != pattern:
continue
# check that right context is satisfied
if rcontext != '':
if not search(right, phoneticx[i + pattern_length :]):
continue
# check that left context is satisfied
if lcontext != '':
if not search(left, phoneticx[:i]):
continue
# check for incompatible attributes
candidate = self._apply_rule_if_compat(
phonetic2, rule[_PHONETIC_POS], language_arg
)
# The below condition shouldn't ever be false
if candidate is not None: # pragma: no branch
phonetic2 = candidate
found = True
break
if not found:
# character in name for which there is no substitution in
# the table
phonetic2 += phonetic[i]
pattern_length = 1
i += pattern_length
phonetic_array[k] = self._expand_alternates(phonetic2)
phonetic = '|'.join(phonetic_array)
if strip:
phonetic = self._normalize_lang_attrs(phonetic, True)
if '|' in phonetic:
phonetic = '(' + self._remove_dupes(phonetic) + ')'
return phonetic
|
def _expand_alternates(self, phonetic):
"""Expand phonetic alternates separated by |s.
Parameters
----------
phonetic : str
A Beider-Morse phonetic encoding
Returns
-------
str
A Beider-Morse phonetic code
"""
alt_start = phonetic.find('(')
if alt_start == -1:
return self._normalize_lang_attrs(phonetic, False)
prefix = phonetic[:alt_start]
alt_start += 1 # get past the (
alt_end = phonetic.find(')', alt_start)
alt_string = phonetic[alt_start:alt_end]
alt_end += 1 # get past the )
suffix = phonetic[alt_end:]
alt_array = alt_string.split('|')
result = ''
for i in range(len(alt_array)):
alt = alt_array[i]
alternate = self._expand_alternates(prefix + alt + suffix)
if alternate != '' and alternate != '[0]':
if result != '':
result += '|'
result += alternate
return result
|
def _pnums_with_leading_space(self, phonetic):
"""Join prefixes & suffixes in cases of alternate phonetic values.
Parameters
----------
phonetic : str
A Beider-Morse phonetic encoding
Returns
-------
str
A Beider-Morse phonetic code
"""
alt_start = phonetic.find('(')
if alt_start == -1:
return ' ' + self._phonetic_number(phonetic)
prefix = phonetic[:alt_start]
alt_start += 1 # get past the (
alt_end = phonetic.find(')', alt_start)
alt_string = phonetic[alt_start:alt_end]
alt_end += 1 # get past the )
suffix = phonetic[alt_end:]
alt_array = alt_string.split('|')
result = ''
for alt in alt_array:
result += self._pnums_with_leading_space(prefix + alt + suffix)
return result
|
def _phonetic_numbers(self, phonetic):
"""Prepare & join phonetic numbers.
Split phonetic value on '-', run through _pnums_with_leading_space,
and join with ' '
Parameters
----------
phonetic : str
A Beider-Morse phonetic encoding
Returns
-------
str
A Beider-Morse phonetic code
"""
phonetic_array = phonetic.split('-') # for names with spaces in them
result = ' '.join(
[self._pnums_with_leading_space(i)[1:] for i in phonetic_array]
)
return result
|
def _remove_dupes(self, phonetic):
"""Remove duplicates from a phonetic encoding list.
Parameters
----------
phonetic : str
A Beider-Morse phonetic encoding
Returns
-------
str
A Beider-Morse phonetic code
"""
alt_string = phonetic
alt_array = alt_string.split('|')
result = '|'
for i in range(len(alt_array)):
alt = alt_array[i]
if alt and '|' + alt + '|' not in result:
result += alt + '|'
return result[1:-1]
|
def _normalize_lang_attrs(self, text, strip):
"""Remove embedded bracketed attributes.
This (potentially) bitwise-ands bracketed attributes together and adds
to the end.
This is applied to a single alternative at a time -- not to a
parenthesized list.
It removes all embedded bracketed attributes, logically-ands them
together, and places them at the end.
However if strip is true, this can indeed remove embedded bracketed
attributes from a parenthesized list.
Parameters
----------
text : str
A Beider-Morse phonetic encoding (in progress)
strip : bool
Remove the bracketed attributes (and throw away)
Returns
-------
str
A Beider-Morse phonetic code
Raises
------
ValueError
No closing square bracket
"""
uninitialized = -1 # all 1's
attrib = uninitialized
while '[' in text:
bracket_start = text.find('[')
bracket_end = text.find(']', bracket_start)
if bracket_end == -1:
raise ValueError(
'No closing square bracket: text=('
+ text
+ ') strip=('
+ text_type(strip)
+ ')'
)
attrib &= int(text[bracket_start + 1 : bracket_end])
text = text[:bracket_start] + text[bracket_end + 1 :]
if attrib == uninitialized or strip:
return text
elif attrib == 0:
# means that the attributes were incompatible and there is no
# alternative here
return '[0]'
return text + '[' + str(attrib) + ']'
|
def _apply_rule_if_compat(self, phonetic, target, language_arg):
"""Apply a phonetic regex if compatible.
tests for compatible language rules
to do so, apply the rule, expand the results, and detect alternatives
with incompatible attributes
then drop each alternative that has incompatible attributes and keep
those that are compatible
if there are no compatible alternatives left, return false
otherwise return the compatible alternatives
apply the rule
Parameters
----------
phonetic : str
The Beider-Morse phonetic encoding (so far)
target : str
A proposed addition to the phonetic encoding
language_arg : int
An integer representing the target language of the phonetic
encoding
Returns
-------
str
A candidate encoding
"""
candidate = phonetic + target
if '[' not in candidate: # no attributes so we need test no further
return candidate
# expand the result, converting incompatible attributes to [0]
candidate = self._expand_alternates(candidate)
candidate_array = candidate.split('|')
# drop each alternative that has incompatible attributes
candidate = ''
found = False
for i in range(len(candidate_array)):
this_candidate = candidate_array[i]
if language_arg != 1:
this_candidate = self._normalize_lang_attrs(
this_candidate + '[' + str(language_arg) + ']', False
)
if this_candidate != '[0]':
found = True
if candidate:
candidate += '|'
candidate += this_candidate
# return false if no compatible alternatives remain
if not found:
return None
# return the result of applying the rule
if '|' in candidate:
candidate = '(' + candidate + ')'
return candidate
|
def _language_index_from_code(self, code, name_mode):
"""Return the index value for a language code.
This returns l_any if more than one code is specified or the code is
out of bounds.
Parameters
----------
code : int
The language code to interpret
name_mode : str
The name mode of the algorithm: ``gen`` (default),
``ash`` (Ashkenazi), or ``sep`` (Sephardic)
Returns
-------
int
Language code index
"""
if code < 1 or code > sum(
_LANG_DICT[_] for _ in BMDATA[name_mode]['languages']
): # code out of range
return L_ANY
if (
code & (code - 1)
) != 0: # choice was more than one language; use any
return L_ANY
return code
|
def encode(
self,
word,
language_arg=0,
name_mode='gen',
match_mode='approx',
concat=False,
filter_langs=False,
):
"""Return the Beider-Morse Phonetic Matching encoding(s) of a term.
Parameters
----------
word : str
The word to transform
language_arg : int
The language of the term; supported values include:
- ``any``
- ``arabic``
- ``cyrillic``
- ``czech``
- ``dutch``
- ``english``
- ``french``
- ``german``
- ``greek``
- ``greeklatin``
- ``hebrew``
- ``hungarian``
- ``italian``
- ``latvian``
- ``polish``
- ``portuguese``
- ``romanian``
- ``russian``
- ``spanish``
- ``turkish``
name_mode : str
The name mode of the algorithm:
- ``gen`` -- general (default)
- ``ash`` -- Ashkenazi
- ``sep`` -- Sephardic
match_mode : str
Matching mode: ``approx`` or ``exact``
concat : bool
Concatenation mode
filter_langs : bool
Filter out incompatible languages
Returns
-------
tuple
The Beider-Morse phonetic value(s)
Raises
------
ValueError
Unknown language
Examples
--------
>>> pe = BeiderMorse()
>>> pe.encode('Christopher')
'xrQstopir xrQstYpir xristopir xristYpir xrQstofir xrQstYfir
xristofir xristYfir xristopi xritopir xritopi xristofi xritofir
xritofi tzristopir tzristofir zristopir zristopi zritopir zritopi
zristofir zristofi zritofir zritofi'
>>> pe.encode('Niall')
'nial niol'
>>> pe.encode('Smith')
'zmit'
>>> pe.encode('Schmidt')
'zmit stzmit'
>>> pe.encode('Christopher', language_arg='German')
'xrQstopir xrQstYpir xristopir xristYpir xrQstofir xrQstYfir
xristofir xristYfir'
>>> pe.encode('Christopher', language_arg='English')
'tzristofir tzrQstofir tzristafir tzrQstafir xristofir xrQstofir
xristafir xrQstafir'
>>> pe.encode('Christopher', language_arg='German', name_mode='ash')
'xrQstopir xrQstYpir xristopir xristYpir xrQstofir xrQstYfir
xristofir xristYfir'
>>> pe.encode('Christopher', language_arg='German', match_mode='exact')
'xriStopher xriStofer xristopher xristofer'
"""
word = normalize('NFC', text_type(word.strip().lower()))
name_mode = name_mode.strip().lower()[:3]
if name_mode not in {'ash', 'sep', 'gen'}:
name_mode = 'gen'
if match_mode != 'exact':
match_mode = 'approx'
# Translate the supplied language_arg value into an integer
# representing a set of languages
all_langs = (
sum(_LANG_DICT[_] for _ in BMDATA[name_mode]['languages']) - 1
)
lang_choices = 0
if isinstance(language_arg, (int, float, long)):
lang_choices = int(language_arg)
elif language_arg != '' and isinstance(language_arg, (text_type, str)):
for lang in text_type(language_arg).lower().split(','):
if lang in _LANG_DICT and (_LANG_DICT[lang] & all_langs):
lang_choices += _LANG_DICT[lang]
elif not filter_langs:
raise ValueError(
'Unknown \''
+ name_mode
+ '\' language: \''
+ lang
+ '\''
)
# Language choices are either all incompatible with the name mode or
# no choices were given, so try to autodetect
if lang_choices == 0:
language_arg = self._language(word, name_mode)
else:
language_arg = lang_choices
language_arg2 = self._language_index_from_code(language_arg, name_mode)
rules = BMDATA[name_mode]['rules'][language_arg2]
final_rules1 = BMDATA[name_mode][match_mode]['common']
final_rules2 = BMDATA[name_mode][match_mode][language_arg2]
result = self._phonetic(
word,
name_mode,
rules,
final_rules1,
final_rules2,
language_arg,
concat,
)
result = self._phonetic_numbers(result)
return result
|
def sim_strcmp95(src, tar, long_strings=False):
"""Return the strcmp95 similarity of two strings.
This is a wrapper for :py:meth:`Strcmp95.sim`.
Parameters
----------
src : str
Source string for comparison
tar : str
Target string for comparison
long_strings : bool
Set to True to increase the probability of a match when the number of
matched characters is large. This option allows for a little more
tolerance when the strings are large. It is not an appropriate test
when comparing fixed length fields such as phone and social security
numbers.
Returns
-------
float
Strcmp95 similarity
Examples
--------
>>> sim_strcmp95('cat', 'hat')
0.7777777777777777
>>> sim_strcmp95('Niall', 'Neil')
0.8454999999999999
>>> sim_strcmp95('aluminum', 'Catalan')
0.6547619047619048
>>> sim_strcmp95('ATCG', 'TAGC')
0.8333333333333334
"""
return Strcmp95().sim(src, tar, long_strings)
|
def dist_strcmp95(src, tar, long_strings=False):
"""Return the strcmp95 distance between two strings.
This is a wrapper for :py:meth:`Strcmp95.dist`.
Parameters
----------
src : str
Source string for comparison
tar : str
Target string for comparison
long_strings : bool
Set to True to increase the probability of a match when the number of
matched characters is large. This option allows for a little more
tolerance when the strings are large. It is not an appropriate test
when comparing fixed length fields such as phone and social security
numbers.
Returns
-------
float
Strcmp95 distance
Examples
--------
>>> round(dist_strcmp95('cat', 'hat'), 12)
0.222222222222
>>> round(dist_strcmp95('Niall', 'Neil'), 12)
0.1545
>>> round(dist_strcmp95('aluminum', 'Catalan'), 12)
0.345238095238
>>> round(dist_strcmp95('ATCG', 'TAGC'), 12)
0.166666666667
"""
return Strcmp95().dist(src, tar, long_strings)
|
def sim(self, src, tar, long_strings=False):
"""Return the strcmp95 similarity of two strings.
Parameters
----------
src : str
Source string for comparison
tar : str
Target string for comparison
long_strings : bool
Set to True to increase the probability of a match when the number
of matched characters is large. This option allows for a little
more tolerance when the strings are large. It is not an appropriate
test when comparing fixed length fields such as phone and social
security numbers.
Returns
-------
float
Strcmp95 similarity
Examples
--------
>>> cmp = Strcmp95()
>>> cmp.sim('cat', 'hat')
0.7777777777777777
>>> cmp.sim('Niall', 'Neil')
0.8454999999999999
>>> cmp.sim('aluminum', 'Catalan')
0.6547619047619048
>>> cmp.sim('ATCG', 'TAGC')
0.8333333333333334
"""
def _in_range(char):
"""Return True if char is in the range (0, 91).
Parameters
----------
char : str
The character to check
Returns
-------
bool
True if char is in the range (0, 91)
"""
return 91 > ord(char) > 0
ying = src.strip().upper()
yang = tar.strip().upper()
if ying == yang:
return 1.0
# If either string is blank - return - added in Version 2
if not ying or not yang:
return 0.0
adjwt = defaultdict(int)
# Initialize the adjwt array on the first call to the function only.
# The adjwt array is used to give partial credit for characters that
# may be errors due to known phonetic or character recognition errors.
# A typical example is to match the letter "O" with the number "0"
for i in self._sp_mx:
adjwt[(i[0], i[1])] = 3
adjwt[(i[1], i[0])] = 3
if len(ying) > len(yang):
search_range = len(ying)
minv = len(yang)
else:
search_range = len(yang)
minv = len(ying)
# Blank out the flags
ying_flag = [0] * search_range
yang_flag = [0] * search_range
search_range = max(0, search_range // 2 - 1)
# Looking only within the search range,
# count and flag the matched pairs.
num_com = 0
yl1 = len(yang) - 1
for i in range(len(ying)):
low_lim = (i - search_range) if (i >= search_range) else 0
hi_lim = (i + search_range) if ((i + search_range) <= yl1) else yl1
for j in range(low_lim, hi_lim + 1):
if (yang_flag[j] == 0) and (yang[j] == ying[i]):
yang_flag[j] = 1
ying_flag[i] = 1
num_com += 1
break
# If no characters in common - return
if num_com == 0:
return 0.0
# Count the number of transpositions
k = n_trans = 0
for i in range(len(ying)):
if ying_flag[i] != 0:
j = 0
for j in range(k, len(yang)): # pragma: no branch
if yang_flag[j] != 0:
k = j + 1
break
if ying[i] != yang[j]:
n_trans += 1
n_trans //= 2
# Adjust for similarities in unmatched characters
n_simi = 0
if minv > num_com:
for i in range(len(ying)):
if ying_flag[i] == 0 and _in_range(ying[i]):
for j in range(len(yang)):
if yang_flag[j] == 0 and _in_range(yang[j]):
if (ying[i], yang[j]) in adjwt:
n_simi += adjwt[(ying[i], yang[j])]
yang_flag[j] = 2
break
num_sim = n_simi / 10.0 + num_com
# Main weight computation
weight = (
num_sim / len(ying)
+ num_sim / len(yang)
+ (num_com - n_trans) / num_com
)
weight /= 3.0
# Continue to boost the weight if the strings are similar
if weight > 0.7:
# Adjust for having up to the first 4 characters in common
j = 4 if (minv >= 4) else minv
i = 0
while (i < j) and (ying[i] == yang[i]) and (not ying[i].isdigit()):
i += 1
if i:
weight += i * 0.1 * (1.0 - weight)
# Optionally adjust for long strings.
# After agreeing beginning chars, at least two more must agree and
# the agreeing characters must be > .5 of remaining characters.
if (
long_strings
and (minv > 4)
and (num_com > i + 1)
and (2 * num_com >= minv + i)
):
if not ying[0].isdigit():
weight += (1.0 - weight) * (
(num_com - i - 1) / (len(ying) + len(yang) - i * 2 + 2)
)
return weight
|
def encode(self, word):
"""Return the Naval Research Laboratory phonetic encoding of a word.
Parameters
----------
word : str
The word to transform
Returns
-------
str
The NRL phonetic encoding
Examples
--------
>>> pe = NRL()
>>> pe.encode('the')
'DHAX'
>>> pe.encode('round')
'rAWnd'
>>> pe.encode('quick')
'kwIHk'
>>> pe.encode('eaten')
'IYtEHn'
>>> pe.encode('Smith')
'smIHTH'
>>> pe.encode('Larsen')
'lAArsEHn'
"""
def _to_regex(pattern, left_match=True):
new_pattern = ''
replacements = {
'#': '[AEIOU]+',
':': '[BCDFGHJKLMNPQRSTVWXYZ]*',
'^': '[BCDFGHJKLMNPQRSTVWXYZ]',
'.': '[BDVGJLMNTWZ]',
'%': '(ER|E|ES|ED|ING|ELY)',
'+': '[EIY]',
' ': '^',
}
for char in pattern:
new_pattern += (
replacements[char] if char in replacements else char
)
if left_match:
new_pattern += '$'
if '^' not in pattern:
new_pattern = '^.*' + new_pattern
else:
new_pattern = '^' + new_pattern.replace('^', '$')
if '$' not in new_pattern:
new_pattern += '.*$'
return new_pattern
word = word.upper()
pron = ''
pos = 0
while pos < len(word):
left_orig = word[:pos]
right_orig = word[pos:]
first = word[pos] if word[pos] in self._rules else ' '
for rule in self._rules[first]:
left, match, right, out = rule
if right_orig.startswith(match):
if left:
l_pattern = _to_regex(left, left_match=True)
if right:
r_pattern = _to_regex(right, left_match=False)
if (not left or re_match(l_pattern, left_orig)) and (
not right
or re_match(r_pattern, right_orig[len(match) :])
):
pron += out
pos += len(match)
break
else:
pron += word[pos]
pos += 1
return pron
|
def lcsstr(self, src, tar):
"""Return the longest common substring of two strings.
Longest common substring (LCSstr).
Based on the code from
https://en.wikibooks.org/wiki/Algorithm_Implementation/Strings/Longest_common_substring
:cite:`Wikibooks:2018`.
This is licensed Creative Commons: Attribution-ShareAlike 3.0.
Modifications include:
- conversion to a numpy array in place of a list of lists
- conversion to Python 2/3-safe range from xrange via six
Parameters
----------
src : str
Source string for comparison
tar : str
Target string for comparison
Returns
-------
str
The longest common substring
Examples
--------
>>> sstr = LCSstr()
>>> sstr.lcsstr('cat', 'hat')
'at'
>>> sstr.lcsstr('Niall', 'Neil')
'N'
>>> sstr.lcsstr('aluminum', 'Catalan')
'al'
>>> sstr.lcsstr('ATCG', 'TAGC')
'A'
"""
lengths = np_zeros((len(src) + 1, len(tar) + 1), dtype=np_int)
longest, i_longest = 0, 0
for i in range(1, len(src) + 1):
for j in range(1, len(tar) + 1):
if src[i - 1] == tar[j - 1]:
lengths[i, j] = lengths[i - 1, j - 1] + 1
if lengths[i, j] > longest:
longest = lengths[i, j]
i_longest = i
else:
lengths[i, j] = 0
return src[i_longest - longest : i_longest]
|
def sim(self, src, tar):
r"""Return the longest common substring similarity of two strings.
Longest common substring similarity (:math:`sim_{LCSstr}`).
This employs the LCS function to derive a similarity metric:
:math:`sim_{LCSstr}(s,t) = \frac{|LCSstr(s,t)|}{max(|s|, |t|)}`
Parameters
----------
src : str
Source string for comparison
tar : str
Target string for comparison
Returns
-------
float
LCSstr similarity
Examples
--------
>>> sim_lcsstr('cat', 'hat')
0.6666666666666666
>>> sim_lcsstr('Niall', 'Neil')
0.2
>>> sim_lcsstr('aluminum', 'Catalan')
0.25
>>> sim_lcsstr('ATCG', 'TAGC')
0.25
"""
if src == tar:
return 1.0
elif not src or not tar:
return 0.0
return len(self.lcsstr(src, tar)) / max(len(src), len(tar))
|
def needleman_wunsch(src, tar, gap_cost=1, sim_func=sim_ident):
"""Return the Needleman-Wunsch score of two strings.
This is a wrapper for :py:meth:`NeedlemanWunsch.dist_abs`.
Parameters
----------
src : str
Source string for comparison
tar : str
Target string for comparison
gap_cost : float
The cost of an alignment gap (1 by default)
sim_func : function
A function that returns the similarity of two characters (identity
similarity by default)
Returns
-------
float
Needleman-Wunsch score
Examples
--------
>>> needleman_wunsch('cat', 'hat')
2.0
>>> needleman_wunsch('Niall', 'Neil')
1.0
>>> needleman_wunsch('aluminum', 'Catalan')
-1.0
>>> needleman_wunsch('ATCG', 'TAGC')
0.0
"""
return NeedlemanWunsch().dist_abs(src, tar, gap_cost, sim_func)
|
def sim_matrix(
src,
tar,
mat=None,
mismatch_cost=0,
match_cost=1,
symmetric=True,
alphabet=None,
):
"""Return the matrix similarity of two strings.
With the default parameters, this is identical to sim_ident.
It is possible for sim_matrix to return values outside of the range
:math:`[0, 1]`, if values outside that range are present in mat,
mismatch_cost, or match_cost.
Parameters
----------
src : str
Source string for comparison
tar : str
Target string for comparison
mat : dict
A dict mapping tuples to costs; the tuples are (src, tar) pairs of
symbols from the alphabet parameter
mismatch_cost : float
The value returned if (src, tar) is absent from mat when src does
not equal tar
match_cost : float
The value returned if (src, tar) is absent from mat when src equals
tar
symmetric : bool
True if the cost of src not matching tar is identical to the cost
of tar not matching src; in this case, the values in mat need only
contain (src, tar) or (tar, src), not both
alphabet : str
A collection of tokens from which src and tar are drawn; if this is
defined a ValueError is raised if either tar or src is not found in
alphabet
Returns
-------
float
Matrix similarity
Raises
------
ValueError
src value not in alphabet
ValueError
tar value not in alphabet
Examples
--------
>>> NeedlemanWunsch.sim_matrix('cat', 'hat')
0
>>> NeedlemanWunsch.sim_matrix('hat', 'hat')
1
"""
if alphabet:
alphabet = tuple(alphabet)
for i in src:
if i not in alphabet:
raise ValueError('src value not in alphabet')
for i in tar:
if i not in alphabet:
raise ValueError('tar value not in alphabet')
if src == tar:
if mat and (src, src) in mat:
return mat[(src, src)]
return match_cost
if mat and (src, tar) in mat:
return mat[(src, tar)]
elif symmetric and mat and (tar, src) in mat:
return mat[(tar, src)]
return mismatch_cost
|
def encode(self, word, max_length=14):
"""Return the IBM Alpha Search Inquiry System code for a word.
A collection is necessary as the return type since there can be
multiple values for a single word. But the collection must be ordered
since the first value is the primary coding.
Parameters
----------
word : str
The word to transform
max_length : int
The length of the code returned (defaults to 14)
Returns
-------
tuple
The Alpha-SIS value
Examples
--------
>>> pe = AlphaSIS()
>>> pe.encode('Christopher')
('06401840000000', '07040184000000', '04018400000000')
>>> pe.encode('Niall')
('02500000000000',)
>>> pe.encode('Smith')
('03100000000000',)
>>> pe.encode('Schmidt')
('06310000000000',)
"""
alpha = ['']
pos = 0
word = unicode_normalize('NFKD', text_type(word.upper()))
word = word.replace('ß', 'SS')
word = ''.join(c for c in word if c in self._uc_set)
# Clamp max_length to [4, 64]
if max_length != -1:
max_length = min(max(4, max_length), 64)
else:
max_length = 64
# Do special processing for initial substrings
for k in self._alpha_sis_initials_order:
if word.startswith(k):
alpha[0] += self._alpha_sis_initials[k]
pos += len(k)
break
# Add a '0' if alpha is still empty
if not alpha[0]:
alpha[0] += '0'
# Whether or not any special initial codes were encoded, iterate
# through the length of the word in the main encoding loop
while pos < len(word):
orig_pos = pos
for k in self._alpha_sis_basic_order:
if word[pos:].startswith(k):
if isinstance(self._alpha_sis_basic[k], tuple):
newalpha = []
for i in range(len(self._alpha_sis_basic[k])):
newalpha += [
_ + self._alpha_sis_basic[k][i] for _ in alpha
]
alpha = newalpha
else:
alpha = [_ + self._alpha_sis_basic[k] for _ in alpha]
pos += len(k)
break
if pos == orig_pos:
alpha = [_ + '_' for _ in alpha]
pos += 1
# Trim doublets and placeholders
for i in range(len(alpha)):
pos = 1
while pos < len(alpha[i]):
if alpha[i][pos] == alpha[i][pos - 1]:
alpha[i] = alpha[i][:pos] + alpha[i][pos + 1 :]
pos += 1
alpha = (_.replace('_', '') for _ in alpha)
# Trim codes and return tuple
alpha = ((_ + ('0' * max_length))[:max_length] for _ in alpha)
return tuple(alpha)
|
def encode(self, word, max_length=-1):
"""Return the PhoneticSpanish coding of word.
Parameters
----------
word : str
The word to transform
max_length : int
The length of the code returned (defaults to unlimited)
Returns
-------
str
The PhoneticSpanish code
Examples
--------
>>> pe = PhoneticSpanish()
>>> pe.encode('Perez')
'094'
>>> pe.encode('Martinez')
'69364'
>>> pe.encode('Gutierrez')
'83994'
>>> pe.encode('Santiago')
'4638'
>>> pe.encode('Nicolás')
'6454'
"""
# uppercase, normalize, and decompose, filter to A-Z minus vowels & W
word = unicode_normalize('NFKD', text_type(word.upper()))
word = ''.join(c for c in word if c in self._uc_set)
# merge repeated Ls & Rs
word = word.replace('LL', 'L')
word = word.replace('R', 'R')
# apply the Soundex algorithm
sdx = word.translate(self._trans)
if max_length > 0:
sdx = (sdx + ('0' * max_length))[:max_length]
return sdx
|
def qgram_fingerprint(phrase, qval=2, start_stop='', joiner=''):
"""Return Q-Gram fingerprint.
This is a wrapper for :py:meth:`QGram.fingerprint`.
Parameters
----------
phrase : str
The string from which to calculate the q-gram fingerprint
qval : int
The length of each q-gram (by default 2)
start_stop : str
The start & stop symbol(s) to concatenate on either end of the phrase,
as defined in :py:class:`tokenizer.QGrams`
joiner : str
The string that will be placed between each word
Returns
-------
str
The q-gram fingerprint of the phrase
Examples
--------
>>> qgram_fingerprint('The quick brown fox jumped over the lazy dog.')
'azbrckdoedeleqerfoheicjukblampnfogovowoxpequrortthuiumvewnxjydzy'
>>> qgram_fingerprint('Christopher')
'cherhehrisopphristto'
>>> qgram_fingerprint('Niall')
'aliallni'
"""
return QGram().fingerprint(phrase, qval, start_stop, joiner)
|
def fingerprint(self, phrase, qval=2, start_stop='', joiner=''):
"""Return Q-Gram fingerprint.
Parameters
----------
phrase : str
The string from which to calculate the q-gram fingerprint
qval : int
The length of each q-gram (by default 2)
start_stop : str
The start & stop symbol(s) to concatenate on either end of the
phrase, as defined in :py:class:`tokenizer.QGrams`
joiner : str
The string that will be placed between each word
Returns
-------
str
The q-gram fingerprint of the phrase
Examples
--------
>>> qf = QGram()
>>> qf.fingerprint('The quick brown fox jumped over the lazy dog.')
'azbrckdoedeleqerfoheicjukblampnfogovowoxpequrortthuiumvewnxjydzy'
>>> qf.fingerprint('Christopher')
'cherhehrisopphristto'
>>> qf.fingerprint('Niall')
'aliallni'
"""
phrase = unicode_normalize('NFKD', text_type(phrase.strip().lower()))
phrase = ''.join(c for c in phrase if c.isalnum())
phrase = QGrams(phrase, qval, start_stop)
phrase = joiner.join(sorted(phrase))
return phrase
|
def dist(self, src, tar):
"""Return the NCD between two strings using BWT plus RLE.
Parameters
----------
src : str
Source string for comparison
tar : str
Target string for comparison
Returns
-------
float
Compression distance
Examples
--------
>>> cmp = NCDbwtrle()
>>> cmp.dist('cat', 'hat')
0.75
>>> cmp.dist('Niall', 'Neil')
0.8333333333333334
>>> cmp.dist('aluminum', 'Catalan')
1.0
>>> cmp.dist('ATCG', 'TAGC')
0.8
"""
if src == tar:
return 0.0
src_comp = self._rle.encode(self._bwt.encode(src))
tar_comp = self._rle.encode(self._bwt.encode(tar))
concat_comp = self._rle.encode(self._bwt.encode(src + tar))
concat_comp2 = self._rle.encode(self._bwt.encode(tar + src))
return (
min(len(concat_comp), len(concat_comp2))
- min(len(src_comp), len(tar_comp))
) / max(len(src_comp), len(tar_comp))
|
def dm_soundex(word, max_length=6, zero_pad=True):
"""Return the Daitch-Mokotoff Soundex code for a word.
This is a wrapper for :py:meth:`DaitchMokotoff.encode`.
Parameters
----------
word : str
The word to transform
max_length : int
The length of the code returned (defaults to 6; must be between 6 and
64)
zero_pad : bool
Pad the end of the return value with 0s to achieve a max_length string
Returns
-------
str
The Daitch-Mokotoff Soundex value
Examples
--------
>>> sorted(dm_soundex('Christopher'))
['494379', '594379']
>>> dm_soundex('Niall')
{'680000'}
>>> dm_soundex('Smith')
{'463000'}
>>> dm_soundex('Schmidt')
{'463000'}
>>> sorted(dm_soundex('The quick brown fox', max_length=20,
... zero_pad=False))
['35457976754', '3557976754']
"""
return DaitchMokotoff().encode(word, max_length, zero_pad)
|
def encode(self, word, max_length=6, zero_pad=True):
"""Return the Daitch-Mokotoff Soundex code for a word.
Parameters
----------
word : str
The word to transform
max_length : int
The length of the code returned (defaults to 6; must be between 6
and 64)
zero_pad : bool
Pad the end of the return value with 0s to achieve a max_length
string
Returns
-------
str
The Daitch-Mokotoff Soundex value
Examples
--------
>>> pe = DaitchMokotoff()
>>> sorted(pe.encode('Christopher'))
['494379', '594379']
>>> pe.encode('Niall')
{'680000'}
>>> pe.encode('Smith')
{'463000'}
>>> pe.encode('Schmidt')
{'463000'}
>>> sorted(pe.encode('The quick brown fox', max_length=20,
... zero_pad=False))
['35457976754', '3557976754']
"""
dms = [''] # initialize empty code list
# Require a max_length of at least 6 and not more than 64
if max_length != -1:
max_length = min(max(6, max_length), 64)
else:
max_length = 64
# uppercase, normalize, decompose, and filter non-A-Z
word = unicode_normalize('NFKD', text_type(word.upper()))
word = word.replace('ß', 'SS')
word = ''.join(c for c in word if c in self._uc_set)
# Nothing to convert, return base case
if not word:
if zero_pad:
return {'0' * max_length}
return {'0'}
pos = 0
while pos < len(word):
# Iterate through _dms_order, which specifies the possible
# substrings for which codes exist in the Daitch-Mokotoff coding
for sstr in self._dms_order[word[pos]]: # pragma: no branch
if word[pos:].startswith(sstr):
# Having determined a valid substring start, retrieve the
# code
dm_val = self._dms_table[sstr]
# Having retried the code (triple), determine the correct
# positional variant (first, pre-vocalic, elsewhere)
if pos == 0:
dm_val = dm_val[0]
elif (
pos + len(sstr) < len(word)
and word[pos + len(sstr)] in self._uc_v_set
):
dm_val = dm_val[1]
else:
dm_val = dm_val[2]
# Build the code strings
if isinstance(dm_val, tuple):
dms = [_ + text_type(dm_val[0]) for _ in dms] + [
_ + text_type(dm_val[1]) for _ in dms
]
else:
dms = [_ + text_type(dm_val) for _ in dms]
pos += len(sstr)
break
# Filter out double letters and _ placeholders
dms = (
''.join(c for c in self._delete_consecutive_repeats(_) if c != '_')
for _ in dms
)
# Trim codes and return set
if zero_pad:
dms = ((_ + ('0' * max_length))[:max_length] for _ in dms)
else:
dms = (_[:max_length] for _ in dms)
return set(dms)
|
def encode(self, word):
"""Return the Norphone code.
Parameters
----------
word : str
The word to transform
Returns
-------
str
The Norphone code
Examples
--------
>>> pe = Norphone()
>>> pe.encode('Hansen')
'HNSN'
>>> pe.encode('Larsen')
'LRSN'
>>> pe.encode('Aagaard')
'ÅKRT'
>>> pe.encode('Braaten')
'BRTN'
>>> pe.encode('Sandvik')
'SNVK'
"""
word = word.upper()
code = ''
skip = 0
if word[0:2] == 'AA':
code = 'Å'
skip = 2
elif word[0:2] == 'GI':
code = 'J'
skip = 2
elif word[0:3] == 'SKY':
code = 'X'
skip = 3
elif word[0:2] == 'EI':
code = 'Æ'
skip = 2
elif word[0:2] == 'KY':
code = 'X'
skip = 2
elif word[:1] == 'C':
code = 'K'
skip = 1
elif word[:1] == 'Ä':
code = 'Æ'
skip = 1
elif word[:1] == 'Ö':
code = 'Ø'
skip = 1
if word[-2:] == 'DT':
word = word[:-2] + 'T'
# Though the rules indicate this rule applies in all positions, the
# reference implementation indicates it applies only in final position.
elif word[-2:-1] in self._uc_v_set and word[-1:] == 'D':
word = word[:-2]
for pos, char in enumerate(word):
if skip:
skip -= 1
else:
for length in sorted(self._replacements, reverse=True):
if word[pos : pos + length] in self._replacements[length]:
code += self._replacements[length][
word[pos : pos + length]
]
skip = length - 1
break
else:
if not pos or char not in self._uc_v_set:
code += char
code = self._delete_consecutive_repeats(code)
return code
|
def to_tuple(self):
"""Cast to tuple.
Returns
-------
tuple
The confusion table as a 4-tuple (tp, tn, fp, fn)
Example
-------
>>> ct = ConfusionTable(120, 60, 20, 30)
>>> ct.to_tuple()
(120, 60, 20, 30)
"""
return self._tp, self._tn, self._fp, self._fn
|
def to_dict(self):
"""Cast to dict.
Returns
-------
dict
The confusion table as a dict
Example
-------
>>> ct = ConfusionTable(120, 60, 20, 30)
>>> import pprint
>>> pprint.pprint(ct.to_dict())
{'fn': 30, 'fp': 20, 'tn': 60, 'tp': 120}
"""
return {'tp': self._tp, 'tn': self._tn, 'fp': self._fp, 'fn': self._fn}
|
def population(self):
"""Return population, N.
Returns
-------
int
The population (N) of the confusion table
Example
-------
>>> ct = ConfusionTable(120, 60, 20, 30)
>>> ct.population()
230
"""
return self._tp + self._tn + self._fp + self._fn
|
def precision(self):
r"""Return precision.
Precision is defined as :math:`\frac{tp}{tp + fp}`
AKA positive predictive value (PPV)
Cf. https://en.wikipedia.org/wiki/Precision_and_recall
Cf. https://en.wikipedia.org/wiki/Information_retrieval#Precision
Returns
-------
float
The precision of the confusion table
Example
-------
>>> ct = ConfusionTable(120, 60, 20, 30)
>>> ct.precision()
0.8571428571428571
"""
if self._tp + self._fp == 0:
return float('NaN')
return self._tp / (self._tp + self._fp)
|
def precision_gain(self):
r"""Return gain in precision.
The gain in precision is defined as:
:math:`G(precision) = \frac{precision}{random~ precision}`
Cf. https://en.wikipedia.org/wiki/Gain_(information_retrieval)
Returns
-------
float
The gain in precision of the confusion table
Example
-------
>>> ct = ConfusionTable(120, 60, 20, 30)
>>> ct.precision_gain()
1.3142857142857143
"""
if self.population() == 0:
return float('NaN')
random_precision = self.cond_pos_pop() / self.population()
return self.precision() / random_precision
|
def recall(self):
r"""Return recall.
Recall is defined as :math:`\frac{tp}{tp + fn}`
AKA sensitivity
AKA true positive rate (TPR)
Cf. https://en.wikipedia.org/wiki/Precision_and_recall
Cf. https://en.wikipedia.org/wiki/Sensitivity_(test)
Cf. https://en.wikipedia.org/wiki/Information_retrieval#Recall
Returns
-------
float
The recall of the confusion table
Example
-------
>>> ct = ConfusionTable(120, 60, 20, 30)
>>> ct.recall()
0.8
"""
if self._tp + self._fn == 0:
return float('NaN')
return self._tp / (self._tp + self._fn)
|
def specificity(self):
r"""Return specificity.
Specificity is defined as :math:`\frac{tn}{tn + fp}`
AKA true negative rate (TNR)
Cf. https://en.wikipedia.org/wiki/Specificity_(tests)
Returns
-------
float
The specificity of the confusion table
Example
-------
>>> ct = ConfusionTable(120, 60, 20, 30)
>>> ct.specificity()
0.75
"""
if self._tn + self._fp == 0:
return float('NaN')
return self._tn / (self._tn + self._fp)
|
def npv(self):
r"""Return negative predictive value (NPV).
NPV is defined as :math:`\frac{tn}{tn + fn}`
Cf. https://en.wikipedia.org/wiki/Negative_predictive_value
Returns
-------
float
The negative predictive value of the confusion table
Example
-------
>>> ct = ConfusionTable(120, 60, 20, 30)
>>> ct.npv()
0.6666666666666666
"""
if self._tn + self._fn == 0:
return float('NaN')
return self._tn / (self._tn + self._fn)
|
def fallout(self):
r"""Return fall-out.
Fall-out is defined as :math:`\frac{fp}{fp + tn}`
AKA false positive rate (FPR)
Cf. https://en.wikipedia.org/wiki/Information_retrieval#Fall-out
Returns
-------
float
The fall-out of the confusion table
Example
-------
>>> ct = ConfusionTable(120, 60, 20, 30)
>>> ct.fallout()
0.25
"""
if self._fp + self._tn == 0:
return float('NaN')
return self._fp / (self._fp + self._tn)
|
def fdr(self):
r"""Return false discovery rate (FDR).
False discovery rate is defined as :math:`\frac{fp}{fp + tp}`
Cf. https://en.wikipedia.org/wiki/False_discovery_rate
Returns
-------
float
The false discovery rate of the confusion table
Example
-------
>>> ct = ConfusionTable(120, 60, 20, 30)
>>> ct.fdr()
0.14285714285714285
"""
if self._fp + self._tp == 0:
return float('NaN')
return self._fp / (self._fp + self._tp)
|
def accuracy(self):
r"""Return accuracy.
Accuracy is defined as :math:`\frac{tp + tn}{population}`
Cf. https://en.wikipedia.org/wiki/Accuracy
Returns
-------
float
The accuracy of the confusion table
Example
-------
>>> ct = ConfusionTable(120, 60, 20, 30)
>>> ct.accuracy()
0.782608695652174
"""
if self.population() == 0:
return float('NaN')
return (self._tp + self._tn) / self.population()
|
def accuracy_gain(self):
r"""Return gain in accuracy.
The gain in accuracy is defined as:
:math:`G(accuracy) = \frac{accuracy}{random~ accuracy}`
Cf. https://en.wikipedia.org/wiki/Gain_(information_retrieval)
Returns
-------
float
The gain in accuracy of the confusion table
Example
-------
>>> ct = ConfusionTable(120, 60, 20, 30)
>>> ct.accuracy_gain()
1.4325259515570934
"""
if self.population() == 0:
return float('NaN')
random_accuracy = (self.cond_pos_pop() / self.population()) ** 2 + (
self.cond_neg_pop() / self.population()
) ** 2
return self.accuracy() / random_accuracy
|
def pr_lmean(self):
r"""Return logarithmic mean of precision & recall.
The logarithmic mean is:
0 if either precision or recall is 0,
the precision if they are equal,
otherwise :math:`\frac{precision - recall}
{ln(precision) - ln(recall)}`
Cf. https://en.wikipedia.org/wiki/Logarithmic_mean
Returns
-------
float
The logarithmic mean of the confusion table's precision & recall
Example
-------
>>> ct = ConfusionTable(120, 60, 20, 30)
>>> ct.pr_lmean()
0.8282429171492667
"""
precision = self.precision()
recall = self.recall()
if not precision or not recall:
return 0.0
elif precision == recall:
return precision
return (precision - recall) / (math.log(precision) - math.log(recall))
|
def fbeta_score(self, beta=1.0):
r"""Return :math:`F_{\beta}` score.
:math:`F_{\beta}` for a positive real value :math:`\beta` "measures
the effectiveness of retrieval with respect to a user who
attaches :math:`\beta` times as much importance to recall as
precision" (van Rijsbergen 1979)
:math:`F_{\beta}` score is defined as:
:math:`(1 + \beta^2) \cdot \frac{precision \cdot recall}
{((\beta^2 \cdot precision) + recall)}`
Cf. https://en.wikipedia.org/wiki/F1_score
Parameters
----------
beta : float
The :math:`\beta` parameter in the above formula
Returns
-------
float
The :math:`F_{\beta}` of the confusion table
Raises
------
AttributeError
Beta must be a positive real value
Examples
--------
>>> ct = ConfusionTable(120, 60, 20, 30)
>>> ct.fbeta_score()
0.8275862068965518
>>> ct.fbeta_score(beta=0.1)
0.8565371024734982
"""
if beta <= 0:
raise AttributeError('Beta must be a positive real value.')
precision = self.precision()
recall = self.recall()
return (
(1 + beta ** 2)
* precision
* recall
/ ((beta ** 2 * precision) + recall)
)
|
def mcc(self):
r"""Return Matthews correlation coefficient (MCC).
The Matthews correlation coefficient is defined in
:cite:`Matthews:1975` as:
:math:`\frac{(tp \cdot tn) - (fp \cdot fn)}
{\sqrt{(tp + fp)(tp + fn)(tn + fp)(tn + fn)}}`
This is equivalent to the geometric mean of informedness and
markedness, defined above.
Cf. https://en.wikipedia.org/wiki/Matthews_correlation_coefficient
Returns
-------
float
The Matthews correlation coefficient of the confusion table
Example
-------
>>> ct = ConfusionTable(120, 60, 20, 30)
>>> ct.mcc()
0.5367450401216932
"""
if (
(
(self._tp + self._fp)
* (self._tp + self._fn)
* (self._tn + self._fp)
* (self._tn + self._fn)
)
) == 0:
return float('NaN')
return ((self._tp * self._tn) - (self._fp * self._fn)) / math.sqrt(
(self._tp + self._fp)
* (self._tp + self._fn)
* (self._tn + self._fp)
* (self._tn + self._fn)
)
|
def significance(self):
r"""Return the significance, :math:`\chi^{2}`.
Significance is defined as:
:math:`\chi^{2} =
\frac{(tp \cdot tn - fp \cdot fn)^{2} (tp + tn + fp + fn)}
{((tp + fp)(tp + fn)(tn + fp)(tn + fn)}`
Also: :math:`\chi^{2} = MCC^{2} \cdot n`
Cf. https://en.wikipedia.org/wiki/Pearson%27s_chi-square_test
Returns
-------
float
The significance of the confusion table
Example
-------
>>> ct = ConfusionTable(120, 60, 20, 30)
>>> ct.significance()
66.26190476190476
"""
if (
(
(self._tp + self._fp)
* (self._tp + self._fn)
* (self._tn + self._fp)
* (self._tn + self._fn)
)
) == 0:
return float('NaN')
return (
(self._tp * self._tn - self._fp * self._fn) ** 2
* (self._tp + self._tn + self._fp + self._fn)
) / (
(self._tp + self._fp)
* (self._tp + self._fn)
* (self._tn + self._fp)
* (self._tn + self._fn)
)
|
def kappa_statistic(self):
r"""Return κ statistic.
The κ statistic is defined as:
:math:`\kappa = \frac{accuracy - random~ accuracy}
{1 - random~ accuracy}`
The κ statistic compares the performance of the classifier relative to
the performance of a random classifier. :math:`\kappa` = 0 indicates
performance identical to random. :math:`\kappa` = 1 indicates perfect
predictive success. :math:`\kappa` = -1 indicates perfect predictive
failure.
Returns
-------
float
The κ statistic of the confusion table
Example
-------
>>> ct = ConfusionTable(120, 60, 20, 30)
>>> ct.kappa_statistic()
0.5344129554655871
"""
if self.population() == 0:
return float('NaN')
random_accuracy = (
(self._tn + self._fp) * (self._tn + self._fn)
+ (self._fn + self._tp) * (self._fp + self._tp)
) / self.population() ** 2
return (self.accuracy() - random_accuracy) / (1 - random_accuracy)
|
def encode(self, word, max_length=-1):
"""Return the Double Metaphone code for a word.
Parameters
----------
word : str
The word to transform
max_length : int
The maximum length of the returned Double Metaphone codes (defaults
to unlmited, but in Philips' original implementation this was 4)
Returns
-------
tuple
The Double Metaphone value(s)
Examples
--------
>>> pe = DoubleMetaphone()
>>> pe.encode('Christopher')
('KRSTFR', '')
>>> pe.encode('Niall')
('NL', '')
>>> pe.encode('Smith')
('SM0', 'XMT')
>>> pe.encode('Schmidt')
('XMT', 'SMT')
"""
# Require a max_length of at least 4
if max_length != -1:
max_length = max(4, max_length)
primary = ''
secondary = ''
def _slavo_germanic():
"""Return True if the word appears to be Slavic or Germanic.
Returns
-------
bool
True if the word appears to be Slavic or Germanic
"""
if 'W' in word or 'K' in word or 'CZ' in word:
return True
return False
def _metaph_add(pri, sec=''):
"""Return a new metaphone tuple with the supplied elements.
Parameters
----------
pri : str
The primary element
sec : str
The secondary element
Returns
-------
tuple
A new metaphone tuple with the supplied elements
"""
newpri = primary
newsec = secondary
if pri:
newpri += pri
if sec:
if sec != ' ':
newsec += sec
else:
newsec += pri
return newpri, newsec
def _is_vowel(pos):
"""Return True if the character at word[pos] is a vowel.
Parameters
----------
pos : int
Position in the word
Returns
-------
bool
True if the character is a vowel
"""
if pos >= 0 and word[pos] in {'A', 'E', 'I', 'O', 'U', 'Y'}:
return True
return False
def _get_at(pos):
"""Return the character at word[pos].
Parameters
----------
pos : int
Position in the word
Returns
-------
str
Character at word[pos]
"""
return word[pos]
def _string_at(pos, slen, substrings):
"""Return True if word[pos:pos+slen] is in substrings.
Parameters
----------
pos : int
Position in the word
slen : int
Substring length
substrings : set
Substrings to search
Returns
-------
bool
True if word[pos:pos+slen] is in substrings
"""
if pos < 0:
return False
return word[pos : pos + slen] in substrings
current = 0
length = len(word)
if length < 1:
return '', ''
last = length - 1
word = word.upper()
word = word.replace('ß', 'SS')
# Pad the original string so that we can index beyond the edge of the
# world
word += ' '
# Skip these when at start of word
if word[0:2] in {'GN', 'KN', 'PN', 'WR', 'PS'}:
current += 1
# Initial 'X' is pronounced 'Z' e.g. 'Xavier'
if _get_at(0) == 'X':
primary, secondary = _metaph_add('S') # 'Z' maps to 'S'
current += 1
# Main loop
while True:
if current >= length:
break
if _get_at(current) in {'A', 'E', 'I', 'O', 'U', 'Y'}:
if current == 0:
# All init vowels now map to 'A'
primary, secondary = _metaph_add('A')
current += 1
continue
elif _get_at(current) == 'B':
# "-mb", e.g", "dumb", already skipped over...
primary, secondary = _metaph_add('P')
if _get_at(current + 1) == 'B':
current += 2
else:
current += 1
continue
elif _get_at(current) == 'Ç':
primary, secondary = _metaph_add('S')
current += 1
continue
elif _get_at(current) == 'C':
# Various Germanic
if (
current > 1
and not _is_vowel(current - 2)
and _string_at((current - 1), 3, {'ACH'})
and (
(_get_at(current + 2) != 'I')
and (
(_get_at(current + 2) != 'E')
or _string_at(
(current - 2), 6, {'BACHER', 'MACHER'}
)
)
)
):
primary, secondary = _metaph_add('K')
current += 2
continue
# Special case 'caesar'
elif current == 0 and _string_at(current, 6, {'CAESAR'}):
primary, secondary = _metaph_add('S')
current += 2
continue
# Italian 'chianti'
elif _string_at(current, 4, {'CHIA'}):
primary, secondary = _metaph_add('K')
current += 2
continue
elif _string_at(current, 2, {'CH'}):
# Find 'Michael'
if current > 0 and _string_at(current, 4, {'CHAE'}):
primary, secondary = _metaph_add('K', 'X')
current += 2
continue
# Greek roots e.g. 'chemistry', 'chorus'
elif (
current == 0
and (
_string_at((current + 1), 5, {'HARAC', 'HARIS'})
or _string_at(
(current + 1), 3, {'HOR', 'HYM', 'HIA', 'HEM'}
)
)
and not _string_at(0, 5, {'CHORE'})
):
primary, secondary = _metaph_add('K')
current += 2
continue
# Germanic, Greek, or otherwise 'ch' for 'kh' sound
elif (
(
_string_at(0, 4, {'VAN ', 'VON '})
or _string_at(0, 3, {'SCH'})
)
or
# 'architect but not 'arch', 'orchestra', 'orchid'
_string_at(
(current - 2), 6, {'ORCHES', 'ARCHIT', 'ORCHID'}
)
or _string_at((current + 2), 1, {'T', 'S'})
or (
(
_string_at(
(current - 1), 1, {'A', 'O', 'U', 'E'}
)
or (current == 0)
)
and
# e.g., 'wachtler', 'wechsler', but not 'tichner'
_string_at(
(current + 2),
1,
{
'L',
'R',
'N',
'M',
'B',
'H',
'F',
'V',
'W',
' ',
},
)
)
):
primary, secondary = _metaph_add('K')
else:
if current > 0:
if _string_at(0, 2, {'MC'}):
# e.g., "McHugh"
primary, secondary = _metaph_add('K')
else:
primary, secondary = _metaph_add('X', 'K')
else:
primary, secondary = _metaph_add('X')
current += 2
continue
# e.g, 'czerny'
elif _string_at(current, 2, {'CZ'}) and not _string_at(
(current - 2), 4, {'WICZ'}
):
primary, secondary = _metaph_add('S', 'X')
current += 2
continue
# e.g., 'focaccia'
elif _string_at((current + 1), 3, {'CIA'}):
primary, secondary = _metaph_add('X')
current += 3
# double 'C', but not if e.g. 'McClellan'
elif _string_at(current, 2, {'CC'}) and not (
(current == 1) and (_get_at(0) == 'M')
):
# 'bellocchio' but not 'bacchus'
if _string_at(
(current + 2), 1, {'I', 'E', 'H'}
) and not _string_at((current + 2), 2, {'HU'}):
# 'accident', 'accede' 'succeed'
if (
(current == 1) and _get_at(current - 1) == 'A'
) or _string_at((current - 1), 5, {'UCCEE', 'UCCES'}):
primary, secondary = _metaph_add('KS')
# 'bacci', 'bertucci', other italian
else:
primary, secondary = _metaph_add('X')
current += 3
continue
else: # Pierce's rule
primary, secondary = _metaph_add('K')
current += 2
continue
elif _string_at(current, 2, {'CK', 'CG', 'CQ'}):
primary, secondary = _metaph_add('K')
current += 2
continue
elif _string_at(current, 2, {'CI', 'CE', 'CY'}):
# Italian vs. English
if _string_at(current, 3, {'CIO', 'CIE', 'CIA'}):
primary, secondary = _metaph_add('S', 'X')
else:
primary, secondary = _metaph_add('S')
current += 2
continue
# else
else:
primary, secondary = _metaph_add('K')
# name sent in 'mac caffrey', 'mac gregor
if _string_at((current + 1), 2, {' C', ' Q', ' G'}):
current += 3
elif _string_at(
(current + 1), 1, {'C', 'K', 'Q'}
) and not _string_at((current + 1), 2, {'CE', 'CI'}):
current += 2
else:
current += 1
continue
elif _get_at(current) == 'D':
if _string_at(current, 2, {'DG'}):
if _string_at((current + 2), 1, {'I', 'E', 'Y'}):
# e.g. 'edge'
primary, secondary = _metaph_add('J')
current += 3
continue
else:
# e.g. 'edgar'
primary, secondary = _metaph_add('TK')
current += 2
continue
elif _string_at(current, 2, {'DT', 'DD'}):
primary, secondary = _metaph_add('T')
current += 2
continue
# else
else:
primary, secondary = _metaph_add('T')
current += 1
continue
elif _get_at(current) == 'F':
if _get_at(current + 1) == 'F':
current += 2
else:
current += 1
primary, secondary = _metaph_add('F')
continue
elif _get_at(current) == 'G':
if _get_at(current + 1) == 'H':
if (current > 0) and not _is_vowel(current - 1):
primary, secondary = _metaph_add('K')
current += 2
continue
# 'ghislane', ghiradelli
elif current == 0:
if _get_at(current + 2) == 'I':
primary, secondary = _metaph_add('J')
else:
primary, secondary = _metaph_add('K')
current += 2
continue
# Parker's rule (with some further refinements) -
# e.g., 'hugh'
elif (
(
(current > 1)
and _string_at((current - 2), 1, {'B', 'H', 'D'})
)
or
# e.g., 'bough'
(
(current > 2)
and _string_at((current - 3), 1, {'B', 'H', 'D'})
)
or
# e.g., 'broughton'
(
(current > 3)
and _string_at((current - 4), 1, {'B', 'H'})
)
):
current += 2
continue
else:
# e.g. 'laugh', 'McLaughlin', 'cough',
# 'gough', 'rough', 'tough'
if (
(current > 2)
and (_get_at(current - 1) == 'U')
and (
_string_at(
(current - 3), 1, {'C', 'G', 'L', 'R', 'T'}
)
)
):
primary, secondary = _metaph_add('F')
elif (current > 0) and _get_at(current - 1) != 'I':
primary, secondary = _metaph_add('K')
current += 2
continue
elif _get_at(current + 1) == 'N':
if (
(current == 1)
and _is_vowel(0)
and not _slavo_germanic()
):
primary, secondary = _metaph_add('KN', 'N')
# not e.g. 'cagney'
elif (
not _string_at((current + 2), 2, {'EY'})
and (_get_at(current + 1) != 'Y')
and not _slavo_germanic()
):
primary, secondary = _metaph_add('N', 'KN')
else:
primary, secondary = _metaph_add('KN')
current += 2
continue
# 'tagliaro'
elif (
_string_at((current + 1), 2, {'LI'})
and not _slavo_germanic()
):
primary, secondary = _metaph_add('KL', 'L')
current += 2
continue
# -ges-, -gep-, -gel-, -gie- at beginning
elif (current == 0) and (
(_get_at(current + 1) == 'Y')
or _string_at(
(current + 1),
2,
{
'ES',
'EP',
'EB',
'EL',
'EY',
'IB',
'IL',
'IN',
'IE',
'EI',
'ER',
},
)
):
primary, secondary = _metaph_add('K', 'J')
current += 2
continue
# -ger-, -gy-
elif (
(
_string_at((current + 1), 2, {'ER'})
or (_get_at(current + 1) == 'Y')
)
and not _string_at(0, 6, {'DANGER', 'RANGER', 'MANGER'})
and not _string_at((current - 1), 1, {'E', 'I'})
and not _string_at((current - 1), 3, {'RGY', 'OGY'})
):
primary, secondary = _metaph_add('K', 'J')
current += 2
continue
# italian e.g, 'biaggi'
elif _string_at(
(current + 1), 1, {'E', 'I', 'Y'}
) or _string_at((current - 1), 4, {'AGGI', 'OGGI'}):
# obvious germanic
if (
_string_at(0, 4, {'VAN ', 'VON '})
or _string_at(0, 3, {'SCH'})
) or _string_at((current + 1), 2, {'ET'}):
primary, secondary = _metaph_add('K')
elif _string_at((current + 1), 4, {'IER '}):
primary, secondary = _metaph_add('J')
else:
primary, secondary = _metaph_add('J', 'K')
current += 2
continue
else:
if _get_at(current + 1) == 'G':
current += 2
else:
current += 1
primary, secondary = _metaph_add('K')
continue
elif _get_at(current) == 'H':
# only keep if first & before vowel or btw. 2 vowels
if ((current == 0) or _is_vowel(current - 1)) and _is_vowel(
current + 1
):
primary, secondary = _metaph_add('H')
current += 2
else: # also takes care of 'HH'
current += 1
continue
elif _get_at(current) == 'J':
# obvious spanish, 'jose', 'san jacinto'
if _string_at(current, 4, {'JOSE'}) or _string_at(
0, 4, {'SAN '}
):
if (
(current == 0) and (_get_at(current + 4) == ' ')
) or _string_at(0, 4, {'SAN '}):
primary, secondary = _metaph_add('H')
else:
primary, secondary = _metaph_add('J', 'H')
current += 1
continue
elif (current == 0) and not _string_at(current, 4, {'JOSE'}):
# Yankelovich/Jankelowicz
primary, secondary = _metaph_add('J', 'A')
# Spanish pron. of e.g. 'bajador'
elif (
_is_vowel(current - 1)
and not _slavo_germanic()
and (
(_get_at(current + 1) == 'A')
or (_get_at(current + 1) == 'O')
)
):
primary, secondary = _metaph_add('J', 'H')
elif current == last:
primary, secondary = _metaph_add('J', ' ')
elif not _string_at(
(current + 1), 1, {'L', 'T', 'K', 'S', 'N', 'M', 'B', 'Z'}
) and not _string_at((current - 1), 1, {'S', 'K', 'L'}):
primary, secondary = _metaph_add('J')
if _get_at(current + 1) == 'J': # it could happen!
current += 2
else:
current += 1
continue
elif _get_at(current) == 'K':
if _get_at(current + 1) == 'K':
current += 2
else:
current += 1
primary, secondary = _metaph_add('K')
continue
elif _get_at(current) == 'L':
if _get_at(current + 1) == 'L':
# Spanish e.g. 'cabrillo', 'gallegos'
if (
(current == (length - 3))
and _string_at(
(current - 1), 4, {'ILLO', 'ILLA', 'ALLE'}
)
) or (
(
_string_at((last - 1), 2, {'AS', 'OS'})
or _string_at(last, 1, {'A', 'O'})
)
and _string_at((current - 1), 4, {'ALLE'})
):
primary, secondary = _metaph_add('L', ' ')
current += 2
continue
current += 2
else:
current += 1
primary, secondary = _metaph_add('L')
continue
elif _get_at(current) == 'M':
if (
(
_string_at((current - 1), 3, {'UMB'})
and (
((current + 1) == last)
or _string_at((current + 2), 2, {'ER'})
)
)
or
# 'dumb', 'thumb'
(_get_at(current + 1) == 'M')
):
current += 2
else:
current += 1
primary, secondary = _metaph_add('M')
continue
elif _get_at(current) == 'N':
if _get_at(current + 1) == 'N':
current += 2
else:
current += 1
primary, secondary = _metaph_add('N')
continue
elif _get_at(current) == 'Ñ':
current += 1
primary, secondary = _metaph_add('N')
continue
elif _get_at(current) == 'P':
if _get_at(current + 1) == 'H':
primary, secondary = _metaph_add('F')
current += 2
continue
# also account for "campbell", "raspberry"
elif _string_at((current + 1), 1, {'P', 'B'}):
current += 2
else:
current += 1
primary, secondary = _metaph_add('P')
continue
elif _get_at(current) == 'Q':
if _get_at(current + 1) == 'Q':
current += 2
else:
current += 1
primary, secondary = _metaph_add('K')
continue
elif _get_at(current) == 'R':
# french e.g. 'rogier', but exclude 'hochmeier'
if (
(current == last)
and not _slavo_germanic()
and _string_at((current - 2), 2, {'IE'})
and not _string_at((current - 4), 2, {'ME', 'MA'})
):
primary, secondary = _metaph_add('', 'R')
else:
primary, secondary = _metaph_add('R')
if _get_at(current + 1) == 'R':
current += 2
else:
current += 1
continue
elif _get_at(current) == 'S':
# special cases 'island', 'isle', 'carlisle', 'carlysle'
if _string_at((current - 1), 3, {'ISL', 'YSL'}):
current += 1
continue
# special case 'sugar-'
elif (current == 0) and _string_at(current, 5, {'SUGAR'}):
primary, secondary = _metaph_add('X', 'S')
current += 1
continue
elif _string_at(current, 2, {'SH'}):
# Germanic
if _string_at(
(current + 1), 4, {'HEIM', 'HOEK', 'HOLM', 'HOLZ'}
):
primary, secondary = _metaph_add('S')
else:
primary, secondary = _metaph_add('X')
current += 2
continue
# Italian & Armenian
elif _string_at(current, 3, {'SIO', 'SIA'}) or _string_at(
current, 4, {'SIAN'}
):
if not _slavo_germanic():
primary, secondary = _metaph_add('S', 'X')
else:
primary, secondary = _metaph_add('S')
current += 3
continue
# German & anglicisations, e.g. 'smith' match 'schmidt',
# 'snider' match 'schneider'
# also, -sz- in Slavic language although in Hungarian it is
# pronounced 's'
elif (
(current == 0)
and _string_at((current + 1), 1, {'M', 'N', 'L', 'W'})
) or _string_at((current + 1), 1, {'Z'}):
primary, secondary = _metaph_add('S', 'X')
if _string_at((current + 1), 1, {'Z'}):
current += 2
else:
current += 1
continue
elif _string_at(current, 2, {'SC'}):
# Schlesinger's rule
if _get_at(current + 2) == 'H':
# dutch origin, e.g. 'school', 'schooner'
if _string_at(
(current + 3),
2,
{'OO', 'ER', 'EN', 'UY', 'ED', 'EM'},
):
# 'schermerhorn', 'schenker'
if _string_at((current + 3), 2, {'ER', 'EN'}):
primary, secondary = _metaph_add('X', 'SK')
else:
primary, secondary = _metaph_add('SK')
current += 3
continue
else:
if (
(current == 0)
and not _is_vowel(3)
and (_get_at(3) != 'W')
):
primary, secondary = _metaph_add('X', 'S')
else:
primary, secondary = _metaph_add('X')
current += 3
continue
elif _string_at((current + 2), 1, {'I', 'E', 'Y'}):
primary, secondary = _metaph_add('S')
current += 3
continue
# else
else:
primary, secondary = _metaph_add('SK')
current += 3
continue
else:
# french e.g. 'resnais', 'artois'
if (current == last) and _string_at(
(current - 2), 2, {'AI', 'OI'}
):
primary, secondary = _metaph_add('', 'S')
else:
primary, secondary = _metaph_add('S')
if _string_at((current + 1), 1, {'S', 'Z'}):
current += 2
else:
current += 1
continue
elif _get_at(current) == 'T':
if _string_at(current, 4, {'TION'}):
primary, secondary = _metaph_add('X')
current += 3
continue
elif _string_at(current, 3, {'TIA', 'TCH'}):
primary, secondary = _metaph_add('X')
current += 3
continue
elif _string_at(current, 2, {'TH'}) or _string_at(
current, 3, {'TTH'}
):
# special case 'thomas', 'thames' or germanic
if (
_string_at((current + 2), 2, {'OM', 'AM'})
or _string_at(0, 4, {'VAN ', 'VON '})
or _string_at(0, 3, {'SCH'})
):
primary, secondary = _metaph_add('T')
else:
primary, secondary = _metaph_add('0', 'T')
current += 2
continue
elif _string_at((current + 1), 1, {'T', 'D'}):
current += 2
else:
current += 1
primary, secondary = _metaph_add('T')
continue
elif _get_at(current) == 'V':
if _get_at(current + 1) == 'V':
current += 2
else:
current += 1
primary, secondary = _metaph_add('F')
continue
elif _get_at(current) == 'W':
# can also be in middle of word
if _string_at(current, 2, {'WR'}):
primary, secondary = _metaph_add('R')
current += 2
continue
elif (current == 0) and (
_is_vowel(current + 1) or _string_at(current, 2, {'WH'})
):
# Wasserman should match Vasserman
if _is_vowel(current + 1):
primary, secondary = _metaph_add('A', 'F')
else:
# need Uomo to match Womo
primary, secondary = _metaph_add('A')
# Arnow should match Arnoff
if (
((current == last) and _is_vowel(current - 1))
or _string_at(
(current - 1), 5, {'EWSKI', 'EWSKY', 'OWSKI', 'OWSKY'}
)
or _string_at(0, 3, {'SCH'})
):
primary, secondary = _metaph_add('', 'F')
current += 1
continue
# Polish e.g. 'filipowicz'
elif _string_at(current, 4, {'WICZ', 'WITZ'}):
primary, secondary = _metaph_add('TS', 'FX')
current += 4
continue
# else skip it
else:
current += 1
continue
elif _get_at(current) == 'X':
# French e.g. breaux
if not (
(current == last)
and (
_string_at((current - 3), 3, {'IAU', 'EAU'})
or _string_at((current - 2), 2, {'AU', 'OU'})
)
):
primary, secondary = _metaph_add('KS')
if _string_at((current + 1), 1, {'C', 'X'}):
current += 2
else:
current += 1
continue
elif _get_at(current) == 'Z':
# Chinese Pinyin e.g. 'zhao'
if _get_at(current + 1) == 'H':
primary, secondary = _metaph_add('J')
current += 2
continue
elif _string_at((current + 1), 2, {'ZO', 'ZI', 'ZA'}) or (
_slavo_germanic()
and ((current > 0) and _get_at(current - 1) != 'T')
):
primary, secondary = _metaph_add('S', 'TS')
else:
primary, secondary = _metaph_add('S')
if _get_at(current + 1) == 'Z':
current += 2
else:
current += 1
continue
else:
current += 1
if max_length > 0:
primary = primary[:max_length]
secondary = secondary[:max_length]
if primary == secondary:
secondary = ''
return primary, secondary
|
def stem(self, word):
"""Return CLEF German stem.
Parameters
----------
word : str
The word to stem
Returns
-------
str
Word stem
Examples
--------
>>> stmr = CLEFGerman()
>>> stmr.stem('lesen')
'lese'
>>> stmr.stem('graues')
'grau'
>>> stmr.stem('buchstabieren')
'buchstabier'
"""
# lowercase, normalize, and compose
word = normalize('NFC', text_type(word.lower()))
# remove umlauts
word = word.translate(self._umlauts)
# remove plurals
wlen = len(word) - 1
if wlen > 3:
if wlen > 5:
if word[-3:] == 'nen':
return word[:-3]
if wlen > 4:
if word[-2:] in {'en', 'se', 'es', 'er'}:
return word[:-2]
if word[-1] in {'e', 'n', 'r', 's'}:
return word[:-1]
return word
|
def encode(self, word, mode=1, lang='de'):
"""Return the phonet code for a word.
Parameters
----------
word : str
The word to transform
mode : int
The ponet variant to employ (1 or 2)
lang : str
``de`` (default) for German, ``none`` for no language
Returns
-------
str
The phonet value
Examples
--------
>>> pe = Phonet()
>>> pe.encode('Christopher')
'KRISTOFA'
>>> pe.encode('Niall')
'NIAL'
>>> pe.encode('Smith')
'SMIT'
>>> pe.encode('Schmidt')
'SHMIT'
>>> pe.encode('Christopher', mode=2)
'KRIZTUFA'
>>> pe.encode('Niall', mode=2)
'NIAL'
>>> pe.encode('Smith', mode=2)
'ZNIT'
>>> pe.encode('Schmidt', mode=2)
'ZNIT'
>>> pe.encode('Christopher', lang='none')
'CHRISTOPHER'
>>> pe.encode('Niall', lang='none')
'NIAL'
>>> pe.encode('Smith', lang='none')
'SMITH'
>>> pe.encode('Schmidt', lang='none')
'SCHMIDT'
"""
phonet_hash = Counter()
alpha_pos = Counter()
phonet_hash_1 = Counter()
phonet_hash_2 = Counter()
def _initialize_phonet(lang):
"""Initialize phonet variables.
Parameters
----------
lang : str
Language to use for rules
"""
if lang == 'none':
_phonet_rules = self._rules_no_lang
else:
_phonet_rules = self._rules_german
phonet_hash[''] = -1
# German and international umlauts
for j in {
'À',
'Á',
'Â',
'Ã',
'Ä',
'Å',
'Æ',
'Ç',
'È',
'É',
'Ê',
'Ë',
'Ì',
'Í',
'Î',
'Ï',
'Ð',
'Ñ',
'Ò',
'Ó',
'Ô',
'Õ',
'Ö',
'Ø',
'Ù',
'Ú',
'Û',
'Ü',
'Ý',
'Þ',
'ß',
'Œ',
'Š',
'Ÿ',
}:
alpha_pos[j] = 1
phonet_hash[j] = -1
# "normal" letters ('A'-'Z')
for i, j in enumerate('ABCDEFGHIJKLMNOPQRSTUVWXYZ'):
alpha_pos[j] = i + 2
phonet_hash[j] = -1
for i in range(26):
for j in range(28):
phonet_hash_1[i, j] = -1
phonet_hash_2[i, j] = -1
# for each phonetc rule
for i in range(len(_phonet_rules)):
rule = _phonet_rules[i]
if rule and i % 3 == 0:
# calculate first hash value
k = _phonet_rules[i][0]
if phonet_hash[k] < 0 and (
_phonet_rules[i + 1] or _phonet_rules[i + 2]
):
phonet_hash[k] = i
# calculate second hash values
if k and alpha_pos[k] >= 2:
k = alpha_pos[k]
j = k - 2
rule = rule[1:]
if not rule:
rule = ' '
elif rule[0] == '(':
rule = rule[1:]
else:
rule = rule[0]
while rule and (rule[0] != ')'):
k = alpha_pos[rule[0]]
if k > 0:
# add hash value for this letter
if phonet_hash_1[j, k] < 0:
phonet_hash_1[j, k] = i
phonet_hash_2[j, k] = i
if phonet_hash_2[j, k] >= (i - 30):
phonet_hash_2[j, k] = i
else:
k = -1
if k <= 0:
# add hash value for all letters
if phonet_hash_1[j, 0] < 0:
phonet_hash_1[j, 0] = i
phonet_hash_2[j, 0] = i
rule = rule[1:]
def _phonet(term, mode, lang):
"""Return the phonet coded form of a term.
Parameters
----------
term : str
Term to transform
mode : int
The ponet variant to employ (1 or 2)
lang : str
``de`` (default) for German, ``none`` for no language
Returns
-------
str
The phonet value
"""
if lang == 'none':
_phonet_rules = self._rules_no_lang
else:
_phonet_rules = self._rules_german
char0 = ''
dest = term
if not term:
return ''
term_length = len(term)
# convert input string to upper-case
src = term.translate(self._upper_trans)
# check "src"
i = 0
j = 0
zeta = 0
while i < len(src):
char = src[i]
pos = alpha_pos[char]
if pos >= 2:
xpos = pos - 2
if i + 1 == len(src):
pos = alpha_pos['']
else:
pos = alpha_pos[src[i + 1]]
start1 = phonet_hash_1[xpos, pos]
start2 = phonet_hash_1[xpos, 0]
end1 = phonet_hash_2[xpos, pos]
end2 = phonet_hash_2[xpos, 0]
# preserve rule priorities
if (start2 >= 0) and ((start1 < 0) or (start2 < start1)):
pos = start1
start1 = start2
start2 = pos
pos = end1
end1 = end2
end2 = pos
if (end1 >= start2) and (start2 >= 0):
if end2 > end1:
end1 = end2
start2 = -1
end2 = -1
else:
pos = phonet_hash[char]
start1 = pos
end1 = 10000
start2 = -1
end2 = -1
pos = start1
zeta0 = 0
if pos >= 0:
# check rules for this char
while (_phonet_rules[pos] is None) or (
_phonet_rules[pos][0] == char
):
if pos > end1:
if start2 > 0:
pos = start2
start1 = start2
start2 = -1
end1 = end2
end2 = -1
continue
break
if (_phonet_rules[pos] is None) or (
_phonet_rules[pos + mode] is None
):
# no conversion rule available
pos += 3
continue
# check whole string
matches = 1 # number of matching letters
priority = 5 # default priority
rule = _phonet_rules[pos]
rule = rule[1:]
while (
rule
and (len(src) > (i + matches))
and (src[i + matches] == rule[0])
and not rule[0].isdigit()
and (rule not in '(-<^$')
):
matches += 1
rule = rule[1:]
if rule and (rule[0] == '('):
# check an array of letters
if (
(len(src) > (i + matches))
and src[i + matches].isalpha()
and (src[i + matches] in rule[1:])
):
matches += 1
while rule and rule[0] != ')':
rule = rule[1:]
# if rule[0] == ')':
rule = rule[1:]
if rule:
priority0 = ord(rule[0])
else:
priority0 = 0
matches0 = matches
while rule and rule[0] == '-' and matches > 1:
matches -= 1
rule = rule[1:]
if rule and rule[0] == '<':
rule = rule[1:]
if rule and rule[0].isdigit():
# read priority
priority = int(rule[0])
rule = rule[1:]
if rule and rule[0:2] == '^^':
rule = rule[1:]
if (
not rule
or (
(rule[0] == '^')
and ((i == 0) or not src[i - 1].isalpha())
and (
(rule[1:2] != '$')
or (
not (
src[
i + matches0 : i + matches0 + 1
].isalpha()
)
and (
src[
i + matches0 : i + matches0 + 1
]
!= '.'
)
)
)
)
or (
(rule[0] == '$')
and (i > 0)
and src[i - 1].isalpha()
and (
(
not src[
i + matches0 : i + matches0 + 1
].isalpha()
)
and (
src[i + matches0 : i + matches0 + 1]
!= '.'
)
)
)
):
# look for continuation, if:
# matches > 1 und NO '-' in first string */
pos0 = -1
start3 = 0
start4 = 0
end3 = 0
end4 = 0
if (
(matches > 1)
and src[i + matches : i + matches + 1]
and (priority0 != ord('-'))
):
char0 = src[i + matches - 1]
pos0 = alpha_pos[char0]
if pos0 >= 2 and src[i + matches]:
xpos = pos0 - 2
pos0 = alpha_pos[src[i + matches]]
start3 = phonet_hash_1[xpos, pos0]
start4 = phonet_hash_1[xpos, 0]
end3 = phonet_hash_2[xpos, pos0]
end4 = phonet_hash_2[xpos, 0]
# preserve rule priorities
if (start4 >= 0) and (
(start3 < 0) or (start4 < start3)
):
pos0 = start3
start3 = start4
start4 = pos0
pos0 = end3
end3 = end4
end4 = pos0
if (end3 >= start4) and (start4 >= 0):
if end4 > end3:
end3 = end4
start4 = -1
end4 = -1
else:
pos0 = phonet_hash[char0]
start3 = pos0
end3 = 10000
start4 = -1
end4 = -1
pos0 = start3
# check continuation rules for src[i+matches]
if pos0 >= 0:
while (_phonet_rules[pos0] is None) or (
_phonet_rules[pos0][0] == char0
):
if pos0 > end3:
if start4 > 0:
pos0 = start4
start3 = start4
start4 = -1
end3 = end4
end4 = -1
continue
priority0 = -1
# important
break
if (_phonet_rules[pos0] is None) or (
_phonet_rules[pos0 + mode] is None
):
# no conversion rule available
pos0 += 3
continue
# check whole string
matches0 = matches
priority0 = 5
rule = _phonet_rules[pos0]
rule = rule[1:]
while (
rule
and (
src[
i + matches0 : i + matches0 + 1
]
== rule[0]
)
and (
not rule[0].isdigit()
or (rule in '(-<^$')
)
):
matches0 += 1
rule = rule[1:]
if rule and rule[0] == '(':
# check an array of letters
if src[
i + matches0 : i + matches0 + 1
].isalpha() and (
src[i + matches0] in rule[1:]
):
matches0 += 1
while rule and rule[0] != ')':
rule = rule[1:]
# if rule[0] == ')':
rule = rule[1:]
while rule and rule[0] == '-':
# "matches0" is NOT decremented
# because of
# "if (matches0 == matches)"
rule = rule[1:]
if rule and rule[0] == '<':
rule = rule[1:]
if rule and rule[0].isdigit():
priority0 = int(rule[0])
rule = rule[1:]
if (
not rule
or
# rule == '^' is not possible here
(
(rule[0] == '$')
and not src[
i + matches0 : i + matches0 + 1
].isalpha()
and (
src[
i
+ matches0 : i
+ matches0
+ 1
]
!= '.'
)
)
):
if matches0 == matches:
# this is only a partial string
pos0 += 3
continue
if priority0 < priority:
# priority is too low
pos0 += 3
continue
# continuation rule found
break
pos0 += 3
# end of "while"
if (priority0 >= priority) and (
(_phonet_rules[pos0] is not None)
and (_phonet_rules[pos0][0] == char0)
):
pos += 3
continue
# replace string
if _phonet_rules[pos] and (
'<' in _phonet_rules[pos][1:]
):
priority0 = 1
else:
priority0 = 0
rule = _phonet_rules[pos + mode]
if (priority0 == 1) and (zeta == 0):
# rule with '<' is applied
if (
(j > 0)
and rule
and (
(dest[j - 1] == char)
or (dest[j - 1] == rule[0])
)
):
j -= 1
zeta0 = 1
zeta += 1
matches0 = 0
while rule and src[i + matches0]:
src = (
src[0 : i + matches0]
+ rule[0]
+ src[i + matches0 + 1 :]
)
matches0 += 1
rule = rule[1:]
if matches0 < matches:
src = (
src[0 : i + matches0]
+ src[i + matches :]
)
char = src[i]
else:
i = i + matches - 1
zeta = 0
while len(rule) > 1:
if (j == 0) or (dest[j - 1] != rule[0]):
dest = (
dest[0:j]
+ rule[0]
+ dest[min(len(dest), j + 1) :]
)
j += 1
rule = rule[1:]
# new "current char"
if not rule:
rule = ''
char = ''
else:
char = rule[0]
if (
_phonet_rules[pos]
and '^^' in _phonet_rules[pos][1:]
):
if char:
dest = (
dest[0:j]
+ char
+ dest[min(len(dest), j + 1) :]
)
j += 1
src = src[i + 1 :]
i = 0
zeta0 = 1
break
pos += 3
if pos > end1 and start2 > 0:
pos = start2
start1 = start2
end1 = end2
start2 = -1
end2 = -1
if zeta0 == 0:
if char and ((j == 0) or (dest[j - 1] != char)):
# delete multiple letters only
dest = (
dest[0:j] + char + dest[min(j + 1, term_length) :]
)
j += 1
i += 1
zeta = 0
dest = dest[0:j]
return dest
_initialize_phonet(lang)
word = unicode_normalize('NFKC', text_type(word))
return _phonet(word, mode, lang)
|
def stem(self, word):
"""Return Snowball Danish stem.
Parameters
----------
word : str
The word to stem
Returns
-------
str
Word stem
Examples
--------
>>> stmr = SnowballDanish()
>>> stmr.stem('underviser')
'undervis'
>>> stmr.stem('suspension')
'suspension'
>>> stmr.stem('sikkerhed')
'sikker'
"""
# lowercase, normalize, and compose
word = normalize('NFC', text_type(word.lower()))
r1_start = min(max(3, self._sb_r1(word)), len(word))
# Step 1
_r1 = word[r1_start:]
if _r1[-7:] == 'erendes':
word = word[:-7]
elif _r1[-6:] in {'erende', 'hedens'}:
word = word[:-6]
elif _r1[-5:] in {
'ethed',
'erede',
'heden',
'heder',
'endes',
'ernes',
'erens',
'erets',
}:
word = word[:-5]
elif _r1[-4:] in {
'ered',
'ende',
'erne',
'eren',
'erer',
'heds',
'enes',
'eres',
'eret',
}:
word = word[:-4]
elif _r1[-3:] in {'hed', 'ene', 'ere', 'ens', 'ers', 'ets'}:
word = word[:-3]
elif _r1[-2:] in {'en', 'er', 'es', 'et'}:
word = word[:-2]
elif _r1[-1:] == 'e':
word = word[:-1]
elif _r1[-1:] == 's':
if len(word) > 1 and word[-2] in self._s_endings:
word = word[:-1]
# Step 2
if word[r1_start:][-2:] in {'gd', 'dt', 'gt', 'kt'}:
word = word[:-1]
# Step 3
if word[-4:] == 'igst':
word = word[:-2]
_r1 = word[r1_start:]
repeat_step2 = False
if _r1[-4:] == 'elig':
word = word[:-4]
repeat_step2 = True
elif _r1[-4:] == 'løst':
word = word[:-1]
elif _r1[-3:] in {'lig', 'els'}:
word = word[:-3]
repeat_step2 = True
elif _r1[-2:] == 'ig':
word = word[:-2]
repeat_step2 = True
if repeat_step2:
if word[r1_start:][-2:] in {'gd', 'dt', 'gt', 'kt'}:
word = word[:-1]
# Step 4
if (
len(word[r1_start:]) >= 1
and len(word) >= 2
and word[-1] == word[-2]
and word[-1] not in self._vowels
):
word = word[:-1]
return word
|
def stem(self, word, alternate_vowels=False):
"""Return Snowball German stem.
Parameters
----------
word : str
The word to stem
alternate_vowels : bool
Composes ae as ä, oe as ö, and ue as ü before running the algorithm
Returns
-------
str
Word stem
Examples
--------
>>> stmr = SnowballGerman()
>>> stmr.stem('lesen')
'les'
>>> stmr.stem('graues')
'grau'
>>> stmr.stem('buchstabieren')
'buchstabi'
"""
# lowercase, normalize, and compose
word = normalize('NFC', word.lower())
word = word.replace('ß', 'ss')
if len(word) > 2:
for i in range(2, len(word)):
if word[i] in self._vowels and word[i - 2] in self._vowels:
if word[i - 1] == 'u':
word = word[: i - 1] + 'U' + word[i:]
elif word[i - 1] == 'y':
word = word[: i - 1] + 'Y' + word[i:]
if alternate_vowels:
word = word.replace('ae', 'ä')
word = word.replace('oe', 'ö')
word = word.replace('que', 'Q')
word = word.replace('ue', 'ü')
word = word.replace('Q', 'que')
r1_start = max(3, self._sb_r1(word))
r2_start = self._sb_r2(word)
# Step 1
niss_flag = False
if word[-3:] == 'ern':
if len(word[r1_start:]) >= 3:
word = word[:-3]
elif word[-2:] == 'em':
if len(word[r1_start:]) >= 2:
word = word[:-2]
elif word[-2:] == 'er':
if len(word[r1_start:]) >= 2:
word = word[:-2]
elif word[-2:] == 'en':
if len(word[r1_start:]) >= 2:
word = word[:-2]
niss_flag = True
elif word[-2:] == 'es':
if len(word[r1_start:]) >= 2:
word = word[:-2]
niss_flag = True
elif word[-1:] == 'e':
if len(word[r1_start:]) >= 1:
word = word[:-1]
niss_flag = True
elif word[-1:] == 's':
if (
len(word[r1_start:]) >= 1
and len(word) >= 2
and word[-2] in self._s_endings
):
word = word[:-1]
if niss_flag and word[-4:] == 'niss':
word = word[:-1]
# Step 2
if word[-3:] == 'est':
if len(word[r1_start:]) >= 3:
word = word[:-3]
elif word[-2:] == 'en':
if len(word[r1_start:]) >= 2:
word = word[:-2]
elif word[-2:] == 'er':
if len(word[r1_start:]) >= 2:
word = word[:-2]
elif word[-2:] == 'st':
if (
len(word[r1_start:]) >= 2
and len(word) >= 6
and word[-3] in self._st_endings
):
word = word[:-2]
# Step 3
if word[-4:] == 'isch':
if len(word[r2_start:]) >= 4 and word[-5] != 'e':
word = word[:-4]
elif word[-4:] in {'lich', 'heit'}:
if len(word[r2_start:]) >= 4:
word = word[:-4]
if word[-2:] in {'er', 'en'} and len(word[r1_start:]) >= 2:
word = word[:-2]
elif word[-4:] == 'keit':
if len(word[r2_start:]) >= 4:
word = word[:-4]
if word[-4:] == 'lich' and len(word[r2_start:]) >= 4:
word = word[:-4]
elif word[-2:] == 'ig' and len(word[r2_start:]) >= 2:
word = word[:-2]
elif word[-3:] in {'end', 'ung'}:
if len(word[r2_start:]) >= 3:
word = word[:-3]
if (
word[-2:] == 'ig'
and len(word[r2_start:]) >= 2
and word[-3] != 'e'
):
word = word[:-2]
elif word[-2:] in {'ig', 'ik'}:
if len(word[r2_start:]) >= 2 and word[-3] != 'e':
word = word[:-2]
# Change 'Y' and 'U' back to lowercase if survived stemming
for i in range(0, len(word)):
if word[i] == 'Y':
word = word[:i] + 'y' + word[i + 1 :]
elif word[i] == 'U':
word = word[:i] + 'u' + word[i + 1 :]
# Remove umlauts
_umlauts = dict(zip((ord(_) for _ in 'äöü'), 'aou'))
word = word.translate(_umlauts)
return word
|
def dist_abs(self, src, tar, max_offset=5):
"""Return the "simplest" Sift4 distance between two terms.
Parameters
----------
src : str
Source string for comparison
tar : str
Target string for comparison
max_offset : int
The number of characters to search for matching letters
Returns
-------
int
The Sift4 distance according to the simplest formula
Examples
--------
>>> cmp = Sift4Simplest()
>>> cmp.dist_abs('cat', 'hat')
1
>>> cmp.dist_abs('Niall', 'Neil')
2
>>> cmp.dist_abs('Colin', 'Cuilen')
3
>>> cmp.dist_abs('ATCG', 'TAGC')
2
"""
if not src:
return len(tar)
if not tar:
return len(src)
src_len = len(src)
tar_len = len(tar)
src_cur = 0
tar_cur = 0
lcss = 0
local_cs = 0
while (src_cur < src_len) and (tar_cur < tar_len):
if src[src_cur] == tar[tar_cur]:
local_cs += 1
else:
lcss += local_cs
local_cs = 0
if src_cur != tar_cur:
src_cur = tar_cur = max(src_cur, tar_cur)
for i in range(max_offset):
if not (
(src_cur + i < src_len) or (tar_cur + i < tar_len)
):
break
if (src_cur + i < src_len) and (
src[src_cur + i] == tar[tar_cur]
):
src_cur += i
local_cs += 1
break
if (tar_cur + i < tar_len) and (
src[src_cur] == tar[tar_cur + i]
):
tar_cur += i
local_cs += 1
break
src_cur += 1
tar_cur += 1
lcss += local_cs
return round(max(src_len, tar_len) - lcss)
|
def typo(src, tar, metric='euclidean', cost=(1, 1, 0.5, 0.5), layout='QWERTY'):
"""Return the typo distance between two strings.
This is a wrapper for :py:meth:`Typo.typo`.
Parameters
----------
src : str
Source string for comparison
tar : str
Target string for comparison
metric : str
Supported values include: ``euclidean``, ``manhattan``,
``log-euclidean``, and ``log-manhattan``
cost : tuple
A 4-tuple representing the cost of the four possible edits: inserts,
deletes, substitutions, and shift, respectively (by default:
(1, 1, 0.5, 0.5)) The substitution & shift costs should be
significantly less than the cost of an insertion & deletion unless a
log metric is used.
layout : str
Name of the keyboard layout to use (Currently supported:
``QWERTY``, ``Dvorak``, ``AZERTY``, ``QWERTZ``)
Returns
-------
float
Typo distance
Examples
--------
>>> typo('cat', 'hat')
1.5811388
>>> typo('Niall', 'Neil')
2.8251407
>>> typo('Colin', 'Cuilen')
3.4142137
>>> typo('ATCG', 'TAGC')
2.5
>>> typo('cat', 'hat', metric='manhattan')
2.0
>>> typo('Niall', 'Neil', metric='manhattan')
3.0
>>> typo('Colin', 'Cuilen', metric='manhattan')
3.5
>>> typo('ATCG', 'TAGC', metric='manhattan')
2.5
>>> typo('cat', 'hat', metric='log-manhattan')
0.804719
>>> typo('Niall', 'Neil', metric='log-manhattan')
2.2424533
>>> typo('Colin', 'Cuilen', metric='log-manhattan')
2.2424533
>>> typo('ATCG', 'TAGC', metric='log-manhattan')
2.3465736
"""
return Typo().dist_abs(src, tar, metric, cost, layout)
|
def dist_typo(
src, tar, metric='euclidean', cost=(1, 1, 0.5, 0.5), layout='QWERTY'
):
"""Return the normalized typo distance between two strings.
This is a wrapper for :py:meth:`Typo.dist`.
Parameters
----------
src : str
Source string for comparison
tar : str
Target string for comparison
metric : str
Supported values include: ``euclidean``, ``manhattan``,
``log-euclidean``, and ``log-manhattan``
cost : tuple
A 4-tuple representing the cost of the four possible edits: inserts,
deletes, substitutions, and shift, respectively (by default:
(1, 1, 0.5, 0.5)) The substitution & shift costs should be
significantly less than the cost of an insertion & deletion unless a
log metric is used.
layout : str
Name of the keyboard layout to use (Currently supported:
``QWERTY``, ``Dvorak``, ``AZERTY``, ``QWERTZ``)
Returns
-------
float
Normalized typo distance
Examples
--------
>>> round(dist_typo('cat', 'hat'), 12)
0.527046283086
>>> round(dist_typo('Niall', 'Neil'), 12)
0.565028142929
>>> round(dist_typo('Colin', 'Cuilen'), 12)
0.569035609563
>>> dist_typo('ATCG', 'TAGC')
0.625
"""
return Typo().dist(src, tar, metric, cost, layout)
|
def sim_typo(
src, tar, metric='euclidean', cost=(1, 1, 0.5, 0.5), layout='QWERTY'
):
"""Return the normalized typo similarity between two strings.
This is a wrapper for :py:meth:`Typo.sim`.
Parameters
----------
src : str
Source string for comparison
tar : str
Target string for comparison
metric : str
Supported values include: ``euclidean``, ``manhattan``,
``log-euclidean``, and ``log-manhattan``
cost : tuple
A 4-tuple representing the cost of the four possible edits: inserts,
deletes, substitutions, and shift, respectively (by default:
(1, 1, 0.5, 0.5)) The substitution & shift costs should be
significantly less than the cost of an insertion & deletion unless a
log metric is used.
layout : str
Name of the keyboard layout to use (Currently supported:
``QWERTY``, ``Dvorak``, ``AZERTY``, ``QWERTZ``)
Returns
-------
float
Normalized typo similarity
Examples
--------
>>> round(sim_typo('cat', 'hat'), 12)
0.472953716914
>>> round(sim_typo('Niall', 'Neil'), 12)
0.434971857071
>>> round(sim_typo('Colin', 'Cuilen'), 12)
0.430964390437
>>> sim_typo('ATCG', 'TAGC')
0.375
"""
return Typo().sim(src, tar, metric, cost, layout)
|
def dist_abs(
self,
src,
tar,
metric='euclidean',
cost=(1, 1, 0.5, 0.5),
layout='QWERTY',
):
"""Return the typo distance between two strings.
Parameters
----------
src : str
Source string for comparison
tar : str
Target string for comparison
metric : str
Supported values include: ``euclidean``, ``manhattan``,
``log-euclidean``, and ``log-manhattan``
cost : tuple
A 4-tuple representing the cost of the four possible edits:
inserts, deletes, substitutions, and shift, respectively (by
default: (1, 1, 0.5, 0.5)) The substitution & shift costs should be
significantly less than the cost of an insertion & deletion unless
a log metric is used.
layout : str
Name of the keyboard layout to use (Currently supported:
``QWERTY``, ``Dvorak``, ``AZERTY``, ``QWERTZ``)
Returns
-------
float
Typo distance
Raises
------
ValueError
char not found in any keyboard layouts
Examples
--------
>>> cmp = Typo()
>>> cmp.dist_abs('cat', 'hat')
1.5811388
>>> cmp.dist_abs('Niall', 'Neil')
2.8251407
>>> cmp.dist_abs('Colin', 'Cuilen')
3.4142137
>>> cmp.dist_abs('ATCG', 'TAGC')
2.5
>>> cmp.dist_abs('cat', 'hat', metric='manhattan')
2.0
>>> cmp.dist_abs('Niall', 'Neil', metric='manhattan')
3.0
>>> cmp.dist_abs('Colin', 'Cuilen', metric='manhattan')
3.5
>>> cmp.dist_abs('ATCG', 'TAGC', metric='manhattan')
2.5
>>> cmp.dist_abs('cat', 'hat', metric='log-manhattan')
0.804719
>>> cmp.dist_abs('Niall', 'Neil', metric='log-manhattan')
2.2424533
>>> cmp.dist_abs('Colin', 'Cuilen', metric='log-manhattan')
2.2424533
>>> cmp.dist_abs('ATCG', 'TAGC', metric='log-manhattan')
2.3465736
"""
ins_cost, del_cost, sub_cost, shift_cost = cost
if src == tar:
return 0.0
if not src:
return len(tar) * ins_cost
if not tar:
return len(src) * del_cost
keyboard = self._keyboard[layout]
lowercase = {item for sublist in keyboard[0] for item in sublist}
uppercase = {item for sublist in keyboard[1] for item in sublist}
def _kb_array_for_char(char):
"""Return the keyboard layout that contains ch.
Parameters
----------
char : str
The character to lookup
Returns
-------
tuple
A keyboard
Raises
------
ValueError
char not found in any keyboard layouts
"""
if char in lowercase:
return keyboard[0]
elif char in uppercase:
return keyboard[1]
raise ValueError(char + ' not found in any keyboard layouts')
def _substitution_cost(char1, char2):
cost = sub_cost
cost *= metric_dict[metric](char1, char2) + shift_cost * (
_kb_array_for_char(char1) != _kb_array_for_char(char2)
)
return cost
def _get_char_coord(char, kb_array):
"""Return the row & column of char in the keyboard.
Parameters
----------
char : str
The character to search for
kb_array : tuple of tuples
The array of key positions
Returns
-------
tuple
The row & column of the key
"""
for row in kb_array: # pragma: no branch
if char in row:
return kb_array.index(row), row.index(char)
def _euclidean_keyboard_distance(char1, char2):
row1, col1 = _get_char_coord(char1, _kb_array_for_char(char1))
row2, col2 = _get_char_coord(char2, _kb_array_for_char(char2))
return ((row1 - row2) ** 2 + (col1 - col2) ** 2) ** 0.5
def _manhattan_keyboard_distance(char1, char2):
row1, col1 = _get_char_coord(char1, _kb_array_for_char(char1))
row2, col2 = _get_char_coord(char2, _kb_array_for_char(char2))
return abs(row1 - row2) + abs(col1 - col2)
def _log_euclidean_keyboard_distance(char1, char2):
return log(1 + _euclidean_keyboard_distance(char1, char2))
def _log_manhattan_keyboard_distance(char1, char2):
return log(1 + _manhattan_keyboard_distance(char1, char2))
metric_dict = {
'euclidean': _euclidean_keyboard_distance,
'manhattan': _manhattan_keyboard_distance,
'log-euclidean': _log_euclidean_keyboard_distance,
'log-manhattan': _log_manhattan_keyboard_distance,
}
d_mat = np_zeros((len(src) + 1, len(tar) + 1), dtype=np_float32)
for i in range(len(src) + 1):
d_mat[i, 0] = i * del_cost
for j in range(len(tar) + 1):
d_mat[0, j] = j * ins_cost
for i in range(len(src)):
for j in range(len(tar)):
d_mat[i + 1, j + 1] = min(
d_mat[i + 1, j] + ins_cost, # ins
d_mat[i, j + 1] + del_cost, # del
d_mat[i, j]
+ (
_substitution_cost(src[i], tar[j])
if src[i] != tar[j]
else 0
), # sub/==
)
return d_mat[len(src), len(tar)]
|
def dist(
self,
src,
tar,
metric='euclidean',
cost=(1, 1, 0.5, 0.5),
layout='QWERTY',
):
"""Return the normalized typo distance between two strings.
This is typo distance, normalized to [0, 1].
Parameters
----------
src : str
Source string for comparison
tar : str
Target string for comparison
metric : str
Supported values include: ``euclidean``, ``manhattan``,
``log-euclidean``, and ``log-manhattan``
cost : tuple
A 4-tuple representing the cost of the four possible edits:
inserts, deletes, substitutions, and shift, respectively (by
default: (1, 1, 0.5, 0.5)) The substitution & shift costs should be
significantly less than the cost of an insertion & deletion unless
a log metric is used.
layout : str
Name of the keyboard layout to use (Currently supported:
``QWERTY``, ``Dvorak``, ``AZERTY``, ``QWERTZ``)
Returns
-------
float
Normalized typo distance
Examples
--------
>>> cmp = Typo()
>>> round(cmp.dist('cat', 'hat'), 12)
0.527046283086
>>> round(cmp.dist('Niall', 'Neil'), 12)
0.565028142929
>>> round(cmp.dist('Colin', 'Cuilen'), 12)
0.569035609563
>>> cmp.dist('ATCG', 'TAGC')
0.625
"""
if src == tar:
return 0.0
ins_cost, del_cost = cost[:2]
return self.dist_abs(src, tar, metric, cost, layout) / (
max(len(src) * del_cost, len(tar) * ins_cost)
)
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.