relative_path
stringclasses
812 values
section
stringclasses
339 values
filename
stringlengths
2
61
text
stringlengths
6
1.76M
PyTorch/LanguageModeling/BERT/scripts/configs
configs
pretrain_config
#!/usr/bin/env bash # Copyright (c) 2020-2021 NVIDIA CORPORATION. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. dgxa100-80g_8gpu_fp16 () { train_batch_size="8192" learning_rate="6e-3" precision="fp16" num_gpus=8 warmup_proportion="0.2843" train_steps=7038 save_checkpoint_steps=200 resume_training="false" create_logfile="true" accumulate_gradients="true" gradient_accumulation_steps=32 seed=42 job_name="bert_lamb_pretraining" allreduce_post_accumulation="true" allreduce_post_accumulation_fp16="true" train_batch_size_phase2=4096 learning_rate_phase2="4e-3" warmup_proportion_phase2="0.128" train_steps_phase2=1563 gradient_accumulation_steps_phase2=128 DATASET=pretrain/phase1/unbinned/parquet # change this for other datasets DATA_DIR_PHASE1="$BERT_PREP_WORKING_DIR/${DATASET}/" BERT_CONFIG=bert_configs/large.json CODEDIR="/workspace/bert" init_checkpoint="None" DATASET2=pretrain/phase2/bin_size_64/parquet # change this for other datasets DATA_DIR_PHASE2="$BERT_PREP_WORKING_DIR/${DATASET2}/" wikipedia_source=$BERT_PREP_WORKING_DIR/wikipedia/source/ num_dask_workers=128 num_shards_per_worker=128 num_workers=4 sample_ratio="0.9" phase2_bin_size=64 masking=static echo $train_batch_size $learning_rate $precision $num_gpus \ $warmup_proportion $train_steps $save_checkpoint_steps \ $resume_training $create_logfile $accumulate_gradients \ $gradient_accumulation_steps $seed $job_name $allreduce_post_accumulation \ $allreduce_post_accumulation_fp16 $train_batch_size_phase2 $learning_rate_phase2 \ $warmup_proportion_phase2 $train_steps_phase2 $gradient_accumulation_steps_phase2 \ $DATA_DIR_PHASE1 $DATA_DIR_PHASE2 $CODEDIR $init_checkpoint \ $wikipedia_source $num_dask_workers $num_shards_per_worker $num_workers \ $sample_ratio $phase2_bin_size $masking \ $BERT_CONFIG } dgxa100-80g_8gpu_tf32 () { train_batch_size="8192" learning_rate="6e-3" precision="tf32" num_gpus=8 warmup_proportion="0.2843" train_steps=7038 save_checkpoint_steps=200 resume_training="false" create_logfile="true" accumulate_gradients="true" gradient_accumulation_steps=64 seed=42 job_name="bert_lamb_pretraining" allreduce_post_accumulation="true" allreduce_post_accumulation_fp16="false" train_batch_size_phase2=4096 learning_rate_phase2="4e-3" warmup_proportion_phase2="0.128" train_steps_phase2=1563 gradient_accumulation_steps_phase2=256 DATASET=pretrain/phase1/unbinned/parquet # change this for other datasets DATA_DIR_PHASE1="$BERT_PREP_WORKING_DIR/${DATASET}/" BERT_CONFIG=bert_configs/large.json CODEDIR="/workspace/bert" init_checkpoint="None" DATASET2=pretrain/phase2/bin_size_64/parquet # change this for other datasets DATA_DIR_PHASE2="$BERT_PREP_WORKING_DIR/${DATASET2}/" wikipedia_source=$BERT_PREP_WORKING_DIR/wikipedia/source/ num_dask_workers=128 num_shards_per_worker=128 num_workers=4 sample_ratio="0.9" phase2_bin_size=64 masking=static echo $train_batch_size $learning_rate $precision $num_gpus \ $warmup_proportion $train_steps $save_checkpoint_steps \ $resume_training $create_logfile $accumulate_gradients \ $gradient_accumulation_steps $seed $job_name $allreduce_post_accumulation \ $allreduce_post_accumulation_fp16 $train_batch_size_phase2 $learning_rate_phase2 \ $warmup_proportion_phase2 $train_steps_phase2 $gradient_accumulation_steps_phase2 \ $DATA_DIR_PHASE1 $DATA_DIR_PHASE2 $CODEDIR $init_checkpoint \ $wikipedia_source $num_dask_workers $num_shards_per_worker $num_workers \ $sample_ratio $phase2_bin_size $masking \ $BERT_CONFIG } dgx1-32g_8gpu_fp16 () { train_batch_size="8192" learning_rate="6e-3" precision="fp16" num_gpus=8 warmup_proportion="0.2843" train_steps=7038 save_checkpoint_steps=200 resume_training="false" create_logfile="true" accumulate_gradients="true" gradient_accumulation_steps=64 seed=42 job_name="bert_lamb_pretraining" allreduce_post_accumulation="true" allreduce_post_accumulation_fp16="true" train_batch_size_phase2=4096 learning_rate_phase2="4e-3" warmup_proportion_phase2="0.128" train_steps_phase2=1563 gradient_accumulation_steps_phase2=256 DATASET=pretrain/phase1/unbinned/parquet # change this for other datasets DATA_DIR_PHASE1="$BERT_PREP_WORKING_DIR/${DATASET}/" BERT_CONFIG=bert_configs/large.json CODEDIR="/workspace/bert" init_checkpoint="None" DATASET2=pretrain/phase2/bin_size_64/parquet # change this for other datasets DATA_DIR_PHASE2="$BERT_PREP_WORKING_DIR/${DATASET2}/" wikipedia_source=$BERT_PREP_WORKING_DIR/wikipedia/source/ num_dask_workers=128 num_shards_per_worker=128 num_workers=4 sample_ratio="0.9" phase2_bin_size=64 masking=static echo $train_batch_size $learning_rate $precision $num_gpus \ $warmup_proportion $train_steps $save_checkpoint_steps \ $resume_training $create_logfile $accumulate_gradients \ $gradient_accumulation_steps $seed $job_name $allreduce_post_accumulation \ $allreduce_post_accumulation_fp16 $train_batch_size_phase2 $learning_rate_phase2 \ $warmup_proportion_phase2 $train_steps_phase2 $gradient_accumulation_steps_phase2 \ $DATA_DIR_PHASE1 $DATA_DIR_PHASE2 $CODEDIR $init_checkpoint \ $wikipedia_source $num_dask_workers $num_shards_per_worker $num_workers \ $sample_ratio $phase2_bin_size $masking \ $BERT_CONFIG } dgx1-32g_8gpu_fp32 () { train_batch_size="8192" learning_rate="6e-3" precision="fp32" num_gpus=8 warmup_proportion="0.2843" train_steps=7038 save_checkpoint_steps=200 resume_training="false" create_logfile="true" accumulate_gradients="true" gradient_accumulation_steps=128 seed=42 job_name="bert_lamb_pretraining" allreduce_post_accumulation="true" allreduce_post_accumulation_fp16="false" train_batch_size_phase2=4096 learning_rate_phase2="4e-3" warmup_proportion_phase2="0.128" train_steps_phase2=1563 gradient_accumulation_steps_phase2=512 DATASET=pretrain/phase1/unbinned/parquet # change this for other datasets DATA_DIR_PHASE1="$BERT_PREP_WORKING_DIR/${DATASET}/" BERT_CONFIG=bert_configs/large.json CODEDIR="/workspace/bert" init_checkpoint="None" DATASET2=pretrain/phase2/bin_size_64/parquet # change this for other datasets DATA_DIR_PHASE2="$BERT_PREP_WORKING_DIR/${DATASET2}/" wikipedia_source=$BERT_PREP_WORKING_DIR/wikipedia/source/ num_dask_workers=128 num_shards_per_worker=128 num_workers=4 sample_ratio="0.9" phase2_bin_size=64 masking=static echo $train_batch_size $learning_rate $precision $num_gpus \ $warmup_proportion $train_steps $save_checkpoint_steps \ $resume_training $create_logfile $accumulate_gradients \ $gradient_accumulation_steps $seed $job_name $allreduce_post_accumulation \ $allreduce_post_accumulation_fp16 $train_batch_size_phase2 $learning_rate_phase2 \ $warmup_proportion_phase2 $train_steps_phase2 $gradient_accumulation_steps_phase2 \ $DATA_DIR_PHASE1 $DATA_DIR_PHASE2 $CODEDIR $init_checkpoint \ $wikipedia_source $num_dask_workers $num_shards_per_worker $num_workers \ $sample_ratio $phase2_bin_size $masking \ $BERT_CONFIG }
PyTorch/Forecasting/TFT/triton/runner
runner
__init__
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
Tools/PyTorch/TimeSeriesPredictionPlatform/conf
conf
preproc_config
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. defaults: - dataset@_here_: ??? _target_: data.data_utils.Preprocessor
PyTorch/LanguageModeling/BERT/triton/large/runner
runner
pipeline_impl
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pathlib if __name__ == "__main__" and __package__ is None: __package__ = pathlib.Path(__file__).parent.name from ...runner.pipeline import Pipeline pipeline = Pipeline() pipeline.model_export( commands=( r""" if [[ "${EXPORT_FORMAT}" == "ts-trace" || "${EXPORT_FORMAT}" == "ts-script" ]]; then export FORMAT_SUFFIX="pt" else export FORMAT_SUFFIX="${EXPORT_FORMAT}" fi if [[ "${EXPORT_FORMAT}" == "trt" ]]; then export FLAG="--fixed-batch-dim" else export FLAG="" fi python3 triton/export_model.py \ --input-path triton/model.py \ --input-type pyt \ --output-path ${SHARED_DIR}/exported_model.${FORMAT_SUFFIX} \ --output-type ${EXPORT_FORMAT} \ --dataloader triton/dataloader.py \ --ignore-unknown-parameters \ --onnx-opset 13 \ ${FLAG} \ \ --config-file bert_configs/large.json \ --checkpoint ${CHECKPOINT_DIR}/bert_large_qa.pt \ --precision ${EXPORT_PRECISION} \ \ --vocab-file ${DATASETS_DIR}/data/google_pretrained_weights/uncased_L-24_H-1024_A-16/vocab.txt \ --max-seq-length ${MAX_SEQ_LENGTH} \ --predict-file ${DATASETS_DIR}/data/squad/v1.1/dev-v1.1.json \ --batch-size ${MAX_BATCH_SIZE} """, ) ) pipeline.model_conversion( commands=( r""" if [[ "${EXPORT_FORMAT}" == "ts-trace" || "${EXPORT_FORMAT}" == "ts-script" ]]; then export FORMAT_SUFFIX="pt" else export FORMAT_SUFFIX="${EXPORT_FORMAT}" fi if [ "${EXPORT_FORMAT}" != "${FORMAT}" ]; then model-navigator convert \ --model-name ${MODEL_NAME} \ --model-path ${SHARED_DIR}/exported_model.${FORMAT_SUFFIX} \ --output-path ${SHARED_DIR}/converted_model \ --target-formats ${FORMAT} \ --target-precisions ${PRECISION} \ --launch-mode local \ --override-workspace \ --verbose \ \ --onnx-opsets 13 \ --inputs input__0:${MAX_BATCH_SIZE},${MAX_SEQ_LENGTH}:int32 \ --inputs input__1:${MAX_BATCH_SIZE},${MAX_SEQ_LENGTH}:int32 \ --inputs input__2:${MAX_BATCH_SIZE},${MAX_SEQ_LENGTH}:int32 \ --min-shapes input__0=${MAX_BATCH_SIZE},${MAX_SEQ_LENGTH} \ input__1=${MAX_BATCH_SIZE},${MAX_SEQ_LENGTH} \ input__2=${MAX_BATCH_SIZE},${MAX_SEQ_LENGTH} \ --max-shapes input__0=${MAX_BATCH_SIZE},${MAX_SEQ_LENGTH} \ input__1=${MAX_BATCH_SIZE},${MAX_SEQ_LENGTH} \ input__2=${MAX_BATCH_SIZE},${MAX_SEQ_LENGTH} \ --opt-shapes input__0=${MAX_BATCH_SIZE},${MAX_SEQ_LENGTH} \ input__1=${MAX_BATCH_SIZE},${MAX_SEQ_LENGTH} \ input__2=${MAX_BATCH_SIZE},${MAX_SEQ_LENGTH} \ --max-batch-size ${MAX_BATCH_SIZE} \ --tensorrt-max-workspace-size 8589934592 \ --atol 2 output__0=5.0 \ output__1=5.0 \ --rtol 1 output__0=5.0 \ output__1=5.0 \ | grep -v "broadcasting input1 to make tensors conform" else mv ${SHARED_DIR}/exported_model.${FORMAT_SUFFIX} ${SHARED_DIR}/converted_model mv ${SHARED_DIR}/exported_model.${FORMAT_SUFFIX}.yaml ${SHARED_DIR}/converted_model.yaml 2>/dev/null || true fi """, ) ) pipeline.model_deploy( commands=( r""" if [[ "${FORMAT}" == "ts-trace" || "${FORMAT}" == "ts-script" ]]; then export CONFIG_FORMAT="torchscript" else export CONFIG_FORMAT="${FORMAT}" fi if [[ "${FORMAT}" == "trt" ]]; then export MBS="0" else export MBS="${MAX_BATCH_SIZE}" fi model-navigator triton-config-model \ --model-repository ${MODEL_REPOSITORY_PATH} \ --model-name ${MODEL_NAME} \ --model-version 1 \ --model-path ${SHARED_DIR}/converted_model \ --model-format ${CONFIG_FORMAT} \ --model-control-mode ${TRITON_LOAD_MODEL_METHOD} \ --verbose \ --load-model \ --load-model-timeout-s 100 \ \ --backend-accelerator ${ACCELERATOR} \ --tensorrt-precision ${ACCELERATOR_PRECISION} \ --max-batch-size ${MBS} \ --preferred-batch-sizes ${TRITON_PREFERRED_BATCH_SIZES} \ --max-queue-delay-us ${TRITON_MAX_QUEUE_DELAY} \ --engine-count-per-device gpu=${TRITON_GPU_ENGINE_COUNT} """, ) ) pipeline.triton_prepare_performance_profiling_data( commands=( r""" mkdir -p ${SHARED_DIR}/input_data """, r""" python triton/prepare_input_data.py \ --dataloader triton/dataloader.py \ --input-data-dir ${SHARED_DIR}/input_data \ \ --batch-size ${MAX_BATCH_SIZE} \ --max-seq-length ${MAX_SEQ_LENGTH} \ --predict-file ${DATASETS_DIR}/data/squad/v1.1/dev-v1.1.json \ --vocab-file ${DATASETS_DIR}/data/google_pretrained_weights/uncased_L-24_H-1024_A-16/vocab.txt """, ) ) pipeline.triton_performance_offline_tests( commands=( r""" python triton/run_performance_on_triton.py \ --model-repository ${MODEL_REPOSITORY_PATH} \ --model-name ${MODEL_NAME} \ --input-data ${SHARED_DIR}/input_data/data.json \ --input-shapes input__0:${MAX_SEQ_LENGTH} \ --input-shapes input__1:${MAX_SEQ_LENGTH} \ --input-shapes input__2:${MAX_SEQ_LENGTH} \ --batch-sizes ${BATCH_SIZE} \ --number-of-triton-instances ${TRITON_INSTANCES} \ --number-of-model-instances ${TRITON_GPU_ENGINE_COUNT} \ --batching-mode static \ --evaluation-mode offline \ --performance-tool perf_analyzer \ --result-path ${SHARED_DIR}/triton_performance_offline.csv """, ), result_path="${SHARED_DIR}/triton_performance_offline.csv", )
Tools/PyTorch/TimeSeriesPredictionPlatform
TimeSeriesPredictionPlatform
requirements
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. pmdarima==1.8.0 wget==3.2 hydra-core==1.1.1 pyunpack==0.2.2 tensorboard optuna optuna-dashboard hydra-optuna-sweeper==1.1.2 hydra-joblib-launcher==1.1.5 pandas==1.1.4 dgl-cu111
PyTorch/SpeechSynthesis/Tacotron2/trtis_cpp/src/trt/plugins/taco2ProjectionPlugin
taco2ProjectionPlugin
taco2ProjectionLayerPlugin
/* * Copyright (c) 2019-2020, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the NVIDIA CORPORATION nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "taco2ProjectionLayerPlugin.h" #include "taco2ProjectionKernel.h" #include "taco2Utils.h" #include <cassert> #include <cstdlib> #include <cstring> #include <cuda_runtime.h> // cudaError_t #include <iostream> #include <sstream> #include <stdexcept> #include <string> using namespace nvinfer1; namespace nvinfer1 { namespace plugin { using value_type = Taco2ProjectionLayerPlugin::value_type; /****************************************************************************** * CONSTANTS ****************************************************************** *****************************************************************************/ namespace { constexpr const char* const PLUGIN_NAME = "Taco2Projection"; constexpr const char* const PLUGIN_VERSION = "0.1.0"; constexpr const int NUM_INPUTS = 2; } // namespace const float Taco2ProjectionLayerPlugin::ONE = 1.0f; const float Taco2ProjectionLayerPlugin::ZERO = 0.0f; /****************************************************************************** * HELPER FUNCTIONS *********************************************************** *****************************************************************************/ namespace { std::vector<value_type> toVector(const Weights& weights) { if (weights.type != DataType::kFLOAT) { throw std::runtime_error( "Invalid data type for Taco2Projection weights: " + std::to_string(static_cast<int>(weights.type))); } const value_type* const valuesBegin = static_cast<const value_type*>(weights.values); const value_type* const valuesEnd = valuesBegin + weights.count; return std::vector<value_type>(valuesBegin, valuesEnd); } const void* offset(const void* ptr, const size_t offset) { return reinterpret_cast<const void*>(static_cast<const uint8_t*>(ptr) + offset); } } // namespace /****************************************************************************** * STATIC METHODS ************************************************************* *****************************************************************************/ const char* Taco2ProjectionLayerPlugin::getName() { return PLUGIN_NAME; } const char* Taco2ProjectionLayerPlugin::getVersion() { return PLUGIN_VERSION; } Taco2ProjectionLayerPlugin Taco2ProjectionLayerPlugin::deserialize(const void* const data, const size_t length) { if (length < 4 * sizeof(int32_t)) { throw std::runtime_error("Invalid serialized size: " + std::to_string(length)); } const int hiddenInputLength = static_cast<const int32_t*>(data)[0]; const int contextInputLength = static_cast<const int32_t*>(data)[1]; const int numChannelDimension = static_cast<const int32_t*>(data)[2]; const int numGateDimension = static_cast<const int32_t*>(data)[3]; const int inputLength = hiddenInputLength + contextInputLength; const int numDimensions = numChannelDimension + numGateDimension; const size_t reqSize = 4 * sizeof(int32_t) + sizeof(value_type) * ((inputLength * numDimensions) + numDimensions); if (reqSize != length) { throw std::runtime_error( "Invalid serialized size: " + std::to_string(length) + " / " + std::to_string(reqSize)); } const Weights weightsChannel{ DataType::kFLOAT, offset(data, 4 * sizeof(int32_t)), numChannelDimension * inputLength}; const Weights weightsGate{DataType::kFLOAT, offset(weightsChannel.values, sizeof(value_type) * weightsChannel.count), numGateDimension * inputLength}; const Weights biasChannel{ DataType::kFLOAT, offset(weightsGate.values, sizeof(value_type) * weightsGate.count), numChannelDimension}; const Weights biasGate{ DataType::kFLOAT, offset(biasChannel.values, sizeof(value_type) * biasChannel.count), numGateDimension}; Taco2ProjectionLayerPlugin layer(weightsChannel, weightsGate, biasChannel, biasGate, hiddenInputLength, contextInputLength, numChannelDimension, numGateDimension); return layer; } /****************************************************************************** * CONSTRUCTORS / DESTRUCTOR ************************************************** *****************************************************************************/ Taco2ProjectionLayerPlugin::Taco2ProjectionLayerPlugin(const nvinfer1::Weights& weightsChannel, const nvinfer1::Weights& weightsGate, const nvinfer1::Weights& biasChannel, const nvinfer1::Weights& biasGate, const int hiddenInputLength, const int contextInputLength, const int numChannelDimension, const int numGateDimension) : mHiddenInputLength(hiddenInputLength) , mContextInputLength(contextInputLength) , mNumChannelDimension(numChannelDimension) , mNumGateDimension(numGateDimension) , mWeightsChannel(toVector(weightsChannel)) , mWeightsGate(toVector(weightsGate)) , mBiasChannel(toVector(biasChannel)) , mBiasGate(toVector(biasGate)) , mKernel() , mNamespace() { const size_t expectedWeightsChannel = getTotalInputLength() * mNumChannelDimension; if (mWeightsChannel.size() != expectedWeightsChannel) { throw std::runtime_error("Taco2Projection expected " + std::to_string(expectedWeightsChannel) + " channel weights but given " + std::to_string(mWeightsChannel.size())); } const size_t expectedWeightsGate = getTotalInputLength() * mNumGateDimension; if (mWeightsGate.size() != expectedWeightsGate) { throw std::runtime_error("Taco2Projection expected " + std::to_string(expectedWeightsGate) + " gate weights but given " + std::to_string(mWeightsGate.size())); } const size_t expectedBiasChannel = mNumChannelDimension; if (mBiasChannel.size() != expectedBiasChannel) { throw std::runtime_error("Taco2Projection expected " + std::to_string(expectedBiasChannel) + " channel bias but given " + std::to_string(mBiasChannel.size())); } const size_t expectedBiasGate = mNumGateDimension; if (mBiasGate.size() != expectedBiasGate) { throw std::runtime_error("Taco2Projection expected " + std::to_string(expectedBiasGate) + " gate bias but given " + std::to_string(mBiasGate.size())); } } Taco2ProjectionLayerPlugin::Taco2ProjectionLayerPlugin(Taco2ProjectionLayerPlugin&& other) : mHiddenInputLength(other.mHiddenInputLength) , mContextInputLength(other.mContextInputLength) , mNumChannelDimension(other.mNumChannelDimension) , mNumGateDimension(other.mNumGateDimension) , mWeightsChannel(std::move(other.mWeightsChannel)) , mWeightsGate(std::move(other.mWeightsGate)) , mBiasChannel(std::move(other.mBiasChannel)) , mBiasGate(std::move(other.mBiasGate)) , mKernel(std::move(other.mKernel)) , mNamespace(std::move(other.mNamespace)) { other.mHiddenInputLength = 0; other.mContextInputLength = 0; other.mNumChannelDimension = 0; other.mNumGateDimension = 0; } Taco2ProjectionLayerPlugin::~Taco2ProjectionLayerPlugin() { destroy(); } /****************************************************************************** * PUBLIC METHODS ************************************************************* *****************************************************************************/ Taco2ProjectionLayerPlugin& Taco2ProjectionLayerPlugin::operator=(Taco2ProjectionLayerPlugin&& other) { // defere to constructor *this = Taco2ProjectionLayerPlugin(std::move(other)); return *this; } DataType Taco2ProjectionLayerPlugin::getOutputDataType( const int /* index */, const DataType* const /* inputTypes */, const int /* nbInputs */) const { return DataType::kFLOAT; } const char* Taco2ProjectionLayerPlugin::getPluginType() const { return getName(); } const char* Taco2ProjectionLayerPlugin::getPluginVersion() const { return getVersion(); } int Taco2ProjectionLayerPlugin::getNbOutputs() const { return 1; } DimsExprs Taco2ProjectionLayerPlugin::getOutputDimensions( const int outputIndex, const DimsExprs* inputs, const int nbInputs, IExprBuilder& exprBuilder) { if (outputIndex >= getNbOutputs()) { throw std::runtime_error("Only has one output."); } if (nbInputs != NUM_INPUTS) { throw std::runtime_error( "Can only handle " + std::to_string(NUM_INPUTS) + " input tensors: " + std::to_string(nbInputs)); } return DimsExprs{3, {inputs[0].d[0], exprBuilder.constant(1), exprBuilder.constant(getTotalDimensions())}}; } bool Taco2ProjectionLayerPlugin::supportsFormatCombination( const int pos, const PluginTensorDesc* const inOut, const int /* nbInputs */, const int /* nbOutputs */) { return inOut[pos].format == TensorFormat::kLINEAR && inOut[pos].type == DataType::kFLOAT; } void Taco2ProjectionLayerPlugin::configurePlugin(const DynamicPluginTensorDesc* const in, const int nbInputs, const DynamicPluginTensorDesc* const out, const int nbOutputs) { if (nbInputs != NUM_INPUTS) { throw std::runtime_error( "Can only handle " + std::to_string(NUM_INPUTS) + " input tensors: " + std::to_string(nbInputs)); } for (int i = 0; i < nbInputs; ++i) { if (in[i].desc.type != DataType::kFLOAT) { throw std::runtime_error("Only FLOAT supported as input " + std::to_string(i) + " : " + std::to_string(static_cast<int>(in[i].desc.type))); } } // assert dimensions { bool foundDim = false; const Dims dims = in[0].desc.dims; for (int d = 1; d < dims.nbDims; ++d) { if (dims.d[d] != 1) { if (foundDim || dims.d[d] != mHiddenInputLength) { throw std::runtime_error( "First projection input must be 1 x hiddenInputLength" " : " + taco2::Taco2Utils::dimsToString(dims)); } foundDim = true; } } if (!foundDim) { throw std::runtime_error( "First projection input must be 1 x hiddenInputLength" " : " + taco2::Taco2Utils::dimsToString(dims)); } } { bool foundDim = false; const Dims dims = in[1].desc.dims; for (int d = 1; d < dims.nbDims; ++d) { if (dims.d[d] != 1) { if (foundDim || dims.d[d] != mContextInputLength) { throw std::runtime_error( "Second projection input must be 1 x contextInputLength" " : " + taco2::Taco2Utils::dimsToString(dims)); } foundDim = true; } } if (!foundDim) { throw std::runtime_error( "Second projection input must be 1 x contextInputLength" " : " + taco2::Taco2Utils::dimsToString(dims)); } } for (int i = 0; i < nbOutputs; ++i) { if (out[i].desc.type != DataType::kFLOAT) { throw std::runtime_error("Only FLOAT supported as output: " + std::to_string(i) + " : " + std::to_string(static_cast<int>(out[i].desc.type))); } } } int Taco2ProjectionLayerPlugin::initialize() { try { // concat projection and gate FC layers std::vector<float> hostWeightCat; hostWeightCat.insert(hostWeightCat.end(), mWeightsChannel.begin(), mWeightsChannel.end()); hostWeightCat.insert(hostWeightCat.end(), mWeightsGate.begin(), mWeightsGate.end()); std::vector<float> hostBiasCat; hostBiasCat.insert(hostBiasCat.end(), mBiasChannel.begin(), mBiasChannel.end()); hostBiasCat.insert(hostBiasCat.end(), mBiasGate.begin(), mBiasGate.end()); mKernel.reset(new Taco2ProjectionKernel(hostWeightCat, hostBiasCat, mHiddenInputLength, mContextInputLength, mNumChannelDimension + mNumGateDimension)); } catch (const std::exception& e) { std::cerr << "Taco2ProjectionLayerPlugin initialization failed: " << e.what() << std::endl; return 1; } return 0; } void Taco2ProjectionLayerPlugin::terminate() { mKernel.reset(); } size_t Taco2ProjectionLayerPlugin::getWorkspaceSize( const PluginTensorDesc* const /* in */, const int /* nbInputs */, const PluginTensorDesc* const /* out */, const int /* nbOutputs */) const { return 0; } int Taco2ProjectionLayerPlugin::enqueue(const PluginTensorDesc* const inputDesc, const PluginTensorDesc* /* outputDesc */, const void* const* const inputs, void* const* const outputs, void* const /* workspace */, cudaStream_t stream) { const int batchSize = inputDesc[0].dims.d[0]; if (batchSize != 1) { // we only support batch size of 1 right now std::cerr << "Taco2ProjectionLayerPlugin plugin does not support batch size other " "than 1: got " << batchSize << std::endl; std::cerr << "Recompile without plugins to use a larger batch size." << std::endl; return 1; } else if (!mKernel) { std::cerr << "Taco2ProjectionLayerPlugin is not initialized properly." << std::endl; return 1; } // name inputs and outputs const value_type* const hiddenDevice = static_cast<const value_type*>(inputs[0]); const value_type* const contextDevice = static_cast<const value_type*>(inputs[1]); value_type* const outputDevice = static_cast<value_type*>(outputs[0]); mKernel->execute(hiddenDevice, contextDevice, outputDevice, stream); return 0; } size_t Taco2ProjectionLayerPlugin::getSerializationSize() const { return 4 * sizeof(int32_t) + sizeof(value_type) * (getTotalInputLength() * getTotalDimensions() + getTotalDimensions()); } void Taco2ProjectionLayerPlugin::serialize(void* const buffer) const { static_cast<int32_t*>(buffer)[0] = mHiddenInputLength; static_cast<int32_t*>(buffer)[1] = mContextInputLength; static_cast<int32_t*>(buffer)[2] = mNumChannelDimension; static_cast<int32_t*>(buffer)[3] = mNumGateDimension; float* const weightsChannel = reinterpret_cast<float*>(static_cast<int32_t*>(buffer) + 4); float* const weightsGate = weightsChannel + (getTotalInputLength() * mNumChannelDimension); float* const biasChannel = weightsGate + (getTotalInputLength() * mNumGateDimension); float* const biasGate = biasChannel + mNumChannelDimension; memcpy(weightsChannel, mWeightsChannel.data(), sizeof(value_type) * mWeightsChannel.size()); memcpy(weightsGate, mWeightsGate.data(), sizeof(value_type) * mWeightsGate.size()); memcpy(biasChannel, mBiasChannel.data(), sizeof(value_type) * mBiasChannel.size()); memcpy(biasGate, mBiasGate.data(), sizeof(value_type) * mBiasGate.size()); } void Taco2ProjectionLayerPlugin::destroy() { terminate(); } IPluginV2DynamicExt* Taco2ProjectionLayerPlugin::clone() const { // call constructor which copy's data Taco2ProjectionLayerPlugin clone( Weights{DataType::kFLOAT, mWeightsChannel.data(), static_cast<int64_t>(mWeightsChannel.size())}, Weights{DataType::kFLOAT, mWeightsGate.data(), static_cast<int64_t>(mWeightsGate.size())}, Weights{DataType::kFLOAT, mBiasChannel.data(), static_cast<int64_t>(mBiasChannel.size())}, Weights{DataType::kFLOAT, mBiasGate.data(), static_cast<int64_t>(mBiasGate.size())}, mHiddenInputLength, mContextInputLength, mNumChannelDimension, mNumGateDimension); if (mKernel) { // initialize the clone too clone.initialize(); } // move it to the heap last to avoid exceptions causing memory leaks return new Taco2ProjectionLayerPlugin(std::move(clone)); } void Taco2ProjectionLayerPlugin::setPluginNamespace(const char* pluginNamespace) { mNamespace = pluginNamespace; } const char* Taco2ProjectionLayerPlugin::getPluginNamespace() const { return mNamespace.c_str(); } /****************************************************************************** * PRIVATE METHODS ************************************************************ *****************************************************************************/ int Taco2ProjectionLayerPlugin::getTotalDimensions() const { return mNumChannelDimension + mNumGateDimension; } int Taco2ProjectionLayerPlugin::getTotalInputLength() const { return mHiddenInputLength + mContextInputLength; } } // namespace plugin } // namespace nvinfer1
PyTorch/SpeechRecognition/Jasper/triton/model_repo_configs/fp32/jasper-ts-trace
jasper-ts-trace
config
name: "jasper-ts-trace" platform: "pytorch_libtorch" default_model_filename: "model.pt" max_batch_size: 8#MAX_BATCH input [ { name: "input__0" data_type: TYPE_FP32 dims: [64, -1] } ] output [ { name: "output__0" data_type: TYPE_FP32 dims: [-1, 29] } ] instance_group { count: 1#NUM_ENGINES gpus: 0 kind: KIND_GPU } #db#dynamic_batching { #db# preferred_batch_size: 8#MAX_BATCH #db# max_queue_delay_microseconds: #MAX_QUEUE #db#}
TensorFlow/Detection/SSD/models/research/object_detection/samples/configs
configs
faster_rcnn_resnet101_kitti
# Faster R-CNN with Resnet-101 (v1) # Trained on KITTI dataset (cars and pedestrian), initialized from COCO # detection checkpoint. # Users should configure the fine_tune_checkpoint field in the train config as # well as the label_map_path and input_path fields in the train_input_reader and # eval_input_reader. Search for "PATH_TO_BE_CONFIGURED" to find the fields that # should be configured. model { faster_rcnn { num_classes: 2 image_resizer { keep_aspect_ratio_resizer { # Raw KITTI images have a resolution of 1242x375, if we wish to resize # them to have a height of 600 then their width should be # 1242/(375/600)=1987.2 min_dimension: 600 max_dimension: 1987 } } feature_extractor { type: 'faster_rcnn_resnet101' first_stage_features_stride: 16 } first_stage_anchor_generator { grid_anchor_generator { scales: [0.25, 0.5, 1.0, 2.0] aspect_ratios: [0.5, 1.0, 2.0] height_stride: 16 width_stride: 16 } } first_stage_box_predictor_conv_hyperparams { op: CONV regularizer { l2_regularizer { weight: 0.0 } } initializer { truncated_normal_initializer { stddev: 0.01 } } } first_stage_nms_score_threshold: 0.0 first_stage_nms_iou_threshold: 0.7 first_stage_max_proposals: 300 first_stage_localization_loss_weight: 2.0 first_stage_objectness_loss_weight: 1.0 initial_crop_size: 14 maxpool_kernel_size: 2 maxpool_stride: 2 second_stage_box_predictor { mask_rcnn_box_predictor { use_dropout: false dropout_keep_probability: 1.0 fc_hyperparams { op: FC regularizer { l2_regularizer { weight: 0.0 } } initializer { variance_scaling_initializer { factor: 1.0 uniform: true mode: FAN_AVG } } } } } second_stage_post_processing { batch_non_max_suppression { score_threshold: 0.0 iou_threshold: 0.6 max_detections_per_class: 100 max_total_detections: 300 } score_converter: SOFTMAX } second_stage_localization_loss_weight: 2.0 second_stage_classification_loss_weight: 1.0 } } train_config: { batch_size: 1 optimizer { momentum_optimizer: { learning_rate: { manual_step_learning_rate { initial_learning_rate: 0.0001 schedule { step: 500000 learning_rate: .00001 } schedule { step: 700000 learning_rate: .000001 } } } momentum_optimizer_value: 0.9 } use_moving_average: false } gradient_clipping_by_norm: 10.0 fine_tune_checkpoint: "PATH_TO_BE_CONFIGURED/model.ckpt" from_detection_checkpoint: true num_steps: 800000 data_augmentation_options { random_horizontal_flip { } } } train_input_reader: { label_map_path: "PATH_TO_BE_CONFIGURED/kitti_label_map.pbtxt" tf_record_input_reader: { input_path: "PATH_TO_BE_CONFIGURED/kitti_train.tfrecord" } } eval_config: { use_moving_averages: false num_examples: 500 } eval_input_reader: { label_map_path: "PATH_TO_BE_CONFIGURED/kitti_label_map.pbtxt" tf_record_input_reader: { input_path: "PATH_TO_BE_CONFIGURED/kitti_val.tfrecord" } }
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/modeling
modeling
registry
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. from maskrcnn_benchmark.utils.registry import Registry BACKBONES = Registry() ROI_BOX_FEATURE_EXTRACTORS = Registry() RPN_HEADS = Registry()
TensorFlow/Segmentation/UNet_3D_Medical/scripts
scripts
unet3d_train_benchmark_TF-AMP
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This script launches 3D-UNet run TF-AMP train benchmark. # Usage: # bash examples/unet3d_train_benchmark.sh <number/of/gpus> <path/to/dataset> <path/to/results/directory> <batch/size> horovodrun -np $1 python main.py --data_dir $2 --model_dir $3 --exec_mode train --max_steps 80 --benchmark --fold 0 --batch_size $4 --amp --xla --augment
PyTorch/SpeechSynthesis/Tacotron2/trtis_cpp/src/trt/layers
layers
lstm
/* * Copyright (c) 2019-2020, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the NVIDIA CORPORATION nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "lstm.h" #include "NvInfer.h" using namespace nvinfer1; namespace tts { /****************************************************************************** * PUBLIC STATIC METHODS ****************************************************** *****************************************************************************/ ILayer* LSTM::addPaddedBidirectional(INetworkDefinition* const network, ITensor* const input, ITensor* const inputLength, const int numDimensions, const LayerData& lstmData) { // build LSTM const int hiddenSize = numDimensions / 2; IRNNv2Layer* lstm = network->addRNNv2(*input, 1, hiddenSize, input->getDimensions().d[1], RNNOperation::kLSTM); lstm->setDirection(RNNDirection::kBIDIRECTION); lstm->setSequenceLengths(*inputLength); { const int64_t inputBlockSize = numDimensions * hiddenSize; // pytorch weights are stored in "weight_ih_l0" = {W_ii|W_if|W_ig|W_io} const float* inputWeights = (const float*) lstmData.get("weight_ih_l0").values; Weights wii{DataType::kFLOAT, (void*) (inputWeights), inputBlockSize}; Weights wif{DataType::kFLOAT, (void*) (inputWeights + inputBlockSize), inputBlockSize}; Weights wig{DataType::kFLOAT, (void*) (inputWeights + 2 * inputBlockSize), inputBlockSize}; Weights wio{DataType::kFLOAT, (void*) (inputWeights + 3 * inputBlockSize), inputBlockSize}; lstm->setWeightsForGate(0, RNNGateType::kINPUT, true, wii); lstm->setWeightsForGate(0, RNNGateType::kCELL, true, wig); lstm->setWeightsForGate(0, RNNGateType::kFORGET, true, wif); lstm->setWeightsForGate(0, RNNGateType::kOUTPUT, true, wio); const float* inputBias = (const float*) lstmData.get("bias_ih_l0").values; Weights bii{DataType::kFLOAT, (void*) (inputBias), hiddenSize}; Weights bif{DataType::kFLOAT, (void*) (inputBias + hiddenSize), hiddenSize}; Weights big{DataType::kFLOAT, (void*) (inputBias + 2 * hiddenSize), hiddenSize}; Weights bio{DataType::kFLOAT, (void*) (inputBias + 3 * hiddenSize), hiddenSize}; lstm->setBiasForGate(0, RNNGateType::kINPUT, true, bii); lstm->setBiasForGate(0, RNNGateType::kCELL, true, big); lstm->setBiasForGate(0, RNNGateType::kFORGET, true, bif); lstm->setBiasForGate(0, RNNGateType::kOUTPUT, true, bio); const int64_t hiddenBlockSize = hiddenSize * hiddenSize; // pytorch weights are stored in "weight_hh_l0" = {W_hi|W_hf|W_hg|W_ho} const float* hiddenWeights = (const float*) lstmData.get("weight_hh_l0").values; Weights whi{DataType::kFLOAT, (void*) (hiddenWeights), hiddenBlockSize}; Weights whf{DataType::kFLOAT, (void*) (hiddenWeights + hiddenBlockSize), hiddenBlockSize}; Weights whg{DataType::kFLOAT, (void*) (hiddenWeights + 2 * hiddenBlockSize), hiddenBlockSize}; Weights who{DataType::kFLOAT, (void*) (hiddenWeights + 3 * hiddenBlockSize), hiddenBlockSize}; lstm->setWeightsForGate(0, RNNGateType::kINPUT, false, whi); lstm->setWeightsForGate(0, RNNGateType::kCELL, false, whg); lstm->setWeightsForGate(0, RNNGateType::kFORGET, false, whf); lstm->setWeightsForGate(0, RNNGateType::kOUTPUT, false, who); const float* hiddenBias = (const float*) lstmData.get("bias_hh_l0").values; Weights bhi{DataType::kFLOAT, (void*) (hiddenBias), hiddenSize}; Weights bhf{DataType::kFLOAT, (void*) (hiddenBias + hiddenSize), hiddenSize}; Weights bhg{DataType::kFLOAT, (void*) (hiddenBias + 2 * hiddenSize), hiddenSize}; Weights bho{DataType::kFLOAT, (void*) (hiddenBias + 3 * hiddenSize), hiddenSize}; lstm->setBiasForGate(0, RNNGateType::kINPUT, false, bhi); lstm->setBiasForGate(0, RNNGateType::kCELL, false, bhg); lstm->setBiasForGate(0, RNNGateType::kFORGET, false, bhf); lstm->setBiasForGate(0, RNNGateType::kOUTPUT, false, bho); } { const int64_t inputBlockSize = numDimensions * hiddenSize; // pytorch weights are stored in "weight_ih_l0" = {W_ii|W_if|W_ig|W_io} const float* inputWeights = (const float*) lstmData.get("weight_ih_l0_reverse").values; Weights wii{DataType::kFLOAT, (void*) (inputWeights), inputBlockSize}; Weights wif{DataType::kFLOAT, (void*) (inputWeights + inputBlockSize), inputBlockSize}; Weights wig{DataType::kFLOAT, (void*) (inputWeights + 2 * inputBlockSize), inputBlockSize}; Weights wio{DataType::kFLOAT, (void*) (inputWeights + 3 * inputBlockSize), inputBlockSize}; lstm->setWeightsForGate(1, RNNGateType::kINPUT, true, wii); lstm->setWeightsForGate(1, RNNGateType::kCELL, true, wig); lstm->setWeightsForGate(1, RNNGateType::kFORGET, true, wif); lstm->setWeightsForGate(1, RNNGateType::kOUTPUT, true, wio); const float* inputBias = (const float*) lstmData.get("bias_ih_l0_reverse").values; Weights bii{DataType::kFLOAT, (void*) (inputBias), hiddenSize}; Weights bif{DataType::kFLOAT, (void*) (inputBias + hiddenSize), hiddenSize}; Weights big{DataType::kFLOAT, (void*) (inputBias + 2 * hiddenSize), hiddenSize}; Weights bio{DataType::kFLOAT, (void*) (inputBias + 3 * hiddenSize), hiddenSize}; lstm->setBiasForGate(1, RNNGateType::kINPUT, true, bii); lstm->setBiasForGate(1, RNNGateType::kCELL, true, big); lstm->setBiasForGate(1, RNNGateType::kFORGET, true, bif); lstm->setBiasForGate(1, RNNGateType::kOUTPUT, true, bio); const int64_t hiddenBlockSize = hiddenSize * hiddenSize; // pytorch weights are stored in "weight_hh_l0" = {W_hi|W_hf|W_hg|W_ho} const float* hiddenWeights = (const float*) lstmData.get("weight_hh_l0_reverse").values; Weights whi{DataType::kFLOAT, (void*) (hiddenWeights), hiddenBlockSize}; Weights whf{DataType::kFLOAT, (void*) (hiddenWeights + hiddenBlockSize), hiddenBlockSize}; Weights whg{DataType::kFLOAT, (void*) (hiddenWeights + 2 * hiddenBlockSize), hiddenBlockSize}; Weights who{DataType::kFLOAT, (void*) (hiddenWeights + 3 * hiddenBlockSize), hiddenBlockSize}; lstm->setWeightsForGate(1, RNNGateType::kINPUT, false, whi); lstm->setWeightsForGate(1, RNNGateType::kCELL, false, whg); lstm->setWeightsForGate(1, RNNGateType::kFORGET, false, whf); lstm->setWeightsForGate(1, RNNGateType::kOUTPUT, false, who); const float* hiddenBias = (const float*) lstmData.get("bias_hh_l0_reverse").values; Weights bhi{DataType::kFLOAT, (void*) (hiddenBias), hiddenSize}; Weights bhf{DataType::kFLOAT, (void*) (hiddenBias + hiddenSize), hiddenSize}; Weights bhg{DataType::kFLOAT, (void*) (hiddenBias + 2 * hiddenSize), hiddenSize}; Weights bho{DataType::kFLOAT, (void*) (hiddenBias + 3 * hiddenSize), hiddenSize}; lstm->setBiasForGate(1, RNNGateType::kINPUT, false, bhi); lstm->setBiasForGate(1, RNNGateType::kCELL, false, bhg); lstm->setBiasForGate(1, RNNGateType::kFORGET, false, bhf); lstm->setBiasForGate(1, RNNGateType::kOUTPUT, false, bho); } return lstm; } ILayer* LSTM::addUnidirectionalCell(INetworkDefinition* const network, ITensor* const input, ITensor* const hiddenStatesIn, ITensor* const cellStatesIn, const int numDimensions, const LayerData& lstmData) { // build LSTM const int hiddenSize = numDimensions; const int inputLength = input->getDimensions().d[2]; IRNNv2Layer* lstm = network->addRNNv2(*input, 1, hiddenSize, input->getDimensions().d[1], RNNOperation::kLSTM); lstm->setDirection(RNNDirection::kUNIDIRECTION); const int64_t inputBlockSize = inputLength * hiddenSize; // pytorch weights are stored in "weight_ih" = {W_ii|W_if|W_ig|W_io} const float* inputWeights = (const float*) lstmData.get("weight_ih").values; Weights wii{DataType::kFLOAT, (void*) (inputWeights), inputBlockSize}; Weights wif{DataType::kFLOAT, (void*) (inputWeights + inputBlockSize), inputBlockSize}; Weights wig{DataType::kFLOAT, (void*) (inputWeights + 2 * inputBlockSize), inputBlockSize}; Weights wio{DataType::kFLOAT, (void*) (inputWeights + 3 * inputBlockSize), inputBlockSize}; lstm->setWeightsForGate(0, RNNGateType::kINPUT, true, wii); lstm->setWeightsForGate(0, RNNGateType::kCELL, true, wig); lstm->setWeightsForGate(0, RNNGateType::kFORGET, true, wif); lstm->setWeightsForGate(0, RNNGateType::kOUTPUT, true, wio); const float* inputBias = (const float*) lstmData.get("bias_ih").values; Weights bii{DataType::kFLOAT, (void*) (inputBias), hiddenSize}; Weights bif{DataType::kFLOAT, (void*) (inputBias + hiddenSize), hiddenSize}; Weights big{DataType::kFLOAT, (void*) (inputBias + 2 * hiddenSize), hiddenSize}; Weights bio{DataType::kFLOAT, (void*) (inputBias + 3 * hiddenSize), hiddenSize}; lstm->setBiasForGate(0, RNNGateType::kINPUT, true, bii); lstm->setBiasForGate(0, RNNGateType::kCELL, true, big); lstm->setBiasForGate(0, RNNGateType::kFORGET, true, bif); lstm->setBiasForGate(0, RNNGateType::kOUTPUT, true, bio); const int64_t hiddenBlockSize = hiddenSize * hiddenSize; // pytorch weights are stored in "weight_hh" = {W_hi|W_hf|W_hg|W_ho} const float* hiddenWeights = (const float*) lstmData.get("weight_hh").values; Weights whi{DataType::kFLOAT, (void*) (hiddenWeights), hiddenBlockSize}; Weights whf{DataType::kFLOAT, (void*) (hiddenWeights + hiddenBlockSize), hiddenBlockSize}; Weights whg{DataType::kFLOAT, (void*) (hiddenWeights + 2 * hiddenBlockSize), hiddenBlockSize}; Weights who{DataType::kFLOAT, (void*) (hiddenWeights + 3 * hiddenBlockSize), hiddenBlockSize}; lstm->setWeightsForGate(0, RNNGateType::kINPUT, false, whi); lstm->setWeightsForGate(0, RNNGateType::kCELL, false, whg); lstm->setWeightsForGate(0, RNNGateType::kFORGET, false, whf); lstm->setWeightsForGate(0, RNNGateType::kOUTPUT, false, who); const float* hiddenBias = (const float*) lstmData.get("bias_hh").values; Weights bhi{DataType::kFLOAT, (void*) (hiddenBias), hiddenSize}; Weights bhf{DataType::kFLOAT, (void*) (hiddenBias + hiddenSize), hiddenSize}; Weights bhg{DataType::kFLOAT, (void*) (hiddenBias + 2 * hiddenSize), hiddenSize}; Weights bho{DataType::kFLOAT, (void*) (hiddenBias + 3 * hiddenSize), hiddenSize}; lstm->setBiasForGate(0, RNNGateType::kINPUT, false, bhi); lstm->setBiasForGate(0, RNNGateType::kCELL, false, bhg); lstm->setBiasForGate(0, RNNGateType::kFORGET, false, bhf); lstm->setBiasForGate(0, RNNGateType::kOUTPUT, false, bho); lstm->setHiddenState(*hiddenStatesIn); lstm->setCellState(*cellStatesIn); return lstm; } } // namespace tts
TensorFlow/Classification/ConvNets/utils/hooks
hooks
prefill_hook
#! /usr/bin/python # -*- coding: utf-8 -*- # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time import numpy as np import tensorflow as tf __all__ = ['PrefillStagingAreasHook'] class PrefillStagingAreasHook(tf.estimator.SessionRunHook): def after_create_session(self, session, coord): # TODO: This assumes TF collections are ordered; is this safe? enqueue_ops = tf.get_collection('STAGING_AREA_PUTS') for i in range(len(enqueue_ops)): session.run(enqueue_ops[:i + 1])
PyTorch/SpeechRecognition/Jasper/triton/model_repo_configs/fp16/jasper-tensorrt
jasper-tensorrt
config
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of NVIDIA CORPORATION nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY # OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. name: "jasper-tensorrt" platform: "tensorrt_plan" default_model_filename: "model.plan" max_batch_size: 8#MAX_BATCH input [ { name: "input__0" data_type: TYPE_FP16 dims: [64, -1] } ] output [ { name: "output__0" data_type: TYPE_FP16 dims: [-1, 29 ] } ] instance_group { count: 1#NUM_ENGINES gpus: 0 kind: KIND_GPU } #db#dynamic_batching { #db# preferred_batch_size: 8#MAX_BATCH #db# max_queue_delay_microseconds: #MAX_QUEUE #db#}
PyTorch/SpeechSynthesis/Tacotron2/trtis_cpp/src/trt/layers
layers
attentionLayerCreator
/* * Copyright (c) 2019-2020, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the NVIDIA CORPORATION nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "attentionLayerCreator.h" #include "dims5.h" #include "layerData.h" #include "NvInfer.h" using namespace nvinfer1; namespace tts { /****************************************************************************** * PUBLIC METHODS ************************************************************* *****************************************************************************/ ILayer* AttentionLayerCreator::addLocation(INetworkDefinition& network, ITensor* const input, const int attentionDim, const int numFilters, const int kernelSize, const LayerData& convData, const LayerData& linearData, const std::string& name) { // conv layer const int padding = (kernelSize - 1) / 2; #if NV_TENSORRT_MAJOR < 7 IConvolutionLayer* const convLayer = network.addConvolution( *input, numFilters, DimsHW{kernelSize, 1}, convData.get("weight"), {DataType::kFLOAT, nullptr, 0}); convLayer->setPadding({padding, 0}); #else IConvolutionLayer* const convLayer = network.addConvolutionNd( *input, numFilters, Dims2(kernelSize, 1), convData.get("weight"), {DataType::kFLOAT, nullptr, 0}); convLayer->setPaddingNd(Dims2(padding, 0)); #endif convLayer->setName((name + ".conv_layer").c_str()); // need to tranpose IShuffleLayer* const transLayer = network.addShuffle(*convLayer->getOutput(0)); transLayer->setFirstTranspose({0, 2, 1, 3}); transLayer->setReshapeDimensions(Dims5{1, convLayer->getOutput(0)->getDimensions().d[2], convLayer->getOutput(0)->getDimensions().d[1], 1, convLayer->getOutput(0)->getDimensions().d[3]}); transLayer->setName((name + ".transpose").c_str()); // fully connected layer ILayer* const linearLayer = network.addFullyConnected( *transLayer->getOutput(0), attentionDim, linearData.get("weight"), Weights{DataType::kFLOAT, 0, 0}); linearLayer->setName((name + ".linear_layer").c_str()); return linearLayer; } ILayer* AttentionLayerCreator::addEnergy(INetworkDefinition& network, ITensor* const input1, ITensor* const input2, ITensor* const input3, const LayerData& linearData, const std::string& name) { // summation ILayer* const add1Layer = network.addElementWise(*input1, *input2, ElementWiseOperation::kSUM); add1Layer->setName((name + ".0.elementwise_sum").c_str()); ILayer* const add2Layer = network.addElementWise(*add1Layer->getOutput(0), *input3, ElementWiseOperation::kSUM); add2Layer->setName((name + ".1.elementwise_sum").c_str()); // activation ILayer* const actLayer = network.addActivation(*add2Layer->getOutput(0), ActivationType::kTANH); actLayer->setName((name + ".tanh").c_str()); // fully connected layer ILayer* const linearLayer = network.addFullyConnected( *actLayer->getOutput(0), 1, linearData.get("weight"), Weights{DataType::kFLOAT, 0, 0}); linearLayer->setName((name + ".linear_layer").c_str()); return linearLayer; } ILayer* AttentionLayerCreator::addPaddedSoftMax(INetworkDefinition& network, ITensor* const input, ITensor* const inputMask, ITensor* const inputSegments, const std::string& name) { // make our inputs 2 dimensional IShuffleLayer* const maskShuffleLayer = network.addShuffle(*inputMask); maskShuffleLayer->setReshapeDimensions(Dims2{1, -1}); maskShuffleLayer->setName((name + ".mask_reshape").c_str()); IShuffleLayer* const inputShuffleLayer = network.addShuffle(*input); inputShuffleLayer->setReshapeDimensions(Dims2{1, -1}); inputShuffleLayer->setName((name + ".input_reshape").c_str()); // perform softmax over non-padding elements ILayer* const softMaxLayer = network.addRaggedSoftMax(*inputShuffleLayer->getOutput(0), *inputSegments); softMaxLayer->setName((name + ".ragged_softmax").c_str()); // zero padding ILayer* const maskLayer = network.addElementWise( *softMaxLayer->getOutput(0), *maskShuffleLayer->getOutput(0), ElementWiseOperation::kPROD); maskLayer->setName((name + ".mask").c_str()); // return three dimensional output IShuffleLayer* const outShuffle = network.addShuffle(*maskLayer->getOutput(0)); outShuffle->setReshapeDimensions(Dims3{-1, 1, 1}); outShuffle->setName((name + ".transpose").c_str()); return outShuffle; } } // namespace tts
PyTorch/Recommendation/DLRM/preproc
preproc
spark_data_utils
# Copyright (c) 2021 NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import sys from argparse import ArgumentParser from collections import OrderedDict from contextlib import contextmanager from operator import itemgetter from time import time from pyspark import broadcast from pyspark.sql import Row, SparkSession, Window from pyspark.sql.functions import * from pyspark.sql.types import * LABEL_COL = 0 INT_COLS = list(range(1, 14)) CAT_COLS = list(range(14, 40)) def get_column_counts_with_frequency_limit(df, frequency_limit = None): cols = ['_c%d' % i for i in CAT_COLS] df = (df .select(posexplode(array(*cols))) .withColumnRenamed('pos', 'column_id') .withColumnRenamed('col', 'data') .filter('data is not null') .groupBy('column_id', 'data') .count()) if frequency_limit: frequency_limit = frequency_limit.split(",") exclude = [] default_limit = None for fl in frequency_limit: frequency_pair = fl.split(":") if len(frequency_pair) == 1: default_limit = int(frequency_pair[0]) elif len(frequency_pair) == 2: df = df.filter((col('column_id') != int(frequency_pair[0]) - CAT_COLS[0]) | (col('count') >= int(frequency_pair[1]))) exclude.append(int(frequency_pair[0])) if default_limit: remain = [x - CAT_COLS[0] for x in CAT_COLS if x not in exclude] df = df.filter((~col('column_id').isin(remain)) | (col('count') >= default_limit)) # for comparing isin and separate filter # for i in remain: # df = df.filter((col('column_id') != i - CAT_COLS[0]) | (col('count') >= default_limit)) return df def assign_id_with_window(df): windowed = Window.partitionBy('column_id').orderBy(desc('count')) return (df .withColumn('id', row_number().over(windowed)) .withColumnRenamed('count', 'model_count')) def assign_low_mem_partial_ids(df): # To avoid some scaling issues with a simple window operation, we use a more complex method # to compute the same thing, but in a more distributed spark specific way df = df.orderBy(asc('column_id'), desc('count')) # The monotonically_increasing_id is the partition id in the top 31 bits and the rest # is an increasing count of the rows within that partition. So we split it into two parts, # the partion id part_id and the count mono_id df = df.withColumn('part_id', spark_partition_id()) return df.withColumn('mono_id', monotonically_increasing_id() - shiftLeft(col('part_id'), 33)) def assign_low_mem_final_ids(df): # Now we can find the minimum and maximum mono_ids within a given column/partition pair sub_model = df.groupBy('column_id', 'part_id').agg(max('mono_id').alias('top'), min('mono_id').alias('bottom')) sub_model = sub_model.withColumn('diff', col('top') - col('bottom') + 1) sub_model = sub_model.drop('top') # This window function is over aggregated column/partition pair table. It will do a running sum of the rows # within that column windowed = Window.partitionBy('column_id').orderBy('part_id').rowsBetween(Window.unboundedPreceding, -1) sub_model = sub_model.withColumn('running_sum', sum('diff').over(windowed)).na.fill(0, ["running_sum"]) joined = df.withColumnRenamed('column_id', 'i_column_id') joined = joined.withColumnRenamed('part_id', 'i_part_id') joined = joined.withColumnRenamed('count', 'model_count') # Then we can join the original input with the pair it is a part of joined = joined.join(sub_model, (col('i_column_id') == col('column_id')) & (col('part_id') == col('i_part_id'))) # So with all that we can subtract bottom from mono_id makeing it start at 0 for each partition # and then add in the running_sum so the id is contiguous and unique for the entire column. + 1 to make it match the 1 based indexing # for row_number ret = joined.select(col('column_id'), col('data'), (col('mono_id') - col('bottom') + col('running_sum') + 1).cast(IntegerType()).alias('id'), col('model_count')) return ret def get_column_models(combined_model): for i in CAT_COLS: model = (combined_model .filter('column_id == %d' % (i - CAT_COLS[0])) .drop('column_id')) yield i, model def col_of_rand_long(): return (rand() * (1 << 52)).cast(LongType()) def skewed_join(df, model, col_name, cutoff): # Most versions of spark don't have a good way # to deal with a skewed join out of the box. # Some do and if you want to replace this with # one of those that would be great. # Because we have statistics about the skewedness # that we can used we divide the model up into two parts # one part is the highly skewed part and we do a # broadcast join for that part, but keep the result in # a separate column b_model = broadcast(model.filter(col('model_count') >= cutoff) .withColumnRenamed('data', col_name) .drop('model_count')) df = (df .join(b_model, col_name, how='left') .withColumnRenamed('id', 'id_tmp')) # We also need to spread the skewed data that matched # evenly. We will use a source of randomness for this # but use a -1 for anything that still needs to be matched if 'ordinal' in df.columns: rand_column = col('ordinal') else: rand_column = col_of_rand_long() df = df.withColumn('join_rand', # null values are not in the model, they are filtered out # but can be a source of skewedness so include them in # the even distribution when(col('id_tmp').isNotNull() | col(col_name).isNull(), rand_column) .otherwise(lit(-1))) # Null out the string data that already matched to save memory df = df.withColumn(col_name, when(col('id_tmp').isNotNull(), None) .otherwise(col(col_name))) # Now do the second join, which will be a non broadcast join. # Sadly spark is too smart for its own good and will optimize out # joining on a column it knows will always be a constant value. # So we have to make a convoluted version of assigning a -1 to the # randomness column for the model itself to work around that. nb_model = (model .withColumn('join_rand', when(col('model_count') < cutoff, lit(-1)).otherwise(lit(-2))) .filter(col('model_count') < cutoff) .withColumnRenamed('data', col_name) .drop('model_count')) df = (df .join(nb_model, ['join_rand', col_name], how='left') .drop(col_name, 'join_rand') # Pick either join result as an answer .withColumn(col_name, coalesce(col('id'), col('id_tmp'))) .drop('id', 'id_tmp')) return df def apply_models(df, models, broadcast_model = False, skew_broadcast_pct = 1.0): # sort the models so broadcast joins come first. This is # so we reduce the amount of shuffle data sooner than later # If we parsed the string hex values to ints early on this would # not make a difference. models = sorted(models, key=itemgetter(3), reverse=True) for i, model, original_rows, would_broadcast in models: col_name = '_c%d' % i if not (would_broadcast or broadcast_model): # The data is highly skewed so we need to offset that cutoff = int(original_rows * skew_broadcast_pct/100.0) df = skewed_join(df, model, col_name, cutoff) else: # broadcast joins can handle skewed data so no need to # do anything special model = (model.drop('model_count') .withColumnRenamed('data', col_name)) model = broadcast(model) if broadcast_model else model df = (df .join(model, col_name, how='left') .drop(col_name) .withColumnRenamed('id', col_name)) return df.fillna(0, ['_c%d' % i for i in CAT_COLS]) def transform_log(df, transform_log = False): cols = ['_c%d' % i for i in INT_COLS] if transform_log: for col_name in cols: df = df.withColumn(col_name, log(df[col_name] + 3)) return df.fillna(0, cols) def would_broadcast(spark, str_path): sc = spark.sparkContext config = sc._jsc.hadoopConfiguration() path = sc._jvm.org.apache.hadoop.fs.Path(str_path) fs = sc._jvm.org.apache.hadoop.fs.FileSystem.get(config) stat = fs.listFiles(path, True) sum = 0 while stat.hasNext(): sum = sum + stat.next().getLen() sql_conf = sc._jvm.org.apache.spark.sql.internal.SQLConf() cutoff = sql_conf.autoBroadcastJoinThreshold() * sql_conf.fileCompressionFactor() return sum <= cutoff def delete_data_source(spark, path): sc = spark.sparkContext config = sc._jsc.hadoopConfiguration() path = sc._jvm.org.apache.hadoop.fs.Path(path) sc._jvm.org.apache.hadoop.fs.FileSystem.get(config).delete(path, True) def load_raw(spark, folder, day_range): label_fields = [StructField('_c%d' % LABEL_COL, IntegerType())] int_fields = [StructField('_c%d' % i, IntegerType()) for i in INT_COLS] str_fields = [StructField('_c%d' % i, StringType()) for i in CAT_COLS] schema = StructType(label_fields + int_fields + str_fields) paths = [os.path.join(folder, 'day_%d' % i) for i in day_range] return (spark .read .schema(schema) .option('sep', '\t') .csv(paths)) def rand_ordinal(df): # create a random long from the double precision float. # The fraction part of a double is 52 bits, so we try to capture as much # of that as possible return df.withColumn('ordinal', col_of_rand_long()) def day_from_ordinal(df, num_days): return df.withColumn('day', (col('ordinal') % num_days).cast(IntegerType())) def day_from_input_file(df): return df.withColumn('day', substring_index(input_file_name(), '_', -1).cast(IntegerType())) def psudo_sort_by_day_plus(spark, df, num_days): # Sort is very expensive because it needs to calculate the partitions # which in our case may involve rereading all of the data. In some cases # we can avoid this by repartitioning the data and sorting within a single partition shuffle_parts = int(spark.conf.get('spark.sql.shuffle.partitions')) extra_parts = int(shuffle_parts/num_days) if extra_parts <= 0: df = df.repartition('day') else: #We want to spread out the computation to about the same amount as shuffle_parts divided = (col('ordinal') / num_days).cast(LongType()) extra_ident = divided % extra_parts df = df.repartition(col('day'), extra_ident) return df.sortWithinPartitions('day', 'ordinal') def load_combined_model(spark, model_folder): path = os.path.join(model_folder, 'combined.parquet') return spark.read.parquet(path) def save_combined_model(df, model_folder, mode=None): path = os.path.join(model_folder, 'combined.parquet') df.write.parquet(path, mode=mode) def delete_combined_model(spark, model_folder): path = os.path.join(model_folder, 'combined.parquet') delete_data_source(spark, path) def load_low_mem_partial_ids(spark, model_folder): path = os.path.join(model_folder, 'partial_ids.parquet') return spark.read.parquet(path) def save_low_mem_partial_ids(df, model_folder, mode=None): path = os.path.join(model_folder, 'partial_ids.parquet') df.write.parquet(path, mode=mode) def delete_low_mem_partial_ids(spark, model_folder): path = os.path.join(model_folder, 'partial_ids.parquet') delete_data_source(spark, path) def load_column_models(spark, model_folder, count_required): for i in CAT_COLS: path = os.path.join(model_folder, '%d.parquet' % i) df = spark.read.parquet(path) if count_required: values = df.agg(sum('model_count').alias('sum'), count('*').alias('size')).collect() else: values = df.agg(sum('model_count').alias('sum')).collect() yield i, df, values[0], would_broadcast(spark, path) def save_column_models(column_models, model_folder, mode=None): for i, model in column_models: path = os.path.join(model_folder, '%d.parquet' % i) model.write.parquet(path, mode=mode) def save_model_size(model_size, path, write_mode): if os.path.exists(path) and write_mode == 'errorifexists': print('Error: model size file %s exists' % path) sys.exit(1) os.makedirs(os.path.dirname(os.path.abspath(path)), exist_ok=True) with open(path, 'w') as fp: json.dump(model_size, fp, indent=4) _benchmark = {} @contextmanager def _timed(step): start = time() yield end = time() _benchmark[step] = end - start def _parse_args(): parser = ArgumentParser() parser.add_argument( '--mode', required=True, choices=['generate_models', 'transform']) parser.add_argument('--days', required=True) parser.add_argument('--input_folder', required=True) parser.add_argument('--output_folder') parser.add_argument('--model_size_file') parser.add_argument('--model_folder', required=True) parser.add_argument( '--write_mode', choices=['overwrite', 'errorifexists'], default='errorifexists') parser.add_argument('--frequency_limit') parser.add_argument('--no_numeric_log_col', action='store_true') #Support for running in a lower memory environment parser.add_argument('--low_mem', action='store_true') parser.add_argument( '--output_ordering', choices=['total_random', 'day_random', 'any', 'input'], default='total_random') parser.add_argument( '--output_partitioning', choices=['day', 'none'], default='none') parser.add_argument('--dict_build_shuffle_parallel_per_day', type=int, default=2) parser.add_argument('--apply_shuffle_parallel_per_day', type=int, default=25) parser.add_argument('--skew_broadcast_pct', type=float, default=1.0) parser.add_argument('--debug_mode', action='store_true') args = parser.parse_args() start, end = args.days.split('-') args.day_range = list(range(int(start), int(end) + 1)) args.days = len(args.day_range) return args def _main(): args = _parse_args() spark = SparkSession.builder.getOrCreate() df = load_raw(spark, args.input_folder, args.day_range) if args.mode == 'generate_models': spark.conf.set('spark.sql.shuffle.partitions', args.days * args.dict_build_shuffle_parallel_per_day) with _timed('generate models'): col_counts = get_column_counts_with_frequency_limit(df, args.frequency_limit) if args.low_mem: # in low memory mode we have to save an intermediate result # because if we try to do it in one query spark ends up assigning the # partial ids in two different locations that are not guaranteed to line up # this prevents that from happening by assigning the partial ids # and then writeing them out. save_low_mem_partial_ids( assign_low_mem_partial_ids(col_counts), args.model_folder, args.write_mode) save_combined_model( assign_low_mem_final_ids(load_low_mem_partial_ids(spark, args.model_folder)), args.model_folder, args.write_mode) if not args.debug_mode: delete_low_mem_partial_ids(spark, args.model_folder) else: save_combined_model( assign_id_with_window(col_counts), args.model_folder, args.write_mode) save_column_models( get_column_models(load_combined_model(spark, args.model_folder)), args.model_folder, args.write_mode) if not args.debug_mode: delete_combined_model(spark, args.model_folder) if args.mode == 'transform': with _timed('transform'): if args.output_ordering == 'total_random': df = rand_ordinal(df) if args.output_partitioning == 'day': df = day_from_ordinal(df, args.days) elif args.output_ordering == 'day_random': df = rand_ordinal(df) df = day_from_input_file(df) elif args.output_ordering == 'input': df = df.withColumn('ordinal', monotonically_increasing_id()) if args.output_partitioning == 'day': df = day_from_input_file(df) else: # any ordering if args.output_partitioning == 'day': df = day_from_input_file(df) models = list(load_column_models(spark, args.model_folder, bool(args.model_size_file))) if args.model_size_file: save_model_size( OrderedDict(('_c%d' % i, agg.size) for i, _, agg, _ in models), args.model_size_file, args.write_mode) models = [(i, df, agg.sum, flag) for i, df, agg, flag in models] df = apply_models( df, models, not args.low_mem, args.skew_broadcast_pct) df = transform_log(df, not args.no_numeric_log_col) if args.output_partitioning == 'day': partitionBy = 'day' else: partitionBy = None if args.output_ordering == 'total_random': if args.output_partitioning == 'day': df = psudo_sort_by_day_plus(spark, df, args.days) else: # none # Don't do a full sort it is expensive. Order is random so # just make it random df = df.repartition('ordinal').sortWithinPartitions('ordinal') df = df.drop('ordinal') elif args.output_ordering == 'day_random': df = psudo_sort_by_day_plus(spark, df, args.days) df = df.drop('ordinal') if args.output_partitioning != 'day': df = df.drop('day') elif args.output_ordering == 'input': if args.low_mem: # This is the slowest option. We totally messed up the order so we have to put # it back in the correct order df = df.orderBy('ordinal') else: # Applying the dictionary happened within a single task so we are already really # close to the correct order, just need to sort within the partition df = df.sortWithinPartitions('ordinal') df = df.drop('ordinal') if args.output_partitioning != 'day': df = df.drop('day') # else: any ordering so do nothing the ordering does not matter df.write.parquet( args.output_folder, mode=args.write_mode, partitionBy=partitionBy) print('=' * 100) print(_benchmark) if __name__ == '__main__': _main()
TensorFlow2/Recommendation/WideAndDeep/triton/deployment_toolkit/triton_inference_runner
triton_inference_runner
http
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import logging from pathlib import Path from typing import Optional # pytype: disable=import-error try: from tritonclient import utils as client_utils # noqa: F401 except ImportError: import tritonclientutils as client_utils # noqa: F401 try: import tritonclient.http as http_client except (ImportError, RuntimeError): import tritonhttpclient as http_client # pytype: enable=import-error # method from PEP-366 to support relative import in executed modules if __package__ is None: __package__ = Path(__file__).parent.name from .base import BaseRunner LOGGER = logging.getLogger("triton_inference_runner.http") class HTTPInferenceRunner(BaseRunner): def _parse_content(self, response): return json.dumps(response, indent=4) class SyncInferenceRunner(HTTPInferenceRunner): def __iter__(self): LOGGER.debug(f"Connecting to {self._server_url}") client = http_client.InferenceServerClient( url=self._server_url, verbose=self._verbose, connection_timeout=self._response_wait_t, network_timeout=self._response_wait_t, ) error = self._verify_triton_state(client) if error: raise RuntimeError(f"Could not communicate to Triton Server: {error}") LOGGER.debug( f"Triton server {self._server_url} and model {self._model_name}:{self._model_version} " f"are up and ready!" ) model_config = client.get_model_config(self._model_name, self._model_version) model_metadata = client.get_model_metadata(self._model_name, self._model_version) LOGGER.info(f"Model config {self._parse_content(model_config)}") LOGGER.info(f"Model metadata {self._parse_content(model_metadata)}") inputs = {tm["name"]: tm for tm in model_metadata["inputs"]} outputs = {tm["name"]: tm for tm in model_metadata["outputs"]} output_names = list(outputs) outputs_req = [http_client.InferRequestedOutput(name) for name in outputs] for ids, x, y_real in self._dataloader: infer_inputs = [] for name in inputs: data = x[name] datatype = inputs[name]["datatype"] infer_input = http_client.InferInput(name, data.shape, datatype) target_np_dtype = client_utils.triton_to_np_dtype(datatype) data = data.astype(target_np_dtype) infer_input.set_data_from_numpy(data) infer_inputs.append(infer_input) results = client.infer( model_name=self._model_name, model_version=self._model_version, inputs=infer_inputs, outputs=outputs_req, timeout=self._response_wait_t_ms, ) y_pred = {name: results.as_numpy(name) for name in output_names} yield ids, x, y_pred, y_real class AsyncInferenceRunner(HTTPInferenceRunner): DEFAULT_MAX_UNRESP_REQS = 128 def __init__( self, server_url: str, model_name: str, model_version: str, *, dataloader, verbose=False, response_wait_time: Optional[float] = None, max_unresponded_requests: Optional[int] = None, ): super().__init__( server_url, model_name, model_version, dataloader=dataloader, verbose=verbose, response_wait_time=response_wait_time, ) self._max_unresp_reqs = ( self.DEFAULT_MAX_UNRESP_REQS if max_unresponded_requests is None else max_unresponded_requests ) def __iter__(self): client = http_client.InferenceServerClient( url=self._server_url, verbose=self._verbose, concurrency=self._max_unresp_reqs, connection_timeout=self._response_wait_t, network_timeout=self._response_wait_t, ) self._errors = self._verify_triton_state(client) if self._errors: return LOGGER.debug( f"Triton server {self._server_url} and model {self._model_name}:{self._model_version} " f"are up and ready!" ) model_config = client.get_model_config(self._model_name, self._model_version) model_metadata = client.get_model_metadata(self._model_name, self._model_version) LOGGER.info(f"Model config {self._parse_content(model_config)}") LOGGER.info(f"Model metadata {self._parse_content(model_metadata)}") inputs = {tm["name"]: tm for tm in model_metadata["inputs"]} outputs = {tm["name"]: tm for tm in model_metadata["outputs"]} output_names = list(outputs) async_requests = [] for ids, x, y_real in self._dataloader: infer_inputs = [] for name in inputs: data = x[name] datatype = inputs[name]["datatype"] infer_input = http_client.InferInput(name, data.shape, datatype) target_np_dtype = client_utils.triton_to_np_dtype(datatype) data = data.astype(target_np_dtype) infer_input.set_data_from_numpy(data) infer_inputs.append(infer_input) outputs_req = [http_client.InferRequestedOutput(name) for name in outputs] request_id = str(ids[0]) async_request = client.async_infer( model_name=self._model_name, model_version=self._model_version, inputs=infer_inputs, outputs=outputs_req, request_id=request_id, timeout=self._response_wait_t_ms, ) async_requests.append((ids, x, y_real, async_request)) if len(async_requests) > self._max_unresp_reqs: yield from self._yield_response(async_requests, output_names) async_requests = [] yield from self._yield_response(async_requests, output_names) LOGGER.debug("Finished request thread") def _yield_response(self, async_requests, output_names): for ids, x, y_real, async_response in async_requests: result = async_response.get_result() y_pred = {name: result.as_numpy(name) for name in output_names} yield ids, x, y_pred, y_real
PyTorch/SpeechRecognition/Jasper/common/text
text
symbols
# Copyright (c) 2017 Keith Ito """ from https://github.com/keithito/tacotron """ ''' Defines the set of symbols used in text input to the model. The default is a set of ASCII characters that works well for English or text that has been run through Unidecode. For other data, you can modify _characters. See TRAINING_DATA.md for details. ''' from . import cmudict _pad = '_' _punctuation = '!\'(),.:;? ' _special = '-' _letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz' # Prepend "@" to ARPAbet symbols to ensure uniqueness (some are the same as uppercase letters): _arpabet = ['@' + s for s in cmudict.valid_symbols] # Export all symbols: symbols = [_pad] + list(_special) + list(_punctuation) + list(_letters) + _arpabet
PyTorch/Recommendation/NCF
NCF
transcode
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser import os import torch import pandas as pd from feature_spec import FeatureSpec from neumf_constants import USER_CHANNEL_NAME, ITEM_CHANNEL_NAME, LABEL_CHANNEL_NAME def parse_args(): parser = ArgumentParser() parser.add_argument('--path', type=str, default='', help='Path to input data directory') parser.add_argument('--feature_spec_in', type=str, default='feature_spec.yaml', help='Name of the input feature specification file, or path relative to data directory.') parser.add_argument('--output', type=str, default='/data', help='Path to output data directory') parser.add_argument('--feature_spec_out', type=str, default='feature_spec.yaml', help='Name of the output feature specification file, or path relative to data directory.') return parser.parse_args() def main(): args = parse_args() args_output = args.output args_path = args.path args_feature_spec_in = args.feature_spec_in args_feature_spec_out = args.feature_spec_out feature_spec_path = os.path.join(args_path, args_feature_spec_in) feature_spec = FeatureSpec.from_yaml(feature_spec_path) # Only three features are transcoded - this is NCF specific user_feature_name = feature_spec.channel_spec[USER_CHANNEL_NAME][0] item_feature_name = feature_spec.channel_spec[ITEM_CHANNEL_NAME][0] label_feature_name = feature_spec.channel_spec[LABEL_CHANNEL_NAME][0] categorical_features = [user_feature_name, item_feature_name] found_cardinalities = {f: 0 for f in categorical_features} new_source_spec = {} for mapping_name, mapping in feature_spec.source_spec.items(): # Load all chunks and link into one df chunk_dfs = [] for chunk in mapping: assert chunk['type'] == 'csv', "Only csv files supported in this transcoder" file_dfs = [] for file in chunk['files']: path_to_load = os.path.join(feature_spec.base_directory, file) file_dfs.append(pd.read_csv(path_to_load, header=None)) chunk_df = pd.concat(file_dfs, ignore_index=True) chunk_df.columns = chunk['features'] chunk_df.reset_index(drop=True, inplace=True) chunk_dfs.append(chunk_df) mapping_df = pd.concat(chunk_dfs, axis=1) # This takes care of making sure feature names are unique for feature in categorical_features: mapping_cardinality = mapping_df[feature].max() + 1 previous_cardinality = found_cardinalities[feature] found_cardinalities[feature] = max(previous_cardinality, mapping_cardinality) # We group together users and items, while separating labels. This is because of the target dtypes: ids are int, # while labels are float to compute loss. ints_tensor = torch.from_numpy(mapping_df[[user_feature_name, item_feature_name]].values).long() ints_file = f"{mapping_name}_data_0.pt" ints_chunk = {"type": "torch_tensor", "features": [user_feature_name, item_feature_name], "files": [ints_file]} torch.save(ints_tensor, os.path.join(args_output, ints_file)) floats_tensor = torch.from_numpy(mapping_df[[label_feature_name]].values).float() floats_file = f"{mapping_name}_data_1.pt" floats_chunk = {"type": "torch_tensor", "features": [label_feature_name], "files": [floats_file]} torch.save(floats_tensor, os.path.join(args_output, floats_file)) new_source_spec[mapping_name] = [ints_chunk, floats_chunk] for feature in categorical_features: found_cardinality = found_cardinalities[feature] declared_cardinality = feature_spec.feature_spec[feature].get('cardinality', 'auto') if declared_cardinality != "auto": declared = int(declared_cardinality) assert declared >= found_cardinality, "Specified cardinality conflicts data" found_cardinalities[feature] = declared new_inner_feature_spec = { user_feature_name: { "dtype": "torch.int64", "cardinality": int(found_cardinalities[user_feature_name]) }, item_feature_name: { "dtype": "torch.int64", "cardinality": int(found_cardinalities[item_feature_name]) }, label_feature_name: { "dtype": "torch.float32" } } new_feature_spec = FeatureSpec(feature_spec=new_inner_feature_spec, source_spec=new_source_spec, channel_spec=feature_spec.channel_spec, metadata=feature_spec.metadata, base_directory="") feature_spec_save_path = os.path.join(args_output, args_feature_spec_out) new_feature_spec.to_yaml(output_path=feature_spec_save_path) if __name__ == '__main__': main()
PyTorch/LanguageModeling/BERT/triton
triton
metrics
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import logging import os import subprocess import sys from argparse import Namespace from typing import Any, Dict, List, Optional import numpy as np from run_squad import RawResult, convert_examples_to_features, get_answers, read_squad_examples from tokenization import BertTokenizer # from triton.deployment_toolkit.core import BaseMetricsCalculator class MetricsCalculator(BaseMetricsCalculator): def __init__( self, eval_script: str = "data/squad/v1.1/evaluate-v1.1.py", predict_file: str = "", output_dir: str = "./", n_best_size: int = 20, max_answer_length: int = 30, version_2_with_negative: bool = False, max_seq_length: int = 384, doc_stride: int = 128, max_query_length: int = 64, vocab_file: str = "", do_lower_case: bool = True, max_len: int = 512, ): tokenizer = BertTokenizer(vocab_file, do_lower_case=do_lower_case, max_len=max_len) # for bert large self.eval_examples = read_squad_examples( input_file=predict_file, is_training=False, version_2_with_negative=version_2_with_negative ) self.eval_features = convert_examples_to_features( examples=self.eval_examples, tokenizer=tokenizer, max_seq_length=max_seq_length, doc_stride=doc_stride, max_query_length=max_query_length, is_training=False, ) self.output_dir = output_dir self.eval_script = eval_script self.predict_file = predict_file args = Namespace( version_2_with_negative=version_2_with_negative, n_best_size=n_best_size, max_answer_length=max_answer_length, verbose_logging=False, do_lower_case=do_lower_case, ) self.args = args self.all_results: List[RawResult] = [] def _calc(self) -> Dict[str, float]: dataset_size = len(self.eval_features) self.all_results = self.all_results[:dataset_size] output_prediction_file = os.path.join(self.output_dir, "predictions.json") answers, _ = get_answers(self.eval_examples, self.eval_features, self.all_results, self.args) with open(output_prediction_file, "w") as f: f.write(json.dumps(answers, indent=4) + "\n") eval_out = subprocess.check_output( [sys.executable, self.eval_script, self.predict_file, output_prediction_file] ) scores = str(eval_out).strip() # exact_match = float(scores.split(":")[1].split(",")[0]) f1 = float(scores.split(":")[2].split("}")[0]) return {"f1": f1} def update( self, ids: List[Any], y_pred: Dict[str, np.ndarray], x: Optional[Dict[str, np.ndarray]], y_real: Optional[Dict[str, np.ndarray]], ): start_logits = y_pred["output__0"] end_logits = y_pred["output__1"] for unique_id, start_logit, end_logit in zip(ids, start_logits, end_logits): start_logit = start_logit.tolist() end_logit = end_logit.tolist() raw_result = RawResult(unique_id=unique_id, start_logits=start_logit, end_logits=end_logit) self.all_results.append(raw_result) @property def metrics(self) -> Dict[str, float]: return self._calc()
Tools/PyTorch/TimeSeriesPredictionPlatform/triton
triton
export_model
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import logging import os from pathlib import Path os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" os.environ["TF_ENABLE_DEPRECATION_WARNINGS"] = "1" # method from PEP-366 to support relative import in executed modules if __name__ == "__main__" and __package__ is None: __package__ = Path(__file__).parent.name from .deployment_toolkit.args import ArgParserGenerator # noqa: E402 module level import not at top of file from .deployment_toolkit.core import ( # noqa: E402 module level import not at top of file DATALOADER_FN_NAME, BaseLoader, BaseSaver, Format, load_from_file, ) from .deployment_toolkit.extensions import loaders, savers # noqa: E402 module level import not at top of file LOGGER = logging.getLogger("export_model") INPUT_MODEL_TYPES = [Format.TF_ESTIMATOR, Format.TF_KERAS, Format.PYT] OUTPUT_MODEL_TYPES = [Format.TF_SAVEDMODEL, Format.TS_TRACE, Format.TS_SCRIPT, Format.ONNX] def _get_args(): parser = argparse.ArgumentParser( description="Script for exporting models from supported frameworks.", allow_abbrev=False ) parser.add_argument("--input-path", help="Path to input python module", required=True) parser.add_argument( "--input-type", help="Input model type", choices=[f.value for f in INPUT_MODEL_TYPES], required=True ) parser.add_argument("--output-path", help="Path to output model file", required=True) parser.add_argument( "--output-type", help="Output model type", choices=[f.value for f in OUTPUT_MODEL_TYPES], required=True ) parser.add_argument("--dataloader", help="Path to python module containing data loader") parser.add_argument("-v", "--verbose", help="Verbose logs", action="store_true", default=False) parser.add_argument( "--ignore-unknown-parameters", help="Ignore unknown parameters (argument often used in CI where set of arguments is constant)", action="store_true", default=False, ) args, unparsed_args = parser.parse_known_args() Loader: BaseLoader = loaders.get(args.input_type) ArgParserGenerator(Loader, module_path=args.input_path).update_argparser(parser) if args.input_type == Format.PYT.value and args.output_type == Format.ONNX.value: saver_type = f"{Format.PYT.value}--{Format.ONNX.value}" else: saver_type = args.output_type Saver: BaseSaver = savers.get(saver_type) ArgParserGenerator(Saver).update_argparser(parser) if args.dataloader is not None: get_dataloader_fn = load_from_file(args.dataloader, label="dataloader", target=DATALOADER_FN_NAME) ArgParserGenerator(get_dataloader_fn).update_argparser(parser) if args.ignore_unknown_parameters: args, unknown_args = parser.parse_known_args() LOGGER.warning(f"Got additional args {unknown_args}") else: args = parser.parse_args() return args def main(): args = _get_args() log_level = logging.INFO if not args.verbose else logging.DEBUG log_format = "%(asctime)s %(levelname)s %(name)s %(message)s" logging.basicConfig(level=log_level, format=log_format) LOGGER.info("args:") for key, value in vars(args).items(): LOGGER.info(f" {key} = {value}") dataloader_fn = None if args.dataloader is not None: get_dataloader_fn = load_from_file(args.dataloader, label="dataloader", target=DATALOADER_FN_NAME) dataloader_fn = ArgParserGenerator(get_dataloader_fn).from_args(args) Loader: BaseLoader = loaders.get(args.input_type) loader = ArgParserGenerator(Loader, module_path=args.input_path).from_args(args) model = loader.load(args.input_path, dataloader_fn=dataloader_fn, output_type=args.output_type) LOGGER.info("inputs: %s", model.inputs) LOGGER.info("outputs: %s", model.outputs) if args.input_type == Format.PYT.value and args.output_type == Format.ONNX.value: saver_type = f"{Format.PYT.value}--{Format.ONNX.value}" else: saver_type = args.output_type Saver: BaseSaver = savers.get(saver_type) saver = ArgParserGenerator(Saver).from_args(args) saver.save(model, args.output_path, dataloader_fn) if __name__ == "__main__": main()
Tools/PyTorch/TimeSeriesPredictionPlatform
TimeSeriesPredictionPlatform
launch_training
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings import os import hydra from omegaconf import OmegaConf import torch import conf.conf_utils from distributed_utils import is_main_process, init_distributed, init_parallel from training.utils import set_seed, get_optimization_objectives from loggers.log_helper import log_parameters warnings.filterwarnings("ignore") @hydra.main(config_path="conf", config_name="train_config") def main(config): trainer_type = config.trainer._target_ set_seed(config.get("seed", None)) model = hydra.utils.instantiate(config.model) train, valid, test = hydra.utils.call(config.dataset) evaluator = hydra.utils.instantiate(config.evaluator, test_data=test) if 'CTLTrainer' in trainer_type: init_parallel() init_distributed() model = model.to(device=config.model.config.device) trainer = hydra.utils.instantiate( config.trainer, optimizer={'params': model.parameters()}, model=model, train_dataset=train, valid_dataset=valid, ) log_parameters(trainer.logger, config) trainer.train() if is_main_process(): checkpoint = torch.load("best_checkpoint.zip", map_location=evaluator.device) model.load_state_dict(checkpoint["model_state_dict"]) preds, labels, ids, weights = evaluator.predict(model) eval_metrics = evaluator.evaluate(preds, labels, ids, weights) trainer.logger.log(step=[], data=eval_metrics, verbosity=0) trainer.logger.flush() del train, valid, test, model, trainer torch.cuda.empty_cache() objectives = get_optimization_objectives(config, eval_metrics) return objectives elif 'XGBTrainer' in trainer_type or "StatTrainer" in trainer_type: del config.trainer.criterion trainer = hydra.utils.instantiate( config.trainer, model=model, train_dataset=train, valid_dataset=valid, ) trainer.train() preds, labels, ids, weights = evaluator.predict(model) eval_metrics = evaluator.evaluate(preds, labels, ids, weights) trainer.logger.log(step=[], data=eval_metrics, verbosity=0) objectives = get_optimization_objectives(config, eval_metrics) return objectives else: raise AttributeError(f"Not supported Trainer provided {trainer_type}") if __name__ == "__main__": main()
PyTorch/SpeechSynthesis/FastPitch/common/text/zh
zh
pinyin_dict
NIN N IN FA F A BAI B AI YIN Y IN DE D E SHEN SH EN TAN T AN PAO P AO WENG W ENG LAN L AN CHUAN CH U AN SEI S EI DANG D ANG XUE X VE YUAN Y V AN HU H U CUAN C U AN BO B O SHAI SH AI CHUI CH UI SHOU SH OU QIU Q IU SONG S ONG KAI K AI LING L ING SUO S U O ZHUAI ZH U AI ZHEN ZH EN GENG G ENG YAN Y AN CU C U ZHUA ZH U A MA M A SOU S OU GOU G OU PU P U GUA G U A RONG R ONG JIAN J I AN FOU F OU FO F O ZHUAN ZH U AN DIU D IU TIAN T I AN QUN Q VN NE N E LIN L IN QIE Q IE LANG L ANG CAO C AO PANG P ANG GAN G AN KUI K UI ROU R OU NING N ING NOU N OU CUI C UI NA N A MING M ING JUAN J V AN NIAN N I AN JIONG J I ONG LE L E GEN G EN CHUO CH U O SANG S ANG MANG M ANG GANG G ANG SHENG SH ENG KENG K ENG ANG ^ ANG ZHONG ZH ONG PEI P EI LO L O BEN B EN SAN S AN WAI W AI BA B A ZEI Z EI BANG B ANG MENG M ENG HA H A SHAO SH AO RENG R ENG XUAN X V AN GUAI G U AI QUAN Q V AN DIE D IE CEN C EN QIONG Q I ONG QIAO Q I AO NAN N AN CANG C ANG NANG N ANG LA L A KU K U KAO K AO XI X I MO M O CHAN CH AN DUO D U O DIAO D I AO HUN H UN LOU L OU HANG H ANG CENG C ENG ZHI ZH I RUAN R U AN QIANG Q I ANG MIU M IU WO W O GEI G EI EI ^ EI CHAI CH AI ZHUI ZH UI CHU CH U YONG Y ONG SHUO SH U O DING D ING CHE CH E YO Y O PENG P ENG RANG R ANG BU B U NIU N IU KE K E MI M I GUAN G U AN RE R E NI N I TI T I DIA D I A NUO N U O WANG W ANG QIAN Q I AN LUO L U O YA Y A CI C I GUN G UN GAO G AO DOU D OU DAI D AI BAO B AO BIN B IN NAI N AI SE S E PA P A ZAO Z AO AO ^ AO NIE N IE BENG B ENG ZHU ZH U JU J V XIU X IU XIAN X I AN RUI R UI SAI S AI SHUANG SH U ANG SHUAI SH U AI HEN H EN OU ^ OU HUA H U A LONG L ONG ZI Z I SHE SH E JUN J VN YE Y E TUI T UI GUANG G U ANG MAN M AN LAI L AI ZHUN ZH UN CHUANG CH U ANG ZUI Z UI SU S U TE T E TAO T AO CONG C ONG TONG T ONG HENG H ENG ZUO Z U O LU L U BAN B AN PIAO P I AO XIANG X I ANG LIANG L I ANG ZU Z U NIANG N I ANG LIU L IU BIE B IE CHA CH A YANG Y ANG LVE L VE LENG L ENG KOU K OU AN ^ AN CHUN CH UN ZAI Z AI DONG D ONG SHI SH I CHAO CH AO ZHAI ZH AI RI R I HUAI H U AI TOU T OU SENG S ENG GUO G U O NENG N ENG ZUN Z UN XIONG X I ONG ZEN Z EN TANG T ANG BIAN B I AN QU Q V QI Q I ZHAN ZH AN JIAO J I AO CHENG CH ENG CHONG CH ONG KEI K EI MEI M EI LV L V SHUA SH U A CA C A DENG D ENG TING T ING YAO Y AO TIAO T I AO ME M E CE C E ZUAN Z U AN SEN S EN O ^ O ZENG Z ENG RAO R AO WEI W EI KUAN K U AN PING P ING MAI M AI HUAN H U AN DEN D EN BING B ING QING Q ING PIN P IN GAI G AI LI L I ZHENG ZH ENG ZAN Z AN BEI B EI SHU SH U MU M U KUO K U O JIE J IE CHUAI CH U AI FAN F AN PI P I SHUI SH UI YING Y ING QIN Q IN SHA SH A KANG K ANG CHEN CH EN JIANG J I ANG RAN R AN LUAN L U AN HEI H EI XING X ING WAN W AN TA T A XU X V TENG T ENG ZA Z A KEN K EN DAN D AN TU T U KUANG K U ANG JING J ING REN R EN CHOU CH OU KUA K U A HE H E DAO D AO NEI N EI KUAI K U AI HAO H AO MIAO M I AO YI Y I ZHAO ZH AO TUO T U O ZHEI ZH EI FU F U FEN F EN JIA J I A WA W A CUO C U O WU W U MEN M EN XUN X VN MOU M OU SHAN SH AN PAI P AI GONG G ONG NONG N ONG COU C OU KONG K ONG HUO H U O HUANG H U ANG JIU J IU HONG H ONG MIE M IE HUI H UI WEN W EN ZHUO ZH U O MIAN M I AN BI B I ZE Z E YUN Y VN GA G A SUAN S U AN SUN S UN MAO M AO XIA X I A KA K A NAO N AO TIE T IE GE G E GUI G UI LAO L AO ZOU Z OU SAO S AO PO P O JIN J IN DUAN D U AN DU D U RUN R UN YUE Y VE DUN D UN A ^ A PIE P IE SHANG SH ANG XIN X IN CAN C AN PAN P AN LIE L IE QIA Q I A GU G U ZHE ZH E ZONG Z ONG DIAN D I AN LIA L I A FENG F ENG JUE J VE LIAO L I AO SA S A TAI T AI LEI L EI SHUN SH UN HAI H AI NEN N EN MIN M IN PIAN P I AN CHI CH I CHANG CH ANG NIAO N I AO JI J I TEI T EI FANG F ANG POU P OU QUE Q VE ZHOU ZH OU NV N V ER ^ ER YU Y V XIE X IE FAI F AI EN ^ EN NVE N VE KAN K AN LUN L UN ZHUANG ZH U ANG HAN H AN NG N EN DI D I SHEI SH EI RUO R U O KUN K UN DUI D UI TUAN T U AN ZANG Z ANG CUN C UN YOU Y OU SUI S UI DEI D EI RU R U NU N U ZHANG ZH ANG BIAO B I AO NUAN N U AN SHUAN SH U AN XIAO X I AO TUN T UN E ^ E SI S I HOU H OU FEI F EI ZHA ZH A CAI C AI KIU K IU DA D A PEN P EN LIAN L I AN AI ^ AI
CUDA-Optimized/FastSpeech/tacotron2
tacotron2
utils
# BSD 3-Clause License # Copyright (c) 2018-2020, NVIDIA Corporation # All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """https://github.com/NVIDIA/tacotron2""" import numpy as np from scipy.io.wavfile import read import torch def get_mask_from_lengths(lengths): max_len = torch.max(lengths).item() ids = torch.arange(0, max_len, out=torch.cuda.LongTensor(max_len)) mask = (ids < lengths.unsqueeze(1)).bool() return mask def load_wav_to_torch(full_path): sampling_rate, data = read(full_path) return torch.FloatTensor(data.astype(np.float32)), sampling_rate def load_filepaths_and_text(filename, split="|"): with open(filename, encoding='utf-8') as f: filepaths_and_text = [line.strip().split(split) for line in f] return filepaths_and_text def to_gpu(x): x = x.contiguous() if torch.cuda.is_available(): x = x.cuda(non_blocking=True) return torch.autograd.Variable(x)
PyTorch/LanguageModeling/BERT/distillation/BERT_6L_768D
BERT_6L_768D
config
{ "attention_probs_dropout_prob": 0.1, "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "hidden_size": 768, "initializer_range": 0.02, "intermediate_size": 3072, "max_position_embeddings": 512, "num_attention_heads": 12, "num_hidden_layers": 6, "type_vocab_size": 2, "vocab_size": 30528 }
PyTorch/LanguageModeling/BART/bart/tokenization
tokenization
tokenization_xlnet
# coding=utf-8 # Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tokenization classes for XLNet model.""" import os import unicodedata from shutil import copyfile from typing import List, Optional from bart.tokenization.tokenization_utils import PreTrainedTokenizer from utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "xlnet-base-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/xlnet-base-cased-spiece.model", "xlnet-large-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/xlnet-large-cased-spiece.model", } } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "xlnet-base-cased": None, "xlnet-large-cased": None, } SPIECE_UNDERLINE = "▁" # Segments (not really needed) SEG_ID_A = 0 SEG_ID_B = 1 SEG_ID_CLS = 2 SEG_ID_SEP = 3 SEG_ID_PAD = 4 class XLNetTokenizer(PreTrainedTokenizer): """ Constructs an XLNet tokenizer. Based on `SentencePiece <https://github.com/google/sentencepiece>`__ This tokenizer inherits from :class:`~transformers.PreTrainedTokenizer` which contains most of the methods. Users should refer to the superclass for more information regarding methods. Args: vocab_file (:obj:`string`): `SentencePiece <https://github.com/google/sentencepiece>`__ file (generally has a .spm extension) that contains the vocabulary necessary to instantiate a tokenizer. do_lower_case (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether to lowercase the input when tokenizing. remove_space (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether to strip the text when tokenizing (removing excess spaces before and after the string). keep_accents (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether to keep accents when tokenizing. bos_token (:obj:`string`, `optional`, defaults to "<s>"): The beginning of sequence token that was used during pre-training. Can be used a sequence classifier token. .. note:: When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the :obj:`cls_token`. eos_token (:obj:`string`, `optional`, defaults to "</s>"): The end of sequence token. .. note:: When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the :obj:`sep_token`. unk_token (:obj:`string`, `optional`, defaults to "<unk>"): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. sep_token (:obj:`string`, `optional`, defaults to "<sep>"): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. pad_token (:obj:`string`, `optional`, defaults to "<pad>"): The token used for padding, for example when batching sequences of different lengths. cls_token (:obj:`string`, `optional`, defaults to "<cls>"): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. mask_token (:obj:`string`, `optional`, defaults to "<mask>"): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. additional_special_tokens (:obj:`List[str]`, `optional`, defaults to :obj:`["<eop>", "<eod>"]`): Additional special tokens used by the tokenizer. Attributes: sp_model (:obj:`SentencePieceProcessor`): The `SentencePiece` processor that is used for every conversion (string, tokens and IDs). """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES padding_side = "left" def __init__( self, vocab_file, do_lower_case=False, remove_space=True, keep_accents=False, bos_token="<s>", eos_token="</s>", unk_token="<unk>", sep_token="<sep>", pad_token="<pad>", cls_token="<cls>", mask_token="<mask>", additional_special_tokens=["<eop>", "<eod>"], **kwargs ): super().__init__( bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, additional_special_tokens=additional_special_tokens, **kwargs, ) self._pad_token_type_id = 3 try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLNetTokenizer: https://github.com/google/sentencepiece" "pip install sentencepiece" ) raise self.do_lower_case = do_lower_case self.remove_space = remove_space self.keep_accents = keep_accents self.vocab_file = vocab_file self.sp_model = spm.SentencePieceProcessor() self.sp_model.Load(vocab_file) @property def vocab_size(self): return len(self.sp_model) def get_vocab(self): vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__(self): state = self.__dict__.copy() state["sp_model"] = None return state def __setstate__(self, d): self.__dict__ = d try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLNetTokenizer: https://github.com/google/sentencepiece" "pip install sentencepiece" ) raise self.sp_model = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file) def preprocess_text(self, inputs): if self.remove_space: outputs = " ".join(inputs.strip().split()) else: outputs = inputs outputs = outputs.replace("``", '"').replace("''", '"') if not self.keep_accents: outputs = unicodedata.normalize("NFKD", outputs) outputs = "".join([c for c in outputs if not unicodedata.combining(c)]) if self.do_lower_case: outputs = outputs.lower() return outputs def _tokenize(self, text, sample=False): """ Tokenize a string. """ text = self.preprocess_text(text) if not sample: pieces = self.sp_model.EncodeAsPieces(text) else: pieces = self.sp_model.SampleEncodeAsPieces(text, 64, 0.1) new_pieces = [] for piece in pieces: if len(piece) > 1 and piece[-1] == str(",") and piece[-2].isdigit(): cur_pieces = self.sp_model.EncodeAsPieces(piece[:-1].replace(SPIECE_UNDERLINE, "")) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: cur_pieces = cur_pieces[1:] else: cur_pieces[0] = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(cur_pieces) else: new_pieces.append(piece) return new_pieces def _convert_token_to_id(self, token): """ Converts a token (str) in an id using the vocab. """ return self.sp_model.PieceToId(token) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.sp_model.IdToPiece(index) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (strings for sub-words) in a single string.""" out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip() return out_string def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. An XLNet sequence has the following format: - single sequence: ``X <sep> <cls>`` - pair of sequences: ``A <sep> B <sep> <cls>`` Args: token_ids_0 (:obj:`List[int]`): List of IDs to which the special tokens will be added token_ids_1 (:obj:`List[int]`, `optional`): Optional second list of IDs for sequence pairs. Returns: :obj:`List[int]`: list of `input IDs <../glossary.html#input-ids>`__ with the appropriate special tokens. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return token_ids_0 + sep + cls return token_ids_0 + sep + token_ids_1 + sep + cls def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer ``prepare_for_model`` methods. Args: token_ids_0 (:obj:`List[int]`): List of ids. token_ids_1 (:obj:`List[int]`, `optional`): Optional second list of IDs for sequence pairs. already_has_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`): Set to True if the token list is already formatted with special tokens for the model Returns: :obj:`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: if token_ids_1 is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formated with special tokens for the model." ) return list(map(lambda x: 1 if x in [self.sep_token_id, self.cls_token_id] else 0, token_ids_0)) if token_ids_1 is not None: return ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1, 1] return ([0] * len(token_ids_0)) + [1, 1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An XLNet sequence pair mask has the following format: 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 2 | first sequence | second sequence | CLS segment ID if token_ids_1 is None, only returns the first portion of the mask (0's). Args: token_ids_0 (:obj:`List[int]`): List of ids. token_ids_1 (:obj:`List[int]`, `optional`): Optional second list of IDs for sequence pairs. Returns: :obj:`List[int]`: List of `token type IDs <../glossary.html#token-type-ids>`_ according to the given sequence(s). """ sep = [self.sep_token_id] cls_segment_id = [2] if token_ids_1 is None: return len(token_ids_0 + sep) * [0] + cls_segment_id return len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] + cls_segment_id def save_vocabulary(self, save_directory): """ Save the sentencepiece vocabulary (copy original file) and special tokens file to a directory. Args: save_directory (:obj:`str`): The directory in which to save the vocabulary. Returns: :obj:`Tuple(str)`: Paths to the files saved. """ if not os.path.isdir(save_directory): logger.error("Vocabulary path ({}) should be a directory".format(save_directory)) return out_vocab_file = os.path.join(save_directory, VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): copyfile(self.vocab_file, out_vocab_file) return (out_vocab_file,)
TensorFlow/Classification/ConvNets/dataprep
dataprep
imagenet_2012_validation_synset_labels
n01751748 n09193705 n02105855 n04263257 n03125729 n01735189 n02346627 n02776631 n03794056 n02328150 n01917289 n02125311 n02484975 n04065272 n03496892 n02066245 n01914609 n01616318 n02971356 n03126707 n02346627 n02091244 n07742313 n03956157 n01616318 n04380533 n02114548 n02089973 n01729977 n04435653 n02280649 n03444034 n02077923 n09835506 n03478589 n04532106 n01644900 n02666196 n04141327 n01773797 n03125729 n04049303 n02006656 n02097209 n02111277 n03950228 n03393912 n02089973 n03930630 n02640242 n01828970 n01632777 n04372370 n03485794 n02443114 n02930766 n02112018 n13040303 n04485082 n03482405 n02963159 n02093859 n01910747 n01693334 n04371430 n02526121 n01871265 n04532106 n04482393 n04370456 n02927161 n02074367 n01608432 n02966193 n01795545 n02791270 n02087394 n02116738 n02091635 n02895154 n09193705 n02088094 n04200800 n01737021 n02974003 n03032252 n02483708 n01632458 n02992529 n01698640 n02114548 n02497673 n02480855 n04147183 n02487347 n03895866 n02325366 n02033041 n07745940 n02415577 n02951585 n02087394 n04485082 n04505470 n02097658 n04591157 n01770081 n02992211 n03691459 n03594734 n01983481 n03937543 n02105412 n03843555 n02091244 n07831146 n03710637 n03733281 n03782006 n03733131 n03933933 n02980441 n04409515 n02606052 n02226429 n02883205 n02422699 n01614925 n07697537 n02123394 n04252077 n03337140 n02117135 n02107142 n04037443 n02397096 n03187595 n02319095 n07932039 n03372029 n02088466 n02319095 n04125021 n03954731 n09421951 n04487394 n02113624 n03843555 n03485407 n09332890 n03642806 n03710193 n01677366 n01950731 n07714990 n02114855 n02119022 n04086273 n04201297 n03733281 n02100877 n03016953 n03733805 n03063599 n07714990 n03854065 n04149813 n03786901 n03467068 n02087046 n04326547 n02100735 n03775546 n02111500 n02814533 n02097047 n02027492 n02109961 n02389026 n02105855 n02445715 n03259280 n07711569 n03710637 n03670208 n02128757 n04467665 n02114855 n01873310 n03476684 n02093428 n03891251 n02859443 n04125021 n01978287 n02643566 n07697537 n01560419 n03290653 n13037406 n03891332 n02883205 n02106382 n02672831 n04330267 n02489166 n02058221 n03584829 n07565083 n03125729 n02123597 n04536866 n02965783 n09428293 n02965783 n11879895 n01560419 n01775062 n03595614 n02110958 n03709823 n03777754 n02951585 n02100877 n01629819 n02909870 n02101388 n02091244 n01667114 n03998194 n01986214 n04192698 n02128757 n02793495 n09256479 n01443537 n02089973 n01981276 n02837789 n03888605 n03201208 n02480855 n03814639 n04090263 n01986214 n02415577 n01534433 n02093256 n03134739 n03016953 n12620546 n03937543 n02815834 n03776460 n10565667 n03207743 n02992529 n01631663 n03729826 n04033995 n04462240 n01443537 n02091831 n03874293 n03874599 n04238763 n07584110 n02749479 n02110185 n09193705 n04311004 n02788148 n02445715 n06874185 n04074963 n01631663 n03803284 n01828970 n02096437 n04554684 n03599486 n03595614 n02123394 n04515003 n04591157 n04560804 n02794156 n03344393 n02687172 n04328186 n04479046 n03967562 n01440764 n04465501 n03457902 n04532670 n01688243 n01749939 n01768244 n02091831 n02321529 n02939185 n02129604 n12985857 n03485794 n02408429 n01443537 n03590841 n07697537 n04154565 n03443371 n02514041 n09468604 n03769881 n02787622 n02526121 n03888605 n01622779 n01872401 n07745940 n03085013 n02445715 n02120505 n01751748 n04141327 n02443484 n02089078 n01608432 n01514668 n03160309 n04070727 n07715103 n02110958 n03976657 n03902125 n02909870 n01740131 n04532106 n03197337 n02493509 n10148035 n02172182 n02437616 n03062245 n04286575 n03018349 n02951358 n02130308 n04277352 n02096585 n04589890 n02965783 n02978881 n02804414 n02112137 n02007558 n03670208 n02894605 n03657121 n03876231 n02165105 n01669191 n02011460 n03710193 n03796401 n02916936 n03492542 n03998194 n04552348 n01824575 n01917289 n03461385 n03874293 n03272010 n02099712 n02999410 n04179913 n07831146 n02096177 n04350905 n04507155 n03743016 n02105505 n03649909 n03680355 n01910747 n03529860 n02787622 n02012849 n02011460 n02094114 n02950826 n02105855 n09288635 n01773797 n01774750 n04409515 n02497673 n02113799 n02786058 n02443484 n02981792 n03095699 n01664065 n02092002 n07711569 n02219486 n13133613 n02114548 n03529860 n02097298 n13133613 n04355933 n01537544 n01847000 n04428191 n02666196 n02268443 n03291819 n01828970 n04099969 n02747177 n07720875 n02088094 n02113624 n03710637 n03637318 n03942813 n02093859 n03794056 n02930766 n02930766 n04525038 n03796401 n03709823 n02097047 n04604644 n03938244 n01560419 n02097298 n02091635 n04136333 n07718747 n02417914 n03355925 n02445715 n02445715 n03495258 n04447861 n02111500 n03584829 n03977966 n04116512 n04019541 n04200800 n02408429 n02085936 n03992509 n02769748 n04613696 n07716906 n02085782 n07718472 n04398044 n03920288 n01860187 n03272010 n04008634 n04090263 n02028035 n01677366 n13037406 n04067472 n02095889 n04532670 n01582220 n03476684 n02395406 n04487394 n02443484 n02510455 n04550184 n02814860 n12144580 n03126707 n02486410 n02125311 n03777754 n03924679 n04613696 n07875152 n02058221 n03188531 n02777292 n02489166 n02066245 n04579432 n01630670 n02666196 n02091635 n02114548 n02356798 n03201208 n03240683 n03590841 n03018349 n02104029 n04251144 n10148035 n02169497 n02089867 n01734418 n04476259 n02843684 n04008634 n03400231 n02119022 n02137549 n03761084 n02490219 n03840681 n04346328 n01677366 n02102318 n04458633 n04476259 n04209239 n01795545 n10565667 n02114367 n02107574 n03032252 n02104365 n03133878 n04336792 n02112137 n03000684 n04553703 n02102480 n03825788 n01695060 n03250847 n07860988 n04310018 n02071294 n01945685 n01855672 n02037110 n03868863 n04229816 n12057211 n02408429 n02481823 n07716358 n04487394 n03662601 n02979186 n02910353 n04266014 n03895866 n04443257 n02917067 n04149813 n03041632 n02364673 n02999410 n04435653 n04228054 n02814860 n01531178 n03662601 n07880968 n04487081 n07614500 n03532672 n01807496 n02011460 n02074367 n04462240 n02977058 n02281406 n03041632 n04350905 n02788148 n02137549 n04562935 n04590129 n02093991 n03995372 n02111889 n04081281 n02133161 n02006656 n02107908 n04347754 n02950826 n02504013 n04560804 n02088364 n02128385 n02860847 n04399382 n02105412 n02115641 n07753592 n07880968 n03598930 n03724870 n02066245 n02128925 n04465501 n02094258 n02086646 n04141076 n04136333 n13133613 n02342885 n02281406 n03443371 n07613480 n04008634 n04141327 n04347754 n03314780 n02165456 n03930313 n04392985 n01872401 n04204238 n07831146 n02690373 n12144580 n02776631 n02877765 n02108089 n03532672 n03126707 n01560419 n02268853 n03691459 n03404251 n02364673 n02101556 n02326432 n03954731 n07831146 n03584254 n02012849 n03804744 n02128385 n01530575 n03933933 n04409515 n02823428 n01877812 n03920288 n02510455 n02112350 n03594945 n03642806 n02395406 n03452741 n02860847 n03673027 n02102040 n04505470 n04086273 n02099849 n01990800 n03781244 n04461696 n02106166 n04141076 n07717556 n02361337 n03976657 n03832673 n03109150 n01776313 n03788195 n03884397 n04019541 n01693334 n03633091 n02325366 n03623198 n02795169 n01744401 n01955084 n02002556 n07754684 n02174001 n02793495 n02095889 n02484975 n02094433 n09229709 n03207941 n02655020 n03773504 n04367480 n03933933 n01955084 n04355933 n13040303 n02786058 n04090263 n02101006 n02124075 n03720891 n07749582 n04517823 n01534433 n04335435 n03661043 n02101556 n03785016 n03133878 n02113978 n02930766 n02783161 n03958227 n02441942 n02859443 n02096437 n02447366 n07742313 n07583066 n02110063 n03146219 n12998815 n03425413 n02123394 n03594734 n02006656 n02992211 n04442312 n03032252 n01608432 n02927161 n03485794 n07583066 n03347037 n01847000 n04557648 n03478589 n01530575 n02098105 n01755581 n03045698 n02028035 n03538406 n03956157 n01871265 n13044778 n02119789 n07875152 n02107908 n02791124 n03697007 n03207743 n02791270 n02865351 n03345487 n03976467 n03124043 n04252225 n02165105 n03314780 n04040759 n02730930 n02236044 n07873807 n02006656 n02514041 n03534580 n03179701 n04366367 n02138441 n03450230 n01943899 n07836838 n03691459 n04467665 n02115641 n01742172 n02795169 n02481823 n07583066 n02749479 n01665541 n04131690 n03769881 n02009229 n04487081 n02123159 n04542943 n07760859 n02097658 n02113799 n07932039 n02097474 n03793489 n02791124 n04591713 n01735189 n01631663 n02892767 n04458633 n02277742 n07697537 n03781244 n02791270 n03854065 n04356056 n07802026 n03733131 n01980166 n02174001 n07684084 n01981276 n03874293 n03146219 n02099267 n02018207 n04398044 n03832673 n02493509 n03478589 n06359193 n02971356 n02093754 n04487081 n03929855 n03485407 n01930112 n01592084 n02088238 n04613696 n03967562 n03814639 n04311174 n04286575 n03884397 n03534580 n03793489 n02106382 n03045698 n03661043 n03814906 n02669723 n03459775 n03785016 n04584207 n03657121 n03476991 n04243546 n04560804 n03788365 n01796340 n04019541 n03496892 n07711569 n03788195 n02133161 n04548362 n02113712 n03673027 n12144580 n02481823 n02132136 n03956157 n01532829 n04493381 n02094258 n03483316 n01770081 n02006656 n02871525 n01580077 n07730033 n02097474 n02093647 n02088466 n01795545 n07716906 n03481172 n01608432 n02097209 n01629819 n07695742 n02389026 n02977058 n04090263 n04522168 n02871525 n04258138 n02127052 n04476259 n03617480 n04273569 n03485794 n06794110 n03085013 n02974003 n02869837 n02086240 n01685808 n02088466 n03584829 n01514668 n02114367 n03447447 n04435653 n03065424 n01616318 n02841315 n02655020 n03496892 n04040759 n01496331 n02094258 n03787032 n02172182 n01693334 n02168699 n03793489 n07613480 n01824575 n01665541 n04065272 n02699494 n02526121 n01774750 n03126707 n04254777 n02325366 n01665541 n02007558 n01873310 n01734418 n03271574 n01776313 n01644373 n02486410 n02106662 n03125729 n02087394 n02094433 n07684084 n04532670 n01843383 n02835271 n12985857 n04485082 n02167151 n03394916 n01664065 n04286575 n03874293 n02699494 n01601694 n01582220 n02486261 n02268853 n03947888 n13040303 n03967562 n03602883 n01882714 n04505470 n02226429 n04522168 n02481823 n02108422 n03670208 n07718747 n01688243 n02747177 n07248320 n02328150 n02963159 n02117135 n03676483 n06596364 n01775062 n03724870 n03347037 n13133613 n02319095 n03944341 n02088238 n02110185 n01443537 n06794110 n02606052 n02113186 n02704792 n03692522 n03018349 n02095314 n04523525 n02356798 n04228054 n02108000 n04371430 n01770393 n04456115 n02110958 n01631663 n02708093 n02835271 n02807133 n02280649 n02277742 n03857828 n03452741 n03388043 n06596364 n04252225 n04458633 n01689811 n03935335 n01560419 n02500267 n02319095 n02412080 n02096437 n03814639 n03494278 n01518878 n02486261 n01629819 n04606251 n03787032 n01877812 n01773157 n02104365 n02113978 n02123394 n02966687 n01728920 n02916936 n01860187 n03255030 n02011460 n02087394 n02817516 n02085620 n02437616 n02606052 n03447721 n01773157 n02497673 n04380533 n02056570 n01917289 n12267677 n04325704 n02130308 n02730930 n03933933 n02981792 n07892512 n02112018 n02398521 n02009912 n02002724 n02086079 n02100236 n03085013 n02837789 n02018795 n02106382 n02489166 n03937543 n02910353 n07836838 n15075141 n02877765 n03602883 n02233338 n13037406 n01580077 n04069434 n04371774 n03938244 n02326432 n03085013 n02804610 n04141975 n02484975 n02930766 n03000134 n02488702 n02113023 n02088632 n02783161 n02490219 n04505470 n02123394 n04357314 n02825657 n02493509 n03720891 n03673027 n03492542 n01739381 n02105056 n03481172 n03947888 n02099601 n02105505 n01514859 n07871810 n03445924 n12267677 n04536866 n03314780 n12768682 n02028035 n01980166 n02099601 n01981276 n07730033 n02909870 n04179913 n02089973 n02111277 n12057211 n01632458 n02123394 n04350905 n03937543 n02730930 n01795545 n02091244 n01632777 n03584829 n03709823 n02086646 n01824575 n03977966 n03417042 n02892201 n01806143 n02105855 n02115913 n03902125 n01774384 n07880968 n02112137 n09428293 n04116512 n02486410 n03930630 n04090263 n01843383 n07802026 n04429376 n02317335 n02027492 n01818515 n02086646 n02018207 n04371430 n03347037 n03014705 n04125021 n03764736 n02981792 n02114367 n04192698 n04330267 n03729826 n02607072 n02504458 n03769881 n02018207 n03929855 n04591157 n03947888 n04317175 n03125729 n01749939 n04399382 n02276258 n03598930 n02606052 n03089624 n02099601 n03770439 n02655020 n07745940 n02095314 n04336792 n04033995 n02112018 n02132136 n02860847 n03100240 n02966687 n02111129 n04273569 n04149813 n02092002 n03769881 n04599235 n03825788 n04118776 n04336792 n02115641 n01622779 n02909870 n02276258 n02977058 n02326432 n01608432 n03347037 n02978881 n02787622 n02093256 n02101556 n02100735 n02085782 n02342885 n03733281 n02085782 n03706229 n02002724 n13037406 n02422106 n07614500 n02113712 n04336792 n02486261 n02356798 n02268443 n04179913 n04277352 n02346627 n03089624 n02835271 n02086240 n04579432 n03180011 n04285008 n02408429 n04392985 n02091244 n02815834 n02834397 n04009552 n02488291 n03290653 n03325584 n03637318 n02730930 n02865351 n02119789 n03929855 n03676483 n04423845 n03874293 n03908618 n03598930 n02090379 n01944390 n04152593 n09288635 n02066245 n01768244 n03272010 n01531178 n03255030 n03676483 n02002556 n02749479 n02415577 n02403003 n07565083 n02981792 n01776313 n02097474 n02667093 n02096177 n03255030 n01819313 n02791124 n02279972 n04090263 n09193705 n04335435 n03733131 n03250847 n04263257 n02096585 n03976467 n02963159 n04613696 n04310018 n02107574 n03724870 n09428293 n02101006 n04372370 n03930630 n07584110 n01735189 n04599235 n02835271 n04330267 n02108915 n02110185 n07684084 n04204347 n02672831 n03742115 n04131690 n09428293 n04487394 n03710193 n09332890 n03478589 n04486054 n02951358 n09428293 n04596742 n01872401 n04505470 n04154565 n02666196 n02437616 n03724870 n02120079 n01828970 n03141823 n01698640 n03095699 n04099969 n02123045 n04482393 n04026417 n02110806 n04033901 n04041544 n02869837 n04136333 n02112350 n03388043 n03065424 n02128757 n04330267 n02879718 n02859443 n01968897 n01847000 n01871265 n02129165 n02408429 n04263257 n13054560 n02090379 n04553703 n03929660 n01990800 n03494278 n01514859 n02804610 n01773157 n02087046 n07802026 n03777754 n07720875 n01694178 n06794110 n02795169 n07583066 n02094114 n03841143 n01985128 n03776460 n02859443 n02808304 n02092339 n02441942 n02002724 n04296562 n02086910 n02690373 n01616318 n07718472 n02086240 n04049303 n04235860 n06359193 n02110958 n01518878 n02950826 n03447721 n02111129 n04517823 n03769881 n02112350 n07693725 n07747607 n02444819 n02109047 n04485082 n10148035 n03127925 n04328186 n03347037 n02102480 n07614500 n02676566 n04599235 n03534580 n02093256 n03710721 n02167151 n04116512 n04141975 n03877472 n02092339 n03042490 n04604644 n03355925 n04009552 n03598930 n02672831 n03425413 n03649909 n02099429 n01819313 n02640242 n02978881 n03670208 n02342885 n03888257 n03729826 n02457408 n02860847 n09246464 n02097298 n03649909 n04228054 n02113624 n01978287 n03895866 n03393912 n03127925 n03720891 n01774384 n04065272 n03485407 n04033901 n02488291 n12057211 n01774750 n01798484 n01537544 n07720875 n03838899 n04120489 n02264363 n02113978 n02799071 n02114367 n04332243 n03062245 n02077923 n02398521 n04435653 n01692333 n07831146 n04523525 n02342885 n07753275 n01807496 n02098413 n01744401 n07836838 n02104029 n02092339 n02092339 n02115913 n01608432 n03325584 n02066245 n03345487 n03394916 n01773797 n02113186 n02667093 n02124075 n04118538 n02134084 n02317335 n03047690 n03938244 n02219486 n07718747 n02490219 n04326547 n02690373 n07717556 n01580077 n02443484 n04443257 n04033995 n07590611 n02403003 n07768694 n03803284 n04371774 n02802426 n06794110 n04483307 n02791270 n02028035 n03764736 n07860988 n09421951 n03773504 n04152593 n04367480 n02950826 n02168699 n04458633 n01983481 n04404412 n04252225 n04596742 n02480495 n02281787 n01795545 n02089867 n02169497 n02666196 n04311004 n02879718 n03457902 n02074367 n03297495 n02481823 n04485082 n02091244 n07718747 n02102480 n04147183 n03014705 n02814860 n04532670 n02094114 n01532829 n01664065 n04090263 n03995372 n03134739 n06596364 n03710637 n01807496 n02096294 n04026417 n02165105 n03998194 n02112706 n04366367 n02177972 n04152593 n04442312 n01697457 n03775071 n07892512 n02091831 n02101388 n01749939 n03384352 n02484975 n03868242 n01753488 n02687172 n02807133 n02231487 n02018795 n04270147 n03063599 n04591713 n03895866 n03481172 n04456115 n01755581 n02319095 n02526121 n01796340 n02094433 n01558993 n04238763 n03127925 n03017168 n02692877 n04179913 n02791124 n03494278 n06596364 n01751748 n02074367 n03249569 n04357314 n07579787 n04550184 n06596364 n03761084 n07718472 n03376595 n04428191 n01773157 n07248320 n03400231 n04447861 n03854065 n01694178 n02111500 n04111531 n02090622 n03450230 n04536866 n01817953 n02843684 n03776460 n04201297 n04204238 n02094114 n04238763 n01667114 n02116738 n03709823 n04153751 n02422699 n01796340 n07836838 n02027492 n03478589 n01689811 n02110958 n03538406 n03207743 n01669191 n06794110 n02087394 n01641577 n07873807 n03314780 n04591157 n02487347 n04277352 n07749582 n03792782 n03947888 n03792782 n01669191 n02102318 n03788365 n03899768 n04392985 n01629819 n04557648 n02640242 n02325366 n07749582 n04264628 n04487081 n02978881 n03720891 n01494475 n02951358 n01828970 n04286575 n04540053 n04332243 n04367480 n03840681 n02106662 n03376595 n02113186 n03085013 n09246464 n03127747 n04367480 n03290653 n07760859 n02102973 n03290653 n01751748 n02089973 n02086910 n02112350 n03272562 n04456115 n03785016 n02110341 n01728920 n04554684 n02417914 n01756291 n03590841 n01877812 n02113186 n02093256 n02099849 n02397096 n03642806 n02231487 n04179913 n02012849 n02279972 n04447861 n04355933 n01560419 n02445715 n03770679 n03929855 n01688243 n06596364 n07930864 n01945685 n01631663 n03216828 n03995372 n02782093 n01860187 n04443257 n04579432 n07745940 n04146614 n02177972 n04392985 n01644373 n02317335 n04553703 n02138441 n13040303 n01985128 n02134418 n01945685 n02526121 n02317335 n01820546 n04501370 n01560419 n02268443 n03796401 n03916031 n02992211 n03127747 n03180011 n02102480 n04277352 n01776313 n03017168 n02111129 n02190166 n02098413 n02090721 n01776313 n09421951 n02113023 n02672831 n03764736 n04146614 n03347037 n03868242 n02667093 n02093647 n02169497 n02089973 n07747607 n02085782 n02815834 n02105412 n02086910 n04204238 n03530642 n07583066 n04039381 n02965783 n04501370 n04086273 n04263257 n02443484 n04162706 n07613480 n04525038 n04266014 n03721384 n04467665 n04523525 n04162706 n02025239 n04146614 n01677366 n04179913 n04125021 n02917067 n04392985 n04550184 n02090721 n03796401 n03014705 n04344873 n02091635 n01608432 n03690938 n04141975 n01629819 n04523525 n01955084 n01756291 n04443257 n02927161 n07880968 n07836838 n02484975 n02091032 n07714571 n03535780 n04149813 n09468604 n02033041 n03584254 n04550184 n03887697 n03838899 n02174001 n03272010 n03297495 n04074963 n03649909 n03496892 n03467068 n02268853 n03400231 n02093256 n04367480 n02091134 n04118776 n02086646 n07753592 n02504013 n02104365 n02096177 n03961711 n04069434 n03376595 n01817953 n01955084 n02107142 n03344393 n03709823 n02974003 n02090379 n04332243 n03125729 n03935335 n02814860 n01860187 n03220513 n02094114 n03877472 n02009912 n02108000 n02229544 n03697007 n03124170 n02206856 n03841143 n04153751 n01742172 n13133613 n04525305 n01930112 n02795169 n02233338 n02417914 n03935335 n01770393 n02125311 n03482405 n04604644 n02009912 n03791053 n03223299 n03032252 n04501370 n03372029 n03485794 n02110341 n04200800 n02106166 n04592741 n02950826 n04041544 n07831146 n04116512 n01514859 n03868242 n03026506 n02443484 n02701002 n04116512 n02815834 n03929855 n03676483 n01534433 n02701002 n02113978 n04371430 n03991062 n07718472 n02268853 n04264628 n02098105 n07565083 n02112706 n02094114 n02093991 n02488291 n02093859 n03047690 n01682714 n07717410 n01883070 n04562935 n01498041 n07745940 n02109525 n01644900 n01694178 n03063689 n02894605 n01682714 n03544143 n02101556 n02966687 n03485407 n03657121 n02236044 n07860988 n01677366 n07718747 n02690373 n04099969 n03814639 n02098413 n01985128 n02093647 n02504458 n01944390 n03445924 n03866082 n03355925 n02105855 n03041632 n03791053 n03954731 n07695742 n02102040 n03956157 n03983396 n02105855 n03249569 n03976467 n03843555 n02641379 n03272562 n03658185 n03976467 n02398521 n03791053 n03065424 n03759954 n03216828 n03796401 n01980166 n09193705 n01773797 n02129604 n04009552 n02980441 n03188531 n02100735 n07860988 n03929855 n04037443 n03467068 n02094114 n03899768 n04525038 n02074367 n04033901 n02012849 n02009229 n02109961 n03804744 n02396427 n02233338 n03240683 n03393912 n03777568 n02494079 n02106662 n04033995 n02231487 n04355338 n04550184 n02699494 n04118538 n03388043 n02869837 n02097047 n03063689 n01530575 n02091032 n03042490 n03930313 n02264363 n02442845 n02325366 n01883070 n01614925 n03447721 n03444034 n02979186 n02815834 n02123394 n03250847 n02883205 n04554684 n03047690 n01773157 n02172182 n03249569 n04613696 n03692522 n04044716 n12985857 n02342885 n03425413 n02895154 n01704323 n01560419 n02974003 n07695742 n03016953 n03729826 n03250847 n02927161 n02091635 n01990800 n02980441 n02676566 n02114548 n02422699 n04208210 n02109961 n04332243 n04127249 n03871628 n02391049 n01537544 n02124075 n02422106 n01775062 n03188531 n02443114 n01694178 n03063689 n02088364 n04476259 n04442312 n03792972 n07831146 n02483708 n04346328 n04591713 n03794056 n04153751 n03782006 n02058221 n04162706 n04522168 n03673027 n04483307 n03691459 n03478589 n02102318 n07749582 n07730033 n01829413 n01729977 n04501370 n09472597 n03781244 n02134084 n01742172 n03782006 n04553703 n09835506 n03804744 n02088238 n04067472 n03764736 n02992529 n03874599 n03124043 n04065272 n02782093 n03788195 n04389033 n03673027 n04389033 n03775071 n07753113 n12144580 n02013706 n02190166 n04275548 n03250847 n03947888 n01729977 n02138441 n04264628 n03967562 n03445924 n04355338 n02640242 n01440764 n12267677 n02489166 n02165105 n03599486 n03272010 n02018207 n02747177 n04487081 n02119789 n02666196 n02606052 n02086646 n04040759 n01984695 n12998815 n01751748 n04584207 n04149813 n01981276 n02841315 n03777754 n04376876 n02859443 n04389033 n01665541 n04208210 n04041544 n02071294 n13052670 n01616318 n03871628 n02028035 n03110669 n01819313 n04229816 n02769748 n03832673 n02095889 n01806143 n02708093 n07753113 n02804610 n02879718 n03595614 n02769748 n07802026 n04357314 n09288635 n07753592 n04525038 n04590129 n01981276 n01530575 n02006656 n03903868 n02095570 n03602883 n03476991 n04328186 n03617480 n03272562 n02328150 n04536866 n02814860 n03710193 n04263257 n02699494 n04418357 n01496331 n02086079 n03495258 n03417042 n03065424 n03041632 n04467665 n02085936 n03956157 n02110341 n07760859 n03467068 n02825657 n02669723 n07579787 n02097658 n03717622 n03590841 n02268443 n07697313 n02859443 n01622779 n02999410 n01877812 n01744401 n01669191 n04507155 n02108000 n10148035 n04009552 n09421951 n03457902 n02091032 n03759954 n01443537 n02011460 n01984695 n02791270 n03617480 n02089973 n02105641 n03595614 n03207941 n03146219 n04367480 n07695742 n03376595 n09835506 n02342885 n03393912 n04311004 n04589890 n02114367 n02104029 n01945685 n02094114 n01824575 n04380533 n02025239 n03218198 n02110627 n04026417 n02749479 n07613480 n02437312 n03347037 n02403003 n03942813 n03450230 n04252225 n02108000 n03837869 n02165105 n03000247 n04344873 n02504458 n02110185 n01498041 n04270147 n04239074 n03924679 n02086646 n09835506 n03424325 n04370456 n03777754 n03529860 n02102040 n01688243 n02110627 n02100735 n02102177 n04086273 n01883070 n04366367 n02107574 n02102480 n04008634 n02169497 n04141327 n02442845 n03662601 n01855032 n04589890 n02018795 n03271574 n02097298 n03445777 n02102040 n03617480 n02108422 n02097474 n02109525 n02097474 n11879895 n03223299 n02100583 n03840681 n02091032 n01843065 n03769881 n02091467 n02134418 n02109047 n04456115 n03866082 n04239074 n02484975 n04259630 n07760859 n09246464 n01484850 n02443114 n04251144 n03843555 n04131690 n07716906 n03584254 n04033901 n04146614 n03633091 n13037406 n04254680 n07583066 n03483316 n02056570 n02102177 n04355338 n01669191 n04039381 n01532829 n02978881 n03691459 n04118776 n02672831 n06785654 n07749582 n02536864 n02116738 n04239074 n02483708 n03124170 n07930864 n02018207 n04074963 n01514859 n02089867 n03804744 n04116512 n02802426 n03627232 n03787032 n02281406 n07613480 n02526121 n02860847 n01806143 n03706229 n03982430 n04009552 n01616318 n01828970 n03920288 n03680355 n02727426 n02963159 n02102973 n04209133 n01798484 n02190166 n02091635 n02089078 n04371774 n04515003 n02655020 n02104029 n01877812 n02794156 n02974003 n02096585 n04525305 n02672831 n02113712 n02917067 n02096437 n07745940 n02326432 n03314780 n02236044 n02102973 n02093428 n03297495 n03676483 n03775071 n04536866 n04554684 n03400231 n04346328 n01530575 n04133789 n03160309 n01930112 n03494278 n03063599 n03891332 n04476259 n02410509 n03417042 n07753113 n03498962 n03991062 n04086273 n01739381 n07753275 n03065424 n03476991 n07565083 n01608432 n04258138 n03803284 n02120079 n02454379 n01537544 n02492035 n02219486 n01735189 n03594734 n02442845 n04485082 n03599486 n02086079 n03995372 n04501370 n02113712 n02102480 n03599486 n04162706 n03868242 n04209133 n02791124 n01819313 n02116738 n02894605 n03764736 n03476684 n02123159 n02325366 n03457902 n02123597 n09399592 n02488291 n03788365 n01770081 n01498041 n02110341 n02834397 n02391049 n02113023 n02099712 n01739381 n02980441 n02027492 n03208938 n07734744 n02027492 n02108000 n03902125 n04044716 n09428293 n01981276 n02869837 n03425413 n03085013 n03804744 n02443114 n01983481 n02088466 n02077923 n01740131 n09468604 n02783161 n03888257 n02797295 n04252225 n01622779 n01669191 n03710637 n01669191 n01983481 n02108422 n04111531 n04179913 n04204238 n04389033 n02087046 n01872401 n02692877 n01632777 n02640242 n02927161 n02814860 n03792972 n04039381 n02480855 n03599486 n04326547 n03691459 n04592741 n03014705 n01582220 n13052670 n02802426 n01797886 n04263257 n04350905 n03372029 n02484975 n09428293 n03887697 n02112350 n03110669 n02910353 n02096294 n02102177 n02115913 n02804610 n04239074 n04005630 n04118538 n04067472 n02128757 n02097658 n02099849 n01882714 n02494079 n03379051 n02808440 n04392985 n02114548 n02206856 n03976657 n01729322 n07831146 n01883070 n02361337 n02128757 n02097130 n04447861 n13052670 n02096177 n03691459 n02134084 n02494079 n03642806 n04136333 n02268853 n02417914 n03891332 n09246464 n03032252 n02825657 n03498962 n03160309 n04026417 n04296562 n03534580 n03216828 n07880968 n03393912 n02948072 n04560804 n04152593 n04509417 n03884397 n02129604 n01944390 n04310018 n04086273 n07584110 n04258138 n04264628 n13040303 n02109525 n04462240 n02791270 n03384352 n04070727 n02108422 n03485407 n02093647 n03000134 n03089624 n07615774 n03956157 n02776631 n01729977 n03868242 n03899768 n01871265 n03180011 n03630383 n01968897 n02939185 n02097474 n04154565 n04462240 n02028035 n04041544 n02111129 n03026506 n04389033 n02808440 n03124170 n02129165 n02776631 n04259630 n03902125 n07760859 n01744401 n02128757 n02843684 n02091134 n02256656 n03814639 n02666196 n02497673 n13054560 n01914609 n01580077 n02089867 n03630383 n02025239 n02123597 n02807133 n03673027 n04317175 n15075141 n01795545 n03888257 n03062245 n04209133 n01531178 n02410509 n04162706 n03814639 n02102177 n04399382 n03220513 n06874185 n04152593 n07880968 n02066245 n01735189 n03271574 n01592084 n04355933 n02085936 n01978455 n04597913 n07871810 n02093859 n01773549 n03126707 n03452741 n02027492 n02408429 n01985128 n03670208 n04458633 n04273569 n03785016 n01751748 n03188531 n02917067 n02086240 n03770439 n03240683 n03920288 n03954731 n02109525 n03016953 n02107683 n01665541 n04310018 n03485407 n03187595 n03814639 n02095570 n01968897 n03874599 n02493509 n02130308 n02749479 n01945685 n02536864 n04154565 n02328150 n03908618 n01737021 n02408429 n02231487 n04131690 n03970156 n01530575 n04336792 n02951358 n02879718 n03944341 n03788195 n02895154 n03838899 n02037110 n04009552 n03141823 n02102973 n07730033 n01984695 n07693725 n04065272 n01631663 n02699494 n03095699 n02112350 n04019541 n09835506 n01484850 n07697313 n01729322 n03085013 n04041544 n02396427 n02879718 n03891332 n04590129 n03271574 n02454379 n01944390 n02099267 n02097658 n07720875 n02484975 n03733805 n02086240 n04204238 n03483316 n03201208 n02095570 n01630670 n03201208 n01755581 n02879718 n03065424 n02037110 n02108915 n02807133 n04023962 n01669191 n02098286 n04252225 n02115641 n02281787 n06794110 n02391049 n04486054 n01817953 n04041544 n04277352 n02107574 n09193705 n04371774 n04372370 n03724870 n03388183 n04371430 n02788148 n01817953 n02699494 n07730033 n09468604 n04254777 n04501370 n03637318 n02782093 n04152593 n01882714 n02916936 n03661043 n04336792 n02422699 n04019541 n01664065 n03325584 n03976657 n04423845 n04404412 n03527444 n02123045 n02094114 n01558993 n03062245 n02113712 n03662601 n03065424 n03388183 n03447721 n01667778 n03584254 n03000247 n07718747 n01737021 n02676566 n01795545 n07860988 n04086273 n04332243 n03447721 n01829413 n02236044 n02165105 n01796340 n02092339 n01443537 n04370456 n03961711 n07579787 n01753488 n02708093 n02111277 n01774750 n04286575 n02483708 n02002724 n02536864 n03400231 n03485794 n02480495 n02509815 n04111531 n07716358 n01968897 n04579145 n02892201 n02091134 n04118776 n03249569 n01601694 n04522168 n02441942 n03271574 n02692877 n03930313 n02100735 n04428191 n03706229 n02119789 n02111277 n01629819 n04476259 n03958227 n03240683 n02504458 n04461696 n09229709 n01728920 n02422106 n03450230 n02268853 n03902125 n03868863 n09428293 n04482393 n03680355 n01744401 n12620546 n02002556 n04136333 n02447366 n02226429 n03249569 n02281406 n03721384 n03874599 n02951585 n04074963 n02480495 n03929855 n03016953 n03376595 n07747607 n15075141 n02085620 n04141975 n03733805 n03670208 n02085620 n01491361 n03803284 n02415577 n07714571 n03929855 n13037406 n01740131 n01580077 n03891251 n02128925 n01664065 n02090379 n07920052 n02279972 n02490219 n02906734 n01914609 n01704323 n02105412 n03492542 n04482393 n02788148 n01985128 n03388549 n04251144 n02939185 n02114548 n07836838 n10148035 n03976467 n03447721 n02006656 n07802026 n04370456 n02417914 n01776313 n02112018 n03938244 n02536864 n07802026 n04501370 n02963159 n03759954 n02028035 n04044716 n02123394 n02823428 n01491361 n04008634 n01877812 n07615774 n09256479 n01833805 n04127249 n04507155 n03673027 n01882714 n03697007 n03637318 n04332243 n12267677 n07714571 n03485794 n04004767 n02795169 n02120505 n02086646 n02107908 n03888257 n01795545 n03272010 n07714571 n02097047 n03874293 n02391049 n01855672 n01871265 n04208210 n02487347 n02013706 n02096051 n03598930 n03873416 n02871525 n02102973 n03710637 n01773157 n03208938 n04325704 n02002724 n02137549 n02125311 n01440764 n01806567 n03345487 n04209239 n07860988 n07802026 n07714571 n12768682 n02108422 n01770393 n03124043 n04023962 n02105056 n04476259 n02871525 n03598930 n02206856 n03223299 n02259212 n02607072 n02834397 n02364673 n03131574 n02802426 n02117135 n04370456 n01829413 n04033901 n02123159 n02794156 n02132136 n02883205 n07720875 n03920288 n02892201 n04285008 n03345487 n03661043 n04423845 n02013706 n01924916 n03095699 n09428293 n04153751 n02865351 n03384352 n02786058 n02099429 n03014705 n02113712 n01833805 n03924679 n03937543 n02892767 n01819313 n02109047 n01694178 n01729322 n02808440 n04266014 n01978287 n04111531 n04540053 n02100735 n03935335 n04372370 n03930630 n02443114 n03854065 n03724870 n09193705 n02640242 n03967562 n07711569 n04147183 n03710721 n02965783 n02951585 n01582220 n03014705 n02643566 n01739381 n03814906 n01882714 n01729322 n02860847 n04350905 n01697457 n03220513 n04311004 n03877472 n04209239 n04149813 n03770679 n04548362 n07930864 n03661043 n03400231 n02930766 n04613696 n03866082 n01990800 n01534433 n03947888 n02492660 n01985128 n03793489 n03977966 n01795545 n04086273 n01688243 n02423022 n04277352 n03877472 n03208938 n04476259 n04550184 n03063599 n04523525 n02123597 n02708093 n02134418 n02086079 n11879895 n03676483 n02107574 n02113978 n03764736 n03642806 n01748264 n02167151 n04612504 n02817516 n02051845 n03724870 n02077923 n01443537 n03065424 n02105505 n02051845 n02087394 n01735189 n04310018 n01632458 n02509815 n02093859 n01669191 n03868242 n03400231 n02423022 n02090622 n03146219 n02397096 n03532672 n02013706 n01622779 n02483708 n03187595 n02114712 n03131574 n03476991 n03838899 n02105162 n04604644 n01689811 n02113624 n03691459 n15075141 n01773797 n01491361 n04209133 n04476259 n03444034 n02488291 n03485407 n01630670 n04599235 n02174001 n02834397 n02509815 n03538406 n03535780 n02105855 n04501370 n02098105 n03763968 n03095699 n04591713 n02363005 n03599486 n01491361 n02090622 n03590841 n03832673 n02013706 n06874185 n06596364 n04074963 n04389033 n02447366 n01631663 n02841315 n03733805 n03146219 n02974003 n03947888 n02095570 n02422106 n04049303 n02396427 n03891251 n02422106 n04486054 n02091831 n07760859 n03179701 n03947888 n03692522 n02097298 n03602883 n02974003 n02951585 n04141327 n04357314 n02786058 n02268853 n04596742 n03788365 n02111277 n02104365 n03584254 n04509417 n03494278 n02939185 n02363005 n03047690 n04366367 n04409515 n04380533 n03187595 n01882714 n03680355 n03124170 n01986214 n04004767 n01833805 n04141076 n02033041 n03109150 n04560804 n07930864 n02114548 n02877765 n02093754 n01737021 n02093647 n03794056 n01843383 n01978287 n01669191 n02870880 n02071294 n02098286 n04120489 n04239074 n01537544 n02504013 n03929855 n09193705 n03534580 n03018349 n04179913 n01735189 n01665541 n12768682 n02669723 n03930313 n04200800 n02363005 n04552348 n03992509 n02123159 n04505470 n01518878 n01742172 n02445715 n03584254 n02101556 n02398521 n02106166 n04372370 n04346328 n02109047 n03498962 n01980166 n07753275 n04447861 n09332890 n04417672 n07248320 n02412080 n03218198 n04428191 n04447861 n04557648 n01677366 n01774750 n09399592 n02859443 n04456115 n02018795 n03935335 n04465501 n02112706 n02799071 n07684084 n01614925 n02167151 n04606251 n04317175 n04311004 n02077923 n04326547 n02483708 n02963159 n07565083 n04557648 n02397096 n04133789 n02229544 n04317175 n07749582 n03803284 n04456115 n01828970 n02408429 n01632458 n03028079 n03291819 n01773797 n02096585 n02110341 n01669191 n01986214 n03742115 n01910747 n02966687 n02025239 n07615774 n02090721 n01855672 n02965783 n03924679 n11879895 n02113186 n04270147 n02804610 n06359193 n02965783 n03777754 n09399592 n01693334 n04033901 n02098413 n01981276 n03657121 n02096437 n03841143 n02123394 n02447366 n03345487 n02963159 n01580077 n03481172 n02483362 n02894605 n02109525 n04525038 n01917289 n03983396 n04462240 n04153751 n03992509 n02906734 n03290653 n02017213 n02808440 n04515003 n02422106 n02115913 n03720891 n10148035 n02794156 n02096294 n03220513 n02437312 n02058221 n04540053 n07753592 n02105641 n04325704 n04447861 n07695742 n03666591 n03642806 n01910747 n03733281 n01768244 n03888605 n13133613 n03590841 n03127925 n02488291 n04208210 n04592741 n04557648 n02169497 n01773549 n02672831 n03742115 n01983481 n02113978 n03494278 n02490219 n02488291 n03062245 n02167151 n02676566 n04392985 n03877472 n02168699 n02488291 n02840245 n03014705 n04044716 n02119022 n01824575 n02840245 n04023962 n03032252 n02486410 n03197337 n02974003 n04086273 n02441942 n03496892 n03721384 n03538406 n03041632 n02927161 n02408429 n03759954 n03690938 n01930112 n01744401 n02992529 n03873416 n07615774 n02012849 n03777568 n03676483 n01968897 n03866082 n04005630 n04285008 n02841315 n02106030 n02276258 n02422106 n03649909 n03017168 n02097474 n02948072 n02256656 n04179913 n09835506 n02111889 n02988304 n07836838 n02051845 n02971356 n02640242 n03065424 n04201297 n02281406 n02134418 n02500267 n02895154 n02870880 n03617480 n02415577 n03733131 n03594734 n04152593 n04258138 n04286575 n04336792 n02484975 n04041544 n04081281 n03291819 n04584207 n02100877 n03459775 n01498041 n04429376 n04252077 n04515003 n02108089 n03876231 n03838899 n07716358 n02025239 n02965783 n04033901 n03841143 n02102318 n03888605 n03777568 n04350905 n02870880 n04277352 n07720875 n02317335 n02504458 n02488291 n02137549 n02490219 n04428191 n03662601 n04532670 n02105412 n02091831 n04154565 n01531178 n07753275 n02117135 n01882714 n03272010 n03759954 n03866082 n03992509 n02137549 n01537544 n01494475 n03179701 n01694178 n04554684 n04204347 n11879895 n04366367 n04371430 n12057211 n02730930 n03461385 n01728572 n01688243 n04141975 n02174001 n04310018 n02077923 n02105505 n03250847 n01776313 n04532106 n02346627 n04493381 n07742313 n04335435 n02112018 n02097298 n04254120 n02231487 n03394916 n01806143 n04311004 n03216828 n07615774 n07614500 n07768694 n07248320 n03594734 n04008634 n02091134 n02606052 n04310018 n07714990 n01945685 n02326432 n01704323 n01944390 n01514668 n01514668 n01740131 n04356056 n03492542 n02643566 n03759954 n03854065 n03781244 n03125729 n02087394 n02093754 n02802426 n03527444 n07747607 n03394916 n01644373 n02823428 n02106550 n03954731 n01944390 n09472597 n03126707 n02102973 n03443371 n03529860 n02489166 n04606251 n04371774 n03197337 n04252225 n01986214 n03841143 n02111129 n04251144 n02782093 n03786901 n04542943 n03196217 n01735189 n03125729 n02089867 n04009552 n02860847 n02229544 n01871265 n03930313 n04296562 n03388549 n02437616 n02423022 n02190166 n04522168 n04136333 n02009229 n07716358 n01798484 n01990800 n04525038 n07754684 n01582220 n03673027 n02977058 n04317175 n03495258 n02692877 n02089973 n01843065 n03584254 n02802426 n02364673 n01807496 n02172182 n03742115 n02687172 n02769748 n07716358 n03028079 n02107142 n02749479 n02417914 n04296562 n01829413 n01698640 n03935335 n02096294 n02112706 n02692877 n01740131 n07754684 n04136333 n02112137 n02326432 n02113624 n07715103 n02484975 n03781244 n01630670 n02701002 n03776460 n01978455 n01755581 n01819313 n03838899 n04146614 n04251144 n02113023 n02483362 n04456115 n02101006 n02992211 n02037110 n03045698 n02963159 n03249569 n06359193 n03196217 n01693334 n02085936 n03697007 n02092002 n02099712 n02793495 n03710721 n02102318 n03895866 n02097209 n03127747 n01950731 n02106166 n01443537 n03372029 n04229816 n01990800 n04258138 n03637318 n03633091 n03770439 n01818515 n04069434 n02110063 n01664065 n02504458 n01641577 n04562935 n03825788 n03873416 n02484975 n01984695 n03761084 n02892201 n04392985 n04357314 n02097130 n03394916 n03124170 n03938244 n01582220 n04133789 n07871810 n02114855 n02445715 n03017168 n01729977 n02101006 n04153751 n07730033 n02802426 n02130308 n02096585 n01860187 n01980166 n02825657 n03450230 n04037443 n04090263 n02361337 n02823750 n02843684 n03372029 n01749939 n02808440 n03384352 n02129165 n02095570 n02916936 n02098105 n02093256 n03445777 n02111500 n04553703 n03871628 n03876231 n03062245 n03207941 n04428191 n02408429 n04005630 n02777292 n03877845 n04599235 n02514041 n04081281 n02111889 n03208938 n02105855 n10565667 n02493793 n02676566 n02219486 n04147183 n01531178 n04542943 n02492660 n04235860 n02321529 n01687978 n02066245 n01818515 n03461385 n03710637 n03854065 n01872401 n01847000 n03690938 n06596364 n07932039 n02102973 n01806567 n02106382 n15075141 n02109047 n02087394 n01774750 n02128385 n07871810 n02086240 n04209239 n07749582 n04392985 n02058221 n01644373 n03127925 n03690938 n04485082 n03388183 n02110627 n02165105 n03785016 n02259212 n02108915 n02099267 n04044716 n01990800 n01986214 n01632777 n01580077 n02106030 n01632458 n03337140 n01695060 n09399592 n04116512 n03443371 n02097658 n04039381 n02422699 n02105855 n03792782 n02229544 n01950731 n02256656 n03916031 n01534433 n03791053 n04200800 n03314780 n04120489 n04584207 n01820546 n04125021 n02930766 n02093647 n02910353 n03452741 n03482405 n04380533 n01622779 n07768694 n03042490 n03461385 n04285008 n04540053 n02099267 n12057211 n04118776 n04162706 n12620546 n01534433 n01675722 n02089078 n03290653 n02883205 n07697537 n03393912 n02113186 n03014705 n04435653 n03590841 n03773504 n02782093 n02980441 n04239074 n04228054 n03877845 n04023962 n04404412 n02088238 n03617480 n03670208 n09229709 n02971356 n04553703 n01748264 n02091467 n07697537 n02113186 n07615774 n02328150 n02883205 n07579787 n01514668 n03877845 n02108915 n07760859 n02125311 n03899768 n01924916 n02487347 n02979186 n03594945 n03895866 n02441942 n13040303 n03710193 n03709823 n03544143 n02843684 n02085782 n02088466 n01910747 n04599235 n01847000 n02423022 n03476991 n02690373 n07730033 n03733281 n02129604 n02027492 n04443257 n03977966 n03992509 n02108422 n07875152 n03793489 n03127925 n04579145 n02395406 n02119022 n03706229 n03902125 n03777568 n02125311 n04458633 n02672831 n01784675 n02138441 n04328186 n02120505 n01644373 n03544143 n01818515 n03877472 n04044716 n04009552 n03220513 n04067472 n02172182 n02823750 n02317335 n04467665 n02229544 n04049303 n02116738 n07584110 n02018795 n03930313 n02480495 n02172182 n09399592 n01530575 n02971356 n02105641 n01698640 n04553703 n02280649 n01807496 n02504458 n03617480 n03884397 n02011460 n02704792 n03393912 n01667114 n03598930 n01775062 n07717410 n04118776 n03218198 n03255030 n02111129 n02892201 n03444034 n03692522 n02364673 n07718747 n04418357 n04235860 n03000684 n03929660 n03670208 n01560419 n02494079 n03197337 n01737021 n07697313 n02127052 n03764736 n04270147 n02097474 n04204347 n03291819 n03134739 n02086240 n03691459 n01924916 n04550184 n02093754 n03110669 n02643566 n02108422 n02795169 n02483362 n03983396 n02093647 n02815834 n04069434 n03930313 n02326432 n02086079 n03958227 n04258138 n03498962 n03697007 n03126707 n02980441 n03530642 n02086910 n02087394 n02280649 n04285008 n02093256 n01950731 n03733131 n04277352 n02086240 n03544143 n03782006 n01632777 n02086646 n03297495 n09246464 n02123597 n02687172 n04487081 n02236044 n03710193 n02607072 n02788148 n01776313 n04376876 n02102973 n07873807 n03372029 n02104029 n02669723 n01693334 n12985857 n03785016 n02066245 n01698640 n04086273 n03047690 n04026417 n01773797 n03742115 n02018207 n01978455 n02988304 n03595614 n02965783 n02992529 n01773157 n03417042 n03376595 n04435653 n07711569 n03970156 n02877765 n04111531 n09256479 n02641379 n04179913 n02113023 n03977966 n04525038 n02190166 n04070727 n02111277 n02128757 n01784675 n02412080 n03146219 n03485794 n01773157 n02119022 n02704792 n01737021 n03697007 n03450230 n01770081 n03792782 n02089867 n02817516 n03141823 n01773157 n07860988 n02317335 n04442312 n04428191 n04049303 n12620546 n04591157 n03980874 n03314780 n02514041 n03376595 n01774384 n01774384 n04579432 n04336792 n01872401 n02483708 n03127925 n03314780 n03843555 n01770081 n02480855 n04118776 n01910747 n03126707 n02233338 n02114855 n02808304 n02107683 n03590841 n01737021 n01514859 n04346328 n02102480 n02093754 n09472597 n09332890 n03630383 n02492035 n04026417 n02110185 n03125729 n04465501 n07695742 n03775546 n02930766 n07753275 n07684084 n04486054 n01677366 n03127747 n02917067 n04347754 n02704792 n07583066 n07714990 n02111500 n03085013 n02233338 n03977966 n03876231 n07760859 n03623198 n02268853 n07730033 n02097047 n02981792 n01984695 n04584207 n01665541 n01734418 n02100877 n03109150 n02099712 n01855672 n02486410 n02099267 n03804744 n04179913 n02091032 n04200800 n04127249 n01833805 n01855672 n02909870 n04423845 n03345487 n04456115 n04517823 n07714990 n03492542 n01531178 n07892512 n01534433 n03982430 n04116512 n02097130 n04612504 n03146219 n02097130 n04517823 n07684084 n01978455 n02236044 n01798484 n04200800 n01985128 n09468604 n02268853 n02090622 n03000684 n04447861 n04154565 n02840245 n03126707 n02391049 n04532106 n01728572 n03124043 n01773549 n02480855 n07860988 n02105056 n03888605 n02116738 n02804610 n02113799 n03899768 n01729322 n07873807 n02116738 n02795169 n02256656 n07720875 n03584829 n02097209 n02092002 n07614500 n03599486 n02825657 n02966687 n04428191 n02488702 n01774384 n03908618 n03814639 n02444819 n02825657 n02325366 n03394916 n02077923 n03709823 n04579432 n03967562 n01514668 n04548280 n03899768 n02892201 n01704323 n01484850 n03535780 n03775546 n03337140 n01514859 n01580077 n01580077 n04509417 n03977966 n02115641 n07697313 n07753275 n04542943 n02910353 n02087046 n04443257 n03788365 n04429376 n01484850 n02843684 n04479046 n01990800 n09193705 n02115641 n01773549 n09246464 n03956157 n03065424 n02174001 n01824575 n02099267 n02093647 n03133878 n01580077 n01622779 n03271574 n07768694 n04376876 n01877812 n03110669 n01728920 n04141327 n04389033 n02096294 n02492035 n03876231 n07716906 n02097474 n02086240 n02708093 n02105641 n01984695 n03125729 n03944341 n03450230 n02109525 n04389033 n07760859 n01704323 n04540053 n02823428 n02115641 n03733281 n02093754 n01532829 n07802026 n09472597 n02091134 n03041632 n04372370 n01608432 n04265275 n02804414 n03109150 n04328186 n02107312 n03100240 n03250847 n03393912 n02090622 n02840245 n02870880 n04562935 n02397096 n03995372 n02106662 n02096177 n02493509 n02965783 n01981276 n01990800 n01698640 n02088238 n02107908 n09399592 n02790996 n02091134 n04252225 n02447366 n03179701 n02123394 n02974003 n03124170 n03045698 n03271574 n04067472 n01494475 n01984695 n02321529 n03062245 n07892512 n02123045 n02099849 n02672831 n03854065 n02825657 n01644900 n07745940 n04366367 n09288635 n03447447 n03124043 n12267677 n02091244 n02111277 n02088632 n12985857 n04517823 n03594945 n04049303 n03908714 n03697007 n07714571 n01986214 n03014705 n04238763 n02950826 n01755581 n02108089 n02111500 n02028035 n03425413 n02276258 n03690938 n03478589 n04579432 n04209133 n02492035 n04479046 n03131574 n04026417 n01981276 n01514668 n02643566 n03791053 n02870880 n04235860 n06596364 n04019541 n09246464 n03065424 n13054560 n04597913 n02111500 n04252077 n03857828 n02100236 n04442312 n02363005 n04040759 n03127925 n04033995 n03662601 n02966193 n03761084 n03838899 n04081281 n04243546 n04252077 n04487081 n04417672 n03662601 n03476991 n01829413 n07614500 n02701002 n07754684 n04258138 n01744401 n03259280 n02676566 n03017168 n01817953 n04049303 n01692333 n02108551 n03134739 n02410509 n03871628 n04525305 n02093754 n04461696 n04523525 n11939491 n04612504 n03706229 n02167151 n01582220 n03692522 n03595614 n02823428 n03950228 n04399382 n03877845 n04596742 n04005630 n03724870 n03445924 n07614500 n01883070 n03710637 n04120489 n03127925 n03249569 n02879718 n04562935 n03630383 n02106662 n02097474 n02114855 n09332890 n02096051 n03995372 n03016953 n03447447 n10565667 n07579787 n02102040 n02097298 n01514668 n04332243 n03770679 n02102040 n01616318 n01694178 n02817516 n02086240 n03787032 n01582220 n02097130 n03690938 n02825657 n02106662 n02490219 n02514041 n03958227 n03658185 n03187595 n02107908 n07734744 n02093859 n02011460 n04447861 n02640242 n02793495 n02514041 n01534433 n02132136 n02108422 n01768244 n04399382 n01734418 n02037110 n02444819 n03272562 n02906734 n01740131 n03325584 n03598930 n02277742 n03443371 n03447721 n02097130 n04347754 n03903868 n03529860 n06785654 n01985128 n02892767 n02074367 n02445715 n03131574 n02892201 n02114548 n02096294 n03787032 n03776460 n02870880 n04347754 n03930313 n02095889 n02124075 n01641577 n07753592 n02100583 n04591157 n02488291 n03690938 n03791053 n02860847 n04612504 n01677366 n02112350 n03062245 n02909870 n09428293 n01860187 n02999410 n13044778 n04070727 n02105855 n01950731 n04443257 n02110341 n04265275 n04273569 n03000247 n01675722 n03838899 n13040303 n03016953 n03793489 n02119022 n04366367 n03388549 n06874185 n02980441 n03676483 n04065272 n02102040 n04501370 n01740131 n04162706 n04325704 n01443537 n02672831 n02101006 n04417672 n01990800 n02133161 n02264363 n04548280 n03935335 n02906734 n01985128 n02107574 n03125729 n03208938 n02074367 n03133878 n02085782 n02607072 n03388043 n02096585 n07693725 n02786058 n01443537 n01873310 n02791124 n04325704 n03530642 n04147183 n02484975 n02091635 n03100240 n02879718 n02093991 n11879895 n01737021 n13054560 n01945685 n04356056 n02342885 n04192698 n04536866 n04435653 n01829413 n01496331 n03887697 n03770679 n12057211 n12985857 n04266014 n02916936 n04429376 n02229544 n03763968 n03595614 n02837789 n02109047 n02106030 n03180011 n02102973 n02865351 n02074367 n02169497 n02087046 n03141823 n02124075 n02437312 n07892512 n01776313 n02641379 n01644900 n03042490 n03630383 n03785016 n07730033 n03544143 n02007558 n02109047 n02910353 n02107312 n02389026 n01698640 n03633091 n04442312 n07248320 n04525038 n03459775 n03297495 n03676483 n03476991 n02097658 n03888257 n02115913 n01532829 n02085936 n01532829 n02107312 n02403003 n03933933 n02483362 n02105162 n02066245 n01518878 n01685808 n03782006 n07695742 n09835506 n04141076 n02454379 n02107683 n03874293 n02177972 n02106166 n04590129 n03388549 n04399382 n02096585 n02093256 n02319095 n04560804 n02089973 n03223299 n02091244 n02089867 n04335435 n03825788 n02056570 n01669191 n02113978 n03141823 n02640242 n02841315 n04146614 n03400231 n02490219 n03791053 n07880968 n02025239 n03873416 n02437616 n03220513 n02089973 n03045698 n02100735 n04228054 n06785654 n04554684 n03595614 n03933933 n03954731 n02110806 n02056570 n04476259 n03032252 n02445715 n03895866 n02317335 n04479046 n02782093 n02172182 n02417914 n03041632 n04507155 n02672831 n02108000 n07714990 n03532672 n02123597 n03218198 n02091134 n02825657 n02916936 n03874599 n03876231 n03160309 n04118538 n03259280 n03670208 n07745940 n03733805 n01669191 n03404251 n07718747 n07831146 n02403003 n02883205 n02415577 n01784675 n02492035 n03599486 n01877812 n01877812 n03498962 n04355338 n03617480 n03404251 n02277742 n02169497 n02113624 n04067472 n04465501 n04335435 n02444819 n09421951 n04591157 n01622779 n03425413 n02346627 n04162706 n03874293 n02138441 n04005630 n03769881 n03942813 n04285008 n02114855 n02114712 n02708093 n03124170 n01498041 n07613480 n02363005 n03355925 n13054560 n03180011 n04552348 n02423022 n04525038 n02504013 n02107312 n02091467 n02101006 n03721384 n07695742 n02823428 n04589890 n04584207 n04111531 n03160309 n01531178 n02123394 n02777292 n04208210 n01667114 n01667114 n04597913 n03529860 n03450230 n02123045 n12768682 n01924916 n02536864 n04442312 n02747177 n07831146 n02951358 n03857828 n03482405 n03028079 n04040759 n02417914 n01689811 n03188531 n04070727 n07720875 n02168699 n11939491 n01704323 n03223299 n01930112 n02747177 n03903868 n02093428 n01728572 n03459775 n04409515 n03977966 n03220513 n04355933 n03662601 n03916031 n07836838 n07714571 n03891332 n02105251 n03028079 n02117135 n02096585 n04458633 n02883205 n01818515 n01641577 n04070727 n02093428 n03494278 n03255030 n03769881 n07716358 n03877845 n07760859 n03495258 n04370456 n02091134 n03874293 n03026506 n03259280 n02097209 n03873416 n07760859 n02108422 n01872401 n01981276 n04153751 n02110185 n02095570 n01496331 n04285008 n03075370 n02815834 n09256479 n02092339 n02808304 n09428293 n02101006 n02412080 n04285008 n03954731 n04311004 n03476991 n01518878 n02687172 n02342885 n02346627 n02883205 n03457902 n02097658 n02504458 n03930313 n02087394 n02802426 n03272010 n02102318 n02091467 n02099849 n04552348 n02443114 n02276258 n03642806 n02342885 n03916031 n02125311 n02837789 n02130308 n04509417 n03207941 n03877845 n13052670 n02317335 n03444034 n03179701 n04371774 n03924679 n02950826 n02110958 n02113978 n02109961 n02363005 n02090622 n07930864 n03857828 n03763968 n07684084 n02497673 n02102480 n04275548 n04264628 n02058221 n01687978 n02877765 n01748264 n02028035 n02909870 n04332243 n09835506 n04192698 n03877845 n03832673 n04179913 n03623198 n02107908 n04548362 n01641577 n02992211 n04326547 n02783161 n03743016 n01729977 n04146614 n01695060 n03649909 n02087394 n03424325 n01688243 n03223299 n01914609 n02091032 n02095570 n07720875 n02606052 n03584829 n02110185 n03220513 n07745940 n01824575 n02099601 n11939491 n07749582 n03457902 n01784675 n02112018 n03733131 n04328186 n04037443 n03717622 n01694178 n02871525 n02808440 n04560804 n02097474 n02137549 n01981276 n02443114 n02101006 n04550184 n12985857 n02236044 n02488291 n04532106 n03895866 n03617480 n03417042 n03903868 n03584254 n02389026 n04435653 n02492035 n01796340 n03447721 n03447447 n03595614 n04579145 n02777292 n04147183 n02006656 n03843555 n02504458 n03444034 n03673027 n04417672 n10148035 n04179913 n03792972 n04552348 n02281406 n02326432 n02493509 n03314780 n03485407 n01980166 n04442312 n03602883 n01986214 n02108915 n02492660 n03384352 n04367480 n04467665 n02814860 n01728572 n03733281 n03216828 n02494079 n03733805 n02279972 n01692333 n02091635 n04487081 n03866082 n03208938 n07714990 n02906734 n02807133 n02095570 n03594945 n03492542 n02442845 n01833805 n02395406 n06874185 n02490219 n02071294 n02447366 n01537544 n02281787 n02268443 n03775546 n04429376 n03832673 n04398044 n04370456 n02128757 n04162706 n04146614 n04482393 n07860988 n02167151 n02095889 n02487347 n01632777 n02992211 n02097658 n02107683 n03980874 n07753592 n02037110 n03388183 n01695060 n04258138 n02802426 n03425413 n02403003 n03868242 n02006656 n02667093 n02607072 n02093647 n02536864 n04591713 n02669723 n03733805 n03259280 n03709823 n04483307 n03877472 n02113023 n04133789 n06359193 n03903868 n03089624 n02013706 n04266014 n02504013 n02101006 n02124075 n01774750 n02112350 n02526121 n03485407 n03496892 n02655020 n07714571 n02087394 n03160309 n02091831 n03047690 n04612504 n02859443 n04033995 n02950826 n03187595 n01592084 n07892512 n04507155 n01692333 n01981276 n02823750 n04251144 n04548362 n07565083 n04209133 n01877812 n04486054 n09421951 n02231487 n02113799 n02098413 n04081281 n02999410 n02107312 n02346627 n01675722 n02795169 n03649909 n04090263 n03871628 n01877812 n03670208 n03866082 n03496892 n07248320 n04162706 n02098413 n04069434 n03938244 n02101006 n02325366 n03388549 n03393912 n01739381 n02108089 n03000134 n03124170 n02037110 n02098105 n01986214 n03314780 n10148035 n04200800 n03457902 n02091831 n02835271 n03642806 n02101388 n02128757 n04004767 n02091635 n04311004 n04328186 n01829413 n02108000 n03877845 n03935335 n01744401 n01531178 n13044778 n02699494 n01775062 n02088364 n04239074 n03781244 n02442845 n03028079 n09421951 n12768682 n02454379 n03065424 n02113023 n01873310 n03594945 n03792782 n03529860 n02174001 n02487347 n01692333 n02837789 n04487394 n02509815 n03970156 n02445715 n02666196 n02009912 n01797886 n07583066 n02111500 n03461385 n04371774 n04296562 n02978881 n02066245 n02129604 n03761084 n09229709 n01774750 n02108915 n01797886 n04482393 n03792782 n02095314 n01693334 n04560804 n04376876 n07718747 n01532829 n03888605 n02980441 n01494475 n02093754 n07802026 n04562935 n02165456 n02356798 n03977966 n03124170 n02797295 n04201297 n04392985 n04579432 n02106550 n02782093 n04252077 n04326547 n02454379 n02437312 n01729977 n02123045 n04229816 n02077923 n03788195 n02124075 n02051845 n02087394 n02096437 n02403003 n02769748 n04392985 n02134084 n02840245 n04273569 n03125729 n03967562 n03961711 n03961711 n07579787 n04270147 n02965783 n02006656 n03995372 n03444034 n02814860 n04070727 n04208210 n04486054 n03729826 n02120079 n04591713 n02808304 n02105641 n03770439 n04228054 n02094114 n03400231 n02106166 n03868863 n02089078 n03954731 n04355338 n02669723 n04200800 n04266014 n03929855 n02107312 n04023962 n03958227 n01677366 n02791124 n03485407 n02129165 n03075370 n01558993 n02988304 n04355933 n02134418 n01675722 n07920052 n02321529 n02018795 n03992509 n03868863 n03796401 n02892767 n04254120 n03785016 n04591157 n01518878 n06794110 n01930112 n02951585 n07711569 n01496331 n02788148 n03207743 n03794056 n04332243 n04356056 n07873807 n02667093 n03271574 n02794156 n02493793 n03527444 n02951585 n03240683 n02109961 n01795545 n03599486 n04599235 n01644900 n07880968 n04317175 n02840245 n02408429 n07248320 n04285008 n02096585 n02704792 n04560804 n03785016 n02927161 n03697007 n07930864 n07248320 n02028035 n02123597 n02676566 n07583066 n02871525 n02134084 n02091032 n04462240 n02117135 n02009912 n09193705 n09472597 n02834397 n03764736 n01753488 n03895866 n02112018 n02165105 n02837789 n03457902 n04522168 n04023962 n04536866 n04005630 n02110627 n02708093 n04554684 n01514668 n02090379 n07836838 n02108089 n03095699 n04366367 n04039381 n07802026 n03100240 n03255030 n04235860 n02980441 n03218198 n01514668 n03000684 n02088094 n02815834 n03657121 n03891251 n02808440 n02916936 n03661043 n04243546 n04065272 n03666591 n04604644 n04509417 n03937543 n04509417 n02109961 n04251144 n02869837 n02113712 n02492660 n02841315 n07734744 n04456115 n02640242 n03929855 n04266014 n01644900 n02807133 n03814639 n01514859 n01784675 n04023962 n02256656 n01695060 n03532672 n04070727 n03742115 n03482405 n01773797 n03388183 n03792782 n09246464 n03394916 n13052670 n03498962 n02356798 n02966193 n01798484 n03394916 n04476259 n03854065 n03950228 n02708093 n02206856 n03026506 n04004767 n03691459 n01682714 n02095570 n02480855 n03424325 n01531178 n03868863 n02883205 n02795169 n04399382 n02840245 n02808304 n01695060 n02110063 n01601694 n04229816 n02927161 n03187595 n02454379 n04483307 n01986214 n02104029 n04485082 n02808304 n03384352 n02107574 n02927161 n03924679 n01685808 n02364673 n04389033 n07718472 n01558993 n03047690 n03595614 n02071294 n03028079 n01806143 n03814639 n02007558 n04525038 n02128385 n02391049 n04372370 n03769881 n02100877 n09288635 n03950228 n02786058 n03788365 n01667114 n02119789 n02279972 n02033041 n02086910 n01749939 n03337140 n07693725 n02492660 n02442845 n02917067 n03733281 n07920052 n02490219 n02111277 n02123394 n02128757 n02992211 n03424325 n03942813 n04399382 n04417672 n01828970 n03854065 n02325366 n02492035 n03220513 n02087046 n03602883 n01983481 n01498041 n02834397 n03791053 n04604644 n07730033 n01675722 n02105056 n04039381 n02835271 n02787622 n04591157 n02484975 n04044716 n02977058 n03000247 n03602883 n02112018 n04584207 n03733281 n04209133 n02106662 n01740131 n03983396 n04141327 n03476684 n03337140 n04311174 n02510455 n03476991 n04456115 n03141823 n04009552 n03461385 n01797886 n01734418 n02108915 n04251144 n04192698 n04525038 n03995372 n01985128 n07930864 n02514041 n02098413 n03388183 n02095889 n02992529 n07920052 n03249569 n02667093 n03393912 n03743016 n03876231 n02138441 n07875152 n02099601 n01630670 n02099429 n03706229 n03992509 n03141823 n03109150 n02504013 n02992529 n01943899 n03796401 n01675722 n04141327 n07697537 n04141327 n02871525 n04254680 n07836838 n03133878 n02346627 n03649909 n02090622 n03124170 n04458633 n04525305 n03666591 n02699494 n03680355 n01692333 n02480495 n03109150 n02342885 n02776631 n04596742 n03018349 n04525305 n01824575 n01882714 n02115641 n02788148 n04335435 n02085936 n02782093 n03095699 n03127925 n09468604 n07717410 n03417042 n12998815 n02113023 n07742313 n04296562 n07714571 n02107312 n01806143 n04033995 n02025239 n03930313 n02641379 n03804744 n07745940 n02097658 n07930864 n03089624 n02492035 n02791124 n02172182 n02865351 n01739381 n03950228 n02099429 n01644900 n02788148 n01622779 n02027492 n04254120 n03929855 n02814533 n02226429 n07715103 n03840681 n02256656 n01833805 n12267677 n01687978 n04592741 n04592741 n07873807 n02110627 n02277742 n04266014 n01776313 n02794156 n02093428 n04311004 n03920288 n03047690 n03992509 n02112350 n04591157 n03017168 n03459775 n01667778 n01820546 n03485794 n02804610 n03602883 n03666591 n01872401 n04589890 n02730930 n02090379 n03670208 n02892201 n03372029 n03062245 n02486410 n04562935 n01697457 n02099429 n04111531 n01728920 n04153751 n02113624 n01770393 n04266014 n02017213 n03483316 n01742172 n02480855 n01739381 n01768244 n03908714 n02006656 n02089867 n03026506 n01558993 n03980874 n03775546 n01980166 n09399592 n02804610 n04336792 n02027492 n04251144 n02100735 n03788365 n13040303 n02328150 n15075141 n07802026 n01532829 n03594734 n02676566 n04404412 n02346627 n02843684 n02108000 n02871525 n02606052 n03982430 n02165456 n02823750 n01871265 n02730930 n03770679 n04505470 n03404251 n01883070 n02979186 n02093991 n01630670 n04120489 n01443537 n04371774 n03866082 n01833805 n03527444 n03998194 n03873416 n02930766 n03776460 n06596364 n02321529 n04392985 n03796401 n04483307 n02526121 n02396427 n02113023 n03443371 n07747607 n01980166 n02058221 n02167151 n02769748 n03127925 n02190166 n03272562 n02097130 n04560804 n02086240 n04326547 n02095314 n01843383 n02107312 n03954731 n02281406 n02105641 n03075370 n02883205 n01829413 n02099849 n02112137 n07684084 n03095699 n02408429 n10565667 n02641379 n02259212 n02128757 n03344393 n01665541 n04004767 n07734744 n02088364 n02100583 n02672831 n01820546 n03376595 n04070727 n02981792 n03709823 n02206856 n01537544 n01776313 n04579145 n02492035 n02804414 n02113799 n02104365 n03483316 n09256479 n03642806 n07590611 n02094433 n02089973 n02497673 n01968897 n02090721 n02167151 n02974003 n02514041 n03781244 n02408429 n02279972 n04311174 n01990800 n02804610 n03146219 n13040303 n07930864 n04423845 n02437616 n03388043 n04487394 n04201297 n02704792 n01729322 n04371430 n03937543 n03216828 n02486261 n02666196 n04612504 n03180011 n03240683 n03627232 n01877812 n04486054 n02782093 n02814533 n02119022 n03788195 n07720875 n02096051 n03903868 n02105162 n04125021 n03272010 n03794056 n02058221 n03457902 n04584207 n03785016 n04311004 n03837869 n02101556 n03840681 n03425413 n03496892 n02127052 n01980166 n03770439 n04398044 n02105412 n03032252 n03594734 n02096437 n10148035 n01443537 n04125021 n03649909 n02939185 n01737021 n02510455 n02398521 n02490219 n03595614 n04277352 n03649909 n07716906 n02808440 n03124170 n03538406 n03376595 n02860847 n01797886 n04243546 n03673027 n04462240 n03595614 n04579432 n01558993 n04081281 n04136333 n03223299 n03197337 n02094114 n03452741 n04392985 n02666196 n02786058 n09332890 n03759954 n04125021 n03000684 n04597913 n01768244 n02099601 n07716358 n03530642 n01860187 n02012849 n02814860 n02110063 n03160309 n02091032 n15075141 n02127052 n02699494 n04447861 n02109961 n03532672 n04099969 n03594945 n02101556 n04200800 n02100236 n04149813 n07920052 n04149813 n02097209 n03793489 n09428293 n03840681 n02799071 n04332243 n01807496 n04479046 n02101388 n02099849 n02085620 n02655020 n02802426 n04204347 n02094433 n02814533 n04398044 n04090263 n02051845 n04548362 n04259630 n04209133 n04596742 n02114855 n02091635 n01795545 n02231487 n07831146 n02110341 n01728920 n02802426 n01978455 n03388043 n03041632 n03976657 n02443484 n01735189 n04310018 n02009229 n02325366 n03075370 n04149813 n03891251 n02125311 n04074963 n02105855 n04525038 n02002724 n03924679 n03947888 n03544143 n01704323 n02177972 n04509417 n07754684 n03961711 n02364673 n07614500 n04239074 n02825657 n02391049 n03447721 n03042490 n04442312 n02098105 n03388043 n03692522 n04428191 n02100236 n04591157 n03729826 n03775071 n02480855 n03697007 n02088094 n02012849 n02119789 n02085782 n03424325 n01872401 n01631663 n02788148 n01698640 n02672831 n04162706 n04591157 n02128385 n02992529 n03443371 n03792782 n04200800 n04069434 n02490219 n03868242 n04277352 n03770439 n01773157 n04026417 n03492542 n02107908 n04548362 n03379051 n01582220 n02109047 n04579145 n02114548 n04152593 n02769748 n04296562 n02097209 n01983481 n04366367 n03657121 n02879718 n02119789 n03947888 n02342885 n04152593 n04370456 n03032252 n07880968 n04328186 n02107574 n02017213 n01945685 n04550184 n01514859 n04479046 n07695742 n03481172 n07747607 n02437312 n03742115 n01924916 n01608432 n04584207 n02825657 n12144580 n01689811 n04228054 n02113624 n07697313 n04367480 n04026417 n01616318 n02643566 n04228054 n01443537 n04252077 n01734418 n02490219 n02814533 n01796340 n03160309 n04355933 n03666591 n02443114 n03595614 n02948072 n03786901 n04380533 n01824575 n02018207 n02111500 n03188531 n03417042 n13037406 n02869837 n03627232 n07716906 n02130308 n02422106 n03544143 n02108551 n03314780 n01694178 n02437312 n02978881 n04243546 n02823428 n03916031 n01616318 n01496331 n15075141 n02071294 n03095699 n04525305 n02483362 n02109047 n02930766 n03792972 n04507155 n02091032 n01744401 n03929660 n01632458 n02090622 n13037406 n01580077 n03028079 n04366367 n03000247 n02088094 n04376876 n02110341 n03983396 n02791124 n02977058 n03384352 n03042490 n02643566 n04522168 n02804414 n07760859 n02445715 n01728920 n04285008 n01697457 n03961711 n03134739 n01882714 n07716358 n02364673 n02536864 n07880968 n03662601 n02699494 n04133789 n04141076 n04366367 n02892201 n02100877 n01695060 n07747607 n02971356 n02804414 n01665541 n02422699 n03065424 n07693725 n04336792 n07932039 n04311174 n07715103 n02268853 n02096585 n01981276 n04133789 n02814860 n03388183 n01631663 n02447366 n01560419 n02319095 n04370456 n04152593 n02939185 n01534433 n02909870 n01537544 n07565083 n02106030 n01630670 n02837789 n03633091 n01614925 n13052670 n02104029 n02877765 n02106166 n02011460 n03590841 n02130308 n01968897 n02397096 n02966193 n02129165 n03393912 n03133878 n03743016 n03947888 n02133161 n02102480 n02457408 n02111889 n02364673 n02980441 n02138441 n03908714 n04599235 n03220513 n01729977 n02808304 n03223299 n03444034 n03538406 n03384352 n02607072 n07684084 n07697537 n07565083 n02939185 n04483307 n01843065 n03272010 n04370456 n03627232 n03259280 n01698640 n01775062 n02769748 n04428191 n04326547 n02090721 n02051845 n03124170 n02422106 n02134418 n09399592 n03447721 n04090263 n04584207 n03884397 n02356798 n02105641 n03786901 n02835271 n02090379 n03379051 n04389033 n01847000 n02125311 n02089078 n01498041 n01749939 n02102177 n04023962 n03788365 n02127052 n04326547 n01641577 n02484975 n07768694 n03777754 n04487394 n07873807 n02089078 n02112137 n03733281 n04141975 n02105251 n04040759 n13052670 n07684084 n03179701 n03804744 n03127747 n01748264 n02408429 n03126707 n03595614 n04235860 n02117135 n03938244 n02497673 n03425413 n04192698 n03980874 n01774384 n04591157 n02403003 n01729322 n02834397 n03527444 n03763968 n04120489 n02100735 n01955084 n02483362 n02510455 n01817953 n03868242 n02483362 n04418357 n01968897 n03691459 n01882714 n02883205 n01829413 n02870880 n02396427 n01843383 n10148035 n02699494 n01580077 n04238763 n03496892 n07684084 n02950826 n03445777 n01798484 n03877845 n04239074 n01622779 n02099712 n02837789 n07730033 n09835506 n04532106 n03976467 n03854065 n01756291 n07892512 n15075141 n02971356 n02113023 n04023962 n02108551 n02002724 n09288635 n03457902 n03124170 n01484850 n04548362 n03201208 n01734418 n02090622 n03929660 n03868863 n02480855 n02028035 n01692333 n02206856 n03970156 n07768694 n04376876 n02089973 n03976467 n03134739 n03788195 n04399382 n04023962 n03393912 n12620546 n03085013 n02277742 n03272562 n01698640 n04039381 n02877765 n03680355 n01873310 n04039381 n02980441 n04376876 n01729322 n02795169 n01530575 n04515003 n02794156 n02165105 n03594945 n02093991 n02256656 n02105412 n03216828 n02110806 n03297495 n02112137 n03710721 n02110185 n09421951 n02480855 n04336792 n02510455 n02087046 n02110627 n04005630 n02536864 n04277352 n01774750 n02667093 n04554684 n02823750 n03196217 n01496331 n01855032 n02128757 n03764736 n02981792 n03876231 n04458633 n03888257 n01860187 n04326547 n09421951 n07880968 n02500267 n01770081 n03584254 n07711569 n09468604 n01614925 n03788365 n04560804 n01729977 n03717622 n02410509 n02437312 n03000684 n01632777 n02028035 n07873807 n01630670 n03388183 n02110185 n02098413 n02107142 n04209133 n07932039 n03992509 n04612504 n01986214 n04270147 n06874185 n02909870 n02168699 n03785016 n01532829 n04264628 n02484975 n02799071 n04209133 n07584110 n01560419 n02117135 n07684084 n03814906 n03908618 n02279972 n02098413 n02097658 n04154565 n02125311 n02018795 n02168699 n02096177 n03047690 n02747177 n03788365 n02128385 n03000134 n03775546 n04204238 n04604644 n03980874 n03598930 n01855672 n02090721 n07715103 n02443114 n02102177 n04258138 n04591713 n03297495 n01667778 n04350905 n04589890 n06794110 n03884397 n04367480 n03877845 n10148035 n03492542 n04116512 n03785016 n01968897 n02111889 n04579432 n03492542 n02111277 n03535780 n03786901 n02113799 n04347754 n03535780 n02963159 n03249569 n03617480 n04070727 n02108000 n03075370 n03355925 n04418357 n02783161 n02112137 n03179701 n02114367 n02098286 n02119022 n03000684 n01695060 n15075141 n02877765 n02107683 n03721384 n02107142 n02092339 n02687172 n02396427 n01629819 n03272010 n10148035 n04141076 n04044716 n04277352 n02364673 n04141975 n01819313 n03775546 n03379051 n01756291 n03785016 n04476259 n04612504 n01632777 n03838899 n02007558 n01440764 n02088094 n01735189 n02356798 n02095889 n09229709 n02132136 n02091635 n07754684 n03146219 n03467068 n03047690 n02408429 n02086910 n02012849 n04522168 n01943899 n12144580 n01820546 n01824575 n01677366 n03868242 n03814639 n02091635 n04033901 n02074367 n04597913 n07880968 n01871265 n03000684 n01983481 n07753592 n04235860 n02229544 n03814906 n03527444 n04532106 n02447366 n04179913 n04116512 n01631663 n04037443 n03947888 n02708093 n03874293 n04612504 n04589890 n02097130 n03089624 n03670208 n04579145 n03344393 n07614500 n04462240 n01751748 n04201297 n07802026 n02795169 n07613480 n07747607 n02115913 n02493793 n03770679 n02268443 n02009912 n04423845 n01530575 n01685808 n07715103 n03016953 n03355925 n04554684 n04366367 n03207941 n03887697 n04336792 n03759954 n03595614 n02480855 n04525038 n04355338 n02129165 n03255030 n02843684 n04493381 n02992211 n03814906 n04239074 n06794110 n03977966 n02979186 n03207941 n07875152 n01798484 n02484975 n02127052 n02133161 n03929660 n02966687 n12985857 n01873310 n07584110 n02088094 n01748264 n02101006 n03450230 n03657121 n03991062 n02013706 n03742115 n03595614 n04591713 n03891251 n01943899 n03065424 n04127249 n03584829 n02018207 n02089973 n03773504 n01751748 n02119022 n02276258 n04086273 n01877812 n02917067 n02168699 n02107574 n03954731 n02443114 n02101556 n01943899 n03457902 n01644900 n01770081 n03495258 n02606052 n02109047 n01532829 n02099429 n02100735 n03216828 n04204347 n02095889 n03794056 n02104365 n03595614 n01630670 n03223299 n04389033 n01796340 n02098286 n02109525 n04509417 n01580077 n04209239 n01675722 n07718747 n02787622 n04553703 n02100877 n02708093 n01687978 n01944390 n02807133 n03908714 n12620546 n04009552 n04591713 n02112350 n02168699 n03773504 n03127747 n03393912 n03617480 n02704792 n03590841 n03445924 n02486261 n03803284 n03954731 n02971356 n03000247 n03887697 n02894605 n04286575 n02172182 n01873310 n04118538 n04357314 n02113624 n02667093 n03141823 n04423845 n03742115 n02085620 n02727426 n04606251 n02088466 n03109150 n03134739 n02361337 n03832673 n02087394 n02177972 n04347754 n07718747 n03710721 n03970156 n04229816 n01601694 n02606052 n03425413 n03447447 n04336792 n04486054 n04201297 n07614500 n02226429 n01622779 n04435653 n09288635 n02790996 n02108000 n03961711 n03417042 n03017168 n03840681 n02509815 n04019541 n01692333 n01843065 n03461385 n04296562 n02493509 n03133878 n02110627 n07932039 n02091831 n03249569 n02091467 n03680355 n07714990 n02412080 n03250847 n03447721 n02916936 n02107683 n02492035 n03404251 n02102177 n07932039 n04557648 n04372370 n03891251 n02974003 n15075141 n02444819 n04462240 n02100236 n02108551 n04515003 n02002556 n02794156 n04204238 n04090263 n04584207 n02120505 n03773504 n02165456 n07684084 n04311174 n02002556 n02106382 n01695060 n02783161 n02422699 n03982430 n02397096 n03976657 n02692877 n03841143 n03710637 n04259630 n02099601 n03942813 n12998815 n11939491 n04399382 n03065424 n01644373 n04462240 n03992509 n03534580 n02398521 n02095889 n02808440 n04264628 n02786058 n04399382 n03933933 n04487081 n01873310 n04409515 n02108089 n02091831 n07734744 n04552348 n04162706 n02123045 n13040303 n02492035 n03657121 n02488291 n02027492 n02769748 n07753113 n03814639 n01704323 n02276258 n04557648 n03478589 n04435653 n03535780 n04371774 n02823750 n02124075 n07695742 n03337140 n03884397 n01917289 n07720875 n07742313 n04019541 n02130308 n02102040 n02104365 n02963159 n01687978 n07754684 n02328150 n02791124 n04286575 n04606251 n03814639 n09246464 n02009229 n01665541 n04399382 n04429376 n04033995 n04238763 n09256479 n01632458 n04004767 n04111531 n03710637 n02107908 n04008634 n02106382 n02086079 n07871810 n02105505 n02013706 n03733131 n07875152 n03376595 n03594945 n01776313 n03016953 n04243546 n04252225 n03709823 n02939185 n02107574 n02097047 n02109525 n03916031 n02116738 n07579787 n02018795 n03967562 n03075370 n12998815 n01818515 n02190166 n02701002 n01685808 n12267677 n02107683 n07695742 n02085782 n03692522 n02086646 n03623198 n03534580 n02133161 n07584110 n03980874 n03710721 n03838899 n04311174 n03976467 n02966687 n03785016 n02097658 n04442312 n04380533 n03042490 n03982430 n02510455 n02408429 n02093859 n07718472 n02086079 n02834397 n03670208 n01728572 n02444819 n02091467 n04325704 n04332243 n03223299 n01734418 n03496892 n01697457 n03884397 n03483316 n04285008 n01795545 n03220513 n02007558 n01532829 n02236044 n06596364 n04111531 n03032252 n03814639 n04317175 n04033995 n02086079 n07684084 n01829413 n02128757 n03983396 n04487081 n02190166 n04523525 n04328186 n04116512 n03450230 n04228054 n02102177 n03873416 n02488702 n02226429 n02018207 n04044716 n03394916 n01818515 n01910747 n03584829 n03240683 n04133789 n03095699 n04325704 n02606052 n02102318 n02106382 n03424325 n02906734 n01818515 n04548362 n04086273 n07590611 n02033041 n04501370 n02486261 n03793489 n02974003 n09428293 n02088466 n04355933 n02113712 n02777292 n02490219 n02105056 n02071294 n02655020 n03425413 n02808440 n02493509 n03384352 n02108422 n04350905 n07695742 n02077923 n03476991 n03857828 n02494079 n01440764 n02277742 n02509815 n07730033 n01774384 n02951585 n02892201 n02488702 n02782093 n03854065 n04517823 n03467068 n07920052 n03180011 n02111129 n02361337 n03544143 n07717556 n03291819 n02110063 n03825788 n02110185 n02108422 n01744401 n04204347 n01744401 n02086079 n01773549 n03498962 n02979186 n01694178 n04265275 n04371774 n01669191 n01582220 n02128925 n02747177 n02108551 n02105056 n02107312 n01532829 n01698640 n03661043 n02834397 n03956157 n01739381 n02500267 n02317335 n02951358 n02105505 n07718747 n04192698 n04536866 n03710637 n02346627 n03476684 n02086910 n02747177 n02096177 n04548280 n01630670 n01682714 n04275548 n03538406 n02113712 n09421951 n01560419 n04252225 n02423022 n01697457 n02389026 n03595614 n02415577 n04004767 n02672831 n03018349 n03998194 n03089624 n04273569 n02058221 n03544143 n02395406 n03535780 n03450230 n03888605 n13052670 n01910747 n01843065 n03982430 n03447721 n01955084 n01630670 n03803284 n02120079 n03372029 n02504458 n03874599 n02011460 n02108089 n03627232 n02492660 n04399382 n02412080 n03325584 n03706229 n02500267 n02123159 n04238763 n02883205 n13044778 n07836838 n02799071 n01917289 n04273569 n04552348 n01795545 n02011460 n03944341 n02356798 n04264628 n02859443 n02108915 n02108422 n04591713 n02099849 n07693725 n01795545 n04596742 n03868242 n03958227 n02093991 n03134739 n01917289 n02099712 n03314780 n11879895 n10148035 n02018795 n02747177 n04542943 n03141823 n02797295 n01704323 n02777292 n02769748 n04033995 n01860187 n02321529 n01917289 n03785016 n03956157 n03100240 n04041544 n02165105 n03947888 n03891251 n03709823 n02988304 n02106030 n02095570 n02814860 n03649909 n03110669 n02444819 n04044716 n04487394 n02422106 n04069434 n02165456 n02098105 n02106382 n02280649 n02002556 n01980166 n02091032 n09229709 n03642806 n03770679 n02172182 n07892512 n01944390 n04462240 n02114548 n02403003 n03899768 n09472597 n03530642 n02974003 n02777292 n02093428 n01829413 n02097298 n01882714 n01833805 n03481172 n02094114 n03218198 n02640242 n02422699 n03297495 n04592741 n01644373 n02066245 n03028079 n04399382 n03355925 n03187595 n02071294 n01494475 n02119789 n02963159 n03976657 n03759954 n02916936 n02120079 n03109150 n04370456 n02817516 n01734418 n02415577 n03691459 n04023962 n02114712 n03995372 n06359193 n01943899 n01860187 n02859443 n02268443 n02488702 n03110669 n03250847 n02165105 n02102480 n03026506 n04465501 n03733131 n01910747 n04277352 n03065424 n01644900 n02951358 n04399382 n02326432 n03529860 n03764736 n02444819 n02093256 n02091134 n02091635 n11879895 n03657121 n04613696 n03452741 n04596742 n02097474 n02672831 n01968897 n02486410 n02488291 n02356798 n07749582 n04033995 n03000684 n04428191 n02089078 n04005630 n03476991 n02817516 n04371774 n12144580 n12144580 n03950228 n02009912 n03425413 n04141975 n02790996 n01818515 n07583066 n04116512 n03417042 n01739381 n01944390 n03447721 n03891332 n01689811 n04081281 n02892767 n04590129 n01632777 n02086910 n01742172 n04579145 n02814860 n04458633 n04487394 n02088632 n03942813 n04162706 n07613480 n02098413 n04037443 n02457408 n04461696 n02110185 n03887697 n03344393 n04336792 n04209239 n02480495 n02102480 n04040759 n03372029 n03017168 n02087046 n02110185 n04131690 n02133161 n02749479 n02092002 n04612504 n03388183 n03417042 n02168699 n07248320 n02012849 n03791053 n02027492 n07768694 n02115913 n02093428 n01630670 n02226429 n01514859 n07716358 n02860847 n04041544 n02105505 n02107683 n03394916 n03384352 n04536866 n02107312 n04487081 n02447366 n02113186 n03777754 n03496892 n09421951 n02097298 n02112706 n02128757 n02169497 n03933933 n02109961 n04254120 n04562935 n02457408 n02093754 n15075141 n02788148 n01751748 n02837789 n06359193 n01630670 n03908618 n07754684 n02013706 n03680355 n02788148 n06794110 n02102040 n01496331 n03482405 n02107312 n13054560 n03843555 n01644373 n02894605 n01818515 n03899768 n02134084 n01692333 n02948072 n03743016 n07583066 n02279972 n07760859 n03868863 n02422699 n02825657 n02480855 n02226429 n04033901 n01817953 n04285008 n04550184 n04476259 n02100877 n09835506 n02410509 n03207743 n03877845 n03947888 n01774750 n02641379 n04584207 n02481823 n07768694 n02130308 n04147183 n04596742 n02395406 n07754684 n04252225 n04118538 n09256479 n07742313 n02769748 n03888257 n03658185 n04067472 n02481823 n03255030 n03903868 n03124043 n03874599 n06596364 n04355933 n04613696 n04357314 n02814860 n02099601 n01806567 n02396427 n02106166 n03769881 n02113023 n04146614 n02640242 n02966193 n02841315 n02481823 n03724870 n03998194 n04522168 n02747177 n02317335 n04067472 n02129165 n07714571 n03992509 n03379051 n04141975 n02028035 n02085936 n04540053 n02112137 n03977966 n03637318 n03887697 n09468604 n03424325 n04584207 n01917289 n07579787 n03325584 n01829413 n04540053 n03127925 n01558993 n02027492 n03424325 n03109150 n06794110 n01773797 n03188531 n02106382 n03788365 n02123159 n01773797 n02229544 n02727426 n02823428 n02454379 n02106030 n01924916 n12998815 n04179913 n04099969 n07684084 n03450230 n04435653 n02422106 n03637318 n03018349 n04429376 n03868863 n02110806 n02226429 n02006656 n03843555 n06359193 n01860187 n01694178 n02138441 n03630383 n04009552 n02101006 n03496892 n03447721 n07920052 n07873807 n01729977 n03220513 n01614925 n02134084 n03908618 n03763968 n03544143 n02797295 n04392985 n01728920 n03876231 n03259280 n03325584 n04296562 n02909870 n02493793 n02112706 n02776631 n02447366 n01514859 n03954731 n03344393 n04125021 n03930630 n04116512 n02441942 n03344393 n02125311 n02643566 n03840681 n02106662 n03325584 n07695742 n01491361 n03814906 n03075370 n02098286 n02666196 n07718472 n02948072 n01698640 n03777754 n07714571 n01945685 n03085013 n03445777 n04380533 n01986214 n03673027 n03710193 n02441942 n01734418 n02105412 n03447447 n04591157 n02727426 n04486054 n02510455 n03958227 n01978455 n04461696 n03908618 n04522168 n02107908 n07715103 n04009552 n03457902 n03447447 n01820546 n02692877 n03874599 n02101388 n02115641 n03532672 n03127925 n04081281 n02814533 n02916936 n02483708 n02791124 n04505470 n04417672 n03876231 n01829413 n09246464 n01728920 n02363005 n07754684 n07717556 n03000247 n01873310 n02091635 n07831146 n02794156 n03825788 n03476991 n04033901 n02607072 n02123394 n03534580 n01770081 n02011460 n02843684 n02109525 n03916031 n04418357 n03710637 n03075370 n01644900 n04254680 n07768694 n04228054 n04258138 n04357314 n07836838 n03000134 n04310018 n03000134 n02098413 n02108000 n04252077 n02457408 n04483307 n02105505 n03125729 n02091467 n03868242 n02106166 n03240683 n02917067 n02105056 n04525305 n01753488 n02978881 n03977966 n02486261 n04162706 n02120079 n03709823 n03127747 n02089973 n03089624 n03814906 n01534433 n04613696 n03325584 n04505470 n03325584 n02115641 n03630383 n01930112 n04204238 n03063689 n02233338 n03916031 n02786058 n02113799 n03935335 n04179913 n03690938 n02442845 n01819313 n01534433 n01753488 n02823750 n01491361 n03124043 n01749939 n02328150 n03272562 n02094258 n04597913 n01773549 n03724870 n01871265 n01751748 n04039381 n03733805 n02783161 n02948072 n02397096 n02233338 n02093647 n03016953 n04344873 n02640242 n01677366 n02106166 n07745940 n03710637 n03529860 n02988304 n04350905 n02105056 n01630670 n12998815 n02094258 n03481172 n04515003 n04418357 n03075370 n04273569 n01592084 n03290653 n04487394 n02109047 n02259212 n04604644 n03976467 n04023962 n02910353 n03394916 n02106662 n01882714 n03494278 n01770393 n03445924 n02102177 n02110958 n02089973 n01924916 n02113799 n01817953 n02091134 n01697457 n03443371 n04482393 n01749939 n01985128 n04116512 n03452741 n03220513 n02510455 n03761084 n02916936 n02089867 n02281406 n03445777 n03642806 n03255030 n09428293 n01774750 n03220513 n04254777 n13037406 n04235860 n07875152 n01877812 n02086240 n03876231 n02484975 n03595614 n03733805 n02099712 n03884397 n03016953 n02088632 n04086273 n02797295 n04392985 n03124043 n02102480 n02100583 n01855032 n02667093 n01945685 n03250847 n01644373 n04147183 n02641379 n02342885 n03666591 n03000134 n03197337 n02807133 n03394916 n01797886 n02443114 n02056570 n02916936 n04090263 n01756291 n03724870 n02747177 n04553703 n01983481 n04479046 n07920052 n01631663 n01981276 n02097474 n02268443 n01944390 n02108422 n04487081 n07734744 n02091244 n02835271 n01824575 n02056570 n03773504 n01688243 n03345487 n03345487 n02486410 n03271574 n03485407 n02483362 n02113712 n02786058 n04579145 n02948072 n03595614 n03594734 n01491361 n01729977 n04033995 n04597913 n01871265 n02992211 n02361337 n04070727 n02007558 n03110669 n09399592 n02009912 n03249569 n02415577 n02190166 n02701002 n03042490 n01871265 n02091467 n03208938 n02105505 n04589890 n02138441 n04591157 n03344393 n01622779 n01924916 n02137549 n04328186 n07590611 n01776313 n04389033 n02058221 n03786901 n02865351 n02536864 n04154565 n02108422 n07583066 n03770439 n04235860 n03594945 n02096051 n03590841 n04525038 n02264363 n04592741 n02364673 n01735189 n02977058 n02488291 n07871810 n03062245 n04557648 n03837869 n01770081 n04273569 n03290653 n03124043 n02971356 n02423022 n02094114 n01695060 n01917289 n02814533 n03250847 n02110063 n02666196 n02488291 n02504013 n02130308 n01695060 n03089624 n02906734 n02791124 n09835506 n07695742 n06874185 n04229816 n02408429 n02087394 n03297495 n02058221 n03763968 n01491361 n03781244 n03873416 n02111277 n13052670 n02119022 n02108000 n02791124 n03028079 n02906734 n02112350 n02102318 n04118776 n02823428 n04435653 n03786901 n02105505 n01514859 n02860847 n01871265 n07742313 n01695060 n01735189 n03141823 n02692877 n04254680 n02483708 n02011460 n02927161 n02113978 n02106166 n03770679 n02169497 n04482393 n02277742 n04485082 n01984695 n03658185 n01697457 n09428293 n02102480 n04501370 n04141975 n01614925 n02089078 n03935335 n02486410 n01843065 n01984695 n02363005 n04536866 n04141076 n01950731 n03445777 n02102040 n07715103 n09256479 n03781244 n02090379 n02129165 n04532670 n02939185 n04259630 n03788365 n03461385 n04606251 n04428191 n02488702 n01518878 n02107142 n01622779 n02483708 n07753113 n07930864 n01984695 n03476684 n02655020 n03376595 n01806143 n04286575 n02490219 n02640242 n04141975 n03938244 n02100735 n04041544 n02108915 n03769881 n02108551 n02110185 n02086646 n03388043 n07697313 n02098105 n04597913 n04090263 n02492660 n02795169 n02086240 n02097130 n02346627 n01622779 n01978287 n01924916 n02655020 n02787622 n02108551 n03717622 n07697313 n02105505 n07753113 n04204347 n02909870 n01828970 n02018795 n07836838 n01775062 n07716358 n01675722 n02807133 n02493793 n02091467 n02804414 n12144580 n02823428 n09229709 n03379051 n02791270 n01828970 n03832673 n04366367 n03877845 n03372029 n03961711 n03916031 n03788365 n04265275 n01806143 n04008634 n02794156 n03777754 n01630670 n07860988 n04239074 n04270147 n03761084 n04270147 n04487081 n02481823 n02395406 n02093859 n03991062 n04264628 n04258138 n06359193 n02074367 n07614500 n02865351 n07718747 n04074963 n04482393 n03347037 n02110063 n07836838 n02090379 n03595614 n03482405 n13052670 n04023962 n03991062 n04548280 n02056570 n02794156 n13133613 n02100877 n03272010 n02107683 n04149813 n04152593 n02002556 n03954731 n01968897 n03388043 n03764736 n02690373 n02966193 n01518878 n02128385 n03197337 n02092002 n03110669 n03478589 n02457408 n02870880 n02011460 n02093428 n03063689 n03337140 n04356056 n02963159 n04435653 n03871628 n02110627 n02088238 n03160309 n03983396 n02992529 n03843555 n01773549 n02389026 n09468604 n04505470 n02109961 n02794156 n03854065 n04355338 n02094433 n13133613 n03272010 n01667778 n03494278 n12768682 n02481823 n03085013 n03179701 n01667778 n02102040 n02112706 n02951585 n02108089 n02099601 n07860988 n04033995 n03388183 n02127052 n02107142 n03814639 n04004767 n02099712 n01582220 n02102177 n02100735 n03958227 n02481823 n01773549 n03131574 n04540053 n03424325 n03871628 n02116738 n09229709 n02797295 n02704792 n02825657 n02115913 n03888605 n02009229 n03063689 n07734744 n02669723 n02101556 n03045698 n04532106 n03961711 n04372370 n02655020 n02094433 n02088466 n04005630 n12144580 n02892767 n02091244 n03110669 n03759954 n03594945 n03594945 n04462240 n07711569 n03259280 n04482393 n02018207 n03134739 n03832673 n04467665 n04285008 n02169497 n03796401 n02099267 n02909870 n02105412 n04265275 n01728572 n04336792 n02834397 n02804414 n04548362 n03109150 n02895154 n03929660 n01685808 n02111500 n04033995 n01768244 n02002556 n03887697 n04069434 n03594734 n02500267 n07714990 n02137549 n03014705 n02447366 n01537544 n07802026 n03895866 n04330267 n03602883 n02795169 n04153751 n03782006 n02489166 n03447721 n03417042 n04550184 n02500267 n02112706 n03347037 n02088364 n02640242 n03983396 n02817516 n01695060 n13133613 n02095314 n03887697 n02892767 n07697313 n11939491 n04332243 n02667093 n02643566 n02493509 n04251144 n02730930 n04118776 n02097209 n04335435 n03016953 n03691459 n04037443 n02100583 n02104029 n02088466 n09193705 n03495258 n02095314 n03355925 n07613480 n02971356 n04153751 n01945685 n01697457 n04532106 n02895154 n04548362 n04485082 n02002724 n02999410 n03976467 n02951358 n03874293 n02442845 n04229816 n01614925 n02769748 n04461696 n02486410 n03916031 n04562935 n02098413 n02097474 n03584829 n02606052 n02123394 n03871628 n04311004 n02865351 n01601694 n02111129 n04509417 n01882714 n03908714 n02102973 n03983396 n02093859 n03775071 n02667093 n02906734 n07873807 n04277352 n04153751 n01675722 n01601694 n04263257 n01582220 n03000134 n04263257 n04286575 n06359193 n02445715 n03179701 n04275548 n02444819 n02002724 n03124170 n02018795 n02776631 n12144580 n03041632 n02101556 n04435653 n04254120 n04505470 n03297495 n02093256 n03529860 n01734418 n04462240 n02089867 n03259280 n03804744 n02484975 n03372029 n02992529 n01629819 n03814639 n04004767 n02280649 n04275548 n04023962 n03476684 n01843383 n02490219 n03450230 n02088238 n02129165 n07716906 n02006656 n07615774 n04033901 n02101388 n02412080 n02871525 n01689811 n02447366 n02951585 n03325584 n04238763 n01817953 n07753275 n03803284 n03724870 n01694178 n04613696 n03961711 n04553703 n04493381 n04507155 n03388183 n04483307 n02840245 n01739381 n03837869 n03980874 n02093647 n02992529 n03983396 n02110958 n01688243 n02100236 n01873310 n04525038 n03496892 n04350905 n02115913 n01824575 n04443257 n01729322 n03197337 n09421951 n07614500 n03445777 n03680355 n04579145 n03345487 n03062245 n02655020 n02769748 n03930630 n03956157 n04332243 n03690938 n04153751 n04456115 n02883205 n01631663 n02841315 n02480495 n02396427 n04357314 n01695060 n02101556 n03947888 n04367480 n03958227 n01924916 n02111129 n02939185 n01829413 n02108915 n03388183 n02410509 n04273569 n02119789 n04505470 n02094258 n02231487 n02916936 n02441942 n04039381 n02883205 n02098413 n01496331 n03534580 n07714990 n04286575 n03000247 n03691459 n03376595 n01729322 n12144580 n04192698 n03998194 n02979186 n02102973 n02110627 n01728572 n03272010 n03786901 n04033901 n02097047 n03947888 n07873807 n02097047 n07754684 n02276258 n02104365 n01734418 n03976467 n02825657 n01694178 n01682714 n02747177 n03710193 n09288635 n02510455 n02319095 n02088364 n02129604 n04326547 n03871628 n02096177 n09246464 n03127925 n02488702 n06785654 n02066245 n12998815 n01632777 n02091244 n01742172 n03908618 n04536866 n03841143 n01917289 n02276258 n03457902 n04041544 n03259280 n02236044 n02090379 n04127249 n03873416 n02415577 n03590841 n02094258 n03884397 n01978287 n02172182 n01990800 n04476259 n03871628 n03584829 n04118776 n02509815 n02102480 n01729977 n02776631 n03125729 n02948072 n01774384 n01695060 n07734744 n01990800 n02445715 n03017168 n02606052 n04612504 n02119789 n02113978 n03706229 n02115913 n02655020 n02640242 n03478589 n03891251 n02892201 n02676566 n01877812 n02037110 n07745940 n02090721 n04548280 n02971356 n03042490 n02865351 n04310018 n07802026 n01843065 n01944390 n03443371 n01496331 n13044778 n03196217 n02111889 n09288635 n03777568 n03970156 n02027492 n09332890 n04326547 n04458633 n02093428 n03992509 n03908618 n03290653 n04311004 n03764736 n04465501 n03345487 n04099969 n02843684 n02361337 n02066245 n02099601 n03259280 n02105641 n01755581 n03937543 n03249569 n02124075 n03761084 n02834397 n03891251 n07753275 n04389033 n03599486 n04392985 n01582220 n03642806 n01749939 n01944390 n03146219 n09428293 n02112350 n03249569 n02085936 n03240683 n04597913 n03249569 n02256656 n07248320 n04376876 n03089624 n04118538 n02966687 n03891332 n01773157 n02948072 n01685808 n04371430 n02107312 n01749939 n02085936 n02091831 n02098105 n02708093 n02120505 n01601694 n06874185 n02319095 n01616318 n01775062 n13040303 n03796401 n04482393 n03272562 n03478589 n02190166 n02910353 n02951358 n01749939 n12985857 n04254120 n03944341 n03743016 n01855672 n04228054 n03642806 n03956157 n04162706 n02992211 n01883070 n03045698 n02018207 n01872401 n04239074 n07932039 n04392985 n02641379 n01484850 n01742172 n04376876 n04550184 n03733805 n04371774 n04317175 n03873416 n02361337 n02002556 n02168699 n02098413 n02104365 n03841143 n02074367 n04344873 n07615774 n04149813 n02321529 n12144580 n02509815 n03938244 n01978455 n03047690 n04252077 n02487347 n03141823 n02666196 n02123045 n02486410 n02492660 n03796401 n02112350 n07730033 n03950228 n04162706 n02895154 n02105641 n03404251 n02007558 n01739381 n02481823 n04409515 n02443114 n02879718 n03345487 n02268853 n12620546 n03930313 n04380533 n01518878 n04596742 n03680355 n02074367 n01667778 n03376595 n04366367 n02097047 n02101006 n01873310 n03876231 n04507155 n02086910 n04370456 n02687172 n03724870 n02966193 n02776631 n03089624 n04456115 n03325584 n01770081 n04428191 n01667778 n02132136 n02105162 n03743016 n04367480 n02098105 n03000134 n02100236 n02011460 n02097047 n02177972 n04493381 n03874293 n02017213 n03908714 n02361337 n02669723 n02119022 n02105505 n03884397 n02190166 n03216828 n02410509 n02101556 n02098286 n03250847 n02117135 n03929660 n04332243 n03891332 n02018207 n01498041 n03977966 n02892767 n03781244 n02094433 n02112137 n02910353 n03791053 n01773157 n03599486 n11939491 n01496331 n02950826 n09246464 n02099429 n02108551 n02895154 n09229709 n07932039 n03721384 n03529860 n02113186 n03929660 n02086646 n02787622 n02676566 n02006656 n02104365 n03045698 n03100240 n03599486 n03924679 n03937543 n02869837 n02123394 n01980166 n04355933 n03133878 n03709823 n06794110 n02110341 n01796340 n02978881 n03495258 n03452741 n02091032 n04442312 n04118776 n01630670 n03662601 n02174001 n04606251 n02107142 n03814906 n03457902 n02085782 n03598930 n02094258 n03000247 n02966193 n02489166 n04367480 n02110063 n07753275 n07715103 n04485082 n03075370 n02098105 n13054560 n02730930 n03670208 n02281787 n04462240 n02510455 n02814860 n04482393 n03498962 n09229709 n02097130 n04265275 n04004767 n02093647 n01443537 n01704323 n02096437 n03394916 n04423845 n02108422 n03706229 n02869837 n01737021 n03930313 n04039381 n02113186 n02403003 n02037110 n03637318 n02823750 n01677366 n02093256 n02096294 n06596364 n03220513 n02106030 n02917067 n02090622 n04141076 n01749939 n02981792 n02111889 n02116738 n09246464 n02791124 n02091244 n02119022 n02445715 n03216828 n03095699 n03481172 n04442312 n02802426 n09428293 n03065424 n02363005 n12057211 n02422106 n02999410 n03207743 n03786901 n02363005 n02417914 n01698640 n03063599 n04409515 n03891251 n03794056 n02101388 n04044716 n02226429 n01818515 n01558993 n02110806 n03337140 n03627232 n04204238 n07873807 n03930630 n04311174 n01616318 n04330267 n04179913 n04501370 n02687172 n02086079 n03976467 n03950228 n01773797 n03197337 n02640242 n01440764 n02342885 n02389026 n02895154 n02056570 n04584207 n03042490 n09421951 n01616318 n03384352 n07248320 n03590841 n03903868 n02129165 n02123159 n03837869 n03630383 n02119789 n07768694 n02102973 n03788195 n01682714 n02130308 n03495258 n03770439 n02398521 n02965783 n02033041 n02088094 n02939185 n01914609 n04147183 n03720891 n02105641 n01843383 n01818515 n02730930 n02109961 n04398044 n04131690 n01914609 n03481172 n04317175 n03344393 n04557648 n02120505 n02109961 n02128385 n02391049 n03041632 n09246464 n03666591 n02111129 n02974003 n02643566 n03492542 n02090622 n02389026 n01735189 n03478589 n03785016 n03854065 n03207743 n04399382 n02108422 n04428191 n07760859 n03888605 n02704792 n03697007 n03657121 n04141975 n04008634 n02799071 n02018795 n02877765 n07613480 n11939491 n02108089 n02098413 n01440764 n01776313 n03804744 n01817953 n02788148 n03400231 n03899768 n02027492 n02028035 n02087394 n04392985 n01944390 n04204238 n03995372 n02437616 n03000684 n03146219 n01496331 n02128925 n02025239 n03903868 n06596364 n01990800 n03877845 n02704792 n01773549 n03271574 n02667093 n01514668 n02089867 n02410509 n09193705 n04204238 n02110806 n02823428 n01807496 n07753592 n02835271 n04579432 n03763968 n01667114 n01770393 n02364673 n03777568 n04204238 n04252077 n01496331 n02877765 n01532829 n02640242 n04483307 n04332243 n03197337 n02094433 n03995372 n03485407 n02085782 n04591157 n07930864 n02086079 n01983481 n04162706 n02981792 n02447366 n03733805 n02097298 n04120489 n04442312 n07714990 n02823428 n02788148 n02791270 n11879895 n03776460 n02834397 n03657121 n02423022 n03785016 n03888257 n02018207 n01742172 n04154565 n02536864 n03447721 n02229544 n04540053 n04266014 n03457902 n03425413 n02504013 n02107312 n02177972 n02489166 n04330267 n03791053 n04311004 n02422699 n02319095 n04606251 n04229816 n02101556 n04592741 n03666591 n02088094 n02017213 n03759954 n02128925 n03544143 n03188531 n03459775 n04254680 n03496892 n02483362 n02906734 n07753275 n02879718 n02641379 n02814860 n03400231 n02966687 n09246464 n02114712 n02087046 n02115913 n03424325 n03529860 n01943899 n04238763 n03146219 n02747177 n02233338 n13044778 n03109150 n02112350 n03180011 n02091831 n03134739 n03133878 n01740131 n02125311 n02398521 n02219486 n04086273 n02091244 n02099849 n02119789 n04039381 n02094114 n04562935 n03938244 n07693725 n12998815 n04542943 n02389026 n03417042 n01440764 n02095889 n02090379 n02493509 n02672831 n01534433 n02794156 n02396427 n02117135 n03782006 n04336792 n03042490 n03075370 n02488291 n04332243 n02708093 n02097209 n02356798 n03837869 n04355338 n03584829 n03041632 n06359193 n03041632 n03888257 n03717622 n04235860 n04275548 n01592084 n03388549 n01669191 n07760859 n02090622 n01440764 n01729322 n02480495 n07871810 n04505470 n04418357 n03404251 n03676483 n02165105 n04008634 n03958227 n02480855 n02823750 n07579787 n02009912 n07734744 n03372029 n01440764 n02102177 n03840681 n07753275 n03026506 n01601694 n03047690 n02086079 n02979186 n02089078 n02397096 n12985857 n02808304 n04118538 n04229816 n09428293 n07880968 n04548280 n03804744 n01622779 n02110063 n02814860 n02128385 n01824575 n01496331 n04286575 n03599486 n03857828 n03866082 n03495258 n02526121 n02098105 n02102973 n03124043 n04357314 n07768694 n03000134 n03970156 n04040759 n02112706 n04008634 n04040759 n06794110 n02086646 n02066245 n03884397 n03967562 n04125021 n02910353 n02236044 n01981276 n07871810 n02099849 n03146219 n04146614 n09193705 n02113023 n02100236 n13044778 n03584829 n03180011 n02027492 n03240683 n02526121 n01494475 n02492660 n01774750 n07768694 n02113712 n03666591 n12998815 n03657121 n02110806 n03717622 n02087394 n02692877 n02497673 n04507155 n02114855 n04332243 n02100877 n04332243 n02110627 n03424325 n02104365 n01943899 n03535780 n02883205 n01667778 n01986214 n02666196 n02966687 n02097658 n03866082 n04239074 n02488702 n01735189 n04090263 n04008634 n03742115 n03877472 n03788195 n03794056 n01768244 n02797295 n02009229 n03085013 n02119789 n04557648 n02099267 n03424325 n03666591 n01667778 n07875152 n01514668 n02492660 n03482405 n04033901 n04044716 n03290653 n12057211 n02981792 n01496331 n02483362 n03314780 n04099969 n02669723 n02113799 n02074367 n02094258 n03866082 n04540053 n02777292 n03782006 n02105251 n03761084 n01955084 n02643566 n02106662 n01580077 n01828970 n02690373 n03063599 n02114548 n03014705 n03724870 n02088364 n07716358 n03724870 n03937543 n02091635 n02106382 n07613480 n13133613 n04591157 n02396427 n03776460 n02108089 n02017213 n04350905 n02107683 n04228054 n01773549 n03888257 n02488291 n04493381 n01817953 n01641577 n02012849 n01797886 n02787622 n02910353 n04067472 n03100240 n02087046 n03733131 n02643566 n02916936 n02480495 n02815834 n02086079 n02814860 n02114712 n07742313 n01728920 n02356798 n13044778 n01798484 n04613696 n02108915 n02109047 n03272010 n04008634 n02097209 n01843065 n02999410 n04086273 n03888257 n02123394 n04356056 n09468604 n01601694 n03950228 n04344873 n02672831 n12768682 n02110341 n10148035 n02114367 n04409515 n03240683 n04285008 n07831146 n03584254 n01855672 n02489166 n03216828 n03297495 n04086273 n01514859 n01629819 n02643566 n02113023 n02791270 n03983396 n07880968 n02268853 n03970156 n02091831 n02268853 n02167151 n03742115 n03947888 n04591157 n03729826 n02988304 n03717622 n02391049 n02096585 n02219486 n02093647 n02002556 n02504458 n01665541 n03938244 n03776460 n02093256 n02056570 n02096051 n02488702 n07693725 n01796340 n02950826 n01828970 n03534580 n03394916 n04404412 n03895866 n01944390 n04554684 n02444819 n03623198 n04263257 n04099969 n02105855 n03584829 n04442312 n01514668 n02088364 n01943899 n02091831 n02071294 n03461385 n04485082 n01630670 n01873310 n02011460 n02113978 n01629819 n07711569 n04023962 n01631663 n02815834 n01797886 n03662601 n02704792 n02494079 n02124075 n03530642 n03424325 n02974003 n01685808 n02086910 n04004767 n03720891 n04200800 n01755581 n04118776 n02058221 n03124170 n03584829 n01978455 n02100583 n03131574 n03467068 n02490219 n02978881 n02096051 n04254120 n03028079 n04371774 n02105641 n02397096 n04258138 n03297495 n02108000 n02096585 n02090721 n02786058 n02025239 n01784675 n03393912 n01755581 n02437616 n02219486 n03388549 n02769748 n03384352 n03998194 n02699494 n04277352 n03637318 n02415577 n03788365 n01943899 n02009229 n04325704 n04532670 n01498041 n03793489 n04141076 n04525038 n04548362 n02012849 n02093754 n03534580 n04532670 n02859443 n02027492 n04070727 n03673027 n11879895 n02643566 n04606251 n04613696 n03680355 n01860187 n04251144 n01739381 n02098413 n04019541 n02101556 n03201208 n04532106 n02879718 n02951585 n04604644 n04275548 n02097474 n03482405 n07734744 n03868242 n04332243 n04589890 n03788365 n03649909 n02090721 n02672831 n02109525 n02112018 n07615774 n02102480 n03125729 n01632458 n04252225 n01824575 n02666196 n03832673 n02105641 n07768694 n03871628 n03127925 n03344393 n02096177 n03887697 n03424325 n03014705 n03796401 n03617480 n04065272 n03982430 n04479046 n03763968 n02486410 n07742313 n02687172 n03794056 n04254680 n03661043 n02837789 n02454379 n01560419 n04443257 n07613480 n02110806 n01818515 n02099712 n03384352 n04366367 n03676483 n02892767 n02110627 n02096294 n01667778 n02870880 n03425413 n01751748 n04275548 n03187595 n02437312 n03623198 n01796340 n09472597 n04523525 n02486261 n01531178 n02493509 n02979186 n03584829 n03924679 n02099601 n03259280 n04229816 n01872401 n04579432 n01855672 n01622779 n02509815 n04525305 n04131690 n02484975 n09193705 n02097658 n02877765 n02749479 n06596364 n01806567 n02093428 n01773157 n03207941 n03947888 n01818515 n02092339 n02276258 n03207743 n02794156 n02106166 n03529860 n04493381 n02086079 n02011460 n03961711 n03680355 n04263257 n01819313 n02102177 n04254120 n03888257 n03729826 n04136333 n04346328 n02107908 n02447366 n03125729 n03476684 n02443114 n03788195 n03710637 n03657121 n03633091 n03141823 n07802026 n02113978 n01665541 n01744401 n02834397 n03633091 n04335435 n02011460 n02099712 n03527444 n03180011 n02408429 n02123394 n03980874 n04070727 n03445777 n04465501 n03530642 n03291819 n04252077 n01689811 n02058221 n02112137 n01950731 n01682714 n02231487 n07684084 n03481172 n02963159 n07768694 n03977966 n02165456 n02939185 n04258138 n02123045 n02128757 n02037110 n02128925 n02483362 n03483316 n04273569 n04208210 n03942813 n03291819 n03467068 n02091467 n02113624 n03950228 n03786901 n04228054 n03649909 n01629819 n02104365 n02865351 n02097047 n03902125 n02231487 n04033995 n02172182 n01632777 n02494079 n02391049 n02093256 n03992509 n03710721 n03272010 n03124043 n02422699 n02492035 n02410509 n04120489 n02793495 n03594734 n03841143 n03124043 n04265275 n02088466 n02123159 n03461385 n01675722 n02965783 n07753113 n07614500 n04154565 n03590841 n02361337 n07720875 n01843383 n04162706 n02134418 n03271574 n01494475 n01729977 n01689811 n01582220 n02655020 n03594945 n02099712 n02110627 n02441942 n02791124 n02007558 n03891332 n02791270 n02037110 n02127052 n01910747 n01829413 n04523525 n02417914 n04465501 n01860187 n03935335 n03908714 n02018207 n02006656 n07802026 n03950228 n07590611 n02092002 n04423845 n02790996 n04252225 n03666591 n02109961 n03930630 n02860847 n04552348 n02092339 n09229709 n02791270 n07579787 n03196217 n02500267 n02790996 n01622779 n02484975 n02669723 n02280649 n11879895 n03769881 n02167151 n02403003 n03717622 n02093991 n03942813 n04254680 n04443257 n01860187 n09229709 n02028035 n02087394 n01986214 n02115641 n02640242 n04328186 n03908618 n04154565 n02797295 n02097209 n02125311 n07932039 n02102973 n03529860 n01980166 n02443114 n03733131 n07718472 n03255030 n02009912 n02087394 n03218198 n02106550 n03888605 n01704323 n02091635 n03710721 n02325366 n02112350 n03207743 n03980874 n03042490 n07590611 n02096051 n02408429 n02091244 n03773504 n01491361 n02120505 n02607072 n02487347 n02504458 n04204347 n02037110 n02790996 n02107312 n04044716 n02002556 n02727426 n04606251 n02091831 n03598930 n03089624 n01807496 n07613480 n04404412 n04542943 n09229709 n03467068 n01943899 n11939491 n02086646 n02095314 n02328150 n02992529 n02281787 n04008634 n07697313 n03347037 n02012849 n02099429 n04179913 n02106662 n03841143 n07768694 n07880968 n02111129 n04456115 n04330267 n01629819 n04146614 n03710193 n03250847 n02808304 n03018349 n01943899 n02398521 n03388549 n02097658 n03529860 n02782093 n01592084 n04311174 n02823750 n04067472 n02422699 n03832673 n04367480 n04557648 n02051845 n01882714 n02012849 n03796401 n01735189 n09256479 n03529860 n11939491 n03673027 n01669191 n03742115 n02692877 n02328150 n07715103 n02268443 n02268853 n01770393 n07718747 n07714571 n01695060 n01843065 n03404251 n02823750 n04264628 n03478589 n02643566 n01514859 n02086646 n01692333 n03841143 n03977966 n04136333 n02089973 n02097298 n04311174 n01677366 n01930112 n02128925 n03710721 n02909870 n02027492 n04252077 n03544143 n09332890 n04118776 n04553703 n02488702 n02109525 n04443257 n01728572 n03384352 n04136333 n07718472 n03773504 n04273569 n02730930 n02259212 n03125729 n01748264 n03095699 n02504458 n04579432 n02231487 n04442312 n03447447 n02939185 n02110341 n04458633 n03492542 n02841315 n04285008 n02787622 n01514668 n03877472 n04486054 n04238763 n02480495 n07871810 n01968897 n03954731 n03584829 n03379051 n02123394 n03259280 n07920052 n02113712 n02092002 n02727426 n04149813 n01775062 n03457902 n03791053 n02106550 n09288635 n01742172 n02219486 n04332243 n02490219 n04033901 n03590841 n04344873 n07753592 n02085936 n03447721 n01580077 n02120505 n02504458 n03633091 n02113023 n02109525 n11879895 n03445924 n01882714 n02089867 n04604644 n03697007 n02814533 n02094114 n01631663 n02105251 n02948072 n04200800 n01820546 n03125729 n03290653 n02102480 n04525038 n03347037 n03950228 n02319095 n03160309 n03787032 n02107574 n04487394 n04548280 n07697537 n01580077 n03599486 n04599235 n01735189 n04612504 n02786058 n03000247 n02906734 n13054560 n02132136 n02939185 n02101006 n04141975 n04127249 n07565083 n01641577 n02017213 n02095889 n02096585 n03461385 n02231487 n04493381 n02092339 n04332243 n02497673 n02119022 n02099601 n04311004 n03920288 n02704792 n02091032 n03240683 n03538406 n04560804 n01440764 n02776631 n02013706 n02099849 n01532829 n02110341 n01944390 n03218198 n02099712 n04429376 n03249569 n02422106 n04254777 n04009552 n03617480 n03337140 n01692333 n02493509 n12144580 n03095699 n03781244 n03782006 n02099429 n09428293 n04179913 n02105251 n07716358 n04357314 n03895866 n02948072 n03888257 n03447447 n07248320 n01537544 n02487347 n03982430 n02910353 n07892512 n09468604 n03857828 n03290653 n03388043 n03843555 n04423845 n04404412 n04347754 n01537544 n02992529 n02101388 n02056570 n02093859 n02105412 n03933933 n02704792 n03063599 n12267677 n04482393 n01443537 n03670208 n04590129 n07565083 n04111531 n03188531 n02114712 n04409515 n03272010 n02107312 n02112018 n03676483 n03770439 n13133613 n04259630 n02105641 n04049303 n02807133 n03249569 n02099267 n04065272 n07716906 n02087394 n01669191 n04376876 n01847000 n02123597 n04131690 n02033041 n04357314 n01530575 n02841315 n01698640 n04179913 n01824575 n02092002 n02058221 n03617480 n04146614 n02097130 n09399592 n02892201 n02116738 n04204347 n04522168 n04136333 n01531178 n02346627 n02168699 n01980166 n07711569 n03347037 n04208210 n02823750 n02124075 n02509815 n03404251 n02088364 n01798484 n02009912 n03814639 n02172182 n03840681 n02002556 n03888257 n03065424 n03325584 n02317335 n02281406 n03658185 n02095570 n03920288 n03710637 n02123597 n03877472 n04357314 n07802026 n04067472 n02437616 n03482405 n01532829 n04553703 n03065424 n02058221 n07718472 n04252225 n02096585 n02097658 n04525305 n12057211 n04259630 n02490219 n04285008 n01534433 n01622779 n04067472 n04557648 n03888257 n02096051 n01632458 n02808304 n12985857 n01756291 n02111500 n02963159 n02790996 n03630383 n07714990 n04589890 n02128757 n02786058 n02951358 n03763968 n02356798 n01818515 n02607072 n07717410 n03877472 n04069434 n02483362 n04479046 n02268853 n10148035 n02815834 n02116738 n04501370 n03131574 n02099712 n02108915 n04209239 n03770439 n02226429 n12144580 n02906734 n02783161 n02667093 n04239074 n02110063 n01582220 n07768694 n01774750 n03787032 n12057211 n03764736 n01795545 n03623198 n01443537 n02892201 n03868242 n03384352 n02403003 n03658185 n03485794 n02085782 n04328186 n03388183 n04344873 n07716358 n02097047 n01737021 n01695060 n02098286 n04258138 n03127747 n07565083 n01667114 n03929660 n03476684 n03785016 n04041544 n02100236 n03854065 n03529860 n02097209 n02100236 n04540053 n02002556 n03495258 n02834397 n04346328 n03485407 n02835271 n01729977 n02802426 n03781244 n02793495 n02892767 n02086240 n02490219 n02119022 n06359193 n03207743 n01980166 n04467665 n04332243 n03598930 n04523525 n03877472 n03976657 n02256656 n02097130 n02606052 n04037443 n02793495 n03929855 n04118776 n02727426 n01833805 n02536864 n03710721 n03459775 n04311004 n02113712 n02480495 n03041632 n02966193 n03476684 n07716358 n04310018 n07579787 n02493793 n02094433 n07734744 n01744401 n03770679 n04523525 n02364673 n03355925 n07715103 n02403003 n01644900 n01518878 n02815834 n04251144 n02690373 n02124075 n04553703 n04081281 n02408429 n01704323 n02640242 n03478589 n04447861 n07875152 n04209133 n07734744 n04487081 n02177972 n02892767 n02113624 n03016953 n07753275 n02319095 n07745940 n02108000 n02028035 n02504458 n02106550 n07754684 n03063599 n03787032 n02098105 n03467068 n02089867 n02093428 n07718747 n07831146 n03496892 n03961711 n01924916 n01883070 n01704323 n03733281 n03791053 n02930766 n03478589 n01980166 n01985128 n09472597 n03967562 n02087394 n01914609 n02497673 n03924679 n03706229 n02108089 n15075141 n03977966 n07715103 n03187595 n02236044 n04599235 n03529860 n04023962 n02092339 n02977058 n07584110 n07730033 n03272010 n03676483 n02493509 n09468604 n02091467 n03534580 n03125729 n04467665 n01665541 n04330267 n02917067 n03196217 n02009229 n03042490 n01632458 n03100240 n02965783 n02172182 n03920288 n03109150 n07747607 n02093859 n02655020 n03658185 n03584254 n02110806 n04596742 n02113799 n01530575 n03345487 n02917067 n03788195 n02105162 n15075141 n04317175 n04251144 n02112018 n04326547 n03838899 n01955084 n02417914 n02099849 n02317335 n03095699 n02699494 n04554684 n03729826 n04005630 n02108422 n03127925 n02123045 n03832673 n02504013 n01806567 n04069434 n04023962 n04111531 n02097209 n02105056 n02097209 n03376595 n02095314 n01756291 n03773504 n01980166 n06794110 n04074963 n02747177 n02108551 n03255030 n03891251 n03935335 n03673027 n02111277 n03188531 n02100236 n02992529 n02607072 n02095889 n02002556 n02834397 n02134084 n07716906 n02804414 n02134084 n04008634 n02509815 n04254120 n04147183 n04204238 n03908714 n04162706 n03197337 n11879895 n03787032 n04111531 n02978881 n02102177 n03379051 n04371774 n01704323 n03710721 n01518878 n03016953 n02106382 n04540053 n01558993 n02105412 n02981792 n03028079 n03782006 n02086079 n04192698 n02233338 n03649909 n03496892 n02276258 n03832673 n04070727 n03899768 n03017168 n03485794 n04591157 n02493509 n02093754 n02107683 n04208210 n02992529 n03124043 n03876231 n03691459 n01667778 n07730033 n04252225 n04208210 n02860847 n01742172 n02094114 n03000134 n07860988 n01775062 n03958227 n03045698 n03759954 n02086240 n03676483 n04532670 n02100583 n02793495 n01855032 n04275548 n04409515 n03733131 n03710193 n07760859 n03854065 n01629819 n02840245 n03691459 n03452741 n03297495 n03877472 n02125311 n04037443 n02526121 n01698640 n04591713 n02860847 n02412080 n01728572 n04152593 n02879718 n02699494 n02115913 n03000134 n02326432 n02966193 n04326547 n04049303 n04501370 n07590611 n02088466 n01665541 n03141823 n02037110 n02110958 n03481172 n07860988 n02509815 n02869837 n03930313 n03492542 n02480855 n02486261 n03495258 n03478589 n03063599 n04525038 n02109525 n02787622 n01592084 n02437616 n13040303 n04118776 n02104365 n02927161 n03532672 n03814639 n01910747 n01737021 n03877845 n07579787 n09288635 n01981276 n03133878 n02667093 n02747177 n02500267 n04370456 n01601694 n03769881 n04372370 n02114712 n02326432 n03134739 n03041632 n01685808 n02233338 n01614925 n03982430 n03929855 n04069434 n04367480 n03961711 n03201208 n02092002 n04370456 n04376876 n02395406 n03717622 n04317175 n02088094 n02950826 n01697457 n04591157 n01784675 n03930630 n04251144 n02802426 n07697537 n01689811 n12998815 n04550184 n04486054 n01667778 n03916031 n01795545 n02790996 n01910747 n02085936 n03938244 n03976467 n02325366 n03527444 n02268443 n03290653 n03444034 n02105056 n02096437 n03457902 n03843555 n02500267 n02088094 n02769748 n04525038 n02606052 n04487081 n02486261 n03492542 n03733131 n02120505 n07745940 n02112137 n07579787 n02105505 n03452741 n10148035 n04125021 n04026417 n02089867 n03995372 n02177972 n03903868 n04409515 n01943899 n02100236 n03124170 n03197337 n02361337 n04325704 n03920288 n03825788 n02101388 n11879895 n03443371 n02071294 n07880968 n03769881 n03902125 n02110806 n03637318 n04019541 n03840681 n02342885 n03476684 n02094114 n04023962 n03706229 n02730930 n02877765 n04548362 n02088632 n04285008 n07873807 n03903868 n04501370 n04118538 n02025239 n03530642 n02018207 n03476684 n03602883 n02948072 n02102040 n02123394 n01944390 n02268853 n04590129 n01530575 n02117135 n03691459 n02504013 n03179701 n04357314 n04399382 n03218198 n02865351 n03598930 n02113978 n03697007 n01843383 n02074367 n02264363 n01742172 n02123045 n02795169 n03721384 n02129165 n03544143 n04522168 n12985857 n02814860 n02110958 n02100735 n13044778 n02817516 n07730033 n04429376 n04033995 n04367480 n03729826 n02493793 n04141975 n01740131 n01914609 n02134418 n01739381 n02687172 n02483362 n13037406 n01742172 n02396427 n02397096 n01689811 n09399592 n04347754 n02865351 n04344873 n02111889 n02939185 n04033995 n02037110 n01773157 n03599486 n02093647 n01532829 n02097209 n02492660 n04009552 n04033901 n02099429 n02056570 n02098413 n02992211 n03788195 n03207743 n03444034 n03814639 n04485082 n01981276 n01978455 n03461385 n01688243 n02277742 n03388043 n02871525 n02101556 n03131574 n02236044 n07248320 n03041632 n02095314 n04344873 n02119022 n02172182 n13054560 n01978287 n03532672 n04536866 n02105412 n04118538 n02443484 n01695060 n02909870 n02441942 n02017213 n02799071 n04147183 n04589890 n02056570 n02486261 n03345487 n04328186 n02328150 n04476259 n04346328 n04273569 n03290653 n03627232 n02791124 n02012849 n02259212 n02090379 n03627232 n03764736 n02817516 n04326547 n03065424 n02909870 n01675722 n04522168 n13133613 n02655020 n04209133 n02783161 n03796401 n03250847 n01872401 n01682714 n01873310 n01631663 n04005630 n02843684 n02769748 n02804610 n03782006 n01978455 n02097298 n02787622 n07716906 n02111129 n02123045 n02279972 n02497673 n02980441 n02111129 n03297495 n04487081 n04370456 n01667778 n03710193 n02096294 n03876231 n03938244 n02950826 n04311174 n04081281 n01687978 n04371774 n06794110 n02281406 n04326547 n02395406 n02096051 n02113186 n04070727 n02206856 n02690373 n01729977 n03000684 n01514859 n03197337 n03445924 n04604644 n02280649 n02090379 n02012849 n01534433 n07734744 n03838899 n02177972 n04423845 n03899768 n02098105 n03633091 n02701002 n04371430 n02114367 n03947888 n01820546 n02088238 n03929855 n04612504 n02963159 n02966193 n02037110 n03982430 n02107574 n02966193 n04355933 n03372029 n02113978 n04398044 n02087046 n02106166 n04465501 n03179701 n10565667 n03492542 n01735189 n02120079 n02105251 n01873310 n02110063 n03388183 n02444819 n02687172 n01871265 n02445715 n04590129 n12985857 n01819313 n03938244 n02443114 n04380533 n04277352 n02444819 n02536864 n02111277 n02948072 n03938244 n07753113 n01440764 n09193705 n02509815 n01770393 n01828970 n03794056 n03902125 n02097474 n07714571 n02107908 n01698640 n04590129 n02481823 n04418357 n02504013 n02815834 n01530575 n03131574 n02104365 n04204238 n02454379 n04147183 n02077923 n02488291 n02342885 n02097474 n07716358 n03337140 n04417672 n01694178 n04311004 n06785654 n07768694 n04149813 n01560419 n03970156 n04125021 n09428293 n04258138 n03720891 n04086273 n02804610 n03642806 n03133878 n02974003 n01629819 n03983396 n04154565 n02483362 n04019541 n03065424 n04040759 n06596364 n04131690 n01770393 n04550184 n02120079 n03255030 n02326432 n03344393 n12985857 n01675722 n01729322 n02112137 n04398044 n02013706 n04162706 n04069434 n03630383 n02840245 n01644900 n03680355 n04229816 n09193705 n02788148 n04462240 n03775546 n06596364 n02090721 n03388183 n04252077 n03042490 n01843065 n02111129 n01616318 n04409515 n10148035 n01677366 n02655020 n02107683 n02105162 n03888257 n02128925 n03868863 n04069434 n01773797 n03792782 n03792782 n01560419 n07742313 n13054560 n02981792 n03916031 n03623198 n04146614 n11879895 n01675722 n02097130 n04423845 n02089973 n04592741 n01968897 n07718747 n02992529 n07753275 n07745940 n02108422 n02804414 n02342885 n03379051 n02457408 n02437312 n03787032 n02091032 n02002556 n03666591 n03717622 n07831146 n03208938 n02840245 n03891332 n04589890 n03887697 n04141076 n03770439 n02113023 n02009912 n02823750 n04252077 n02396427 n02099601 n02279972 n01843383 n02749479 n04228054 n04590129 n01773797 n02027492 n02093428 n02259212 n01910747 n02088364 n02093754 n07860988 n02093428 n01494475 n03888605 n04589890 n02092339 n07584110 n02190166 n02096051 n04023962 n02484975 n03980874 n02870880 n01807496 n02090721 n02011460 n02033041 n01514668 n02094114 n02687172 n02013706 n04523525 n07718747 n02361337 n07720875 n04005630 n04509417 n07613480 n01622779 n03131574 n01631663 n02701002 n03014705 n02607072 n01560419 n03197337 n09193705 n02099849 n03000134 n02480495 n03733805 n07802026 n01749939 n03956157 n01955084 n03445777 n02927161 n02105162 n02088238 n06794110 n09332890 n02823428 n03773504 n03657121 n04044716 n07760859 n03207941 n07717410 n01664065 n03291819 n01580077 n02132136 n01687978 n09332890 n04590129 n04487081 n03838899 n01981276 n03899768 n04004767 n03207743 n02106166 n07873807 n04039381 n03388549 n03977966 n03384352 n02114367 n07695742 n02105412 n04591157 n01729322 n02066245 n03938244 n03240683 n07880968 n03782006 n02086646 n01632777 n02793495 n02281406 n02443484 n03208938 n04350905 n03179701 n03658185 n02480855 n01737021 n09256479 n04357314 n03424325 n02807133 n01855032 n01828970 n03980874 n02107683 n03895866 n07768694 n02090721 n02110958 n02669723 n04599235 n02105641 n02692877 n02927161 n01582220 n02325366 n04039381 n02790996 n07760859 n02114712 n02099712 n04275548 n04366367 n02687172 n02113624 n02454379 n04120489 n03785016 n02279972 n04209239 n01677366 n01682714 n01601694 n02483708 n07718747 n04344873 n02483362 n07717556 n01981276 n02699494 n03160309 n02123597 n03970156 n01669191 n01756291 n02606052 n02795169 n03478589 n02259212 n06785654 n02114712 n04311174 n03891332 n04443257 n01687978 n04259630 n02128925 n02526121 n03447721 n04239074 n03877472 n03710637 n07711569 n04153751 n01682714 n03598930 n04131690 n01819313 n02085620 n02113023 n03133878 n07768694 n04579432 n04532670 n03976467 n04326547 n02951358 n02279972 n03000247 n03837869 n09288635 n03196217 n03733805 n02111889 n04286575 n01985128 n02105056 n02783161 n03902125 n02643566 n04553703 n03787032 n02799071 n02137549 n03445777 n03240683 n02093256 n01847000 n01978455 n02089973 n03482405 n06874185 n02280649 n02129604 n02892767 n02480495 n02106662 n12144580 n03599486 n02066245 n02454379 n01873310 n03690938 n02389026 n02264363 n02966193 n02500267 n03538406 n01843065 n04254680 n04346328 n03961711 n03970156 n03207941 n03791053 n02085936 n03954731 n03857828 n02807133 n02443114 n02219486 n03670208 n04263257 n03110669 n01795545 n03467068 n02115913 n02119789 n04487081 n02791124 n04201297 n04265275 n01784675 n02814533 n02417914 n07932039 n02606052 n01768244 n04311004 n03662601 n02607072 n01773549 n02085620 n02730930 n04347754 n02051845 n01914609 n03729826 n02129165 n01537544 n03888605 n03764736 n04579145 n01630670 n01950731 n03599486 n03786901 n04243546 n04040759 n03594945 n01632458 n02823750 n04442312 n02859443 n01629819 n04254777 n04039381 n01641577 n04553703 n03443371 n04467665 n03991062 n02219486 n02799071 n04026417 n03930313 n02096585 n03534580 n07753113 n03868863 n01773549 n03720891 n02727426 n02096177 n03272562 n02100236 n03450230 n03697007 n02927161 n01798484 n02865351 n01631663 n02100236 n03871628 n03394916 n03983396 n03908714 n02641379 n07892512 n01877812 n01824575 n02106030 n02100583 n03424325 n02106166 n01682714 n04456115 n01784675 n03868242 n02100877 n04033901 n04266014 n04332243 n02443114 n04487081 n01774750 n02129165 n01984695 n03769881 n02422106 n04328186 n02108915 n02088364 n02795169 n01773157 n03063689 n04326547 n01644900 n09229709 n02133161 n03016953 n02085620 n07565083 n02317335 n04485082 n02125311 n04591157 n02396427 n04347754 n02129604 n02422699 n02123597 n03388183 n03590841 n02807133 n03676483 n03255030 n02174001 n04536866 n02104029 n02817516 n02087046 n02085782 n02115641 n02086910 n02834397 n03201208 n02086240 n02454379 n02422699 n02106662 n04560804 n02699494 n02871525 n04591157 n04149813 n03920288 n02099267 n02105412 n01667778 n03535780 n02085936 n03344393 n03871628 n02268853 n02276258 n03773504 n04505470 n02895154 n01740131 n02101388 n01847000 n04111531 n02280649 n04509417 n01496331 n02264363 n02109525 n03372029 n03903868 n01796340 n02988304 n02486261 n07932039 n03841143 n02089867 n02099429 n03062245 n02799071 n03485794 n03944341 n02090379 n04370456 n04125021 n03929855 n02110063 n02794156 n04141076 n02085936 n04606251 n02099712 n01773549 n02992529 n03347037 n02120505 n02727426 n03483316 n04479046 n03544143 n03888605 n04548362 n13037406 n04044716 n02259212 n02835271 n01797886 n02823428 n04086273 n02127052 n03133878 n03733281 n02676566 n02667093 n04026417 n07932039 n04252077 n03976467 n04366367 n03443371 n04346328 n02112018 n03781244 n03459775 n03876231 n01534433 n03017168 n02808304 n07730033 n02169497 n02514041 n04458633 n02002556 n03980874 n03131574 n01807496 n04330267 n01773549 n02123159 n04204347 n02395406 n02321529 n03124043 n03617480 n01910747 n01784675 n03733131 n07875152 n04599235 n09428293 n07565083 n02206856 n03127747 n02086240 n04146614 n04532670 n03259280 n02104365 n01855032 n04366367 n02977058 n02444819 n02088632 n04562935 n03891251 n07718747 n02783161 n03929855 n01872401 n07693725 n02859443 n04370456 n02259212 n02231487 n04065272 n02361337 n02395406 n02094433 n01833805 n02097474 n03868242 n04041544 n02493793 n02174001 n02085620 n12620546 n02412080 n02808440 n02489166 n04069434 n03763968 n03721384 n04522168 n03527444 n04147183 n02277742 n03743016 n02490219 n01443537 n01534433 n02965783 n02106382 n02007558 n03908618 n04357314 n02108089 n01980166 n03642806 n04090263 n02093256 n02841315 n01695060 n04152593 n04532670 n04201297 n03476684 n02236044 n02769748 n03187595 n02841315 n04081281 n07873807 n04548362 n03595614 n04532670 n03047690 n04552348 n01806143 n04542943 n07717556 n03782006 n02107574 n04118776 n04523525 n04141327 n03000684 n02124075 n02667093 n03976467 n02965783 n06785654 n04548280 n03840681 n04243546 n03447721 n03720891 n03825788 n02791270 n02870880 n03535780 n02165456 n02132136 n04044716 n03970156 n03692522 n01744401 n04418357 n02167151 n02790996 n03903868 n02860847 n02417914 n01985128 n02281787 n10148035 n02974003 n03777754 n03445777 n04532106 n02085782 n03452741 n03670208 n03866082 n02105162 n03220513 n03529860 n04376876 n01440764 n03498962 n02687172 n01665541 n04344873 n02489166 n03384352 n02443484 n03976657 n04540053 n01817953 n02098105 n02655020 n01756291 n02099267 n04141327 n07734744 n03690938 n02133161 n10148035 n03461385 n03840681 n02099267 n03908618 n02483708 n03710637 n02804610 n02906734 n07836838 n03930313 n02786058 n01795545 n02804610 n02095570 n03447721 n04311004 n04229816 n04208210 n03710193 n03584829 n04355338 n03146219 n02085620 n04522168 n02106030 n03908618 n02113624 n04429376 n02100877 n02894605 n02088632 n02490219 n02264363 n04204238 n07717556 n02699494 n13040303 n02782093 n04238763 n03935335 n02111889 n04147183 n02089078 n03598930 n04131690 n01534433 n04039381 n02113023 n03649909 n02804610 n02950826 n07695742 n03899768 n03662601 n02100877 n06359193 n04270147 n03527444 n04023962 n03207743 n03691459 n02086646 n04456115 n04335435 n04493381 n03355925 n02128757 n03710637 n02749479 n04111531 n02669723 n04591157 n02106550 n04069434 n01669191 n03496892 n01855672 n03803284 n04371774 n02965783 n01955084 n03710637 n04147183 n03792782 n04597913 n04266014 n02790996 n02099601 n03627232 n02219486 n07760859 n02877765 n07715103 n02259212 n07747607 n04376876 n01748264 n04317175 n02687172 n13037406 n02321529 n02981792 n02992211 n03891332 n01944390 n02398521 n07753275 n01687978 n03325584 n01806143 n01795545 n02256656 n13133613 n06785654 n02236044 n04033901 n02892767 n03792972 n07753592 n01580077 n03535780 n03602883 n02423022 n03599486 n02279972 n02655020 n03637318 n02108000 n03355925 n04486054 n01986214 n03014705 n04599235 n02107312 n04522168 n03782006 n02091244 n04238763 n01641577 n02268853 n07711569 n03662601 n02102318 n01677366 n02097209 n03763968 n03786901 n02509815 n02086910 n06794110 n07920052 n03379051 n02346627 n02018795 n02480495 n07711569 n04532670 n02099712 n02110806 n03759954 n02123597 n04154565 n03347037 n02077923 n02514041 n01616318 n02641379 n04086273 n02097298 n02930766 n01983481 n03995372 n03891332 n03218198 n02058221 n01729322 n02799071 n01820546 n04127249 n02834397 n02097209 n03196217 n03216828 n02096585 n04229816 n11879895 n03977966 n03876231 n03908618 n03255030 n02106662 n02488702 n02978881 n03868242 n03710721 n03494278 n02363005 n02939185 n07768694 n04505470 n02028035 n02894605 n07717410 n07745940 n04429376 n04344873 n02727426 n01753488 n02110806 n03661043 n01806567 n01955084 n03467068 n02110063 n03902125 n03450230 n01692333 n02114855 n01644900 n07742313 n07565083 n04505470 n02088364 n03733131 n02105056 n02606052 n03179701 n07715103 n02641379 n03259280 n07873807 n04584207 n02110063 n03218198 n02494079 n01644373 n04332243 n02115913 n02120079 n09229709 n02481823 n04235860 n02113799 n02823428 n04371774 n02442845 n01498041 n03944341 n09332890 n02091134 n02690373 n02788148 n02869837 n04204238 n01675722 n02236044 n02280649 n12144580 n01882714 n04120489 n02999410 n03692522 n01729322 n04532670 n03337140 n02966193 n07742313 n03793489 n04355933 n03220513 n02445715 n04443257 n04026417 n02823428 n03976467 n02102177 n03773504 n04487394 n02085936 n07614500 n02089078 n02206856 n04147183 n04501370 n02422699 n02085782 n02097130 n03929660 n01751748 n02099849 n01924916 n01692333 n04275548 n03991062 n01824575 n03218198 n02018207 n03530642 n03782006 n03697007 n07734744 n01820546 n02280649 n02115913 n04325704 n02104029 n03250847 n11879895 n03709823 n03271574 n04483307 n04525038 n02835271 n02102318 n04285008 n01491361 n01742172 n02077923 n01728572 n01914609 n03388549 n03085013 n02395406 n03868863 n04033901 n02011460 n02123159 n02391049 n04039381 n01695060 n02129165 n03944341 n04462240 n02403003 n03920288 n03649909 n04515003 n03372029 n02091467 n04372370 n02129165 n01753488 n02113712 n03445777 n04525305 n01768244 n02493509 n03743016 n12998815 n03770439 n02777292 n02097298 n01687978 n04179913 n02749479 n03627232 n03207743 n03476991 n07745940 n01883070 n03792972 n03769881 n02011460 n02870880 n02123045 n04040759 n07684084 n02111277 n01877812 n04019541 n03197337 n02494079 n03187595 n02687172 n02883205 n07754684 n09399592 n02791270 n03063689 n03902125 n02415577 n02086240 n02093991 n02802426 n03782006 n03478589 n02128385 n02894605 n02115641 n02011460 n02951358 n02128757 n02871525 n02346627 n03450230 n09229709 n02417914 n01796340 n02128925 n04486054 n02749479 n02346627 n01930112 n02091032 n02963159 n01944390 n02793495 n02018207 n04153751 n02790996 n02129165 n03538406 n02965783 n03179701 n03160309 n01644373 n01770393 n02109961 n01873310 n03085013 n01735189 n04370456 n02018207 n02018795 n02110627 n03804744 n03534580 n07760859 n01631663 n04482393 n02917067 n07753592 n03447447 n02112706 n03947888 n02927161 n04228054 n03259280 n07753275 n07753592 n02948072 n07697313 n01984695 n11879895 n02125311 n12998815 n03976657 n02096294 n04264628 n04548362 n02276258 n03891251 n03127925 n02834397 n03854065 n02979186 n07920052 n02110627 n02095314 n04049303 n02965783 n02895154 n02013706 n04044716 n03709823 n02138441 n02777292 n01943899 n07892512 n02091831 n03743016 n01514668 n04243546 n02105251 n03032252 n01855032 n04612504 n03770679 n03866082 n02091134 n03443371 n03777568 n03773504 n02480855 n07745940 n02391049 n01910747 n02277742 n03938244 n02788148 n01440764 n03425413 n03895866 n03950228 n02133161 n01843065 n02992211 n02834397 n02066245 n03337140 n07716358 n03584829 n02095314 n02093991 n02974003 n02025239 n04596742 n02916936 n01768244 n03720891 n02056570 n02102177 n04557648 n02268853 n02098105 n01514859 n04141975 n02071294 n03188531 n04254777 n03709823 n03095699 n04517823 n03733131 n07693725 n03476684 n03724870 n03983396 n02342885 n02510455 n03874293 n02823428 n04356056 n01494475 n04251144 n02894605 n02097658 n04273569 n02123045 n03250847 n01687978 n02012849 n03733131 n02096294 n02279972 n01641577 n03804744 n02871525 n04479046 n07697313 n02786058 n01924916 n07932039 n02099712 n03271574 n02488702 n02927161 n02815834 n02877765 n04560804 n03297495 n04590129 n03944341 n03980874 n02105056 n01734418 n03947888 n02363005 n06596364 n07753275 n02930766 n02093859 n03207941 n01818515 n03657121 n01629819 n03063689 n03255030 n02808440 n02981792 n09246464 n04591713 n03492542 n04517823 n03240683 n07716358 n07717556 n02814533 n01843383 n03691459 n02134418 n02110185 n02093754 n02807133 n07684084 n02091244 n03873416 n02113624 n02094433 n02917067 n03450230 n03888605 n01616318 n04435653 n02111277 n02006656 n02363005 n02497673 n07753592 n07711569 n01693334 n03954731 n04033995 n04208210 n02817516 n07754684 n02256656 n13052670 n04417672 n11939491 n02443114 n03445777 n02093859 n07684084 n03026506 n04081281 n02002724 n02317335 n03584829 n04039381 n03062245 n02091134 n07745940 n02092002 n03991062 n02843684 n03961711 n04069434 n01558993 n07745940 n04486054 n04347754 n02011460 n02808304 n02109961 n04229816 n04409515 n04116512 n03857828 n02445715 n03920288 n02488702 n03126707 n07932039 n02835271 n03445924 n01797886 n03476684 n03658185 n01943899 n02951358 n03532672 n02966193 n02988304 n02229544 n02095570 n02841315 n04536866 n02268853 n03445924 n03803284 n04254777 n02443484 n03133878 n02799071 n13133613 n02102040 n02107908 n03947888 n04487394 n03599486 n03452741 n02097298 n04417672 n02493793 n02325366 n07747607 n03188531 n04482393 n02088632 n04461696 n03249569 n07693725 n02096437 n01773797 n02105162 n02843684 n02950826 n02492660 n04366367 n01981276 n03207941 n02966193 n03534580 n02112018 n01688243 n04584207 n02415577 n01847000 n02514041 n02488291 n02749479 n04380533 n02510455 n02526121 n07745940 n03930313 n03877845 n01755581 n01667114 n02108000 n02699494 n02363005 n02100877 n03770439 n02114712 n02100735 n02108000 n02028035 n02108551 n02484975 n07718747 n03498962 n01665541 n02894605 n04118776 n02119022 n04258138 n04604644 n02115641 n07768694 n12267677 n03908714 n03876231 n07717556 n11879895 n01688243 n03208938 n12267677 n02669723 n02965783 n02276258 n01631663 n04487394 n02825657 n01749939 n04037443 n04041544 n03376595 n04532670 n02104365 n02233338 n02793495 n03770439 n01910747 n04154565 n01980166 n03793489 n02025239 n02480495 n03781244 n04399382 n07871810 n04065272 n02017213 n01943899 n04067472 n03761084 n02094433 n03538406 n02494079 n04147183 n04141076 n04589890 n01601694 n02123394 n06874185 n02114548 n03637318 n03710193 n04536866 n09399592 n03452741 n03594945 n07860988 n03085013 n02814533 n03461385 n04252077 n02859443 n04033901 n01530575 n03476684 n04069434 n02105056 n02128385 n01694178 n01688243 n03372029 n04465501 n02808440 n04235860 n02177972 n13044778 n02096177 n01770081 n01669191 n02481823 n07880968 n03888605 n02117135 n02096437 n02397096 n01592084 n03769881 n03026506 n02107574 n02114367 n03124170 n03733281 n03692522 n02037110 n02167151 n01930112 n03995372 n03355925 n03676483 n03000247 n02966193 n02910353 n01682714 n02910353 n02510455 n02106550 n02120079 n03841143 n04229816 n02447366 n02091467 n04456115 n03937543 n01818515 n04086273 n02865351 n03109150 n02808304 n03483316 n01560419 n07930864 n04392985 n04592741 n04192698 n02089973 n03485794 n07613480 n02951585 n01494475 n01443537 n02097298 n02877765 n02101388 n03271574 n03041632 n03895866 n02865351 n02091134 n02027492 n03201208 n03983396 n02364673 n02134084 n02165105 n01773549 n04127249 n04275548 n01883070 n02112706 n03776460 n02108000 n02397096 n04525305 n02113624 n02268853 n02091134 n03476991 n02815834 n04525305 n03857828 n03272010 n04523525 n04335435 n03595614 n07932039 n03345487 n03877472 n04485082 n02794156 n03877472 n03492542 n02114712 n02883205 n02106662 n03417042 n03617480 n02978881 n02101556 n04039381 n02105641 n02098413 n04552348 n02823750 n07753113 n02110063 n09332890 n09468604 n02457408 n01537544 n02497673 n09229709 n04311004 n02776631 n02692877 n03623198 n04328186 n03697007 n02102177 n01687978 n03207743 n03733131 n02099429 n03769881 n02099601 n02787622 n03000134 n03895866 n02127052 n04136333 n02106662 n13044778 n01981276 n03680355 n03372029 n03908618 n03877472 n04346328 n04557648 n04270147 n04428191 n02870880 n03297495 n02871525 n02391049 n02123045 n01871265 n02071294 n02119022 n04592741 n02509815 n03424325 n02514041 n02101006 n02747177 n01950731 n02172182 n04336792 n04356056 n04252077 n01740131 n04613696 n04023962 n04485082 n02128925 n02086079 n03983396 n02134084 n02133161 n02128925 n04517823 n07875152 n02128385 n04204347 n02077923 n03272010 n02840245 n02105641 n01817953 n04146614 n04554684 n03796401 n04039381 n02788148 n04483307 n02493793 n03692522 n03075370 n03733281 n04238763 n02815834 n03065424 n02672831 n03602883 n04346328 n02066245 n03444034 n03594734 n15075141 n12144580 n07579787 n02992529 n04515003 n02107142 n02117135 n01734418 n01693334 n02105505 n02992211 n02869837 n13133613 n02666196 n04041544 n03857828 n04418357 n02113978 n01744401 n02797295 n02699494 n02489166 n02098286 n04243546 n02134418 n02106662 n03670208 n04090263 n02692877 n03467068 n04238763 n03788365 n03657121 n02906734 n02326432 n02676566 n02607072 n03627232 n02894605 n03538406 n04136333 n01632458 n04125021 n03134739 n01697457 n03924679 n04243546 n09256479 n02493793 n07871810 n02177972 n01917289 n02088466 n04069434 n03891251 n02113799 n07711569 n01833805 n04270147 n04259630 n02859443 n04270147 n02110063 n03042490 n03290653 n02002724 n02100583 n01608432 n03710193 n03777754 n02971356 n04482393 n13037406 n01768244 n03929855 n03016953 n07584110 n02113023 n04447861 n02128925 n02988304 n04201297 n02006656 n01807496 n03658185 n03394916 n07716358 n07579787 n02102177 n01729322 n03775071 n04482393 n02415577 n02607072 n02909870 n03255030 n03344393 n02325366 n02102480 n02102177 n04423845 n02130308 n03785016 n02787622 n04200800 n02087046 n04487394 n04152593 n04065272 n07831146 n02843684 n07248320 n03498962 n02128757 n04523525 n02999410 n03697007 n02097209 n11939491 n04141327 n07248320 n04461696 n02110185 n02483708 n03902125 n02168699 n02834397 n02108915 n02963159 n03841143 n02120505 n02111129 n02112350 n03793489 n03649909 n04090263 n02727426 n04033995 n01608432 n02364673 n02895154 n07730033 n02423022 n02999410 n07579787 n02086079 n01631663 n02494079 n04118776 n03467068 n03476684 n03954731 n03775546 n02981792 n01873310 n01980166 n04049303 n04099969 n02965783 n02281787 n02823750 n02655020 n02403003 n02951358 n02028035 n02504458 n03814639 n02085620 n04486054 n03761084 n07930864 n04522168 n04347754 n01644373 n02992211 n04483307 n02102973 n04467665 n03026506 n03026506 n07697537 n01532829 n04442312 n02108551 n01824575 n04254777 n03109150 n01728920 n04380533 n02795169 n04493381 n03141823 n01817953 n04026417 n02909870 n01601694 n02834397 n03376595 n02909870 n07711569 n03891251 n01806567 n03854065 n03814906 n02808304 n04153751 n07768694 n04532106 n02102973 n02346627 n13133613 n02129604 n02443484 n03792972 n02804414 n02097298 n02708093 n01748264 n03992509 n04591713 n02105162 n03840681 n02276258 n02100583 n02408429 n03770679 n07717556 n02280649 n02006656 n04560804 n04285008 n03868863 n02088238 n02799071 n04560804 n02108551 n02487347 n01614925 n04505470 n04090263 n03661043 n01675722 n01531178 n01632458 n01695060 n04254777 n04355933 n03743016 n04259630 n01534433 n02110958 n02112350 n02488702 n02687172 n09246464 n02071294 n02497673 n03871628 n07717556 n02105412 n02999410 n02105412 n04208210 n04589890 n03379051 n03404251 n03014705 n04146614 n03938244 n02107142 n03452741 n01667114 n04311174 n01667778 n03127747 n02105412 n09399592 n07716906 n03673027 n03197337 n03450230 n02113186 n01775062 n04380533 n06359193 n03483316 n02172182 n03496892 n03843555 n04476259 n02110806 n04467665 n04548280 n01518878 n02281787 n02093647 n04404412 n04356056 n03840681 n03995372 n02326432 n02777292 n01776313 n03220513 n02795169 n02074367 n01968897 n07693725 n02906734 n03777754 n02497673 n03126707 n04259630 n03729826 n04026417 n01855032 n02808440 n04346328 n03930313 n04560804 n03127925 n07684084 n04417672 n02172182 n02325366 n03899768 n01644900 n02113186 n03710637 n03857828 n02114548 n04326547 n02643566 n02092002 n03124170 n02281406 n01806567 n04254680 n03344393 n01532829 n02116738 n02116738 n02094258 n03690938 n03272562 n03110669 n03786901 n07920052 n04355933 n01978455 n01806143 n01944390 n03450230 n02088364 n03956157 n02437312 n03590841 n04344873 n02277742 n02111277 n01784675 n04483307 n02132136 n04019541 n01693334 n01608432 n01667114 n02236044 n03775546 n01739381 n02100583 n02090622 n01729322 n04350905 n02056570 n04612504 n04505470 n12057211 n03837869 n01531178 n04376876 n02454379 n02124075 n02395406 n02114367 n03481172 n02109047 n07715103 n04154565 n02423022 n01756291 n02108089 n02493793 n03602883 n02168699 n01978455 n02097298 n02447366 n04229816 n07583066 n03207743 n07248320 n02100583 n02823750 n01608432 n04418357 n01833805 n03930630 n03425413 n02788148 n03637318 n04265275 n02281787 n04335435 n02093428 n06359193 n03944341 n04041544 n04515003 n02106550 n02097130 n02837789 n07753275 n04026417 n03673027 n03887697 n03110669 n03769881 n01532829 n02006656 n04296562 n04347754 n01828970 n03125729 n03877472 n02096051 n04483307 n02398521 n03770679 n02106662 n03775546 n04347754 n02676566 n03690938 n07831146 n04398044 n01985128 n02109047 n03785016 n03494278 n03792972 n02114367 n03777754 n04090263 n02132136 n03134739 n01491361 n09332890 n03803284 n02120079 n03075370 n02104365 n03884397 n02790996 n01751748 n07695742 n02123045 n03759954 n03733131 n12998815 n03223299 n07745940 n04532106 n02111889 n02708093 n01944390 n01534433 n02361337 n02113624 n02090721 n02093256 n02025239 n04355933 n03452741 n01530575 n01443537 n04209239 n02037110 n04154565 n03594945 n04465501 n07714990 n03868863 n01819313 n04026417 n04553703 n02112706 n01980166 n02797295 n03888257 n02342885 n03216828 n03388043 n03804744 n02138441 n01689811 n04553703 n02231487 n04208210 n03372029 n02096177 n04429376 n03272010 n02493509 n03127747 n02786058 n03777568 n04238763 n03535780 n03938244 n02408429 n02097658 n02123159 n03891251 n02165105 n02437312 n02114712 n04540053 n04270147 n02113186 n02281406 n03899768 n04442312 n04023962 n02963159 n02102973 n01860187 n03297495 n03733805 n03980874 n04336792 n04366367 n02412080 n02966687 n03763968 n02098286 n01756291 n03929855 n03944341 n03271574 n04026417 n07754684 n01985128 n07753113 n01675722 n02106166 n02116738 n03916031 n04065272 n03110669 n07747607 n02009912 n03950228 n03483316 n07716358 n03216828 n09835506 n03393912 n02526121 n03770439 n02002724 n02871525 n01776313 n04355933 n03450230 n02025239 n02107312 n04606251 n03063599 n01795545 n04254777 n02120079 n01833805 n02099601 n13052670 n02676566 n03457902 n03720891 n03793489 n01775062 n01978287 n10565667 n02916936 n03599486 n02110958 n01443537 n04204238 n02672831 n07717410 n04209239 n01491361 n02963159 n03424325 n03697007 n03344393 n03445777 n02999410 n02441942 n04525038 n02403003 n07684084 n03125729 n02095570 n01796340 n03599486 n07747607 n04507155 n07768694 n04501370 n07734744 n02676566 n01871265 n03680355 n02088466 n10565667 n02110958 n02096437 n01498041 n02130308 n07836838 n03884397 n04065272 n02033041 n02607072 n13040303 n02808304 n03095699 n03485407 n02395406 n04560804 n02676566 n04589890 n02110958 n02837789 n01669191 n02123045 n07579787 n01667778 n12998815 n04613696 n02951585 n03623198 n03764736 n02892767 n02102318 n04040759 n02123045 n03062245 n02701002 n03201208 n04266014 n01873310 n04597913 n03595614 n07716906 n02988304 n03445924 n02860847 n02095889 n02115913 n01756291 n02114548 n02457408 n03995372 n01614925 n02107312 n03930630 n03017168 n03535780 n01985128 n02177972 n03045698 n13133613 n04398044 n02099267 n01829413 n02114712 n02104029 n01440764 n04263257 n04251144 n03584254 n03874599 n06359193 n04070727 n04209133 n04065272 n01748264 n02980441 n02093754 n02097658 n03187595 n01742172 n04590129 n03188531 n02504013 n02017213 n02979186 n02843684 n04040759 n01667778 n01820546 n02116738 n04243546 n04090263 n03888605 n01985128 n02823750 n04141975 n03376595 n02108915 n03372029 n02423022 n01728920 n02102973 n01580077 n02492660 n07716906 n02096294 n03259280 n03884397 n02102973 n03666591 n02486410 n02102480 n02105162 n09246464 n02823750 n04152593 n03196217 n01818515 n04591157 n04328186 n01742172 n01753488 n02971356 n09428293 n02927161 n03180011 n04099969 n02795169 n02895154 n03929660 n01910747 n03854065 n02747177 n03803284 n02123394 n04264628 n04243546 n02123159 n01983481 n02526121 n12267677 n06785654 n04606251 n01855672 n02281406 n04296562 n01773549 n02127052 n02090622 n02088094 n04125021 n01728920 n03595614 n02090622 n04285008 n03874293 n02823428 n02028035 n02077923 n02017213 n03903868 n02127052 n04317175 n02107683 n01984695 n03995372 n02090721 n02089867 n10148035 n01737021 n01883070 n01819313 n03958227 n03841143 n03459775 n03777568 n03417042 n02110185 n03388549 n03924679 n02672831 n02165456 n03207743 n04136333 n02971356 n04039381 n04162706 n02791124 n03124170 n01843065 n04428191 n03874599 n02102480 n04487394 n01883070 n02966193 n01494475 n02110341 n07716358 n07248320 n02814860 n04133789 n02443114 n02110063 n04509417 n02108089 n04548362 n01748264 n03710637 n02091467 n02110341 n02113624 n01819313 n02939185 n03272562 n02787622 n12267677 n04141327 n02110958 n01687978 n04429376 n01729322 n02093647 n07920052 n01910747 n02107908 n03895866 n02086079 n02895154 n13037406 n03876231 n04590129 n01692333 n03717622 n02109525 n04355338 n03777568 n03314780 n03887697 n04141975 n01978287 n04597913 n04141975 n02782093 n03868242 n02002724 n03196217 n04153751 n01629819 n02808440 n02058221 n01531178 n02114712 n03494278 n04204347 n03793489 n03483316 n04209239 n03776460 n04336792 n02114548 n02667093 n02834397 n04456115 n03394916 n04346328 n01776313 n02124075 n02356798 n03895866 n02963159 n01883070 n03355925 n02226429 n03417042 n02106550 n02101388 n04200800 n02011460 n02112706 n04326547 n01985128 n03110669 n03804744 n04141327 n11939491 n02105251 n03201208 n07754684 n01632777 n04553703 n04149813 n02481823 n03947888 n01534433 n03457902 n02776631 n04209239 n04523525 n04074963 n02233338 n03930313 n03249569 n03884397 n01601694 n04560804 n02514041 n03417042 n07880968 n03594734 n03344393 n02088632 n02106662 n02108551 n01744401 n02483708 n02971356 n02909870 n02841315 n03496892 n02100583 n03476684 n07718472 n01641577 n06596364 n03954731 n04357314 n04259630 n07695742 n04423845 n03249569 n04111531 n02895154 n04149813 n02114712 n04252225 n03770679 n02837789 n04428191 n02361337 n02100236 n01728920 n03594945 n02268443 n07875152 n07695742 n02108551 n01531178 n01980166 n02106382 n03658185 n02988304 n04141076 n02906734 n02012849 n02786058 n01614925 n02206856 n01631663 n03100240 n03047690 n03180011 n02895154 n02782093 n03595614 n09332890 n07749582 n04258138 n03095699 n02096177 n01728920 n03538406 n01806143 n02088238 n04501370 n09229709 n04423845 n02397096 n02133161 n02088238 n02264363 n02101006 n04515003 n02870880 n04548280 n04461696 n03028079 n02268853 n03874599 n01877812 n02699494 n12985857 n02454379 n04326547 n02089867 n01560419 n02093256 n04204347 n04347754 n02086240 n04286575 n04482393 n03840681 n04065272 n02480855 n02749479 n03492542 n02096437 n02317335 n02174001 n04525305 n04039381 n07753592 n13037406 n02494079 n04258138 n02229544 n01843383 n01728920 n04330267 n02325366 n02808304 n04462240 n03874293 n03482405 n01629819 n03781244 n04392985 n04258138 n03160309 n02096585 n01614925 n02017213 n04133789 n04277352 n02106030 n04428191 n03400231 n03249569 n01514668 n10148035 n02397096 n07697313 n07802026 n03887697 n07248320 n01855032 n03908618 n02086910 n04254680 n02104365 n03445777 n02011460 n07695742 n04344873 n01667778 n02091244 n01534433 n02097474 n02701002 n03208938 n03676483 n03770439 n01755581 n02108915 n01753488 n02102480 n03633091 n03662601 n01770393 n07590611 n04264628 n03998194 n02396427 n02102040 n01770393 n04162706 n02281406 n12768682 n01945685 n03483316 n01978287 n02119022 n02169497 n03991062 n04465501 n07614500 n01990800 n01534433 n03770679 n09288635 n03188531 n09256479 n04259630 n02110627 n04560804 n02113978 n02095889 n04599235 n03259280 n02111277 n02794156 n04328186 n04254680 n03661043 n03599486 n02097130 n02033041 n02071294 n03937543 n09288635 n03709823 n02489166 n03673027 n01828970 n04532106 n03496892 n01924916 n04548280 n02319095 n02395406 n02782093 n04554684 n02086240 n03916031 n02791270 n07717410 n04238763 n02730930 n01514859 n01748264 n02988304 n03461385 n03272562 n04330267 n07860988 n02276258 n07871810 n02097474 n02999410 n04037443 n01614925 n04033901 n03944341 n02655020 n01608432 n03874599 n03594945 n04252225 n07892512 n03717622 n03763968 n02110627 n02795169 n03000134 n02494079 n03042490 n03100240 n07875152 n02802426 n02484975 n09229709 n02747177 n06596364 n04557648 n02123394 n02002724 n02167151 n02504013 n01616318 n03770439 n04428191 n02051845 n04579145 n02093754 n12267677 n01641577 n02963159 n02807133 n04590129 n03467068 n01629819 n02443484 n02088238 n02412080 n03532672 n04591157 n04486054 n02692877 n02727426 n04371774 n04273569 n03733131 n03544143 n02104365 n02109961 n03447447 n01872401 n03961711 n02116738 n01688243 n01749939 n03141823 n02509815 n12985857 n01829413 n02109047 n02526121 n02097658 n03216828 n02870880 n04266014 n04355338 n03633091 n01910747 n02006656 n03445924 n02906734 n04099969 n02099712 n02229544 n04443257 n02687172 n04273569 n02489166 n03924679 n12985857 n02167151 n02321529 n02102040 n02870880 n01693334 n02097298 n01882714 n04040759 n03791053 n02979186 n02454379 n03131574 n04141327 n02981792 n02974003 n02090721 n04131690 n02106030 n02493793 n02963159 n04596742 n11879895 n03457902 n02823750 n01774750 n03788365 n02389026 n02823750 n02493509 n07583066 n01682714 n03899768 n02279972 n07747607 n01692333 n04243546 n04317175 n02106550 n01664065 n01677366 n02093754 n04346328 n02106550 n02127052 n03666591 n03877845 n03125729 n03786901 n03775071 n02412080 n01518878 n03720891 n01735189 n02356798 n02110806 n03047690 n04462240 n02951585 n01558993 n03065424 n02860847 n02486410 n02398521 n04346328 n02106030 n02445715 n04153751 n02509815 n01828970 n04069434 n07714571 n13044778 n01955084 n03662601 n01664065 n02708093 n02408429 n03920288 n02190166 n02091635 n04229816 n01773549 n02106662 n02009912 n01558993 n02127052 n02843684 n02174001 n03345487 n01990800 n03584254 n02389026 n02389026 n04069434 n03032252 n07749582 n02110627 n02807133 n02012849 n03208938 n02107142 n03995372 n02927161 n03888257 n02802426 n09193705 n07716906 n03345487 n02088094 n03297495 n02871525 n02363005 n02206856 n02445715 n02783161 n02948072 n09421951 n02410509 n02808304 n03903868 n02110063 n03724870 n07836838 n04141975 n02487347 n02112137 n02804610 n07734744 n04462240 n03372029 n02177972 n02085620 n01917289 n04070727 n02823428 n02860847 n04392985 n02791124 n01847000 n01784675 n02093991 n03457902 n02939185 n04493381 n03271574 n02509815 n03793489 n02690373 n03983396 n02927161 n03018349 n03908618 n02110341 n03776460 n02124075 n04335435 n03127747 n02948072 n03085013 n02442845 n02916936 n01688243 n02879718 n02097298 n04589890 n02607072 n02948072 n04525038 n02100735 n02814533 n03000134 n03478589 n02037110 n04235860 n02112137 n04435653 n04273569 n03794056 n01910747 n01748264 n01883070 n04200800 n04590129 n03443371 n02791124 n03075370 n03673027 n01742172 n03476684 n01484850 n01675722 n02978881 n03938244 n02106166 n01729977 n04118776 n04209239 n03376595 n04008634 n02095889 n01855032 n03376595 n04456115 n02879718 n04238763 n02268443 n02794156 n02105505 n01914609 n03899768 n02676566 n02099601 n02106382 n04264628 n04501370 n03594734 n03895866 n04332243 n04008634 n02492035 n01773797 n04228054 n02110958 n06359193 n02403003 n04409515 n03337140 n02483708 n02106166 n04209133 n02114367 n03743016 n03201208 n03207941 n02804414 n04487081 n01945685 n02606052 n03388043 n03661043 n02804610 n04235860 n02795169 n03476991 n03444034 n03942813 n04026417 n03337140 n02108422 n04033995 n03041632 n02134418 n04554684 n03733131 n02116738 n03786901 n03937543 n04147183 n04131690 n03400231 n02125311 n02410509 n01775062 n02814533 n02110185 n04008634 n04597913 n01883070 n07714990 n02112350 n02437616 n03662601 n02074367 n04239074 n03063689 n07831146 n02869837 n03920288 n13052670 n03016953 n02788148 n04613696 n02113023 n03866082 n02992529 n04479046 n04467665 n04540053 n02927161 n03992509 n04347754 n03495258 n03633091 n02105251 n02231487 n02102318 n02667093 n01749939 n02133161 n03372029 n02486261 n04004767 n02088466 n07579787 n02791270 n03131574 n02391049 n01664065 n02099429 n01776313 n03920288 n02109047 n02317335 n04612504 n03584254 n03457902 n02051845 n03047690 n04507155 n02704792 n01748264 n02017213 n03450230 n02841315 n04070727 n02992211 n03404251 n02092339 n12768682 n07873807 n03041632 n03379051 n04435653 n04146614 n02012849 n03443371 n04152593 n04507155 n03447447 n04252225 n03770439 n13037406 n01748264 n04550184 n03207941 n07716906 n03595614 n07875152 n04560804 n04479046 n03127925 n07248320 n02342885 n02088466 n03485407 n09399592 n04039381 n04548280 n02099267 n04254777 n06785654 n02190166 n03868242 n04141076 n02980441 n03868863 n02437312 n02096177 n02701002 n03259280 n02834397 n15075141 n07880968 n02096585 n09256479 n02091032 n03457902 n02099849 n02398521 n02129165 n03404251 n01774384 n03977966 n02980441 n02137549 n03920288 n01770081 n03891332 n03196217 n02782093 n02510455 n03535780 n04263257 n02790996 n03146219 n01601694 n03379051 n03188531 n02790996 n04596742 n01560419 n03376595 n12768682 n02504013 n03388043 n02231487 n03134739 n03775071 n02509815 n07695742 n02325366 n09835506 n04418357 n04483307 n04069434 n03991062 n02487347 n03223299 n02817516 n03207743 n02110627 n04604644 n02112350 n02109961 n03534580 n03208938 n03125729 n03947888 n04154565 n01860187 n02328150 n02777292 n02112018 n02113978 n02033041 n07871810 n10148035 n01981276 n07860988 n03492542 n04005630 n02093428 n04355933 n02108089 n03841143 n02704792 n02277742 n03874599 n04371774 n01775062 n03461385 n02096585 n02093754 n02011460 n02814533 n02787622 n02114367 n01641577 n03992509 n04265275 n02096051 n07745940 n02422106 n01496331 n03188531 n07614500 n02101006 n02101006 n13040303 n02085936 n03961711 n02093991 n07714571 n01986214 n01669191 n01984695 n03297495 n02108422 n03249569 n04398044 n03775546 n01986214 n04579432 n07714571 n01945685 n02640242 n06785654 n04116512 n02099429 n09229709 n01682714 n01749939 n02007558 n01498041 n04507155 n02124075 n02101006 n02104029 n02676566 n02606052 n04238763 n02101388 n02107312 n03347037 n02493509 n02396427 n04065272 n03840681 n04515003 n02091635 n02325366 n04033901 n01675722 n03788365 n13037406 n03527444 n01695060 n04328186 n07590611 n01728572 n02119022 n02974003 n02410509 n07892512 n07730033 n04330267 n03868863 n02018207 n02500267 n02980441 n01843065 n02093859 n02094114 n07768694 n04154565 n02123394 n03843555 n02123159 n02107574 n01795545 n02917067 n02071294 n03895866 n03179701 n03950228 n04259630 n02165105 n02120079 n02804610 n02279972 n01728920 n02978881 n03710637 n01872401 n03160309 n02442845 n09256479 n02950826 n02841315 n04357314 n02865351 n04111531 n07747607 n03594945 n03763968 n04606251 n03895866 n02113978 n04554684 n04344873 n04254120 n01740131 n03976467 n07753275 n02443484 n02939185 n02977058 n13037406 n07747607 n04467665 n01784675 n04536866 n02123159 n02119789 n04548362 n02111129 n06794110 n04239074 n03733805 n02088466 n03764736 n01914609 n02105505 n02412080 n04254680 n04523525 n07697537 n01728920 n02794156 n02113978 n13040303 n01514859 n04398044 n02364673 n01924916 n02007558 n03803284 n02795169 n03916031 n02088238 n02086646 n03063689 n01806143 n04366367 n03109150 n04523525 n04208210 n01978287 n03272010 n03146219 n03933933 n04525305 n03124043 n02510455 n01687978 n01824575 n04613696 n06359193 n03110669 n03388183 n03691459 n02280649 n03133878 n02085782 n02087046 n02090721 n02497673 n04344873 n04330267 n01514859 n02488702 n04525038 n07711569 n01978455 n01768244 n02105855 n04604644 n02281406 n01739381 n01693334 n02113978 n07749582 n03786901 n01883070 n09246464 n03841143 n03482405 n12998815 n03938244 n04238763 n03929855 n02892201 n02486261 n02676566 n01843065 n01728920 n03379051 n02823750 n02776631 n02488291 n02317335 n02002724 n01755581 n03110669 n04019541 n03095699 n04004767 n03877845 n02120505 n02113624 n07695742 n03127747 n03041632 n01744401 n02098286 n02100735 n02264363 n04456115 n02219486 n02129165 n04275548 n03874599 n03706229 n01770081 n02988304 n02105505 n02130308 n02113799 n06596364 n02028035 n01784675 n04266014 n02422106 n03271574 n01622779 n04229816 n02988304 n02977058 n03594734 n03196217 n04008634 n03947888 n03032252 n02037110 n03424325 n03873416 n03379051 n02096437 n03887697 n04154565 n03803284 n06794110 n03956157 n03297495 n03444034 n09256479 n02317335 n03871628 n04192698 n07873807 n02793495 n03764736 n02483362 n01773797 n03788195 n03032252 n04311174 n02111889 n03970156 n04447861 n02018795 n03666591 n03314780 n02229544 n02172182 n02486410 n02607072 n02276258 n04254777 n02403003 n02094114 n09246464 n02114367 n03788365 n03297495 n02492660 n04326547 n03201208 n04286575 n03492542 n03877472 n01910747 n01608432 n02490219 n03710637 n04344873 n02951358 n01498041 n01729322 n04409515 n04146614 n03873416 n02090721 n04081281 n03976467 n02837789 n04409515 n03759954 n02168699 n03127925 n03970156 n01665541 n03160309 n04251144 n04311174 n02098413 n02480855 n01773549 n02489166 n03494278 n02229544 n01729977 n04552348 n04033995 n01882714 n04366367 n03271574 n03666591 n02093428 n02791124 n03384352 n03498962 n03709823 n02422699 n02085782 n04133789 n02486261 n12985857 n04372370 n03857828 n04367480 n04612504 n04399382 n01632458 n03717622 n02514041 n02018207 n07615774 n02098413 n03691459 n02108915 n07920052 n04228054 n04493381 n04081281 n03832673 n13052670 n04584207 n04252225 n01608432 n02708093 n04398044 n02087046 n04599235 n02177972 n02326432 n02490219 n03761084 n02101556 n04599235 n04467665 n02097658 n01978287 n04612504 n02397096 n03018349 n02391049 n07584110 n02457408 n01776313 n02120079 n02727426 n02791270 n04590129 n02058221 n03599486 n03788365 n02098105 n02097047 n03794056 n02966193 n01494475 n02514041 n01773157 n07613480 n09332890 n02086910 n02071294 n02105412 n02966193 n02481823 n04228054 n02825657 n03775071 n02096177 n02328150 n01768244 n03028079 n03534580 n01484850 n09428293 n03788365 n02106550 n03782006 n04258138 n03710637 n02097298 n03721384 n02391049 n02013706 n02840245 n03249569 n02454379 n02865351 n02206856 n02093991 n01877812 n03485407 n02101388 n03014705 n04456115 n03976657 n03188531 n02342885 n02096437 n02102318 n03376595 n03271574 n02177972 n03594945 n03126707 n02099712 n01692333 n02966687 n03930313 n01667778 n07716906 n01580077 n03804744 n02111277 n03100240 n04548280 n02814533 n04204347 n04141327 n02066245 n02096585 n02102480 n03125729 n03272010 n03980874 n07753592 n02105412 n02443114 n04579432 n02101556 n03995372 n02950826 n01534433 n02088238 n07715103 n02795169 n01484850 n01753488 n02607072 n01530575 n01692333 n04153751 n02111500 n03131574 n03803284 n02437312 n02974003 n02776631 n04125021 n09428293 n02843684 n03047690 n02417914 n03998194 n03110669 n02445715 n04525305 n03998194 n01514668 n02321529 n02088466 n01644373 n07714571 n04357314 n03991062 n02088094 n02687172 n02110185 n02089078 n09468604 n02408429 n04389033 n03706229 n02488702 n03992509 n02417914 n04086273 n07613480 n04270147 n03887697 n01601694 n02123159 n01518878 n07836838 n04443257 n01592084 n03109150 n02264363 n02808304 n04252225 n01630670 n04507155 n03047690 n03344393 n02981792 n03680355 n07579787 n02526121 n01984695 n04485082 n03814639 n02977058 n03866082 n04404412 n04116512 n03100240 n03127925 n01847000 n02051845 n02177972 n02106030 n03770679 n03535780 n03676483 n01843383 n01873310 n02085936 n02328150 n03089624 n02102318 n02500267 n04040759 n04552348 n02101006 n07749582 n03884397 n02111129 n03662601 n03250847 n02129604 n03461385 n03970156 n04317175 n03958227 n07714990 n01980166 n03929660 n03314780 n01855032 n03630383 n01817953 n02095889 n04505470 n02727426 n03598930 n02105855 n02115913 n03110669 n10148035 n02106550 n02086079 n04380533 n10565667 n03249569 n02095889 n02492660 n07873807 n02797295 n04209239 n02786058 n02837789 n02841315 n02704792 n03935335 n04562935 n02099429 n02112137 n03325584 n04442312 n04033995 n07614500 n02108089 n03710721 n03100240 n02093859 n02906734 n04254777 n07871810 n02422106 n04049303 n03961711 n02777292 n04443257 n04597913 n02927161 n03424325 n03032252 n02795169 n02123394 n01498041 n01751748 n03793489 n03345487 n02091635 n02123159 n02107142 n02484975 n03666591 n03085013 n04325704 n03208938 n04562935 n04152593 n09472597 n07875152 n04597913 n04099969 n03976657 n02028035 n03796401 n02917067 n02110958 n02730930 n02802426 n02917067 n02704792 n07760859 n02123597 n01981276 n01688243 n03400231 n02088238 n07753275 n02100583 n01955084 n02777292 n01534433 n03908714 n02120079 n04465501 n02641379 n02098286 n01534433 n02917067 n04371774 n02110958 n03538406 n03443371 n03902125 n03075370 n04336792 n02091831 n02510455 n02097047 n03908618 n02817516 n02111889 n01531178 n02481823 n03110669 n02095570 n03982430 n03444034 n07714571 n07932039 n01768244 n02837789 n03637318 n04141975 n01910747 n03873416 n03018349 n02114548 n07717556 n03494278 n03924679 n02012849 n02361337 n02398521 n03443371 n07615774 n02009912 n02395406 n02777292 n02783161 n02445715 n03743016 n03891332 n04542943 n15075141 n02091244 n02114367 n03404251 n03000134 n01667114 n03763968 n02233338 n09428293 n03793489 n04258138 n04023962 n01667778 n03899768 n13133613 n03599486 n03042490 n04467665 n03633091 n02437616 n02835271 n03791053 n04486054 n07717410 n07613480 n01728920 n03400231 n02790996 n02676566 n04562935 n02264363 n04141975 n03089624 n03954731 n03467068 n02690373 n02102040 n01985128 n04116512 n02497673 n04392985 n03937543 n02006656 n01773549 n02704792 n02999410 n07930864 n02011460 n02107312 n02910353 n01795545 n04111531 n02894605 n01614925 n02793495 n02100877 n03761084 n02504013 n02408429 n07583066 n01744401 n03447447 n03125729 n01978287 n04346328 n03742115 n02483708 n13054560 n02096177 n03920288 n02837789 n03877472 n02165105 n03937543 n03982430 n03787032 n07880968 n04371774 n04146614 n03394916 n03903868 n02687172 n01494475 n02536864 n02129165 n07920052 n01496331 n02009912 n02692877 n02101006 n03271574 n04371774 n01496331 n04557648 n02027492 n02125311 n03376595 n01872401 n04346328 n02091134 n04238763 n01776313 n01796340 n01770081 n03141823 n01665541 n04133789 n02096437 n02096051 n10565667 n04542943 n03447447 n09421951 n02113624 n03160309 n02504458 n01774750 n03871628 n04590129 n12057211 n03481172 n03000247 n04090263 n04141076 n01914609 n03775071 n02869837 n04509417 n04371430 n02097209 n04613696 n02669723 n02883205 n01748264 n01955084 n04204238 n03743016 n02177972 n03868863 n04133789 n02168699 n04041544 n02115913 n02259212 n02096177 n02277742 n04493381 n02093859 n03160309 n04120489 n09246464 n04005630 n03938244 n03208938 n04033901 n02835271 n04049303 n02951585 n04229816 n01755581 n01734418 n01843065 n02114367 n09288635 n04147183 n03196217 n04367480 n03467068 n01491361 n02091831 n04154565 n07875152 n07873807 n02690373 n02730930 n04389033 n02879718 n03223299 n01784675 n03447721 n01742172 n01728572 n12985857 n03376595 n03089624 n03887697 n04270147 n01930112 n02814533 n07802026 n07920052 n03425413 n06596364 n03134739 n02108422 n12998815 n07753113 n02056570 n09256479 n04238763 n02951585 n04033901 n01833805 n01737021 n01694178 n06785654 n02500267 n02085782 n03825788 n03899768 n01843383 n02782093 n01855672 n04239074 n04604644 n07583066 n03041632 n02777292 n03627232 n03884397 n02328150 n04005630 n02093859 n01749939 n03000134 n04037443 n03888257 n01824575 n07875152 n02526121 n07920052 n02102040 n02869837 n02099849 n04356056 n01749939 n02442845 n04487081 n02087046 n04201297 n02094433 n02480495 n02096585 n01518878 n04141975 n02981792 n01632458 n02093647 n02018207 n04040759 n01820546 n03840681 n03832673 n02051845 n01883070 n03534580 n02028035 n03857828 n01682714 n04049303 n02096585 n04254120 n02071294 n03868863 n02206856 n04086273 n02177972 n02085782 n03942813 n01496331 n04355933 n02790996 n04265275 n03976467 n02279972 n02086240 n01824575 n09421951 n02123159 n02086079 n07717410 n02422106 n02236044 n01608432 n03062245 n07734744 n01983481 n04542943 n01773797 n02526121 n01688243 n01990800 n02169497 n01768244 n01770393 n03977966 n02096585 n03532672 n07711569 n01734418 n04326547 n09332890 n04584207 n02114712 n02093754 n03495258 n01616318 n02326432 n04507155 n03527444 n01981276 n02097298 n03958227 n02165105 n07718472 n04591157 n04286575 n04208210 n02120505 n04265275 n04147183 n03271574 n02128385 n02110958 n03888257 n02730930 n01978455 n02843684 n03590841 n03065424 n03854065 n01739381 n01773797 n03976657 n04116512 n02092339 n01817953 n02119789 n01748264 n02169497 n03125729 n02091467 n07714571 n02704792 n02085936 n02108915 n03314780 n02086646 n07697537 n03584829 n03773504 n04204347 n01796340 n03930313 n02033041 n02236044 n02895154 n02708093 n02115641 n04209239 n01735189 n03201208 n09468604 n03047690 n04254777 n06596364 n03627232 n01532829 n01694178 n04081281 n03495258 n02788148 n01775062 n04355933 n03017168 n04599235 n03785016 n07871810 n03980874 n02071294 n04493381 n04372370 n02087046 n04584207 n04086273 n02092339 n02817516 n03240683 n12998815 n03075370 n02804414 n01833805 n01695060 n04596742 n04398044 n02106382 n04204238 n02219486 n02437312 n04335435 n01531178 n04201297 n03920288 n03759954 n03792782 n02412080 n04536866 n03874293 n02708093 n02437312 n04509417 n01990800 n04579145 n02480495 n04371430 n02105056 n03930630 n03481172 n02808440 n07932039 n04428191 n02971356 n02090379 n03857828 n02988304 n02115913 n04599235 n04033901 n11879895 n03014705 n02002724 n02445715 n02870880 n02951585 n02129604 n02123394 n01860187 n03788195 n03729826 n01665541 n01531178 n04442312 n02777292 n13044778 n07720875 n02027492 n02480855 n04447861 n02403003 n03874599 n01622779 n02860847 n03884397 n13040303 n03796401 n03388549 n03970156 n02112137 n03775071 n01601694 n02093991 n01664065 n02077923 n02487347 n02444819 n02480855 n04505470 n03980874 n03447447 n01955084 n02056570 n03127747 n02692877 n06596364 n03400231 n03482405 n03920288 n03871628 n03496892 n12267677 n04310018 n02865351 n01924916 n03000247 n03393912 n02825657 n06785654 n02097474 n04179913 n02112350 n03444034 n03133878 n02132136 n02843684 n01770393 n01871265 n03290653 n03207941 n03476991 n03481172 n04590129 n01532829 n03642806 n03388183 n02094258 n03496892 n04467665 n02963159 n02328150 n02101388 n09256479 n03777568 n02165456 n03042490 n02363005 n13054560 n02808440 n04532670 n01688243 n03602883 n02206856 n03400231 n02346627 n01871265 n01806567 n02727426 n04067472 n02088094 n04553703 n13037406 n07718472 n04252077 n04258138 n02808440 n02328150 n03325584 n01774750 n02123159 n02111277 n04591157 n03871628 n03775071 n04136333 n03976467 n03908618 n03483316 n04487394 n02769748 n04523525 n12998815 n04553703 n04152593 n02346627 n02007558 n03110669 n01440764 n09472597 n02730930 n02782093 n04483307 n02028035 n04040759 n03372029 n02808440 n02120505 n03141823 n02100236 n01770393 n01739381 n03208938 n03954731 n04536866 n04456115 n03000247 n04612504 n02837789 n03538406 n02699494 n03967562 n04398044 n03710721 n04356056 n04033995 n02415577 n04270147 n03866082 n03271574 n02133161 n03483316 n01514668 n03770679 n04532670 n03720891 n02096437 n03444034 n02088632 n02328150 n02787622 n12998815 n07716358 n02817516 n03961711 n02823428 n01753488 n02443114 n04370456 n04542943 n03876231 n02509815 n04371430 n04141975 n02112350 n02321529 n02097474 n04461696 n03804744 n02786058 n12768682 n01855032 n03992509 n01773797 n02443484 n02101006 n09421951 n03837869 n04356056 n01744401 n02701002 n03977966 n02105056 n02102318 n03095699 n01728572 n01873310 n03930313 n03930630 n06359193 n02033041 n04604644 n03781244 n04599235 n02114548 n02356798 n03271574 n07932039 n02100735 n04069434 n04346328 n09332890 n12768682 n02795169 n04049303 n02403003 n04239074 n02493793 n02127052 n04317175 n02363005 n03832673 n04296562 n03630383 n01739381 n02107683 n02012849 n03786901 n04033995 n03782006 n02113624 n02783161 n02134418 n03532672 n02012849 n02415577 n02096437 n03220513 n01945685 n02892201 n04044716 n07742313 n03376595 n02643566 n01735189 n01729977 n02105251 n09421951 n02099712 n03388043 n02174001 n04147183 n02013706 n13054560 n02978881 n09246464 n02699494 n02107312 n03017168 n07745940 n02233338 n02791270 n01950731 n03857828 n02025239 n03452741 n02101388 n03388549 n01484850 n02111277 n01950731 n02174001 n02105162 n02480855 n03325584 n03272562 n03876231 n01644373 n04380533 n07697537 n04380533 n02190166 n07753592 n01630670 n02730930 n03788195 n02669723 n02100735 n03271574 n03179701 n02486261 n02105412 n02417914 n01770081 n02123394 n01855672 n02480495 n02692877 n01532829 n04372370 n01910747 n03400231 n02444819 n04099969 n03498962 n04154565 n02783161 n03124170 n03417042 n04254120 n07717410 n04372370 n07565083 n03661043 n04074963 n02504458 n03720891 n03445924 n03873416 n03775071 n02443114 n03623198 n03000247 n02423022 n03929660 n02782093 n01930112 n01776313 n03388183 n02133161 n02782093 n03393912 n03794056 n09256479 n07920052 n03384352 n02666196 n02894605 n03476684 n02526121 n02123045 n03673027 n03197337 n02114548 n04599235 n02085936 n02963159 n04258138 n03983396 n03187595 n03290653 n03179701 n01531178 n02398521 n02119789 n02089867 n04548362 n02486410 n01704323 n01494475 n04141327 n02790996 n02056570 n02106166 n02018795 n04523525 n03598930 n04118776 n03662601 n04509417 n02606052 n02966193 n03775071 n02317335 n03146219 n03355925 n02229544 n02443114 n03355925 n04590129 n02804414 n02114367 n03379051 n02138441 n03461385 n04200800 n03584829 n01755581 n04335435 n03127747 n04263257 n04192698 n01622779 n02422699 n02107683 n04532670 n02906734 n02804414 n12768682 n02108089 n02909870 n03837869 n02113186 n02112350 n01677366 n03630383 n02526121 n02840245 n01687978 n04515003 n15075141 n02841315 n02422106 n02783161 n02814533 n02102177 n02415577 n03782006 n01770081 n02114548 n03958227 n01728920 n03494278 n01873310 n02894605 n01833805 n03160309 n04458633 n03223299 n12620546 n12998815 n01496331 n04461696 n01981276 n03595614 n02101388 n03937543 n03100240 n03791053 n04613696 n02134084 n04141975 n02093859 n03125729 n02326432 n03680355 n03998194 n01494475 n02342885 n03976657 n01819313 n04606251 n01740131 n02797295 n02123394 n02169497 n03630383 n01689811 n03950228 n07584110 n04591713 n04127249 n12144580 n07831146 n03791053 n02808440 n02793495 n02437312 n02138441 n02111500 n02109961 n03459775 n03126707 n03388549 n02096294 n03961711 n04209133 n04243546 n02791270 n01685808 n02965783 n03775546 n02074367 n03775546 n03584254 n02119789 n02437312 n03888257 n03187595 n02123045 n03937543 n02412080 n01729322 n03908714 n02125311 n01494475 n02894605 n03908618 n02114855 n02123159 n03598930 n02107142 n03290653 n02791124 n03803284 n03937543 n03388043 n03131574 n02788148 n02106382 n04467665 n02100877 n04330267 n03697007 n03710721 n02403003 n02108089 n03017168 n03733281 n03792972 n02105056 n01806567 n01630670 n03337140 n03467068 n01873310 n02398521 n02013706 n04120489 n02708093 n02110341 n03770679 n02480495 n03450230 n03584254 n02823750 n04127249 n02410509 n04562935 n04019541 n04613696 n01632777 n07836838 n02114855 n02100236 n02102318 n07831146 n03742115 n03662601 n03720891 n02804610 n02107142 n03733131 n03791053 n03991062 n02808304 n03594945 n02749479 n04562935 n02134084 n02342885 n03538406 n02107683 n02012849 n01682714 n02988304 n07932039 n02206856 n03447447 n01753488 n01755581 n02119022 n04597913 n03314780 n02865351 n03459775 n01530575 n04335435 n09288635 n02769748 n02256656 n03131574 n03770439 n02123045 n02096177 n04131690 n02397096 n01798484 n02107574 n02113186 n01855672 n03791053 n03770679 n01983481 n02093256 n01968897 n02692877 n02356798 n07875152 n02107312 n02837789 n03042490 n03188531 n03447721 n02825657 n03868242 n04552348 n01770081 n02095314 n04204347 n02087394 n04065272 n02132136 n02134418 n01632777 n04325704 n03776460 n01955084 n02129604 n01644900 n02101006 n04357314 n12985857 n03670208 n07760859 n04067472 n02099849 n03770679 n02978881 n03623198 n03717622 n04536866 n02835271 n07717410 n04429376 n02869837 n03124170 n01632458 n01531178 n03127925 n02097047 n03950228 n03028079 n02107312 n13052670 n02090721 n07711569 n02091831 n01530575 n04146614 n01667114 n03958227 n02098286 n07871810 n01980166 n02412080 n02500267 n01924916 n04254680 n02480495 n01774384 n03216828 n07711569 n03026506 n01749939 n03344393 n03938244 n02098105 n01986214 n01917289 n04418357 n02058221 n02106030 n02966193 n03032252 n02206856 n03063599 n02107312 n03843555 n02108551 n01855672 n02107142 n02102040 n04357314 n04505470 n03529860 n02437312 n02129604 n03773504 n02100877 n03877472 n04501370 n07880968 n04458633 n02167151 n03721384 n02102480 n07579787 n02123394 n02484975 n03942813 n04270147 n03777568 n02085782 n01729977 n04404412 n04311174 n03160309 n02454379 n02096294 n04065272 n02483362 n02364673 n03100240 n07873807 n03594734 n04344873 n07590611 n01883070 n03770439 n03141823 n02133161 n01689811 n01833805 n02814860 n04367480 n03710637 n07714571 n02071294 n01768244 n03388183 n01847000 n03325584 n01667114 n02236044 n04141327 n03467068 n01687978 n04285008 n03483316 n03447447 n02264363 n02097209 n04501370 n09468604 n02930766 n01917289 n04554684 n02979186 n02442845 n03345487 n02486410 n02841315 n03899768 n09399592 n03344393 n02088364 n03763968 n02105162 n04235860 n03903868 n09428293 n03661043 n03249569 n02268443 n02444819 n02116738 n03902125 n02093991 n02110185 n03832673 n03983396 n07716358 n02113712 n03887697 n03424325 n03958227 n01534433 n02086646 n04591713 n07753113 n03841143 n02790996 n02165456 n02009229 n02814860 n04462240 n02730930 n02085620 n02098413 n03337140 n02807133 n04263257 n02108422 n02138441 n01630670 n04008634 n02113799 n02643566 n12057211 n01665541 n04404412 n03691459 n01729977 n03290653 n01924916 n02486410 n04332243 n13052670 n03598930 n02437616 n02093991 n01729977 n02115641 n02825657 n02786058 n02788148 n02094258 n02793495 n03388043 n02128757 n02443484 n02088094 n03110669 n01985128 n07714990 n02869837 n03595614 n04592741 n02127052 n07880968 n02643566 n09256479 n02356798 n02509815 n04487394 n03721384 n01728572 n02992211 n03877845 n02231487 n02445715 n02095570 n04579145 n03706229 n02107574 n01833805 n01629819 n03445777 n03710721 n03014705 n04336792 n04311174 n03724870 n03920288 n03063689 n03908618 n02085620 n02699494 n02096437 n03804744 n04209239 n03249569 n11939491 n01882714 n02129165 n03773504 n04346328 n02102040 n12620546 n02177972 n02066245 n03492542 n02090721 n04482393 n01914609 n02174001 n02233338 n01693334 n01665541 n02280649 n01514668 n01641577 n02107683 n04040759 n03355925 n04579432 n02280649 n02361337 n03937543 n03891251 n02492035 n03759954 n03763968 n01582220 n03866082 n04086273 n04330267 n04476259 n04118776 n03180011 n03838899 n03627232 n04264628 n02101006 n02113624 n02395406 n01675722 n04090263 n03785016 n02137549 n02277742 n03642806 n07718472 n03447447 n03792782 n04008634 n04254777 n01631663 n04254680 n02074367 n01744401 n03127747 n02190166 n03623198 n02607072 n02877765 n02790996 n02992529 n02492660 n02117135 n01580077 n03028079 n02102040 n01494475 n04461696 n01917289 n04146614 n04004767 n02906734 n01560419 n02085936 n12267677 n03075370 n01682714 n02669723 n01751748 n02999410 n10148035 n02797295 n03958227 n03134739 n01860187 n02443114 n03028079 n03495258 n03787032 n02108089 n01687978 n01484850 n02098105 n03942813 n02109525 n04613696 n01631663 n09835506 n01784675 n02137549 n09472597 n02895154 n03676483 n04209239 n01784675 n03028079 n03355925 n03483316 n03337140 n03495258 n04311004 n04270147 n03791053 n02488702 n02895154 n02100583 n10565667 n04548280 n02091134 n01806567 n02264363 n02708093 n02111277 n02692877 n03837869 n03240683 n03773504 n03706229 n03742115 n01734418 n12998815 n03452741 n06596364 n03041632 n02096585 n04317175 n07892512 n01755581 n03777568 n03457902 n02106382 n01601694 n03691459 n02114855 n03461385 n02096294 n03498962 n04482393 n02412080 n03857828 n02124075 n02106550 n03950228 n07730033 n02093991 n07768694 n02870880 n02672831 n02268443 n03773504 n09332890 n02025239 n04562935 n07742313 n04192698 n04049303 n01644900 n02769748 n01774384 n02894605 n03127747 n03045698 n03388549 n03724870 n03706229 n03825788 n01775062 n03670208 n02492035 n01983481 n04435653 n03028079 n03445924 n02108000 n01882714 n02346627 n09399592 n12620546 n03047690 n02807133 n03630383 n03325584 n02110063 n07860988 n01443537 n04523525 n02112706 n02815834 n03720891 n03843555 n02992211 n02107908 n03662601 n03207743 n04507155 n02094433 n02791270 n02788148 n02094258 n02105162 n04179913 n07930864 n03873416 n02027492 n02790996 n03924679 n07753275 n03658185 n02444819 n07802026 n01484850 n02113186 n02110341 n02090622 n04366367 n01773157 n03792972 n02690373 n02090622 n06794110 n02101388 n07697313 n03297495 n03032252 n01688243 n02090379 n02017213 n04152593 n02108551 n03658185 n02643566 n04049303 n03544143 n03709823 n01632458 n02111500 n07717556 n01688243 n07747607 n01592084 n03485794 n02443114 n03888257 n07753592 n01930112 n03127747 n01580077 n12057211 n03344393 n03697007 n01601694 n01818515 n04517823 n04584207 n02002724 n03424325 n03895866 n03787032 n02100236 n03110669 n04523525 n01983481 n04465501 n02090721 n02980441 n02088094 n02492035 n03109150 n02091635 n07695742 n02074367 n07754684 n02783161 n03761084 n02096585 n04099969 n01930112 n03379051 n02105412 n02097298 n04026417 n03866082 n04004767 n01704323 n04286575 n02321529 n04417672 n04389033 n02909870 n01685808 n01806143 n02006656 n03832673 n07697313 n07932039 n02206856 n12144580 n02108422 n07753113 n03777754 n04259630 n02641379 n13052670 n03788365 n02870880 n02799071 n02137549 n02999410 n04317175 n02094114 n03529860 n03188531 n03160309 n03697007 n02091831 n03594734 n04389033 n02799071 n07747607 n02504458 n04277352 n01914609 n02281787 n03868863 n09421951 n03792782 n02102318 n01484850 n04192698 n02089867 n03584254 n01728572 n03062245 n02109047 n02108422 n02088632 n02447366 n02236044 n02910353 n02105056 n03498962 n03250847 n04120489 n02999410 n03467068 n03187595 n03255030 n04004767 n02091635 n04507155 n03782006 n02317335 n02165456 n04243546 n02099849 n04239074 n09246464 n04335435 n03770439 n01978455 n01644373 n02256656 n02509815 n03584254 n03710721 n01795545 n07753592 n02412080 n07892512 n02091032 n04074963 n03197337 n03075370 n02111129 n03930630 n01770081 n04235860 n02132136 n02100735 n01978287 n02097658 n04540053 n04149813 n02105251 n01984695 n03314780 n02115641 n04235860 n02843684 n04311004 n04118776 n02276258 n02909870 n02701002 n02051845 n04599235 n01689811 n03637318 n03344393 n04591713 n02018795 n02795169 n04462240 n03776460 n03404251 n03188531 n07749582 n01631663 n02123597 n02328150 n02110958 n02125311 n04023962 n03133878 n03131574 n02091467 n01484850 n02096177 n01496331 n02058221 n03028079 n02113023 n02480855 n02892201 n04418357 n03042490 n03124170 n12985857 n04141975 n01860187 n02130308 n04037443 n13052670 n07714571 n02391049 n04149813 n04099969 n01729977 n04243546 n02978881 n03131574 n02127052 n04366367 n02229544 n01669191 n02489166 n07716906 n03208938 n02088466 n02093754 n01632777 n04118538 n02363005 n02114855 n09256479 n02787622 n02105412 n03498962 n12768682 n03216828 n03598930 n02643566 n03837869 n07695742 n01817953 n01667778 n04251144 n02231487 n04005630 n03445777 n04597913 n07615774 n02769748 n01833805 n01828970 n01796340 n01694178 n03995372 n03494278 n03271574 n03014705 n02088632 n03788195 n02328150 n02992529 n03498962 n02169497 n02112137 n02483362 n07836838 n02086240 n01739381 n02325366 n03877472 n04589890 n02133161 n01632777 n02105162 n04019541 n01775062 n02107574 n04509417 n01860187 n02088632 n03459775 n03133878 n04254680 n01755581 n02939185 n02091134 n02114712 n07714990 n02484975 n03445924 n03018349 n02802426 n01774384 n03124043 n03355925 n03146219 n03388183 n02226429 n07860988 n03388183 n04009552 n02488291 n03899768 n03649909 n03393912 n02797295 n03014705 n03729826 n01560419 n02114367 n03637318 n02115641 n04517823 n02346627 n02033041 n02804414 n07714990 n04120489 n03481172 n02099267 n10565667 n03825788 n03240683 n02123597 n02097130 n02090721 n02094433 n02667093 n03461385 n02101388 n09399592 n02109047 n04153751 n04479046 n03223299 n13133613 n01688243 n02363005 n04493381 n02445715 n02280649 n03804744 n04596742 n04597913 n01729322 n02793495 n04604644 n04592741 n03425413 n04332243 n04562935 n02494079 n07693725 n07717410 n06874185 n03063689 n02389026 n02110627 n03930630 n01871265 n07716358 n02114712 n03216828 n06596364 n03494278 n07579787 n04548280 n04409515 n02102040 n07753113 n01632777 n02843684 n02395406 n02100583 n03481172 n02099849 n02708093 n01980166 n02096294 n01744401 n03291819 n04004767 n01534433 n03223299 n03773504 n04090263 n02002724 n02422106 n04325704 n01531178 n02948072 n02281787 n04239074 n04399382 n03400231 n02802426 n02165456 n02256656 n02104029 n06794110 n07932039 n02793495 n02093754 n02834397 n02165456 n03394916 n02138441 n01729977 n02138441 n04311174 n03388043 n03344393 n03445924 n02504013 n13040303 n02363005 n02206856 n03982430 n03661043 n02107574 n03785016 n02231487 n04487394 n04376876 n04277352 n07718472 n04118776 n01914609 n01798484 n01944390 n03355925 n03742115 n02108089 n03924679 n03134739 n02011460 n02974003 n02100583 n01496331 n01860187 n02100236 n04596742 n02119789 n02342885 n04044716 n04099969 n03602883 n07717556 n04548280 n03843555 n04409515 n02093647 n01797886 n04429376 n03063599 n07760859 n02487347 n01697457 n03706229 n02988304 n03134739 n02979186 n02892201 n03840681 n03425413 n13044778 n04330267 n03425413 n02099849 n04044716 n01440764 n02105251 n03599486 n03240683 n02097130 n04162706 n03443371 n02492660 n03793489 n04347754 n04296562 n03666591 n04584207 n04136333 n02123159 n04070727 n02981792 n07718472 n01694178 n10565667 n04532670 n02480495 n07590611 n02111277 n04554684 n01695060 n04311004 n02102480 n04447861 n02807133 n04398044 n04418357 n03690938 n01644373 n03837869 n02493793 n01796340 n02095889 n03781244 n02088466 n02906734 n04596742 n12057211 n02097658 n03954731 n02447366 n03223299 n03710637 n03459775 n04458633 n02397096 n03877472 n07584110 n03393912 n07716906 n07836838 n03720891 n02109961 n04326547 n01753488 n02389026 n07734744 n07745940 n02094114 n02981792 n02097298 n03930630 n02783161 n04346328 n01774750 n01829413 n02910353 n02894605 n02132136 n04372370 n04040759 n02493509 n03788195 n04357314 n02106166 n02168699 n02091831 n02105056 n01986214 n02268443 n01739381 n01774384 n02444819 n02105641 n01687978 n04606251 n03325584 n04596742 n02325366 n02950826 n04067472 n02086646 n02113799 n04557648 n04429376 n01704323 n02056570 n02488291 n07614500 n03089624 n01532829 n03160309 n04550184 n07730033 n02095570 n04367480 n04081281 n04254120 n04443257 n03777568 n03584829 n04201297 n12144580 n02834397 n03127925 n02100735 n02256656 n02092002 n01753488 n04259630 n03197337 n02510455 n02108422 n02013706 n03840681 n02108089 n04485082 n03584829 n02134084 n03814639 n04522168 n04589890 n04252225 n03188531 n03594945 n03691459 n04041544 n04033901 n04090263 n02486410 n03873416 n03871628 n02325366 n02841315 n02037110 n02909870 n01629819 n07565083 n02088094 n03954731 n12998815 n03661043 n04332243 n02167151 n04099969 n04266014 n03733131 n02033041 n02165456 n02109047 n02999410 n02177972 n02033041 n03899768 n01685808 n04023962 n02114712 n03775546 n02092002 n02107142 n02977058 n01582220 n04127249 n03814906 n03769881 n03393912 n03291819 n02497673 n03127925 n09193705 n07831146 n03980874 n07753113 n01558993 n02808304 n03854065 n04483307 n02102040 n04326547 n02443484 n09256479 n03961711 n01641577 n03733131 n04254680 n02099601 n02089078 n03016953 n03216828 n02101388 n02229544 n02606052 n04141076 n01694178 n03063689 n01774384 n02607072 n02091244 n03937543 n04328186 n03532672 n03485407 n07717556 n02006656 n04525305 n02123597 n02708093 n02137549 n07614500 n03947888 n03983396 n03544143 n01440764 n01440764 n03717622 n02085620 n02727426 n03485794 n03825788 n04259630 n02788148 n03930630 n04392985 n02454379 n02100236 n01534433 n02102318 n04044716 n02113186 n02066245 n02127052 n01950731 n03000684 n02843684 n04147183 n02110063 n07590611 n02113712 n04074963 n03871628 n02168699 n09246464 n07802026 n01693334 n03908714 n02130308 n09193705 n02091244 n02111500 n03642806 n04033901 n02999410 n02128925 n06359193 n07717410 n02102318 n04208210 n02086079 n03868863 n03743016 n03062245 n03717622 n04069434 n03598930 n01978287 n04026417 n01748264 n02096294 n04483307 n01592084 n03787032 n03742115 n01795545 n02807133 n02769748 n02108915 n04509417 n02093754 n02129604 n02090622 n01806567 n04579432 n04542943 n03400231 n07871810 n09399592 n02114367 n04049303 n02979186 n02494079 n03944341 n03535780 n03297495 n07831146 n02457408 n04254680 n03028079 n03498962 n02883205 n02077923 n02090721 n04005630 n02056570 n01775062 n03866082 n02087394 n04336792 n01917289 n04111531 n02007558 n04086273 n02843684 n13037406 n04200800 n03000684 n03991062 n02488702 n02808440 n03887697 n01784675 n02058221 n02841315 n02114367 n03657121 n02787622 n03095699 n03450230 n02123394 n02869837 n03793489 n02094258 n04380533 n02978881 n07584110 n02927161 n02930766 n02093428 n04507155 n03534580 n03857828 n01872401 n03337140 n02980441 n02102177 n02509815 n02097047 n02992529 n02797295 n03866082 n02279972 n03485794 n03530642 n01518878 n04483307 n04033901 n07749582 n02917067 n03623198 n02233338 n03623198 n03594945 n02256656 n02999410 n02093991 n02002724 n03788365 n03623198 n02110063 n01740131 n04346328 n04033995 n02095889 n04311174 n02445715 n03218198 n02640242 n04462240 n03180011 n02093256 n03425413 n02504013 n03877472 n02087046 n03976467 n02091134 n04044716 n02088364 n02009912 n02206856 n03297495 n02871525 n03633091 n02105855 n03075370 n02119789 n01644373 n03216828 n03478589 n03929855 n02939185 n01847000 n02317335 n01983481 n03657121 n02086910 n02088238 n02168699 n03976467 n07697313 n03743016 n04086273 n04200800 n01632777 n03529860 n03404251 n03255030 n03476991 n04311174 n02093991 n03924679 n03478589 n04258138 n01774384 n02277742 n01980166 n02951358 n03983396 n03482405 n02091244 n01592084 n02415577 n02125311 n03888257 n03871628 n02096437 n03743016 n04118776 n02526121 n07711569 n01694178 n01744401 n03424325 n10565667 n02007558 n01860187 n03127925 n04380533 n03637318 n02088238 n04118538 n02101006 n02110958 n01820546 n02106550 n03874293 n02229544 n03937543 n03838899 n04147183 n03697007 n02655020 n01677366 n02415577 n03891332 n03673027 n02328150 n02363005 n04209133 n04065272 n04399382 n02114548 n03724870 n12620546 n04277352 n02105855 n01704323 n01697457 n02094433 n02110958 n02092339 n01734418 n02108915 n02791270 n01534433 n04111531 n03476684 n02708093 n01955084 n01580077 n01592084 n03602883 n02871525 n04037443 n02086910 n13040303 n07749582 n01930112 n13037406 n03792972 n01775062 n02403003 n02974003 n01644373 n02966193 n03481172 n02095570 n03297495 n01614925 n01440764 n02879718 n02105641 n03125729 n03891332 n01697457 n03443371 n03794056 n02231487 n02395406 n02787622 n03425413 n02111889 n01632458 n02110806 n03584829 n03733805 n04613696 n07747607 n02687172 n03792782 n02492035 n02489166 n03393912 n03018349 n03843555 n02769748 n02168699 n03272010 n04532106 n01943899 n01882714 n03127747 n02088632 n04589890 n12768682 n07715103 n02410509 n03995372 n01728920 n02091134 n01820546 n01739381 n02917067 n04591157 n07697313 n01728920 n02835271 n02028035 n03908714 n02096294 n02106030 n03384352 n02174001 n04522168 n03866082 n02817516 n01978287 n04259630 n04399382 n02113978 n03447721 n02749479 n03188531 n02483708 n07693725 n03014705 n01622779 n03642806 n02018207 n09332890 n03670208 n03291819 n02017213 n02098286 n04141327 n02105251 n02447366 n02321529 n03792782 n01443537 n01943899 n04522168 n13133613 n03891251 n02106166 n04592741 n04179913 n03216828 n04467665 n01883070 n07614500 n02105162 n04456115 n04332243 n04049303 n07615774 n01616318 n07802026 n03291819 n01688243 n02396427 n09229709 n09399592 n02027492 n04517823 n03325584 n02165456 n03803284 n02802426 n09428293 n02168699 n02106662 n03259280 n03733131 n04258138 n01924916 n01945685 n09428293 n02871525 n02786058 n03721384 n04285008 n03485794 n01784675 n04428191 n02092002 n04372370 n04099969 n03026506 n02971356 n02106030 n04131690 n01847000 n03794056 n12985857 n02488702 n01872401 n03372029 n01806567 n01917289 n03444034 n01776313 n02814533 n02672831 n03637318 n02113978 n02165456 n04548280 n02917067 n01560419 n02825657 n04552348 n02999410 n02190166 n03065424 n02825657 n07716358 n02877765 n09421951 n12267677 n01819313 n04264628 n03344393 n02002724 n01641577 n02256656 n01532829 n03854065 n02791270 n02951585 n03014705 n01592084 n01728572 n01774750 n03868242 n04370456 n03337140 n03124043 n03290653 n02488291 n04505470 n04553703 n02107574 n01692333 n12620546 n04086273 n03657121 n01582220 n03485407 n03840681 n07768694 n03782006 n02114548 n11939491 n04552348 n03208938 n02006656 n03764736 n07695742 n01820546 n02326432 n02009229 n02408429 n03018349 n03018349 n02504458 n02089973 n01917289 n01739381 n02130308 n04099969 n02102040 n03788195 n03764736 n02422699 n01978287 n02860847 n02749479 n03877845 n03404251 n04209133 n07695742 n04090263 n03720891 n04311174 n03642806 n03933933 n04005630 n02093991 n02977058 n09835506 n03417042 n01742172 n03888257 n02782093 n07802026 n03208938 n02130308 n02090622 n04040759 n02422699 n03594945 n02437616 n03337140 n09399592 n02129604 n02488291 n04597913 n03089624 n03710193 n02930766 n04435653 n01806567 n03100240 n01582220 n03871628 n02422106 n02494079 n04372370 n07716358 n04277352 n02236044 n03891332 n03814639 n02396427 n02793495 n02096437 n02504458 n02085936 n01978287 n04239074 n03532672 n02869837 n02127052 n03680355 n02206856 n03602883 n01817953 n03733805 n03938244 n03450230 n04044716 n02965783 n03938244 n01592084 n03290653 n04479046 n07831146 n01735189 n04525305 n02870880 n02776631 n02172182 n04081281 n03876231 n01985128 n01917289 n10148035 n04286575 n03598930 n02085782 n02699494 n04009552 n03492542 n07749582 n03017168 n03494278 n02134418 n03792782 n01687978 n13040303 n03220513 n03347037 n03476684 n01828970 n02114367 n07715103 n02119789 n01749939 n03791053 n02457408 n01440764 n01824575 n04372370 n07802026 n04270147 n04033901 n04515003 n03950228 n04005630 n02091032 n02090379 n02486410 n07684084 n04592741 n02106382 n02165456 n02483708 n01737021 n02814533 n04081281 n03884397 n07749582 n01641577 n03929855 n04550184 n04467665 n03930313 n02951585 n02747177 n04487394 n01773549 n04228054 n02410509 n04596742 n02795169 n03496892 n04613696 n02398521 n03814906 n02823750 n02106550 n02128385 n02364673 n03770679 n02099429 n01669191 n12057211 n04476259 n02229544 n03781244 n02509815 n02807133 n02132136 n03447721 n02840245 n03743016 n04118776 n04356056 n02190166 n03424325 n04606251 n04146614 n04040759 n07754684 n02119022 n02454379 n02443484 n04310018 n03527444 n04399382 n03843555 n01740131 n02127052 n02749479 n03045698 n02086240 n01795545 n04592741 n02701002 n04149813 n02823750 n01728920 n04493381 n02894605 n03970156 n03838899 n03877845 n03534580 n02094258 n03047690 n02033041 n03208938 n03124043 n03000134 n03250847 n01817953 n02727426 n01669191 n02268443 n03770439 n02389026 n04550184 n02804610 n03461385 n02091244 n02363005 n02391049 n07717410 n03404251 n07695742 n04462240 n01817953 n06359193 n01685808 n02509815 n09835506 n04523525 n04398044 n01955084 n02423022 n02129604 n02066245 n01773797 n02859443 n04090263 n03617480 n04548280 n03929855 n03777754 n02791270 n02317335 n03791053 n03180011 n01677366 n03976467 n02497673 n01729322 n03297495 n02268853 n01742172 n07716906 n03630383 n02825657 n02094258 n07873807 n03776460 n01843383 n02840245 n02607072 n01491361 n03109150 n03908618 n02132136 n01950731 n02133161 n04070727 n03384352 n03594945 n03933933 n03891332 n01968897 n09229709 n02095314 n02088364 n01641577 n03124170 n03272562 n02817516 n01943899 n07590611 n04235860 n03991062 n02006656 n04026417 n02113799 n04311004 n02815834 n04008634 n07718472 n02437616 n04325704 n03676483 n03207941 n02066245 n03873416 n02489166 n03782006 n04523525 n03710637 n02791270 n09835506 n01768244 n03888257 n04325704 n02007558 n01641577 n03983396 n04179913 n03786901 n03425413 n02012849 n03876231 n02802426 n04067472 n02112350 n02797295 n03895866 n07753113 n03297495 n02091635 n04487394 n03729826 n02104029 n02102973 n03000247 n01871265 n03920288 n03627232 n02229544 n02092339 n02802426 n03018349 n13044778 n03014705 n02776631 n03109150 n13052670 n03218198 n04125021 n04550184 n04479046 n04443257 n03908618 n02094433 n02113186 n02105162 n02980441 n02971356 n07697313 n02102177 n04613696 n02095889 n02979186 n09472597 n03476684 n02692877 n01756291 n03976657 n03494278 n03026506 n04228054 n04146614 n03100240 n02018795 n01873310 n04026417 n02086910 n04192698 n02093991 n04116512 n02107908 n02066245 n04026417 n02444819 n02536864 n02361337 n03770439 n02086646 n03444034 n04008634 n02727426 n07615774 n02107908 n03637318 n04317175 n03662601 n09256479 n03933933 n03666591 n02102318 n07802026 n04467665 n03109150 n03710721 n02817516 n01855672 n03259280 n02108089 n01943899 n02655020 n02817516 n07871810 n03935335 n03250847 n04417672 n04252077 n01910747 n03950228 n02009912 n02690373 n02787622 n01685808 n02486410 n04326547 n03467068 n01742172 n02965783 n04209133 n06874185 n01797886 n01755581 n03942813 n02087394 n02137549 n03047690 n04447861 n04275548 n02229544 n03530642 n01930112 n04548362 n04552348 n02486261 n02328150 n03355925 n02096177 n02403003 n01817953 n01629819 n03983396 n03207941 n01806567 n02089973 n07714990 n03590841 n02086646 n03781244 n02090622 n03445924 n02051845 n04560804 n09288635 n03840681 n01622779 n03445924 n02058221 n03837869 n02125311 n02783161 n01698640 n02787622 n03706229 n02840245 n02808440 n03680355 n01560419 n01978287 n02422699 n01687978 n01537544 n03793489 n03016953 n04044716 n01560419 n02056570 n03179701 n09468604 n03623198 n02690373 n02454379 n04467665 n02112018 n04591157 n04243546 n04254777 n01558993 n07932039 n04258138 n02085936 n03240683 n04409515 n03661043 n01532829 n03930630 n02112350 n02837789 n02098286 n04485082 n03272562 n02105505 n03916031 n07742313 n03042490 n02105855 n04229816 n04447861 n02916936 n02120505 n02917067 n01984695 n02454379 n03529860 n03482405 n04049303 n03452741 n02113023 n03447721 n01728572 n03942813 n03929855 n03344393 n01692333 n01945685 n03929660 n07565083 n04579432 n03594734 n03793489 n02114712 n02111129 n02091244 n12057211 n02493793 n03404251 n03026506 n01817953 n02130308 n02930766 n03594734 n02777292 n02486410 n09468604 n02489166 n01981276 n04275548 n02865351 n04118538 n01641577 n02113624 n04008634 n01945685 n02692877 n02749479 n03891332 n02795169 n02105641 n04136333 n04417672 n04263257 n06596364 n02091032 n03770679 n07749582 n02977058 n03594734 n02317335 n04550184 n02437312 n01728572 n02395406 n04522168 n04209133 n02108000 n01843383 n04004767 n03804744 n04398044 n02643566 n13052670 n03443371 n02101388 n02133161 n02641379 n03814906 n02115913 n02108915 n01978287 n04277352 n04493381 n01608432 n04548280 n03379051 n03796401 n02051845 n04350905 n04612504 n03207743 n02097298 n03447447 n02804610 n01770393 n10148035 n02094258 n03720891 n02089078 n02130308 n02536864 n03942813 n02110341 n04579432 n07716358 n03095699 n02128925 n04141975 n02119789 n03481172 n03532672 n02655020 n07749582 n02109961 n02101556 n03662601 n03803284 n02641379 n04367480 n02101388 n04562935 n01694178 n02088466 n02536864 n03781244 n04192698 n02167151 n02089078 n03544143 n03026506 n02128925 n04251144 n03929855 n03085013 n03125729 n01677366 n03661043 n04584207 n04200800 n02487347 n02321529 n03814906 n01924916 n02802426 n01693334 n02169497 n02128925 n07717556 n03895866 n02099429 n03085013 n11939491 n09468604 n02109047 n07565083 n04310018 n02988304 n07754684 n02058221 n02114367 n03485794 n03424325 n04443257 n01697457 n02219486 n02877765 n01644900 n03775071 n02097047 n02085620 n07693725 n03160309 n02815834 n03110669 n03868863 n04008634 n03743016 n02094114 n03208938 n07590611 n04273569 n03706229 n02013706 n07753592 n02916936 n02112137 n02108089 n03841143 n03595614 n03125729 n07742313 n02487347 n04235860 n02782093 n01742172 n04604644 n04554684 n04086273 n02906734 n02091635 n03201208 n07693725 n09332890 n02088364 n03017168 n03729826 n03983396 n03676483 n04204347 n04251144 n02917067 n04081281 n03930313 n03494278 n03160309 n02389026 n03250847 n03133878 n02091635 n02389026 n02087394 n02113799 n02281787 n04548280 n04509417 n03384352 n02009229 n04370456 n07753275 n02102177 n01494475 n03459775 n02804610 n04456115 n02099712 n01494475 n04344873 n03788195 n01944390 n01910747 n03868242 n03452741 n13044778 n01883070 n02701002 n02793495 n02692877 n03220513 n01978287 n02483362 n01776313 n02808304 n03721384 n02012849 n03733281 n07920052 n02326432 n04192698 n02113799 n02106550 n02097298 n02509815 n02835271 n04548280 n04522168 n03950228 n01689811 n09428293 n01877812 n02100583 n01704323 n03680355 n03000247 n03742115 n04486054 n02097298 n02091635 n03680355 n02002556 n02101388 n01818515 n02454379 n03216828 n03933933 n02107683 n04252077 n02980441 n04039381 n03201208 n02102177 n03388549 n04523525 n03770439 n03710193 n01675722 n04501370 n04501370 n02092002 n03598930 n07932039 n02101006 n02268853 n04259630 n03871628 n02786058 n03485794 n02009912 n02091244 n02808304 n01860187 n07613480 n01843065 n02095889 n01943899 n02859443 n02112350 n02165456 n01773797 n02328150 n03485407 n01955084 n01601694 n03290653 n01796340 n06359193 n01558993 n03950228 n02096437 n02093859 n01773549 n04154565 n02437616 n02017213 n04146614 n02488702 n02137549 n02013706 n02100735 n04465501 n02727426 n04467665 n02095889 n02415577 n03075370 n02097298 n02027492 n02441942 n02104029 n03617480 n03623198 n02536864 n07875152 n04208210 n02423022 n03016953 n01669191 n04344873 n02526121 n09472597 n03873416 n01829413 n12057211 n02950826 n02786058 n02486410 n02486261 n02423022 n02107574 n03773504 n01558993 n02096177 n03961711 n01873310 n04118538 n02091032 n03483316 n13040303 n03180011 n02125311 n02172182 n03976657 n02094258 n02980441 n02107312 n01755581 n02776631 n02492660 n01664065 n01514668 n02966193 n02492035 n03482405 n04019541 n03954731 n02106550 n04404412 n02797295 n01955084 n04612504 n04069434 n02492035 n10565667 n02091134 n01631663 n02727426 n02071294 n02124075 n02092002 n02321529 n04208210 n01819313 n02087046 n04409515 n03485794 n04356056 n02087046 n02492035 n02085782 n03788365 n02483708 n04532106 n02106030 n03742115 n03868242 n03000684 n02100236 n02398521 n03976657 n03595614 n03884397 n03109150 n02978881 n02279972 n02391049 n03417042 n01734418 n07565083 n03970156 n02256656 n01689811 n02107683 n04591713 n02105855 n04099969 n02980441 n07720875 n04259630 n07920052 n03777754 n02099429 n03777568 n03759954 n02109525 n04264628 n03584829 n04525305 n02099712 n01689811 n02169497 n02011460 n02109961 n03814906 n02095314 n03866082 n02966687 n03710721 n02690373 n02514041 n03062245 n02797295 n02167151 n01518878 n13040303 n13044778 n02088364 n03045698 n03857828 n09288635 n03873416 n10148035 n02837789 n03388183 n03272010 n13054560 n02699494 n02051845 n02966193 n02437312 n04557648 n02177972 n03792782 n01751748 n02892767 n04344873 n03902125 n01558993 n02087394 n02006656 n01784675 n02099601 n03930313 n02980441 n02097209 n02091032 n03742115 n02606052 n02104365 n02097130 n07860988 n02120079 n04235860 n02883205 n02727426 n02099267 n03884397 n02992211 n03095699 n04254777 n02093859 n03146219 n04548362 n04335435 n02489166 n01531178 n02259212 n02894605 n02114855 n03188531 n02088466 n03956157 n04589890 n04525038 n02233338 n04612504 n07711569 n02437312 n03976657 n12144580 n01843065 n02120505 n07745940 n04552348 n03710721 n03425413 n01697457 n02396427 n02092339 n02493509 n02087046 n02123159 n04251144 n04259630 n02096051 n04507155 n02106662 n03445777 n03494278 n01756291 n03063689 n02105162 n04346328 n04591713 n03662601 n02093428 n02917067 n03710721 n02493509 n02794156 n07720875 n01669191 n02088364 n01873310 n04037443 n03598930 n07714571 n04069434 n03888257 n07718472 n03676483 n03929660 n02514041 n02105056 n04275548 n03534580 n04296562 n03770439 n02165456 n02704792 n03995372 n04344873 n02123159 n11879895 n02094114 n02514041 n03388549 n01629819 n02776631 n02963159 n03857828 n07768694 n01847000 n02229544 n02834397 n04380533 n07717410 n02112706 n03014705 n11939491 n02769748 n03075370 n03534580 n02116738 n02111277 n03482405 n02096294 n01819313 n02105056 n04540053 n03028079 n03467068 n02107683 n12768682 n02481823 n02447366 n03255030 n02977058 n12620546 n03131574 n02981792 n02110063 n03494278 n02415577 n02398521 n04554684 n03063599 n04579145 n04335435 n04264628 n04311004 n02457408 n02106550 n04483307 n02977058 n02091244 n02169497 n03041632 n03630383 n02669723 n02104029 n02364673 n02749479 n02107312 n02128925 n02091831 n04554684 n01978287 n02655020 n02125311 n04136333 n07753113 n01943899 n04204347 n03372029 n04418357 n02980441 n02859443 n04235860 n09472597 n02328150 n02017213 n01734418 n03930313 n03868242 n04355338 n04118538 n02804610 n02028035 n02835271 n02114548 n03710193 n04033901 n01984695 n03443371 n03956157 n07753113 n03532672 n01664065 n02786058 n02125311 n02085620 n02655020 n04235860 n03018349 n13040303 n03658185 n04254680 n01484850 n03594945 n04209133 n03877845 n12985857 n02102040 n02112018 n03467068 n02115641 n04562935 n03042490 n04429376 n02895154 n13052670 n01514668 n01491361 n01924916 n04039381 n02437616 n04065272 n01855672 n03733281 n03935335 n02492035 n02130308 n04131690 n01484850 n03197337 n03761084 n03899768 n02128385 n04604644 n03623198 n04152593 n02783161 n04252225 n04118538 n02412080 n03717622 n02480495 n02102480 n02676566 n02492035 n04265275 n07742313 n03483316 n03706229 n02129165 n07718747 n03967562 n01443537 n02190166 n01943899 n02089078 n03627232 n02110958 n03902125 n04081281 n02172182 n02099849 n02492035 n02999410 n04435653 n03127925 n07880968 n04243546 n03544143 n01877812 n02823750 n02814533 n02916936 n02120505 n02088632 n02977058 n07734744 n02676566 n01770081 n04116512 n02871525 n02091032 n02536864 n03223299 n02963159 n03180011 n03207743 n03496892 n03444034 n03100240 n04592741 n02091831 n04613696 n02097130 n03196217 n04523525 n04505470 n04153751 n03786901 n03220513 n02808440 n04399382 n03594945 n01978455 n01824575 n01986214 n03792782 n02730930 n03208938 n02641379 n02106030 n02106550 n02110063 n03786901 n04532670 n03595614 n13054560 n02233338 n03803284 n03355925 n02236044 n02951585 n03063599 n03047690 n01496331 n02708093 n02356798 n04442312 n02107574 n03459775 n04026417 n02860847 n02655020 n03983396 n03658185 n04589890 n03956157 n02093991 n02091032 n02977058 n01667114 n02500267 n03347037 n07716906 n03598930 n02841315 n04254777 n04049303 n13040303 n03495258 n04596742 n15075141 n02105251 n01667114 n01775062 n02002724 n04536866 n01768244 n02808440 n02087046 n02917067 n04111531 n02190166 n03690938 n13040303 n04133789 n03877845 n01985128 n03220513 n03970156 n04483307 n01641577 n03384352 n02823750 n02088238 n04346328 n04423845 n04356056 n04509417 n02606052 n01704323 n07831146 n02120505 n02099601 n02799071 n02233338 n03394916 n02865351 n03272562 n03843555 n09246464 n02825657 n02951585 n03692522 n04517823 n03803284 n02086910 n07613480 n09399592 n03775071 n02099429 n07695742 n03527444 n04330267 n03832673 n02894605 n02951585 n09332890 n13054560 n03623198 n02363005 n04275548 n09288635 n03902125 n04435653 n04398044 n02666196 n04147183 n02454379 n02107574 n04592741 n04200800 n02066245 n01629819 n03272562 n03877472 n02009229 n03532672 n02437312 n02089078 n04127249 n03443371 n02091635 n02667093 n03935335 n02364673 n02165105 n03770439 n03063599 n02363005 n03100240 n02815834 n04275548 n02791270 n02325366 n01695060 n02787622 n07753113 n02128385 n04125021 n02395406 n04371430 n03388043 n12620546 n04597913 n03967562 n02708093 n02280649 n02113978 n09288635 n03425413 n03207941 n01740131 n04120489 n02106382 n02536864 n04458633 n03633091 n03967562 n04371430 n02690373 n02113186 n02870880 n02114855 n02396427 n02132136 n02107908 n01950731 n02992529 n03814639 n03594734 n07613480 n07932039 n03721384 n02641379 n03721384 n03661043 n04509417 n02814533 n02437616 n04192698 n02002724 n15075141 n03670208 n02974003 n02094433 n03617480 n04486054 n03290653 n03255030 n04435653 n02916936 n01728572 n01632777 n03028079 n02106382 n12267677 n02279972 n02111129 n01820546 n03680355 n03991062 n02090721 n02879718 n01514668 n01728572 n04442312 n03379051 n02930766 n03982430 n02497673 n02115641 n02389026 n02793495 n03594945 n03661043 n04398044 n01773797 n03630383 n07892512 n02259212 n02128757 n03595614 n03126707 n04200800 n12620546 n02091032 n01531178 n03775071 n02346627 n02096294 n04204347 n02892201 n01807496 n03825788 n02342885 n02128385 n07745940 n04404412 n03720891 n02109961 n03976657 n02093256 n03787032 n03794056 n04136333 n03787032 n02105855 n01774384 n02974003 n02106030 n04023962 n03485794 n02086910 n02091134 n02727426 n04591157 n03804744 n04111531 n03733805 n02787622 n02980441 n03347037 n01630670 n04579432 n01944390 n12620546 n02114712 n03527444 n04239074 n01807496 n01592084 n02879718 n04429376 n02643566 n07871810 n07753113 n03042490 n02281787 n03179701 n01685808 n03814906 n02927161 n02346627 n03160309 n04037443 n02708093 n03590841 n04370456 n02948072 n02494079 n06785654 n04507155 n02011460 n02256656 n04037443 n03485794 n03271574 n04254777 n02128757 n04154565 n03461385 n02966193 n02226429 n02101006 n02112018 n07695742 n02110341 n02443114 n02110185 n02948072 n02840245 n03854065 n02096294 n02980441 n03062245 n03584829 n01644900 n03891251 n03599486 n02701002 n02172182 n03888605 n03642806 n04562935 n01930112 n02389026 n02783161 n02807133 n04099969 n03457902 n03633091 n03594945 n07695742 n07714990 n03208938 n04479046 n09835506 n03595614 n01983481 n03670208 n01734418 n01978455 n03721384 n02091635 n02133161 n04026417 n01734418 n03530642 n04209133 n04099969 n01616318 n02279972 n03676483 n03868863 n02666196 n02396427 n01768244 n03240683 n02112018 n13133613 n03032252 n04235860 n02110627 n03404251 n04350905 n02087046 n01843383 n01797886 n02992211 n02950826 n02268853 n03888605 n07248320 n03160309 n07248320 n03868242 n01704323 n01944390 n04462240 n06794110 n03032252 n04376876 n02281406 n02134418 n03584829 n03598930 n04254777 n04435653 n02017213 n04049303 n03180011 n03782006 n02749479 n04525305 n02791270 n04429376 n02102318 n07584110 n02966687 n02423022 n02107142 n02101556 n04179913 n02999410 n02091134 n02797295 n04560804 n01955084 n07583066 n03743016 n03623198 n03843555 n02134084 n02093256 n02105505 n03788195 n07716906 n04542943 n04296562 n02120079 n03920288 n02892767 n04311174 n04141327 n02117135 n03888605 n04557648 n04523525 n02281787 n02951358 n03680355 n07693725 n02870880 n02007558 n06596364 n01984695 n03345487 n02091244 n09256479 n02105162 n07693725 n03838899 n03534580 n02493509 n02096177 n07892512 n02018795 n04592741 n01728920 n07875152 n01773797 n02051845 n04273569 n03125729 n01773549 n04376876 n04336792 n02137549 n03633091 n01877812 n02128757 n04423845 n02981792 n03452741 n01735189 n04532106 n02268853 n07615774 n03538406 n01917289 n01496331 n01773549 n03788195 n02916936 n03045698 n03743016 n03868863 n04479046 n01882714 n03197337 n02013706 n07873807 n02480855 n04409515 n02930766 n03888257 n03127925 n11939491 n02328150 n02895154 n02408429 n02361337 n02092339 n01484850 n03065424 n02167151 n01798484 n02110341 n02085620 n04417672 n02097047 n04235860 n02692877 n04599235 n04201297 n02110341 n03776460 n02037110 n02174001 n02797295 n02939185 n03637318 n03710721 n02086646 n03657121 n02509815 n07836838 n04592741 n04264628 n04399382 n02814533 n04311174 n02137549 n07753113 n02704792 n02093859 n01694178 n03444034 n01784675 n02088466 n03692522 n02091244 n02133161 n09835506 n01614925 n02168699 n02113624 n03109150 n02190166 n03710721 n02092002 n01644373 n04357314 n01704323 n01882714 n03908618 n04592741 n02095570 n02870880 n04277352 n03666591 n09332890 n02090721 n04326547 n04251144 n04033901 n02977058 n03095699 n02114548 n02966193 n07717410 n04562935 n02814860 n02963159 n02090721 n03891251 n02325366 n03630383 n03742115 n03400231 n07753275 n02174001 n01877812 n02870880 n02892201 n02727426 n02115913 n02395406 n03956157 n02074367 n07760859 n04476259 n03018349 n04208210 n04560804 n03794056 n03803284 n03476684 n01514668 n04347754 n01773157 n01820546 n04443257 n03976657 n04146614 n02100583 n04476259 n01776313 n02095570 n03180011 n02110806 n02129165 n02504013 n02808304 n03854065 n02066245 n01685808 n03290653 n01924916 n03776460 n02102973 n03871628 n04266014 n04350905 n02104029 n03598930 n04344873 n10565667 n02123045 n02437312 n03759954 n02437616 n02123159 n01664065 n02916936 n03124170 n02504013 n03272562 n03617480 n02091244 n02051845 n02090622 n04376876 n04613696 n02108551 n04328186 n01682714 n03777754 n02095570 n07802026 n02437616 n02169497 n02100735 n01748264 n03942813 n04296562 n02264363 n04517823 n03207743 n02927161 n04332243 n02110185 n04409515 n02480495 n09468604 n02100735 n07716358 n15075141 n03814639 n02105251 n01537544 n01855672 n01644900 n04037443 n02870880 n02264363 n04336792 n09229709 n03146219 n02837789 n03733281 n04599235 n04008634 n02111500 n04560804 n02116738 n02009229 n03272562 n02106030 n03666591 n02356798 n09835506 n02727426 n02113712 n02397096 n04153751 n02808304 n02033041 n02992529 n02837789 n03355925 n03492542 n03991062 n02457408 n03085013 n04501370 n02843684 n02490219 n02106382 n02489166 n03670208 n02447366 n02655020 n13054560 n03445924 n03903868 n02099601 n02119022 n02422106 n04019541 n04355933 n04200800 n02123597 n13052670 n03250847 n02992529 n02951585 n03085013 n01768244 n04525305 n03187595 n01798484 n03467068 n04370456 n03832673 n02097130 n03240683 n04371430 n04579432 n04458633 n04483307 n02980441 n02102318 n04154565 n03452741 n03961711 n02808440 n03063689 n02114855 n02096051 n04461696 n04487394 n02113186 n07892512 n03223299 n04081281 n04371774 n04417672 n03249569 n03197337 n02101006 n01768244 n02113186 n03899768 n02783161 n01734418 n01728920 n02497673 n03063599 n04479046 n02895154 n02100877 n01983481 n03908618 n04507155 n03344393 n01829413 n02342885 n02190166 n07802026 n03991062 n02974003 n01698640 n04447861 n03623198 n04347754 n07614500 n12144580 n04254680 n04482393 n01943899 n03887697 n03598930 n02483362 n02120079 n03680355 n03485407 n02130308 n02894605 n03841143 n02172182 n02727426 n04418357 n02097209 n03495258 n02701002 n03481172 n02860847 n04435653 n03384352 n04131690 n02701002 n03868863 n01644373 n03000247 n02397096 n04118776 n02117135 n02051845 n03649909 n02869837 n03661043 n02090622 n02190166 n02134084 n02701002 n03496892 n02871525 n04277352 n02966193 n07697313 n03447447 n03388183 n02483708 n03623198 n09421951 n02128925 n02823428 n02410509 n02099429 n04162706 n01601694 n06794110 n03929660 n07920052 n04273569 n02259212 n03180011 n01685808 n02095889 n04204347 n02804414 n02236044 n04111531 n02132136 n07717556 n03388183 n04200800 n04154565 n02099601 n03065424 n03942813 n01930112 n04049303 n02965783 n03444034 n03131574 n02090721 n02281787 n04389033 n07615774 n02086240 n02105412 n03794056 n03977966 n01728572 n03218198 n07584110 n02134084 n03991062 n03124170 n04070727 n03908618 n07932039 n02110806 n01630670 n03598930 n04355338 n03014705 n02172182 n03721384 n02095314 n02979186 n01742172 n04409515 n02089973 n02422699 n03763968 n02492660 n02910353 n03743016 n03196217 n02840245 n03804744 n04532106 n03773504 n02100236 n02325366 n07753275 n03483316 n01494475 n04344873 n04259630 n03627232 n02280649 n02883205 n04404412 n04357314 n04286575 n03803284 n02098413 n04209239 n01632777 n03908618 n02110185 n02457408 n02788148 n03467068 n01443537 n04310018 n03325584 n02395406 n03133878 n02134084 n02089867 n01833805 n03443371 n03838899 n03216828 n03485794 n03761084 n02500267 n04435653 n01514668 n10565667 n01675722 n02233338 n02497673 n01784675 n03761084 n02279972 n03721384 n02088238 n03017168 n01770081 n03347037 n02231487 n12768682 n03877472 n02730930 n02088238 n01592084 n03998194 n03478589 n03776460 n02086910 n02113624 n02669723 n01930112 n04356056 n12768682 n09421951 n03908618 n02120079 n02133161 n03345487 n02087046 n04118538 n03344393 n02704792 n02112018 n02100583 n03196217 n04133789 n02640242 n02817516 n01740131 n01532829 n04548362 n04509417 n02364673 n02415577 n04204347 n12267677 n03445777 n07584110 n03544143 n03764736 n07892512 n01770393 n01688243 n04033995 n04590129 n01978287 n02113712 n02093428 n01819313 n02437312 n03706229 n03535780 n02112137 n04266014 n02137549 n03630383 n03089624 n04208210 n03100240 n02480495 n02860847 n03062245 n04409515 n04404412 n02687172 n04065272 n03770439 n04049303 n03249569 n02088238 n01978287 n04532106 n01687978 n01751748 n02981792 n03792972 n04326547 n01728920 n04612504 n07714990 n03764736 n07717410 n04141327 n03032252 n02107574 n02226429 n01820546 n02088364 n03961711 n07753113 n02094114 n03733805 n02607072 n02028035 n03857828 n02807133 n04456115 n02640242 n02206856 n12144580 n02115913 n03627232 n02699494 n01756291 n03630383 n02280649 n02799071 n07749582 n01773157 n09256479 n04235860 n06874185 n02002556 n02454379 n03775546 n02177972 n02009229 n03297495 n03895866 n01694178 n01698640 n01796340 n03124043 n02107683 n02981792 n04540053 n07695742 n02102318 n02123597 n04152593 n01695060 n04252077 n01689811 n01882714 n04141327 n07753592 n02793495 n04136333 n03876231 n02860847 n04591157 n04380533 n03259280 n03530642 n01558993 n04355338 n02017213 n02091032 n07615774 n07693725 n02319095 n04335435 n06794110 n11879895 n09332890 n02708093 n02643566 n03895866 n03838899 n03393912 n02112137 n01955084 n02094433 n02791124 n03877472 n03792782 n01756291 n02097474 n03259280 n02190166 n07715103 n02095889 n04532106 n04597913 n03743016 n04548362 n02481823 n03388549 n02319095 n03792972 n02823750 n03623198 n03933933 n02231487 n03476684 n02098286 n02169497 n03379051 n02457408 n07742313 n07615774 n02206856 n04239074 n03393912 n01592084 n03680355 n02837789 n03590841 n01986214 n03657121 n03697007 n01697457 n02447366 n04418357 n04367480 n03220513 n04479046 n03100240 n03000684 n01978287 n02105855 n03127925 n02105855 n02092002 n02028035 n02094258 n04204347 n01795545 n02125311 n02823750 n02112137 n03126707 n02123597 n03223299 n01798484 n02280649 n01776313 n02641379 n01608432 n03249569 n01630670 n03895866 n03888257 n02422106 n02093859 n04125021 n04065272 n03814906 n03992509 n04423845 n03393912 n02066245 n02114548 n10148035 n01608432 n04355338 n04277352 n03976467 n02859443 n04141076 n02127052 n02088466 n07880968 n09835506 n03874293 n03481172 n04355338 n02894605 n03544143 n02977058 n01773157 n02486261 n02112137 n03075370 n01601694 n04004767 n04273569 n04275548 n02966193 n03443371 n01755581 n02100877 n04325704 n02090379 n02088466 n03347037 n03691459 n01616318 n01820546 n04009552 n03637318 n01795545 n02108000 n01843383 n03908618 n07753275 n02950826 n04069434 n02701002 n02799071 n02786058 n02526121 n03459775 n04552348 n04462240 n02108915 n02088364 n02791270 n01682714 n02123394 n02101388 n02840245 n04493381 n01990800 n04162706 n13054560 n01632777 n02093859 n02025239 n02797295 n03179701 n02980441 n04596742 n01980166 n09835506 n03445777 n03110669 n02094114 n02086079 n01443537 n02110063 n04355338 n01560419 n03355925 n02119022 n03447447 n02219486 n02113624 n04523525 n01983481 n10565667 n03803284 n04367480 n03400231 n01980166 n04596742 n02417914 n02514041 n02033041 n02094114 n02134084 n13040303 n03763968 n04111531 n02090622 n02486261 n03452741 n04458633 n02094114 n02097658 n01978455 n02988304 n04229816 n02892767 n02804414 n03240683 n01443537 n02088632 n02172182 n02786058 n02701002 n04515003 n07693725 n03594945 n02100735 n04204347 n02093754 n09428293 n03958227 n03042490 n06359193 n02102177 n03445924 n04141975 n03690938 n02108089 n03075370 n04517823 n03208938 n03958227 n10148035 n02444819 n02092002 n10565667 n02437312 n02280649 n02909870 n03977966 n03110669 n03777568 n07930864 n04560804 n03888605 n02120505 n03014705 n01744401 n03770439 n03393912 n02727426 n02093754 n03379051 n03788195 n02099601 n02481823 n03291819 n04127249 n03803284 n03794056 n03478589 n02009912 n07579787 n02951358 n03297495 n04517823 n03794056 n03854065 n04325704 n03902125 n03207941 n03160309 n02727426 n03498962 n02056570 n01530575 n03290653 n03133878 n02099267 n03742115 n04273569 n02977058 n03724870 n04597913 n03763968 n03201208 n02672831 n02096437 n02916936 n04398044 n03110669 n01580077 n03775546 n01665541 n03109150 n01843383 n01751748 n04487394 n02804414 n04200800 n03661043 n01806143 n01641577 n02325366 n03976467 n02917067 n01819313 n04465501 n01955084 n03063599 n04099969 n02793495 n02086079 n02859443 n03690938 n13052670 n02088238 n02699494 n03721384 n02006656 n02415577 n02981792 n02492035 n03379051 n02280649 n03095699 n03720891 n03459775 n02422106 n01644373 n03347037 n02834397 n03218198 n03627232 n04557648 n02423022 n01784675 n03425413 n04579432 n07875152 n03461385 n03404251 n03658185 n07720875 n01943899 n12620546 n03967562 n02102480 n02500267 n02087046 n03595614 n02100236 n07892512 n04505470 n01986214 n02447366 n01978455 n03942813 n02917067 n02125311 n04275548 n02077923 n01829413 n04557648 n02483362 n03250847 n02454379 n02793495 n03891251 n03938244 n03467068 n02226429 n02106166 n04465501 n04423845 n02108422 n02776631 n01773797 n03250847 n04606251 n01664065 n04127249 n04254777 n02483362 n03041632 n01729322 n02093859 n02977058 n04252225 n02116738 n02950826 n03494278 n02130308 n03786901 n04462240 n03617480 n04418357 n02879718 n03018349 n03272010 n03379051 n01614925 n02102040 n01630670 n03627232 n13037406 n09288635 n07584110 n02102177 n03347037 n01632458 n01768244 n03584254 n04346328 n03599486 n03109150 n03692522 n15075141 n01742172 n02841315 n13040303 n02117135 n02107142 n04266014 n03724870 n07248320 n02704792 n03871628 n01990800 n02129604 n02119789 n02125311 n04606251 n07768694 n03187595 n04376876 n04483307 n02110063 n02107142 n02782093 n04487081 n01675722 n01608432 n03297495 n02098105 n01950731 n04238763 n02105855 n04552348 n02051845 n02128925 n02877765 n02128385 n02877765 n01872401 n01682714 n03481172 n02509815 n02236044 n02280649 n02488702 n03492542 n01749939 n03207743 n03179701 n02100877 n01981276 n03710637 n03223299 n01630670 n03877472 n01560419 n02259212 n04127249 n03796401 n04486054 n01807496 n03492542 n01694178 n01740131 n01985128 n03637318 n03584254 n07717556 n07753592 n02791124 n03786901 n02965783 n03733131 n04458633 n01614925 n04435653 n03534580 n04532106 n02276258 n01697457 n03187595 n04590129 n04004767 n03877472 n07248320 n03207743 n02892767 n03976467 n03133878 n03594734 n01877812 n03785016 n04613696 n03534580 n02013706 n01985128 n02110806 n02441942 n04554684 n03916031 n01748264 n04204347 n03450230 n01622779 n02799071 n02017213 n03201208 n02487347 n02497673 n01795545 n02487347 n04487081 n03710637 n04026417 n07747607 n02092002 n02701002 n02492660 n03995372 n02415577 n02091831 n02423022 n02165456 n03666591 n04604644 n02107142 n02951358 n02219486 n04542943 n03777568 n03787032 n04332243 n02927161 n09288635 n01704323 n02091244 n02894605 n04554684 n02085936 n03014705 n01871265 n02113799 n02107683 n03347037 n04296562 n09256479 n02110341 n06874185 n03967562 n02708093 n04344873 n02437616 n04523525 n02099712 n04404412 n04277352 n02948072 n04111531 n03452741 n02966193 n03452741 n02100735 n04597913 n07747607 n03764736 n02123159 n02107574 n01729977 n03976467 n03788195 n07717556 n15075141 n04596742 n01729977 n03042490 n02102040 n02093991 n12144580 n02107908 n04612504 n02981792 n01644900 n02128385 n02128925 n02110806 n01748264 n02777292 n04209239 n02112350 n02361337 n04141327 n02229544 n02281406 n03895866 n02108915 n12768682 n02106030 n03218198 n04133789 n02093428 n03461385 n02119789 n03444034 n02877765 n03724870 n03773504 n01698640 n02504013 n02231487 n01558993 n06785654 n01981276 n02389026 n04277352 n02687172 n03291819 n04447861 n04310018 n02486410 n02105855 n02948072 n03785016 n02002724 n03417042 n03188531 n02259212 n02776631 n02951585 n03337140 n01751748 n02879718 n04277352 n12057211 n02951585 n03967562 n07714571 n02085620 n02510455 n02869837 n01980166 n01756291 n03792972 n02112137 n03680355 n03841143 n07565083 n07693725 n07715103 n01820546 n01873310 n03777568 n01833805 n02676566 n03447721 n02500267 n03602883 n04239074 n04118538 n04536866 n04548362 n02776631 n01667778 n03825788 n03891332 n04258138 n04542943 n02099849 n03041632 n04179913 n01632458 n01537544 n02930766 n03814639 n02643566 n03498962 n01798484 n02692877 n03134739 n03314780 n02870880 n07768694 n04141076 n03786901 n03314780 n02172182 n02092339 n03259280 n07880968 n02115641 n01990800 n12768682 n07930864 n03527444 n02091244 n03769881 n01494475 n03249569 n02395406 n03776460 n12985857 n02056570 n02486410 n01737021 n02488702 n01978455 n01622779 n02510455 n01776313 n07831146 n02018207 n02808304 n01855032 n03803284 n02514041 n02099849 n01806143 n03837869 n03902125 n02895154 n04208210 n02107142 n01855672 n02480495 n04065272 n03761084 n02100236 n02111277 n02089867 n04552348 n02791124 n02101556 n02480855 n02097658 n03180011 n03899768 n02087394 n02236044 n02794156 n04550184 n02099849 n02111129 n03976657 n01847000 n04465501 n03063599 n03733131 n09332890 n02892767 n01978455 n02111129 n03832673 n04141327 n02276258 n03786901 n02672831 n01978455 n02807133 n03290653 n03297495 n02112350 n02894605 n03763968 n02776631 n04606251 n03498962 n04443257 n04355933 n02727426 n12057211 n04376876 n02403003 n03495258 n04584207 n04462240 n01729322 n03207941 n02483708 n10565667 n03866082 n04019541 n04154565 n13052670 n02992211 n03642806 n03372029 n03832673 n03617480 n01797886 n04591157 n04443257 n03045698 n03207941 n04081281 n02165105 n02105412 n02980441 n02097658 n02823750 n02397096 n03662601 n01514859 n03759954 n02859443 n02011460 n03467068 n04458633 n02111277 n01751748 n03127747 n03838899 n07715103 n02894605 n02793495 n07248320 n03995372 n02094258 n03937543 n03642806 n02607072 n03483316 n02090622 n04525305 n02085936 n03920288 n03063599 n01843065 n02099267 n01739381 n03793489 n02018207 n03775071 n01496331 n06785654 n03935335 n03887697 n07747607 n03773504 n07860988 n04456115 n02492035 n03874293 n04275548 n03063689 n02101006 n01807496 n02113978 n02655020 n02488702 n02174001 n04004767 n04579432 n04141975 n03584254 n02112706 n03127747 n02097047 n04458633 n02814533 n02510455 n02106166 n02492035 n13054560 n04090263 n02110341 n02965783 n04235860 n01735189 n01698640 n07697313 n02276258 n03868242 n02321529 n03042490 n04418357 n03814906 n02607072 n04517823 n03496892 n07717556 n02051845 n03291819 n09399592 n02791124 n02259212 n02233338 n07802026 n03047690 n03995372 n03530642 n02966687 n02492035 n02229544 n01689811 n01532829 n03733805 n01776313 n02112137 n04200800 n07747607 n03016953 n03729826 n07734744 n02088094 n04542943 n02667093 n03400231 n04355933 n03544143 n02128385 n04356056 n02112018 n02859443 n02128925 n02091032 n04004767 n02096051 n02113712 n02927161 n03476991 n02423022 n12144580 n04548280 n03724870 n04335435 n07583066 n02871525 n03272010 n02484975 n02786058 n09472597 n04209133 n03717622 n03598930 n02417914 n01824575 n04204238 n02999410 n04467665 n04239074 n03444034 n04263257 n03903868 n02492035 n02110627 n02007558 n02090379 n03995372 n04325704 n04277352 n02494079 n02321529 n12144580 n01687978 n03095699 n02074367 n02128925 n02363005 n02346627 n04579145 n03133878 n02776631 n03787032 n03127747 n01749939 n01860187 n04317175 n12768682 n02219486 n03630383 n02097130 n02859443 n03529860 n02229544 n03272562 n04116512 n01685808 n03902125 n02174001 n02112706 n02840245 n04141975 n01641577 n02326432 n07749582 n02797295 n04596742 n02974003 n01729977 n02504013 n02843684 n03825788 n04517823 n03216828 n04346328 n02408429 n01797886 n02493509 n02799071 n04204347 n07716906 n06874185 n02093647 n02111889 n04254777 n02966687 n03938244 n02321529 n03089624 n02096585 n02877765 n03259280 n02895154 n02107574 n07615774 n03131574 n02497673 n01688243 n04273569 n03873416 n03763968 n01534433 n03187595 n02786058 n02165105 n02099601 n02782093 n01601694 n03459775 n01770081 n04019541 n01742172 n03452741 n03891251 n01818515 n03825788 n04141975 n02087394 n02325366 n02092339 n07584110 n03649909 n02113712 n04579145 n03908714 n04392985 n02124075 n13040303 n02051845 n02231487 n02493509 n01748264 n03457902 n03146219 n01675722 n03787032 n02361337 n07579787 n04479046 n02168699 n02992211 n02113624 n02974003 n04357314 n07920052 n07615774 n03452741 n03534580 n02094258 n04505470 n02641379 n03868863 n02422699 n03249569 n02123394 n02106662 n01784675 n04371430 n04557648 n02514041 n02051845 n03916031 n01751748 n02504458 n07734744 n02494079 n03902125 n02930766 n03977966 n03724870 n04116512 n03272010 n04049303 n03590841 n02361337 n04044716 n03680355 n03637318 n11939491 n03866082 n03272010 n02119789 n07615774 n03602883 n03492542 n04310018 n02231487 n02110185 n03544143 n03995372 n02268443 n01440764 n02480855 n02317335 n01692333 n02109961 n03379051 n03075370 n02687172 n04442312 n03584254 n01729977 n02727426 n03134739 n01828970 n02093428 n02233338 n02091831 n02939185 n04579432 n04266014 n03291819 n03954731 n03838899 n07871810 n02077923 n12057211 n02415577 n02115641 n03781244 n07880968 n07711569 n03838899 n03180011 n02114712 n03887697 n02930766 n01644900 n02111277 n02999410 n03534580 n02497673 n02410509 n02777292 n03461385 n04086273 n03627232 n01689811 n09193705 n01955084 n03916031 n04355338 n04259630 n03617480 n01498041 n02169497 n02423022 n02422106 n02699494 n02494079 n04515003 n03724870 n02113799 n03930630 n04458633 n04065272 n02939185 n02281787 n02504458 n02190166 n03691459 n02408429 n07579787 n02114712 n04125021 n04461696 n03384352 n03388183 n03837869 n03485407 n01986214 n03255030 n02804610 n03255030 n01924916 n04398044 n04540053 n02667093 n03146219 n02483708 n03125729 n09256479 n02089078 n02607072 n03742115 n04067472 n02114712 n03196217 n04254120 n02105412 n03250847 n02111500 n07565083 n04162706 n01917289 n03018349 n03530642 n02107908 n02169497 n02018795 n03658185 n03424325 n02018207 n03630383 n03903868 n07745940 n02138441 n03372029 n02319095 n01855672 n03062245 n07753592 n04147183 n04254777 n03838899 n02219486 n04270147 n07871810 n01910747 n02999410 n12768682 n03649909 n04120489 n02002724 n01756291 n02445715 n02009912 n01798484 n04532670 n04604644 n04044716 n02169497 n02669723 n04461696 n02134084 n03743016 n01798484 n03404251 n02783161 n03201208 n02134084 n02607072 n03180011 n02094433 n03388549 n07590611 n02640242 n02085782 n02871525 n03967562 n02119789 n04507155 n04149813 n03492542 n02437312 n02098105 n01443537 n01632458 n02860847 n02113023 n03337140 n12620546 n03459775 n11879895 n03085013 n02096585 n02088466 n01751748 n02497673 n02236044 n03109150 n02130308 n04325704 n03676483 n02105412 n03180011 n02787622 n02025239 n01693334 n02325366 n02281787 n04597913 n04346328 n04404412 n02006656 n02107312 n02165456 n03042490 n04418357 n02093428 n04133789 n07754684 n03075370 n03916031 n04536866 n07711569 n02895154 n02105251 n02692877 n03344393 n04493381 n04579145 n03201208 n04243546 n02167151 n01797886 n09256479 n01582220 n04548362 n03476684 n04606251 n04579432 n02086910 n02134084 n02109525 n04238763 n03764736 n04044716 n04548362 n02692877 n03207941 n04229816 n03598930 n04591157 n02317335 n01734418 n15075141 n03825788 n04536866 n04254777 n02277742 n03877845 n02747177 n01667778 n01664065 n03180011 n02701002 n13040303 n03388549 n04591713 n04389033 n02699494 n02105162 n02280649 n04254777 n02607072 n01985128 n03045698 n03717622 n02086240 n03903868 n02326432 n02229544 n03530642 n01685808 n02091467 n03544143 n03902125 n02125311 n09399592 n04070727 n07730033 n07684084 n04398044 n03372029 n03483316 n03495258 n01728572 n04037443 n02395406 n03457902 n03761084 n01734418 n02090721 n03976657 n03785016 n01514668 n04357314 n02835271 n02504013 n02489166 n03530642 n02950826 n02111889 n04371774 n04560804 n03445924 n02091831 n07753592 n03447721 n01770081 n02487347 n02794156 n02097209 n03891251 n02790996 n03109150 n04380533 n03595614 n04153751 n04591713 n02108915 n04429376 n01641577 n04264628 n03271574 n02114367 n07930864 n02105641 n02104365 n03717622 n04423845 n02094258 n02116738 n01692333 n02909870 n02606052 n02099849 n02363005 n07734744 n02841315 n01860187 n02090721 n03841143 n02892201 n04125021 n04612504 n01537544 n04505470 n02281406 n03983396 n02123045 n01784675 n02493509 n03476991 n03534580 n02123159 n02808440 n04074963 n01616318 n03786901 n03721384 n02086240 n02488702 n03642806 n03160309 n01796340 n13044778 n09256479 n03089624 n02086910 n04604644 n04040759 n07584110 n04552348 n04149813 n02066245 n01580077 n04443257 n04336792 n02107683 n01797886 n02134418 n02134418 n01632777 n06359193 n01797886 n03485407 n04259630 n03992509 n07248320 n04486054 n03026506 n02088632 n03124043 n02442845 n02091467 n03376595 n04310018 n02966687 n03777568 n03100240 n04350905 n02843684 n02109961 n01631663 n03240683 n03141823 n02091635 n01443537 n11939491 n02002724 n03733281 n02106662 n03942813 n03337140 n03777568 n04251144 n07716906 n01820546 n03929660 n03478589 n02441942 n02364673 n09835506 n04515003 n02264363 n01773157 n01770393 n03777568 n04049303 n02219486 n02130308 n02437312 n02815834 n02093647 n01616318 n04332243 n12620546 n10148035 n02927161 n02128757 n03496892 n03417042 n04200800 n02484975 n01689811 n02107574 n03976657 n03998194 n02088632 n04243546 n03788365 n02087046 n10565667 n03832673 n02412080 n01558993 n03492542 n04540053 n01796340 n04376876 n02395406 n03075370 n07753592 n02481823 n02457408 n02110806 n03877472 n01667778 n03131574 n03956157 n02108422 n02114548 n03272010 n03394916 n01774384 n03623198 n02027492 n04099969 n02106662 n02951358 n01798484 n13133613 n03207743 n04560804 n02268443 n03775071 n04346328 n01930112 n03584254 n02790996 n09256479 n01985128 n02480495 n02268853 n03627232 n03180011 n02233338 n03982430 n02841315 n03649909 n04336792 n09468604 n02056570 n02787622 n03764736 n02442845 n02437616 n03445924 n01917289 n02107312 n02137549 n03599486 n03721384 n04041544 n01824575 n04285008 n01687978 n01514668 n04554684 n04209239 n03272562 n03425413 n02797295 n02106382 n06359193 n03642806 n01677366 n03134739 n02105641 n01985128 n03594945 n07583066 n02667093 n02086646 n07590611 n02111889 n03857828 n04259630 n02730930 n04285008 n03095699 n03761084 n02167151 n04404412 n04254120 n04461696 n04192698 n01873310 n03763968 n02804414 n04325704 n01682714 n02120505 n03584829 n04356056 n04476259 n09332890 n04399382 n03676483 n03961711 n09332890 n02096294 n04532106 n04149813 n03891251 n06874185 n02769748 n04485082 n04277352 n03793489 n03788365 n02389026 n03709823 n03032252 n02606052 n03271574 n03492542 n01665541 n01675722 n03691459 n07892512 n02799071 n02007558 n02510455 n03742115 n04136333 n03630383 n02910353 n02111129 n02488702 n01950731 n04204238 n04461696 n02102318 n03538406 n03916031 n02130308 n04311174 n01667114 n02115641 n04487394 n02233338 n02099267 n01797886 n02051845 n04428191 n02124075 n04532670 n03775546 n07892512 n02100877 n04398044 n04590129 n02101388 n04254680 n04485082 n03026506 n04111531 n03924679 n01667778 n02169497 n04311004 n03947888 n02093754 n01818515 n03763968 n04380533 n02077923 n02488702 n01770393 n02226429 n07932039 n02095314 n01847000 n03250847 n04296562 n02100236 n03045698 n07590611 n03787032 n02101006 n01873310 n02009912 n02096051 n07749582 n02112018 n03000134 n03447721 n04118776 n03970156 n01944390 n07613480 n02879718 n01873310 n03187595 n03325584 n01496331 n02097298 n03793489 n02111500 n04311174 n01739381 n02114548 n02165105 n01930112 n02823428 n04111531 n02137549 n04355338 n03916031 n03791053 n02113186 n04081281 n02104029 n03483316 n04579145 n01558993 n01748264 n02791270 n03929660 n02129604 n02102040 n03796401 n02007558 n11879895 n06794110 n07614500 n02006656 n04065272 n02486261 n02640242 n01806143 n03991062 n02788148 n09472597 n03935335 n02510455 n03958227 n02105641 n04428191 n03018349 n02116738 n03773504 n02087046 n03709823 n01749939 n02190166 n02085782 n01843065 n03743016 n01828970 n01828970 n03908714 n03937543 n02817516 n04592741 n02869837 n03874293 n04540053 n03250847 n02971356 n02114548 n02113023 n04081281 n03857828 n03450230 n04127249 n02108089 n02093428 n04392985 n04254120 n02782093 n02012849 n03179701 n04357314 n13133613 n02992211 n04243546 n01664065 n01695060 n04005630 n03400231 n03733131 n02107142 n02104365 n04597913 n04238763 n04371430 n03877472 n04589890 n04154565 n01734418 n03781244 n07745940 n02109961 n01755581 n07742313 n04118776 n01734418 n02085782 n03100240 n02013706 n03658185 n03290653 n02105505 n03888257 n02865351 n02277742 n02099849 n03131574 n02102177 n02093428 n02814860 n01734418 n01580077 n04136333 n04483307 n01774384 n02364673 n06874185 n07754684 n07734744 n04487081 n07802026 n09399592 n03602883 n04435653 n02096437 n02672831 n02107683 n02086646 n01698640 n03485794 n03967562 n01664065 n03837869 n01950731 n02909870 n01756291 n02091467 n03658185 n02690373 n02012849 n03709823 n02123597 n13044778 n02167151 n03425413 n07730033 n03721384 n03126707 n02883205 n02111889 n03866082 n01698640 n04584207 n03485407 n02105251 n03743016 n03314780 n03769881 n01494475 n04005630 n03291819 n03721384 n04118776 n03868242 n04265275 n09835506 n03443371 n03459775 n04501370 n01688243 n03494278 n02486410 n02105251 n03956157 n02410509 n02116738 n04532106 n02100236 n04591157 n02398521 n04131690 n03935335 n02098105 n04428191 n02110627 n03970156 n03950228 n02110341 n04201297 n07932039 n07920052 n03063689 n02137549 n03100240 n01665541 n04099969 n02106382 n02009912 n03223299 n02091635 n03982430 n04548362 n01978455 n01614925 n02841315 n07711569 n04335435 n02892767 n03345487 n02948072 n04127249 n02909870 n02099712 n04162706 n01981276 n02085620 n02917067 n07716358 n04332243 n03724870 n04074963 n01984695 n03794056 n03929855 n01773157 n01806567 n04350905 n03804744 n10565667 n07747607 n03218198 n03942813 n01877812 n03924679 n07753592 n02113799 n02086079 n03814639 n02834397 n02109525 n07720875 n04273569 n03018349 n03404251 n03888257 n03485407 n07730033 n13052670 n02095889 n01739381 n01514859 n02106030 n07860988 n03775546 n04263257 n03485794 n03924679 n04228054 n02319095 n02747177 n03770679 n03980874 n02097658 n02988304 n07579787 n02137549 n01644373 n02870880 n04069434 n13040303 n02106550 n02804414 n07565083 n03877845 n03187595 n02074367 n02099712 n01950731 n03884397 n03776460 n04209133 n03697007 n01978287 n03792972 n07716906 n04146614 n03887697 n02095889 n02096177 n04435653 n02091032 n02840245 n02097658 n02002724 n02058221 n03127747 n04501370 n01817953 n02113186 n01877812 n04004767 n02441942 n02408429 n04116512 n02134418 n03529860 n03041632 n03447447 n03188531 n03770439 n03633091 n02086646 n02011460 n04209133 n04229816 n01622779 n01667114 n01685808 n02113186 n02097047 n03876231 n02699494 n03961711 n03530642 n03452741 n02708093 n01985128 n02894605 n03124170 n03633091 n13054560 n02112137 n02120505 n01532829 n03929660 n04589890 n04507155 n01685808 n02077923 n04523525 n04592741 n02056570 n03841143 n02226429 n04243546 n04285008 n02483708 n03944341 n04553703 n03977966 n02441942 n01818515 n03871628 n03692522 n07768694 n02607072 n04456115 n04590129 n03476991 n02091134 n03394916 n01990800 n02066245 n02279972 n01944390 n02105251 n04273569 n03857828 n02110185 n02096051 n01770081 n02259212 n02799071 n01806143 n03476684 n01796340 n03100240 n01632777 n02190166 n02066245 n03976657 n03788365 n02108422 n03400231 n04589890 n04435653 n02326432 n03954731 n04591157 n02823428 n07716358 n02088632 n01824575 n01631663 n02086079 n03995372 n04517823 n02480855 n03445777 n04357314 n03884397 n03445924 n03777754 n03133878 n03873416 n02086240 n04553703 n04133789 n07693725 n02895154 n02317335 n04613696 n01819313 n03977966 n02109047 n03000247 n02443114 n03272010 n01697457 n04200800 n02109047 n02840245 n01739381 n06794110 n01756291 n01748264 n03950228 n02971356 n02123159 n04346328 n02092339 n01729977 n03187595 n02454379 n03794056 n03967562 n04039381 n02879718 n02441942 n04515003 n04311174 n03100240 n03868242 n03126707 n04461696 n13054560 n04398044 n01667114 n01664065 n02106382 n04613696 n02948072 n12144580 n03877472 n02096585 n03935335 n04429376 n02110185 n03207941 n02123045 n03788195 n04259630 n02097209 n02092002 n01877812 n03529860 n02966687 n03980874 n02013706 n02776631 n02445715 n01496331 n01807496 n02112137 n02086646 n04118776 n03658185 n01985128 n02504013 n12998815 n02233338 n12057211 n07875152 n03840681 n03721384 n03908714 n02412080 n02113799 n02096437 n02669723 n03775546 n03393912 n07718472 n01883070 n02120079 n01532829 n04443257 n02917067 n02877765 n02115913 n07920052 n01773797 n02123159 n03447447 n04613696 n03933933 n04380533 n01728572 n03535780 n04599235 n02877765 n13037406 n02971356 n02504458 n02101388 n04370456 n09229709 n02113624 n02492035 n02089867 n09421951 n02219486 n02494079 n02963159 n03930630 n02206856 n02091831 n02504013 n02097298 n09428293 n04596742 n01632777 n02018207 n03344393 n03388549 n03791053 n01729322 n02018207 n03599486 n03297495 n02093859 n01629819 n04037443 n01693334 n02058221 n03141823 n04252225 n04418357 n01774384 n03871628 n03598930 n03032252 n02321529 n02117135 n02206856 n03944341 n02111129 n02346627 n03404251 n02113023 n02009229 n02879718 n01748264 n01773549 n04252077 n02825657 n03476991 n03584254 n04350905 n13052670 n04141076 n03388549 n02415577 n02607072 n04346328 n01914609 n02641379 n03782006 n01601694 n03388183 n03803284 n02690373 n02106662 n02097047 n07892512 n02277742 n10148035 n02412080 n02091635 n01917289 n03742115 n04074963 n03124043 n02669723 n04507155 n02808304 n02111500 n03761084 n01797886 n03874599 n03476991 n04404412 n02108915 n01694178 n02802426 n02974003 n03028079 n03944341 n03742115 n02111500 n02117135 n02092339 n04133789 n03868242 n07714990 n07579787 n04252077 n02096051 n02102480 n02174001 n03085013 n01740131 n02107312 n04162706 n02869837 n02412080 n04612504 n01807496 n04041544 n03459775 n02017213 n02101006 n07749582 n02109047 n07718472 n02877765 n01622779 n01882714 n03781244 n02137549 n02342885 n03498962 n04127249 n06785654 n02105412 n03447447 n09193705 n02326432 n04590129 n02892201 n03425413 n04235860 n03000247 n03272562 n03598930 n02174001 n03347037 n07920052 n01784675 n07718747 n02279972 n02097298 n03394916 n03977966 n03692522 n03825788 n07717556 n02727426 n02396427 n07747607 n04330267 n03062245 n02389026 n02871525 n02107142 n02012849 n02077923 n03532672 n03216828 n02486261 n01494475 n04251144 n02109047 n03649909 n01873310 n03710637 n01632458 n02077923 n04263257 n04423845 n02279972 n01728572 n02128757 n04552348 n07747607 n07932039 n02071294 n02951585 n02123159 n04201297 n03680355 n02892767 n03930630 n01798484 n01729977 n01798484 n04371430 n02090379 n03347037 n03998194 n03947888 n02108422 n02837789 n03888257 n01739381 n04179913 n07590611 n02279972 n03063599 n02113712 n02444819 n03532672 n02687172 n07720875 n01819313 n02445715 n03793489 n02092002 n03899768 n03424325 n02978881 n01534433 n02999410 n04557648 n01608432 n02391049 n03929660 n02835271 n03876231 n02102318 n02777292 n04004767 n03933933 n07836838 n01751748 n07718472 n04254777 n03424325 n03063599 n02095570 n01824575 n04311004 n01677366 n03062245 n03627232 n03134739 n04372370 n03075370 n02802426 n03447721 n01829413 n02090379 n04192698 n03743016 n01692333 n02099601 n03720891 n02951585 n01532829 n02281406 n02096177 n03920288 n02927161 n04179913 n02100236 n04515003 n07802026 n02088632 n03950228 n09193705 n03841143 n02093647 n04336792 n04357314 n03929660 n02093647 n02093428 n04049303 n01873310 n02268853 n03838899 n01484850 n03337140 n01537544 n02174001 n03063599 n02640242 n03721384 n04596742 n02795169 n02492660 n02892201 n02361337 n04417672 n02113624 n02028035 n02999410 n01629819 n02115913 n02089078 n01768244 n04263257 n01944390 n01945685 n02071294 n03937543 n02391049 n02018207 n02129165 n02074367 n01518878 n03445777 n04149813 n02669723 n02097047 n02865351 n07753592 n02814533 n03874599 n07720875 n04116512 n02417914 n02027492 n03877845 n02123159 n04264628 n02236044 n02108089 n04133789 n04147183 n02085620 n02091134 n03944341 n13037406 n02422106 n01498041 n03775071 n04357314 n02102040 n01682714 n01775062 n03014705 n01693334 n01616318 n04604644 n03109150 n02088238 n01981276 n02422106 n01985128 n04026417 n01644900 n02095570 n04266014 n02236044 n02115913 n01883070 n03840681 n02481823 n03447721 n01981276 n03673027 n02835271 n02123159 n02113186 n03947888 n02100877 n03814639 n02510455 n04037443 n03929660 n03837869 n02791270 n03461385 n02951585 n04525305 n02788148 n02165105 n04592741 n02091467 n03188531 n02091134 n03617480 n03954731 n04328186 n02105162 n02870880 n03028079 n04596742 n04204347 n02108422 n01740131 n02363005 n03840681 n04116512 n02138441 n04367480 n01773797 n04350905 n02095314 n09229709 n02494079 n03788365 n02117135 n01641577 n04192698 n02087046 n12620546 n02410509 n03777568 n02948072 n03662601 n02690373 n02441942 n03127925 n02066245 n02097130 n03187595 n02977058 n03977966 n03291819 n02788148 n03482405 n02090721 n02105641 n04525038 n04328186 n03424325 n03498962 n03223299 n04552348 n09193705 n07697537 n04596742 n01797886 n01980166 n02093991 n01688243 n01817953 n03485407 n01795545 n02794156 n02102480 n01819313 n03188531 n02965783 n03534580 n02395406 n02033041 n03337140 n04200800 n02797295 n02804414 n02088364 n03000247 n03937543 n02389026 n01682714 n02101388 n01685808 n07880968 n02509815 n03938244 n04532670 n03967562 n03196217 n02892767 n01843383 n02978881 n01748264 n04423845 n02396427 n03388043 n03000134 n04429376 n03483316 n03485407 n02256656 n04086273 n02356798 n02747177 n01773157 n03297495 n02403003 n07718472 n03445924 n01843383 n02328150 n03447447 n02124075 n02098105 n06596364 n03388183 n06596364 n02504013 n04041544 n02009912 n02093859 n04350905 n02317335 n07871810 n02105855 n02607072 n02095570 n02389026 n06785654 n09421951 n02114855 n03216828 n01855032 n03095699 n02115641 n01955084 n03095699 n03133878 n03902125 n02395406 n04371774 n04525305 n03345487 n02108551 n01774750 n02480495 n03594945 n02091635 n04557648 n03388549 n01784675 n13040303 n13037406 n01776313 n02099601 n03134739 n02110185 n01537544 n13133613 n02102040 n01530575 n01735189 n01491361 n07583066 n02137549 n03908714 n03045698 n01914609 n02326432 n01631663 n03868242 n03920288 n03729826 n02002724 n03776460 n03535780 n03146219 n02094258 n03841143 n02797295 n02500267 n04392985 n02504458 n01773797 n04325704 n03920288 n02999410 n02655020 n02097474 n09472597 n02099712 n02980441 n04461696 n02814533 n03495258 n01784675 n03000684 n07760859 n04141327 n02641379 n04200800 n04141327 n01943899 n04037443 n04357314 n02097474 n03857828 n01630670 n02417914 n02747177 n04590129 n02037110 n03841143 n04204238 n04252225 n02791270 n09193705 n04376876 n02815834 n01817953 n04356056 n02007558 n02917067 n03544143 n03954731 n03372029 n02930766 n04310018 n03630383 n04009552 n02132136 n07745940 n02094114 n02480855 n02093991 n02113624 n03662601 n12144580 n02443114 n01914609 n04040759 n02834397 n02276258 n04557648 n07718472 n02108915 n07753113 n02093428 n03976467 n01984695 n02492035 n04275548 n02100877 n04254777 n02799071 n03908618 n03773504 n03347037 n02107574 n03529860 n02093256 n03291819 n02110958 n04275548 n04273569 n02113023 n03958227 n04417672 n03272562 n01980166 n01514668 n02002556 n02086079 n02104365 n01677366 n03770679 n02096177 n02094258 n01440764 n01943899 n02099849 n03899768 n01729322 n01776313 n06359193 n02447366 n03857828 n03384352 n02111277 n02226429 n04366367 n01737021 n01537544 n02951358 n04371430 n03196217 n02100236 n04443257 n04479046 n03983396 n03218198 n02105505 n01978287 n04286575 n03866082 n04208210 n03891332 n03857828 n02504013 n03982430 n04554684 n04317175 n04552348 n12057211 n02483362 n02097474 n02361337 n02120505 n03594945 n03498962 n01978455 n01829413 n02105505 n01978455 n04356056 n07718472 n01518878 n02795169 n03617480 n03372029 n02099267 n04229816 n07717410 n02895154 n02110185 n04149813 n02056570 n04404412 n03028079 n02110341 n04120489 n02804414 n02988304 n02167151 n04392985 n07747607 n02966687 n09399592 n03761084 n03400231 n04136333 n04423845 n02978881 n02099429 n07892512 n02137549 n01807496 n04033995 n03876231 n03063599 n04005630 n02489166 n03197337 n04456115 n03388043 n03062245 n03899768 n04371430 n03729826 n02165456 n02769748 n02412080 n02086240 n01665541 n02412080 n02445715 n01735189 n02086079 n02110185 n07697537 n02112350 n02137549 n02398521 n02971356 n03980874 n02106030 n02980441 n09193705 n03393912 n04562935 n03691459 n02870880 n02443484 n02979186 n02100735 n01682714 n02607072 n01688243 n02454379 n02443484 n07248320 n03814639 n04509417 n04019541 n03938244 n01667114 n03791053 n04442312 n02226429 n01693334 n02794156 n01773549 n01685808 n03598930 n02017213 n02124075 n02091134 n01530575 n03657121 n01768244 n04552348 n02106030 n01667114 n02790996 n02699494 n03291819 n01694178 n02423022 n01855672 n03459775 n04070727 n03770439 n03709823 n01924916 n06785654 n03272562 n02099429 n03100240 n02174001 n06794110 n03759954 n04357314 n03584829 n03345487 n03443371 n02100236 n03709823 n04350905 n02086910 n02977058 n02112018 n04409515 n04118776 n03376595 n02101556 n02776631 n02108551 n03291819 n07745940 n02109047 n04336792 n03494278 n03388183 n02398521 n03485794 n03018349 n03967562 n02116738 n02085620 n02108551 n02894605 n07695742 n01693334 n04356056 n02120079 n04540053 n03134739 n01644900 n01697457 n02108000 n03720891 n03733281 n04404412 n02098105 n02089867 n01530575 n03884397 n03602883 n02090721 n04228054 n03208938 n02483708 n02017213 n02097047 n02509815 n02447366 n03532672 n01518878 n02123045 n01847000 n02690373 n02092002 n02096177 n04487081 n02526121 n02124075 n03717622 n02106030 n02002724 n03240683 n03902125 n03709823 n02974003 n02100583 n03201208 n01833805 n13052670 n02219486 n02107574 n07742313 n02112018 n02489166 n02441942 n07753275 n01819313 n02643566 n03110669 n04482393 n04613696 n02129604 n02088466 n02134418 n02114855 n04591157 n02277742 n02112350 n03590841 n04476259 n02326432 n01755581 n11939491 n04264628 n12998815 n02101388 n02137549 n02236044 n02123394 n02909870 n03733805 n04120489 n03958227 n02100877 n02169497 n02168699 n03794056 n04146614 n03787032 n03937543 n03388549 n01978455 n06874185 n03717622 n07875152 n01820546 n03445777 n02109961 n04127249 n07716358 n03661043 n01534433 n03982430 n02490219 n04152593 n03062245 n01644373 n02951358 n04041544 n02974003 n02102318 n04127249 n02500267 n04548280 n02690373 n02125311 n01950731 n02007558 n12267677 n03045698 n01443537 n02447366 n02124075 n03916031 n03146219 n02843684 n02980441 n03187595 n02091134 n03124170 n07749582 n03594734 n02666196 n03782006 n07697537 n02111889 n03724870 n02085620 n03492542 n02102177 n04515003 n02167151 n03877472 n07720875 n02097209 n03208938 n01601694 n04067472 n02174001 n02123394 n07583066 n03599486 n04005630 n01698640 n03047690 n03793489 n02916936 n02124075 n01592084 n03127747 n02130308 n02094114 n04131690 n03063599 n02110341 n04008634 n03218198 n01496331 n03146219 n03496892 n02097047 n02397096 n03942813 n03787032 n02125311 n02119789 n01945685 n02105162 n03127747 n02107142 n02992529 n12620546 n04067472 n01630670 n02423022 n02948072 n01491361 n04067472 n04263257 n03223299 n02088238 n02231487 n01739381 n01532829 n02099849 n09256479 n01580077 n03895866 n02037110 n07742313 n02091032 n03841143 n01986214 n04356056 n02971356 n01774384 n02097474 n04019541 n07753275 n01944390 n04371774 n02120079 n07932039 n04033901 n04074963 n02843684 n03457902 n02089078 n03544143 n02088238 n02342885 n01753488 n02895154 n04009552 n01806143 n03794056 n01740131 n02423022 n02033041 n03942813 n04023962 n03630383 n04251144 n04376876 n02107142 n01740131 n03075370 n01494475 n04590129 n02786058 n01773549 n02028035 n01978287 n02966193 n03982430 n02442845 n07734744 n07615774 n03970156 n03000134 n01883070 n02124075 n07892512 n03970156 n03958227 n04532670 n03743016 n04479046 n02011460 n02391049 n03877845 n01981276 n02488291 n01592084 n03544143 n02168699 n01494475 n03887697 n03249569 n03777754 n02100236 n02017213 n02999410 n03590841 n03476991 n04192698 n01582220 n04604644 n03658185 n03773504 n02640242 n01819313 n02906734 n07697537 n02403003 n04270147 n03544143 n02859443 n03733131 n03733131 n04251144 n01806143 n04254120 n04350905 n02090379 n01582220 n03868242 n02088466 n02793495 n04136333 n03476684 n02129604 n02112137 n01622779 n02087046 n02114548 n07875152 n01773549 n03721384 n01843065 n01601694 n04254680 n07860988 n04523525 n01843383 n03314780 n04069434 n02791270 n04125021 n07880968 n03314780 n04346328 n04335435 n02093647 n04532106 n04465501 n02102177 n04344873 n03788195 n03803284 n09835506 n01872401 n01688243 n02233338 n03633091 n03888605 n02095570 n04579145 n03598930 n02980441 n03095699 n02088466 n04296562 n01739381 n02033041 n04346328 n01695060 n03733281 n04265275 n01796340 n07880968 n02894605 n04465501 n01644900 n03100240 n03447721 n03792782 n01828970 n02486261 n02690373 n01774750 n09229709 n03045698 n03874293 n12267677 n03637318 n02398521 n02782093 n01728572 n02457408 n04005630 n04525305 n01820546 n02138441 n03532672 n02808440 n12985857 n02085620 n04584207 n02125311 n07742313 n03355925 n03868242 n03871628 n03840681 n04310018 n02793495 n02489166 n02727426 n04592741 n02841315 n02490219 n04273569 n04228054 n03991062 n02093647 n02113023 n01698640 n04591713 n02111277 n04596742 n02110627 n03720891 n04251144 n03179701 n02091244 n07745940 n03000247 n04243546 n07697313 n03127925 n01985128 n03942813 n02013706 n02483708 n01632458 n02279972 n02009912 n02256656 n01768244 n02091635 n03770679 n12144580 n01806567 n04536866 n03991062 n02391049 n02326432 n04443257 n02097047 n02101006 n02051845 n03933933 n03595614 n07695742 n07579787 n02120079 n02110627 n02095314 n03201208 n03803284 n02444819 n03899768 n02233338 n02747177 n03483316 n04136333 n03220513 n03623198 n03134739 n03630383 n02808440 n03769881 n02799071 n04019541 n01498041 n04428191 n02094433 n03450230 n02092002 n03929660 n03000134 n01914609 n03721384 n04389033 n02128385 n03000247 n02091244 n02108000 n02110063 n02128385 n02641379 n01664065 n02109525 n07802026 n07714571 n03691459 n02109961 n01688243 n04515003 n04252225 n02877765 n03476991 n07717410 n04389033 n02129165 n01440764 n12985857 n04371430 n03447721 n02441942 n02110958 n02094433 n04146614 n03857828 n03788195 n03804744 n02102040 n02317335 n09246464 n02110958 n02256656 n03781244 n01689811 n02487347 n02092002 n03733805 n01531178 n02454379 n02088238 n01729322 n01945685 n01774384 n01632458 n03776460 n01877812 n07615774 n02423022 n03384352 n01518878 n03000684 n02018207 n03876231 n02113799 n01855032 n02910353 n02109047 n03967562 n02112018 n02708093 n02417914 n13040303 n04005630 n02794156 n01689811 n02113186 n03476991 n03773504 n03868863 n03788365 n02133161 n02708093 n07718747 n02106030 n03916031 n02493793 n02277742 n02701002 n04238763 n07742313 n01755581 n02321529 n01728572 n12057211 n03016953 n04009552 n02107312 n04486054 n03837869 n04127249 n03837869 n03895866 n03032252 n04380533 n02777292 n01729322 n02607072 n03792972 n03930630 n02814533 n04005630 n04099969 n02110806 n03594734 n03697007 n02071294 n02346627 n02096294 n01440764 n12267677 n02097658 n02111889 n03825788 n04153751 n04259630 n04254680 n02092002 n01833805 n04200800 n04435653 n07753113 n03888257 n01744401 n04192698 n02415577 n04550184 n02097474 n02793495 n04252225 n03388549 n02422106 n02807133 n02090622 n03598930 n01592084 n01924916 n07584110 n02114712 n03874599 n03590841 n09246464 n04589890 n03794056 n03180011 n02104029 n03272562 n04263257 n03874599 n07714990 n02791124 n03690938 n02837789 n02138441 n02859443 n03026506 n02442845 n04004767 n02397096 n04120489 n01882714 n03124170 n03992509 n01818515 n03124170 n02002724 n03680355 n02096051 n02492660 n04033995 n04019541 n02108915 n01872401 n04366367 n04501370 n04355338 n03661043 n02536864 n01796340 n02326432 n02493509 n02099849 n02096051 n02974003 n03481172 n03089624 n01773157 n03445777 n02138441 n07565083 n03916031 n02363005 n01944390 n02093754 n04560804 n12267677 n03967562 n07932039 n03666591 n02256656 n03770439 n04509417 n03720891 n07565083 n07875152 n01843383 n03481172 n02708093 n02165105 n02123394 n01644900 n02109961 n04335435 n02096177 n02110185 n02687172 n04116512 n01693334 n03133878 n02493793 n01806143 n07892512 n03670208 n04264628 n03014705 n07615774 n02992211 n03063599 n04209239 n02489166 n07920052 n04081281 n04486054 n02783161 n03594734 n03016953 n02834397 n04409515 n03544143 n01924916 n02174001 n04599235 n07754684 n07753275 n02112706 n03197337 n02095570 n02120079 n03804744 n01820546 n02099849 n04004767 n02092339 n03983396 n01749939 n04162706 n04264628 n03598930 n02098286 n07892512 n03929660 n04209133 n03000684 n04589890 n02963159 n02206856 n03970156 n04418357 n02090379 n03785016 n02488291 n04501370 n04118538 n04311174 n03838899 n02906734 n01665541 n03188531 n03642806 n03220513 n02105855 n03642806 n02123394 n02457408 n03208938 n04536866 n02056570 n02088466 n04019541 n02165456 n02097209 n02108000 n04536866 n02777292 n02939185 n04366367 n01616318 n03337140 n04229816 n03792782 n07831146 n03903868 n03041632 n02089867 n07695742 n03534580 n03271574 n01843383 n07836838 n02279972 n07584110 n02119789 n01843065 n02206856 n03042490 n02104029 n04447861 n03814906 n02280649 n03494278 n02256656 n02909870 n03602883 n01748264 n02093428 n03841143 n03710193 n01675722 n02395406 n03250847 n02397096 n12267677 n03770679 n02007558 n03642806 n07871810 n03742115 n02190166 n07716358 n01978455 n02169497 n04204347 n03417042 n02793495 n03530642 n03188531 n02105505 n02804414 n02093754 n02092339 n02860847 n02085936 n02786058 n02056570 n02165456 n03710637 n04200800 n04592741 n03935335 n02102973 n04296562 n04328186 n12267677 n01824575 n02494079 n02730930 n02356798 n03937543 n03290653 n02109047 n02112137 n02104365 n02085620 n09246464 n01817953 n03345487 n02410509 n02281787 n04487081 n01770393 n03814906 n01728920 n02481823 n01768244 n03891251 n04111531 n03347037 n03929660 n02951585 n02840245 n02489166 n01756291 n02669723 n07583066 n02268443 n04552348 n04263257 n04371774 n03379051 n04355338 n04355933 n04118538 n04099969 n04507155 n02480495 n03814639 n02105855 n02487347 n04553703 n04310018 n03895866 n03000247 n01796340 n03903868 n03903868 n07583066 n04192698 n02018795 n02096177 n02098286 n03970156 n03733281 n07614500 n03388043 n02110958 n01601694 n07715103 n02127052 n02325366 n03673027 n02950826 n02091467 n03110669 n03840681 n03680355 n02441942 n03485407 n02097474 n02398521 n02776631 n02701002 n02325366 n03388043 n07873807 n03763968 n04515003 n02094258 n02422699 n01667114 n04263257 n07590611 n02110185 n03899768 n03877845 n03197337 n12144580 n04152593 n02108089 n02493793 n02105855 n03481172 n04228054 n03899768 n02093754 n01737021 n02415577 n01685808 n01773157 n02101388 n03710721 n01873310 n03627232 n02708093 n02102318 n07747607 n02791124 n02870880 n03388549 n04372370 n03775071 n04347754 n03026506 n07720875 n01883070 n03690938 n03776460 n01558993 n04552348 n03457902 n07768694 n04356056 n04485082 n09288635 n07760859 n03991062 n04136333 n03938244 n02102177 n03991062 n04550184 n04127249 n01498041 n03691459 n03255030 n02417914 n02099429 n04254777 n04277352 n01855032 n01983481 n04604644 n02102973 n02790996 n02094258 n02489166 n03887697 n02443114 n04228054 n01667778 n02172182 n04133789 n03196217 n02018207 n03124170 n02841315 n02174001 n02138441 n02364673 n03874599 n02690373 n12267677 n02071294 n02396427 n02100236 n04125021 n01704323 n02281406 n02226429 n02097298 n02787622 n02086910 n02415577 n02123597 n03977966 n03743016 n02951585 n04548280 n03216828 n02096437 n02233338 n02536864 n01773157 n03657121 n02883205 n03777754 n01843065 n15075141 n04462240 n02086240 n03832673 n04026417 n04346328 n02808440 n04152593 n03017168 n03710193 n02110341 n02111500 n02117135 n02018207 n03769881 n02087394 n04286575 n02105855 n03218198 n04509417 n02749479 n01756291 n03584254 n07613480 n02437312 n04458633 n01518878 n01677366 n02797295 n07717410 n03775071 n04209133 n03425413 n04347754 n02028035 n02085936 n04317175 n04310018 n13044778 n01693334 n03047690 n03983396 n02268443 n04442312 n02109961 n04019541 n04335435 n07932039 n03743016 n02268443 n04523525 n02134418 n02860847 n02096051 n02817516 n04238763 n12620546 n02092002 n13037406 n03000134 n04228054 n02002724 n02086079 n03394916 n04265275 n04136333 n02481823 n04041544 n03272562 n02999410 n02488702 n01824575 n03967562 n02730930 n01843383 n04604644 n02177972 n01744401 n07860988 n04153751 n01491361 n03297495 n04346328 n03956157 n02325366 n02974003 n03733281 n03899768 n07717556 n02114367 n04366367 n03400231 n02808440 n01968897 n02259212 n03642806 n01955084 n03776460 n09835506 n01775062 n02979186 n02093991 n04263257 n04485082 n04482393 n03179701 n01739381 n02088238 n03991062 n13040303 n01534433 n01978455 n02480495 n02086910 n02097209 n02096294 n04209133 n09428293 n03018349 n07871810 n01986214 n01491361 n02106662 n03028079 n04179913 n04264628 n03450230 n04376876 n02129165 n02127052 n02111500 n04254680 n02951358 n03854065 n02488702 n02834397 n02128757 n03075370 n07583066 n03047690 n01829413 n03124043 n01843065 n07697537 n07734744 n02834397 n02814860 n02481823 n04356056 n03124043 n01990800 n03291819 n02487347 n03658185 n04404412 n03791053 n03866082 n02930766 n02074367 n02777292 n04458633 n02098286 n02843684 n04592741 n01641577 n03529860 n01484850 n04141076 n03485407 n03590841 n04037443 n07613480 n01688243 n04074963 n02701002 n03535780 n02090379 n02111889 n06874185 n07693725 n07802026 n07754684 n01774384 n01514668 n02028035 n04423845 n02096051 n02115641 n01774384 n02894605 n03026506 n02666196 n03690938 n02112706 n03787032 n01748264 n03733131 n03920288 n04141076 n02101006 n03944341 n12267677 n03782006 n03924679 n02437616 n02992529 n02871525 n02104029 n03376595 n04243546 n03854065 n03983396 n02104029 n01883070 n07716906 n02092002 n02114855 n03255030 n01873310 n01704323 n04192698 n03485407 n02916936 n07590611 n02869837 n03527444 n03595614 n02105412 n09835506 n04033901 n04285008 n02326432 n02104029 n07716906 n07760859 n03832673 n03492542 n02408429 n03781244 n02099849 n03840681 n02092339 n03590841 n01685808 n01694178 n07753592 n03535780 n02730930 n04270147 n02011460 n04483307 n01688243 n01737021 n02033041 n03100240 n03447447 n03584829 n02483362 n03998194 n02483362 n03481172 n01558993 n04606251 n01537544 n02808440 n03825788 n01773157 n04507155 n04141076 n02504013 n04562935 n07590611 n04357314 n01608432 n02097658 n03950228 n02814860 n01498041 n04553703 n12768682 n03032252 n02097474 n01955084 n07695742 n02483708 n02106550 n04515003 n02226429 n04370456 n03000684 n03837869 n02113799 n02102480 n03459775 n02120079 n02071294 n13054560 n04192698 n02504458 n04372370 n04251144 n02006656 n03908618 n04311174 n03018349 n13133613 n03796401 n04409515 n02102480 n02843684 n04040759 n02086646 n02948072 n07836838 n03476684 n02236044 n04296562 n02017213 n04612504 n02769748 n07717410 n07717410 n01751748 n03773504 n02085782 n04562935 n04239074 n07760859 n07768694 n03160309 n01692333 n03045698 n03272562 n04417672 n03954731 n04505470 n04154565 n03691459 n04209239 n04409515 n02363005 n07734744 n02422699 n03529860 n04235860 n04536866 n01981276 n03888257 n02276258 n03388043 n07718472 n02869837 n02006656 n03595614 n02917067 n01440764 n01855032 n03930630 n02105505 n01491361 n03345487 n04372370 n03187595 n01491361 n04264628 n04557648 n02119022 n02607072 n02396427 n07615774 n04553703 n07718472 n03530642 n02100583 n04557648 n03485407 n07745940 n01531178 n03954731 n04465501 n12768682 n04486054 n03595614 n04548362 n07753113 n02701002 n04525038 n02317335 n02443484 n02939185 n03314780 n02089078 n02859443 n02091467 n02124075 n03690938 n02091831 n02454379 n04065272 n03196217 n02655020 n04487394 n04286575 n03125729 n03854065 n03670208 n02108422 n02102480 n02988304 n02009229 n02099267 n02097209 n02948072 n02110806 n02177972 n03494278 n01737021 n13133613 n04447861 n04591713 n03495258 n02859443 n02860847 n04554684 n03637318 n04258138 n01797886 n03095699 n04041544 n03602883 n04525038 n03706229 n02093859 n02119022 n02454379 n07614500 n02276258 n07714571 n02177972 n02129604 n01601694 n04355338 n02999410 n07760859 n02165456 n02111129 n03220513 n02437616 n04465501 n03272010 n02167151 n02174001 n02607072 n04254120 n07584110 n03388549 n03063599 n02795169 n02727426 n02799071 n10565667 n02454379 n07717410 n02504013 n04266014 n04493381 n03832673 n02033041 n02447366 n03314780 n02930766 n02110806 n04033901 n02870880 n01872401 n03063689 n03814906 n01798484 n02219486 n02111129 n03124170 n03443371 n01855672 n03089624 n04239074 n03814906 n04285008 n02097474 n01819313 n02364673 n03773504 n04310018 n04398044 n13054560 n01665541 n02025239 n03976657 n04553703 n07715103 n02018795 n03794056 n03595614 n03026506 n02128925 n03717622 n03041632 n04417672 n07753275 n07718747 n01728920 n03447447 n02114548 n02769748 n01784675 n02100877 n02097658 n04523525 n02002556 n03404251 n03786901 n04162706 n02776631 n13133613 n04254777 n04355338 n02104029 n04201297 n03775071 n02093754 n03992509 n03134739 n12057211 n04116512 n02281787 n07920052 n02105641 n01943899 n03841143 n02487347 n04486054 n02281787 n02342885 n03775546 n02011460 n02089078 n03776460 n04423845 n02865351 n03089624 n04371774 n01514859 n01734418 n02328150 n09468604 n03063689 n02951585 n02095314 n03792972 n03776460 n02346627 n02894605 n01775062 n02130308 n04192698 n13044778 n01751748 n07697537 n03868242 n04525038 n02259212 n02391049 n04399382 n02667093 n01530575 n01632777 n03259280 n02840245 n04019541 n02422699 n02113712 n03930630 n02643566 n02231487 n04487394 n03937543 n03355925 n01828970 n01580077 n07932039 n02877765 n02167151 n03476991 n02825657 n01751748 n03207941 n03840681 n09288635 n01843383 n04536866 n03814906 n04429376 n04428191 n03814906 n04344873 n01693334 n03417042 n02747177 n01986214 n02277742 n03127747 n02422699 n12985857 n02672831 n02823428 n02112018 n04037443 n07695742 n02536864 n02788148 n02088364 n02105251 n02105641 n02123159 n03729826 n03125729 n04179913 n02097474 n03297495 n03042490 n04252225 n03141823 n09193705 n04149813 n02655020 n03788365 n03085013 n02037110 n01944390 n02120505 n04536866 n07695742 n02951358 n03417042 n03733131 n04325704 n03843555 n03179701 n02009229 n04523525 n02098413 n02096585 n03424325 n02105162 n04590129 n01537544 n02093991 n03394916 n01514668 n13133613 n03445924 n03873416 n01632458 n03706229 n02085782 n01632777 n04371430 n12144580 n01665541 n02102040 n02701002 n04131690 n04347754 n13040303 n01775062 n02114712 n01833805 n03759954 n02860847 n04330267 n02859443 n02138441 n01774384 n07717556 n04311004 n03908714 n02361337 n04065272 n04146614 n04179913 n01697457 n03857828 n04285008 n02089078 n01755581 n02056570 n02701002 n02483708 n02101556 n01737021 n03874599 n02107683 n03657121 n01592084 n03995372 n03788195 n02100877 n03447447 n09399592 n04350905 n04266014 n02979186 n02988304 n02879718 n03032252 n01530575 n03291819 n04131690 n02037110 n01632458 n02102177 n04367480 n01807496 n02107908 n01740131 n02096585 n04235860 n02363005 n02110958 n07711569 n03384352 n03530642 n03761084 n03602883 n01531178 n01774384 n04456115 n01985128 n01694178 n03065424 n04589890 n04049303 n07248320 n06874185 n04604644 n01775062 n02123597 n02095570 n01985128 n02115913 n01622779 n01601694 n04589890 n01560419 n01440764 n02051845 n03218198 n03047690 n03854065 n02442845 n02361337 n02835271 n01531178 n02108422 n02115913 n03141823 n02088238 n03690938 n03207941 n02510455 n01806143 n01740131 n03854065 n02488291 n04428191 n03063599 n02101556 n02087046 n02101556 n03792972 n04296562 n02101006 n02776631 n01773797 n03709823 n04458633 n02281406 n03691459 n03692522 n02089867 n03868863 n02012849 n03763968 n01944390 n01667114 n03950228 n02128385 n02319095 n04553703 n03452741 n03345487 n02672831 n03935335 n02104365 n01592084 n04149813 n03594734 n02233338 n01688243 n07718472 n03394916 n13040303 n01986214 n02510455 n04285008 n03956157 n02264363 n03127747 n03445777 n04467665 n03240683 n03065424 n04517823 n02165105 n03602883 n01753488 n04399382 n09256479 n02086910 n03956157 n03485794 n02484975 n02666196 n02097209 n03535780 n02112018 n03109150 n04590129 n01667778 n02787622 n02088364 n03388549 n02494079 n01843065 n02108551 n03929855 n03498962 n02109525 n04328186 n09256479 n04540053 n03459775 n03982430 n02444819 n01494475 n02086079 n02125311 n03529860 n01843383 n03992509 n01641577 n04099969 n04254777 n01608432 n02346627 n02397096 n02676566 n01491361 n02074367 n04252225 n04485082 n02092002 n02098286 n02727426 n03100240 n13054560 n02097298 n02123045 n02002724 n02109047 n03131574 n02692877 n02088632 n04465501 n02930766 n01843065 n03697007 n02102973 n04147183 n02117135 n07754684 n02787622 n02114548 n04515003 n01855672 n01682714 n02110063 n04127249 n03127925 n04429376 n03710193 n03796401 n02786058 n02794156 n02112018 n02423022 n02094114 n02092339 n03344393 n03888605 n02437312 n02107574 n03710637 n01491361 n04074963 n02128385 n04044716 n02093991 n02113186 n01592084 n07714990 n02174001 n02777292 n02090379 n04509417 n02486261 n02841315 n02096051 n01768244 n03895866 n03891332 n02102177 n04525038 n03777754 n07716906 n02091244 n02966687 n01981276 n02092339 n04612504 n09229709 n02099429 n04540053 n03935335 n01644373 n02088466 n04380533 n02105162 n02916936 n01944390 n02123159 n03459775 n01944390 n02100735 n01740131 n03599486 n02169497 n03888605 n04296562 n03794056 n03110669 n02356798 n03032252 n04482393 n03888605 n01748264 n02098413 n03967562 n03706229 n13052670 n04252225 n02009229 n04252225 n09421951 n01930112 n04461696 n04208210 n02443484 n03045698 n03967562 n07880968 n02177972 n01698640 n02704792 n04328186 n01828970 n04482393 n03400231 n03394916 n04467665 n04259630 n01860187 n03868863 n03000134 n02783161 n02509815 n04465501 n02417914 n04482393 n02787622 n02089867 n03240683 n02403003 n04296562 n02782093 n02892201 n03777754 n04612504 n03372029 n01756291 n03902125 n03355925 n01843383 n04579432 n02091134 n04579432 n03481172 n02841315 n07831146 n03075370 n02009912 n04201297 n02396427 n01753488 n03249569 n04090263 n01704323 n02526121 n04204347 n02777292 n03126707 n04254120 n02111277 n01582220 n02206856 n02939185 n01693334 n02641379 n04263257 n04347754 n07734744 n01990800 n04399382 n04270147 n03944341 n01773549 n03259280 n02089078 n02094433 n04525305 n04493381 n01669191 n02066245 n02841315 n03796401 n04371430 n04548362 n03944341 n01773157 n03223299 n03692522 n03594945 n02100877 n03000134 n02783161 n03345487 n02802426 n01944390 n02817516 n02102973 n03956157 n03627232 n02114712 n03837869 n02797295 n04458633 n03196217 n02963159 n02110341 n02108551 n09468604 n03452741 n02174001 n04380533 n07716358 n04037443 n03803284 n03958227 n09288635 n04442312 n03272562 n03891251 n04118776 n04532670 n01742172 n03733281 n02102177 n03026506 n02606052 n01818515 n04589890 n04428191 n02279972 n02123045 n04254120 n03000684 n01983481 n02704792 n07590611 n04162706 n02088632 n02112706 n03938244 n02112018 n02123597 n01531178 n02325366 n03000684 n02066245 n02859443 n03063599 n07753113 n02999410 n03777568 n02108089 n01872401 n02025239 n01484850 n03899768 n04162706 n02110341 n02091467 n04417672 n03000134 n04356056 n04417672 n01689811 n02412080 n02086646 n02096294 n01622779 n02089973 n02835271 n09193705 n04111531 n04456115 n09193705 n03633091 n07749582 n07697537 n02860847 n01855672 n03743016 n02077923 n07754684 n01833805 n02013706 n03976657 n03134739 n03720891 n02837789 n04355933 n03584829 n09472597 n01843065 n01749939 n03717622 n03982430 n02504458 n02127052 n03127747 n04026417 n03866082 n01872401 n02094258 n03291819 n02110627 n03982430 n02093256 n02277742 n02965783 n04428191 n01740131 n02795169 n02119789 n03535780 n03461385 n01980166 n02486410 n03720891 n04597913 n03666591 n02843684 n04252225 n10565667 n02268443 n01491361 n02098105 n03775071 n03187595 n07760859 n02259212 n03042490 n03942813 n04069434 n04120489 n01820546 n04548280 n07718472 n02417914 n02095314 n06874185 n03447447 n03983396 n04592741 n02102177 n03649909 n03594945 n02099712 n04370456 n04517823 n07875152 n03207941 n02398521 n03954731 n01796340 n01798484 n02113712 n01491361 n04423845 n03483316 n04461696 n02106550 n01773157 n13052670 n02091244 n03706229 n01560419 n03832673 n02492660 n04099969 n03982430 n04532670 n01631663 n02085782 n01728920 n03240683 n04584207 n01806567 n01729977 n01601694 n04350905 n04179913 n04592741 n02108422 n02110806 n02814533 n01773797 n02704792 n02782093 n03916031 n03467068 n03710721 n04554684 n01955084 n07717556 n02009229 n02256656 n03095699 n02094258 n02486410 n02027492 n04200800 n04371430 n03662601 n02444819 n01665541 n01614925 n02112018 n03773504 n04505470 n02951358 n02948072 n02101556 n03868242 n02093256 n01641577 n02128385 n03000684 n03874293 n03134739 n01440764 n02268853 n07584110 n04399382 n01843065 n03188531 n02086240 n04540053 n01829413 n04462240 n03018349 n03782006 n07730033 n03676483 n04275548 n03930630 n03764736 n02226429 n02007558 n04149813 n01820546 n01829413 n02110185 n02107683 n03840681 n02018207 n01833805 n03902125 n03868863 n03443371 n02113978 n03793489 n02859443 n02097047 n04192698 n07590611 n07880968 n07697537 n02342885 n02398521 n02002724 n02910353 n02442845 n02906734 n02494079 n02091831 n02823750 n04447861 n01796340 n03089624 n03924679 n01980166 n04435653 n03649909 n02107142 n02110063 n02403003 n04081281 n01735189 n01532829 n03891251 n02077923 n03977966 n03452741 n04465501 n02777292 n02113799 n04367480 n03787032 n01744401 n02667093 n03933933 n01580077 n02794156 n01796340 n02002556 n02837789 n01818515 n09835506 n04604644 n01917289 n03180011 n02102480 n03873416 n03995372 n03884397 n03657121 n02093754 n02102318 n02097658 n02108422 n01855672 n02489166 n03208938 n02116738 n07802026 n03584254 n02108000 n09256479 n02892767 n02105162 n03388549 n02870880 n02116738 n01807496 n03045698 n03717622 n03109150 n03388549 n02437616 n07930864 n03991062 n03709823 n03680355 n02033041 n02843684 n02795169 n02236044 n02509815 n04442312 n12998815 n03255030 n02111889 n03595614 n03788195 n02690373 n01756291 n01698640 n07565083 n01983481 n03445777 n03998194 n02879718 n07930864 n03255030 n02086646 n04120489 n03733281 n01667114 n03532672 n03179701 n04229816 n03733281 n09256479 n02105251 n03146219 n04330267 n06874185 n12620546 n01641577 n02106550 n02445715 n03146219 n02493793 n02509815 n02804610 n03590841 n01871265 n02483362 n02437616 n03895866 n02071294 n03291819 n13044778 n02114855 n01984695 n02500267 n06359193 n01843065 n03763968 n02643566 n04258138 n02667093 n07734744 n04153751 n02138441 n03188531 n07802026 n02100583 n07860988 n01817953 n02106166 n02483708 n03782006 n02007558 n04476259 n02835271 n03124170 n04550184 n03661043 n04204238 n03776460 n03837869 n04443257 n02486261 n01537544 n02317335 n02134418 n04557648 n01872401 n04209239 n01677366 n02100735 n02096437 n04479046 n01693334 n02965783 n01514859 n07613480 n02108422 n01914609 n03482405 n03710637 n04009552 n02106166 n01531178 n02704792 n04487394 n02834397 n02108915 n02484975 n04310018 n02095570 n03447721 n02119022 n03017168 n03697007 n03249569 n02835271 n04591713 n03347037 n02791124 n01692333 n01882714 n03196217 n02422699 n04041544 n03796401 n02028035 n02966193 n04235860 n03642806 n03838899 n02510455 n01930112 n03781244 n02091032 n02025239 n03196217 n02094114 n01978455 n04254120 n13040303 n03459775 n07716358 n03016953 n03876231 n02892767 n04069434 n02256656 n02168699 n02128757 n01986214 n02009229 n02790996 n03630383 n07718747 n02361337 n02951585 n07873807 n03223299 n07836838 n04266014 n03956157 n02002724 n02077923 n02002556 n02951358 n03259280 n02113186 n02843684 n04332243 n01775062 n02777292 n04118538 n02226429 n03908618 n02782093 n03777568 n02101556 n02701002 n02018795 n02102318 n03045698 n04254680 n02692877 n12620546 n02325366 n01560419 n02977058 n03127925 n04325704 n03483316 n02101556 n03450230 n04264628 n02101556 n03482405 n07715103 n03544143 n02395406 n01797886 n03207941 n04389033 n01978455 n01755581 n02708093 n03461385 n02342885 n01930112 n04009552 n02804610 n13037406 n02092339 n02106550 n04033995 n02395406 n03733131 n02859443 n04008634 n02841315 n02412080 n03785016 n01440764 n03100240 n01665541 n03710721 n04599235 n04370456 n02124075 n02138441 n03085013 n01744401 n04296562 n09835506 n03785016 n07754684 n04311004 n02124075 n02802426 n04239074 n02971356 n02009229 n02096177 n01695060 n03954731 n01828970 n02086240 n02447366 n03095699 n03590841 n03482405 n02107574 n02096294 n03085013 n04456115 n04486054 n04599235 n03141823 n04263257 n03877845 n04428191 n03976657 n02797295 n03637318 n03041632 n07579787 n02687172 n03201208 n04579145 n01608432 n02099849 n01667114 n04372370 n02106166 n03075370 n02138441 n03028079 n01930112 n03388183 n03825788 n13044778 n02687172 n03692522 n02391049 n04254120 n03146219 n03126707 n02025239 n07714571 n02869837 n01580077 n03594945 n02109525 n04099969 n03792972 n03623198 n01872401 n02441942 n03032252 n02687172 n02096294 n02037110 n04310018 n02280649 n03992509 n04037443 n01806567 n02325366 n03372029 n02259212 n04371430 n02391049 n01755581 n01820546 n02264363 n01494475 n03201208 n01774750 n03259280 n02687172 n04090263 n02483708 n04487081 n03218198 n02480495 n01692333 n03017168 n01843065 n03930630 n02056570 n03041632 n02799071 n03344393 n01514859 n02113978 n02027492 n01981276 n02397096 n04192698 n03134739 n02666196 n02117135 n04461696 n02231487 n09246464 n04149813 n02102040 n02086910 n04355338 n02457408 n02093428 n01689811 n03481172 n07836838 n03803284 n01910747 n04553703 n03478589 n03584829 n04254777 n04254120 n02105505 n02361337 n03992509 n02804610 n02102318 n01560419 n01773549 n03902125 n06359193 n02129165 n02120079 n02113712 n01728920 n03160309 n07871810 n04258138 n03045698 n04552348 n13044778 n03717622 n02025239 n02268443 n02108915 n04542943 n03240683 n02966687 n07754684 n03991062 n02769748 n03187595 n03271574 n02256656 n03637318 n04357314 n03207941 n01728920 n04074963 n03000684 n04118538 n03888257 n03000134 n02930766 n02437616 n01622779 n03954731 n04266014 n02108915 n01729977 n04553703 n02328150 n07715103 n03617480 n02441942 n01734418 n02229544 n02259212 n03017168 n02077923 n03871628 n02025239 n02992211 n01978287 n01755581 n04008634 n01773797 n04209239 n04584207 n02493793 n01616318 n04127249 n01877812 n02814860 n03535780 n04040759 n02879718 n02514041 n04592741 n03854065 n01614925 n04026417 n03837869 n02865351 n04239074 n06794110 n02190166 n04208210 n02088238 n02497673 n03179701 n04613696 n01693334 n02672831 n02817516 n02106662 n04392985 n03777754 n03649909 n04311004 n01664065 n04389033 n02807133 n03476991 n03141823 n03793489 n02988304 n03325584 n01871265 n09288635 n04326547 n02110063 n03220513 n02093859 n01693334 n02815834 n02107574 n04487081 n04347754 n07695742 n04086273 n04493381 n01580077 n02910353 n07754684 n04067472 n12768682 n01675722 n02437312 n04417672 n03868863 n13054560 n02100735 n03888605 n04009552 n04238763 n03876231 n03706229 n02859443 n01530575 n01824575 n02096437 n04486054 n02704792 n02110185 n01824575 n12620546 n03814906 n04154565 n02058221 n02111129 n03690938 n03857828 n01534433 n09229709 n02086910 n04507155 n02098105 n02089078 n04355933 n02930766 n03384352 n02892201 n03992509 n02109961 n04479046 n03000247 n03047690 n04258138 n04005630 n02281787 n01693334 n03379051 n01614925 n04479046 n04591713 n03920288 n02051845 n01756291 n02107312 n04435653 n03325584 n02058221 n02107683 n02111277 n03786901 n07768694 n03891332 n04204347 n03400231 n03961711 n02490219 n03347037 n04597913 n02090721 n03450230 n02112137 n03250847 n03868242 n02058221 n04141327 n03761084 n02090379 n02486261 n02095570 n01749939 n02804610 n04273569 n02777292 n03930630 n03775546 n07716906 n02916936 n02930766 n03709823 n02056570 n02412080 n02666196 n03196217 n04479046 n04509417 n01532829 n07697313 n02493793 n02058221 n04252077 n02002556 n02085936 n03063599 n04273569 n04550184 n03710193 n01742172 n02443484 n03720891 n03706229 n02643566 n03218198 n03877845 n01630670 n07714990 n02264363 n01532829 n04540053 n02113712 n04259630 n03661043 n03220513 n03445924 n07831146 n01530575 n03691459 n01773157 n06785654 n03290653 n03995372 n03866082 n02276258 n03777568 n01675722 n12985857 n02835271 n03444034 n02101006 n03637318 n03787032 n04258138 n03535780 n04065272 n02099267 n03347037 n01755581 n03908714 n02056570 n02093647 n01729977 n04344873 n01847000 n02112350 n01632458 n04562935 n03325584 n04127249 n04141076 n04554684 n07714571 n02027492 n03532672 n02992529 n02321529 n03538406 n03721384 n02013706 n04599235 n02093991 n02777292 n02123394 n07747607 n03424325 n03976657 n04209239 n02951585 n07753592 n04443257 n03388183 n10148035 n03344393 n04336792 n02120505 n01981276 n03933933 n01829413 n03916031 n02776631 n01775062 n04286575 n04209239 n07730033 n02099712 n07613480 n02100583 n03733805 n03873416 n04476259 n02113799 n02690373 n09468604 n02009912 n01980166 n02096294 n03764736 n03417042 n03000134 n10565667 n04120489 n02114855 n04039381 n04376876 n02843684 n02643566 n03924679 n03958227 n03773504 n02276258 n03776460 n03000684 n02129165 n03445924 n02108089 n04310018 n03873416 n02236044 n03483316 n02099601 n02115913 n02441942 n03967562 n04479046 n04344873 n02123597 n02229544 n03179701 n02791124 n04525305 n03976657 n04147183 n02835271 n01685808 n02280649 n01768244 n02489166 n04355338 n02279972 n03770679 n01498041 n04041544 n02085620 n02086240 n03532672 n02268853 n02978881 n02363005 n04442312 n02280649 n02108915 n04380533 n04462240 n03271574 n03930630 n02892767 n01797886 n01978287 n02437616 n03920288 n03160309 n01560419 n02666196 n03424325 n02514041 n02790996 n02397096 n01775062 n02071294 n02100583 n04380533 n01990800 n03903868 n07583066 n02013706 n02130308 n02113023 n03884397 n03000684 n04037443 n01687978 n02058221 n02704792 n07693725 n04039381 n03461385 n01950731 n03773504 n02104365 n04536866 n02328150 n07871810 n03372029 n04462240 n02133161 n02808304 n03443371 n01843065 n01914609 n01855032 n04380533 n02086646 n02363005 n04296562 n04033995 n02871525 n03742115 n02704792 n02108915 n03670208 n02093428 n04428191 n09421951 n01984695 n02128757 n01917289 n04033901 n02092002 n03840681 n03476684 n04286575 n04423845 n02951358 n03877845 n01728572 n03481172 n03208938 n02487347 n02107908 n07565083 n04479046 n03832673 n02948072 n02950826 n03929660 n04370456 n02978881 n01498041 n02783161 n03697007 n01820546 n03026506 n04584207 n02091467 n02422699 n02123045 n03793489 n03958227 n02443484 n02098286 n02788148 n04392985 n12768682 n03843555 n02894605 n04372370 n02077923 n02111889 n01770393 n02840245 n01631663 n02786058 n04462240 n02264363 n03942813 n02457408 n03476991 n02107312 n02917067 n04612504 n02100583 n04239074 n04476259 n02105855 n03929855 n02389026 n04389033 n03876231 n04041544 n01806143 n07584110 n02814533 n03868863 n02104365 n02128925 n02105251 n04447861 n04517823 n02395406 n04208210 n02091831 n04330267 n02444819 n02815834 n02264363 n01484850 n02105641 n02808440 n02116738 n01873310 n03792972 n02125311 n01855032 n02704792 n07717556 n03814906 n01667114 n03857828 n01784675 n02091032 n04409515 n01614925 n03769881 n02814533 n02093754 n07747607 n03857828 n04277352 n02104029 n04131690 n02951358 n02134084 n07749582 n03126707 n04325704 n02497673 n02105412 n01685808 n07871810 n02927161 n04380533 n04152593 n02106382 n04350905 n01795545 n03871628 n02965783 n07614500 n03884397 n03980874 n02492035 n02113712 n03417042 n04259630 n03483316 n01494475 n02088238 n07565083 n07753113 n04366367 n04120489 n04429376 n02091467 n02112350 n02699494 n03995372 n02113186 n01685808 n03347037 n02843684 n02108089 n03825788 n03773504 n02787622 n04325704 n03796401 n01698640 n03045698 n02422699 n04417672 n04141327 n04118538 n02113624 n04550184 n01728572 n04380533 n04209133 n01537544 n07920052 n04317175 n01742172 n02786058 n03417042 n03770679 n02804414 n02236044 n03085013 n04019541 n03661043 n03769881 n01773797 n02835271 n01494475 n01773797 n02097298 n01667114 n02106030 n02106030 n03146219 n01930112 n02102177 n13040303 n04357314 n04264628 n07875152 n04371774 n02099849 n03127925 n02869837 n03710193 n02097130 n07730033 n04311004 n03085013 n02102040 n04486054 n02111889 n04204238 n03792972 n03450230 n03617480 n02124075 n03495258 n03769881 n02916936 n01704323 n03063599 n01883070 n01614925 n04311004 n01692333 n03125729 n04192698 n03874293 n03496892 n04118776 n02454379 n04116512 n01677366 n01514668 n03476991 n03733805 n03942813 n03095699 n02883205 n02091467 n02817516 n06794110 n03131574 n02101388 n01978455 n02106382 n02108915 n03216828 n07615774 n07730033 n01770393 n04371430 n02123159 n01984695 n01737021 n02825657 n02099267 n03658185 n02815834 n02120079 n03908714 n04554684 n04604644 n03109150 n03866082 n03908714 n03617480 n02093647 n02510455 n04074963 n03089624 n02095314 n03218198 n02817516 n01943899 n03854065 n03891251 n04423845 n04131690 n04442312 n01537544 n03325584 n02095889 n03291819 n03042490 n02504013 n03146219 n04252077 n02328150 n01697457 n02655020 n04606251 n07720875 n02091831 n02097209 n01630670 n01950731 n01910747 n07695742 n03063689 n01871265 n03478589 n07583066 n02109525 n03982430 n04270147 n01871265 n02033041 n03476991 n01494475 n09229709 n03967562 n03902125 n02837789 n04311004 n04228054 n02087394 n04147183 n02133161 n03100240 n04204238 n02445715 n03481172 n04487394 n03796401 n02978881 n01877812 n01496331 n07717410 n02871525 n02442845 n02112706 n02879718 n03085013 n02799071 n03902125 n02965783 n02281406 n04404412 n02123159 n02747177 n04548280 n04591713 n04044716 n03742115 n02992211 n07717410 n10148035 n02099429 n02486261 n04447861 n03843555 n04263257 n04330267 n02787622 n02823750 n01740131 n04235860 n03498962 n02492660 n02437312 n07718747 n03803284 n02364673 n02906734 n07684084 n03970156 n03825788 n03814906 n07715103 n02749479 n02815834 n02877765 n02088364 n02088632 n04270147 n07248320 n01514668 n01883070 n02276258 n04554684 n02009229 n07248320 n01924916 n03376595 n03983396 n02112018 n01770393 n02403003 n02051845 n02870880 n02484975 n02113799 n03717622 n07930864 n07717410 n02730930 n03874599 n02105162 n02099712 n01530575 n03891332 n01773157 n02808440 n02177972 n03759954 n07579787 n02877765 n03958227 n03977966 n03825788 n03028079 n04501370 n02259212 n03961711 n03496892 n03706229 n04409515 n12144580 n03769881 n09193705 n02782093 n01734418 n04285008 n02120505 n02111277 n02640242 n02790996 n02099267 n07871810 n01986214 n01984695 n12985857 n04542943 n03888605 n04074963 n10565667 n04483307 n09835506 n02129165 n03538406 n01498041 n04461696 n03944341 n03259280 n01484850 n04486054 n03788195 n09193705 n03530642 n04557648 n02892201 n04509417 n03041632 n02093256 n02391049 n04479046 n03961711 n15075141 n02108915 n01847000 n02325366 n03770439 n03676483 n06794110 n01770393 n02788148 n03127925 n03710721 n02484975 n02536864 n02105855 n03733131 n04435653 n02124075 n03792782 n04465501 n01644373 n02085620 n03720891 n03814639 n03133878 n02892201 n02077923 n02992211 n02114712 n02410509 n03733131 n03843555 n02917067 n02128385 n04009552 n03888605 n03388043 n04596742 n03935335 n06785654 n02356798 n02398521 n03445924 n03041632 n03535780 n07753113 n02834397 n01824575 n07697313 n04487081 n02509815 n02106550 n01704323 n01742172 n02094433 n01817953 n03032252 n01742172 n02483362 n02096437 n02487347 n02096294 n04465501 n02948072 n03424325 n02111500 n02114367 n01537544 n01945685 n02607072 n04005630 n04127249 n07714990 n03662601 n03179701 n09468604 n01530575 n03100240 n06359193 n02510455 n02120079 n02096437 n03141823 n01484850 n04579432 n04118538 n02094433 n02086910 n01622779 n07747607 n07718747 n02106030 n02363005 n03599486 n03637318 n02101388 n03662601 n03188531 n02104029 n11939491 n04238763 n01945685 n02834397 n02099712 n01558993 n03450230 n03838899 n04243546 n02123159 n04536866 n02808304 n04120489 n03127925 n04505470 n03782006 n02281406 n04252225 n02776631 n02444819 n04005630 n03717622 n03961711 n03444034 n03970156 n01824575 n02396427 n02165456 n02226429 n02056570 n07693725 n04599235 n03944341 n02134418 n03788365 n07717410 n04264628 n03967562 n04265275 n03584254 n01614925 n07720875 n03814639 n04370456 n04037443 n03297495 n02129604 n03131574 n04243546 n02105855 n03895866 n03216828 n02317335 n02106030 n03661043 n01924916 n02165456 n04536866 n01616318 n02799071 n03788195 n02363005 n01924916 n04461696 n04270147 n02843684 n04258138 n03944341 n01737021 n01882714 n02817516 n02097298 n01843383 n04019541 n04118776 n02799071 n03967562 n03494278 n02229544 n04325704 n03967562 n13044778 n03344393 n04557648 n03447721 n09472597 n04118538 n03424325 n04599235 n01530575 n02835271 n09472597 n02092002 n02730930 n04599235 n02422699 n03657121 n01622779 n03903868 n02090721 n04443257 n01734418 n07714571 n01496331 n02264363 n03483316 n03742115 n07714990 n03590841 n03871628 n04311174 n02114548 n03255030 n02105505 n07579787 n07697313 n03400231 n06874185 n04591713 n04509417 n03255030 n03404251 n02268853 n07613480 n07768694 n02321529 n01818515 n01877812 n02895154 n03485794 n04553703 n02364673 n09229709 n02916936 n04235860 n07932039 n15075141 n02006656 n02487347 n02087394 n02480855 n04372370 n03733805 n02979186 n02033041 n10565667 n02006656 n02099267 n02108915 n03930630 n01728572 n04552348 n02090721 n02870880 n02951585 n04259630 n02328150 n04435653 n02843684 n03788195 n03887697 n04335435 n04228054 n01608432 n04355933 n02123045 n04589890 n04086273 n03832673 n02111277 n01704323 n03599486 n04254680 n02086240 n02817516 n02487347 n04592741 n03272010 n02018795 n01930112 n03223299 n03388043 n03888605 n04040759 n02169497 n02793495 n04376876 n02177972 n04485082 n07717410 n04081281 n03109150 n02090622 n03482405 n01664065 n03032252 n03355925 n01910747 n04536866 n03000247 n03527444 n02025239 n04254777 n04141975 n03793489 n02979186 n02127052 n01847000 n02328150 n02909870 n10565667 n03709823 n02992211 n02093859 n07747607 n07717410 n03249569 n01734418 n03944341 n04344873 n01677366 n02108000 n03876231 n04461696 n06596364 n09428293 n03482405 n02088094 n04136333 n04204238 n01697457 n04074963 n01514859 n02106662 n04252225 n02117135 n03476684 n01770393 n02795169 n03733131 n03676483 n04133789 n04435653 n01728920 n04033995 n04355933 n01675722 n03717622 n04428191 n03535780 n02105162 n07753275 n04483307 n02917067 n04118776 n03000684 n03000134 n02281787 n01770393 n02326432 n01753488 n02167151 n02808304 n04392985 n03197337 n03100240 n04286575 n03127925 n01945685 n02536864 n02799071 n02783161 n02346627 n02264363 n02088364 n02093754 n03617480 n02105162 n02966687 n01795545 n02091831 n01537544 n03041632 n02834397 n02699494 n03404251 n01860187 n04550184 n02992211 n02437312 n02098105 n07590611 n03527444 n07583066 n01748264 n02966687 n03803284 n04366367 n02119022 n01740131 n02099601 n01534433 n04606251 n02099601 n02488702 n04336792 n02391049 n02086646 n02086079 n02110806 n02110341 n04447861 n02119789 n04162706 n02259212 n03124043 n02101388 n03630383 n02980441 n02494079 n03602883 n01695060 n04141327 n04266014 n03047690 n02097209 n02113023 n02174001 n01669191 n01667778 n02096051 n04251144 n02112706 n02988304 n03461385 n03447447 n02077923 n03887697 n02342885 n01641577 n01616318 n02007558 n01698640 n04033995 n03804744 n02110063 n03355925 n01667114 n01914609 n03804744 n02669723 n07836838 n02412080 n03743016 n04336792 n13052670 n03791053 n03776460 n03017168 n04404412 n03777754 n04037443 n03796401 n04404412 n06596364 n02105412 n04023962 n01734418 n02328150 n02101006 n07684084 n02002556 n13133613 n07248320 n01753488 n02107908 n02123394 n04154565 n02504458 n13052670 n04008634 n02916936 n02107683 n02134084 n02443484 n07720875 n04493381 n03761084 n02102040 n03089624 n01985128 n01753488 n02137549 n09835506 n03443371 n02346627 n02002556 n04589890 n04562935 n01632777 n02317335 n01632458 n02493509 n02398521 n03970156 n02667093 n03825788 n02086646 n13044778 n02088238 n01776313 n02481823 n04423845 n03047690 n07749582 n02977058 n01796340 n02110627 n02910353 n03201208 n01728572 n02114367 n03980874 n02776631 n02165456 n02437312 n02364673 n03764736 n04041544 n12998815 n03388043 n03803284 n02113624 n02102318 n03424325 n03250847 n09288635 n03924679 n03956157 n01910747 n04560804 n07714990 n04542943 n07716906 n02128925 n04487394 n04399382 n04044716 n04465501 n03854065 n02398521 n02823750 n07583066 n02107312 n04584207 n01829413 n01833805 n02417914 n04081281 n02088364 n02113799 n04376876 n02093991 n02730930 n04133789 n02442845 n02018207 n03930630 n02910353 n02730930 n03776460 n02088364 n04264628 n07714990 n04461696 n03372029 n02090379 n01819313 n03657121 n02106662 n02109525 n02500267 n04376876 n04483307 n03843555 n13037406 n02097047 n02403003 n03290653 n02690373 n02536864 n02091467 n03843555 n04044716 n01537544 n02037110 n04146614 n04612504 n01484850 n07684084 n03220513 n04326547 n03127925 n02971356 n03476991 n01774384 n07565083 n02672831 n03967562 n03998194 n09229709 n01641577 n01682714 n04204347 n03160309 n03478589 n03792972 n04458633 n04392985 n02480855 n02099429 n07714571 n02098105 n02963159 n02777292 n03529860 n03706229 n12057211 n04612504 n04554684 n03590841 n03661043 n04065272 n01531178 n07614500 n02017213 n02859443 n04235860 n02256656 n03481172 n02110063 n02281787 n04579432 n01985128 n02363005 n04317175 n01737021 n03216828 n02095570 n07714571 n04525305 n07565083 n03494278 n04525038 n01494475 n04404412 n07718747 n03903868 n04376876 n02088632 n07720875 n02111277 n01728920 n04311004 n02877765 n06785654 n01978455 n01729977 n02906734 n01601694 n04429376 n02676566 n03733281 n02106382 n02817516 n04039381 n04356056 n01514859 n03791053 n04376876 n03630383 n04252077 n04417672 n01641577 n04141076 n02025239 n02992529 n02672831 n02088466 n01797886 n04501370 n04149813 n02172182 n04336792 n04417672 n03944341 n03961711 n04493381 n04258138 n04523525 n02423022 n02102177 n02865351 n04507155 n07930864 n02097047 n03916031 n02892201 n04254680 n01608432 n04461696 n03483316 n02500267 n02916936 n03452741 n02892201 n02113186 n03775546 n03478589 n03633091 n04599235 n03065424 n02097209 n01873310 n04604644 n04418357 n03794056 n03179701 n01440764 n01806143 n02093859 n01496331 n01669191 n04367480 n02971356 n02114548 n03249569 n01796340 n07613480 n04505470 n03804744 n02950826 n03743016 n02777292 n03089624 n02110341 n03485407 n02480855 n02356798 n02910353 n03662601 n01601694 n04141076 n03384352 n02492660 n03376595 n02776631 n02025239 n04065272 n02033041 n03417042 n09332890 n02097658 n04552348 n03447447 n03781244 n03000684 n01749939 n01677366 n02094114 n04465501 n04372370 n02281787 n03196217 n02277742 n02701002 n03290653 n03452741 n01806143 n04037443 n03825788 n04266014 n07716906 n02123597 n02110063 n02981792 n03804744 n02134418 n03970156 n02483362 n02486261 n01514668 n02134084 n03970156 n01558993 n01644373 n03692522 n03804744 n02804414 n02108551 n01560419 n02490219 n03710637 n03673027 n04552348 n02094114 n03967562 n03776460 n02447366 n03733805 n03127925 n02279972 n09428293 n03089624 n03938244 n04041544 n02113712 n03594734 n02206856 n03485794 n02256656 n02981792 n03347037 n03026506 n04356056 n09332890 n07565083 n07760859 n04286575 n02790996 n01873310 n03337140 n04483307 n02281787 n02114548 n12057211 n02971356 n04591713 n04371774 n03841143 n02229544 n02794156 n04270147 n04090263 n04592741 n02120505 n02120505 n03532672 n03062245 n03089624 n03710193 n03792972 n02085936 n01924916 n01692333 n04428191 n13044778 n06359193 n07693725 n02916936 n02488702 n02489166 n02102318 n03980874 n04265275 n04429376 n02480855 n07873807 n03478589 n02071294 n02097298 n01734418 n02123159 n02951585 n07714990 n02859443 n04447861 n02096585 n03902125 n04525038 n03028079 n03866082 n03891332 n03220513 n03207743 n04589890 n03871628 n01774750 n02125311 n02747177 n04153751 n02101556 n02095570 n01629819 n03042490 n01872401 n04311004 n04228054 n03983396 n04456115 n04070727 n02490219 n02093256 n03710193 n03742115 n03841143 n04285008 n02074367 n02526121 n02116738 n03666591 n02363005 n02910353 n02219486 n03063599 n01955084 n02104029 n02114855 n04023962 n04376876 n04275548 n01682714 n01641577 n02676566 n07892512 n01775062 n03457902 n04486054 n03457902 n02843684 n07768694 n04026417 n03355925 n02025239 n03781244 n03947888 n02280649 n03450230 n02098286 n03776460 n03594945 n07734744 n02276258 n07720875 n02988304 n03595614 n02951358 n03764736 n02939185 n02091134 n01978287 n02268443 n03127747 n03814639 n03874293 n04081281 n07768694 n07715103 n02790996 n03160309 n04525038 n02013706 n04540053 n02105056 n07715103 n01860187 n07920052 n01687978 n07590611 n03394916 n03947888 n01945685 n02110063 n04074963 n04606251 n03594945 n04254120 n03187595 n02110958 n02977058 n07930864 n02099601 n03590841 n02441942 n01806567 n02643566 n03874293 n03255030 n04487394 n07760859 n02112137 n04486054 n01496331 n03337140 n01882714 n02113978 n07615774 n02168699 n04465501 n02086910 n04136333 n04254120 n03530642 n03187595 n01770393 n02422106 n03709823 n02910353 n01855672 n02361337 n01580077 n01694178 n04120489 n04517823 n03775546 n01773157 n03775546 n03777568 n04355933 n01784675 n01498041 n02422699 n04447861 n02177972 n02319095 n03935335 n03980874 n03976657 n02442845 n02085782 n03976467 n07583066 n04461696 n04467665 n02105641 n04501370 n03777754 n04065272 n03447721 n02206856 n03459775 n03947888 n04111531 n02807133 n03481172 n01983481 n03733131 n02105641 n03841143 n03976467 n02391049 n03196217 n02422699 n04462240 n04328186 n04310018 n04417672 n03018349 n02965783 n01629819 n03207941 n04311174 n02226429 n02363005 n03041632 n04033901 n02410509 n02112137 n02747177 n02825657 n02097298 n02992529 n03032252 n01734418 n04090263 n04201297 n02094258 n04111531 n04265275 n04065272 n02676566 n03388043 n07930864 n02423022 n02108551 n03424325 n02815834 n04228054 n02097209 n02137549 n03314780 n01608432 n01820546 n02109961 n01580077 n07579787 n03788365 n02749479 n03930313 n01806567 n02927161 n04447861 n04548362 n02259212 n04252225 n02105162 n03345487 n02727426 n07584110 n04005630 n02096294 n04273569 n02422106 n03534580 n09288635 n01795545 n02397096 n02730930 n01806143 n03661043 n02807133 n02277742 n07613480 n03297495 n03761084 n03109150 n07716906 n12267677 n04204238 n04204347 n04596742 n03710637 n02481823 n02669723 n01491361 n01629819 n03982430 n02869837 n01843065 n04311174 n01820546 n01677366 n02108089 n01807496 n03710721 n03063599 n03498962 n01729322 n02769748 n02268853 n04081281 n03983396 n06359193 n02127052 n02107142 n02488702 n02006656 n07831146 n02676566 n04277352 n03527444 n03372029 n03314780 n02114712 n01978287 n03337140 n03538406 n02917067 n01756291 n01667778 n01795545 n01631663 n02088364 n02808304 n01797886 n02104029 n03201208 n01558993 n03967562 n04428191 n02494079 n04162706 n04515003 n04040759 n01774750 n01943899 n02098413 n02099601 n04270147 n02417914 n03065424 n07734744 n02007558 n02119789 n07695742 n02364673 n01689811 n02672831 n02124075 n01644900 n04335435 n02086646 n02095889 n02105251 n02391049 n01955084 n02480495 n03032252 n02808440 n03637318 n02877765 n04597913 n02112706 n04590129 n01910747 n02895154 n03062245 n03775546 n03372029 n04228054 n04258138 n04074963 n11879895 n01986214 n01943899 n02138441 n01806143 n01983481 n03478589 n04389033 n02951358 n02102318 n03763968 n03594734 n01689811 n07753113 n02074367 n01819313 n03467068 n03393912 n02056570 n04008634 n04254777 n01644900 n02106166 n03891251 n04435653 n01773549 n03729826 n01770081 n03529860 n03110669 n03841143 n02091244 n04067472 n04371430 n03796401 n03782006 n04238763 n01784675 n04019541 n02097209 n02259212 n03956157 n02112706 n02111889 n03527444 n02167151 n04442312 n07695742 n03710193 n04074963 n02099849 n02134418 n02825657 n13037406 n02085782 n02417914 n12620546 n04275548 n02804610 n04146614 n01514668 n01443537 n04509417 n02892201 n02088466 n03065424 n04254120 n03792972 n01924916 n02037110 n07697537 n03394916 n02101006 n02110806 n03146219 n02814860 n03649909 n03127747 n01980166 n02092002 n03787032 n02133161 n03874599 n04201297 n02106550 n07615774 n03710637 n03527444 n07714990 n03017168 n02111500 n01744401 n03950228 n02410509 n02483708 n07583066 n04589890 n02655020 n02259212 n01990800 n03457902 n07920052 n04505470 n02111129 n03216828 n02892767 n02095314 n02092002 n01664065 n03944341 n03495258 n01737021 n01677366 n01806567 n02097298 n04532670 n04522168 n02708093 n02066245 n02971356 n02906734 n03492542 n03930313 n02396427 n02037110 n03297495 n03017168 n01773797 n03786901 n02910353 n02102177 n02730930 n02480495 n04562935 n02109525 n02988304 n02091467 n04204238 n04476259 n01532829 n03208938 n04532106 n02165105 n01677366 n07715103 n02795169 n02127052 n02098286 n01728572 n01833805 n02445715 n02259212 n04209133 n07711569 n07860988 n09421951 n03125729 n04141076 n01742172 n03063689 n01704323 n01748264 n01770393 n01955084 n02894605 n03792972 n04141975 n02672831 n03018349 n02971356 n02859443 n07749582 n03792782 n02398521 n04254777 n02326432 n03877472 n02123045 n03623198 n02342885 n03187595 n03884397 n04330267 n04266014 n02138441 n03538406 n03000247 n02363005 n02883205 n07753592 n04371430 n03871628 n03633091 n04023962 n01740131 n04251144 n02870880 n02009912 n03461385 n02328150 n01945685 n02280649 n02012849 n02112137 n04326547 n02117135 n07930864 n04136333 n04370456 n01737021 n01817953 n03888605 n03452741 n04330267 n07932039 n02398521 n07930864 n03787032 n02112350 n12267677 n03494278 n07693725 n03857828 n02815834 n04376876 n03874293 n04371774 n03929855 n02841315 n02090721 n09468604 n02488291 n02106662 n03461385 n04485082 n03995372 n02493793 n01914609 n02002556 n07711569 n02098286 n07693725 n02422106 n02110958 n04613696 n03692522 n07920052 n02799071 n04037443 n02113978 n01530575 n10565667 n10148035 n03773504 n03347037 n09193705 n02113978 n01882714 n03527444 n02979186 n01877812 n02111129 n03417042 n03461385 n02114855 n12768682 n01950731 n02667093 n02011460 n03290653 n02108000 n04229816 n01930112 n02486261 n04542943 n04235860 n07768694 n02403003 n03786901 n02396427 n02109047 n01968897 n03388043 n04258138 n02112137 n02607072 n02134084 n03837869 n04200800 n02071294 n04141076 n02085620 n03218198 n02098286 n02099601 n04099969 n03216828 n02892767 n03482405 n03838899 n03018349 n04487394 n04141076 n02106382 n11939491 n03100240 n03908714 n07831146 n09256479 n12267677 n04152593 n02093428 n02791270 n02099429 n02105056 n03223299 n02643566 n07720875 n02124075 n02699494 n03888605 n03249569 n03584254 n02981792 n04133789 n03534580 n01518878 n02704792 n07747607 n13037406 n02488291 n03538406 n03627232 n02099429 n02704792 n07684084 n03733805 n02397096 n02114367 n02319095 n02086646 n02094433 n04133789 n04483307 n02504013 n04525038 n04265275 n04209239 n03967562 n02129165 n03777754 n09835506 n02727426 n01693334 n02457408 n02128925 n03903868 n04409515 n01950731 n06359193 n03187595 n01950731 n04041544 n02892767 n02363005 n04355338 n02277742 n04090263 n03314780 n04285008 n01847000 n02094433 n02098105 n07892512 n09229709 n03527444 n03530642 n01774384 n01773157 n04366367 n03676483 n01930112 n03933933 n03877845 n02104365 n07697537 n02444819 n13037406 n04296562 n02457408 n11879895 n04120489 n03958227 n03187595 n03930630 n02277742 n01774750 n04550184 n02837789 n04479046 n02500267 n04317175 n07875152 n01687978 n02088094 n02814533 n02109961 n02117135 n04579145 n07880968 n02190166 n02396427 n04542943 n04357314 n02114855 n03920288 n02120079 n01776313 n01847000 n04447861 n04019541 n03201208 n03857828 n03404251 n07754684 n09256479 n02442845 n06794110 n02917067 n04592741 n02389026 n03444034 n03724870 n02895154 n02165456 n03804744 n01742172 n02037110 n02087046 n02865351 n02025239 n03887697 n02814533 n04133789 n03891332 n02483708 n07714571 n03982430 n04579145 n02127052 n07932039 n04238763 n03710637 n02825657 n03977966 n02321529 n02493509 n02219486 n09193705 n01950731 n03457902 n03908714 n03980874 n02113624 n03393912 n03379051 n01688243 n02971356 n04243546 n02510455 n02092002 n02116738 n02391049 n04111531 n02128925 n02097047 n02071294 n04462240 n01748264 n02086910 n04326547 n02107908 n06874185 n03773504 n04039381 n03874293 n04482393 n04371774 n02088094 n03887697 n03452741 n07802026 n02509815 n03347037 n03983396 n01774750 n02879718 n03888257 n01796340 n07717556 n02112706 n01742172 n12998815 n03271574 n01775062 n02112706 n04153751 n04350905 n02481823 n02487347 n01950731 n02667093 n02089973 n04592741 n03393912 n02840245 n02006656 n01498041 n04548362 n02782093 n09193705 n02443114 n01773549 n02093428 n04116512 n01770393 n02128925 n02939185 n04133789 n02777292 n03976657 n03876231 n02443114 n04590129 n02114855 n04335435 n03372029 n04418357 n02109961 n02088094 n02279972 n03657121 n04482393 n04229816 n02264363 n04136333 n02027492 n03617480 n07753592 n03459775 n04154565 n03425413 n01955084 n03127925 n02017213 n02437616 n01774384 n07760859 n01818515 n03000684 n02128385 n04487081 n02105505 n03376595 n02130308 n02108000 n03042490 n02992211 n07718472 n02417914 n02701002 n02058221 n03888605 n01694178 n01855672 n02168699 n02676566 n04507155 n03777754 n01704323 n02088094 n03444034 n02883205 n02909870 n02787622 n02102973 n02514041 n03085013 n04328186 n02494079 n02093428 n01986214 n03594945 n01847000 n02110958 n04252077 n03041632 n09421951 n03776460 n03676483 n02804610 n02112350 n02096294 n02108089 n03690938 n04372370 n03877845 n02111500 n04476259 n02104029 n02085782 n03424325 n01943899 n02443114 n02865351 n02129604 n04487394 n02493509 n03026506 n04136333 n04507155 n04356056 n04039381 n03944341 n03947888 n02098105 n02133161 n02841315 n04251144 n02094114 n04505470 n01829413 n02493509 n11879895 n07875152 n01983481 n02500267 n02085620 n13040303 n03902125 n12620546 n03599486 n03891332 n02102480 n04118538 n01807496 n01860187 n03444034 n01491361 n07831146 n02666196 n02892767 n13040303 n03032252 n02125311 n02168699 n02117135 n02395406 n01537544 n07753275 n04428191 n02109961 n04235860 n02417914 n04584207 n04070727 n01873310 n02749479 n02769748 n07714571 n04367480 n02012849 n01665541 n02167151 n02088466 n03527444 n04409515 n02013706 n03325584 n02441942 n07613480 n02101006 n02088632 n02129604 n01685808 n02966687 n04367480 n03908618 n02977058 n04111531 n03042490 n03717622 n06785654 n02980441 n01968897 n01843065 n04554684 n04523525 n04417672 n01855672 n03873416 n02100877 n02105505 n03492542 n01833805 n04116512 n04487394 n02105505 n03297495 n02119022 n04392985 n02108422 n02098413 n02012849 n04487394 n01990800 n02817516 n03216828 n03187595 n07871810 n02669723 n02229544 n02966687 n02113712 n03930313 n03417042 n02389026 n03249569 n03633091 n02096294 n02110627 n03916031 n07920052 n04146614 n03207743 n02325366 n03954731 n04133789 n03788195 n03982430 n02112706 n02017213 n02492660 n03976467 n03792782 n02123159 n07754684 n03444034 n03063599 n02326432 n02009912 n04154565 n03492542 n03649909 n02101388 n02091134 n02892201 n02077923 n02168699 n04239074 n03899768 n04461696 n03124170 n09428293 n03000247 n01558993 n02104365 n02093991 n03837869 n02169497 n03492542 n03706229 n02129165 n03216828 n03662601 n02444819 n03930313 n04039381 n01601694 n04228054 n02788148 n03133878 n01983481 n02093859 n02106166 n02102973 n03982430 n02667093 n03891332 n01592084 n02172182 n03404251 n02259212 n03250847 n02817516 n07747607 n03063599 n03935335 n02085620 n02092002 n02999410 n02504458 n03100240 n04392985 n02105855 n07718747 n03721384 n02483362 n01629819 n02107683 n02951358 n07920052 n03733805 n02483362 n01798484 n04418357 n04251144 n03197337 n03908618 n01978287 n01817953 n04486054 n04127249 n01945685 n07711569 n02088238 n02105641 n02910353 n07892512 n01484850 n03657121 n02859443 n07860988 n04141327 n03868863 n01768244 n03657121 n02102973 n02111500 n01632458 n02319095 n04328186 n04311004 n01558993 n01773549 n01622779 n02442845 n07768694 n01632777 n03733805 n03133878 n02012849 n03496892 n02066245 n02094433 n03271574 n02128757 n03792782 n02018795 n01630670 n02101006 n04067472 n02100583 n04317175 n03602883 n04141327 n02102040 n07875152 n02892201 n04127249 n07753275 n04355338 n02236044 n01749939 n07717556 n02317335 n02606052 n04483307 n04435653 n04264628 n04347754 n04179913 n07583066 n04146614 n03478589 n03599486 n02676566 n02264363 n04371430 n03782006 n04604644 n03180011 n03045698 n03887697 n02085936 n07614500 n04296562 n02074367 n01729977 n02018795 n01735189 n03777568 n03775546 n02091244 n03838899 n04357314 n01945685 n03788365 n02441942 n04429376 n02119022 n01945685 n03627232 n02056570 n02437616 n03590841 n01491361 n01871265 n04442312 n01833805 n04596742 n04553703 n04487394 n03763968 n02514041 n11879895 n04525038 n02510455 n04275548 n01531178 n04162706 n03240683 n04589890 n03871628 n04443257 n02655020 n04264628 n01843383 n02138441 n02091032 n02281406 n03272010 n03775546 n03345487 n03532672 n02814860 n07714571 n02423022 n03187595 n03992509 n03933933 n03956157 n07920052 n01981276 n03710721 n04201297 n09472597 n02097130 n02111889 n03929660 n02804610 n03961711 n07613480 n01755581 n02277742 n03452741 n02396427 n01514859 n04590129 n04116512 n01631663 n07711569 n02134084 n04332243 n04517823 n01558993 n02817516 n02088632 n03457902 n01775062 n02328150 n02804610 n02077923 n02129604 n02095314 n03388183 n02536864 n03134739 n03014705 n02423022 n04254120 n03776460 n03788195 n03637318 n02112706 n03777568 n02089078 n03838899 n03661043 n02687172 n02097658 n02395406 n01820546 n03788365 n02963159 n02097298 n07717556 n02114367 n02219486 n04442312 n04536866 n02979186 n04458633 n07584110 n03633091 n04501370 n03000684 n02417914 n02093859 n04228054 n03478589 n02112137 n03642806 n02113712 n02817516 n03980874 n01644900 n11879895 n04347754 n03788195 n02825657 n02119789 n02128925 n02129604 n04523525 n04162706 n03000247 n04347754 n02447366 n02096294 n02002724 n02098413 n03467068 n01582220 n02002556 n03063689 n01855672 n02971356 n02086240 n02817516 n01930112 n02490219 n09428293 n02091467 n03710637 n02917067 n06596364 n01532829 n02056570 n04560804 n01735189 n04557648 n07711569 n06785654 n04118776 n02860847 n02007558 n02356798 n04070727 n02489166 n07714990 n02104365 n02007558 n03649909 n01667114 n01641577 n03028079 n03494278 n07880968 n03775071 n01632458 n01990800 n02442845 n02119022 n02006656 n02701002 n02483362 n03124170 n01531178 n02704792 n02099849 n01873310 n01735189 n04462240 n03065424 n04398044 n04120489 n04330267 n03967562 n02099601 n03388043 n02100583 n02093991 n09399592 n01773797 n03761084 n02342885 n02206856 n02098286 n03207743 n13040303 n01629819 n02927161 n04125021 n04554684 n02328150 n03476684 n02114367 n03793489 n03633091 n03930630 n02871525 n02097474 n02113799 n02408429 n03899768 n07831146 n04525038 n02808304 n03724870 n02033041 n02110063 n03063689 n01855672 n02395406 n04254680 n03063689 n02487347 n02640242 n03457902 n12267677 n04482393 n04009552 n02174001 n01990800 n04209133 n01950731 n02113186 n03095699 n01770081 n04127249 n02971356 n02490219 n04044716 n01667778 n03710721 n03141823 n04099969 n02325366 n04599235 n01978455 n03599486 n02090622 n03630383 n02117135 n02037110 n02219486 n03297495 n02105505 n04263257 n02442845 n04266014 n03393912 n02115641 n02883205 n01729977 n03047690 n02361337 n04560804 n02106662 n03876231 n03041632 n02098105 n01560419 n02089078 n03218198 n04153751 n02123597 n03584829 n02930766 n03781244 n02264363 n07711569 n04418357 n06596364 n03345487 n02835271 n04467665 n03450230 n03692522 n03929660 n03935335 n01630670 n02120505 n02172182 n03777754 n04209133 n01687978 n03481172 n02088094 n02112350 n03982430 n02124075 n03854065 n04141076 n06785654 n02981792 n03207941 n03028079 n13133613 n02423022 n03777568 n02328150 n02037110 n02092002 n02655020 n04443257 n02963159 n01687978 n09193705 n10148035 n03065424 n03792972 n02013706 n01494475 n07860988 n02099267 n04355933 n02457408 n01943899 n03733131 n04252077 n02978881 n03868863 n03544143 n03692522 n12768682 n02088094 n04023962 n02793495 n03840681 n01773549 n03843555 n04482393 n07753592 n03673027 n07930864 n01685808 n02037110 n02787622 n06596364 n02033041 n04204238 n12267677 n02321529 n03404251 n03000684 n07753592 n03804744 n01514668 n03594945 n02110627 n03793489 n04243546 n02490219 n02817516 n03291819 n02100877 n01440764 n04209239 n02088364 n04590129 n02110806 n09229709 n02447366 n04606251 n04562935 n02128385 n02837789 n02363005 n04133789 n02165456 n03649909 n03661043 n02107683 n01688243 n01843383 n03891251 n12620546 n03832673 n03452741 n04074963 n04228054 n03982430 n01795545 n02877765 n03196217 n04435653 n02105505 n04467665 n07695742 n02672831 n03690938 n04456115 n04125021 n15075141 n03761084 n04487394 n02108089 n07932039 n01806567 n02089078 n02028035 n03623198 n02108551 n01632458 n03445924 n01739381 n03887697 n07836838 n02364673 n03355925 n02113799 n04476259 n02437312 n03534580 n03841143 n03131574 n07697537 n01818515 n03929660 n02093647 n02892767 n03916031 n04081281 n04443257 n02441942 n01534433 n01843383 n02951358 n02089078 n03874293 n03127925 n02094258 n04366367 n03485407 n04597913 n01755581 n01795545 n01601694 n01944390 n03124170 n02395406 n03594734 n01685808 n01582220 n02110627 n03991062 n02699494 n09472597 n02500267 n03476991 n02963159 n02089867 n01697457 n03347037 n01806143 n02074367 n02699494 n04090263 n03763968 n02422699 n04070727 n01694178 n01797886 n03459775 n03977966 n01751748 n03803284 n01950731 n01532829 n02454379 n02051845 n03976657 n07248320 n07753275 n09332890 n02002556 n03602883 n12057211 n02123045 n02950826 n02219486 n02115641 n02085936 n02951585 n02111889 n02102480 n01443537 n02105162 n02794156 n04479046 n03047690 n02105412 n02692877 n01739381 n07930864 n04552348 n02835271 n01531178 n04120489 n01582220 n02840245 n02422106 n01697457 n03075370 n04136333 n03874599 n03492542 n02389026 n03207743 n02089867 n04136333 n06359193 n02106382 n02101006 n02091467 n03325584 n01616318 n02804610 n07717556 n02111500 n01608432 n02007558 n03887697 n02107142 n02641379 n07734744 n03710193 n02231487 n02028035 n04296562 n04009552 n02977058 n03710721 n03884397 n03775546 n07892512 n04254777 n07697537 n03792782 n02102480 n03000247 n02117135 n01796340 n02892201 n04254680 n04040759 n01773549 n04040759 n03124170 n02790996 n04037443 n02033041 n04509417 n01484850 n03697007 n04208210 n04209133 n02497673 n03840681 n03785016 n04086273 n02085936 n02134084 n03404251 n02098286 n07734744 n03998194 n02086910 n03250847 n03983396 n04336792 n03457902 n03026506 n03980874 n01818515 n04507155 n03933933 n13037406 n04235860 n02504013 n03297495 n02802426 n01491361 n02916936 n01755581 n02727426 n04228054 n03584254 n04317175 n01667114 n04486054 n02110341 n04465501 n02974003 n12768682 n12998815 n02111129 n11879895 n03775546 n03496892 n03791053 n01768244 n09421951 n04192698 n04517823 n02514041 n12985857 n13054560 n04330267 n03388549 n04254120 n04423845 n11879895 n02776631 n02137549 n03495258 n03355925 n02486410 n02749479 n03187595 n03388043 n04005630 n02100877 n07714990 n06359193 n02096051 n02105641 n07579787 n09472597 n04355338 n03680355 n02730930 n03874599 n02730930 n04552348 n03535780 n01753488 n02012849 n01704323 n02097209 n03908714 n04589890 n04372370 n01443537 n03457902 n04238763 n09246464 n01739381 n02488702 n04026417 n01530575 n07749582 n02102480 n04557648 n02096585 n01740131 n04389033 n03314780 n07875152 n02492660 n12057211 n04371430 n02099267 n03495258 n02096051 n02105162 n02105641 n03016953 n02808440 n03598930 n04542943 n01855672 n03733281 n07717410 n02504013 n02091831 n04133789 n04356056 n02879718 n03891251 n03379051 n02113978 n09288635 n02444819 n01945685 n03980874 n02526121 n02101556 n04040759 n02009229 n03837869 n04311174 n07583066 n02777292 n03950228 n02129165 n02114548 n02100735 n04590129 n03400231 n03868242 n02074367 n06874185 n04141327 n01833805 n09288635 n04070727 n02795169 n03944341 n01560419 n03187595 n02092339 n03388043 n03255030 n04532670 n02120505 n02894605 n02101388 n01608432 n03995372 n02259212 n03908618 n03223299 n02107683 n07932039 n03063689 n01629819 n03982430 n03188531 n01748264 n03877472 n02115913 n01748264 n04350905 n04070727 n02643566 n02966193 n01770393 n02672831 n02494079 n02930766 n03259280 n02442845 n03903868 n03710721 n02690373 n01531178 n01496331 n03710721 n02088094 n07717556 n03920288 n02089078 n02109525 n02808304 n03447447 n04548280 n02906734 n07716358 n01774384 n03637318 n02909870 n03788195 n02699494 n04355338 n02095889 n02606052 n03623198 n01641577 n01669191 n02457408 n03627232 n02769748 n04311004 n03584254 n03220513 n03530642 n04285008 n01644373 n09421951 n03733281 n03047690 n02808304 n03720891 n02437616 n07684084 n01749939 n04409515 n02494079 n02948072 n02110806 n02077923 n01924916 n01496331 n04604644 n02667093 n02107142 n01692333 n04277352 n04254777 n02676566 n12144580 n03630383 n02095889 n03666591 n03937543 n01498041 n03272562 n09472597 n03223299 n04456115 n02099601 n03000134 n02951585 n03717622 n01910747 n06596364 n01820546 n02018795 n04264628 n02096177 n01944390 n01978287 n01818515 n03125729 n02093256 n01855032 n02009912 n02097047 n02113712 n01883070 n01774750 n01665541 n02093428 n01980166 n04392985 n03947888 n02690373 n02090721 n04023962 n03476684 n04389033 n03729826 n02910353 n01632458 n02167151 n02676566 n03045698 n01770081 n04238763 n10148035 n04344873 n02481823 n04467665 n02013706 n02088238 n02877765 n01833805 n07718747 n02091467 n03627232 n04141076 n04209239 n01950731 n04467665 n03976657 n03729826 n04398044 n07754684 n04465501 n01776313 n02111129 n03207743 n03201208 n01847000 n02085936 n03710721 n04599235 n02817516 n02807133 n04389033 n02840245 n04423845 n07718472 n02356798 n02167151 n02966687 n02790996 n02840245 n02342885 n02437312 n07716906 n02233338 n03379051 n01990800 n02443114 n01498041 n03337140 n02165105 n04525305 n02226429 n01558993 n02110341 n04069434 n01644900 n02096177 n04347754 n03127747 n02106382 n01608432 n02412080 n02134084 n04486054 n04026417 n02437616 n04081281 n04417672 n02018207 n03018349 n03595614 n02120079 n03388183 n03902125 n02403003 n03933933 n09193705 n01872401 n03534580 n02129165 n03710193 n01981276 n02259212 n07873807 n01843065 n02457408 n02837789 n02177972 n02951585 n02101006 n02965783 n04482393 n01616318 n04465501 n03485407 n02086646 n02085620 n02361337 n01753488 n04579145 n01682714 n02105641 n04065272 n01968897 n02102973 n12144580 n04372370 n02127052 n02690373 n02895154 n04049303 n03676483 n02268443 n02869837 n02206856 n04201297 n02091244 n02101556 n02843684 n04380533 n07753275 n01534433 n02027492 n02971356 n04118538 n03384352 n03444034 n03676483 n03495258 n02666196 n01756291 n03482405 n02098413 n04355933 n03841143 n02120079 n02417914 n03857828 n02114712 n01729977 n01770081 n03733131 n03793489 n03590841 n02088364 n01847000 n11939491 n03724870 n02025239 n07717556 n02119789 n03016953 n02129165 n04033901 n02790996 n02012849 n02099429 n03691459 n04330267 n10148035 n03888257 n07584110 n02096437 n04515003 n02804610 n02096437 n04418357 n02033041 n02092339 n12620546 n01669191 n03160309 n02112137 n02172182 n03110669 n04380533 n03673027 n03347037 n04201297 n02492660 n02110958 n02783161 n02483708 n02110958 n04120489 n03908618 n02423022 n04350905 n04153751 n02444819 n02114548 n07747607 n07614500 n04070727 n04074963 n01616318 n02112706 n02096437 n04228054 n01644900 n01756291 n02442845 n03980874 n02441942 n04149813 n03950228 n01843383 n02910353 n03207743 n04263257 n02099429 n04486054 n02606052 n04238763 n02099601 n02177972 n03584829 n04356056 n03673027 n02086646 n04485082 n02692877 n03761084 n03249569 n04252077 n02092339 n01770081 n02877765 n02129604 n03032252 n13044778 n02607072 n03498962 n02120505 n01534433 n01491361 n07730033 n02098413 n02793495 n02017213 n02100877 n02948072 n02398521 n03498962 n02494079 n04026417 n03259280 n04209133 n02094258 n02028035 n03627232 n03529860 n02077923 n03843555 n03873416 n02116738 n03995372 n02104365 n04347754 n04590129 n03657121 n01774384 n03937543 n07836838 n04127249 n02391049 n04296562 n02492035 n04254120 n04201297 n02115641 n02094258 n03729826 n02090379 n02165456 n02107142 n01518878 n03649909 n01558993 n01843383 n01695060 n02134084 n02101556 n02123045 n03929855 n02110185 n03291819 n02099601 n04443257 n02487347 n01795545 n04458633 n02229544 n03325584 n04086273 n03017168 n01729977 n03388043 n01675722 n02009229 n03126707 n02117135 n03873416 n04332243 n02486410 n03394916 n02480855 n02837789 n03018349 n03998194 n04317175 n01819313 n03291819 n01664065 n02128385 n02417914 n04040759 n01440764 n09468604 n03240683 n07248320 n11939491 n02971356 n02096437 n02101556 n04467665 n03983396 n04146614 n04252077 n03476684 n02777292 n03617480 n04004767 n02102177 n02088632 n07749582 n04264628 n04487081 n02808440 n04399382 n03961711 n04229816 n03977966 n03133878 n03877845 n03995372 n04131690 n02093754 n02110806 n01872401 n02106662 n07836838 n04553703 n02095314 n12620546 n02231487 n02277742 n04456115 n02643566 n02317335 n04008634 n04476259 n04550184 n02107908 n02125311 n03355925 n03769881 n07615774 n02443114 n02167151 n04590129 n12620546 n02177972 n03866082 n07718472 n02102318 n07697313 n03384352 n04330267 n03874293 n03895866 n02444819 n03908714 n02395406 n04355933 n03220513 n04147183 n02099267 n01983481 n01770081 n02095570 n01695060 n02115641 n04355338 n07584110 n02843684 n04023962 n02102480 n04116512 n02094258 n04326547 n02951358 n01784675 n03494278 n03935335 n02106662 n02256656 n03944341 n02105641 n02666196 n03982430 n02814533 n04204238 n07730033 n01807496 n03042490 n02963159 n02504458 n03535780 n04355933 n02009229 n02423022 n01582220 n07614500 n02321529 n03272562 n03642806 n04251144 n02115913 n02107312 n03924679 n02699494 n03908714 n04522168 n09246464 n03617480 n02231487 n02127052 n04335435 n02804610 n02437616 n03249569 n01682714 n02790996 n03742115 n02112350 n02837789 n04371774 n03443371 n02992529 n01688243 n03733281 n07875152 n02105641 n02110958 n02018795 n04482393 n03063689 n02328150 n02109525 n02071294 n02808304 n03530642 n03970156 n01860187 n02102973 n03220513 n03032252 n01797886 n03792782 n02085936 n04487394 n02790996 n01773157 n04367480 n03290653 n03478589 n04542943 n07579787 n02190166 n06785654 n02002724 n01740131 n04033995 n01978287 n02011460 n03937543 n02096437 n01534433 n02978881 n03445924 n07716358 n02093428 n01776313 n02704792 n01687978 n04550184 n02102973 n02165456 n03347037 n01755581 n02111889 n03967562 n01491361 n02437616 n02089078 n02123597 n04507155 n03110669 n03868242 n03874599 n02120505 n03930313 n02165105 n04604644 n03445777 n02099712 n02009229 n04389033 n04371774 n02437616 n04243546 n03794056 n03775071 n04479046 n03796401 n02892767 n03929660 n02133161 n03944341 n03884397 n04589890 n03590841 n02071294 n04263257 n01768244 n02410509 n04465501 n02098286 n02747177 n02105162 n01667114 n02999410 n01560419 n07749582 n01968897 n02130308 n02110806 n02106382 n07590611 n07697537 n04591157 n04462240 n02988304 n03126707 n02727426 n04127249 n02843684 n03179701 n02443484 n04344873 n02280649 n03216828 n12985857 n04548280 n03602883 n03447721 n01694178 n02415577 n02699494 n03085013 n02895154 n04371774 n03495258 n03791053 n02641379 n02980441 n02950826 n02110063 n03788195 n01693334 n02606052 n07742313 n02113624 n03874293 n04209239 n03388043 n02927161 n03944341 n04579432 n03759954 n02101388 n01978287 n03443371 n02129604 n01693334 n07742313 n01770393 n06785654 n03126707 n02058221 n03721384 n02093647 n07684084 n03775546 n03494278 n03131574 n02823428 n02111889 n04208210 n02190166 n04228054 n03888257 n02169497 n01770081 n02974003 n03637318 n02089078 n02117135 n02457408 n02606052 n03877845 n02776631 n01882714 n03325584 n02095314 n02102973 n02236044 n02090622 n02797295 n01775062 n02098286 n03498962 n02128385 n02783161 n07768694 n03337140 n01751748 n04447861 n02172182 n03743016 n03599486 n04380533 n07892512 n03598930 n02085782 n01685808 n02879718 n01491361 n04273569 n02441942 n04553703 n03649909 n03141823 n02115641 n04372370 n04265275 n04493381 n06596364 n02825657 n02480495 n02097298 n03532672 n01531178 n03843555 n03770679 n02346627 n02127052 n03297495 n02869837 n02106166 n01440764 n02510455 n02095570 n02177972 n03347037 n01978455 n02488702 n02791124 n04229816 n01675722 n03630383 n01930112 n04005630 n04039381 n03950228 n04592741 n01914609 n02129165 n01871265 n03902125 n01689811 n03534580 n01945685 n01773549 n02089867 n03788195 n02788148 n02113023 n03534580 n04592741 n02797295 n03017168 n04355933 n02097209 n02167151 n04026417 n03271574 n02105251 n04004767 n02108000 n04350905 n02106662 n03201208 n03126707 n01443537 n02837789 n02165456 n03796401 n02870880 n02641379 n01622779 n02113023 n07880968 n02165456 n03840681 n03372029 n04044716 n03840681 n03692522 n03992509 n02085620 n03530642 n02113186 n02086079 n07614500 n09468604 n03602883 n09468604 n04270147 n04146614 n02892201 n03958227 n03832673 n02268443 n02236044 n01494475 n02009912 n01532829 n02093754 n03404251 n03770439 n07734744 n04252077 n07714571 n02120079 n01665541 n02123394 n03240683 n04264628 n02457408 n07614500 n02124075 n03425413 n03133878 n07930864 n03160309 n02484975 n02086240 n02978881 n04404412 n02643566 n02494079 n02749479 n02114855 n02106166 n02114712 n03662601 n07583066 n02396427 n02108089 n04335435 n03017168 n02113186 n04493381 n02909870 n03075370 n03627232 n03794056 n01734418 n02951358 n02457408 n02883205 n02917067 n03250847 n02804610 n02110958 n02088364 n03891251 n02641379 n02098105 n02113624 n02027492 n02066245 n02168699 n06359193 n03627232 n09229709 n02749479 n04355338 n04252225 n02939185 n01632777 n02395406 n02219486 n02988304 n01518878 n03891332 n02114548 n02892767 n01491361 n03933933 n02795169 n09472597 n07579787 n03032252 n02093754 n13054560 n03891251 n02105505 n02132136 n07873807 n02640242 n04461696 n04613696 n09468604 n02113186 n02493509 n04553703 n01968897 n04296562 n03467068 n03763968 n04209239 n02219486 n03888257 n01871265 n03325584 n03272562 n03854065 n01558993 n03670208 n01665541 n03325584 n01695060 n02457408 n02797295 n02950826 n02099429 n03291819 n02939185 n03976467 n02120079 n02879718 n04579145 n04120489 n01632458 n02009912 n04328186 n06874185 n02398521 n02488291 n02107312 n03026506 n02119022 n01843383 n03657121 n03062245 n07584110 n02091032 n03476991 n02013706 n02607072 n02113712 n03788365 n04355338 n04428191 n04442312 n01753488 n12620546 n03417042 n02108089 n07871810 n03930313 n04019541 n04074963 n02408429 n02817516 n01955084 n02747177 n09472597 n03866082 n02099267 n03782006 n03998194 n02823428 n04487081 n03956157 n03854065 n02002556 n01440764 n02093256 n02229544 n02109047 n03160309 n02825657 n02423022 n03016953 n04179913 n01860187 n02107574 n06359193 n02088094 n04065272 n02088632 n02130308 n03769881 n02966193 n06794110 n07590611 n03924679 n04153751 n02112706 n02509815 n04335435 n04579432 n02815834 n02361337 n02123159 n03133878 n02457408 n02092002 n04347754 n03775071 n03498962 n02101388 n03447447 n02443114 n04039381 n02791124 n02104365 n01776313 n04442312 n03584254 n02094258 n02086646 n04370456 n01797886 n03724870 n01775062 n02687172 n02091244 n03124043 n01632777 n02787622 n01930112 n01664065 n01734418 n02110063 n01818515 n04336792 n03793489 n02097298 n02017213 n04273569 n03485794 n02002724 n04507155 n11879895 n02087046 n02486410 n04033995 n03345487 n03692522 n04347754 n01986214 n03873416 n03483316 n02101556 n03425413 n03000684 n02114367 n02113712 n03535780 n02454379 n03788195 n02086240 n02095889 n02422699 n03400231 n03690938 n01494475 n02099601 n04612504 n07753275 n03814639 n02165105 n03314780 n03478589 n01796340 n02105641 n01847000 n01877812 n02447366 n03929660 n02992529 n02088094 n07745940 n04522168 n04069434 n12620546 n03673027 n03998194 n03028079 n04252225 n02033041 n01843065 n07720875 n02099712 n02939185 n02098413 n04296562 n03796401 n01729977 n02859443 n02105251 n02860847 n04209133 n02108000 n04235860 n02782093 n02814533 n01614925 n01484850 n01669191 n04525305 n07716906 n02119022 n03721384 n02259212 n03976657 n02415577 n04392985 n04023962 n02793495 n04592741 n02233338 n02777292 n01514859 n03127747 n04548362 n03947888 n03792782 n03445777 n04592741 n02165105 n02105056 n04525038 n02395406 n02129604 n09399592 n09229709 n06785654 n03045698 n04380533 n02835271 n07715103 n03692522 n02950826 n02259212 n03773504 n04560804 n04355933 n02167151 n01695060 n02091635 n07745940 n03958227 n03642806 n01537544 n03733131 n02028035 n02667093 n03617480 n02443484 n04532106 n06874185 n02730930 n01632458 n04067472 n09246464 n02264363 n09229709 n02708093 n03804744 n03042490 n03347037 n02120079 n02098105 n02092339 n03017168 n02099429 n03160309 n12267677 n03642806 n07579787 n02817516 n01770393 n01667114 n04417672 n04515003 n02091134 n02090721 n04428191 n02086646 n04536866 n03000684 n01692333 n04591157 n03967562 n03743016 n04579145 n02110063 n04040759 n02074367 n03100240 n04552348 n02916936 n03485407 n02489166 n03271574 n01677366 n02457408 n02966193 n04152593 n01491361 n01748264 n03530642 n03840681 n01768244 n02226429 n03642806 n02002556 n03598930 n01631663 n03787032 n03954731 n04462240 n03680355 n02013706 n03271574 n04357314 n02397096 n01697457 n02441942 n03661043 n01985128 n03658185 n02099267 n04522168 n13037406 n02108422 n04111531 n01728920 n02085620 n01644373 n02101388 n02795169 n02100877 n04509417 n02088466 n02769748 n02965783 n03649909 n03179701 n01742172 n01877812 n03769881 n03000247 n02106662 n03888605 n03937543 n04346328 n03976467 n03187595 n15075141 n03062245 n03710721 n04009552 n02447366 n02107574 n03970156 n03991062 n02098413 n07892512 n03529860 n03935335 n01531178 n02835271 n03787032 n02101388 n02085620 n02701002 n11939491 n01698640 n02233338 n11879895 n02101556 n07753592 n02441942 n07871810 n01914609 n02132136 n02097658 n07720875 n02259212 n01560419 n02510455 n04200800 n04254777 n01616318 n04522168 n02100236 n04356056 n07615774 n03160309 n02666196 n02169497 n03207941 n07831146 n04131690 n04136333 n02895154 n02002556 n04311174 n04243546 n13052670 n02895154 n03527444 n02090622 n04429376 n01667778 n01871265 n01608432 n03424325 n02111129 n02094114 n03706229 n02883205 n07590611 n02948072 n01770393 n03290653 n02128925 n02110185 n02110341 n01796340 n02342885 n02487347 n04310018 n02091635 n02708093 n03016953 n02264363 n04372370 n03272562 n02089078 n03764736 n02963159 n03874599 n02641379 n01984695 n02802426 n02346627 n03773504 n04273569 n02111889 n03498962 n03141823 n04350905 n02095314 n04335435 n03388183 n01537544 n03947888 n02106662 n03854065 n01484850 n02086079 n07714571 n01768244 n04070727 n03494278 n03584829 n03837869 n01945685 n03733281 n04429376 n02099601 n04554684 n04509417 n01943899 n07565083 n04515003 n03777754 n03594734 n03777568 n03840681 n02536864 n04442312 n03127747 n03445777 n04579432 n03063599 n02113978 n03787032 n01742172 n02487347 n04486054 n02093859 n04162706 n02328150 n03482405 n04517823 n07615774 n04192698 n02808304 n02037110 n04254120 n02490219 n07684084 n02094258 n02814533 n02174001 n07753275 n04033901 n02481823 n03770679 n03134739 n01560419 n04275548 n01667778 n01737021 n01806567 n04456115 n07613480 n01737021 n03761084 n07753592 n04461696 n04336792 n02137549 n02100735 n04005630 n02112706 n12144580 n03785016 n03372029 n04486054 n02117135 n01667778 n02927161 n07760859 n03924679 n04040759 n07742313 n02106030 n03388549 n03950228 n01768244 n07734744 n04479046 n02791124 n01807496 n04357314 n01484850 n03888605 n04277352 n04326547 n03876231 n07584110 n02092002 n01667778 n01682714 n02091831 n02108089 n02951585 n02219486 n02090379 n01950731 n02089867 n01828970 n03837869 n01978287 n02092002 n02814533 n01664065 n12768682 n07930864 n04357314 n02802426 n02089867 n03063689 n03535780 n04591713 n03796401 n02877765 n02823428 n07717410 n04612504 n03642806 n04033995 n02095889 n04074963 n01855032 n04270147 n03110669 n03255030 n03530642 n10148035 n07745940 n02490219 n02074367 n02097130 n02106662 n03891332 n02089973 n04209239 n04548280 n04154565 n02037110 n02113978 n02115913 n02018795 n02823428 n02091032 n03874293 n04146614 n04560804 n04522168 n07717556 n04311004 n02105855 n02109961 n02134084 n02930766 n01855032 n02480495 n02509815 n02100877 n02795169 n02125311 n01734418 n03124043 n02165105 n02840245 n03759954 n01622779 n02442845 n04328186 n04152593 n04554684 n02965783 n02510455 n03445777 n07615774 n12998815 n07717410 n03742115 n04264628 n02165456 n04074963 n02098105 n02132136 n01872401 n02441942 n04560804 n02422699 n02802426 n07768694 n01518878 n02096051 n02786058 n02483708 n02099601 n04435653 n01630670 n02177972 n13052670 n02028035 n01978455 n13054560 n02165105 n04317175 n01739381 n02168699 n02483362 n02342885 n02007558 n01798484 n04579145 n02361337 n02643566 n04147183 n04208210 n01798484 n02488291 n03773504 n03662601 n02483708 n01986214 n04005630 n02165105 n02009229 n03814639 n04462240 n02090379 n03786901 n01734418 n01770081 n02814533 n03445777 n03196217 n02747177 n02493793 n03970156 n02165105 n03930313 n02169497 n04204347 n02113712 n02979186 n02085782 n04265275 n01694178 n09229709 n04317175 n07760859 n02865351 n03841143 n01601694 n02128925 n03908714 n01775062 n01770393 n02877765 n03902125 n01744401 n02094114 n03271574 n04372370 n07697313 n04229816 n02692877 n01537544 n04153751 n02490219 n09193705 n02951585 n01986214 n02865351 n02105855 n04392985 n03825788 n04265275 n12267677 n03787032 n02088632 n04507155 n03481172 n03868242 n02797295 n02500267 n02480855 n03956157 n02948072 n03792782 n03478589 n04590129 n01729322 n02105056 n02837789 n03393912 n02319095 n02100735 n02093256 n03782006 n03388043 n03891251 n02391049 n02167151 n03045698 n01534433 n04067472 n02105641 n04423845 n01983481 n03160309 n02802426 n09428293 n02106382 n04325704 n02444819 n01755581 n02895154 n02129604 n02910353 n07873807 n07716358 n03325584 n02104029 n01883070 n02408429 n02992529 n02111277 n04141327 n02098105 n12998815 n04133789 n02837789 n02321529 n04041544 n03131574 n01968897 n03721384 n09428293 n03637318 n04536866 n01641577 n01828970 n02794156 n02105855 n02825657 n02100735 n02487347 n02281406 n04550184 n02804414 n03594734 n01806143 n09256479 n04204238 n03544143 n04350905 n04380533 n03459775 n04509417 n02480495 n04204347 n03967562 n03666591 n03481172 n03179701 n01728920 n09835506 n02509815 n11939491 n02125311 n01774750 n01924916 n04380533 n03496892 n02510455 n02808304 n04328186 n04009552 n02105505 n02454379 n04507155 n01592084 n04118538 n01644373 n02965783 n03742115 n07715103 n03733281 n02268853 n03967562 n02107574 n04597913 n01798484 n04562935 n04584207 n07717556 n02110958 n04597913 n07693725 n02086910 n04136333 n01843383 n02794156 n02101556 n04192698 n02389026 n03250847 n01817953 n01682714 n01491361 n06874185 n02093647 n02483362 n04435653 n01667778 n04548280 n03133878 n02840245 n01950731 n04229816 n01817953 n04346328 n07871810 n04493381 n03476684 n01882714 n03100240 n02105505 n03623198 n02128925 n07749582 n03124170 n03042490 n01531178 n03180011 n02276258 n03538406 n01843383 n01833805 n02109047 n01735189 n01514859 n02396427 n01537544 n07920052 n02077923 n03661043 n03445924 n01514859 n04418357 n01630670 n02256656 n02980441 n01985128 n03787032 n09399592 n02096177 n03095699 n02791270 n02002556 n02099429 n02687172 n04487081 n03775071 n04120489 n02100877 n04131690 n02111277 n04008634 n03796401 n03690938 n03496892 n02487347 n02098286 n04398044 n02281787 n02641379 n03179701 n03110669 n03314780 n03388549 n02441942 n02091831 n03933933 n07584110 n02510455 n02437312 n02417914 n02110806 n02667093 n03384352 n03529860 n04209239 n04254120 n04310018 n07615774 n01984695 n03188531 n02701002 n01749939 n03494278 n04317175 n02480855 n04553703 n04591713 n02093991 n03496892 n03498962 n02870880 n07734744 n02090622 n02095889 n03089624 n03814906 n01443537 n03775546 n03895866 n04254680 n02093991 n02094433 n03709823 n04133789 n04356056 n09421951 n03781244 n03970156 n03709823 n03873416 n03950228 n03425413 n09229709 n03141823 n03290653 n01675722 n04259630 n04613696 n03838899 n01443537 n03617480 n02112350 n01774384 n02108915 n03876231 n02099429 n02226429 n01770393 n01694178 n06794110 n03220513 n11879895 n03124043 n02105855 n02486410 n04004767 n09835506 n07745940 n02097047 n03721384 n03133878 n02093647 n06794110 n04317175 n02134418 n02692877 n02128757 n03794056 n02727426 n01484850 n02514041 n02106382 n02097298 n04613696 n02701002 n03770439 n01855672 n02328150 n03944341 n09468604 n02281787 n04554684 n02098105 n03179701 n02174001 n02109961 n03742115 n04562935 n03729826 n04133789 n04086273 n01514859 n04597913 n04476259 n01914609 n02095889 n03125729 n04366367 n02443114 n02098413 n03599486 n01614925 n04483307 n02105412 n01631663 n02500267 n02095889 n04264628 n07753592 n02123597 n03884397 n04579432 n03938244 n07831146 n02101006 n02092002 n02006656 n02106166 n04596742 n03770679 n04149813 n04599235 n04332243 n03379051 n01776313 n01806567 n09468604 n04554684 n02747177 n04243546 n03838899 n01855032 n01917289 n02226429 n03706229 n03843555 n07615774 n02268853 n04141975 n01728920 n01531178 n03838899 n09472597 n01847000 n13133613 n04522168 n02088466 n09193705 n03445924 n02092002 n02640242 n07742313 n04612504 n01986214 n09229709 n02488291 n02643566 n03891251 n09468604 n01983481 n07920052 n03770679 n02097130 n03769881 n03498962 n07697537 n02422699 n04254777 n03452741 n04152593 n01616318 n02259212 n03690938 n04501370 n04355933 n01498041 n04023962 n02488702 n04443257 n02091134 n02978881 n02091244 n01756291 n04120489 n04141327 n02504458 n01667778 n02108089 n03843555 n02951358 n01807496 n02102318 n07745940 n06794110 n02363005 n07753113 n01644900 n02363005 n01484850 n02105056 n02107312 n03482405 n01945685 n02823750 n02090622 n03710193 n03379051 n07873807 n04263257 n03062245 n02088632 n04208210 n04141327 n07932039 n02951358 n02790996 n02777292 n02804414 n03970156 n04501370 n02641379 n01774750 n01498041 n04116512 n02233338 n03706229 n02097047 n07697537 n02444819 n04153751 n02398521 n03908714 n02088632 n02113712 n02132136 n04258138 n03425413 n02397096 n02443484 n06785654 n04367480 n03717622 n03721384 n02981792 n01955084 n02090721 n02879718 n02113712 n02417914 n02093859 n02009912 n02006656 n01770393 n02701002 n01818515 n12998815 n03532672 n03666591 n06794110 n03110669 n03220513 n03976467 n02396427 n03888257 n02514041 n02837789 n07711569 n07613480 n03075370 n07684084 n02708093 n02099267 n03131574 n01843383 n02091032 n03796401 n04243546 n04389033 n03014705 n03868863 n01883070 n01744401 n12267677 n03876231 n01847000 n02219486 n01955084 n03089624 n04350905 n02119022 n04004767 n02793495 n03404251 n03014705 n01677366 n03690938 n04162706 n04552348 n01985128 n07873807 n02526121 n07932039 n02102973 n02108000 n04493381 n02097130 n04086273 n03832673 n02088364 n02119789 n02113712 n07716906 n03792972 n02097658 n02226429 n09428293 n02116738 n07753113 n02777292 n02017213 n04209239 n02077923 n02509815 n07716906 n02843684 n02417914 n07920052 n09288635 n01980166 n09193705 n03124043 n03944341 n02219486 n02127052 n04147183 n02106550 n04550184 n01728572 n02102480 n04371430 n03983396 n02815834 n04264628 n04356056 n02096294 n02106382 n07579787 n02536864 n03630383 n02114367 n03781244 n03271574 n01739381 n04008634 n03594734 n03201208 n02058221 n02134418 n10148035 n01631663 n02526121 n02002556 n02095314 n02098105 n04509417 n04612504 n02497673 n01580077 n01697457 n03109150 n09468604 n03874293 n02109961 n02110627 n02892201 n02088364 n03100240 n03532672 n02892767 n07860988 n03337140 n02951358 n03691459 n03134739 n02422106 n02788148 n03814906 n02444819 n06785654 n04612504 n02123394 n03042490 n04116512 n03527444 n09288635 n01983481 n09332890 n07715103 n01828970 n04037443 n03089624 n02504458 n01917289 n03223299 n02119022 n02206856 n04252077 n02012849 n02037110 n01751748 n07930864 n04131690 n07697313 n02841315 n03950228 n04254680 n04141975 n03983396 n02124075 n12998815 n03709823 n01689811 n02966687 n03590841 n02002556 n01770393 n04532106 n02109961 n04286575 n02910353 n03785016 n04125021 n04370456 n02115641 n03874293 n13054560 n02480855 n02105855 n01773157 n02108915 n02108000 n03764736 n02231487 n04507155 n01744401 n04325704 n02526121 n04371774 n01582220 n02088094 n12267677 n07880968 n04266014 n02417914 n04270147 n07684084 n01443537 n03866082 n04179913 n02422106 n07697537 n02687172 n03803284 n01692333 n04192698 n02481823 n02115913 n03404251 n02138441 n02999410 n03388183 n02317335 n03759954 n04335435 n03814906 n03692522 n13052670 n03729826 n02790996 n02012849 n03935335 n01667114 n07836838 n01580077 n07615774 n03535780 n02226429 n03903868 n02999410 n03532672 n03498962 n01531178 n03868242 n02128757 n03793489 n01755581 n09332890 n02087394 n03920288 n02128385 n03495258 n02114712 n03976467 n04259630 n02794156 n01774384 n02091467 n04467665 n02091635 n04579432 n03599486 n02328150 n04147183 n02486410 n04252077 n02395406 n07584110 n03075370 n02138441 n02105505 n04311004 n04086273 n04435653 n04467665 n04201297 n01689811 n03345487 n02090379 n02776631 n04023962 n02114367 n13044778 n02917067 n07711569 n03452741 n01734418 n03272010 n01744401 n09399592 n02114855 n03594734 n02860847 n04141076 n02133161 n03804744 n01924916 n04532106 n01770081 n02096177 n02797295 n03188531 n04204347 n03063689 n02841315 n02276258 n02086646 n03775071 n03947888 n02137549 n03063599 n02074367 n02051845 n03832673 n03982430 n01776313 n02102177 n02106550 n03929855 n04201297 n01592084 n02906734 n03124043 n03598930 n07590611 n02091635 n02128757 n04204347 n01698640 n01955084 n03891251 n02823428 n03417042 n03666591 n03958227 n03895866 n02690373 n01667778 n02692877 n03532672 n07920052 n03924679 n03085013 n07697313 n02444819 n02992211 n07248320 n02950826 n02077923 n03786901 n03016953 n02111889 n02892201 n02786058 n02106382 n02877765 n02687172 n02747177 n02105412 n07753113 n03207743 n04418357 n02009912 n01580077 n01616318 n04273569 n01945685 n03706229 n04326547 n02105056 n13037406 n03459775 n02526121 n02837789 n04346328 n01819313 n02321529 n03916031 n03026506 n02105251 n04599235 n01518878 n02110627 n01984695 n01943899 n04069434 n02113023 n01531178 n03947888 n03733805 n03873416 n02087394 n04273569 n03690938 n02281787 n04515003 n01630670 n03445924 n04317175 n02395406 n02018207 n02128385 n03255030 n02169497 n03717622 n03602883 n02488291 n01622779 n03992509 n02877765 n03873416 n01855672 n03478589 n03404251 n07584110 n03980874 n03476684 n02138441 n02977058 n02105162 n03485407 n01616318 n02051845 n03793489 n01768244 n04209239 n03930630 n04532106 n03259280 n02841315 n02966193 n03980874 n04532106 n02981792 n01776313 n04355338 n02110341 n03697007 n02454379 n02655020 n03841143 n07584110 n02123394 n03255030 n07711569 n03724870 n03110669 n03133878 n01641577 n01644373 n04049303 n07768694 n03075370 n02823428 n02640242 n02104365 n04009552 n02129604 n03733805 n02281787 n04208210 n04067472 n01514859 n03384352 n03544143 n03355925 n01694178 n03950228 n07717556 n02317335 n02113799 n07583066 n02999410 n07760859 n02410509 n02013706 n04285008 n04296562 n03196217 n03000134 n02110627 n04442312 n02787622 n02443484 n02137549 n03337140 n03594734 n02879718 n02415577 n02092339 n03450230 n02102040 n07747607 n03085013 n03026506 n06874185 n02493793 n03532672 n01644900 n03792782 n04004767 n02966193 n01784675 n13037406 n03481172 n03775546 n04033995 n02101556 n03666591 n04317175 n01882714 n02640242 n03063689 n04560804 n01860187 n04376876 n04523525 n01833805 n02169497 n03314780 n02988304 n02168699 n04044716 n02109961 n01770393 n01531178 n04152593 n02106662 n04389033 n01735189 n07871810 n04277352 n02077923 n03347037 n02111500 n02088238 n03534580 n03314780 n02791270 n04548280 n03109150 n03944341 n02137549 n04523525 n04592741 n04266014 n01978455 n02091032 n04398044 n02113624 n02408429 n04417672 n04009552 n02231487 n04599235 n07248320 n04086273 n04606251 n03532672 n02112137 n09256479 n04523525 n01697457 n03662601 n04070727 n02098286 n02017213 n02177972 n01689811 n03697007 n03874599 n02110185 n04417672 n04310018 n02130308 n04252077 n03534580 n01860187 n03814906 n02442845 n04487394 n02090379 n01930112 n07860988 n02869837 n02231487 n03956157 n03482405 n02489166 n02107683 n01677366 n01806143 n03775071 n02825657 n02783161 n01622779 n02268853 n04044716 n04540053 n02107142 n04487394 n03376595 n01496331 n02815834 n02099267 n04229816 n07615774 n03272562 n01855672 n02804414 n01818515 n02704792 n02483708 n01629819 n03393912 n03794056 n01644373 n02951585 n02497673 n02415577 n01871265 n07718747 n02966193 n03017168 n01530575 n02319095 n02090379 n03297495 n03388183 n03825788 n01798484 n03814906 n02027492 n02111889 n04118538 n02356798 n01983481 n01986214 n02808440 n02486261 n01751748 n03777568 n04335435 n07720875 n03633091 n03534580 n04141975 n04162706 n03998194 n07579787 n02676566 n03483316 n01693334 n04238763 n02071294 n04493381 n07875152 n01753488 n02091635 n03314780 n03291819 n03924679 n12768682 n06794110 n03291819 n03544143 n01698640 n06785654 n03782006 n04154565 n02012849 n07930864 n03017168 n04133789 n02138441 n03769881 n03773504 n07930864 n04589890 n01806143 n03207743 n02097474 n01582220 n02939185 n02640242 n02981792 n03657121 n02106166 n02666196 n01751748 n03188531 n01768244 n04429376 n02690373 n01806567 n02319095 n02107683 n04550184 n04350905 n01797886 n04447861 n04485082 n03443371 n04229816 n03443371 n04579145 n03125729 n03942813 n03649909 n02119022 n02105251 n12144580 n02992529 n01518878 n02977058 n01968897 n02233338 n03642806 n01833805 n09421951 n01985128 n01824575 n04286575 n04330267 n02106166 n07875152 n02094258 n02123394 n01537544 n04493381 n02102480 n02086240 n02085782 n03786901 n04254680 n03721384 n04311174 n04487394 n02099267 n03207941 n02883205 n02672831 n04008634 n03868863 n04251144 n03529860 n01608432 n02093647 n02028035 n03982430 n01687978 n01632458 n03125729 n02389026 n02085782 n06359193 n03459775 n01773797 n02093754 n04275548 n02120505 n03450230 n03854065 n02096177 n02112706 n02089867 n02138441 n02504458 n02865351 n04479046 n03180011 n03223299 n02804414 n02134418 n01751748 n02483708 n01692333 n02992211 n03404251 n07716906 n01924916 n07695742 n02112137 n02692877 n02423022 n02860847 n01877812 n04326547 n02051845 n01855672 n02667093 n01829413 n07760859 n01630670 n02869837 n02086910 n01740131 n02398521 n03016953 n02091134 n02096585 n02093647 n03220513 n07716906 n03188531 n03627232 n03690938 n02788148 n04254680 n02493509 n02098413 n03532672 n02111889 n01843065 n02666196 n02457408 n03785016 n02097474 n02704792 n03868863 n04540053 n03529860 n04238763 n03658185 n03970156 n04285008 n02526121 n02096585 n03814639 n03180011 n02480855 n03594945 n02101006 n04517823 n12985857 n02104029 n04111531 n01729322 n03773504 n01580077 n02098413 n04065272 n02085936 n02093859 n02104365 n09472597 n02865351 n04254680 n02951358 n02281787 n01496331 n02093256 n01910747 n04509417 n02417914 n02389026 n03666591 n06794110 n03786901 n07695742 n02133161 n04540053 n02782093 n01871265 n03690938 n02028035 n02106550 n02494079 n07831146 n01498041 n02130308 n04483307 n01820546 n02105056 n04487081 n09332890 n02437312 n03692522 n02871525 n02326432 n07749582 n02992211 n02497673 n03544143 n13052670 n13133613 n07714571 n03868863 n02606052 n02111129 n03874293 n02190166 n02226429 n02363005 n02443484 n04579145 n03425413 n03018349 n03452741 n02791124 n02346627 n02128757 n03998194 n03530642 n01592084 n01917289 n03764736 n07615774 n03977966 n02877765 n02089973 n01986214 n01872401 n03942813 n01689811 n02834397 n07714990 n02486261 n02397096 n04467665 n02909870 n04517823 n04131690 n01728572 n01729322 n01797886 n02108551 n03866082 n01677366 n02979186 n03710637 n03933933 n03930313 n03899768 n03763968 n02326432 n02107142 n02066245 n04099969 n07860988 n07695742 n01924916 n03895866 n03788365 n01632777 n02787622 n01768244 n01768244 n03146219 n06785654 n02110341 n03400231 n02123045 n02025239 n03670208 n01784675 n03982430 n04485082 n03208938 n01990800 n03930313 n02708093 n04597913 n01796340 n02100236 n01608432 n01828970 n01614925 n03400231 n01631663 n03759954 n01872401 n01917289 n02690373 n01664065 n03016953 n04376876 n01664065 n02950826 n04557648 n02793495 n02111129 n01968897 n03781244 n07871810 n02641379 n02097209 n02109047 n03065424 n03838899 n04501370 n01753488 n04049303 n02097047 n04311004 n03538406 n03666591 n02017213 n02093647 n04409515 n03207743 n01843065 n03697007 n03291819 n03197337 n03000247 n02443484 n03891251 n02085782 n04033901 n03658185 n01819313 n03388549 n02606052 n04612504 n01582220 n02883205 n04467665 n03535780 n04326547 n03895866 n02095889 n02123045 n03777568 n01631663 n02999410 n07717410 n02837789 n04461696 n07720875 n03141823 n03216828 n04589890 n02105641 n03196217 n01797886 n07742313 n02396427 n04532106 n02655020 n02437312 n03028079 n02037110 n03788365 n01978455 n02483362 n02444819 n01580077 n04347754 n01728572 n03063689 n02106662 n02672831 n03895866 n04560804 n04540053 n02233338 n03777754 n02788148 n09472597 n02484975 n04404412 n02087046 n02089078 n03255030 n03095699 n07714990 n02641379 n03218198 n02481823 n01514859 n03337140 n04399382 n02641379 n02129604 n03982430 n04127249 n04125021 n01774384 n01740131 n02325366 n04041544 n02667093 n07836838 n01739381 n02108000 n02277742 n01950731 n03777754 n04310018 n02917067 n02835271 n04515003 n02119789 n02966687 n03085013 n12144580 n02071294 n12998815 n04162706 n03028079 n03218198 n02895154 n04562935 n07613480 n02128925 n03649909 n01629819 n01883070 n02098413 n02002724 n02106382 n01530575 n02113978 n02124075 n04332243 n02655020 n04239074 n01910747 n09399592 n02096051 n03930630 n07693725 n03933933 n03187595 n02281787 n02892201 n02108000 n01687978 n03803284 n07892512 n02074367 n03891251 n03384352 n04409515 n02107574 n01860187 n03529860 n02280649 n02860847 n03325584 n04409515 n03692522 n02089973 n02782093 n03208938 n02980441 n01693334 n01773157 n01729977 n03063689 n02865351 n03459775 n03637318 n04263257 n04604644 n04311004 n02120079 n02112018 n03196217 n01871265 n02804610 n07892512 n03124043 n02219486 n02089973 n02109047 n04040759 n07711569 n04458633 n07720875 n02277742 n01675722 n02119022 n02106030 n03763968 n02105412 n03017168 n03857828 n04346328 n04005630 n03492542 n02480495 n02090622 n03814906 n04004767 n02992529 n02692877 n09332890 n02979186 n01770393 n02129165 n02391049 n07871810 n03355925 n04398044 n07860988 n03961711 n02089973 n03404251 n02395406 n03063689 n04070727 n04552348 n02112137 n02110958 n01753488 n07697537 n04389033 n02783161 n07693725 n04286575 n07753113 n07716358 n03394916 n02093256 n01737021 n07836838 n02268853 n02130308 n02906734 n02134418 n02108000 n01560419 n03131574 n02133161 n03000247 n02279972 n02951585 n03733805 n01677366 n03976467 n03535780 n03938244 n01644373 n02109525 n03649909 n02190166 n01692333 n02910353 n01807496 n03982430 n02974003 n03950228 n01978287 n03720891 n02892767 n02504013 n01855032 n02483362 n02025239 n03868242 n02094114 n02109047 n07749582 n01669191 n03785016 n04041544 n02087046 n03272010 n03447447 n02783161 n03976657 n02087394 n04548280 n01860187 n01689811 n04584207 n04251144 n02113023 n03977966 n03792972 n13054560 n06785654 n07734744 n02115641 n04606251 n02277742 n02794156 n02137549 n04479046 n01753488 n04485082 n02100735 n02869837 n03534580 n02879718 n04525305 n01829413 n03792782 n02109961 n03443371 n02009229 n01744401 n01728572 n02098413 n04311004 n03272010 n02095570 n01632458 n02783161 n01644900 n01601694 n01608432 n04335435 n02086910 n04418357 n02097658 n03124170 n04228054 n02494079 n07754684 n02493793 n02165105 n02133161 n01847000 n03394916 n02105162 n01950731 n03970156 n02233338 n03045698 n02099601 n11939491 n04467665 n04346328 n04347754 n03063689 n03100240 n02127052 n03887697 n09428293 n02361337 n02606052 n04590129 n02692877 n03796401 n04532106 n03538406 n07747607 n01978455 n07717556 n02894605 n03134739 n04243546 n03903868 n02879718 n01824575 n01877812 n01770081 n04525305 n01773549 n02099712 n01774384 n02823428 n01860187 n03461385 n04366367 n02167151 n02454379 n03777568 n01833805 n03761084 n04542943 n02504458 n02033041 n02095314 n03527444 n02280649 n02123045 n01644373 n12998815 n03792972 n02480495 n03417042 n02091467 n02415577 n12985857 n03544143 n04370456 n02110806 n03676483 n03602883 n03538406 n04201297 n03929855 n02504013 n10565667 n02097130 n03950228 n01675722 n04523525 n02966687 n02504458 n02089973 n01641577 n04330267 n04146614 n01631663 n02978881 n07802026 n04039381 n03485794 n03825788 n04265275 n03141823 n04033995 n03179701 n01986214 n04604644 n02730930 n03920288 n02799071 n04399382 n04023962 n02951358 n02114367 n02074367 n03992509 n03000134 n01824575 n04525305 n02119789 n03899768 n03617480 n02012849 n03814639 n04347754 n04597913 n02113799 n04562935 n03777754 n02687172 n02066245 n02704792 n01751748 n02090622 n03857828 n03777754 n02130308 n02606052 n03483316 n02808440 n02114712 n01774384 n09468604 n03045698 n02107574 n02112706 n03777754 n04209239 n07745940 n02690373 n07584110 n03388549 n03977966 n04584207 n02279972 n02443114 n02493509 n02494079 n03063599 n01774750 n01968897 n01695060 n04380533 n02128757 n09256479 n02909870 n04501370 n03935335 n07693725 n04591713 n03787032 n01498041 n03042490 n02086910 n01855672 n04596742 n02445715 n02859443 n02804610 n03709823 n02488291 n02410509 n03393912 n03498962 n03131574 n03791053 n03763968 n02097130 n03042490 n01641577 n01677366 n01828970 n02096051 n03888605 n02094114 n02892201 n02486261 n03983396 n02133161 n03602883 n03065424 n02749479 n02791124 n01968897 n02797295 n02877765 n01843065 n02892201 n03786901 n02174001 n03133878 n02107908 n04136333 n02437616 n04592741 n04044716 n01773157 n02130308 n02325366 n04591713 n04090263 n03902125 n03670208 n07753113 n03866082 n04201297 n02093859 n02410509 n02823750 n01740131 n03417042 n03874293 n03710193 n02871525 n02091467 n04254120 n02109525 n04404412 n02094433 n11939491 n02107683 n04356056 n02002556 n02168699 n01945685 n04376876 n04033901 n01530575 n03838899 n01776313 n03028079 n03658185 n04310018 n02090379 n02109525 n04376876 n04418357 n04409515 n07583066 n03841143 n02837789 n03494278 n03457902 n02497673 n02504013 n02110063 n02835271 n01491361 n02807133 n02085782 n02088364 n02607072 n02120505 n07718472 n03781244 n02389026 n03026506 n02769748 n02096177 n02840245 n02606052 n03857828 n03837869 n01735189 n02093256 n02112706 n02749479 n04525038 n03982430 n02510455 n02410509 n03680355 n02105505 n03017168 n02120079 n03532672 n03992509 n02009229 n02106166 n02105056 n02422699 n03770439 n03794056 n03777568 n02110806 n01950731 n04371430 n03417042 n03743016 n01729977 n02669723 n02094433 n04251144 n02119022 n01697457 n01682714 n07614500 n02127052 n03042490 n02113799 n04399382 n03794056 n02963159 n02730930 n01592084 n04067472 n02815834 n07753592 n13052670 n07875152 n06785654 n04509417 n03977966 n03345487 n03223299 n04277352 n06794110 n02389026 n07920052 n02100877 n04435653 n04239074 n04069434 n03617480 n01494475 n02672831 n07831146 n02097047 n03814639 n02514041 n02091635 n01687978 n02116738 n01630670 n01695060 n04204238 n04090263 n04081281 n01819313 n02132136 n03787032 n04044716 n15075141 n03954731 n04389033 n02002556 n04591157 n04133789 n04277352 n02641379 n03733805 n04417672 n02403003 n01580077 n03920288 n03673027 n07697537 n07836838 n04243546 n02977058 n07684084 n07697537 n02132136 n03131574 n02093647 n03443371 n03134739 n04550184 n03891251 n02087394 n07697537 n07583066 n04522168 n04493381 n04065272 n02097130 n04467665 n01614925 n03961711 n02802426 n02089078 n02018207 n03947888 n01748264 n02280649 n02002556 n03709823 n01494475 n03485794 n04479046 n02108551 n03325584 n03188531 n02091032 n02259212 n02033041 n03290653 n04033995 n07614500 n02169497 n04553703 n02268443 n09288635 n01843383 n04428191 n03717622 n02268853 n02012849 n02894605 n02134418 n01751748 n02823750 n02177972 n03424325 n02397096 n07753275 n02417914 n03379051 n02096585 n03814639 n03355925 n03127747 n02264363 n03733131 n02481823 n03447447 n04409515 n02066245 n02102318 n03028079 n02107574 n04026417 n02058221 n02106662 n02607072 n01641577 n03376595 n07892512 n11939491 n02488702 n09421951 n01910747 n02364673 n07248320 n03908714 n02939185 n02099601 n03680355 n02095889 n02917067 n04380533 n01592084 n02109525 n02123394 n02236044 n02346627 n12057211 n12620546 n04346328 n01531178 n01735189 n04152593 n04487394 n02123597 n01768244 n02129604 n09193705 n04131690 n02085936 n02088238 n03538406 n03131574 n02110185 n03124043 n03000247 n02107574 n02110958 n03018349 n02930766 n02229544 n02483362 n03887697 n01773797 n02264363 n02088364 n04127249 n02113023 n03146219 n02114855 n04536866 n03770679 n01796340 n03866082 n04380533 n03764736 n07749582 n03658185 n04579145 n01784675 n01644373 n02110063 n02971356 n02494079 n02361337 n02490219 n03803284 n02113624 n02106550 n03814906 n03180011 n01872401 n02730930 n04548280 n02814860 n02105162 n03676483 n01871265 n07716358 n04476259 n03887697 n07697537 n02514041 n04004767 n04371774 n01855032 n01518878 n09835506 n01943899 n03908714 n03400231 n02129604 n02492035 n04252225 n02107312 n03443371 n02950826 n03814639 n02951585 n04265275 n01806567 n03482405 n01882714 n01580077 n02091831 n04266014 n02895154 n04532106 n02999410 n03729826 n03345487 n02105162 n02690373 n04597913 n04325704 n03461385 n01695060 n01818515 n09472597 n01806567 n07754684 n04326547 n02093859 n04049303 n02641379 n03196217 n02088466 n04376876 n02009229 n03929855 n02025239 n03814906 n03291819 n04612504 n03000134 n02837789 n07718747 n03459775 n02281406 n01693334 n02219486 n04266014 n04399382 n01774750 n02980441 n03062245 n04418357 n02841315 n04239074 n02117135 n03908714 n04429376 n02089867 n01641577 n02444819 n04277352 n01443537 n04522168 n02137549 n03770439 n03697007 n07248320 n04523525 n04141975 n04442312 n02979186 n03929855 n03160309 n07613480 n04154565 n03452741 n03063689 n01983481 n03884397 n02687172 n01622779 n01774750 n02096051 n04074963 n03207941 n02107908 n03180011 n04557648 n01491361 n04209239 n02091467 n03930313 n03417042 n02395406 n02112350 n02108915 n02123597 n04125021 n03777754 n09288635 n02066245 n03196217 n04118538 n03733281 n02106550 n02111889 n03720891 n04604644 n03016953 n03249569 n04039381 n02100735 n01582220 n02423022 n03764736 n03109150 n02028035 n02510455 n01735189 n02666196 n02992211 n04356056 n03240683 n01978455 n04579145 n02963159 n09288635 n02442845 n04606251 n02087046 n03344393 n01883070 n03697007 n03891251 n03662601 n02138441 n01753488 n04613696 n01950731 n03485794 n02110341 n02892767 n02492035 n04273569 n04008634 n02095314 n03794056 n09472597 n02802426 n07716906 n03792972 n01872401 n03673027 n02279972 n02910353 n03933933 n03938244 n01558993 n03908714 n01914609 n02101006 n02672831 n04067472 n02526121 n07836838 n02817516 n07742313 n01828970 n04286575 n03649909 n02107683 n02988304 n02165456 n04560804 n01629819 n03814906 n03782006 n02264363 n02909870 n09246464 n02328150 n02730930 n04596742 n03095699 n03146219 n01824575 n03977966 n01807496 n02500267 n02098105 n01796340 n02113978 n02948072 n03089624 n04550184 n07565083 n03529860 n03544143 n02791270 n03775071 n03710721 n13044778 n02504458 n02514041 n03743016 n03483316 n12985857 n03709823 n04465501 n03028079 n04209239 n01807496 n02859443 n04398044 n03337140 n02783161 n02500267 n01644373 n07711569 n03888257 n02655020 n09399592 n03197337 n02007558 n03961711 n04542943 n02116738 n01580077 n02088632 n02096294 n03388183 n02099267 n03445924 n04133789 n04332243 n03201208 n03032252 n02504458 n02979186 n04584207 n03535780 n02229544 n02111500 n04525305 n03197337 n02398521 n02088238 n02364673 n04146614 n02113186 n02391049 n02098286 n04548362 n02009229 n07802026 n07716906 n02111889 n02730930 n01632777 n02099601 n02981792 n03637318 n01735189 n04049303 n02129165 n02443484 n03770679 n04149813 n01622779 n03110669 n01945685 n03937543 n02977058 n02457408 n03041632 n01694178 n03095699 n02085936 n04252077 n03529860 n01978455 n01768244 n06359193 n02107908 n04162706 n03494278 n02009912 n01740131 n03717622 n13054560 n03014705 n02087394 n02093991 n03063689 n02113023 n03733131 n04493381 n03825788 n02643566 n03495258 n06794110 n02280649 n04065272 n02110958 n03452741 n03314780 n01828970 n02871525 n04447861 n02815834 n04417672 n04328186 n02134418 n03788365 n03877845 n04487081 n02500267 n03372029 n03837869 n01968897 n03443371 n12768682 n01685808 n03584829 n02814860 n03485407 n03670208 n01817953 n03026506 n01440764 n01685808 n03691459 n04141076 n04179913 n03670208 n01755581 n03958227 n03388043 n03223299 n02504013 n01773549 n01694178 n02112018 n01739381 n01695060 n01980166 n03788365 n03187595 n02277742 n01669191 n02892201 n02123045 n07747607 n04604644 n04149813 n04074963 n02111277 n02101006 n03961711 n01978287 n03127747 n02129604 n07717410 n02264363 n07802026 n02089973 n02096585 n04243546 n01688243 n02817516 n04596742 n03673027 n02797295 n07753113 n01685808 n02871525 n02093991 n01984695 n07760859 n03032252 n07711569 n02280649 n03761084 n03160309 n03891332 n02883205 n04372370 n04041544 n04552348 n04264628 n04041544 n01910747 n03950228 n02666196 n04204347 n01560419 n04204238 n02236044 n03131574 n04487081 n02018795 n02843684 n03000684 n01667778 n02115641 n04548362 n01943899 n02100877 n02093256 n02018207 n02112137 n03141823 n02093754 n02174001 n04476259 n02480495 n03887697 n02769748 n02002724 n02113978 n02110627 n03874293 n02107574 n02109047 n01855032 n02794156 n03134739 n07742313 n03124043 n02486261 n02992529 n01734418 n02321529 n03047690 n02879718 n02025239 n03131574 n04347754 n03216828 n02264363 n03041632 n02071294 n01914609 n02497673 n02172182 n01667778 n02106550 n02814860 n01773549 n01986214 n02236044 n02009912 n02487347 n01755581 n03623198 n02445715 n06794110 n02085620 n04482393 n01820546 n04579145 n02326432 n07754684 n04111531 n03724870 n02093256 n07711569 n02017213 n01688243 n01669191 n01664065 n02092339 n02108551 n04525305 n03950228 n03929660 n03956157 n03891332 n04493381 n02102973 n03255030 n01990800 n02500267 n02281406 n01824575 n03032252 n02129165 n02356798 n03538406 n02009229 n02097658 n03095699 n03786901 n03743016 n02980441 n07742313 n02106166 n03314780 n02097209 n04037443 n04086273 n03394916 n02037110 n02112018 n03379051 n02951585 n04501370 n04355338 n03874293 n04153751 n07930864 n02930766 n01496331 n04265275 n02256656 n01667114 n03630383 n04591713 n02704792 n03207743 n03854065 n03720891 n07873807 n02120505 n02099849 n04152593 n02100877 n04560804 n03792972 n03733131 n13133613 n02114548 n03000247 n04146614 n04398044 n02325366 n03633091 n09256479 n03617480 n01530575 n03633091 n03018349 n01768244 n02871525 n04040759 n03658185 n03272562 n02447366 n04392985 n02797295 n03903868 n04548362 n07714571 n03884397 n03888605 n02105505 n03666591 n03063599 n03530642 n02097474 n04483307 n04554684 n02978881 n02492660 n03692522 n04589890 n04579432 n02127052 n02112706 n02804610 n02190166 n11939491 n03000134 n01697457 n12620546 n02256656 n01968897 n02950826 n03127925 n02939185 n06596364 n02091134 n03877472 n02113799 n02102973 n02027492 n03498962 n02834397 n07248320 n04286575 n01735189 n02417914 n03690938 n03404251 n01739381 n02099267 n02219486 n02108089 n02206856 n03208938 n03127747 n02279972 n02281406 n02113023 n01601694 n07715103 n02107908 n02120079 n02102318 n02096051 n01990800 n02917067 n03372029 n03538406 n12267677 n03314780 n03903868 n02009229 n02100236 n03759954 n02277742 n03804744 n02966687 n02102318 n09835506 n01484850 n02097047 n02795169 n03673027 n02169497 n03532672 n04067472 n01944390 n02786058 n04019541 n01665541 n04162706 n01695060 n04116512 n03680355 n04548280 n04517823 n02883205 n02869837 n01871265 n01737021 n01496331 n01773797 n04562935 n03617480 n03930630 n04033901 n04270147 n03388183 n02823428 n02090622 n02504013 n04356056 n02510455 n01860187 n02492660 n02879718 n02669723 n15075141 n04263257 n02422106 n04350905 n02105056 n02102973 n03776460 n03857828 n02120505 n02105412 n02643566 n03291819 n04447861 n03938244 n07717556 n02423022 n03450230 n01770393 n04254680 n03530642 n03476991 n03710721 n04116512 n04398044 n02930766 n04370456 n02231487 n04019541 n03476991 n04366367 n02930766 n01728920 n03908618 n07615774 n06794110 n01744401 n04153751 n03187595 n02009912 n02096437 n02018207 n02363005 n07717410 n02939185 n03495258 n03787032 n03920288 n04392985 n02109961 n04325704 n03240683 n01773157 n02317335 n03929660 n02493509 n03920288 n03447721 n02486261 n04562935 n01829413 n01930112 n02104365 n02992211 n04033901 n03710193 n02797295 n01847000 n02100583 n04483307 n03874599 n04275548 n04540053 n01558993 n04560804 n04542943 n01773549 n04317175 n03935335 n07717410 n02165456 n03832673 n01692333 n03788195 n07831146 n03590841 n03840681 n02277742 n09472597 n07614500 n04548280 n03443371 n04532670 n01774750 n04486054 n03127747 n03676483 n02669723 n02017213 n01945685 n02219486 n04599235 n03530642 n04254777 n02111500 n03125729 n01631663 n07880968 n02111277 n01817953 n03776460 n01622779 n03240683 n02906734 n02391049 n01695060 n04023962 n01514668 n04133789 n02871525 n02277742 n02090721 n01693334 n04074963 n07693725 n01873310 n02279972 n02971356 n02071294 n03991062 n02088238 n03538406 n04552348 n02112706 n04229816 n03126707 n01518878 n03903868 n13054560 n04149813 n01828970 n03197337 n02443114 n03255030 n01558993 n03529860 n04069434 n02396427 n03197337 n02356798 n02504013 n02641379 n02017213 n01882714 n01514859 n04429376 n04366367 n04443257 n03075370 n03782006 n02927161 n03899768 n07715103 n03980874 n01514668 n03761084 n01773797 n02120079 n04131690 n07248320 n02133161 n02096051 n13052670 n02979186 n02113023 n03594945 n02123045 n02120505 n02119022 n02493793 n01728572 n03482405 n01980166 n07745940 n01773549 n02123394 n02093754 n03534580 n02174001 n02641379 n01693334 n01983481 n02793495 n04456115 n04141327 n02096585 n01855672 n03223299 n03544143 n02321529 n09193705 n04409515 n02105162 n03775546 n01990800 n02128757 n03769881 n03314780 n03598930 n03452741 n03388183 n03958227 n02236044 n04208210 n07693725 n01945685 n04579432 n02486410 n02791270 n02099429 n02074367 n04208210 n01981276 n03240683 n03425413 n02115913 n03124043 n02002724 n02667093 n03724870 n07730033 n03733281 n04522168 n07717556 n03977966 n03788365 n01484850 n03482405 n03623198 n07892512 n07711569 n03710637 n03376595 n04141975 n02981792 n03804744 n02107312 n03733131 n01739381 n04252077 n03445924 n04599235 n02422699 n03637318 n03673027 n03425413 n02442845 n02325366 n02410509 n02641379 n02165105 n02769748 n02859443 n01806567 n03527444 n02099601 n07715103 n01531178 n04599235 n07697313 n02091244 n04317175 n02823428 n02096437 n02236044 n02190166 n02948072 n01728920 n01728572 n03000684 n03133878 n02017213 n01978287 n03775071 n04479046 n07720875 n06785654 n01843383 n02108089 n02606052 n02794156 n02100583 n12620546 n02412080 n01677366 n03710637 n07753275 n02417914 n04019541 n01697457 n01806143 n03759954 n02115913 n12985857 n03530642 n02133161 n02086240 n02782093 n02259212 n02110806 n03733131 n02096294 n04229816 n06794110 n02699494 n03761084 n01592084 n07695742 n01631663 n03017168 n04350905 n02256656 n04285008 n01984695 n04275548 n01883070 n03047690 n02445715 n02088094 n03223299 n01729322 n03837869 n02102480 n02088364 n02102177 n04265275 n02319095 n02229544 n03759954 n02869837 n04209133 n03291819 n04371774 n02138441 n02417914 n02128757 n02098286 n04591157 n03443371 n03902125 n02422106 n04423845 n04465501 n13052670 n02087394 n04367480 n07742313 n03538406 n03492542 n03868863 n02088632 n01582220 n03876231 n03770439 n02977058 n03457902 n03874293 n03902125 n03929855 n02391049 n03180011 n03956157 n02790996 n02099712 n01980166 n04041544 n02033041 n03976657 n01751748 n02127052 n01494475 n02128385 n04204347 n03690938 n03759954 n02412080 n04204238 n03662601 n02114855 n03788365 n02104029 n02101556 n01737021 n09288635 n02096177 n02492035 n04238763 n03393912 n04149813 n02398521 n01742172 n02130308 n01534433 n04404412 n02107683 n02708093 n04209239 n07715103 n07718747 n04462240 n02510455 n02098105 n02277742 n02096437 n02802426 n02486261 n02091134 n03272010 n01491361 n04604644 n02640242 n03692522 n02229544 n07720875 n04606251 n04201297 n11939491 n02088364 n02655020 n03657121 n02112350 n02326432 n03445777 n02028035 n04326547 n03400231 n02091032 n03710193 n01742172 n01806567 n03485407 n03450230 n01735189 n02319095 n03467068 n04458633 n03394916 n02500267 n04525038 n02112137 n02107908 n12768682 n02119789 n03662601 n07860988 n04584207 n07932039 n03062245 n07745940 n03085013 n04465501 n02483708 n03379051 n01631663 n01773157 n02364673 n02917067 n02488702 n02105412 n02423022 n03868242 n02018207 n02113624 n04041544 n04548280 n03483316 n03444034 n02125311 n02281406 n04041544 n03223299 n03602883 n12144580 n04192698 n07831146 n01748264 n02096177 n01798484 n03075370 n01807496 n04479046 n03457902 n02504013 n02097047 n07583066 n02979186 n03595614 n04286575 n09246464 n02981792 n03220513 n02090379 n02037110 n02009912 n07860988 n04435653 n02486261 n02129604 n01491361 n04579432 n02165456 n03259280 n01860187 n03796401 n02356798 n01828970 n02206856 n03983396 n02783161 n03134739 n02823428 n04371430 n04118776 n02106166 n02988304 n01770081 n04465501 n03447447 n03976467 n02977058 n02058221 n02280649 n03445777 n03884397 n01797886 n03240683 n03485794 n02974003 n04548280 n02168699 n07716906 n02002556 n01632777 n02111129 n02492035 n02123159 n03424325 n02231487 n01641577 n07873807 n02363005 n02100877 n03777568 n01530575 n03998194 n01829413 n02480855 n09288635 n02321529 n02509815 n03482405 n04493381 n02319095 n03223299 n03388549 n02113186 n02093859 n07718747 n01855032 n10148035 n07753113 n04154565 n02423022 n04179913 n02486410 n02106382 n02033041 n02483708 n01537544 n02123597 n03240683 n04026417 n02108422 n09399592 n02104365 n03794056 n01776313 n02787622 n03854065 n01729977 n02127052 n03942813 n02109047 n03133878 n03775071 n02268443 n04118776 n02009912 n02111889 n04542943 n03759954 n03633091 n03124043 n03016953 n02133161 n02106030 n01773797 n03887697 n04501370 n04120489 n02096051 n01682714 n03133878 n02992211 n01795545 n02033041 n04285008 n02113978 n02006656 n01768244 n02837789 n01622779 n02091831 n02992529 n03929660 n02493793 n03447447 n02013706 n03478589 n07615774 n03530642 n02410509 n01968897 n04252077 n03976467 n07871810 n01697457 n04200800 n01806567 n03998194 n03721384 n02107683 n02950826 n02834397 n02978881 n02106166 n02098413 n04204238 n04328186 n01943899 n03494278 n01798484 n07714990 n02105056 n04033995 n03207743 n03459775 n02704792 n03379051 n04372370 n01855032 n03124170 n04039381 n04355338 n01774384 n03016953 n02486261 n01632777 n02319095 n02106550 n03476684 n01644900 n03729826 n03047690 n04179913 n02437312 n03769881 n01664065 n02107683 n09835506 n01784675 n02483362 n02089867 n04356056 n03666591 n06359193 n02277742 n04456115 n02099267 n03657121 n04149813 n07579787 n04372370 n02095314 n03496892 n02483708 n04417672 n04447861 n02804610 n03126707 n01704323 n09332890 n02090379 n03837869 n11939491 n03866082 n03733131 n02165456 n04443257 n02281787 n02398521 n07718472 n02106382 n02066245 n04428191 n03527444 n03085013 n02112350 n02094433 n03942813 n02398521 n02865351 n03908618 n02229544 n01981276 n03208938 n02236044 n04542943 n02804610 n02843684 n01687978 n02447366 n02099849 n03017168 n02999410 n02013706 n02102040 n02825657 n02091831 n01833805 n02117135 n01910747 n03724870 n04209133 n04328186 n03761084 n04509417 n04612504 n01537544 n01748264 n04542943 n02892767 n04332243 n04591713 n02116738 n07714990 n03782006 n07697313 n03692522 n02776631 n03197337 n06874185 n02089867 n02790996 n02979186 n03938244 n03028079 n02823428 n04133789 n02794156 n02815834 n03063599 n10148035 n02486261 n04435653 n01943899 n02391049 n02090622 n04542943 n02058221 n02089867 n02115641 n03930313 n02105412 n03691459 n03781244 n03721384 n01484850 n03201208 n03710721 n03384352 n02410509 n03787032 n03970156 n02105251 n03958227 n02690373 n01729322 n01518878 n04254680 n02988304 n03670208 n04033901 n02018795 n02749479 n03447721 n02093428 n02099712 n02094114 n02814860 n02167151 n04525305 n02483362 n02105251 n02817516 n04125021 n02979186 n01829413 n02097658 n02909870 n01558993 n03216828 n02280649 n02051845 n02115913 n03938244 n04522168 n01632458 n02106382 n02939185 n04111531 n01693334 n02268853 n02109525 n02125311 n03617480 n02437616 n04146614 n03832673 n02870880 n04554684 n02071294 n02971356 n03775071 n04326547 n11879895 n01531178 n02667093 n04317175 n02027492 n02002556 n02206856 n03527444 n04557648 n04467665 n01742172 n02100236 n02096437 n13054560 n02389026 n02098105 n07871810 n02488291 n04251144 n12057211 n04483307 n01917289 n03637318 n01950731 n01955084 n02869837 n04037443 n02099267 n04254120 n02493793 n12144580 n01968897 n03770679 n02910353 n04146614 n04154565 n02128757 n04380533 n03530642 n02640242 n01530575 n04325704 n04562935 n03838899 n02692877 n03692522 n03916031 n02486261 n03724870 n02099267 n03207941 n02128925 n03461385 n01950731 n02492660 n02102973 n07749582 n04310018 n02110806 n02105056 n09428293 n02087394 n15075141 n03141823 n03709823 n03930630 n02280649 n04069434 n07718747 n02480495 n07754684 n12985857 n03602883 n01665541 n04465501 n02788148 n02114548 n07753275 n03788195 n02814860 n02090379 n03425413 n01751748 n04311174 n01796340 n07613480 n03445777 n04404412 n03124170 n02364673 n01829413 n03134739 n07730033 n03379051 n04485082 n03250847 n07730033 n07714571 n02790996 n03160309 n02268443 n02093859 n13052670 n02086910 n01632458 n04259630 n01806567 n02094433 n02093647 n02111500 n03876231 n01883070 n02098286 n04483307 n03344393 n01592084 n04579432 n04152593 n04579145 n03998194 n02093256 n01616318 n03085013 n03527444 n04116512 n02514041 n03627232 n03376595 n04443257 n03095699 n02403003 n04589890 n01910747 n02978881 n02727426 n01985128 n03482405 n02132136 n04277352 n13133613 n02033041 n02100877 n01806143 n03733805 n01748264 n02483362 n03776460 n02105412 n03887697 n01773157 n02056570 n02808440 n02007558 n04146614 n02097130 n03888605 n02412080 n01806567 n02457408 n03935335 n03775071 n07697313 n01774750 n07873807 n07749582 n02091134 n02871525 n02117135 n03657121 n03661043 n02088632 n03776460 n02120505 n02165456 n03089624 n03485794 n01534433 n02835271 n03240683 n04251144 n02086910 n03447447 n04200800 n01582220 n02655020 n04458633 n04371430 n02097047 n03970156 n04418357 n04243546 n02098413 n02992529 n03384352 n02640242 n02894605 n03920288 n03250847 n02607072 n04326547 n04485082 n03868863 n09472597 n02027492 n02692877 n03388549 n03874599 n02096051 n01847000 n02328150 n01534433 n02910353 n01829413 n02107142 n03977966 n02090622 n03444034 n04418357 n04254680 n02692877 n02002724 n03535780 n02108551 n02112350 n15075141 n04141975 n04507155 n04509417 n11939491 n02112706 n02110627 n03125729 n03680355 n01644373 n01644373 n01756291 n01753488 n02098105 n02342885 n03759954 n02110958 n02797295 n02006656 n02111500 n04033901 n01784675 n04277352 n02489166 n02481823 n02398521 n01739381 n02823428 n02939185 n12985857 n04275548 n04127249 n02087394 n03920288 n04482393 n03100240 n03000684 n07248320 n02454379 n02361337 n03218198 n02106030 n03544143 n04456115 n02165105 n03188531 n01641577 n07742313 n03761084 n01518878 n04376876 n03782006 n02422699 n01773797 n02106550 n04590129 n03902125 n02823750 n03393912 n04090263 n01737021 n02129165 n01498041 n03792782 n02966687 n02504458 n03838899 n01689811 n04347754 n01608432 n01817953 n02536864 n01729977 n02096437 n03924679 n02096437 n01798484 n02869837 n04336792 n03485407 n03868863 n04376876 n03602883 n02128925 n02102973 n02447366 n07716358 n03857828 n04517823 n03837869 n07749582 n02105162 n02281787 n02769748 n02085620 n01751748 n02093647 n04423845 n02488702 n03485794 n03908714 n01498041 n02231487 n02108551 n03179701 n02786058 n01855032 n04147183 n04254680 n04557648 n01728572 n04325704 n07860988 n01847000 n13044778 n03445777 n03447447 n02169497 n03290653 n03376595 n02094114 n03854065 n02422699 n01796340 n03459775 n02091244 n04399382 n03476684 n02951585 n03207941 n02174001 n03445777 n01950731 n04562935 n01728572 n02089973 n01945685 n02791270 n04090263 n01665541 n02264363 n04228054 n03345487 n03947888 n01944390 n04153751 n01664065 n03223299 n02930766 n04404412 n03992509 n01877812 n02977058 n09835506 n12267677 n03127747 n01980166 n09835506 n07753113 n02860847 n02840245 n01748264 n03891251 n02484975 n02095314 n03063689 n04372370 n11879895 n02447366 n01795545 n03201208 n01797886 n04548362 n03028079 n03201208 n02109047 n03804744 n03417042 n02111500 n02109047 n02415577 n04456115 n02486410 n03976657 n02109525 n03602883 n03937543 n02492660 n02127052 n02641379 n03146219 n02091635 n02110185 n04389033 n04330267 n02165456 n04152593 n04548362 n02094433 n04372370 n03208938 n02356798 n02666196 n02279972 n03661043 n03187595 n03131574 n07742313 n02104029 n02172182 n02090622 n02085782 n02123159 n02105855 n02422106 n01667114 n01943899 n03692522 n03788195 n07718472 n03146219 n04553703 n09472597 n04447861 n02790996 n03673027 n02102040 n07565083 n01532829 n02276258 n04141327 n01817953 n04118538 n01990800 n02123597 n01751748 n02025239 n01644373 n03355925 n02177972 n04286575 n04009552 n03899768 n03857828 n04613696 n02120079 n02007558 n04311174 n03594945 n04355338 n03325584 n07590611 n07831146 n03899768 n02165105 n06359193 n06874185 n03657121 n02056570 n09428293 n04597913 n02114855 n04548280 n03065424 n01986214 n03623198 n04485082 n03888605 n02114855 n02917067 n04067472 n03457902 n03775071 n07579787 n02509815 n04458633 n03347037 n02098105 n12985857 n03691459 n04525305 n01817953 n03393912 n04251144 n02088364 n02526121 n02444819 n02088238 n02051845 n01667114 n04487394 n04125021 n02883205 n04162706 n02085936 n02807133 n02978881 n04350905 n01843383 n02906734 n01608432 n02950826 n04131690 n02823428 n02106030 n01818515 n03840681 n03443371 n03447447 n02492660 n11879895 n02981792 n01514668 n02701002 n04192698 n02106030 n07717410 n03492542 n06794110 n03977966 n04008634 n07768694 n04515003 n02111889 n02363005 n01930112 n04447861 n07684084 n01883070 n03250847 n02825657 n03793489 n01616318 n02110341 n06596364 n04456115 n01749939 n03180011 n02690373 n02088094 n01984695 n02493793 n09428293 n03888605 n09229709 n02128757 n04239074 n04040759 n03062245 n02168699 n02977058 n01773157 n02101388 n03459775 n04532106 n04026417 n02870880 n04179913 n02115913 n04525038 n11939491 n02165105 n04258138 n09472597 n01491361 n03706229 n03937543 n01855672 n03673027 n02443484 n03706229 n04149813 n03599486 n03272562 n01704323 n01537544 n03424325 n02085782 n02190166 n04592741 n02504458 n04086273 n07754684 n02443484 n02086910 n01756291 n01873310 n02096437 n02870880 n02106166 n07613480 n03018349 n03447721 n04335435 n02114855 n07760859 n03825788 n02107142 n02095570 n01697457 n03837869 n02018795 n02113624 n03781244 n03942813 n02445715 n02111129 n04372370 n02115641 n07802026 n02137549 n02099429 n03998194 n04162706 n03208938 n02486410 n02536864 n02437616 n02128757 n04604644 n03016953 n04404412 n02096585 n01494475 n03657121 n04259630 n04423845 n03388549 n02640242 n02988304 n02165456 n03924679 n04086273 n02492660 n02113624 n02093859 n02089867 n04192698 n01944390 n01632777 n02966687 n02107908 n02098286 n07831146 n02007558 n04536866 n02808304 n07718472 n03930630 n07754684 n01774750 n03980874 n03384352 n02104029 n02769748 n02058221 n01695060 n03929660 n13040303 n03089624 n04443257 n04428191 n03775546 n04517823 n01945685 n03216828 n02965783 n02088466 n04133789 n03838899 n02123597 n02128385 n02486410 n03124170 n03530642 n02500267 n12768682 n02128385 n01592084 n02526121 n04356056 n02137549 n03854065 n07684084 n01855032 n02992211 n02484975 n02106030 n09421951 n04367480 n09256479 n02119022 n02493509 n03803284 n01685808 n07697537 n01807496 n03733281 n03417042 n02219486 n09229709 n02526121 n03908714 n04204347 n03527444 n01740131 n02492035 n02094258 n03769881 n03026506 n02804414 n02489166 n02883205 n03482405 n04366367 n03868863 n03891332 n01797886 n03447447 n04399382 n04146614 n02423022 n02268443 n03250847 n07753592 n01984695 n03709823 n03884397 n03630383 n03814639 n02834397 n01737021 n03786901 n01775062 n01883070 n09428293 n03977966 n07754684 n03384352 n02794156 n13054560 n02132136 n02769748 n07718747 n02950826 n01930112 n02086240 n02125311 n03947888 n02840245 n03220513 n03720891 n02791270 n02802426 n03866082 n03825788 n02487347 n02169497 n02860847 n01728920 n03535780 n03710193 n02091467 n04243546 n01616318 n03942813 n02128757 n04049303 n04417672 n02127052 n03838899 n03729826 n02909870 n09421951 n04515003 n02165105 n03146219 n04423845 n03602883 n01930112 n04208210 n03887697 n03761084 n02268853 n04392985 n03649909 n03447721 n02692877 n12267677 n07715103 n04392985 n04509417 n04041544 n03538406 n01664065 n03179701 n01820546 n04204347 n03929660 n02102973 n03903868 n01742172 n01770081 n03109150 n04273569 n02123045 n07590611 n13037406 n02102177 n03000247 n02410509 n02088632 n07768694 n06785654 n03393912 n03496892 n04275548 n03854065 n04355933 n01807496 n07720875 n04584207 n03792782 n03208938 n02666196 n04149813 n02107683 n04049303 n04118538 n04418357 n02877765 n01883070 n02509815 n10565667 n02497673 n02115913 n03837869 n02190166 n04592741 n04285008 n04606251 n03075370 n04125021 n03796401 n02091134 n03792972 n01824575 n02086079 n01855032 n07742313 n03393912 n03958227 n02137549 n02113978 n02356798 n02808440 n02105412 n01797886 n04204347 n03837869 n02111277 n02777292 n02129604 n07930864 n02489166 n03459775 n01644900 n04149813 n03854065 n03125729 n04141076 n04505470 n02089973 n02172182 n04266014 n04606251 n07768694 n09472597 n02134418 n03623198 n02793495 n01484850 n02276258 n02095889 n03733281 n03535780 n03983396 n02640242 n01818515 n02051845 n03544143 n02092002 n02906734 n01518878 n03769881 n02087046 n03891332 n04392985 n03485794 n03445777 n02115913 n02321529 n03633091 n01984695 n04590129 n02268443 n02676566 n02134084 n03658185 n02091134 n03733805 n02488702 n02869837 n02640242 n03160309 n02443484 n02441942 n01775062 n02825657 n12144580 n04591713 n02783161 n01882714 n02815834 n02814860 n02102177 n02988304 n03376595 n02165105 n04081281 n03495258 n09193705 n04493381 n02815834 n11939491 n02883205 n03063689 n02095570 n04033901 n03937543 n02107908 n07742313 n02114712 n02971356 n02906734 n02814860 n01692333 n02808440 n03706229 n04335435 n03791053 n03742115 n02099429 n02877765 n02321529 n03814639 n01592084 n03272562 n02786058 n01667114 n03947888 n02100735 n04409515 n01601694 n03777568 n12620546 n06794110 n02483708 n03666591 n03759954 n01871265 n02790996 n01955084 n03868863 n03026506 n04070727 n02233338 n01983481 n02640242 n01819313 n02794156 n03017168 n02486261 n04118776 n02769748 n03250847 n02113799 n02105056 n02108422 n01806567 n04229816 n09256479 n04141327 n01692333 n01644373 n02493509 n02892201 n02346627 n07747607 n04120489 n03032252 n04081281 n09468604 n02108422 n07753113 n02441942 n03775071 n02319095 n04579145 n02097474 n03697007 n02769748 n02129604 n04141076 n04476259 n02442845 n04442312 n02012849 n01806567 n03337140 n02097209 n03207941 n01632458 n01818515 n02233338 n02088094 n02727426 n04239074 n03095699 n04606251 n03902125 n02099267 n02086240 n03337140 n02085782 n02412080 n03637318 n01734418 n02113023 n04251144 n03764736 n02114855 n02799071 n01675722 n02843684 n01756291 n04417672 n02835271 n04141076 n04389033 n04482393 n02087394 n02115641 n03017168 n01753488 n02514041 n04509417 n02089973 n03075370 n01644373 n03791053 n04265275 n02111500 n02097209 n04458633 n07802026 n04141076 n04597913 n02281787 n12057211 n02277742 n07716906 n03920288 n04326547 n03127747 n03404251 n02108915 n02127052 n02391049 n04229816 n02837789 n03314780 n02089973 n04296562 n02791270 n03000134 n01644900 n04209133 n01669191 n02107142 n03908714 n03045698 n03485794 n02108551 n02807133 n02892767 n04525305 n02493509 n10148035 n03201208 n03690938 n04505470 n02206856 n02098105 n03478589 n02123597 n02783161 n01667114 n02106550 n03733805 n03424325 n01882714 n01855672 n01855672 n01983481 n01695060 n01847000 n02799071 n04428191 n03223299 n13052670 n02101556 n04265275 n03016953 n01775062 n04033901 n01753488 n03146219 n04235860 n03759954 n03788195 n07749582 n01829413 n02093256 n02231487 n04536866 n03146219 n04004767 n02493793 n04371774 n02395406 n02114712 n02747177 n01560419 n03814906 n04141327 n01833805 n03825788 n02128925 n02120079 n03658185 n03935335 n03530642 n01968897 n02114548 n03873416 n01985128 n01514859 n02669723 n04311174 n03141823 n01872401 n03920288 n02927161 n02397096 n04357314 n03535780 n03127925 n01807496 n02895154 n02794156 n03666591 n04004767 n04039381 n04179913 n01828970 n02128385 n02095570 n04592741 n02793495 n02096177 n01631663 n02111500 n12057211 n04356056 n02894605 n02226429 n04482393 n01950731 n03452741 n01632777 n03197337 n04505470 n04599235 n01484850 n04501370 n02095570 n02276258 n02410509 n04037443 n02276258 n04418357 n02892767 n02099267 n03791053 n04599235 n03642806 n03530642 n07718472 n07693725 n11939491 n02793495 n02988304 n02096051 n01514668 n01616318 n04243546 n02808440 n04270147 n02106030 n04344873 n07930864 n03444034 n07860988 n02119022 n02108000 n04562935 n02105162 n02492035 n02823750 n03481172 n02108000 n04310018 n02107142 n02226429 n02074367 n03785016 n04553703 n03495258 n07579787 n07745940 n02111277 n04476259 n03476684 n04487081 n02091134 n07714571 n02105251 n04404412 n04398044 n01924916 n02487347 n12620546 n03255030 n04325704 n02093647 n02814533 n03125729 n03000247 n02492035 n01530575 n02108915 n02114367 n01796340 n13044778 n04522168 n02443114 n04589890 n04201297 n03733805 n02168699 n01616318 n03594945 n04479046 n02391049 n02892201 n04447861 n02134084 n02096294 n01484850 n03930630 n02090721 n04118538 n02445715 n06596364 n03599486 n04579145 n09468604 n01986214 n01820546 n02526121 n02408429 n03854065 n01855032 n03272562 n09288635 n02106550 n02095314 n01667778 n02137549 n02483708 n02804610 n04125021 n03769881 n02814533 n07718472 n04263257 n03877472 n02107312 n03042490 n01697457 n09468604 n03146219 n02799071 n03764736 n02493793 n03787032 n02808304 n03485407 n01740131 n04589890 n01914609 n02883205 n04254680 n03777568 n02280649 n02102040 n02823750 n04147183 n02091467 n04069434 n01729977 n01818515 n04023962 n03584254 n02095314 n03983396 n03956157 n02097209 n02095314 n02825657 n02107142 n02219486 n03796401 n01687978 n03944341 n02097658 n07718747 n04552348 n04263257 n03942813 n02037110 n03787032 n03642806 n01689811 n02102973 n02480495 n07684084 n02408429 n04356056 n02117135 n07584110 n04265275 n02493793 n01682714 n01981276 n04592741 n03976467 n02948072 n04086273 n04277352 n13054560 n02480495 n01983481 n02085782 n03598930 n03345487 n02017213 n03179701 n01984695 n04296562 n04507155 n04328186 n01534433 n02494079 n03916031 n04376876 n02093428 n01843383 n01924916 n03207743 n07747607 n03785016 n03388549 n02113624 n03961711 n02086646 n02134084 n04606251 n04493381 n02096585 n02992529 n03891332 n01616318 n01496331 n01694178 n01695060 n04026417 n01695060 n02117135 n03584254 n04336792 n01698640 n02177972 n04532670 n02859443 n02095889 n01682714 n11879895 n02114855 n02484975 n02097047 n04204238 n04604644 n01775062 n03775071 n01773549 n03956157 n03792972 n04404412 n09835506 n07717556 n02037110 n02361337 n02105412 n04447861 n02835271 n03240683 n07613480 n02422699 n02488702 n01776313 n04579432 n04116512 n03857828 n02676566 n03063599 n02397096 n02977058 n02089867 n04429376 n03018349 n13037406 n03998194 n01693334 n01770081 n03991062 n03141823 n03691459 n04039381 n02894605 n02096177 n02093256 n02917067 n03791053 n03976467 n02795169 n02112706 n01692333 n02111129 n03110669 n03803284 n01592084 n02514041 n02104365 n02089867 n07860988 n02093256 n02403003 n04522168 n02837789 n01855032 n02793495 n02093991 n02437312 n02980441 n04116512 n02120079 n04371774 n02104365 n04153751 n02091635 n01775062 n04310018 n03529860 n02105162 n02814860 n02088364 n02116738 n03630383 n02229544 n04111531 n01882714 n01917289 n03877472 n02346627 n03476991 n02115641 n03110669 n02799071 n03272562 n01729322 n03599486 n03445777 n04099969 n02536864 n03026506 n03899768 n04485082 n01440764 n04370456 n04125021 n07565083 n02012849 n02437616 n02281406 n03141823 n01440764 n04548362 n03584254 n04366367 n04069434 n02108551 n07697313 n02916936 n03124043 n01697457 n02095570 n03016953 n02441942 n02106382 n01833805 n03045698 n04404412 n03888605 n04259630 n03075370 n03124170 n03534580 n04277352 n03717622 n02526121 n01797886 n04133789 n02105855 n03530642 n02130308 n01980166 n04192698 n04336792 n07742313 n01692333 n02279972 n04371430 n01592084 n09332890 n04332243 n04392985 n07720875 n03478589 n03291819 n04560804 n02106030 n04049303 n02927161 n07753113 n04065272 n02835271 n03047690 n03538406 n01582220 n02113624 n03792782 n04116512 n02093859 n03961711 n02109047 n07831146 n02825657 n13054560 n02951585 n02442845 n02817516 n03874599 n02093859 n01755581 n02860847 n02167151 n01537544 n02099601 n02111500 n03670208 n03179701 n02093647 n03444034 n03131574 n02111500 n04069434 n01744401 n03220513 n03393912 n02486261 n03372029 n01728572 n02422106 n01833805 n03594734 n13044778 n02074367 n02391049 n07873807 n09468604 n02799071 n03832673 n02361337 n02111277 n04204238 n02172182 n04562935 n02100735 n02007558 n03630383 n01484850 n02484975 n02096051 n02206856 n03770679 n04265275 n09246464 n09835506 n07614500 n09472597 n03379051 n03457902 n01855032 n04201297 n02951585 n13133613 n03770439 n02172182 n03992509 n03617480 n02802426 n02676566 n01687978 n07711569 n03690938 n02869837 n03942813 n04332243 n01491361 n12768682 n01910747 n04179913 n03627232 n13037406 n07745940 n04152593 n01806143 n07565083 n03627232 n12267677 n03837869 n02094433 n04238763 n03496892 n04612504 n02807133 n02106166 n02484975 n03208938 n04065272 n02107574 n07715103 n04517823 n10565667 n02807133 n03717622 n04557648 n04591157 n02326432 n06874185 n04442312 n03042490 n03188531 n04487394 n02006656 n01729322 n03929660 n03425413 n03216828 n02346627 n02526121 n02089078 n01669191 n10565667 n04376876 n04258138 n02489166 n02493793 n03584829 n03379051 n02094114 n01514668 n03770439 n02231487 n01855032 n03180011 n04606251 n03916031 n01774750 n02087394 n03297495 n01968897 n02105056 n01491361 n02114712 n02097130 n02692877 n04125021 n03476684 n03658185 n02966687 n02259212 n03355925 n13133613 n03394916 n02107312 n02788148 n02109961 n01440764 n03124043 n06359193 n04133789 n02500267 n04209133 n03344393 n03494278 n02977058 n03710637 n01622779 n09421951 n02790996 n02089078 n02256656 n01531178 n04479046 n04141327 n03000134 n02504013 n03627232 n02114712 n03325584 n03773504 n04004767 n04266014 n02977058 n02125311 n02281406 n03291819 n01675722 n02138441 n03804744 n03000684 n02114367 n03187595 n01943899 n02125311 n02113624 n02823428 n02233338 n03110669 n02500267 n03594734 n03347037 n01990800 n02074367 n02396427 n03954731 n02687172 n02883205 n03127925 n02111500 n07718747 n02447366 n04286575 n02930766 n01664065 n04153751 n01687978 n02422699 n02791270 n02835271 n02504458 n01917289 n04252077 n04548280 n03089624 n07590611 n07754684 n01739381 n04483307 n01914609 n02087046 n03697007 n04039381 n01820546 n04355338 n02100735 n03032252 n02091467 n01728572 n02002556 n03874599 n02859443 n04146614 n03534580 n04532106 n01981276 n03814639 n01689811 n06359193 n01675722 n03888605 n07714990 n04476259 n02536864 n02492035 n04265275 n02948072 n03804744 n04380533 n01518878 n04005630 n07590611 n04417672 n03709823 n02105412 n02363005 n01494475 n03680355 n02951358 n04597913 n03998194 n01855032 n02018795 n03271574 n02167151 n02009912 n03825788 n04482393 n01774750 n02500267 n01514859 n03908618 n03761084 n03633091 n02096177 n03729826 n07717556 n03670208 n01773797 n04554684 n01697457 n03691459 n02138441 n03764736 n02123394 n04192698 n04120489 n07615774 n03929855 n02494079 n01669191 n01498041 n03250847 n03924679 n02356798 n02823750 n03447721 n02058221 n07930864 n01530575 n04428191 n04372370 n03840681 n02027492 n01498041 n07718472 n03954731 n04099969 n03954731 n01770081 n03445924 n03045698 n03527444 n02840245 n04201297 n01735189 n01986214 n02002724 n02113978 n02177972 n03908714 n03888257 n02100236 n02437312 n02236044 n07871810 n03775071 n03947888 n03933933 n02066245 n02128385 n01491361 n02493509 n07717556 n02865351 n03187595 n02666196 n01917289 n01770081 n02788148 n03661043 n02481823 n02085620 n02799071 n03590841 n01749939 n01614925 n02950826 n02088632 n01498041 n02105162 n01737021 n02690373 n03584254 n02791124 n02088238 n04328186 n01582220 n02231487 n03717622 n01751748 n03721384 n02108422 n01669191 n02980441 n04243546 n03982430 n02422106 n03014705 n04371774 n04125021 n02090622 n01930112 n04552348 n03764736 n01582220 n02056570 n02089973 n09399592 n03450230 n03770679 n03445924 n02007558 n02268443 n02396427 n01440764 n03062245 n02134418 n03594734 n02094433 n04264628 n02992211 n02093428 n02100735 n04367480 n03764736 n03041632 n01443537 n03476684 n09229709 n04355338 n02128385 n04550184 n01806567 n02098413 n04086273 n02090379 n03958227 n02091467 n02108000 n03658185 n02843684 n01440764 n02981792 n07892512 n03297495 n03692522 n03937543 n03691459 n03240683 n02977058 n07730033 n04591713 n11939491 n03902125 n02783161 n04355338 n02281406 n03538406 n01608432 n03935335 n01983481 n02730930 n01968897 n03769881 n04493381 n02112018 n02391049 n04389033 n03775546 n02172182 n09399592 n02093991 n01806143 n02226429 n01669191 n04125021 n02113712 n02860847 n02074367 n02447366 n02783161 n02454379 n01984695 n03721384 n03633091 n03376595 n02120505 n02105505 n04517823 n03372029 n03527444 n03786901 n03478589 n02066245 n07892512 n01491361 n02108089 n03325584 n03717622 n03773504 n01582220 n03676483 n04540053 n07248320 n04118538 n02095314 n12267677 n03602883 n02815834 n03379051 n02172182 n02107142 n06874185 n01776313 n07714571 n01775062 n03452741 n03916031 n04118538 n01580077 n02497673 n01518878 n03673027 n02101388 n03187595 n04350905 n02408429 n03417042 n02514041 n02116738 n03476684 n02497673 n04285008 n03126707 n03544143 n04147183 n03481172 n04041544 n02268443 n09472597 n02085782 n03400231 n03954731 n04074963 n03782006 n02281787 n04023962 n04008634 n07875152 n07716906 n02109525 n03995372 n02096177 n01981276 n03884397 n02509815 n03529860 n03584829 n02268853 n04141975 n04599235 n03759954 n02894605 n02454379 n03014705 n02786058 n04505470 n02172182 n02979186 n02091635 n02007558 n02797295 n02817516 n02233338 n04099969 n03250847 n02950826 n02124075 n01484850 n02096294 n02965783 n01943899 n02028035 n04486054 n02417914 n03445777 n04009552 n02125311 n03770439 n02018207 n02219486 n04111531 n09288635 n03825788 n03223299 n04606251 n02396427 n07717410 n02111277 n04515003 n02643566 n03733131 n02093428 n01807496 n02480855 n03527444 n02099849 n04482393 n02361337 n02107574 n04201297 n03633091 n04033995 n02641379 n02790996 n02190166 n03127747 n02483362 n03126707 n03590841 n07717410 n04033901 n02676566 n07875152 n02100236 n04584207 n01737021 n02493509 n02105251 n03930630 n03873416 n02396427 n02493793 n03250847 n02088466 n02814533 n02108000 n01443537 n02988304 n01944390 n04285008 n04356056 n01930112 n03630383 n02281406 n02346627 n04493381 n03709823 n01755581 n02018795 n07802026 n11939491 n07836838 n04429376 n03967562 n02113023 n03724870 n03792972 n01753488 n07875152 n07753592 n04357314 n03642806 n04131690 n04258138 n01667114 n02782093 n02493509 n04465501 n07583066 n02256656 n01532829 n01872401 n07684084 n03763968 n04579145 n03492542 n04417672 n04350905 n04069434 n03866082 n04311174 n01756291 n02797295 n03642806 n03676483 n03697007 n02087046 n03207941 n04201297 n02074367 n01608432 n02111500 n03633091 n02804610 n04562935 n02093859 n03935335 n02051845 n01990800 n02799071 n04228054 n02100877 n01755581 n02129604 n02727426 n01860187 n04326547 n03776460 n02206856 n02093256 n01968897 n02326432 n03770679 n02509815 n02978881 n03018349 n03394916 n02977058 n03891332 n01665541 n04141327 n02233338 n02092339 n03388549 n04548362 n04296562 n04067472 n03014705 n02747177 n02441942 n04081281 n03290653 n02066245 n01983481 n02085936 n01518878 n02085620 n04346328 n01601694 n01532829 n03992509 n01694178 n02437616 n04612504 n02666196 n03950228 n02093754 n02123597 n01817953 n02190166 n04067472 n03933933 n02398521 n02097130 n03444034 n03792972 n04418357 n01871265 n03208938 n01768244 n02174001 n02219486 n01774384 n07742313 n04355933 n02129165 n07742313 n01697457 n04310018 n02669723 n04367480 n01592084 n02105251 n02113799 n07565083 n02091032 n02011460 n03773504 n02445715 n04275548 n02112018 n01632458 n02486261 n07714990 n02106550 n03478589 n02963159 n03743016 n04146614 n03970156 n03874293 n07749582 n06874185 n01950731 n01498041 n04090263 n02077923 n02106662 n02786058 n04591157 n03481172 n03924679 n02500267 n04258138 n04540053 n03160309 n02087394 n03494278 n04325704 n01669191 n02108551 n01980166 n03314780 n02808440 n04447861 n02281787 n02095889 n02489166 n02114367 n04344873 n02058221 n02444819 n02988304 n03495258 n02002556 n03874293 n02085782 n01695060 n02870880 n01608432 n02948072 n04067472 n02098286 n02093428 n04009552 n12267677 n02085782 n03376595 n04335435 n03891332 n03733281 n02264363 n02132136 n04263257 n01698640 n01753488 n07714990 n03417042 n03259280 n01737021 n04118538 n01773797 n03124170 n03874293 n09421951 n02747177 n09288635 n04136333 n03956157 n02093256 n03729826 n03538406 n01774384 n04355338 n02105251 n02403003 n01697457 n01828970 n02892767 n02018207 n02134084 n03733805 n07930864 n02097474 n04507155 n04344873 n02950826 n03721384 n01943899 n07920052 n02319095 n04149813 n02364673 n01742172 n04428191 n03450230 n09399592 n01689811 n01978287 n07716358 n02074367 n04557648 n03062245 n02105251 n07716906 n03623198 n03125729 n03876231 n04509417 n03041632 n04347754 n06359193 n04118538 n01806143 n07749582 n02105855 n13052670 n02094114 n03775071 n01873310 n03788195 n04311004 n03018349 n03089624 n02087046 n03379051 n04493381 n07714990 n03895866 n15075141 n07684084 n01755581 n07715103 n04285008 n03476991 n04049303 n03496892 n03041632 n02403003 n03832673 n04131690 n04479046 n04479046 n02259212 n01734418 n02002556 n03179701 n03992509 n07932039 n04467665 n02099712 n04456115 n03690938 n04367480 n01729322 n03961711 n03841143 n02963159 n03476991 n04074963 n02077923 n01532829 n02865351 n02966687 n01694178 n03017168 n04429376 n03935335 n09246464 n04004767 n03208938 n04111531 n04389033 n07760859 n04326547 n04209239 n07697537 n03785016 n04367480 n04037443 n04311174 n02814533 n02113799 n02825657 n02672831 n02114855 n02090622 n09399592 n04482393 n01910747 n04417672 n04162706 n02098413 n07717556 n01580077 n02092002 n03014705 n04370456 n02835271 n03047690 n03944341 n07613480 n02361337 n02356798 n02835271 n02011460 n02096051 n01843065 n03498962 n07583066 n07734744 n04277352 n02088632 n09835506 n04141327 n01820546 n03218198 n03825788 n04310018 n02099849 n02025239 n07753275 n03876231 n02099267 n03794056 n07590611 n01740131 n02091032 n04200800 n01770081 n02869837 n03379051 n01833805 n03929855 n02749479 n01644900 n03445777 n02110627 n01630670 n04273569 n04483307 n02138441 n07892512 n01983481 n02108422 n02948072 n02094258 n03141823 n01632458 n04517823 n04380533 n09472597 n02165456 n01930112 n03018349 n02268853 n01770081 n04141975 n03998194 n03384352 n04147183 n03045698 n03791053 n03944341 n02536864 n01829413 n02088466 n01694178 n02106382 n01748264 n03759954 n12985857 n04254680 n04465501 n02795169 n02096177 n02444819 n01558993 n02115641 n03445924 n02701002 n06359193 n01773549 n03637318 n02437312 n04332243 n02865351 n02088632 n04067472 n02092002 n03956157 n04326547 n02786058 n01784675 n01847000 n04146614 n03666591 n04310018 n01914609 n07695742 n03404251 n03891251 n06874185 n03062245 n03355925 n12267677 n04254120 n07714990 n02233338 n02804414 n03062245 n02018795 n07720875 n03075370 n03530642 n01980166 n01667114 n04553703 n09468604 n06794110 n04367480 n02963159 n03710193 n01980166 n03000134 n03938244 n02231487 n02493509 n03447721 n07583066 n09472597 n03877845 n04147183 n04229816 n12998815 n03877472 n07718472 n03063599 n01665541 n02111889 n06596364 n02094433 n01817953 n02091635 n01755581 n01740131 n01592084 n03673027 n03467068 n03924679 n04467665 n03733805 n01833805 n03089624 n02091635 n02489166 n02112350 n04192698 n02102040 n02823428 n04074963 n01872401 n04579145 n03788365 n04086273 n02009229 n07753113 n02504458 n02002724 n02097474 n07754684 n03134739 n02113978 n02403003 n03998194 n01688243 n03891332 n04133789 n02111500 n02916936 n07248320 n04404412 n04209239 n07590611 n03673027 n04008634 n03272010 n13040303 n09399592 n02007558 n02488291 n07716906 n04009552 n02111889 n03658185 n01980166 n04367480 n02892201 n04423845 n03131574 n04041544 n04266014 n03825788 n02033041 n02002724 n01871265 n04099969 n02321529 n02666196 n01698640 n03709823 n02356798 n03089624 n03873416 n02097130 n02108089 n04258138 n01667778 n04456115 n03492542 n02363005 n01871265 n01950731 n04153751 n01984695 n01614925 n02110958 n01824575 n01981276 n15075141 n03814906 n03874599 n04118776 n01675722 n02939185 n03742115 n01697457 n02326432 n02090622 n04532106 n03983396 n02415577 n02412080 n02102480 n03459775 n04380533 n04254777 n01631663 n03404251 n07871810 n02123045 n02226429 n01871265 n01820546 n01688243 n02825657 n01689811 n02095570 n04019541 n03777754 n01748264 n02123045 n02129604 n02105056 n02125311 n02089973 n03649909 n04540053 n03670208 n02097209 n01819313 n03110669 n02124075 n02437616 n01843383 n03935335 n02782093 n07753113 n03791053 n02111129 n07614500 n03761084 n03676483 n01978455 n03857828 n02488702 n02165456 n07734744 n03991062 n02860847 n03954731 n03045698 n03944341 n02111129 n02092002 n03891251 n02130308 n01945685 n03188531 n02457408 n03085013 n03796401 n13052670 n02398521 n03743016 n02229544 n03160309 n02276258 n02276258 n02504013 n02281406 n02877765 n03649909 n07697313 n02058221 n02077923 n03394916 n02256656 n04328186 n02009229 n03476684 n03388549 n07714571 n09193705 n02396427 n01806567 n02090379 n02100583 n04483307 n02120079 n01914609 n01630670 n04259630 n07695742 n02106030 n02883205 n02398521 n03995372 n07590611 n04099969 n02110063 n03785016 n02669723 n03125729 n04442312 n07920052 n02497673 n02454379 n02091831 n02454379 n02088632 n02115641 n03761084 n02606052 n02264363 n01843065 n03623198 n03445777 n02481823 n01773157 n03109150 n04458633 n02165456 n02190166 n04111531 n03197337 n04542943 n04507155 n02089867 n02342885 n02099601 n03787032 n03483316 n02454379 n04041544 n02086079 n04485082 n07831146 n02106030 n03445777 n02398521 n02666196 n02009912 n01534433 n03126707 n12057211 n04355933 n02025239 n04336792 n02906734 n02002556 n04487394 n03291819 n01614925 n04235860 n04270147 n03291819 n03837869 n04192698 n04120489 n02930766 n02128385 n02837789 n02105505 n01704323 n02481823 n03384352 n02167151 n07753592 n07614500 n02134084 n04515003 n01729322 n04033901 n02134418 n01514668 n03942813 n02101556 n03642806 n03733131 n03290653 n02174001 n01784675 n03777754 n03942813 n02802426 n04049303 n03535780 n02492035 n04070727 n03075370 n04372370 n07860988 n04367480 n03786901 n04562935 n07590611 n02102973 n07248320 n03095699 n04009552 n07614500 n09288635 n03724870 n04258138 n01698640 n07753113 n04263257 n01755581 n04447861 n02666196 n03733281 n02051845 n02058221 n03958227 n02403003 n02097474 n02099429 n02484975 n07836838 n10565667 n07720875 n02486261 n02321529 n01755581 n03100240 n03063599 n01664065 n02783161 n03803284 n03110669 n02086240 n02487347 n02097209 n04310018 n02012849 n04120489 n03482405 n02447366 n01749939 n03478589 n02963159 n04428191 n04285008 n01530575 n02111129 n03109150 n07697313 n02802426 n03690938 n01914609 n02481823 n02259212 n03538406 n15075141 n03649909 n04483307 n04613696 n10565667 n02488702 n02094258 n02096585 n02127052 n02391049 n01734418 n09332890 n03379051 n02133161 n12144580 n02099429 n04447861 n04120489 n07860988 n02129604 n03065424 n02095314 n04154565 n02655020 n02165105 n04275548 n02415577 n02786058 n02091467 n03444034 n01498041 n07590611 n04554684 n02109047 n04552348 n03814639 n03125729 n03888257 n03950228 n02089973 n03967562 n02749479 n03729826 n02018207 n04487081 n03017168 n03976657 n03938244 n02769748 n07836838 n02002724 n03100240 n03598930 n04479046 n01644373 n02708093 n02134418 n13054560 n09332890 n03133878 n04554684 n03041632 n02869837 n03014705 n02510455 n03954731 n02788148 n02859443 n02640242 n02087046 n03891332 n02124075 n03476684 n04270147 n04542943 n03916031 n02051845 n02104029 n04270147 n02422106 n03692522 n02115641 n02447366 n03710721 n02112018 n03000134 n02105162 n02097047 n02356798 n04037443 n02071294 n07892512 n03924679 n01687978 n02098286 n03345487 n04254777 n03680355 n02963159 n01582220 n04090263 n03761084 n04604644 n02097209 n03109150 n02088632 n03937543 n01943899 n02093647 n02093428 n03461385 n04270147 n04389033 n03534580 n09468604 n02107312 n01797886 n02090379 n02871525 n01667778 n01773549 n01755581 n02093991 n04350905 n03995372 n02280649 n03933933 n02226429 n03207941 n09399592 n02106030 n03590841 n02966193 n03787032 n02115913 n04099969 n04273569 n02037110 n01917289 n04254777 n03888257 n02807133 n04589890 n02091032 n01685808 n07714571 n03777568 n03379051 n03028079 n04275548 n02395406 n04040759 n02109961 n01872401 n03825788 n02112706 n03692522 n02086910 n02321529 n03131574 n04311004 n03929855 n01514859 n03804744 n03417042 n02794156 n07730033 n04120489 n02342885 n04041544 n04366367 n02116738 n02992211 n02276258 n02895154 n01984695 n03661043 n03207941 n02025239 n02123045 n02117135 n02107908 n02815834 n04355933 n03598930 n07742313 n03876231 n02259212 n01775062 n03617480 n03840681 n03902125 n02930766 n03633091 n04404412 n03825788 n03337140 n02018795 n02447366 n07613480 n02493793 n01694178 n12620546 n06874185 n02443484 n04209133 n04515003 n04540053 n01796340 n03623198 n02108551 n03763968 n02410509 n11879895 n03832673 n03930630 n02490219 n03937543 n02111889 n02096437 n04154565 n02971356 n02865351 n03776460 n02777292 n02190166 n04612504 n04081281 n02747177 n03777754 n02445715 n03857828 n11939491 n01981276 n04041544 n04458633 n03447721 n02106030 n02834397 n02097474 n01877812 n02085936 n02096051 n03272562 n03793489 n02099849 n03649909 n01882714 n02860847 n04039381 n04264628 n02484975 n02167151 n02074367 n01773549 n04367480 n07718747 n02841315 n02910353 n02106550 n03602883 n04153751 n03992509 n09468604 n02129604 n09229709 n02056570 n03594734 n02111277 n07590611 n02704792 n03868863 n02115641 n02444819 n02808304 n04355338 n02281787 n02138441 n03814906 n04409515 n01739381 n03495258 n03627232 n02085620 n02190166 n03355925 n03188531 n02100735 n03961711 n02823428 n07860988 n01740131 n09229709 n03777568 n03908618 n02108551 n02177972 n09288635 n01693334 n02106382 n04026417 n03388183 n02002724 n03208938 n04517823 n04336792 n03658185 n02097474 n02690373 n13044778 n02281787 n02641379 n02130308 n02704792 n01582220 n02027492 n04525305 n02119789 n13054560 n03724870 n02488291 n07697313 n02132136 n04336792 n03983396 n03944341 n01774384 n02027492 n02091134 n07860988 n02106550 n04357314 n03662601 n03868242 n03804744 n02112350 n01774750 n02088238 n07718472 n01742172 n02992529 n04404412 n02089867 n03345487 n02437312 n02930766 n13133613 n02206856 n02486410 n03843555 n04476259 n02094433 n01843065 n07714571 n02389026 n04099969 n01843065 n03180011 n09472597 n03670208 n01751748 n01807496 n02229544 n02101006 n03188531 n03290653 n02403003 n02699494 n04266014 n02708093 n04399382 n02804414 n07747607 n02749479 n03424325 n04522168 n01843065 n01682714 n02138441 n11879895 n04355338 n03662601 n03658185 n03483316 n07718747 n03476684 n02110958 n04040759 n03814906 n04461696 n02492660 n04044716 n04596742 n01770081 n01806143 n04589890 n03016953 n02493793 n01983481 n01484850 n02981792 n03710637 n02104029 n01498041 n03976657 n04009552 n02790996 n04235860 n04447861 n01910747 n03481172 n04090263 n03929660 n07248320 n03271574 n03661043 n03954731 n03016953 n07614500 n03920288 n02091244 n02676566 n13044778 n03843555 n07871810 n03832673 n04252225 n02174001 n03832673 n10148035 n02280649 n09229709 n06874185 n02823428 n02692877 n02823428 n07753592 n02782093 n03459775 n09288635 n04204347 n02483708 n04461696 n02791124 n03710193 n12768682 n04435653 n04204347 n02669723 n03657121 n01518878 n04026417 n02319095 n03791053 n02110063 n02281787 n03197337 n04152593 n02025239 n03633091 n02259212 n02423022 n03891332 n03874293 n02071294 n01773797 n07711569 n02007558 n13133613 n02017213 n04270147 n02113624 n02916936 n01675722 n07614500 n03673027 n02109961 n02950826 n02966193 n01685808 n02804610 n02095314 n03929855 n10565667 n02013706 n02123394 n03590841 n07711569 n02113799 n07860988 n04367480 n07873807 n02096585 n02002724 n02134418 n02398521 n04033901 n02110063 n09468604 n01990800 n04423845 n02177972 n04447861 n02096585 n02442845 n04265275 n04317175 n01807496 n04366367 n03814906 n12998815 n03482405 n03884397 n03673027 n03673027 n03793489 n02443114 n02988304 n02422106 n04326547 n02992529 n01860187 n03895866 n03180011 n04118776 n03461385 n04275548 n15075141 n03761084 n01944390 n04317175 n04152593 n02927161 n03956157 n02085620 n02727426 n01667114 n04493381 n01729322 n04081281 n01484850 n03124043 n02841315 n02108089 n03345487 n02892201 n07875152 n02093991 n03697007 n02119789 n01739381 n02319095 n02361337 n01883070 n02492035 n02107312 n07715103 n04264628 n01843065 n07860988 n01795545 n01592084 n03676483 n04254120 n03223299 n03220513 n02108915 n03873416 n02128925 n02389026 n01698640 n15075141 n03028079 n01644900 n01694178 n03761084 n03873416 n03710637 n03924679 n03627232 n04542943 n03095699 n02100236 n01784675 n01744401 n04153751 n03770439 n02107142 n03297495 n07753275 n04008634 n07615774 n04550184 n02110806 n04404412 n03976467 n07715103 n04525038 n02776631 n02099267 n02095314 n03028079 n02100236 n03930630 n03188531 n02094258 n04554684 n03887697 n02116738 n02007558 n02102973 n02130308 n04328186 n04141076 n03220513 n02444819 n04458633 n01735189 n02701002 n02071294 n01498041 n04070727 n04423845 n02089973 n04141975 n01729322 n01824575 n04251144 n01692333 n01484850 n04208210 n01667114 n04458633 n04141076 n02058221 n02088466 n07760859 n04560804 n02099267 n03000134 n02481823 n02788148 n02097047 n04487081 n04286575 n02233338 n04344873 n02490219 n02123159 n02120079 n02114855 n02088238 n01775062 n04136333 n03344393 n03535780 n02074367 n03782006 n02487347 n02134418 n02500267 n03208938 n04162706 n02410509 n02091635 n04417672 n01537544 n02951358 n02116738 n03594734 n03775071 n03594945 n04532670 n01695060 n02277742 n02123597 n02883205 n07932039 n02497673 n07754684 n02112018 n03538406 n03895866 n01494475 n02177972 n03197337 n02105641 n02992529 n04070727 n02109525 n02125311 n04456115 n02980441 n03841143 n03938244 n03661043 n01756291 n03794056 n02018207 n03126707 n01614925 n03992509 n03127925 n02115913 n03773504 n02776631 n09472597 n02177972 n03532672 n04476259 n04517823 n13052670 n07753275 n01685808 n04120489 n02120079 n02123159 n02087046 n03598930 n02487347 n03065424 n04517823 n02797295 n02804414 n02843684 n02018795 n03976657 n04005630 n02699494 n03814906 n09332890 n02493793 n04442312 n02100877 n04532670 n03047690 n02077923 n03733281 n04266014 n09835506 n02492660 n04330267 n07716358 n01601694 n04579432 n04380533 n01749939 n03444034 n03400231 n03584254 n03710721 n03895866 n04591713 n03903868 n02088364 n04141975 n01774384 n02112018 n04485082 n04259630 n03041632 n02097130 n03775546 n02093991 n01742172 n09193705 n01984695 n01924916 n02190166 n03706229 n13037406 n04604644 n03602883 n02504458 n03467068 n04536866 n04398044 n01986214 n03777754 n02066245 n02346627 n04370456 n02108551 n04204238 n04371430 n03792972 n02441942 n02096294 n02699494 n04589890 n02085936 n02105056 n02415577 n07734744 n02098286 n02113186 n02096294 n02871525 n03873416 n01784675 n02788148 n02051845 n07930864 n01692333 n02111889 n03662601 n02097474 n02165456 n03595614 n03452741 n04606251 n03796401 n03452741 n07693725 n02112018 n03388549 n04562935 n13133613 n04461696 n01796340 n04270147 n03187595 n03666591 n04120489 n04522168 n02111500 n03976467 n01729322 n02364673 n04356056 n02797295 n02114855 n02749479 n04357314 n07565083 n02676566 n02088466 n02823750 n02093256 n02256656 n02119022 n02883205 n03584254 n03775071 n01682714 n03124170 n04201297 n04044716 n01629819 n12998815 n07584110 n04532106 n03825788 n04501370 n01560419 n03065424 n02106030 n04229816 n03623198 n02280649 n06785654 n02342885 n02488291 n02606052 n03271574 n04070727 n03717622 n02447366 n03065424 n03527444 n01943899 n02095889 n02132136 n04204347 n03026506 n01749939 n03742115 n02105162 n03733281 n02006656 n04552348 n02493793 n02992211 n02089867 n04111531 n04590129 n03982430 n03495258 n02640242 n02099429 n02132136 n02444819 n02056570 n03494278 n01773157 n02137549 n01534433 n02018795 n03630383 n02281787 n04120489 n02104029 n02098413 n02488702 n03379051 n02807133 n04591713 n02110185 n04209239 n01558993 n04325704 n04264628 n03291819 n02793495 n02133161 n03908714 n03584254 n02091831 n02099429 n09835506 n01798484 n03041632 n02808304 n04136333 n09428293 n04465501 n01688243 n02093428 n02129165 n07749582 n03197337 n04392985 n04367480 n02484975 n02607072 n03089624 n04116512 n04286575 n02233338 n04118538 n04254777 n02410509 n02091244 n03016953 n03026506 n02113978 n02091032 n02096585 n04179913 n01775062 n03903868 n04277352 n02841315 n04597913 n01614925 n04067472 n03876231 n02095889 n02100877 n03444034 n01484850 n02490219 n03272010 n12057211 n03980874 n02097474 n04270147 n04429376 n04111531 n09399592 n04005630 n03595614 n02123045 n03657121 n07892512 n03840681 n04296562 n02807133 n01806567 n04258138 n02114367 n01675722 n02794156 n01698640 n04296562 n07717556 n03476991 n04005630 n02099712 n02099429 n03721384 n04277352 n03127925 n02256656 n03201208 n02088466 n02086079 n01632458 n04376876 n03998194 n01440764 n02704792 n01855032 n03095699 n04355933 n04465501 n03841143 n04501370 n01558993 n03042490 n01950731 n03935335 n04584207 n01984695 n02747177 n03775546 n04525038 n01632777 n04485082 n04116512 n02486410 n02096585 n02096051 n02110627 n03272010 n03775546 n02123597 n02992529 n01632458 n02089078 n03954731 n02437616 n02120505 n04507155 n02114712 n03532672 n03983396 n02108000 n01514859 n07802026 n02951358 n01882714 n04505470 n02231487 n03388043 n04482393 n02112018 n04008634 n02606052 n04273569 n03594734 n04532670 n01855032 n02342885 n03950228 n02093859 n02841315 n02025239 n03930630 n01797886 n03240683 n01775062 n02321529 n02342885 n02108551 n03216828 n02281406 n03710721 n04201297 n01950731 n03216828 n07880968 n04208210 n02514041 n02123597 n04517823 n04553703 n03482405 n07697313 n03690938 n02444819 n04049303 n03085013 n01843065 n03709823 n02117135 n02787622 n07579787 n02099601 n04229816 n03776460 n01644900 n07579787 n03733281 n09472597 n01797886 n07802026 n01806567 n02108551 n02093754 n02132136 n04254120 n03877472 n02480855 n04285008 n15075141 n04325704 n09332890 n03947888 n01828970 n02106030 n04501370 n07730033 n02113186 n03026506 n04266014 n11939491 n04270147 n03777754 n04522168 n01860187 n02443484 n02835271 n04125021 n02794156 n06596364 n04265275 n04136333 n10565667 n04483307 n02277742 n02094433 n07716906 n01514859 n02397096 n02102318 n04442312 n03680355 n02086240 n02174001 n02277742 n03832673 n01768244 n01739381 n02361337 n02607072 n01843383 n02091467 n02090721 n01756291 n02099429 n01806567 n02966687 n02094258 n01986214 n07697537 n02909870 n03967562 n04296562 n03388043 n04482393 n09421951 n07614500 n02865351 n02089973 n04557648 n01537544 n01819313 n03929855 n04136333 n03977966 n04099969 n01675722 n03832673 n02643566 n07749582 n04275548 n04005630 n02074367 n03623198 n03495258 n04296562 n02437312 n02113799 n03874599 n02454379 n02877765 n02109525 n04270147 n01729977 n02950826 n02110063 n03216828 n01484850 n03062245 n02128385 n04228054 n03179701 n01796340 n01694178 n02088094 n03942813 n02869837 n03770439 n02097658 n03047690 n03742115 n03724870 n02966687 n02098286 n01687978 n02100236 n01616318 n04442312 n02396427 n03998194 n01773549 n07747607 n01944390 n03891332 n03045698 n03877472 n03207941 n02494079 n01819313 n02093754 n02088238 n02168699 n04515003 n01675722 n02018207 n02690373 n03777568 n03026506 n02342885 n02102040 n07583066 n03961711 n02916936 n03958227 n01698640 n07714990 n02483708 n03680355 n04141975 n02085936 n07930864 n03691459 n02892767 n03770679 n03450230 n02165456 n04560804 n01614925 n04458633 n02500267 n02190166 n04380533 n02950826 n07860988 n02346627 n03814906 n02494079 n01817953 n09421951 n03041632 n04371430 n04371430 n03743016 n01630670 n04074963 n04326547 n02894605 n02086910 n03935335 n04461696 n03476991 n03697007 n01818515 n04263257 n02088238 n07697313 n02110806 n07747607 n02108422 n02641379 n04507155 n02124075 n12985857 n02342885 n07697537 n03742115 n12998815 n04591713 n03450230 n02110185 n02091831 n03424325 n01795545 n04507155 n01616318 n01704323 n03887697 n02128925 n01824575 n02099712 n03498962 n04273569 n04090263 n01775062 n03970156 n02480855 n02730930 n02326432 n04355933 n03355925 n01734418 n02107908 n01978287 n03874599 n03478589 n03788365 n02325366 n02445715 n03180011 n03792782 n01667778 n02490219 n01882714 n04005630 n04118538 n03775071 n03792782 n02123045 n02264363 n02776631 n01773157 n01614925 n04548362 n02009912 n02487347 n03272562 n01685808 n02835271 n02110063 n04153751 n02123045 n02417914 n04208210 n03476684 n01768244 n07697313 n02100583 n02504013 n04040759 n04067472 n01798484 n07248320 n02094258 n02483708 n04557648 n01828970 n02172182 n03658185 n02493509 n03991062 n03494278 n03291819 n02410509 n03733805 n04579432 n03124043 n02966193 n02190166 n02526121 n07753592 n07753592 n07768694 n09246464 n07711569 n02018795 n02105056 n01669191 n02268853 n02488291 n02793495 n02101556 n04476259 n07584110 n04542943 n03670208 n03929855 n04204347 n02094433 n09472597 n04479046 n01667778 n03459775 n02056570 n12620546 n04286575 n02795169 n04209239 n02101556 n04532670 n02009229 n04584207 n02795169 n02112350 n01667778 n02939185 n03908618 n01753488 n02841315 n03388183 n03218198 n02776631 n02363005 n02130308 n06596364 n02814860 n02110063 n02117135 n07684084 n04254680 n03109150 n02408429 n04389033 n04483307 n01797886 n02095889 n03958227 n04548280 n02410509 n03837869 n03720891 n04435653 n01498041 n02749479 n07718747 n04461696 n03388043 n02133161 n02165105 n02817516 n04532670 n02013706 n01682714 n02102177 n03290653 n04086273 n02090379 n01797886 n01440764 n01818515 n04562935 n02782093 n03793489 n11879895 n02814860 n02669723 n02974003 n07693725 n02104029 n03372029 n03045698 n03100240 n02127052 n07579787 n03874599 n02504458 n02132136 n03692522 n04517823 n03223299 n04418357 n02110806 n01728572 n04259630 n03930313 n02321529 n02105251 n04317175 n01491361 n07753275 n02028035 n04476259 n03742115 n03032252 n02328150 n04591713 n02088094 n02190166 n04067472 n03134739 n02102318 n03026506 n04371430 n03535780 n01614925 n02111889 n03977966 n03131574 n02071294 n02110627 n02109961 n02412080 n01580077 n06359193 n04209133 n03775546 n03630383 n01753488 n02672831 n02092339 n01644900 n07730033 n03124043 n04065272 n03697007 n01616318 n01558993 n02107683 n04044716 n03877472 n02786058 n02087046 n07717410 n04019541 n01622779 n03337140 n02978881 n04131690 n03887697 n01582220 n02536864 n04065272 n02977058 n03825788 n01687978 n01756291 n04486054 n01737021 n01968897 n03047690 n02106166 n02259212 n02326432 n04476259 n02115913 n02006656 n04254120 n02871525 n03220513 n03769881 n03692522 n02730930 n04235860 n02112018 n02107142 n02834397 n04008634 n02100583 n01729977 n07714571 n01629819 n02028035 n03724870 n04355933 n01614925 n07714571 n07584110 n02870880 n13054560 n02727426 n03877472 n04263257 n04127249 n03630383 n01978287 n13044778 n02509815 n04251144 n04141327 n12620546 n03388043 n02951358 n02412080 n03110669 n03937543 n04044716 n02101388 n07716358 n04462240 n03933933 n02840245 n03485407 n03461385 n02119789 n01944390 n01924916 n04127249 n04209239 n03908618 n03133878 n03992509 n02410509 n03796401 n01798484 n04557648 n02088632 n03000247 n02971356 n03840681 n01776313 n01773157 n04366367 n03325584 n03873416 n01807496 n02790996 n09421951 n07734744 n03000247 n04597913 n04332243 n02408429 n01677366 n02229544 n03891251 n02110063 n03532672 n03937543 n01558993 n04540053 n12057211 n03388183 n02841315 n09399592 n03933933 n02823428 n02102040 n02690373 n02895154 n02085936 n04458633 n02415577 n04579432 n04557648 n03630383 n02009912 n02113978 n03000247 n09246464 n03498962 n02992211 n03249569 n03930313 n01632458 n02086910 n02097209 n03032252 n01496331 n04118538 n03272010 n02095314 n02930766 n02112137 n03697007 n04127249 n04141076 n03376595 n07613480 n04023962 n03958227 n04515003 n04596742 n02108000 n03874599 n01776313 n02088238 n01950731 n02086910 n03384352 n02093859 n02088632 n02749479 n01631663 n01955084 n04275548 n02493793 n03690938 n02802426 n02110341 n02906734 n02124075 n03991062 n03584254 n03444034 n02979186 n03888605 n01534433 n02129165 n01614925 n02397096 n12985857 n02123159 n01984695 n02097047 n01616318 n02117135 n01682714 n03814906 n02105251 n01877812 n04367480 n01770081 n02099849 n02328150 n07590611 n07734744 n03673027 n02129165 n02111500 n04090263 n02129604 n02894605 n02128757 n04238763 n03720891 n03793489 n03424325 n07716358 n02493509 n02099849 n02091244 n02097658 n02138441 n03047690 n02093647 n02108915 n04263257 n02129165 n04335435 n07760859 n02091831 n03445924 n02280649 n02640242 n04613696 n03527444 n01798484 n03995372 n01728572 n04004767 n02099267 n07920052 n03709823 n02095570 n02018795 n03642806 n04074963 n04141327 n01917289 n04131690 n03250847 n02104365 n03602883 n02093428 n03109150 n03240683 n02086079 n02114712 n02093256 n02102040 n03495258 n04584207 n02870880 n02916936 n07875152 n07583066 n02730930 n04019541 n04254120 n02666196 n03141823 n03063689 n06596364 n02906734 n03445777 n02971356 n03891332 n07892512 n02442845 n03527444 n02667093 n01806143 n03902125 n02457408 n01693334 n02799071 n02814533 n06874185 n02088466 n03825788 n01484850 n03355925 n02095889 n02086646 n03942813 n03425413 n04550184 n02817516 n04049303 n04483307 n02097209 n03388549 n02815834 n02487347 n02074367 n02113186 n02536864 n02114855 n07697313 n03938244 n02492035 n02085620 n02085620 n03223299 n04273569 n03496892 n03866082 n03065424 n03877845 n02871525 n03404251 n04462240 n02113799 n02093859 n03742115 n02123045 n04487081 n02107312 n03938244 n02966687 n02342885 n03781244 n02493509 n02134084 n02749479 n07749582 n12144580 n02114548 n13052670 n07753113 n03777754 n07615774 n02483708 n01784675 n01978287 n02536864 n02443484 n03877472 n04074963 n01632777 n02815834 n01669191 n02104029 n02093859 n01883070 n01774750 n01667778 n01728920 n02219486 n03124170 n02123394 n01740131 n04228054 n01592084 n02128925 n02281787 n02093647 n01667778 n02128925 n01978287 n02130308 n03065424 n12620546 n13052670 n02480855 n03376595 n07734744 n04019541 n02536864 n04350905 n01773549 n03782006 n02111129 n01806567 n07753275 n02256656 n01984695 n04443257 n02410509 n02092339 n02115913 n01806143 n02815834 n03908618 n02279972 n03691459 n03216828 n04370456 n02676566 n03710721 n01629819 n03967562 n03482405 n04487081 n01744401 n02454379 n02007558 n03201208 n03793489 n03902125 n02672831 n03447447 n02749479 n01440764 n03538406 n03794056 n02097130 n04332243 n02814860 n02488291 n03032252 n02137549 n02281406 n01494475 n02749479 n04458633 n01847000 n03825788 n01819313 n01847000 n03908618 n03444034 n02483362 n04254680 n02123597 n03838899 n02104029 n03633091 n03775546 n01807496 n03692522 n03721384 n04208210 n02892767 n02086240 n02492660 n04049303 n04238763 n03793489 n02107574 n02364673 n02134084 n02092339 n02906734 n04371774 n02097658 n02102040 n01968897 n02090622 n03916031 n03658185 n02536864 n03697007 n03924679 n02325366 n03337140 n02999410 n01983481 n03141823 n03662601 n01729322 n02676566 n02992211 n03089624 n01632777 n02443484 n03534580 n01847000 n02102318 n01855032 n03961711 n03895866 n02892767 n01601694 n02443484 n03930313 n03062245 n02988304 n02090622 n02107908 n03290653 n04542943 n04296562 n01986214 n02233338 n02093991 n03482405 n02966193 n03786901 n02027492 n04392985 n03376595 n07714990 n02504013 n04606251 n03724870 n02093991 n03933933 n02804414 n03063599 n01698640 n03498962 n04252225 n02013706 n03026506 n03787032 n04536866 n02100583 n01582220 n02500267 n03388183 n07693725 n02033041 n03908714 n02219486 n02730930 n03710193 n02108915 n01749939 n02817516 n01729977 n02086910 n02107908 n03450230 n07565083 n02128385 n03141823 n04259630 n01914609 n07697537 n04447861 n02099849 n03126707 n01943899 n04118776 n02791124 n03763968 n03492542 n02094433 n04366367 n01614925 n02007558 n02128757 n04019541 n04612504 n02841315 n13044778 n04147183 n03933933 n02110627 n02226429 n01631663 n03676483 n02487347 n04507155 n03216828 n07718472 n02058221 n03127747 n07745940 n02102177 n02113712 n02965783 n03840681 n04310018 n01774384 n02177972 n03063599 n01697457 n03759954 n02085620 n07753113 n03393912 n02692877 n03868242 n02403003 n03249569 n03884397 n02396427 n03457902 n07718747 n02167151 n04154565 n04147183 n04118538 n03124043 n04372370 n01667114 n03998194 n03995372 n10565667 n01798484 n04591157 n03127747 n02105641 n03485407 n02102177 n04461696 n01824575 n02066245 n04317175 n02107312 n06874185 n04465501 n02939185 n04019541 n03459775 n04548280 n03047690 n04325704 n07871810 n01819313 n03782006 n02086079 n03584254 n03929660 n02492035 n03670208 n02412080 n02109525 n02397096 n01582220 n03188531 n02105641 n02033041 n03992509 n02328150 n03000684 n03126707 n07590611 n02102480 n07684084 n07590611 n09421951 n04285008 n02930766 n04604644 n03584829 n03447721 n01693334 n02910353 n03532672 n04127249 n04154565 n03014705 n13052670 n03483316 n02817516 n03759954 n03733805 n04204238 n02110341 n04147183 n02007558 n02268443 n03133878 n03255030 n02442845 n02018207 n04069434 n02667093 n03866082 n02113978 n02108000 n03832673 n04039381 n01677366 n01955084 n02113023 n04371430 n03134739 n03840681 n07714571 n01955084 n03785016 n03924679 n04443257 n03709823 n04204347 n02086079 n02361337 n04317175 n09229709 n04270147 n01518878 n02105412 n07720875 n02177972 n02098105 n03534580 n02492660 n03954731 n03874599 n04243546 n04344873 n04252077 n02009229 n01774384 n03843555 n02988304 n02422699 n03045698 n03775071 n02098105 n04099969 n01582220 n03026506 n02099849 n02814860 n02980441 n07875152 n01873310 n02117135 n02510455 n02108422 n04599235 n03450230 n02105505 n04239074 n04131690 n04033995 n03445924 n01558993 n02791270 n03770679 n02480855 n02134084 n02098286 n03478589 n01744401 n04532670 n02105412 n03874599 n04125021 n01682714 n02747177 n02992211 n03710193 n01514859 n01687978 n04418357 n02017213 n01677366 n02281406 n02138441 n03594945 n02106030 n03017168 n02105251 n04273569 n02488291 n09332890 n03873416 n02895154 n02494079 n02437616 n01692333 n04311004 n03218198 n02110185 n02256656 n07880968 n02666196 n03337140 n04399382 n04265275 n04254120 n01798484 n03602883 n03825788 n01833805 n02704792 n01734418 n03594734 n02701002 n02085620 n01582220 n03623198 n03000134 n02992211 n03691459 n02526121 n03998194 n01990800 n03933933 n02950826 n01748264 n15075141 n10565667 n15075141 n02116738 n02643566 n02837789 n04005630 n02091134 n02071294 n10148035 n02951358 n04127249 n03866082 n04579145 n04239074 n02492035 n02107683 n04239074 n04004767 n04550184 n03961711 n03201208 n03207941 n03134739 n02892767 n03394916 n02398521 n03868863 n02486410 n04487394 n03394916 n01496331 n04418357 n02168699 n02097209 n01537544 n01687978 n02799071 n04009552 n03345487 n04346328 n12057211 n03485794 n02443484 n02229544 n02840245 n02415577 n02104029 n03792782 n03888605 n02128925 n03045698 n03837869 n02749479 n04033995 n02422106 n03404251 n04208210 n02113712 n03459775 n02514041 n04371430 n01644373 n03447721 n13052670 n03492542 n04366367 n01968897 n02033041 n02114712 n02804414 n01796340 n04009552 n04597913 n03141823 n04612504 n01729322 n02492660 n03792972 n02130308 n03400231 n01632777 n03085013 n01729322 n02095570 n03970156 n04009552 n03950228 n02086646 n02108000 n03196217 n01580077 n04275548 n04599235 n01774750 n03498962 n03457902 n03930630 n04590129 n01968897 n04462240 n04554684 n02840245 n02804414 n07614500 n03482405 n02871525 n04192698 n02699494 n03388183 n04153751 n03733281 n01797886 n01689811 n02777292 n02389026 n03788365 n01514859 n02102480 n03942813 n02111129 n03017168 n02105855 n04328186 n02115641 n02093647 n02415577 n02536864 n13044778 n02113712 n02123394 n01735189 n03085013 n03127747 n02105641 n04606251 n02814533 n02980441 n02910353 n02098105 n04380533 n02098286 n02018795 n02788148 n01807496 n03908714 n03388549 n02100877 n03982430 n01986214 n04201297 n03347037 n04008634 n04557648 n03445924 n02980441 n03131574 n02948072 n01797886 n04005630 n02111889 n02325366 n01728920 n02129165 n02168699 n04465501 n01728572 n02105641 n01774384 n04418357 n02325366 n03888605 n04149813 n02281406 n03599486 n03124170 n02100583 n03956157 n03788195 n04286575 n04136333 n04344873 n03743016 n01494475 n01910747 n02787622 n04562935 n02909870 n02974003 n02111500 n03388549 n04550184 n07745940 n03673027 n02727426 n03207743 n04487081 n04009552 n02130308 n02105412 n03476991 n01632458 n02790996 n04505470 n04380533 n02108422 n07920052 n03467068 n03249569 n03633091 n02124075 n03763968 n03710637 n03100240 n02256656 n03461385 n02869837 n02948072 n03991062 n02091244 n04476259 n02099429 n02346627 n02782093 n02457408 n02009229 n02910353 n02087046 n01877812 n03787032 n02281406 n04461696 n03782006 n01924916 n03223299 n01768244 n04023962 n07717410 n03062245 n07875152 n03393912 n02364673 n03937543 n02101388 n04548280 n12620546 n03584829 n04606251 n02776631 n04443257 n02788148 n03838899 n02051845 n07768694 n03498962 n02100583 n02102177 n07716358 n04589890 n02128757 n02489166 n03417042 n03355925 n02111889 n03297495 n03180011 n03196217 n02859443 n02321529 n04443257 n03089624 n07730033 n03874293 n03594945 n02423022 n11879895 n02104029 n02916936 n02403003 n03709823 n04467665 n01833805 n02119022 n02687172 n02492660 n02877765 n02099429 n03942813 n02105855 n02168699 n07565083 n03895866 n03126707 n02346627 n02606052 n03670208 n02114548 n02109047 n03916031 n01871265 n04523525 n02690373 n03014705 n02356798 n02128385 n02133161 n03884397 n02108915 n03759954 n03630383 n02106382 n02256656 n02085936 n03197337 n03661043 n04590129 n03958227 n04525038 n02037110 n03956157 n03717622 n02326432 n03249569 n01631663 n01687978 n12144580 n02277742 n03692522 n04507155 n04389033 n04548280 n01914609 n01776313 n03125729 n02096051 n02769748 n04131690 n02669723 n04376876 n01818515 n02091244 n03207743 n03134739 n03838899 n02641379 n02666196 n02397096 n02009229 n02410509 n02276258 n03062245 n02097130 n02093754 n02123045 n04357314 n03089624 n02091244 n01685808 n02412080 n03841143 n01807496 n02098286 n02124075 n02086646 n03627232 n09468604 n01768244 n07920052 n03976467 n03534580 n03617480 n04467665 n07584110 n04040759 n02090379 n03393912 n01945685 n04482393 n01537544 n02231487 n02137549 n03045698 n04346328 n04597913 n02114367 n07613480 n02892767 n04209133 n02097047 n02100877 n02480855 n03259280 n03272010 n07684084 n03743016 n01773549 n02708093 n02939185 n03617480 n01753488 n07880968 n03218198 n02871525 n02093256 n01798484 n02417914 n02108915 n04125021 n03126707 n04285008 n02526121 n04111531 n02089078 n02927161 n02971356 n04553703 n02442845 n01945685 n01491361 n04347754 n04371774 n09428293 n04370456 n01682714 n01664065 n02085620 n02114855 n03255030 n02130308 n04200800 n02447366 n04127249 n02110185 n02793495 n03944341 n03196217 n02096294 n04133789 n07754684 n03384352 n03459775 n04579145 n01682714 n03041632 n07860988 n06596364 n04296562 n04152593 n01698640 n03792972 n04067472 n03394916 n01728920 n04597913 n04090263 n03445777 n13040303 n07717556 n01914609 n07730033 n02108089 n04597913 n02786058 n06785654 n03956157 n04584207 n03697007 n02114712 n02749479 n07248320 n03673027 n02090379 n04501370 n01917289 n04265275 n04515003 n03710721 n03495258 n04532670 n04040759 n01829413 n02840245 n02699494 n02106550 n03089624 n02105056 n02860847 n02487347 n02085782 n03888257 n03691459 n02398521 n04398044 n01687978 n04371774 n02777292 n01664065 n04476259 n04548280 n12144580 n02669723 n02095314 n02877765 n04429376 n03400231 n03729826 n02825657 n02802426 n03733281 n03124043 n07871810 n02169497 n04263257 n01689811 n04485082 n04099969 n03902125 n04371430 n02091635 n03344393 n02815834 n13044778 n02100877 n02130308 n09246464 n02843684 n01735189 n06874185 n02100583 n02100877 n15075141 n02109525 n02486410 n02950826 n01871265 n02823750 n07583066 n02051845 n01751748 n02483362 n03908618 n02977058 n02111889 n04447861 n02114855 n02095314 n02804414 n02489166 n04277352 n02236044 n02408429 n02655020 n01693334 n03447721 n02093647 n02791124 n02077923 n04536866 n03291819 n02093859 n02115641 n04254680 n04501370 n04019541 n02795169 n03459775 n04209133 n07860988 n04553703 n02484975 n03530642 n02906734 n04325704 n04008634 n12057211 n02342885 n04344873 n03794056 n02107142 n04090263 n02009229 n02971356 n02504458 n04273569 n09399592 n03272562 n02277742 n02279972 n07930864 n02917067 n04004767 n04392985 n07718747 n02089078 n03903868 n03208938 n02133161 n03376595 n02978881 n03201208 n02834397 n02443484 n02085620 n02111889 n03532672 n04263257 n03661043 n15075141 n04200800 n03786901 n01873310 n04423845 n01737021 n02951358 n02116738 n01798484 n03980874 n02834397 n02398521 n01531178 n07734744 n01847000 n03841143 n02110185 n13044778 n02727426 n02799071 n02107908 n01806143 n03770679 n03967562 n02086646 n02892767 n01855032 n02165105 n01514859 n04037443 n03877472 n03729826 n01728920 n02676566 n03627232 n04069434 n04192698 n02486261 n02795169 n04033901 n01824575 n02105641 n02444819 n01824575 n03908714 n04239074 n02102480 n02264363 n01498041 n02930766 n04355933 n04125021 n03481172 n02123159 n02099712 n04209239 n02111889 n02002556 n03690938 n04429376 n03814906 n04525305 n02107908 n01692333 n04127249 n01914609 n04201297 n02807133 n01985128 n02979186 n02088238 n03594945 n03388043 n09468604 n03729826 n02704792 n07930864 n03355925 n04554684 n04131690 n04026417 n02437616 n03769881 n04330267 n02091831 n01797886 n02687172 n02906734 n02091635 n02814533 n02114712 n03770439 n04099969 n04033995 n02085936 n01644900 n02930766 n01917289 n01704323 n04515003 n01950731 n03888257 n07836838 n02687172 n02102318 n02106030 n02676566 n01749939 n03314780 n03690938 n02823750 n03344393 n03666591 n04458633 n04398044 n01440764 n04482393 n03075370 n02701002 n04023962 n01558993 n07716358 n02325366 n02106382 n04590129 n10148035 n02236044 n04252077 n12144580 n02110627 n03000134 n02086079 n03032252 n02408429 n03394916 n02871525 n01806567 n02127052 n02879718 n03032252 n03935335 n04482393 n03710721 n04522168 n04371430 n04579145 n03967562 n03201208 n04355338 n04328186 n04111531 n01968897 n02115913 n01518878 n04344873 n02814533 n01697457 n04371430 n01855032 n01806143 n03598930 n02971356 n03372029 n02101388 n02963159 n02391049 n01560419 n02114367 n03933933 n03259280 n01756291 n04479046 n07583066 n03792972 n02100877 n07768694 n02007558 n03937543 n03666591 n02104029 n01910747 n02095889 n04417672 n03769881 n03929855 n02641379 n02229544 n07614500 n04311174 n02361337 n07753592 n02206856 n04090263 n03444034 n04525305 n02281406 n02526121 n01807496 n02096294 n01667778 n02480855 n07711569 n02009229 n01697457 n03271574 n01687978 n02100236 n03908714 n01531178 n02364673 n03773504 n03000684 n02981792 n04485082 n01797886 n03498962 n03538406 n03530642 n01872401 n02342885 n02457408 n02480495 n02480855 n01770393 n01560419 n01665541 n04540053 n04346328 n04485082 n02091635 n03733805 n02120505 n02988304 n04049303 n02607072 n02488702 n03026506 n07718472 n03627232 n03388043 n02403003 n03627232 n03877845 n03388043 n02487347 n04005630 n01682714 n01818515 n04311174 n01664065 n04509417 n02086910 n02219486 n04392985 n04344873 n01685808 n07717410 n03384352 n01728920 n02027492 n02012849 n04336792 n02481823 n07565083 n03868863 n03179701 n02109525 n04330267 n03982430 n03272010 n04005630 n02112137 n03770439 n02088094 n02114548 n02091032 n01728572 n03240683 n02808440 n02486410 n02930766 n01737021 n03733805 n03110669 n03016953 n01748264 n02325366 n01748264 n02364673 n02017213 n04252077 n02860847 n03124043 n03461385 n02090721 n03998194 n02095570 n07753113 n04423845 n04044716 n01695060 n01632458 n02643566 n02167151 n01860187 n02403003 n02840245 n03658185 n04116512 n02096294 n01735189 n01514859 n04131690 n02978881 n03461385 n03944341 n02441942 n07753113 n01693334 n09399592 n02105412 n03400231 n04550184 n02823428 n02112137 n03920288 n04509417 n03785016 n03534580 n02066245 n02807133 n01924916 n02017213 n03796401 n02090721 n01981276 n02497673 n09399592 n01749939 n03344393 n03344393 n02490219 n04335435 n04065272 n07873807 n03314780 n03530642 n02783161 n02114548 n02319095 n03018349 n01498041 n02859443 n02096051 n04251144 n03042490 n02167151 n02096294 n09246464 n12985857 n02100583 n03240683 n02236044 n02356798 n02317335 n02859443 n02510455 n01945685 n03792972 n02011460 n03220513 n04141076 n03662601 n07745940 n02747177 n12998815 n04209133 n02097130 n01685808 n04273569 n04515003 n02094258 n02109047 n03028079 n02408429 n03777754 n02113186 n02500267 n03891251 n02112018 n04487081 n02927161 n01664065 n03534580 n03729826 n03187595 n02105505 n07718747 n02802426 n02226429 n04116512 n01756291 n01817953 n07714990 n02457408 n03109150 n04026417 n02437312 n02124075 n02113978 n03109150 n02389026 n06785654 n03089624 n03444034 n04149813 n02091032 n04376876 n02606052 n03492542 n04579145 n01496331 n01592084 n04141975 n01580077 n02112706 n03388043 n02256656 n02087394 n04179913 n07930864 n04355338 n03874293 n04033995 n02088364 n03535780 n03476991 n04336792 n03888257 n07836838 n03028079 n03877845 n03982430 n02116738 n04596742 n03843555 n15075141 n04325704 n04398044 n02134084 n02132136 n03602883 n01955084 n02268853 n02490219 n04044716 n02492660 n01770393 n03447447 n07871810 n01739381 n03933933 n02110958 n04517823 n10565667 n02087046 n02909870 n07747607 n13037406 n03743016 n02113023 n07716358 n01828970 n04579145 n04482393 n02169497 n04371430 n01751748 n01632777 n02106382 n01697457 n04074963 n03062245 n02607072 n03868863 n04409515 n01829413 n04254680 n01728920 n02802426 n03666591 n01984695 n02708093 n02090721 n02089973 n02099849 n02134084 n13133613 n03733281 n02268853 n04347754 n02115641 n04346328 n02769748 n01665541 n03961711 n02391049 n01675722 n02017213 n03045698 n02356798 n02977058 n01873310 n02276258 n03692522 n02107908 n03954731 n04389033 n02226429 n03676483 n02107908 n01484850 n01774750 n02979186 n03761084 n03623198 n03445777 n03770679 n01728572 n03495258 n04613696 n02441942 n03594734 n02114855 n02883205 n04311174 n04532670 n02134418 n03717622 n02859443 n03930313 n03126707 n03977966 n03983396 n04456115 n07760859 n01532829 n04208210 n03991062 n04131690 n03649909 n03425413 n02017213 n02974003 n03958227 n02408429 n01614925 n03884397 n04429376 n01749939 n01756291 n01498041 n03992509 n03532672 n04286575 n03376595 n02108000 n02108551 n07565083 n03792782 n02089867 n07684084 n03404251 n03871628 n04311004 n13040303 n02111129 n02422699 n03733281 n04153751 n04179913 n02268443 n02443114 n03485794 n07579787 n02110063 n01616318 n03871628 n07697537 n02114367 n02091134 n02883205 n02814533 n03871628 n02105056 n02865351 n03991062 n02104365 n04275548 n03929660 n03814639 n02834397 n03792782 n07730033 n02445715 n02804610 n02119789 n04040759 n02415577 n02206856 n02114367 n04493381 n02276258 n03991062 n02236044 n04332243 n07760859 n02504013 n02090379 n02445715 n10565667 n04487081 n09472597 n04398044 n01873310 n02087046 n03788365 n02097658 n03467068 n07717410 n03642806 n03063689 n01914609 n03792782 n12267677 n03220513 n02119789 n02950826 n02113712 n03697007 n04009552 n03876231 n10148035 n03590841 n03461385 n02814860 n03729826 n03255030 n09288635 n02094114 n04550184 n02115913 n01990800 n02112350 n12998815 n02672831 n01860187 n04493381 n02979186 n02441942 n02128757 n01883070 n03803284 n03417042 n02992211 n04462240 n03759954 n01984695 n07584110 n04118538 n02105412 n03218198 n02835271 n03314780 n04070727 n03325584 n01742172 n04266014 n03447447 n02701002 n01877812 n03062245 n01592084 n01924916 n03781244 n01798484 n02730930 n02417914 n02791124 n02412080 n09256479 n04008634 n02493793 n07753275 n03980874 n02280649 n03400231 n03476991 n02787622 n02086240 n04041544 n04370456 n04591713 n03062245 n04254120 n02125311 n03920288 n02088364 n02002724 n02107683 n01498041 n04550184 n01984695 n04584207 n02971356 n03961711 n02447366 n01855672 n03126707 n03481172 n02640242 n03376595 n02814860 n01498041 n04442312 n03776460 n01882714 n04485082 n03201208 n01978455 n04456115 n03467068 n02086240 n02256656 n04517823 n03291819 n04263257 n02106662 n02823750 n03527444 n01807496 n02112018 n02860847 n01980166 n01514859 n02879718 n02128925 n03944341 n07831146 n04049303 n04004767 n04254120 n02108422 n07871810 n01775062 n02808304 n03929660 n02667093 n07716906 n03697007 n12057211 n03196217 n01855032 n02097047 n02444819 n07711569 n02071294 n06596364 n03584829 n02025239 n09256479 n02484975 n02840245 n02814533 n03188531 n03891332 n01560419 n02110185 n01685808 n03207941 n02096294 n02672831 n04311004 n04265275 n07730033 n04296562 n02167151 n02110341 n03832673 n03709823 n02115641 n02510455 n04325704 n02129604 n04296562 n13037406 n04554684 n03706229 n02500267 n02101388 n02206856 n02111889 n04442312 n02102973 n02098105 n02906734 n01770081 n13054560 n04325704 n02909870 n02927161 n03976467 n03014705 n02483362 n02012849 n02321529 n03841143 n04389033 n02094258 n15075141 n03733805 n03958227 n03792972 n04542943 n02979186 n07614500 n03666591 n03929855 n07802026 n02974003 n02319095 n02804414 n04325704 n02109525 n02999410 n02120079 n04404412 n01871265 n03871628 n03337140 n01667778 n01819313 n04532670 n02319095 n03457902 n02978881 n02119789 n04026417 n01693334 n01744401 n03825788 n04273569 n03942813 n01984695 n02727426 n01820546 n04487081 n03956157 n04465501 n04579145 n02117135 n04447861 n03085013 n02134084 n03769881 n03717622 n02105251 n03761084 n02088466 n01872401 n02807133 n03775546 n03590841 n03617480 n01677366 n02119789 n02226429 n04409515 n03995372 n02013706 n07697537 n02025239 n02114712 n03394916 n02494079 n01968897 n03977966 n11879895 n03492542 n03843555 n03742115 n04208210 n02423022 n04515003 n13054560 n02483708 n04507155 n07717410 n03255030 n03133878 n03877845 n04344873 n04540053 n09399592 n04517823 n04086273 n02978881 n02115641 n04461696 n02102973 n02277742 n04399382 n04330267 n03661043 n13037406 n04604644 n03958227 n02397096 n04125021 n03445924 n03492542 n02092339 n03787032 n03791053 n02804414 n01753488 n07754684 n01496331 n01990800 n04356056 n04065272 n01756291 n04136333 n03662601 n02006656 n02326432 n02018795 n03777568 n07932039 n04265275 n02268853 n03649909 n04548362 n03538406 n02104365 n03062245 n04131690 n01955084 n04606251 n04037443 n01990800 n02892767 n02113023 n03873416 n04254680 n02444819 n04606251 n02091032 n03623198 n01693334 n04162706 n04476259 n01773157 n02510455 n01616318 n02782093 n04209133 n03777568 n12998815 n04417672 n12620546 n04517823 n02259212 n02727426 n02797295 n03062245 n02794156 n04347754 n03417042 n02123159 n03530642 n07715103 n07716906 n03874599 n04179913 n01877812 n02101388 n02233338 n04141327 n02666196 n04131690 n03032252 n02114367 n03045698 n02090721 n02815834 n07873807 n02965783 n04429376 n04604644 n01855032 n02018795 n03729826 n04404412 n07615774 n02013706 n01955084 n01774750 n01644373 n02096177 n02114712 n03891332 n03482405 n03916031 n02099849 n02480855 n13044778 n02226429 n03670208 n13133613 n03670208 n04125021 n02276258 n03131574 n03929855 n02687172 n02443484 n02101006 n04367480 n02109525 n04049303 n02096051 n03929660 n02776631 n02027492 n01795545 n02109525 n03584829 n03595614 n02992211 n04243546 n03404251 n04023962 n03085013 n02128385 n02111129 n04613696 n04152593 n02978881 n02909870 n10565667 n03467068 n02280649 n03763968 n02056570 n02504458 n03958227 n03874599 n02133161 n03871628 n02099849 n03179701 n01985128 n02112137 n02098413 n01945685 n02105505 n03796401 n04152593 n02410509 n01665541 n04147183 n02655020 n02233338 n03297495 n01776313 n01945685 n03710193 n04462240 n03956157 n02229544 n02782093 n04355338 n03000684 n04542943 n02111277 n04505470 n03196217 n02112706 n03590841 n03197337 n02526121 n04522168 n01877812 n03617480 n02870880 n04591713 n06359193 n02110958 n07892512 n03796401 n03047690 n01518878 n04263257 n01910747 n07753275 n01882714 n04033901 n01784675 n02489166 n03534580 n04447861 n02403003 n07717556 n02027492 n03710721 n02281787 n02807133 n03124170 n02396427 n02981792 n04613696 n02481823 n04522168 n03930313 n10565667 n03776460 n03180011 n04235860 n02397096 n03016953 n03838899 n09193705 n04404412 n04336792 n02978881 n07720875 n04286575 n12985857 n07613480 n03063689 n02206856 n02011460 n02769748 n02317335 n02749479 n01770081 n02422699 n02088094 n02906734 n06785654 n04152593 n03916031 n02113186 n02115913 n02791124 n03764736 n02356798 n02979186 n02749479 n03630383 n03259280 n04023962 n04026417 n02909870 n03404251 n03868863 n03495258 n03899768 n03733805 n02823750 n02086079 n04356056 n03196217 n01806143 n07718472 n04335435 n03937543 n04070727 n01631663 n02643566 n11879895 n03690938 n02093428 n02105641 n02091134 n03131574 n03485407 n01677366 n02099601 n02123045 n02443114 n02134418 n04370456 n01883070 n04141076 n03467068 n02105162 n02226429 n02397096 n02692877 n02447366 n13037406 n09332890 n04482393 n03877845 n02102480 n10565667 n02791270 n02669723 n02808304 n04548362 n03658185 n02489166 n02098286 n07615774 n04532106 n01807496 n02992529 n01694178 n04428191 n03445924 n07742313 n04037443 n03887697 n01630670 n02099267 n02123597 n01981276 n02825657 n02106662 n03657121 n03249569 n03218198 n04152593 n12985857 n03160309 n02939185 n01817953 n01773157 n02999410 n03482405 n04200800 n02488702 n03272562 n03992509 n03544143 n04141327 n02099712 n03016953 n02107142 n01751748 n02009912 n02087394 n04355933 n02117135 n13054560 n02006656 n03733805 n03710193 n04141076 n01608432 n09835506 n04398044 n07579787 n02099712 n02123597 n07836838 n04131690 n04090263 n02981792 n02018795 n03602883 n02074367 n02443484 n02871525 n02457408 n02799071 n03764736 n03804744 n02190166 n03769881 n04399382 n04553703 n02058221 n02981792 n01692333 n01631663 n03868242 n06785654 n03977966 n04423845 n02791124 n02128385 n01664065 n01756291 n07802026 n02979186 n02814533 n12768682 n04201297 n07742313 n02489166 n02120079 n03743016 n03482405 n01795545 n02108551 n02096051 n02951358 n02169497 n04532106 n02268443 n03676483 n01798484 n02113712 n07697313 n02112018 n04525038 n03982430 n04239074 n02123597 n03063689 n02091134 n02138441 n03255030 n02012849 n02879718 n02111277 n02088466 n02105056 n01776313 n04584207 n02095314 n01806567 n01770393 n03271574 n03599486 n10148035 n03627232 n04275548 n03063689 n03016953 n01990800 n04141076 n03131574 n01968897 n02093256 n01774750 n01855672 n04435653 n03127747 n03657121 n03529860 n07730033 n02837789 n01828970 n02002556 n02132136 n03873416 n03424325 n04259630 n02097130 n03272562 n03496892 n04525305 n03916031 n01644373 n04591713 n02504013 n02091831 n01847000 n03000684 n01770393 n03763968 n02093754 n03063689 n02085782 n03290653 n03777568 n07718472 n02090721 n02089078 n03792782 n13037406 n02111889 n04550184 n03063599 n04229816 n04238763 n01693334 n03743016 n02108551 n04604644 n02281787 n02119789 n02808304 n09332890 n02106550 n07802026 n03249569 n07836838 n03775546 n04204347 n04592741 n01498041 n03929660 n02077923 n02108089 n02094433 n02107574 n13133613 n02749479 n03249569 n02641379 n03804744 n02321529 n01797886 n02690373 n13054560 n02950826 n01737021 n01689811 n01664065 n07693725 n02342885 n02169497 n09288635 n02087394 n03376595 n02120505 n03938244 n03345487 n02500267 n01797886 n04443257 n03492542 n02094258 n03721384 n13044778 n03868863 n07711569 n02236044 n04081281 n03838899 n04596742 n02111500 n04251144 n02100583 n07714571 n04238763 n02105412 n02443484 n04019541 n03394916 n03776460 n03000134 n02109525 n02109525 n02870880 n03393912 n03197337 n04081281 n03763968 n01688243 n02110806 n02834397 n02939185 n02279972 n03888605 n02268443 n02988304 n04310018 n04285008 n09246464 n02389026 n01558993 n01955084 n01930112 n01644373 n12620546 n02093256 n09256479 n02002724 n03160309 n04204238 n01753488 n03393912 n01641577 n02100735 n04584207 n02100236 n02879718 n02988304 n02105162 n02110806 n04258138 n03590841 n02927161 n01498041 n03720891 n04515003 n02134418 n03014705 n03344393 n02783161 n04443257 n02492660 n03218198 n01755581 n02090622 n03179701 n04252225 n04417672 n04037443 n04065272 n03721384 n02089973 n02091635 n03804744 n09288635 n04613696 n03796401 n07714990 n01770393 n01742172 n02128385 n03492542 n03916031 n01883070 n01739381 n02980441 n02966687 n04486054 n04443257 n01984695 n03026506 n02808440 n02977058 n02114367 n02094114 n02326432 n03016953 n02106166 n03710193 n01644373 n02091134 n03259280 n03018349 n03791053 n04008634 n02095570 n07718747 n03376595 n07717410 n02894605 n07583066 n02281787 n03483316 n02105505 n03837869 n04591713 n02749479 n01514668 n02090379 n03424325 n03642806 n02089973 n01532829 n02105641 n04591713 n01819313 n02127052 n03124043 n03649909 n02113186 n04067472 n02114548 n03791053 n03792782 n02093991 n03530642 n02397096 n02281787 n03661043 n03495258 n02174001 n07880968 n03459775 n02100236 n02727426 n01820546 n02988304 n02112350 n03476684 n04238763 n02028035 n02120505 n01704323 n03047690 n02268443 n02443114 n02112137 n02879718 n01697457 n04264628 n03314780 n03649909 n02133161 n07730033 n03670208 n02835271 n03584829 n02326432 n03916031 n03485794 n03314780 n02342885 n02105412 n02321529 n01669191 n07742313 n03045698 n02510455 n04201297 n03710721 n02966687 n02094258 n02109047 n03376595 n03017168 n01924916 n02017213 n02086079 n03666591 n04465501 n02981792 n03832673 n01806567 n02793495 n02110806 n01833805 n01622779 n02493509 n03495258 n03485407 n02051845 n04141975 n02909870 n01698640 n02096294 n02009912 n02097658 n02018207 n02804414 n03095699 n01665541 n03532672 n02102177 n01806143 n01847000 n07693725 n02268853 n03530642 n03908618 n03781244 n04286575 n02111129 n04273569 n04590129 n02100583 n03916031 n04404412 n02708093 n03160309 n07579787 n03476991 n04204238 n03344393 n09193705 n01665541 n01968897 n03180011 n02948072 n01871265 n01843383 n02494079 n02105505 n02356798 n02769748 n01955084 n01990800 n02113712 n03976657 n03633091 n03937543 n04252225 n02442845 n03461385 n03014705 n01644900 n03924679 n04152593 n02974003 n02804414 n03290653 n04344873 n02326432 n04371430 n03485794 n02107142 n03483316 n04330267 n01883070 n02105505 n03062245 n03924679 n02326432 n03761084 n02104029 n02074367 n04023962 n02123597 n04264628 n03902125 n02077923 n02927161 n03272562 n04399382 n07875152 n03478589 n03680355 n02093428 n03903868 n02396427 n01753488 n01914609 n04487081 n03372029 n01753488 n02096585 n07747607 n01601694 n03146219 n03733131 n03124043 n02090622 n03063599 n03599486 n03976657 n07880968 n02086910 n02494079 n02100735 n01693334 n02966193 n02089973 n03866082 n02640242 n02094433 n03947888 n01592084 n04039381 n04263257 n04326547 n02841315 n04009552 n02099712 n03271574 n02701002 n03791053 n04252077 n07717410 n02027492 n02097474 n02113799 n01773797 n11939491 n03494278 n02971356 n02509815 n02107683 n04328186 n03998194 n03938244 n03721384 n02089973 n07684084 n04613696 n03476991 n03444034 n03272010 n02219486 n07613480 n03899768 n01770393 n04532106 n04264628 n03314780 n02422106 n01689811 n04154565 n03991062 n02088094 n03384352 n02088632 n03146219 n02017213 n02123597 n01806567 n01740131 n01829413 n04004767 n04355338 n04044716 n01735189 n03218198 n02108422 n07831146 n02110185 n07932039 n03658185 n01773797 n09288635 n02133161 n01820546 n09332890 n09468604 n03935335 n04562935 n03908714 n02167151 n03216828 n02497673 n04493381 n03452741 n02117135 n04131690 n02120505 n03743016 n02364673 n03980874 n04462240 n02804414 n02051845 n02808440 n02172182 n09428293 n02093428 n03220513 n02699494 n03803284 n03804744 n02514041 n04099969 n04296562 n03388549 n12998815 n03933933 n04208210 n02410509 n04482393 n04487081 n02486261 n02113799 n04228054 n09835506 n04067472 n01664065 n04428191 n01740131 n02493509 n11939491 n03042490 n03584254 n09468604 n04120489 n02483708 n01498041 n03786901 n04523525 n02165105 n03888605 n02115913 n04201297 n04501370 n04037443 n02172182 n03793489 n03724870 n02391049 n04069434 n02807133 n02056570 n07584110 n04398044 n04398044 n03854065 n02655020 n02107312 n04366367 n04086273 n03485407 n02104029 n04251144 n03627232 n02132136 n02979186 n02317335 n03201208 n04479046 n03452741 n04258138 n07590611 n04149813 n04355933 n03207941 n04479046 n02441942 n03866082 n07583066 n03445777 n03017168 n02672831 n04204238 n04326547 n02113712 n01514668 n02415577 n03706229 n02981792 n02840245 n04389033 n03992509 n02403003 n04005630 n03637318 n04371430 n04347754 n02100583 n01518878 n02319095 n02492035 n04597913 n02206856 n02025239 n04591157 n01773549 n04081281 n07697537 n01682714 n04069434 n02085782 n02655020 n07714571 n01614925 n04008634 n07873807 n04131690 n03680355 n02422699 n07753592 n03840681 n06785654 n01530575 n02096051 n03764736 n02108089 n04044716 n03384352 n01818515 n02056570 n02097130 n01665541 n01688243 n04131690 n04606251 n01616318 n01688243 n02113186 n04613696 n01737021 n02776631 n03995372 n01806143 n01753488 n04037443 n02879718 n04009552 n02110806 n04332243 n04560804 n03884397 n02110958 n03888605 n01685808 n07565083 n02883205 n02492660 n01798484 n03100240 n02088094 n04229816 n02098286 n02841315 n03017168 n04120489 n07718747 n03933933 n04355933 n04483307 n02107142 n01744401 n02093991 n02112137 n02085936 n03929855 n02051845 n02091831 n01740131 n02948072 n02112706 n04584207 n04070727 n03584254 n04235860 n01749939 n02086079 n03424325 n04485082 n02165456 n03259280 n02132136 n03445924 n12768682 n03325584 n01644373 n02361337 n04523525 n07753592 n04067472 n04579145 n07880968 n02231487 n04486054 n03658185 n04429376 n03126707 n02085620 n02104365 n02692877 n04557648 n04606251 n03888605 n02105412 n06785654 n02101388 n03393912 n04370456 n12985857 n07871810 n03742115 n04238763 n02101006 n02090379 n09399592 n07930864 n02123597 n03494278 n02363005 n07892512 n02776631 n03785016 n07930864 n02123394 n01855032 n02883205 n02091831 n03868242 n02930766 n01945685 n03594734 n02493793 n02398521 n04501370 n03417042 n02815834 n03710637 n02100583 n02497673 n02894605 n03895866 n01756291 n02091032 n02120505 n03980874 n07745940 n02769748 n04208210 n01990800 n02397096 n01692333 n03814639 n01855672 n04154565 n02317335 n02815834 n07693725 n03720891 n02110627 n13037406 n02391049 n04131690 n01930112 n07760859 n03770679 n02111500 n04252225 n01877812 n03180011 n13044778 n02492660 n04273569 n04004767 n04238763 n03706229 n04357314 n01641577 n04311174 n03109150 n03866082 n03933933 n02412080 n03207743 n03218198 n07716906 n03218198 n02667093 n02799071 n02346627 n03874293 n01537544 n01728572 n03804744 n01855672 n01744401 n02747177 n02939185 n02676566 n02950826 n02097298 n01819313 n02276258 n09428293 n01682714 n03710637 n03920288 n02672831 n02447366 n02860847 n02412080 n04254680 n01692333 n02807133 n03394916 n13133613 n01806567 n07720875 n07836838 n02088094 n02102040 n01580077 n03775546 n04238763 n04118776 n04540053 n02096294 n02441942 n03781244 n02093256 n02988304 n02423022 n07871810 n01704323 n02132136 n01560419 n02206856 n01833805 n02980441 n11879895 n07875152 n03930313 n03042490 n03954731 n03933933 n03126707 n03461385 n02114855 n03929660 n04550184 n02783161 n03944341 n07693725 n02123045 n09288635 n03196217 n03297495 n02091831 n03670208 n04487394 n02105251 n02454379 n02099849 n04409515 n01592084 n02092002 n07590611 n03992509 n02412080 n03075370 n02447366 n02669723 n12985857 n03584254 n01753488 n02708093 n02497673 n04069434 n01484850 n07873807 n03492542 n03457902 n03670208 n04376876 n01697457 n02101556 n11879895 n02071294 n03710193 n03961711 n03930313 n02793495 n12768682 n03657121 n04596742 n04204238 n02093754 n03961711 n09472597 n03379051 n02417914 n02107312 n02489166 n01828970 n03884397 n04251144 n03792782 n02782093 n01820546 n02981792 n06359193 n03443371 n01735189 n04501370 n03673027 n03770679 n03085013 n02112706 n01978287 n02794156 n02087394 n01443537 n04286575 n02123394 n04264628 n03337140 n03710721 n03947888 n02514041 n02328150 n02110185 n03992509 n02965783 n02096177 n01824575 n03929855 n02815834 n02643566 n01744401 n02672831 n02447366 n06874185 n04325704 n02317335 n03126707 n02056570 n02457408 n03443371 n04125021 n03866082 n03127747 n04311004 n02134084 n01910747 n07716358 n02134418 n02071294 n04335435 n03594734 n06359193 n04336792 n02097474 n07717410 n02092339 n04376876 n03785016 n02087394 n02825657 n03208938 n03720891 n04366367 n02480855 n03124043 n04067472 n03180011 n04049303 n04243546 n04423845 n03127747 n02259212 n03697007 n04136333 n04590129 n03942813 n02268443 n04008634 n04254680 n04125021 n04040759 n03924679 n04485082 n02410509 n04259630 n03584829 n03196217 n03776460 n01774750 n09421951 n07802026 n04399382 n04536866 n04525038 n02091467 n03902125 n03544143 n02791270 n03888605 n03376595 n02397096 n03777754 n04592741 n03047690 n07693725 n02113978 n04398044 n02783161 n04596742 n03785016 n01582220 n02791270 n02791124 n02129165 n03404251 n03670208 n03903868 n02978881 n02094433 n04252225 n02096177 n03496892 n03000684 n03983396 n02111277 n03720891 n03782006 n01829413 n04153751 n03271574 n03538406 n03970156 n03924679 n02088094 n01806143 n02113978 n03207941 n03347037 n03633091 n03404251 n04579145 n02276258 n02086240 n02799071 n03871628 n02087394 n02264363 n03478589 n03788365 n02097658 n02093647 n07920052 n03788195 n03720891 n07717556 n02113023 n01855032 n07802026 n02037110 n03832673 n04350905 n07613480 n02814860 n03777754 n03218198 n02441942 n02115913 n02109961 n04347754 n03841143 n02786058 n02690373 n07697313 n07613480 n01873310 n03874599 n02113624 n02992211 n07871810 n03388183 n01644900 n04067472 n04039381 n02361337 n04039381 n04370456 n01843065 n01877812 n02488291 n03692522 n02669723 n03018349 n03207743 n02096177 n01514859 n02105056 n03495258 n03207743 n04523525 n03259280 n03127747 n02988304 n02096437 n02087394 n04370456 n01882714 n01644900 n11879895 n03814639 n03763968 n03788365 n04579145 n03837869 n04429376 n02219486 n03983396 n04591157 n07693725 n02281787 n01829413 n04606251 n02795169 n03467068 n02486410 n04505470 n02488702 n02108089 n02783161 n06596364 n01558993 n07871810 n02655020 n02256656 n03290653 n03131574 n01829413 n02930766 n03529860 n01871265 n01675722 n02840245 n04392985 n04286575 n03404251 n02823428 n02951585 n02077923 n03000247 n01843065 n02804414 n04525038 n01749939 n03095699 n04552348 n03532672 n03527444 n03947888 n02667093 n02346627 n01667114 n07749582 n02128385 n02093754 n02092002 n02782093 n04310018 n02104365 n02134418 n03769881 n02776631 n01984695 n02097658 n02095570 n02321529 n02108000 n02098413 n03623198 n03100240 n03109150 n02168699 n03017168 n01819313 n02117135 n03871628 n03924679 n04399382 n15075141 n03884397 n03425413 n03584829 n03976467 n02979186 n02124075 n02869837 n03998194 n02025239 n01558993 n04044716 n02107908 n04404412 n04266014 n03944341 n01751748 n02025239 n04040759 n02102973 n03930630 n09246464 n02174001 n02389026 n03764736 n01795545 n02790996 n02526121 n03133878 n03124043 n02979186 n02093754 n03598930 n03250847 n02134084 n03733281 n02226429 n04019541 n02105855 n02256656 n02787622 n04435653 n03599486 n03733131 n02325366 n03259280 n03028079 n03476684 n03133878 n03590841 n03197337 n04525038 n03494278 n04270147 n01860187 n02086910 n02457408 n03627232 n03133878 n03947888 n02823428 n02097298 n02108000 n04540053 n03141823 n03201208 n03476991 n02113023 n03777754 n03854065 n02415577 n02974003 n01820546 n02087046 n04149813 n04332243 n02090379 n04509417 n07760859 n03637318 n02672831 n03141823 n03538406 n03201208 n04286575 n02097658 n03873416 n04515003 n09193705 n02939185 n03933933 n01749939 n03483316 n02098105 n02107908 n02130308 n02105641 n04458633 n03692522 n02777292 n07565083 n02708093 n02783161 n04037443 n04259630 n02112706 n07802026 n01729977 n02168699 n04192698 n04209133 n07590611 n01729322 n02028035 n04579432 n01518878 n02443484 n07742313 n04376876 n04019541 n02791270 n02906734 n02264363 n02233338 n06874185 n04069434 n13044778 n02981792 n02117135 n03775071 n03249569 n04239074 n03868242 n02099267 n03467068 n02791270 n01632777 n01817953 n04325704 n01582220 n04081281 n03838899 n02865351 n02445715 n04009552 n02089867 n02256656 n01860187 n02815834 n04447861 n03786901 n04120489 n03584254 n03255030 n02006656 n03187595 n04152593 n03467068 n03942813 n03947888 n07831146 n02090721 n04532670 n03018349 n02093991 n01917289 n01729322 n02108422 n03197337 n02951585 n04263257 n07932039 n01537544 n03495258 n01755581 n02096051 n01737021 n04120489 n02111500 n03895866 n02106166 n04350905 n04081281 n02791124 n04501370 n02115913 n02088466 n07614500 n02410509 n01740131 n03483316 n02701002 n03792782 n03995372 n03016953 n02536864 n12144580 n02011460 n04355933 n02423022 n03658185 n03344393 n02096177 n03692522 n04423845 n02110185 n02177972 n03197337 n03924679 n01749939 n02229544 n03000247 n01744401 n02321529 n03874293 n03481172 n01872401 n02112018 n02492035 n03670208 n04372370 n01697457 n02788148 n01796340 n03272562 n02098286 n03781244 n03666591 n13037406 n04532670 n03394916 n01744401 n02114855 n04542943 n02860847 n02268443 n04254120 n02088466 n11939491 n03788195 n07860988 n03832673 n02134084 n02092339 n02797295 n04252077 n04591713 n02096177 n03134739 n03982430 n02107574 n02233338 n07697313 n03891332 n03325584 n03208938 n01518878 n02509815 n03710721 n04487394 n03014705 n02099429 n02834397 n04141975 n01978455 n03891332 n02870880 n04265275 n02497673 n01955084 n02963159 n02099712 n02793495 n03691459 n02085782 n03991062 n02088094 n07711569 n02346627 n07695742 n03218198 n01784675 n02799071 n03944341 n03179701 n02415577 n04370456 n04443257 n04254777 n01496331 n02699494 n01677366 n02514041 n02086240 n02107908 n11879895 n03770679 n02749479 n03803284 n04485082 n03201208 n03045698 n03944341 n01930112 n02113186 n04286575 n03706229 n02871525 n01774384 n01855032 n02109047 n02114548 n12998815 n03218198 n03216828 n04371774 n02114712 n04548280 n02276258 n04033995 n03393912 n03980874 n04389033 n07583066 n01704323 n03445924 n02018795 n03445777 n02098286 n03838899 n01689811 n03666591 n03000247 n02099712 n03483316 n04505470 n02490219 n04239074 n01531178 n02116738 n01950731 n02113624 n04204238 n02276258 n07715103 n03026506 n02108551 n02127052 n02088466 n02093256 n02102040 n03976657 n04532670 n03776460 n03220513 n03903868 n03792972 n03529860 n02009229 n02113624 n02447366 n03461385 n02102318 n04263257 n02114855 n02676566 n03425413 n03538406 n03666591 n03272010 n07768694 n04392985 n04330267 n03026506 n07730033 n02094258 n04515003 n04265275 n13044778 n02965783 n02120505 n02058221 n03314780 n02793495 n02708093 n03633091 n03014705 n01665541 n02526121 n04067472 n04428191 n07836838 n02177972 n01817953 n04296562 n04099969 n03956157 n02114367 n02091635 n02113978 n03838899 n02437616 n04370456 n02423022 n02112706 n02096585 n02497673 n04505470 n02098286 n02319095 n04560804 n03976657 n04330267 n02481823 n04532670 n12057211 n03584254 n04065272 n04596742 n02823428 n01494475 n03133878 n07579787 n04141975 n03794056 n03000684 n04067472 n02108422 n04254777 n01616318 n03814906 n03444034 n04277352 n04612504 n02917067 n03729826 n02095314 n03796401 n04486054 n03637318 n02786058 n03661043 n03400231 n02112350 n03980874 n04251144 n01978287 n03483316 n03633091 n04597913 n02093647 n02097474 n02097130 n03998194 n01689811 n04482393 n02231487 n04328186 n03188531 n02490219 n04579432 n09256479 n03770439 n07697537 n02389026 n04252225 n03594945 n04310018 n01978455 n03803284 n03063689 n01924916 n03240683 n03837869 n02114712 n02999410 n04371774 n03676483 n02091467 n03196217 n03347037 n04487081 n03888257 n03787032 n01631663 n03447721 n02086079 n01644373 n09468604 n07613480 n04356056 n04493381 n06785654 n03179701 n01675722 n04429376 n02966193 n03584254 n03673027 n03223299 n03443371 n02106382 n04125021 n03786901 n04467665 n03498962 n03662601 n02088632 n02510455 n12998815 n02747177 n04252077 n12267677 n04501370 n02113978 n03141823 n01817953 n03126707 n03110669 n02910353 n03417042 n09193705 n02102318 n01807496 n02268443 n01632777 n02814533 n07875152 n01484850 n02092339 n02791124 n04417672 n03160309 n02134418 n03483316 n01829413 n02095889 n07693725 n04579145 n03942813 n02091134 n04209239 n07584110 n04590129 n03873416 n02105056 n02488291 n04136333 n01855032 n04525305 n04039381 n02025239 n03476991 n01614925 n01735189 n02894605 n04505470 n02127052 n12267677 n02865351 n03481172 n02445715 n02892767 n02974003 n03249569 n01860187 n01687978 n03733805 n03445777 n02676566 n07734744 n03544143 n03676483 n03877845 n03372029 n03977966 n02090721 n03676483 n02655020 n02134418 n02364673 n02110627 n03527444 n04317175 n02280649 n02788148 n02119789 n02804610 n04435653 n02120505 n02802426 n02606052 n07717410 n03290653 n03017168 n02087046 n02093647 n04259630 n01819313 n03467068 n02113712 n03935335 n02927161 n02113186 n03673027 n04200800 n04192698 n01518878 n03417042 n02093754 n02088364 n02749479 n01688243 n04070727 n04604644 n02457408 n06874185 n04483307 n02422106 n01692333 n02834397 n03485794 n02219486 n01950731 n02028035 n01644900 n03125729 n12144580 n01682714 n03843555 n03602883 n02018795 n03447447 n02865351 n03223299 n03355925 n04592741 n02106662 n02033041 n01820546 n03761084 n02165105 n02397096 n02101556 n04328186 n03933933 n03355925 n04328186 n03950228 n03134739 n03535780 n01748264 n04330267 n02699494 n01985128 n02978881 n04141327 n02403003 n02120079 n07579787 n02317335 n02509815 n04146614 n01944390 n04467665 n02927161 n12620546 n02098286 n01914609 n02486410 n02963159 n03085013 n04525305 n04141076 n01742172 n01798484 n02102480 n01729322 n03938244 n02096585 n04099969 n02437616 n03729826 n01829413 n03527444 n04086273 n02013706 n03594734 n02105855 n04536866 n02489166 n02093991 n02109525 n01930112 n01580077 n02457408 n04328186 n01751748 n03026506 n04235860 n02113023 n03063689 n01882714 n03930630 n03710721 n04264628 n04081281 n04116512 n04044716 n01697457 n04330267 n02860847 n02107908 n04399382 n03873416 n04509417 n03792972 n02102318 n01883070 n07742313 n02033041 n12620546 n03995372 n02086646 n03485794 n07747607 n02098413 n03877472 n02106550 n04263257 n02134418 n04263257 n04606251 n01630670 n02280649 n02504013 n02871525 n04081281 n03782006 n01514668 n02396427 n02093428 n02979186 n04254777 n04009552 n03602883 n07747607 n04562935 n02033041 n04505470 n02906734 n03045698 n01629819 n04613696 n07717556 n02487347 n01917289 n01817953 n07753275 n02457408 n02992529 n01742172 n03950228 n03584254 n02526121 n01494475 n02085936 n02391049 n04355933 n03950228 n03584829 n02128385 n01872401 n02091467 n03481172 n04204347 n03899768 n02107312 n02692877 n04606251 n03770679 n07749582 n01558993 n02099712 n03792782 n03791053 n04317175 n02086079 n02480855 n01682714 n04509417 n03792972 n02108551 n02606052 n03995372 n04336792 n02490219 n07695742 n12998815 n03759954 n04265275 n02971356 n03661043 n02120505 n01530575 n03690938 n02422106 n02120079 n07873807 n04579432 n03930313 n09288635 n02509815 n03998194 n03791053 n01930112 n03991062 n02125311 n02909870 n07718747 n01729322 n02133161 n03763968 n03944341 n01943899 n02445715 n04443257 n02109047 n04141327 n03041632 n01592084 n02906734 n01828970 n03388549 n01917289 n02859443 n02110958 n03956157 n02797295 n02100583 n02776631 n03485407 n04285008 n03623198 n01753488 n03146219 n03535780 n12768682 n12768682 n02100583 n03976657 n04251144 n03444034 n03980874 n02066245 n01692333 n03223299 n04461696 n09835506 n02206856 n13040303 n02088094 n02487347 n03781244 n03832673 n02917067 n01806567 n03776460 n04208210 n04462240 n02093428 n02123045 n03047690 n04201297 n02895154 n04252225 n03837869 n01877812 n03961711 n01753488 n02105505 n02112018 n02110627 n02389026 n02782093 n02099712 n03742115 n04141076 n01735189 n02879718 n03594734 n04462240 n02788148 n02106166 n03991062 n01820546 n04259630 n04310018 n15075141 n03717622 n03595614 n03598930 n02132136 n03630383 n03692522 n04591157 n04154565 n02346627 n02687172 n07693725 n02514041 n02128757 n02095314 n01855032 n03942813 n03485407 n13133613 n03062245 n03447447 n02895154 n04380533 n02364673 n03146219 n02109961 n02113799 n02859443 n01558993 n02119789 n01930112 n04275548 n03602883 n02497673 n02037110 n03026506 n07930864 n04330267 n02480495 n02107683 n03786901 n01917289 n03133878 n04532670 n01775062 n03633091 n03777568 n01945685 n03109150 n03792972 n02895154 n04548362 n02114855 n03775071 n07717556 n02483362 n02909870 n02027492 n07584110 n03594734 n03642806 n03877845 n03379051 n02927161 n04417672 n04009552 n04004767 n02799071 n03874599 n01883070 n03933933 n03450230 n01698640 n03146219 n02113023 n03379051 n03160309 n01968897 n03976467 n04328186 n02018207 n02123597 n02791124 n01729977 n04228054 n02966687 n02094258 n03425413 n01819313 n02100236 n02389026 n02108551 n02085620 n03791053 n03916031 n01871265 n01698640 n02100877 n03146219 n03903868 n03803284 n04204238 n04037443 n02128925 n03131574 n02823428 n09421951 n03884397 n07742313 n03871628 n01770081 n04540053 n03000134 n02443114 n04476259 n04317175 n02091032 n07248320 n04146614 n04532106 n07920052 n02484975 n04612504 n01530575 n03929660 n04540053 n01796340 n01828970 n04162706 n03481172 n03983396 n02777292 n02018795 n02869837 n02835271 n03201208 n01518878 n12057211 n03787032 n02641379 n04554684 n02791124 n01819313 n02389026 n04090263 n03908618 n03792972 n02484975 n07590611 n01530575 n12985857 n09229709 n01755581 n03627232 n02123159 n03775546 n04596742 n04346328 n02669723 n07753592 n07613480 n03884397 n02892201 n01924916 n04467665 n02488291 n03868242 n02356798 n04265275 n02077923 n02102973 n03457902 n02190166 n03259280 n02105162 n02091831 n02256656 n01872401 n02493793 n02408429 n02106550 n03929660 n03325584 n04332243 n04270147 n01630670 n03250847 n02114367 n02106166 n03134739 n02814860 n02110063 n03903868 n02395406 n04311174 n03532672 n02840245 n01986214 n04429376 n02119022 n03218198 n02783161 n03770439 n02089867 n02966687 n03658185 n09193705 n03085013 n02971356 n04049303 n11939491 n02105641 n03494278 n02364673 n01534433 n01735189 n02105855 n03743016 n07718472 n02113799 n04443257 n02096294 n02128925 n02264363 n03796401 n02444819 n03770679 n02093647 n03483316 n02107574 n04127249 n02978881 n13054560 n02823750 n03794056 n03000684 n01496331 n01807496 n02791270 n01860187 n03218198 n02364673 n03498962 n04153751 n01688243 n03388183 n01968897 n02172182 n02112018 n02883205 n03854065 n12267677 n02094258 n04254120 n01855672 n02100877 n03344393 n07693725 n02669723 n02264363 n03763968 n03637318 n04447861 n01984695 n12267677 n04335435 n02120505 n02104365 n03450230 n04286575 n03207941 n02106166 n03325584 n03793489 n03788365 n03877845 n02190166 n02051845 n02100583 n02104029 n06359193 n01514859 n02106550 n02165456 n02276258 n01514859 n03485407 n01632777 n02408429 n03124043 n03717622 n04252225 n04517823 n03425413 n04310018 n03017168 n03832673 n01770081 n03127925 n02089867 n03461385 n03485407 n01592084 n02256656 n03146219 n01795545 n03947888 n07693725 n04483307 n02002556 n04532670 n04049303 n02892201 n03857828 n01494475 n01601694 n04131690 n02666196 n02098286 n02641379 n04228054 n03980874 n04590129 n01616318 n03690938 n04127249 n03345487 n02113023 n01749939 n04229816 n02927161 n03956157 n02111500 n01756291 n02492035 n02119022 n02443114 n02950826 n02319095 n04346328 n02128757 n03998194 n02667093 n01943899 n04467665 n01530575 n01614925 n04346328 n02093754 n03733805 n03742115 n03197337 n02107908 n01737021 n02281787 n03141823 n04254120 n01532829 n02526121 n02966687 n02484975 n03832673 n02113799 n03958227 n04350905 n03623198 n06874185 n03337140 n02097658 n04311174 n04201297 n03908714 n01740131 n03929855 n02509815 n03903868 n03658185 n01843065 n04557648 n04392985 n02454379 n02493793 n04275548 n03220513 n02606052 n04118776 n02514041 n07684084 n03388183 n02794156 n01632777 n04238763 n04372370 n03876231 n02948072 n02096437 n02497673 n03843555 n07565083 n02097130 n04509417 n03255030 n02129165 n01682714 n07753275 n09472597 n02134418 n02219486 n02097047 n03063689 n02091467 n03781244 n02807133 n03814906 n04355338 n04579145 n03272010 n02086646 n02106662 n03956157 n02783161 n02112137 n03188531 n03126707 n01608432 n03337140 n01847000 n04125021 n04147183 n07720875 n02319095 n02510455 n04311174 n03584254 n04542943 n02102480 n02114712 n02268443 n07718472 n03792972 n03724870 n04239074 n02091134 n02129604 n03127925 n02086646 n03207941 n01819313 n04522168 n03271574 n04487394 n03710193 n02105855 n03131574 n02105251 n02095889 n03384352 n07880968 n02259212 n04069434 n01669191 n03710193 n01855672 n13037406 n01484850 n04476259 n03871628 n01774750 n02108551 n02090622 n03733281 n03724870 n03976657 n02099267 n04127249 n02097474 n02056570 n01795545 n07714571 n02107142 n01608432 n02113023 n04486054 n03876231 n04270147 n03461385 n13040303 n02102318 n02910353 n02094114 n02786058 n02992211 n02396427 n04344873 n02097130 n01443537 n04325704 n02093428 n04258138 n07584110 n03443371 n03481172 n02110341 n04141975 n02226429 n02281406 n04141327 n04118538 n02037110 n02226429 n01692333 n03916031 n02787622 n03594945 n07860988 n03729826 n04515003 n04612504 n02007558 n01560419 n02951358 n02837789 n04456115 n04239074 n02094433 n04553703 n03045698 n03874599 n03595614 n02514041 n03876231 n04467665 n04146614 n02089973 n04005630 n04266014 n04074963 n03527444 n04355338 n09246464 n03980874 n01990800 n03697007 n13133613 n07613480 n02655020 n03240683 n04111531 n01871265 n01695060 n03478589 n04265275 n02094433 n02009229 n02708093 n03447447 n03216828 n04371430 n03991062 n02607072 n02481823 n02102318 n09256479 n02123597 n02927161 n01737021 n01675722 n11939491 n03937543 n03729826 n01820546 n01847000 n02112137 n01675722 n04613696 n02974003 n03384352 n03627232 n04429376 n01756291 n03496892 n02398521 n02168699 n03000247 n01739381 n04371430 n04335435 n03532672 n02441942 n03400231 n03793489 n01795545 n01740131 n02110806 n03063599 n02095314 n04579432 n04591157 n02321529 n03661043 n01440764 n04228054 n04462240 n03877472 n03720891 n02514041 n03272562 n01601694 n02091467 n04041544 n03796401 n03594734 n02089078 n02493793 n01440764 n09399592 n03775071 n04296562 n02099849 n02804610 n03384352 n02088632 n04026417 n02794156 n01968897 n02133161 n03777754 n02494079 n02107142 n03710193 n02640242 n04209133 n02443114 n03259280 n02172182 n02089078 n04049303 n02093647 n06785654 n03733131 n03476991 n04259630 n01768244 n13037406 n02168699 n02013706 n02089078 n01817953 n02280649 n02877765 n04273569 n02097209 n06785654 n02104365 n02107908 n02484975 n02906734 n09468604 n01632777 n01494475 n01983481 n04372370 n02364673 n02730930 n02100583 n04127249 n03355925 n02108089 n03197337 n03857828 n01496331 n02110341 n04074963 n02087046 n03000684 n03485794 n02500267 n02105162 n03425413 n01944390 n02112018 n04005630 n01582220 n04275548 n07754684 n02011460 n02132136 n01748264 n04228054 n02980441 n02113624 n04597913 n02123159 n02027492 n04590129 n02114548 n03208938 n02099267 n03538406 n03218198 n04254120 n03337140 n02089078 n02701002 n02086240 n02088632 n01943899 n13052670 n04606251 n09229709 n01687978 n03929660 n02093754 n01729322 n02107908 n07715103 n03773504 n04592741 n02107908 n02264363 n04154565 n02098105 n03485794 n02791270 n06874185 n02488702 n03014705 n03657121 n03854065 n02107574 n02669723 n03950228 n02317335 n04133789 n01685808 n03933933 n02097047 n02011460 n01819313 n03982430 n01784675 n03670208 n03220513 n04118538 n02782093 n02783161 n03496892 n02107574 n04040759 n02013706 n02777292 n01775062 n01748264 n03018349 n04111531 n02089867 n09246464 n04548280 n07734744 n03291819 n04552348 n03871628 n07753113 n01729322 n07715103 n04596742 n02128385 n03976467 n04548280 n02497673 n02134418 n02105251 n03970156 n01749939 n01795545 n01855032 n02395406 n02098413 n02111500 n02895154 n07565083 n03742115 n02108089 n02321529 n02971356 n02437616 n03208938 n01667114 n02226429 n03877845 n02910353 n04070727 n04152593 n01883070 n02870880 n02504458 n04243546 n02096051 n03899768 n02321529 n03877845 n03450230 n03290653 n01664065 n03908714 n01537544 n02088238 n01882714 n01773549 n04418357 n02727426 n01872401 n02106382 n03991062 n02017213 n02018207 n04370456 n02219486 n02669723 n01694178 n01784675 n03443371 n02114548 n01806567 n04090263 n07932039 n01608432 n02281406 n04238763 n01664065 n02028035 n01917289 n03793489 n04209239 n03042490 n03400231 n02356798 n03065424 n04335435 n01664065 n01692333 n07880968 n03297495 n02841315 n03095699 n07697313 n09399592 n01917289 n03724870 n13133613 n03787032 n02493793 n03843555 n01629819 n03843555 n04461696 n01669191 n03976657 n02097047 n03773504 n02951585 n04398044 n03599486 n03250847 n03796401 n01737021 n02776631 n03599486 n02110806 n04254680 n02138441 n02483362 n02747177 n03733805 n04118538 n01829413 n02112137 n02102318 n02097474 n02119789 n04136333 n04579432 n02493509 n01667778 n02442845 n02097209 n03404251 n02488291 n02091032 n01882714 n04081281 n02963159 n02088632 n01491361 n04380533 n04423845 n01629819 n03956157 n04548362 n02804610 n04310018 n04251144 n07860988 n02692877 n03938244 n01484850 n04325704 n01560419 n02916936 n02442845 n03998194 n04330267 n03425413 n07932039 n01984695 n03345487 n03259280 n07768694 n02444819 n01675722 n02328150 n04070727 n04423845 n03729826 n07684084 n03485794 n03498962 n01753488 n03958227 n02895154 n03100240 n02110806 n04118776 n02105056 n03874293 n04037443 n03496892 n07745940 n03871628 n03372029 n02100735 n02132136 n03623198 n03666591 n02823750 n01735189 n02106382 n07697537 n02454379 n04311004 n03110669 n04009552 n02074367 n02442845 n02099601 n09246464 n03814906 n04049303 n01749939 n03803284 n02667093 n03908714 n04409515 n03290653 n07730033 n02268443 n03028079 n02514041 n04592741 n07720875 n02988304 n02606052 n03877472 n01798484 n03742115 n04461696 n02917067 n01629819 n04486054 n04548362 n02860847 n02107683 n01944390 n03786901 n04044716 n01824575 n01440764 n02279972 n01914609 n03272562 n07590611 n01728572 n01687978 n03791053 n01518878 n02950826 n03982430 n02966193 n03841143 n02672831 n02787622 n02165105 n04525038 n03662601 n12057211 n04522168 n04613696 n02088632 n01985128 n09472597 n03271574 n01687978 n04147183 n07875152 n01580077 n03393912 n03903868 n04074963 n03788365 n01843065 n03690938 n02105056 n04525305 n01631663 n02097047 n02486410 n04152593 n02879718 n04443257 n02102040 n02093859 n02127052 n09332890 n01770393 n03527444 n03697007 n04515003 n07873807 n04429376 n03991062 n03085013 n01828970 n01608432 n03930313 n02105641 n01756291 n02500267 n04039381 n02168699 n03259280 n01855032 n10565667 n02115641 n04515003 n02669723 n02988304 n03825788 n02025239 n03706229 n01914609 n03344393 n04049303 n03259280 n02091244 n02514041 n03065424 n12057211 n02027492 n04118538 n04141076 n03899768 n04462240 n02096051 n02978881 n02114855 n04509417 n04505470 n03201208 n01986214 n02417914 n01677366 n07747607 n04409515 n01685808 n04599235 n03187595 n03657121 n15075141 n04372370 n02966687 n01820546 n03344393 n03476991 n03763968 n04070727 n03041632 n01877812 n07248320 n07875152 n02892767 n03355925 n01685808 n04228054 n03843555 n01755581 n04347754 n02277742 n03000247 n07742313 n07875152 n03075370 n02799071 n03133878 n06596364 n01806143 n03930313 n03930313 n02730930 n01773797 n03902125 n03721384 n02951358 n02119022 n01744401 n02112706 n02396427 n03633091 n01514668 n03791053 n02395406 n04370456 n03657121 n02096585 n02107312 n03970156 n03126707 n02105251 n02442845 n04461696 n07715103 n03873416 n01677366 n02012849 n03527444 n01798484 n04562935 n02279972 n02423022 n03992509 n01592084 n03788195 n02259212 n04462240 n03929660 n02090622 n04254120 n01592084 n02109961 n03769881 n02268443 n02909870 n01641577 n04550184 n04507155 n01630670 n04152593 n02090379 n01983481 n09421951 n04517823 n01744401 n07745940 n01843383 n03476684 n01735189 n03930313 n03916031 n02093991 n03207743 n02787622 n02106166 n04398044 n04428191 n04209133 n02085620 n09835506 n01871265 n03459775 n02089973 n02643566 n02481823 n02123159 n07875152 n04557648 n03196217 n04033995 n02037110 n01955084 n03089624 n01751748 n02099429 n03325584 n03445777 n03902125 n02116738 n02799071 n02843684 n03109150 n02869837 n06794110 n03908618 n02105251 n02790996 n02966687 n09256479 n02939185 n04417672 n02113624 n04266014 n02174001 n02483362 n03127925 n03717622 n01744401 n01739381 n02606052 n03290653 n04330267 n02486410 n02457408 n04355338 n01498041 n02134418 n01440764 n04552348 n02319095 n03781244 n07730033 n04525038 n02018795 n03494278 n04589890 n01829413 n04456115 n04118776 n02687172 n02992529 n07932039 n03075370 n04557648 n01728920 n01688243 n02443484 n03843555 n03786901 n03016953 n02536864 n04125021 n01514668 n04461696 n01983481 n02493509 n07614500 n01776313 n02091467 n02106030 n02814860 n02002556 n01818515 n03160309 n02092339 n02013706 n01753488 n01739381 n02981792 n01753488 n02704792 n09332890 n02317335 n03255030 n04201297 n02093256 n01688243 n03792782 n03028079 n01944390 n02107908 n03803284 n03775546 n02128757 n04542943 n04560804 n02514041 n04204347 n02916936 n03344393 n02364673 n03942813 n01614925 n02494079 n04542943 n07742313 n02490219 n03843555 n02281406 n02493793 n02123597 n04613696 n01796340 n07753592 n03384352 n03916031 n03908714 n03992509 n04201297 n03637318 n02977058 n02091032 n02494079 n03673027 n04548362 n01950731 n03721384 n02999410 n02483362 n02111277 n03709823 n02087046 n03929660 n07930864 n03954731 n03063599 n03692522 n02018207 n03788195 n04040759 n02011460 n07871810 n03690938 n04486054 n01986214 n04591713 n04127249 n01807496 n02095570 n01981276 n02128925 n02992529 n02815834 n01698640 n01632458 n02492660 n02319095 n03938244 n03876231 n01798484 n03666591 n02110806 n03782006 n01943899 n02643566 n04120489 n04399382 n02085782 n04389033 n07714571 n01614925 n03494278 n04141076 n03388043 n04118776 n03291819 n02389026 n04209133 n01685808 n03769881 n04074963 n04458633 n04532670 n02484975 n07579787 n02058221 n03000134 n01704323 n04044716 n03000684 n03179701 n07716906 n01518878 n02497673 n03445924 n02093647 n02410509 n03026506 n04153751 n04141076 n03532672 n04201297 n07836838 n03188531 n02486410 n04275548 n02133161 n03394916 n02098105 n04376876 n02106382 n03483316 n02490219 n03032252 n03770439 n02025239 n03840681 n03496892 n03633091 n02837789 n03126707 n02104365 n04584207 n04347754 n04243546 n02110185 n02865351 n02167151 n02871525 n02088466 n02138441 n02804610 n03935335 n02782093 n01744401 n09472597 n03445924 n01737021 n02102480 n02086646 n02137549 n02481823 n02107574 n02096437 n02701002 n03272562 n02978881 n01737021 n01824575 n03887697 n02097298 n03692522 n02437312 n03814639 n02236044 n02094433 n07742313 n04398044 n03255030 n04258138 n02422106 n06785654 n02319095 n03692522 n04350905 n04252077 n03804744 n03131574 n02107312 n07583066 n02006656 n01608432 n04428191 n04346328 n02493793 n04040759 n03733281 n02093754 n01677366 n02481823 n11939491 n13044778 n04070727 n02500267 n03347037 n03942813 n03218198 n02747177 n04286575 n01530575 n02437312 n02090379 n04447861 n01843383 n01629819 n01871265 n02077923 n02105162 n03873416 n02106662 n02096437 n02132136 n03000684 n01917289 n02777292 n02077923 n02110063 n02027492 n02124075 n04467665 n04192698 n04525305 n12057211 n02894605 n02108551 n04392985 n01742172 n02825657 n04336792 n04265275 n02172182 n02483362 n02168699 n02088094 n02128925 n03764736 n02113712 n03197337 n03393912 n03804744 n07697313 n03770679 n02795169 n02104365 n10148035 n01534433 n03089624 n10565667 n04536866 n02259212 n01828970 n01667114 n02110958 n03841143 n03325584 n03450230 n04423845 n04149813 n02802426 n03876231 n03868242 n07614500 n04356056 n02128925 n03379051 n02099712 n02870880 n02085936 n13044778 n03388043 n02113712 n02113624 n03141823 n02110627 n03394916 n04548362 n02927161 n01914609 n04275548 n03271574 n03527444 n01530575 n03775546 n02965783 n02105505 n03982430 n04258138 n03201208 n07684084 n02437616 n03388043 n04389033 n02841315 n03250847 n02480495 n01749939 n12998815 n02114712 n02056570 n03602883 n02281406 n02086079 n03769881 n03791053 n02165456 n02747177 n13040303 n04023962 n02948072 n04243546 n02690373 n04442312 n03837869 n04417672 n13054560 n02106166 n01776313 n02667093 n07565083 n13133613 n07730033 n02488291 n04423845 n03623198 n03977966 n03866082 n02100735 n02834397 n04461696 n02089078 n01694178 n01944390 n03706229 n03223299 n03980874 n03991062 n04004767 n04201297 n03761084 n03443371 n02033041 n02138441 n01924916 n04133789 n06359193 n02091032 n02981792 n03180011 n04522168 n04317175 n02106662 n01847000 n12768682 n03496892 n02892767 n07684084 n01877812 n03345487 n03495258 n03661043 n01990800 n03417042 n04330267 n01443537 n02397096 n01582220 n01910747 n02025239 n03724870 n02787622 n02892201 n02086079 n04417672 n04550184 n04525305 n03877845 n07718472 n04266014 n02396427 n01773797 n02009912 n01795545 n02120079 n02105505 n04252077 n07734744 n02793495 n04372370 n02667093 n01629819 n02493793 n02640242 n01748264 n02134418 n04335435 n02966687 n01608432 n03325584 n02013706 n02364673 n02791124 n02979186 n04493381 n03045698 n03032252 n02092339 n01806143 n03535780 n02319095 n04562935 n01873310 n02279972 n02124075 n03482405 n02056570 n02823750 n02823428 n01443537 n02860847 n02690373 n03825788 n04461696 n02106030 n01983481 n01632777 n04562935 n01847000 n03661043 n03272010 n02113978 n04550184 n02699494 n04505470 n01629819 n03944341 n03792782 n02071294 n02114367 n04536866 n02910353 n03355925 n03908618 n02786058 n02097047 n02088094 n02089867 n04356056 n02095570 n01756291 n02441942 n04208210 n07693725 n02088094 n06596364 n02992529 n04081281 n03467068 n01847000 n01693334 n03680355 n04501370 n03763968 n01917289 n02669723 n01924916 n02110958 n04041544 n02110806 n02134084 n02130308 n02443484 n02843684 n01968897 n01855672 n02113799 n03584829 n12768682 n01531178 n03197337 n01784675 n03075370 n04252077 n03935335 n02999410 n07716358 n04238763 n07753275 n02279972 n02666196 n02007558 n02105251 n02226429 n01751748 n02127052 n04579145 n02051845 n02445715 n02102177 n03759954 n03179701 n02007558 n03649909 n03992509 n03447721 n02916936 n03196217 n01883070 n01983481 n03000684 n01756291 n02111277 n03857828 n04479046 n02177972 n04067472 n03444034 n03854065 n03720891 n04208210 n01740131 n04423845 n01855672 n03388549 n02206856 n04606251 n03887697 n02865351 n04579145 n01496331 n02804414 n02787622 n04004767 n02097047 n02490219 n03529860 n03680355 n03942813 n01632458 n03733281 n03584829 n02797295 n02966687 n01824575 n07831146 n04366367 n03666591 n03788195 n02966193 n03042490 n06874185 n03345487 n02123597 n02895154 n01664065 n01819313 n12985857 n01855672 n02095314 n02102973 n02966193 n02115913 n03590841 n02093991 n02169497 n02814860 n02089078 n02138441 n02113712 n02883205 n01601694 n01774384 n04111531 n03000134 n02088364 n02489166 n01914609 n04009552 n03680355 n03843555 n03950228 n03680355 n04597913 n04347754 n04116512 n02747177 n01514668 n02840245 n03483316 n07715103 n04153751 n02500267 n03998194 n15075141 n03930313 n02112706 n03888257 n02110063 n02108000 n02102973 n02483708 n02097474 n02011460 n02492035 n02814860 n02009229 n03877845 n06596364 n07248320 n04344873 n04536866 n02823750 n03291819 n01770081 n02892767 n03481172 n02066245 n04370456 n02264363 n03670208 n02397096 n03075370 n02087394 n02536864 n04599235 n03982430 n04523525 n04522168 n13052670 n03633091 n04067472 n02988304 n04486054 n01677366 n02492660 n03127747 n02112350 n04336792 n03417042 n13133613 n01608432 n02865351 n02129165 n01773157 n04258138 n04041544 n04252077 n03197337 n03794056 n03877845 n04346328 n02086910 n01694178 n03445924 n04532670 n03781244 n04141975 n03124170 n03874293 n03498962 n01739381 n02791270 n07892512 n03444034 n02105162 n01734418 n04070727 n02916936 n03840681 n04399382 n07749582 n02480495 n04515003 n01688243 n02107142 n01914609 n01742172 n07753113 n01828970 n01797886 n04606251 n03062245 n03400231 n03483316 n02978881 n02109047 n02795169 n01728920 n03530642 n04209133 n02105641 n02111277 n01737021 n02092339 n04589890 n02454379 n12267677 n03627232 n01990800 n02109047 n03314780 n01798484 n03691459 n02669723 n03781244 n03467068 n01770081 n01796340 n03930313 n02226429 n02514041 n02356798 n07880968 n04131690 n02807133 n03841143 n02346627 n02397096 n02963159 n02641379 n02093428 n01537544 n02814860 n04074963 n02109525 n02085782 n02102973 n02319095 n02437616 n02395406 n02488291 n03777568 n03710193 n09421951 n03838899 n04004767 n02011460 n02526121 n02112018 n02687172 n02825657 n01882714 n01968897 n03196217 n02101556 n04389033 n04127249 n04254680 n03063689 n04125021 n01689811 n04325704 n02137549 n10565667 n02391049 n07836838 n04584207 n02423022 n02088364 n03961711 n02457408 n03535780 n02412080 n03017168 n02979186 n02676566 n01860187 n02423022 n03891332 n01494475 n01704323 n04423845 n03976467 n02091831 n02101006 n01491361 n03063689 n01910747 n01784675 n03967562 n02094114 n04065272 n01534433 n04372370 n02879718 n02871525 n02168699 n01784675 n03492542 n02101388 n07718472 n02110185 n12998815 n03127925 n03207743 n12057211 n07565083 n04525038 n04118776 n01616318 n02965783 n02206856 n03899768 n01687978 n03379051 n02104029 n04229816 n03124170 n02281406 n03032252 n02101556 n02980441 n03485794 n04366367 n02492035 n03599486 n04548362 n03764736 n07760859 n01978287 n04505470 n02488291 n02782093 n03417042 n02486261 n03843555 n02319095 n02493509 n01798484 n03857828 n03950228 n02791124 n03207941 n01751748 n03916031 n04074963 n03724870 n13133613 n03937543 n03255030 n04372370 n02168699 n03920288 n02514041 n02112350 n01443537 n01807496 n04070727 n01675722 n01518878 n03599486 n04162706 n04147183 n01795545 n01698640 n01873310 n07718472 n04033995 n04418357 n04429376 n02110806 n01944390 n09835506 n02092339 n02948072 n01978455 n02100236 n03710193 n04517823 n04154565 n03761084 n02346627 n02672831 n02422106 n01664065 n04125021 n03450230 n03980874 n03642806 n03866082 n01494475 n01910747 n02229544 n01770393 n02114367 n07920052 n01872401 n02109047 n03884397 n02704792 n07716906 n03843555 n03095699 n04532106 n02093754 n02879718 n04515003 n07718747 n02094258 n03838899 n03126707 n07730033 n03085013 n03680355 n02123045 n02279972 n02086240 n02134418 n03388549 n03637318 n03345487 n04517823 n03476991 n07734744 n03602883 n04371774 n04229816 n03249569 n02676566 n02011460 n02916936 n01806567 n02814533 n01560419 n03970156 n01978455 n02823750 n02883205 n02110627 n03787032 n10148035 n04596742 n04033995 n02444819 n03954731 n04311174 n02095889 n01914609 n03710193 n02782093 n01820546 n02091134 n04355933 n02389026 n04090263 n04254120 n01820546 n01641577 n02106550 n02326432 n03532672 n03065424 n07836838 n02786058 n04235860 n04264628 n02091244 n03773504 n02013706 n04458633 n04270147 n07711569 n04325704 n03017168 n02112350 n04192698 n02769748 n02096051 n04149813 n02483708 n04040759 n04265275 n02071294 n07873807 n02488702 n04200800 n02134084 n04418357 n04552348 n02999410 n02817516 n01981276 n02233338 n02504458 n02116738 n03633091 n03372029 n07714990 n04552348 n02504458 n02172182 n03691459 n02089078 n03594734 n02643566 n01665541 n01818515 n02802426 n03662601 n03495258 n01773797 n02206856 n03710721 n04442312 n02137549 n03657121 n04311004 n03775071 n03630383 n02412080 n01443537 n03874293 n03874599 n07590611 n04162706 n02108551 n07749582 n02804414 n03777754 n03584829 n02699494 n02097298 n03661043 n01774750 n03594945 n04005630 n07697313 n02009229 n03529860 n04355933 n03899768 n03337140 n02110958 n02092339 n02097130 n03337140 n01818515 n03345487 n01496331 n03124043 n02095570 n01558993 n03814906 n03216828 n03930630 n06874185 n02113799 n07720875 n03887697 n03697007 n02231487 n02669723 n02480855 n04366367 n03706229 n03529860 n03924679 n03527444 n01770393 n04493381 n04532670 n02883205 n04192698 n02129604 n02669723 n04259630 n02091831 n09332890 n01883070 n04026417 n03485407 n01877812 n01644900 n09256479 n04286575 n01601694 n04428191 n03065424 n03770439 n02174001 n02110341 n02916936 n04086273 n03393912 n02701002 n03991062 n01608432 n04273569 n04522168 n07760859 n02493793 n02804414 n02229544 n04009552 n03874599 n03649909 n07614500 n02094433 n02097298 n03662601 n03450230 n02093256 n04033995 n02113023 n09246464 n01704323 n02488702 n02096294 n04536866 n07873807 n03770439 n04409515 n04532106 n04542943 n07584110 n02808304 n03903868 n03888605 n02051845 n02115641 n02099267 n03452741 n03498962 n01945685 n01692333 n03930630 n02794156 n04311004 n03482405 n04540053 n09256479 n02607072 n02281406 n03991062 n02056570 n04243546 n03100240 n01532829 n03127747 n02119022 n02666196 n03379051 n04417672 n07920052 n03617480 n01818515 n03998194 n03388183 n02113799 n04344873 n03590841 n04228054 n04228054 n02231487 n03888257 n04086273 n02090622 n03933933 n02422106 n03720891 n02093991 n04347754 n01630670 n03843555 n03729826 n01644900 n02264363 n03126707 n12057211 n04461696 n02098286 n02276258 n04552348 n01514668 n04243546 n02871525 n02106382 n02100583 n02085936 n04487081 n03995372 n01601694 n02279972 n03444034 n07730033 n02011460 n02099601 n04536866 n03014705 n02486261 n04590129 n04265275 n03447447 n02102177 n03388043 n01665541 n03924679 n06874185 n03018349 n02403003 n03196217 n02132136 n01514859 n02397096 n02113186 n03924679 n02096437 n07831146 n04584207 n03777568 n02276258 n02108915 n04540053 n03874293 n02033041 n04270147 n02114367 n07730033 n02342885 n03929660 n03032252 n02992211 n03658185 n02777292 n02879718 n02319095 n07760859 n03888257 n02910353 n03868863 n04133789 n04136333 n04356056 n02028035 n03000134 n03355925 n04326547 n02494079 n04099969 n02966193 n04147183 n02966193 n07697313 n03877472 n02486261 n02510455 n07720875 n03764736 n04239074 n02443484 n07720875 n02840245 n03782006 n02119789 n04328186 n02417914 n03216828 n02108551 n02013706 n01734418 n03729826 n01689811 n04522168 n02422106 n04004767 n12620546 n04041544 n04116512 n03478589 n02174001 n04486054 n02107142 n02422699 n03400231 n07930864 n04200800 n01582220 n07753592 n02690373 n07880968 n03958227 n01665541 n01847000 n12768682 n03478589 n02091467 n02787622 n02776631 n03000247 n04074963 n03743016 n03325584 n09246464 n03871628 n01740131 n09288635 n02730930 n03884397 n03775546 n02114712 n07718472 n01728920 n02494079 n01774750 n03967562 n07718747 n02906734 n03444034 n02408429 n02319095 n04330267 n02113624 n02231487 n04141076 n04552348 n03759954 n04120489 n02869837 n03838899 n02268443 n02321529 n04023962 n03843555 n04525038 n02361337 n03924679 n02236044 n01530575 n02877765 n01980166 n03777568 n04008634 n04579145 n07873807 n03207743 n03970156 n04254680 n03345487 n02454379 n03110669 n01980166 n02536864 n04285008 n07684084 n01924916 n02108915 n04074963 n03837869 n01882714 n03873416 n02169497 n02687172 n02268853 n02906734 n03018349 n04310018 n02978881 n01693334 n04542943 n03770679 n02123045 n02974003 n02086646 n01530575 n03786901 n03710193 n03388183 n02112350 n02113186 n01883070 n04552348 n04344873 n01773157 n02109961 n02123159 n04404412 n01917289 n02169497 n03899768 n03697007 n03874599 n02669723 n07717556 n04147183 n03424325 n03498962 n07715103 n01632777 n02264363 n03018349 n01669191 n04204238 n01829413 n03785016 n01871265 n02992529 n04127249 n01774384 n13040303 n02090721 n07615774 n02231487 n03126707 n04399382 n02127052 n02480495 n04357314 n04597913 n04311174 n04376876 n03344393 n04146614 n01622779 n04325704 n03527444 n07753275 n02422699 n03759954 n01824575 n01704323 n04067472 n01872401 n02114712 n02979186 n07615774 n02094433 n02106550 n01930112 n02086079 n07754684 n02088238 n03764736 n02077923 n01770081 n03763968 n03544143 n03777568 n03706229 n07871810 n02100583 n02096585 n03538406 n02794156 n04325704 n04127249 n02277742 n03314780 n13037406 n02607072 n07720875 n02277742 n02412080 n13054560 n02865351 n03467068 n03891251 n02089973 n02002724 n02017213 n02917067 n01665541 n07714990 n03372029 n03584254 n03662601 n03337140 n02692877 n02110627 n04201297 n04154565 n03637318 n03255030 n07745940 n02056570 n03895866 n02169497 n01818515 n04493381 n03041632 n02110627 n04553703 n02099429 n09428293 n03495258 n02483708 n04336792 n02825657 n03891251 n01860187 n09472597 n01753488 n04540053 n02895154 n02321529 n03259280 n01630670 n03000134 n03866082 n01514859 n07873807 n02105056 n01978455 n02009912 n03794056 n03720891 n03995372 n02869837 n02169497 n03425413 n04355338 n02977058 n02916936 n03840681 n04560804 n03042490 n07734744 n03706229 n01774384 n03530642 n02346627 n02105251 n02229544 n04522168 n03535780 n02105505 n02168699 n02138441 n04131690 n02172182 n02111129 n02776631 n03785016 n03895866 n02457408 n03146219 n02134084 n02097130 n02361337 n07720875 n01871265 n02231487 n07717556 n04328186 n04317175 n03065424 n02442845 n03729826 n02892201 n02489166 n03721384 n02096437 n02093647 n03376595 n01692333 n02134084 n01978287 n01592084 n02504458 n03544143 n04039381 n02690373 n01756291 n03814639 n03443371 n03633091 n02066245 n03868242 n02133161 n01496331 n02108915 n03325584 n03372029 n02085782 n04026417 n02111500 n03482405 n04149813 n02108551 n03337140 n03970156 n02443484 n03657121 n03633091 n01675722 n02965783 n03908714 n03777754 n03394916 n06794110 n02492660 n02099429 n01828970 n04404412 n01532829 n02109047 n07768694 n02104365 n01632777 n02794156 n02807133 n07615774 n01532829 n13040303 n04149813 n01828970 n03345487 n02096585 n03291819 n07754684 n02123597 n04266014 n02114855 n02018207 n04532106 n04579432 n09246464 n02088364 n07615774 n04487394 n04612504 n07613480 n02058221 n03980874 n02134418 n01622779 n04209239 n02692877 n01560419 n02870880 n03445924 n02117135 n04356056 n02097047 n02281406 n04243546 n02129604 n02395406 n02089973 n09332890 n07747607 n09246464 n04417672 n02859443 n02105251 n02012849 n03724870 n04562935 n02790996 n02825657 n02510455 n03884397 n04069434 n01843383 n01440764 n02909870 n04344873 n13054560 n03976657 n04270147 n02804610 n03792972 n01704323 n01689811 n03908714 n03062245 n03376595 n02442845 n04589890 n02114855 n04465501 n01664065 n07711569 n02457408 n02165105 n02389026 n03207743 n04081281 n04458633 n01843065 n04335435 n03444034 n04311174 n02128385 n01819313 n02098413 n02110341 n06874185 n02098413 n02007558 n02077923 n04461696 n01514859 n03388549 n03447721 n03207743 n02443114 n01664065 n03825788 n02799071 n01753488 n03642806 n01847000 n09421951 n02086910 n02441942 n03141823 n01664065 n03642806 n02364673 n03884397 n02033041 n04019541 n04266014 n07749582 n01818515 n02415577 n02804414 n04599235 n01910747 n02965783 n04111531 n03794056 n02088364 n03733805 n02497673 n04296562 n01983481 n04041544 n07892512 n02085936 n03929855 n02396427 n03854065 n02802426 n01751748 n01632458 n03207941 n02110627 n04554684 n03729826 n02480495 n01914609 n04200800 n02480495 n01630670 n03825788 n04458633 n07754684 n01756291 n02807133 n02099712 n03223299 n03394916 n02100735 n04548362 n01774750 n03085013 n02974003 n04004767 n02111129 n02113799 n02963159 n04275548 n06874185 n02105855 n03710193 n02916936 n03125729 n04209239 n04033995 n07930864 n03443371 n04604644 n03788195 n04238763 n02174001 n03637318 n07615774 n04200800 n02107142 n03709823 n03786901 n02086079 n03201208 n03000684 n04099969 n02102480 n01950731 n07753113 n02013706 n04536866 n02423022 n02687172 n04208210 n04596742 n02051845 n01833805 n02058221 n03344393 n03857828 n01978287 n04118538 n03976657 n03717622 n02097130 n09399592 n01768244 n02317335 n04204238 n01580077 n02097298 n03673027 n02013706 n02105251 n07697313 n03980874 n02804610 n02125311 n03781244 n02095570 n03344393 n02408429 n02110627 n02807133 n02129604 n04332243 n04398044 n13044778 n02098413 n02129604 n03763968 n03028079 n02108000 n03825788 n02116738 n04344873 n03924679 n02486261 n02667093 n03584254 n04554684 n07932039 n01872401 n02128757 n02966687 n02101556 n03207941 n04476259 n07684084 n02109525 n02268443 n03793489 n02106662 n04335435 n03146219 n01774384 n03980874 n01930112 n03485794 n03710193 n04525305 n03916031 n07565083 n02264363 n03676483 n04235860 n02808304 n03796401 n12620546 n02098286 n02091831 n02319095 n02264363 n04317175 n04120489 n02788148 n02110341 n04252077 n07715103 n04540053 n03016953 n02091244 n02640242 n04612504 n03000134 n02112706 n01532829 n02115913 n02101556 n02119789 n04252225 n03492542 n03272010 n03770679 n01629819 n04517823 n04366367 n02410509 n03623198 n03777754 n03899768 n04367480 n04525305 n03208938 n02951358 n03110669 n04483307 n04517823 n02422699 n04509417 n03590841 n09332890 n01629819 n04557648 n09421951 n13052670 n01677366 n02058221 n02102318 n03126707 n04548280 n03187595 n02966687 n03938244 n02486261 n02096177 n02165105 n02979186 n04310018 n01669191 n04356056 n01644373 n03676483 n04311174 n03617480 n02107908 n04310018 n02100236 n03623198 n03841143 n02488702 n04507155 n02097130 n02769748 n03781244 n02441942 n03240683 n02115641 n02117135 n02137549 n02113023 n02129165 n04532106 n04118538 n01774750 n02917067 n03394916 n04458633 n01704323 n04399382 n02410509 n02111277 n02102177 n03000247 n02107683 n04037443 n03445777 n04296562 n02971356 n04418357 n02730930 n03841143 n01774384 n03271574 n02443114 n12144580 n02097298 n02948072 n04179913 n02105251 n03888605 n03208938 n04265275 n09421951 n02408429 n02101388 n02105056 n07836838 n04591713 n02011460 n04532106 n01698640 n04330267 n04039381 n04542943 n02317335 n02504013 n01704323 n01829413 n04357314 n04252077 n01601694 n02006656 n03124043 n02965783 n02814533 n03347037 n03920288 n03874599 n02364673 n03496892 n01978455 n03544143 n04252077 n03630383 n03717622 n03141823 n04259630 n03785016 n02174001 n02869837 n04335435 n02687172 n01729977 n02018795 n01494475 n03529860 n02106166 n04553703 n04523525 n02445715 n03891332 n02747177 n03676483 n02667093 n07920052 n02910353 n02097209 n03991062 n04204238 n02110341 n02089867 n01776313 n02328150 n03180011 n07717410 n03047690 n04505470 n03014705 n01518878 n01807496 n04591713 n02999410 n04254777 n02870880 n02002556 n02095889 n02487347 n03944341 n03770679 n03794056 n03759954 n02093991 n01968897 n03743016 n03388183 n03775546 n02437312 n04120489 n03642806 n02808440 n04099969 n03891332 n03958227 n02113799 n03998194 n02104029 n03250847 n02100877 n07714990 n03110669 n02676566 n03347037 n03530642 n10565667 n02108000 n03110669 n03690938 n02095314 n02012849 n02277742 n01532829 n04553703 n02051845 n04456115 n03998194 n02417914 n03594734 n01775062 n02105855 n03903868 n02096294 n04371774 n02927161 n03657121 n03937543 n04532106 n01883070 n01537544 n02667093 n02104029 n02487347 n02104365 n02051845 n04243546 n02006656 n02808304 n04251144 n02356798 n02391049 n07753275 n02974003 n03482405 n09193705 n01694178 n02168699 n12768682 n03272562 n03710193 n03843555 n03126707 n03196217 n06785654 n04350905 n07873807 n04310018 n02264363 n02492660 n10565667 n04275548 n04147183 n04366367 n02114855 n02100236 n04154565 n02276258 n03424325 n03777568 n03494278 n01806143 n03459775 n03598930 n03967562 n03775546 n04418357 n02412080 n04591157 n01770081 n03877472 n01531178 n03794056 n04485082 n03786901 n01773797 n04254680 n02128925 n02128757 n02442845 n02606052 n02099429 n04442312 n01807496 n02107312 n03710637 n02027492 n03016953 n02017213 n12768682 n04192698 n02747177 n04532106 n01537544 n04254777 n03259280 n02025239 n09835506 n02096437 n04372370 n02797295 n03871628 n02481823 n03837869 n02268443 n04522168 n03690938 n04550184 n03657121 n02105251 n01833805 n01755581 n07734744 n01873310 n03538406 n01688243 n03452741 n02120505 n02412080 n04254120 n04019541 n02112706 n02100735 n03201208 n03134739 n02514041 n04065272 n02165105 n04443257 n04149813 n03871628 n02100236 n02412080 n02992211 n02951358 n03776460 n02666196 n03000134 n12144580 n03141823 n02110341 n02094114 n02504458 n04389033 n02085936 n04553703 n03594734 n09468604 n03980874 n07831146 n03141823 n13054560 n01704323 n02356798 n03970156 n02071294 n06794110 n02860847 n03970156 n11879895 n04389033 n01770393 n02104365 n02033041 n07754684 n02666196 n03658185 n03447447 n03840681 n01990800 n03992509 n02319095 n04540053 n04141975 n03026506 n02009229 n07880968 n03459775 n02488291 n02108551 n03793489 n03041632 n03887697 n12057211 n07875152 n01828970 n01796340 n03494278 n02281787 n01698640 n01537544 n02110185 n04209133 n02536864 n07714990 n02100236 n04317175 n04265275 n01983481 n01833805 n02808440 n01443537 n07697313 n02109525 n03935335 n03903868 n04074963 n01807496 n03729826 n04111531 n07860988 n04133789 n03873416 n03991062 n03028079 n03207743 n02487347 n03207941 n03920288 n02100735 n02105855 n03544143 n02071294 n03496892 n03461385 n01443537 n04239074 n03956157 n04553703 n04371430 n12057211 n04118776 n02793495 n02808304 n03709823 n02099267 n03063599 n03018349 n02009912 n03467068 n03637318 n12998815 n04153751 n03063599 n02132136 n02879718 n02835271 n03089624 n01734418 n02027492 n04133789 n01491361 n03041632 n02361337 n03710637 n02169497 n02268443 n03291819 n02492660 n04069434 n03457902 n04200800 n04429376 n01945685 n02910353 n02096177 n04204347 n03347037 n01806567 n02002724 n01675722 n04404412 n03476684 n03868242 n01773157 n02102040 n02088094 n02797295 n07831146 n03764736 n03000684 n02536864 n01983481 n02106550 n04065272 n01685808 n02090622 n04579432 n04204238 n13054560 n03016953 n03937543 n04229816 n02492660 n03445924 n11939491 n03544143 n02894605 n07697537 n04153751 n02483362 n02134084 n04208210 n03197337 n01753488 n03680355 n03938244 n03857828 n03761084 n02105162 n03742115 n02536864 n02930766 n01514668 n03876231 n02493509 n02095314 n04517823 n01729977 n04442312 n11939491 n01614925 n03496892 n02281787 n02095570 n02105505 n04127249 n04579432 n03804744 n04613696 n01440764 n04133789 n02115641 n02099849 n04493381 n02102480 n11939491 n07565083 n03425413 n01756291 n02132136 n02109525 n03995372 n12057211 n07697537 n04023962 n03690938 n03676483 n03868863 n04147183 n02895154 n01773549 n01667114 n12267677 n04507155 n03658185 n01644373 n06785654 n02114548 n04065272 n04118538 n01491361 n03792782 n03773504 n07831146 n02092002 n02808304 n04330267 n02437312 n03481172 n03706229 n02100583 n04347754 n02666196 n04074963 n03976467 n02090721 n02002556 n01728572 n02129165 n02483362 n01910747 n03887697 n02422106 n04039381 n02356798 n04350905 n02871525 n02086079 n04485082 n04116512 n02346627 n02840245 n03345487 n04336792 n03777568 n02797295 n02093428 n04037443 n03188531 n03538406 n02108089 n02268853 n02219486 n02415577 n02113978 n04367480 n02111277 n07754684 n03207941 n02708093 n02791124 n04239074 n01872401 n03124043 n02788148 n03933933 n01798484 n03065424 n03658185 n09421951 n03000247 n02669723 n04592741 n02097130 n02105641 n01629819 n02793495 n03954731 n04141327 n02966687 n02769748 n02281787 n01687978 n04229816 n04009552 n04418357 n04461696 n02006656 n03770439 n02017213 n07716358 n02445715 n02389026 n02948072 n06785654 n02268443 n03457902 n04118776 n12768682 n02095314 n01518878 n04275548 n02894605 n01843383 n02840245 n07697313 n07930864 n02690373 n02788148 n04081281 n03127925 n03706229 n03721384 n01632458 n04265275 n01924916 n02979186 n01872401 n04235860 n04476259 n07697537 n02488702 n03920288 n03670208 n04493381 n02113712 n01682714 n03271574 n03018349 n01641577 n02422699 n02807133 n02749479 n02749479 n02480495 n02120505 n02277742 n03935335 n03759954 n02113186 n02100236 n03126707 n04458633 n02281406 n01775062 n04204347 n02116738 n03388043 n04418357 n02100583 n03584829 n01592084 n04456115 n01728920 n02091635 n03637318 n02105056 n02110627 n02776631 n03788365 n03179701 n02009912 n02219486 n04179913 n07590611 n03903868 n04560804 n01917289 n04133789 n02085620 n03259280 n02484975 n01744401 n07836838 n07753592 n03673027 n01494475 n01728572 n02174001 n07873807 n02058221 n04252225 n03782006 n04133789 n15075141 n02106662 n02346627 n03769881 n03630383 n03871628 n01984695 n01514668 n01749939 n03457902 n04347754 n04370456 n02892201 n01693334 n03109150 n02102973 n02098413 n01930112 n02834397 n02091032 n02489166 n12985857 n02092339 n03995372 n02089078 n03709823 n02111500 n02268443 n02410509 n01798484 n03720891 n03868863 n02092002 n03018349 n04487394 n03240683 n03803284 n07579787 n02804414 n03887697 n04542943 n02113023 n02607072 n01882714 n02102040 n07697537 n02443114 n01986214 n02777292 n02939185 n02009229 n03769881 n04554684 n02037110 n02817516 n02089078 n03691459 n03680355 n04591713 n03804744 n03617480 n01795545 n02865351 n02840245 n02909870 n02101006 n04208210 n04487081 n02111889 n04264628 n01629819 n02111129 n12768682 n03134739 n03075370 n13037406 n02100735 n04330267 n04540053 n01498041 n03874599 n03874599 n04485082 n03095699 n04252225 n02172182 n01667114 n04557648 n02119022 n02091467 n04350905 n01817953 n01985128 n04067472 n02504013 n04476259 n09229709 n02865351 n02105251 n03255030 n02325366 n04200800 n03065424 n04330267 n02403003 n02123159 n02326432 n02097130 n02966687 n04591157 n03538406 n02107908 n02009912 n01644900 n02356798 n04201297 n04235860 n02110185 n03544143 n02787622 n04296562 n02804414 n02114367 n02894605 n02119022 n02965783 n03837869 n01955084 n02701002 n02137549 n03794056 n03759954 n03956157 n03461385 n02939185 n07892512 n07715103 n01742172 n04350905 n01817953 n02865351 n02002556 n01644900 n02795169 n03617480 n03207743 n02403003 n03109150 n03590841 n02480855 n02091032 n07584110 n02102318 n02111277 n02692877 n04604644 n03793489 n01877812 n02412080 n01698640 n02110806 n04019541 n04476259 n04584207 n02012849 n03720891 n04311174 n03459775 n03781244 n09428293 n02106550 n02132136 n03630383 n02128925 n03903868 n03814639 n01630670 n02106550 n01855672 n01807496 n02088364 n03290653 n02109525 n03902125 n07583066 n04542943 n03937543 n07583066 n04008634 n04532670 n02095314 n04118538 n07584110 n02747177 n03929855 n01950731 n07742313 n03649909 n02319095 n01697457 n02092339 n09332890 n04347754 n02480495 n03478589 n07880968 n03935335 n03976657 n02835271 n04367480 n02177972 n04070727 n04277352 n04125021 n03134739 n02128757 n02504013 n04111531 n04152593 n04591713 n03400231 n01704323 n12768682 n02110806 n04418357 n02536864 n04409515 n04542943 n03763968 n03662601 n02490219 n02086240 n04404412 n07718747 n02096051 n04599235 n01944390 n01990800 n04152593 n02807133 n02086910 n03347037 n01847000 n02107683 n02279972 n04019541 n01695060 n02087046 n03891251 n04154565 n04398044 n02504013 n02138441 n04285008 n03942813 n04239074 n02704792 n03794056 n04476259 n04483307 n03982430 n02109047 n11939491 n04335435 n02727426 n03781244 n01978455 n03887697 n02268853 n02607072 n02009229 n04371774 n07892512 n04523525 n01748264 n03924679 n04200800 n04026417 n04208210 n04548362 n04389033 n04152593 n02910353 n07697313 n03196217 n04200800 n02279972 n01917289 n02488291 n02808304 n03992509 n02804414 n01774750 n04442312 n03535780 n02802426 n04044716 n02128385 n07697313 n04179913 n03400231 n03095699 n03871628 n02129165 n01773797 n03691459 n02018795 n04116512 n03089624 n02127052 n02111129 n02093256 n03742115 n04429376 n02009229 n02815834 n07747607 n03481172 n03220513 n03495258 n02974003 n01704323 n04277352 n07684084 n02107574 n02276258 n12998815 n03617480 n03721384 n02992529 n02321529 n03933933 n03764736 n03764736 n02317335 n04235860 n02808440 n02110341 n04542943 n02442845 n02869837 n01742172 n02088632 n02120079 n04259630 n03447447 n03876231 n02037110 n01914609 n02102040 n13054560 n03930630 n03759954 n07584110 n04259630 n03291819 n07697537 n01614925 n03814906 n04540053 n02116738 n01776313 n03954731 n04479046 n03658185 n04357314 n03763968 n01755581 n01749939 n02981792 n03485407 n02442845 n04548280 n07880968 n02825657 n09332890 n04596742 n04596742 n02930766 n01843383 n03532672 n13133613 n02963159 n03759954 n02098413 n04367480 n02643566 n04254777 n02415577 n04560804 n04485082 n03781244 n04597913 n04482393 n01530575 n03250847 n02108089 n04404412 n02687172 n03786901 n02108000 n02687172 n02317335 n02606052 n02165105 n03045698 n03218198 n02415577 n04069434 n04482393 n01806143 n01443537 n02100735 n04153751 n04254777 n02091467 n03482405 n02794156 n07754684 n03495258 n04542943 n01797886 n03085013 n03792972 n01980166 n02782093 n03920288 n03666591 n01695060 n02486410 n02088364 n02389026 n07753592 n07248320 n03355925 n01737021 n04266014 n02167151 n03930630 n02133161 n02107142 n03180011 n04023962 n01443537 n02443114 n02892201 n03109150 n01872401 n07565083 n02815834 n02206856 n03729826 n10565667 n02111129 n02704792 n02117135 n03000247 n02129604 n04550184 n03089624 n03785016 n01689811 n02441942 n01641577 n02229544 n01622779 n02089973 n02791270 n02102177 n02114855 n13040303 n03944341 n01667114 n04149813 n03792972 n02869837 n02112706 n13044778 n01688243 n02097658 n02109961 n03791053 n04286575 n01985128 n03014705 n04265275 n04467665 n01985128 n04344873 n04335435 n02676566 n01806143 n04599235 n02093859 n04486054 n01601694 n02966193 n02965783 n02099712 n02808440 n03785016 n04285008 n04141076 n07760859 n03717622 n01917289 n03942813 n04409515 n01819313 n03255030 n02328150 n07590611 n01985128 n03998194 n12985857 n03014705 n02823428 n03127747 n02825657 n03935335 n02793495 n04509417 n02655020 n07873807 n02906734 n03720891 n04037443 n04254120 n07614500 n01667114 n02415577 n03710637 n02361337 n04081281 n04070727 n03649909 n07720875 n02011460 n01443537 n04525305 n02894605 n02113712 n09229709 n04367480 n04266014 n02105056 n09421951 n02814860 n02167151 n01744401 n02808304 n02106030 n02074367 n02536864 n04485082 n03538406 n02108915 n02114548 n01698640 n04286575 n02797295 n02124075 n02927161 n02747177 n02641379 n02325366 n02536864 n03697007 n02281406 n03017168 n02090721 n03776460 n02037110 n03100240 n04398044 n02871525 n03792782 n02787622 n03180011 n04522168 n04266014 n03218198 n02088094 n02097298 n04548362 n03196217 n02095889 n01873310 n02088466 n01968897 n04548280 n04604644 n02090379 n03787032 n04229816 n03891251 n02356798 n04350905 n03782006 n01664065 n03950228 n01601694 n01558993 n02777292 n02091134 n02088632 n02442845 n02137549 n01669191 n02007558 n03782006 n03692522 n02916936 n04357314 n02132136 n03930630 n04019541 n04005630 n02102480 n03443371 n04523525 n03814906 n07693725 n04371774 n04209239 n03720891 n02086079 n02071294 n01774384 n01560419 n04204238 n02101556 n03998194 n04486054 n04505470 n02089867 n04179913 n02112018 n04201297 n03673027 n03908714 n02105056 n02791270 n03775071 n03785016 n02088238 n04376876 n03272562 n02132136 n01748264 n02939185 n03485794 n02105412 n02814860 n03527444 n03803284 n02396427 n03877845 n07614500 n01514859 n02105056 n03047690 n04254120 n03218198 n02910353 n04328186 n03776460 n02109961 n03467068 n02704792 n04136333 n02169497 n02094114 n03837869 n03131574 n02090622 n04238763 n01682714 n03388043 n04493381 n04040759 n02099601 n03803284 n02101388 n13044778 n04483307 n03404251 n02090622 n12768682 n04367480 n03134739 n02356798 n02408429 n02974003 n02101388 n03124170 n04435653 n02105855 n07920052 n03272010 n03180011 n07717556 n04235860 n07716358 n02088094 n07873807 n03775071 n02110341 n02817516 n03146219 n02113186 n09246464 n02119022 n03240683 n03706229 n02701002 n04154565 n03467068 n03843555 n02107683 n02088094 n02108915 n02786058 n02326432 n01629819 n01614925 n12267677 n02108422 n02481823 n02892201 n02877765 n01955084 n12057211 n03063689 n02113978 n02777292 n03717622 n02787622 n02437312 n03992509 n01930112 n02500267 n03627232 n04505470 n03250847 n03400231 n02977058 n04554684 n04456115 n04147183 n03676483 n04465501 n02094114 n04532106 n07892512 n04557648 n03482405 n02088238 n03991062 n01751748 n02104029 n03733281 n02536864 n01860187 n03133878 n02110627 n03208938 n04192698 n02106166 n03028079 n04515003 n03787032 n04317175 n03447721 n02326432 n03535780 n03998194 n04560804 n04507155 n03134739 n01697457 n04270147 n02107683 n04525305 n02410509 n02099712 n02132136 n02268853 n01817953 n03929855 n07615774 n02100735 n01833805 n03207743 n04584207 n04266014 n07248320 n03467068 n03908618 n02133161 n02486410 n01755581 n02445715 n01914609 n02841315 n02877765 n01697457 n01981276 n06794110 n04485082 n02119022 n02481823 n02802426 n01689811 n01796340 n02667093 n01622779 n01980166 n02442845 n04328186 n01871265 n03729826 n02123394 n01630670 n02106166 n10148035 n02437616
TensorFlow/Detection/SSD/models/research/slim/nets
nets
inception_v4
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Contains the definition of the Inception V4 architecture. As described in http://arxiv.org/abs/1602.07261. Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, Alex Alemi """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from nets import inception_utils slim = tf.contrib.slim def block_inception_a(inputs, scope=None, reuse=None): """Builds Inception-A block for Inception v4 network.""" # By default use stride=1 and SAME padding with slim.arg_scope([slim.conv2d, slim.avg_pool2d, slim.max_pool2d], stride=1, padding='SAME'): with tf.variable_scope(scope, 'BlockInceptionA', [inputs], reuse=reuse): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(inputs, 96, [1, 1], scope='Conv2d_0a_1x1') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d(inputs, 64, [1, 1], scope='Conv2d_0a_1x1') branch_1 = slim.conv2d(branch_1, 96, [3, 3], scope='Conv2d_0b_3x3') with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d(inputs, 64, [1, 1], scope='Conv2d_0a_1x1') branch_2 = slim.conv2d(branch_2, 96, [3, 3], scope='Conv2d_0b_3x3') branch_2 = slim.conv2d(branch_2, 96, [3, 3], scope='Conv2d_0c_3x3') with tf.variable_scope('Branch_3'): branch_3 = slim.avg_pool2d(inputs, [3, 3], scope='AvgPool_0a_3x3') branch_3 = slim.conv2d(branch_3, 96, [1, 1], scope='Conv2d_0b_1x1') return tf.concat(axis=3, values=[branch_0, branch_1, branch_2, branch_3]) def block_reduction_a(inputs, scope=None, reuse=None): """Builds Reduction-A block for Inception v4 network.""" # By default use stride=1 and SAME padding with slim.arg_scope([slim.conv2d, slim.avg_pool2d, slim.max_pool2d], stride=1, padding='SAME'): with tf.variable_scope(scope, 'BlockReductionA', [inputs], reuse=reuse): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(inputs, 384, [3, 3], stride=2, padding='VALID', scope='Conv2d_1a_3x3') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d(inputs, 192, [1, 1], scope='Conv2d_0a_1x1') branch_1 = slim.conv2d(branch_1, 224, [3, 3], scope='Conv2d_0b_3x3') branch_1 = slim.conv2d(branch_1, 256, [3, 3], stride=2, padding='VALID', scope='Conv2d_1a_3x3') with tf.variable_scope('Branch_2'): branch_2 = slim.max_pool2d(inputs, [3, 3], stride=2, padding='VALID', scope='MaxPool_1a_3x3') return tf.concat(axis=3, values=[branch_0, branch_1, branch_2]) def block_inception_b(inputs, scope=None, reuse=None): """Builds Inception-B block for Inception v4 network.""" # By default use stride=1 and SAME padding with slim.arg_scope([slim.conv2d, slim.avg_pool2d, slim.max_pool2d], stride=1, padding='SAME'): with tf.variable_scope(scope, 'BlockInceptionB', [inputs], reuse=reuse): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(inputs, 384, [1, 1], scope='Conv2d_0a_1x1') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d(inputs, 192, [1, 1], scope='Conv2d_0a_1x1') branch_1 = slim.conv2d(branch_1, 224, [1, 7], scope='Conv2d_0b_1x7') branch_1 = slim.conv2d(branch_1, 256, [7, 1], scope='Conv2d_0c_7x1') with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d(inputs, 192, [1, 1], scope='Conv2d_0a_1x1') branch_2 = slim.conv2d(branch_2, 192, [7, 1], scope='Conv2d_0b_7x1') branch_2 = slim.conv2d(branch_2, 224, [1, 7], scope='Conv2d_0c_1x7') branch_2 = slim.conv2d(branch_2, 224, [7, 1], scope='Conv2d_0d_7x1') branch_2 = slim.conv2d(branch_2, 256, [1, 7], scope='Conv2d_0e_1x7') with tf.variable_scope('Branch_3'): branch_3 = slim.avg_pool2d(inputs, [3, 3], scope='AvgPool_0a_3x3') branch_3 = slim.conv2d(branch_3, 128, [1, 1], scope='Conv2d_0b_1x1') return tf.concat(axis=3, values=[branch_0, branch_1, branch_2, branch_3]) def block_reduction_b(inputs, scope=None, reuse=None): """Builds Reduction-B block for Inception v4 network.""" # By default use stride=1 and SAME padding with slim.arg_scope([slim.conv2d, slim.avg_pool2d, slim.max_pool2d], stride=1, padding='SAME'): with tf.variable_scope(scope, 'BlockReductionB', [inputs], reuse=reuse): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(inputs, 192, [1, 1], scope='Conv2d_0a_1x1') branch_0 = slim.conv2d(branch_0, 192, [3, 3], stride=2, padding='VALID', scope='Conv2d_1a_3x3') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d(inputs, 256, [1, 1], scope='Conv2d_0a_1x1') branch_1 = slim.conv2d(branch_1, 256, [1, 7], scope='Conv2d_0b_1x7') branch_1 = slim.conv2d(branch_1, 320, [7, 1], scope='Conv2d_0c_7x1') branch_1 = slim.conv2d(branch_1, 320, [3, 3], stride=2, padding='VALID', scope='Conv2d_1a_3x3') with tf.variable_scope('Branch_2'): branch_2 = slim.max_pool2d(inputs, [3, 3], stride=2, padding='VALID', scope='MaxPool_1a_3x3') return tf.concat(axis=3, values=[branch_0, branch_1, branch_2]) def block_inception_c(inputs, scope=None, reuse=None): """Builds Inception-C block for Inception v4 network.""" # By default use stride=1 and SAME padding with slim.arg_scope([slim.conv2d, slim.avg_pool2d, slim.max_pool2d], stride=1, padding='SAME'): with tf.variable_scope(scope, 'BlockInceptionC', [inputs], reuse=reuse): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(inputs, 256, [1, 1], scope='Conv2d_0a_1x1') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d(inputs, 384, [1, 1], scope='Conv2d_0a_1x1') branch_1 = tf.concat(axis=3, values=[ slim.conv2d(branch_1, 256, [1, 3], scope='Conv2d_0b_1x3'), slim.conv2d(branch_1, 256, [3, 1], scope='Conv2d_0c_3x1')]) with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d(inputs, 384, [1, 1], scope='Conv2d_0a_1x1') branch_2 = slim.conv2d(branch_2, 448, [3, 1], scope='Conv2d_0b_3x1') branch_2 = slim.conv2d(branch_2, 512, [1, 3], scope='Conv2d_0c_1x3') branch_2 = tf.concat(axis=3, values=[ slim.conv2d(branch_2, 256, [1, 3], scope='Conv2d_0d_1x3'), slim.conv2d(branch_2, 256, [3, 1], scope='Conv2d_0e_3x1')]) with tf.variable_scope('Branch_3'): branch_3 = slim.avg_pool2d(inputs, [3, 3], scope='AvgPool_0a_3x3') branch_3 = slim.conv2d(branch_3, 256, [1, 1], scope='Conv2d_0b_1x1') return tf.concat(axis=3, values=[branch_0, branch_1, branch_2, branch_3]) def inception_v4_base(inputs, final_endpoint='Mixed_7d', scope=None): """Creates the Inception V4 network up to the given final endpoint. Args: inputs: a 4-D tensor of size [batch_size, height, width, 3]. final_endpoint: specifies the endpoint to construct the network up to. It can be one of [ 'Conv2d_1a_3x3', 'Conv2d_2a_3x3', 'Conv2d_2b_3x3', 'Mixed_3a', 'Mixed_4a', 'Mixed_5a', 'Mixed_5b', 'Mixed_5c', 'Mixed_5d', 'Mixed_5e', 'Mixed_6a', 'Mixed_6b', 'Mixed_6c', 'Mixed_6d', 'Mixed_6e', 'Mixed_6f', 'Mixed_6g', 'Mixed_6h', 'Mixed_7a', 'Mixed_7b', 'Mixed_7c', 'Mixed_7d'] scope: Optional variable_scope. Returns: logits: the logits outputs of the model. end_points: the set of end_points from the inception model. Raises: ValueError: if final_endpoint is not set to one of the predefined values, """ end_points = {} def add_and_check_final(name, net): end_points[name] = net return name == final_endpoint with tf.variable_scope(scope, 'InceptionV4', [inputs]): with slim.arg_scope([slim.conv2d, slim.max_pool2d, slim.avg_pool2d], stride=1, padding='SAME'): # 299 x 299 x 3 net = slim.conv2d(inputs, 32, [3, 3], stride=2, padding='VALID', scope='Conv2d_1a_3x3') if add_and_check_final('Conv2d_1a_3x3', net): return net, end_points # 149 x 149 x 32 net = slim.conv2d(net, 32, [3, 3], padding='VALID', scope='Conv2d_2a_3x3') if add_and_check_final('Conv2d_2a_3x3', net): return net, end_points # 147 x 147 x 32 net = slim.conv2d(net, 64, [3, 3], scope='Conv2d_2b_3x3') if add_and_check_final('Conv2d_2b_3x3', net): return net, end_points # 147 x 147 x 64 with tf.variable_scope('Mixed_3a'): with tf.variable_scope('Branch_0'): branch_0 = slim.max_pool2d(net, [3, 3], stride=2, padding='VALID', scope='MaxPool_0a_3x3') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d(net, 96, [3, 3], stride=2, padding='VALID', scope='Conv2d_0a_3x3') net = tf.concat(axis=3, values=[branch_0, branch_1]) if add_and_check_final('Mixed_3a', net): return net, end_points # 73 x 73 x 160 with tf.variable_scope('Mixed_4a'): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(net, 64, [1, 1], scope='Conv2d_0a_1x1') branch_0 = slim.conv2d(branch_0, 96, [3, 3], padding='VALID', scope='Conv2d_1a_3x3') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d(net, 64, [1, 1], scope='Conv2d_0a_1x1') branch_1 = slim.conv2d(branch_1, 64, [1, 7], scope='Conv2d_0b_1x7') branch_1 = slim.conv2d(branch_1, 64, [7, 1], scope='Conv2d_0c_7x1') branch_1 = slim.conv2d(branch_1, 96, [3, 3], padding='VALID', scope='Conv2d_1a_3x3') net = tf.concat(axis=3, values=[branch_0, branch_1]) if add_and_check_final('Mixed_4a', net): return net, end_points # 71 x 71 x 192 with tf.variable_scope('Mixed_5a'): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(net, 192, [3, 3], stride=2, padding='VALID', scope='Conv2d_1a_3x3') with tf.variable_scope('Branch_1'): branch_1 = slim.max_pool2d(net, [3, 3], stride=2, padding='VALID', scope='MaxPool_1a_3x3') net = tf.concat(axis=3, values=[branch_0, branch_1]) if add_and_check_final('Mixed_5a', net): return net, end_points # 35 x 35 x 384 # 4 x Inception-A blocks for idx in range(4): block_scope = 'Mixed_5' + chr(ord('b') + idx) net = block_inception_a(net, block_scope) if add_and_check_final(block_scope, net): return net, end_points # 35 x 35 x 384 # Reduction-A block net = block_reduction_a(net, 'Mixed_6a') if add_and_check_final('Mixed_6a', net): return net, end_points # 17 x 17 x 1024 # 7 x Inception-B blocks for idx in range(7): block_scope = 'Mixed_6' + chr(ord('b') + idx) net = block_inception_b(net, block_scope) if add_and_check_final(block_scope, net): return net, end_points # 17 x 17 x 1024 # Reduction-B block net = block_reduction_b(net, 'Mixed_7a') if add_and_check_final('Mixed_7a', net): return net, end_points # 8 x 8 x 1536 # 3 x Inception-C blocks for idx in range(3): block_scope = 'Mixed_7' + chr(ord('b') + idx) net = block_inception_c(net, block_scope) if add_and_check_final(block_scope, net): return net, end_points raise ValueError('Unknown final endpoint %s' % final_endpoint) def inception_v4(inputs, num_classes=1001, is_training=True, dropout_keep_prob=0.8, reuse=None, scope='InceptionV4', create_aux_logits=True): """Creates the Inception V4 model. Args: inputs: a 4-D tensor of size [batch_size, height, width, 3]. num_classes: number of predicted classes. If 0 or None, the logits layer is omitted and the input features to the logits layer (before dropout) are returned instead. is_training: whether is training or not. dropout_keep_prob: float, the fraction to keep before final layer. reuse: whether or not the network and its variables should be reused. To be able to reuse 'scope' must be given. scope: Optional variable_scope. create_aux_logits: Whether to include the auxiliary logits. Returns: net: a Tensor with the logits (pre-softmax activations) if num_classes is a non-zero integer, or the non-dropped input to the logits layer if num_classes is 0 or None. end_points: the set of end_points from the inception model. """ end_points = {} with tf.variable_scope(scope, 'InceptionV4', [inputs], reuse=reuse) as scope: with slim.arg_scope([slim.batch_norm, slim.dropout], is_training=is_training): net, end_points = inception_v4_base(inputs, scope=scope) with slim.arg_scope([slim.conv2d, slim.max_pool2d, slim.avg_pool2d], stride=1, padding='SAME'): # Auxiliary Head logits if create_aux_logits and num_classes: with tf.variable_scope('AuxLogits'): # 17 x 17 x 1024 aux_logits = end_points['Mixed_6h'] aux_logits = slim.avg_pool2d(aux_logits, [5, 5], stride=3, padding='VALID', scope='AvgPool_1a_5x5') aux_logits = slim.conv2d(aux_logits, 128, [1, 1], scope='Conv2d_1b_1x1') aux_logits = slim.conv2d(aux_logits, 768, aux_logits.get_shape()[1:3], padding='VALID', scope='Conv2d_2a') aux_logits = slim.flatten(aux_logits) aux_logits = slim.fully_connected(aux_logits, num_classes, activation_fn=None, scope='Aux_logits') end_points['AuxLogits'] = aux_logits # Final pooling and prediction # TODO(sguada,arnoegw): Consider adding a parameter global_pool which # can be set to False to disable pooling here (as in resnet_*()). with tf.variable_scope('Logits'): # 8 x 8 x 1536 kernel_size = net.get_shape()[1:3] if kernel_size.is_fully_defined(): net = slim.avg_pool2d(net, kernel_size, padding='VALID', scope='AvgPool_1a') else: net = tf.reduce_mean(net, [1, 2], keep_dims=True, name='global_pool') end_points['global_pool'] = net if not num_classes: return net, end_points # 1 x 1 x 1536 net = slim.dropout(net, dropout_keep_prob, scope='Dropout_1b') net = slim.flatten(net, scope='PreLogitsFlatten') end_points['PreLogitsFlatten'] = net # 1536 logits = slim.fully_connected(net, num_classes, activation_fn=None, scope='Logits') end_points['Logits'] = logits end_points['Predictions'] = tf.nn.softmax(logits, name='Predictions') return logits, end_points inception_v4.default_image_size = 299 inception_v4_arg_scope = inception_utils.inception_arg_scope
TensorFlow2/Detection/Efficientdet
Efficientdet
inspector
# Copyright 2020 Google Research. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tool to inspect a model.""" import os from absl import app from absl import flags from absl import logging import numpy as np from PIL import Image import tensorflow as tf from dllogger import StdOutBackend, JSONStreamBackend, Verbosity import dllogger as DLLogger from model import inference from utils import hparams_config from utils import model_utils from utils import setup flags.DEFINE_string('model_name', 'efficientdet-d0', 'Model.') flags.DEFINE_string('mode', 'benchmark', 'Run mode: {dry, export, benchmark}') flags.DEFINE_string('trace_filename', None, 'Trace file name.') flags.DEFINE_integer('bm_runs', 100, 'Number of benchmark runs.') flags.DEFINE_string('tensorrt', None, 'TensorRT mode: {None, FP32, FP16, INT8}') flags.DEFINE_integer('batch_size', 1, 'Batch size for inference.') flags.DEFINE_string('ckpt_path', '_', 'checkpoint dir used for eval.') flags.DEFINE_string('export_ckpt', None, 'Output model ckpt path.') flags.DEFINE_string( 'hparams', '', 'Comma separated k=v pairs of hyperparameters or a module' ' containing attributes to use as hyperparameters.') flags.DEFINE_bool('amp', True, 'Enable mixed precision training') flags.DEFINE_bool('use_xla', True, 'Use XLA') flags.DEFINE_string('input_image', None, 'Input image path for inference.') flags.DEFINE_string('output_image_dir', None, 'Output dir for inference.') flags.DEFINE_string('dllogger_path', '/tmp/time_log.txt', 'Filepath for dllogger logs') # For video. flags.DEFINE_string('input_video', None, 'Input video path for inference.') flags.DEFINE_string('output_video', None, 'Output video path. If None, play it online instead.') # For visualization. flags.DEFINE_integer('max_boxes_to_draw', 100, 'Max number of boxes to draw.') flags.DEFINE_float('min_score_thresh', 0.4, 'Score threshold to show box.') flags.DEFINE_string('nms_method', 'hard', 'nms method, hard or gaussian.') # For saved model. flags.DEFINE_string('saved_model_dir', None, 'Folder path for saved model.') flags.DEFINE_string('tflite_path', None, 'Path for exporting tflite file.') flags.DEFINE_bool('debug', False, 'Debug mode.') FLAGS = flags.FLAGS def main(_): model_config = hparams_config.get_detection_config(FLAGS.model_name) model_config.override(FLAGS.hparams) # Add custom overrides model_config.is_training_bn = False model_config.image_size = model_utils.parse_image_size(model_config.image_size) # A hack to make flag consistent with nms configs. if FLAGS.min_score_thresh: model_config.nms_configs.score_thresh = FLAGS.min_score_thresh if FLAGS.nms_method: model_config.nms_configs.method = FLAGS.nms_method if FLAGS.max_boxes_to_draw: model_config.nms_configs.max_output_size = FLAGS.max_boxes_to_draw model_config.mixed_precision = FLAGS.amp setup.set_flags(FLAGS, model_config, training=False) model_params = model_config.as_dict() ckpt_path_or_file = FLAGS.ckpt_path if tf.io.gfile.isdir(ckpt_path_or_file): ckpt_path_or_file = tf.train.latest_checkpoint(ckpt_path_or_file) driver = inference.ServingDriver(FLAGS.model_name, ckpt_path_or_file, FLAGS.batch_size or None, FLAGS.min_score_thresh, FLAGS.max_boxes_to_draw, model_params) # dllogger setup backends = [] backends+=[ JSONStreamBackend(verbosity=Verbosity.VERBOSE, filename=FLAGS.dllogger_path), StdOutBackend(verbosity=Verbosity.DEFAULT)] DLLogger.init(backends=backends) DLLogger.metadata('inference_fps', {'unit': 'images/s'}) DLLogger.metadata('inference_latency_ms', {'unit': 'ms'}) DLLogger.metadata('latency_avg', {'unit': 's'}) DLLogger.metadata('latency_90', {'unit': 's'}) DLLogger.metadata('latency_95', {'unit': 's'}) DLLogger.metadata('latency_99', {'unit': 's'}) if FLAGS.mode == 'export': if tf.io.gfile.exists(FLAGS.saved_model_dir): tf.io.gfile.rmtree(FLAGS.saved_model_dir) driver.export(FLAGS.saved_model_dir, FLAGS.tflite_path, FLAGS.tensorrt) elif FLAGS.mode == 'benchmark': if FLAGS.saved_model_dir: driver.load(FLAGS.saved_model_dir) batch_size = FLAGS.batch_size or 1 if FLAGS.input_image: image_file = tf.io.read_file(FLAGS.input_image) image_arrays = tf.image.decode_image(image_file) image_arrays.set_shape((None, None, 3)) image_arrays = tf.expand_dims(image_arrays, 0) if batch_size > 1: image_arrays = tf.tile(image_arrays, [batch_size, 1, 1, 1]) else: # use synthetic data if no image is provided. image_arrays = tf.ones((batch_size, *model_config.image_size, 3), dtype=tf.uint8) driver.benchmark(image_arrays, FLAGS.bm_runs, FLAGS.trace_filename) elif FLAGS.mode == 'dry': # transfer to tf2 format ckpt driver.build() if FLAGS.export_ckpt: driver.model.save_weights(FLAGS.export_ckpt) elif FLAGS.mode == 'video': import cv2 # pylint: disable=g-import-not-at-top if tf.saved_model.contains_saved_model(FLAGS.saved_model_dir): driver.load(FLAGS.saved_model_dir) cap = cv2.VideoCapture(FLAGS.input_video) if not cap.isOpened(): print('Error opening input video: {}'.format(FLAGS.input_video)) out_ptr = None if FLAGS.output_video: frame_width, frame_height = int(cap.get(3)), int(cap.get(4)) out_ptr = cv2.VideoWriter(FLAGS.output_video, cv2.VideoWriter_fourcc('m', 'p', '4', 'v'), 25, (frame_width, frame_height)) while cap.isOpened(): # Capture frame-by-frame ret, frame = cap.read() if not ret: break raw_frames = np.array([frame]) detections_bs = driver.serve(raw_frames) boxes, scores, classes, _ = tf.nest.map_structure(np.array, detections_bs) new_frame = driver.visualize( raw_frames[0], boxes[0], scores[0], classes[0], min_score_thresh=model_config.nms_configs.score_thresh, max_boxes_to_draw=model_config.nms_configs.max_output_size) if out_ptr: # write frame into output file. out_ptr.write(new_frame) else: # show the frame online, mainly used for real-time speed test. cv2.imshow('Frame', new_frame) # Press Q on keyboard to exit if cv2.waitKey(1) & 0xFF == ord('q'): break if __name__ == '__main__': logging.set_verbosity(logging.ERROR) app.run(main)
TensorFlow2/LanguageModeling/BERT/official/utils/flags
flags
_benchmark
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Flags for benchmarking models.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl import flags from official.utils.flags._conventions import help_wrap def define_benchmark(benchmark_log_dir=True, bigquery_uploader=True): """Register benchmarking flags. Args: benchmark_log_dir: Create a flag to specify location for benchmark logging. bigquery_uploader: Create flags for uploading results to BigQuery. Returns: A list of flags for core.py to marks as key flags. """ key_flags = [] flags.DEFINE_enum( name="benchmark_logger_type", default="BaseBenchmarkLogger", enum_values=["BaseBenchmarkLogger", "BenchmarkFileLogger", "BenchmarkBigQueryLogger"], help=help_wrap("The type of benchmark logger to use. Defaults to using " "BaseBenchmarkLogger which logs to STDOUT. Different " "loggers will require other flags to be able to work.")) flags.DEFINE_string( name="benchmark_test_id", short_name="bti", default=None, help=help_wrap("The unique test ID of the benchmark run. It could be the " "combination of key parameters. It is hardware " "independent and could be used compare the performance " "between different test runs. This flag is designed for " "human consumption, and does not have any impact within " "the system.")) flags.DEFINE_integer( name='log_steps', default=100, help='For every log_steps, we log the timing information such as ' 'examples per second. Besides, for every log_steps, we store the ' 'timestamp of a batch end.') if benchmark_log_dir: flags.DEFINE_string( name="benchmark_log_dir", short_name="bld", default=None, help=help_wrap("The location of the benchmark logging.") ) if bigquery_uploader: flags.DEFINE_string( name="gcp_project", short_name="gp", default=None, help=help_wrap( "The GCP project name where the benchmark will be uploaded.")) flags.DEFINE_string( name="bigquery_data_set", short_name="bds", default="test_benchmark", help=help_wrap( "The Bigquery dataset name where the benchmark will be uploaded.")) flags.DEFINE_string( name="bigquery_run_table", short_name="brt", default="benchmark_run", help=help_wrap("The Bigquery table name where the benchmark run " "information will be uploaded.")) flags.DEFINE_string( name="bigquery_run_status_table", short_name="brst", default="benchmark_run_status", help=help_wrap("The Bigquery table name where the benchmark run " "status information will be uploaded.")) flags.DEFINE_string( name="bigquery_metric_table", short_name="bmt", default="benchmark_metric", help=help_wrap("The Bigquery table name where the benchmark metric " "information will be uploaded.")) @flags.multi_flags_validator( ["benchmark_logger_type", "benchmark_log_dir"], message="--benchmark_logger_type=BenchmarkFileLogger will require " "--benchmark_log_dir being set") def _check_benchmark_log_dir(flags_dict): benchmark_logger_type = flags_dict["benchmark_logger_type"] if benchmark_logger_type == "BenchmarkFileLogger": return flags_dict["benchmark_log_dir"] return True return key_flags
PyTorch/Recommendation/DLRM/preproc
preproc
preproc_NVTabular
# Copyright (c) 2021 NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Preprocess Criteo 1TB Click Logs dataset with frequency thresholding and filling missing values. This script accepts input in either tsv or parquet format. """ import argparse from collections import OrderedDict import json import os import subprocess from time import time from typing import List, Optional import numpy as np import nvtabular as nvt import rmm import cudf from dask.base import tokenize from dask.dataframe.io.parquet.utils import _analyze_paths from dask.delayed import Delayed from dask.distributed import Client from dask.highlevelgraph import HighLevelGraph from dask.utils import natural_sort_key from dask_cuda import LocalCUDACluster from fsspec.core import get_fs_token_paths from nvtabular import Workflow from nvtabular.io import Dataset, Shuffle from nvtabular.utils import device_mem_size from nvtabular.ops import Normalize, Categorify, LogOp, FillMissing, Clip, get_embedding_sizes, \ LambdaOp from cudf.io.parquet import ParquetWriter CRITEO_CONTINUOUS_COLUMNS = [f'_c{x}' for x in range(1, 14)] CRITEO_CATEGORICAL_COLUMNS = [f'_c{x}' for x in range(14, 40)] CRITEO_CLICK_COLUMNS = ['_c0'] COLUMNS = CRITEO_CONTINUOUS_COLUMNS + CRITEO_CATEGORICAL_COLUMNS + CRITEO_CLICK_COLUMNS CRITEO_TRAIN_DAYS = list(range(0, 23)) ALL_DS_MEM_FRAC = 0.04 TRAIN_DS_MEM_FRAC = 0.045 TEST_DS_MEM_FRAC = 0.3 VALID_DS_MEM_FRAC = 0.3 def _pool(frac=0.8): initial_pool_size = frac * device_mem_size() if initial_pool_size % 256 != 0: new_initial_pool_size = initial_pool_size // 256 * 256 print( f"Initial pool size for rmm has to be a multiply of 256. Got {initial_pool_size}, reducing to {new_initial_pool_size}") initial_pool_size = new_initial_pool_size rmm.reinitialize( pool_allocator=True, initial_pool_size=initial_pool_size, ) def _convert_file(path, name, out_dir, gpu_mem_frac, fs, cols, dtypes): fn = f"{name}.parquet" out_path = fs.sep.join([out_dir, f"{name}.parquet"]) writer = ParquetWriter(out_path, compression=None) for gdf in nvt.Dataset( path, engine="csv", names=cols, part_memory_fraction=gpu_mem_frac, sep='\t', dtypes=dtypes, ).to_iter(): writer.write_table(gdf) del gdf md = writer.close(metadata_file_path=fn) return md def _write_metadata(md_list, fs, path): if md_list: metadata_path = fs.sep.join([path, "_metadata"]) _meta = ( cudf.io.merge_parquet_filemetadata(md_list) if len(md_list) > 1 else md_list[0] ) with fs.open(metadata_path, "wb") as f: _meta.tofile(f) return True def convert_criteo_to_parquet( input_path: str, output_path: str, client, gpu_mem_frac: float = 0.05, ): print("Converting tsv to parquet files") if not output_path: raise RuntimeError("Intermediate directory must be defined, if the dataset is tsv.") os.makedirs(output_path, exist_ok=True) # split last day into two parts number_of_lines = int( subprocess.check_output((f'wc -l {os.path.join(input_path, "day_23")}').split()).split()[0]) valid_set_size = number_of_lines // 2 test_set_size = number_of_lines - valid_set_size with open(os.path.join(input_path, "day_23.part1"), "w") as f: subprocess.run(['head', '-n', str(test_set_size), str(os.path.join(input_path, "day_23"))], stdout=f) with open(os.path.join(input_path, "day_23.part2"), "w") as f: subprocess.run(['tail', '-n', str(valid_set_size), str(os.path.join(input_path, "day_23"))], stdout=f) fs = get_fs_token_paths(input_path, mode="rb")[0] file_list = [ x for x in fs.glob(fs.sep.join([input_path, "day_*"])) if not x.endswith("parquet") ] file_list = sorted(file_list, key=natural_sort_key) name_list = _analyze_paths(file_list, fs)[1] cols = CRITEO_CLICK_COLUMNS + CRITEO_CONTINUOUS_COLUMNS + CRITEO_CATEGORICAL_COLUMNS dtypes = {} dtypes[CRITEO_CLICK_COLUMNS[0]] = np.int64 for x in CRITEO_CONTINUOUS_COLUMNS: dtypes[x] = np.int64 for x in CRITEO_CATEGORICAL_COLUMNS: dtypes[x] = "hex" dsk = {} token = tokenize(file_list, name_list, output_path, gpu_mem_frac, fs, cols, dtypes) convert_file_name = "convert_file-" + token for i, (path, name) in enumerate(zip(file_list, name_list)): key = (convert_file_name, i) dsk[key] = (_convert_file, path, name, output_path, gpu_mem_frac, fs, cols, dtypes) write_meta_name = "write-metadata-" + token dsk[write_meta_name] = ( _write_metadata, [(convert_file_name, i) for i in range(len(file_list))], fs, output_path, ) graph = HighLevelGraph.from_collections(write_meta_name, dsk, dependencies=[]) conversion_delayed = Delayed(write_meta_name, graph) if client: conversion_delayed.compute() else: conversion_delayed.compute(scheduler="synchronous") print("Converted") def save_model_size_config(workflow: Workflow, output_path: str): embeddings = {} for k, v in get_embedding_sizes(workflow).items(): embeddings[k] = v[0] - 1 # we have to subtract one, as the model expects to get a maximal id for each category ordered_dict = OrderedDict() for k, v in sorted(list(embeddings.items()), key=lambda x: x[0]): ordered_dict[k] = v with open(os.path.join(output_path, "model_size.json"), 'w') as file: file.write(json.dumps(ordered_dict)) def preprocess_criteo_parquet( input_path: str, output_path: str, client, frequency_threshold: int, ): train_days = [str(x) for x in CRITEO_TRAIN_DAYS] train_files = [ os.path.join(input_path, x) for x in os.listdir(input_path) if x.startswith("day") and x.split(".")[0].split("_")[-1] in train_days ] valid_file = os.path.join(input_path, "day_23.part2.parquet") test_file = os.path.join(input_path, "day_23.part1.parquet") all_set = train_files + [valid_file] + [test_file] print(all_set, train_files, valid_file, test_file) print("Creating Workflow Object") workflow = Workflow( cat_names=CRITEO_CATEGORICAL_COLUMNS, cont_names=CRITEO_CONTINUOUS_COLUMNS, label_name=CRITEO_CLICK_COLUMNS ) # We want to assign 0 to all missing values, and calculate log(x+3) for present values # so if we set missing values to -2, then the result of log(1+2+(-2)) would be 0 workflow.add_cont_feature([ FillMissing(fill_val=-2.0), LambdaOp(op_name='Add3ButMinusOneCauseLogAddsOne', f=lambda col, _: col.add(2.0)), LogOp(), # Log(1+x) ]) workflow.add_cat_preprocess( Categorify(freq_threshold=frequency_threshold, out_path=output_path) ) workflow.finalize() print("Creating Dataset Iterator") all_ds = Dataset(all_set, engine="parquet", part_mem_fraction=ALL_DS_MEM_FRAC) trains_ds = Dataset(train_files, engine="parquet", part_mem_fraction=TRAIN_DS_MEM_FRAC) valid_ds = Dataset(valid_file, engine="parquet", part_mem_fraction=TEST_DS_MEM_FRAC) test_ds = Dataset(test_file, engine="parquet", part_mem_fraction=VALID_DS_MEM_FRAC) print("Running apply") out_train = os.path.join(output_path, "train") out_valid = os.path.join(output_path, "validation") out_test = os.path.join(output_path, "test") start = time() workflow.update_stats(all_ds) print(f"Gathering statistics time: {time() - start}") start = time() workflow.apply( trains_ds, record_stats=False, output_path=out_train ) print(f"train preprocess time: {time() - start}") start = time() workflow.apply( valid_ds, record_stats=False, output_path=out_valid ) print(f"valid preprocess time: {time() - start}") start = time() workflow.apply( test_ds, record_stats=False, output_path=out_test ) print(f"test preprocess time: {time() - start}") save_model_size_config(workflow, output_path) def parse_args(): parser = argparse.ArgumentParser(description="Process some integers.") parser.add_argument( "input_dir", help="directory with either csv or parquet dataset files inside" ) parser.add_argument( "output_dir", help="directory to save preprocessed dataset files" ) parser.add_argument( "--intermediate_dir", required=False, default=None, help="directory for converted to parquet dataset files inside" ) parser.add_argument( "--devices", required=True, help="available gpus, separated with commas; e.g 0,1,2,3" ) parser.add_argument( "--freq_threshold", required=False, default=15, help="frequency threshold for categorical can be int or dict {column_name: threshold}" ) parser.add_argument( "--pool", required=False, default=False, help="bool value to use a RMM pooled allocator" ) args = parser.parse_args() args.devices = args.devices.split(",") return args def is_input_parquet(input_dir: str): for f in os.listdir(input_dir): if 'parquet' in f: return True return False def start_local_CUDA_cluster(devices, pool): if len(devices) > 1: cluster = LocalCUDACluster( n_workers=len(devices), CUDA_VISIBLE_DEVICES=",".join(str(x) for x in devices), ) client = Client(cluster) if pool: client.run(_pool) elif pool: _pool() return client def main(): args = parse_args() client = start_local_CUDA_cluster(args.devices, args.pool) if not is_input_parquet(args.input_dir): convert_criteo_to_parquet( input_path=args.input_dir, output_path=args.intermediate_dir, client=client, ) args.input_dir = args.intermediate_dir print("Preprocessing data") preprocess_criteo_parquet( input_path=args.input_dir, output_path=args.output_dir, client=client, frequency_threshold=int(args.freq_threshold), ) print("Done") if __name__ == '__main__': main()
TensorFlow/Detection/SSD/models/research/object_detection/metrics
metrics
oid_od_challenge_evaluation
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== r"""Runs evaluation using OpenImages groundtruth and predictions. Example usage: python models/research/object_detection/metrics/oid_od_challenge_evaluation.py \ --input_annotations_boxes=/path/to/input/annotations-human-bbox.csv \ --input_annotations_labels=/path/to/input/annotations-label.csv \ --input_class_labelmap=/path/to/input/class_labelmap.pbtxt \ --input_predictions=/path/to/input/predictions.csv \ --output_metrics=/path/to/output/metric.csv \ CSVs with bounding box annotations and image label (including the image URLs) can be downloaded from the Open Images Challenge website: https://storage.googleapis.com/openimages/web/challenge.html The format of the input csv and the metrics itself are described on the challenge website. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import pandas as pd from google.protobuf import text_format from object_detection.metrics import io_utils from object_detection.metrics import oid_od_challenge_evaluation_utils as utils from object_detection.protos import string_int_label_map_pb2 from object_detection.utils import object_detection_evaluation def _load_labelmap(labelmap_path): """Loads labelmap from the labelmap path. Args: labelmap_path: Path to the labelmap. Returns: A dictionary mapping class name to class numerical id A list with dictionaries, one dictionary per category. """ label_map = string_int_label_map_pb2.StringIntLabelMap() with open(labelmap_path, 'r') as fid: label_map_string = fid.read() text_format.Merge(label_map_string, label_map) labelmap_dict = {} categories = [] for item in label_map.item: labelmap_dict[item.name] = item.id categories.append({'id': item.id, 'name': item.name}) return labelmap_dict, categories def main(parsed_args): all_box_annotations = pd.read_csv(parsed_args.input_annotations_boxes) all_label_annotations = pd.read_csv(parsed_args.input_annotations_labels) all_label_annotations.rename( columns={'Confidence': 'ConfidenceImageLabel'}, inplace=True) all_annotations = pd.concat([all_box_annotations, all_label_annotations]) class_label_map, categories = _load_labelmap(parsed_args.input_class_labelmap) challenge_evaluator = ( object_detection_evaluation.OpenImagesDetectionChallengeEvaluator( categories)) for _, groundtruth in enumerate(all_annotations.groupby('ImageID')): image_id, image_groundtruth = groundtruth groundtruth_dictionary = utils.build_groundtruth_boxes_dictionary( image_groundtruth, class_label_map) challenge_evaluator.add_single_ground_truth_image_info( image_id, groundtruth_dictionary) all_predictions = pd.read_csv(parsed_args.input_predictions) for _, prediction_data in enumerate(all_predictions.groupby('ImageID')): image_id, image_predictions = prediction_data prediction_dictionary = utils.build_predictions_dictionary( image_predictions, class_label_map) challenge_evaluator.add_single_detected_image_info(image_id, prediction_dictionary) metrics = challenge_evaluator.evaluate() with open(parsed_args.output_metrics, 'w') as fid: io_utils.write_csv(fid, metrics) if __name__ == '__main__': parser = argparse.ArgumentParser( description='Evaluate Open Images Object Detection Challenge predictions.' ) parser.add_argument( '--input_annotations_boxes', required=True, help='File with groundtruth boxes annotations.') parser.add_argument( '--input_annotations_labels', required=True, help='File with groundtruth labels annotations') parser.add_argument( '--input_predictions', required=True, help="""File with detection predictions; NOTE: no postprocessing is applied in the evaluation script.""") parser.add_argument( '--input_class_labelmap', required=True, help='Open Images Challenge labelmap.') parser.add_argument( '--output_metrics', required=True, help='Output file with csv metrics') args = parser.parse_args() main(args)
PyTorch/SpeechRecognition/Jasper/platform
platform
DGX1-32GB_Jasper_AMP_8GPU
#!/bin/bash NUM_GPUS=8 AMP=true BATCH_SIZE=64 GRAD_ACCUMULATION_STEPS=1 bash scripts/train.sh "$@"
PyTorch/SpeechSynthesis/HiFiGAN/hifigan
hifigan
__init__
from .entrypoints import nvidia_hifigan
PyTorch/SpeechSynthesis/FastPitch/common/text
text
text_processing
""" adapted from https://github.com/keithito/tacotron """ import re import numpy as np from . import cleaners from .symbols import get_symbols from . import cmudict from .numerical import _currency_re, _expand_currency ######### # REGEX # ######### # Regular expression matching text enclosed in curly braces for encoding _curly_re = re.compile(r'(.*?)\{(.+?)\}(.*)') # Regular expression matching words and not words _words_re = re.compile(r"([a-zA-ZÀ-ž]+['][a-zA-ZÀ-ž]{1,2}|[a-zA-ZÀ-ž]+)|([{][^}]+[}]|[^a-zA-ZÀ-ž{}]+)") # Regular expression separating words enclosed in curly braces for cleaning _arpa_re = re.compile(r'{[^}]+}|\S+') class TextProcessing(object): def __init__(self, symbol_set, cleaner_names, p_arpabet=0.0, handle_arpabet='word', handle_arpabet_ambiguous='ignore', expand_currency=True): self.symbols = get_symbols(symbol_set) self.cleaner_names = cleaner_names # Mappings from symbol to numeric ID and vice versa: self.symbol_to_id = {s: i for i, s in enumerate(self.symbols)} self.id_to_symbol = {i: s for i, s in enumerate(self.symbols)} self.expand_currency = expand_currency # cmudict self.p_arpabet = p_arpabet self.handle_arpabet = handle_arpabet self.handle_arpabet_ambiguous = handle_arpabet_ambiguous def text_to_sequence(self, text): sequence = [] # Check for curly braces and treat their contents as ARPAbet: while len(text): m = _curly_re.match(text) if not m: sequence += self.symbols_to_sequence(text) break sequence += self.symbols_to_sequence(m.group(1)) sequence += self.arpabet_to_sequence(m.group(2)) text = m.group(3) return sequence def sequence_to_text(self, sequence): result = '' for symbol_id in sequence: if symbol_id in self.id_to_symbol: s = self.id_to_symbol[symbol_id] # Enclose ARPAbet back in curly braces: if len(s) > 1 and s[0] == '@': s = '{%s}' % s[1:] result += s return result.replace('}{', ' ') def clean_text(self, text): for name in self.cleaner_names: cleaner = getattr(cleaners, name) if not cleaner: raise Exception('Unknown cleaner: %s' % name) text = cleaner(text) return text def symbols_to_sequence(self, symbols): return [self.symbol_to_id[s] for s in symbols if s in self.symbol_to_id] def arpabet_to_sequence(self, text): return self.symbols_to_sequence(['@' + s for s in text.split()]) def get_arpabet(self, word): arpabet_suffix = '' if word.lower() in cmudict.heteronyms: return word if len(word) > 2 and word.endswith("'s"): arpabet = cmudict.lookup(word) if arpabet is None: arpabet = self.get_arpabet(word[:-2]) arpabet_suffix = ' Z' elif len(word) > 1 and word.endswith("s"): arpabet = cmudict.lookup(word) if arpabet is None: arpabet = self.get_arpabet(word[:-1]) arpabet_suffix = ' Z' else: arpabet = cmudict.lookup(word) if arpabet is None: return word elif arpabet[0] == '{': arpabet = [arpabet[1:-1]] # XXX arpabet might not be a list here if type(arpabet) is not list: return word if len(arpabet) > 1: if self.handle_arpabet_ambiguous == 'first': arpabet = arpabet[0] elif self.handle_arpabet_ambiguous == 'random': arpabet = np.random.choice(arpabet) elif self.handle_arpabet_ambiguous == 'ignore': return word else: arpabet = arpabet[0] arpabet = "{" + arpabet + arpabet_suffix + "}" return arpabet def encode_text(self, text, return_all=False): if self.expand_currency: text = re.sub(_currency_re, _expand_currency, text) text_clean = [self.clean_text(split) if split[0] != '{' else split for split in _arpa_re.findall(text)] text_clean = ' '.join(text_clean) text_clean = cleaners.collapse_whitespace(text_clean) text = text_clean text_arpabet = '' if self.p_arpabet > 0: if self.handle_arpabet == 'sentence': if np.random.uniform() < self.p_arpabet: words = _words_re.findall(text) text_arpabet = [ self.get_arpabet(word[0]) if (word[0] != '') else word[1] for word in words] text_arpabet = ''.join(text_arpabet) text = text_arpabet elif self.handle_arpabet == 'word': words = _words_re.findall(text) text_arpabet = [ word[1] if word[0] == '' else ( self.get_arpabet(word[0]) if np.random.uniform() < self.p_arpabet else word[0]) for word in words] text_arpabet = ''.join(text_arpabet) text = text_arpabet elif self.handle_arpabet != '': raise Exception("{} handle_arpabet is not supported".format( self.handle_arpabet)) text_encoded = self.text_to_sequence(text) if return_all: return text_encoded, text_clean, text_arpabet return text_encoded def get_text_processing(symbol_set, text_cleaners, p_arpabet): if symbol_set in ['english_basic', 'english_basic_lowercase', 'english_expanded']: return TextProcessing(symbol_set, text_cleaners, p_arpabet=p_arpabet) elif symbol_set == 'english_mandarin_basic': from common.text.zh.mandarin_text_processing import MandarinTextProcessing return MandarinTextProcessing(symbol_set, text_cleaners, p_arpabet=p_arpabet) else: raise ValueError(f"No TextProcessing for symbol set {symbol_set} unknown.")
TensorFlow/Segmentation/UNet_3D_Medical
UNet_3D_Medical
.gitignore
.idea/ *.tar .ipynb_checkpoints /_python_build *.pyc __pycache__ *.swp /datasets /results results ./data
PyTorch/Classification/ConvNets/image_classification
image_classification
mixup
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the BSD 3-Clause License (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://opensource.org/licenses/BSD-3-Clause # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn as nn import numpy as np def mixup(alpha, data, target): with torch.no_grad(): bs = data.size(0) c = np.random.beta(alpha, alpha) perm = torch.randperm(bs).cuda() md = c * data + (1 - c) * data[perm, :] mt = c * target + (1 - c) * target[perm, :] return md, mt class MixUpWrapper(object): def __init__(self, alpha, dataloader): self.alpha = alpha self.dataloader = dataloader def mixup_loader(self, loader): for input, target in loader: i, t = mixup(self.alpha, input, target) yield i, t def __iter__(self): return self.mixup_loader(self.dataloader) def __len__(self): return len(self.dataloader) class NLLMultiLabelSmooth(nn.Module): def __init__(self, smoothing=0.0): super(NLLMultiLabelSmooth, self).__init__() self.confidence = 1.0 - smoothing self.smoothing = smoothing def forward(self, x, target): if self.training: x = x.float() target = target.float() logprobs = torch.nn.functional.log_softmax(x, dim=-1) nll_loss = -logprobs * target nll_loss = nll_loss.sum(-1) smooth_loss = -logprobs.mean(dim=-1) loss = self.confidence * nll_loss + self.smoothing * smooth_loss return loss.mean() else: return torch.nn.functional.cross_entropy(x, target)
TensorFlow2/Classification/ConvNets/efficientnet_v1/B0/evaluation
evaluation
evaluation_FP32_V100-32G
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. python3 main.py --cfg config/efficientnet_v1/b0_cfg.py \ --mode eval \ --use_xla \ --model_dir ./output \ --data_dir /data \ --eval_batch_size 256
TensorFlow2/Segmentation/nnUNet/models
models
unet
import tensorflow as tf from models import layers class UNet(tf.keras.Model): def __init__( self, input_shape, n_class, kernels, strides, normalization_layer, negative_slope, dimension, deep_supervision, ): super().__init__() self.dim = dimension self.n_class = n_class self.negative_slope = negative_slope self.norm = normalization_layer self.deep_supervision = deep_supervision filters = [min(2 ** (5 + i), 320 if dimension == 3 else 512) for i in range(len(strides))] self.filters = filters self.kernels = kernels self.strides = strides down_block = layers.ConvBlock self.input_block = self.get_conv_block( conv_block=down_block, filters=filters[0], kernel_size=kernels[0], stride=strides[0], input_shape=input_shape, ) self.downsamples = self.get_block_list( conv_block=down_block, filters=filters[1:], kernels=kernels[1:-1], strides=strides[1:-1] ) self.bottleneck = self.get_conv_block( conv_block=down_block, filters=filters[-1], kernel_size=kernels[-1], stride=strides[-1] ) self.upsamples = self.get_block_list( conv_block=layers.UpsampleBlock, filters=filters[:-1][::-1], kernels=kernels[1:][::-1], strides=strides[1:][::-1], ) self.output_block = self.get_output_block() if self.deep_supervision: self.deep_supervision_heads = [self.get_output_block(), self.get_output_block()] self.n_layers = len(self.upsamples) - 1 def call(self, x, training=True): skip_connections = [] out = self.input_block(x) skip_connections.append(out) for down_block in self.downsamples: out = down_block(out) skip_connections.append(out) out = self.bottleneck(out) decoder_outputs = [] for up_block in self.upsamples: out = up_block(out, skip_connections.pop()) decoder_outputs.append(out) out = self.output_block(out) if training and self.deep_supervision: out = [ out, self.deep_supervision_heads[0](decoder_outputs[-2]), self.deep_supervision_heads[1](decoder_outputs[-3]), ] return out def get_output_block(self): return layers.OutputBlock(filters=self.n_class, dim=self.dim, negative_slope=self.negative_slope) def get_conv_block(self, conv_block, filters, kernel_size, stride, **kwargs): return conv_block( dim=self.dim, stride=stride, norm=self.norm, kernel_size=kernel_size, filters=filters, negative_slope=self.negative_slope, **kwargs, ) def get_block_list(self, conv_block, filters, kernels, strides): layers = [] for filter, kernel, stride in zip(filters, kernels, strides): conv_layer = self.get_conv_block(conv_block, filter, kernel, stride) layers.append(conv_layer) return layers
TensorFlow/Detection/SSD/models/research/object_detection
object_detection
model_main
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Binary to run train and evaluation on object detection model.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl import flags import tensorflow as tf import horovod.tensorflow as hvd import dllogger import time import os from object_detection import model_hparams from object_detection import model_lib from object_detection.utils.exp_utils import AverageMeter, setup_dllogger flags.DEFINE_string( 'model_dir', None, 'Path to output model directory ' 'where event and checkpoint files will be written.') flags.DEFINE_string('pipeline_config_path', None, 'Path to pipeline config ' 'file.') flags.DEFINE_string("raport_file", default="summary.json", help="Path to dlloger json") flags.DEFINE_integer('num_train_steps', None, 'Number of train steps.') flags.DEFINE_boolean('eval_training_data', False, 'If training data should be evaluated for this job. Note ' 'that one call only use this in eval-only mode, and ' '`checkpoint_dir` must be supplied.') flags.DEFINE_integer('sample_1_of_n_eval_examples', 1, 'Will sample one of ' 'every n eval input examples, where n is provided.') flags.DEFINE_integer('sample_1_of_n_eval_on_train_examples', 5, 'Will sample ' 'one of every n train input examples for evaluation, ' 'where n is provided. This is only used if ' '`eval_training_data` is True.') flags.DEFINE_integer('eval_count', 1, 'How many times the evaluation should be run') flags.DEFINE_string( 'hparams_overrides', None, 'Hyperparameter overrides, ' 'represented as a string containing comma-separated ' 'hparam_name=value pairs.') flags.DEFINE_string( 'checkpoint_dir', None, 'Path to directory holding a checkpoint. If ' '`checkpoint_dir` is provided, this binary operates in eval-only mode, ' 'writing resulting metrics to `model_dir`.') flags.DEFINE_boolean( 'allow_xla', False, 'Enable XLA compilation') flags.DEFINE_boolean( 'amp', False, 'Whether to enable AMP ops. When false, uses TF32 on A100 and FP32 on V100 GPUS.') flags.DEFINE_boolean( 'run_once', False, 'If running in eval-only mode, whether to run just ' 'one round of eval vs running continuously (default).' ) FLAGS = flags.FLAGS class DLLoggerHook(tf.estimator.SessionRunHook): def __init__(self, global_batch_size, rank=-1): self.global_batch_size = global_batch_size self.rank = rank setup_dllogger(enabled=True, filename=FLAGS.raport_file, rank=rank) def after_create_session(self, session, coord): self.meters = {} warmup = 100 self.meters['train_throughput'] = AverageMeter(warmup=warmup) def before_run(self, run_context): self.t0 = time.time() return tf.estimator.SessionRunArgs(fetches=['global_step:0', 'learning_rate:0']) def after_run(self, run_context, run_values): throughput = self.global_batch_size/(time.time() - self.t0) global_step, lr = run_values.results self.meters['train_throughput'].update(throughput) def end(self, session): summary = { 'train_throughput': self.meters['train_throughput'].avg, } dllogger.log(step=tuple(), data=summary) def main(unused_argv): tf.logging.set_verbosity(tf.logging.INFO) if FLAGS.amp: os.environ["TF_ENABLE_AUTO_MIXED_PRECISION"] = "1" else: os.environ["TF_ENABLE_AUTO_MIXED_PRECISION"] = "0" hvd.init() flags.mark_flag_as_required('model_dir') flags.mark_flag_as_required('pipeline_config_path') session_config = tf.ConfigProto() session_config.gpu_options.per_process_gpu_memory_fraction=0.9 session_config.gpu_options.visible_device_list = str(hvd.local_rank()) if FLAGS.allow_xla: session_config.graph_options.optimizer_options.global_jit_level = tf.OptimizerOptions.ON_1 model_dir = FLAGS.model_dir if hvd.rank() == 0 else None config = tf.estimator.RunConfig(model_dir=model_dir, session_config=session_config) train_and_eval_dict = model_lib.create_estimator_and_inputs( run_config=config, eval_count=FLAGS.eval_count, hparams=model_hparams.create_hparams(FLAGS.hparams_overrides), pipeline_config_path=FLAGS.pipeline_config_path, train_steps=FLAGS.num_train_steps, sample_1_of_n_eval_examples=FLAGS.sample_1_of_n_eval_examples, sample_1_of_n_eval_on_train_examples=( FLAGS.sample_1_of_n_eval_on_train_examples)) estimator = train_and_eval_dict['estimator'] train_input_fn = train_and_eval_dict['train_input_fn'] eval_input_fns = train_and_eval_dict['eval_input_fns'] eval_on_train_input_fn = train_and_eval_dict['eval_on_train_input_fn'] predict_input_fn = train_and_eval_dict['predict_input_fn'] train_steps = train_and_eval_dict['train_steps'] if FLAGS.checkpoint_dir: if FLAGS.eval_training_data: name = 'training_data' input_fn = eval_on_train_input_fn else: name = 'validation_data' # The first eval input will be evaluated. input_fn = eval_input_fns[0] if FLAGS.run_once: estimator.evaluate(input_fn, steps=None, checkpoint_path=tf.train.latest_checkpoint( FLAGS.checkpoint_dir)) else: model_lib.continuous_eval(estimator, FLAGS.checkpoint_dir, input_fn, train_steps, name) else: train_spec, eval_specs = model_lib.create_train_and_eval_specs( train_input_fn, eval_input_fns, eval_on_train_input_fn, predict_input_fn, train_steps, eval_on_train_data=False) train_hooks = [hvd.BroadcastGlobalVariablesHook(0), DLLoggerHook(hvd.size()*train_and_eval_dict['train_batch_size'], hvd.rank())] eval_hooks = [] for x in range(FLAGS.eval_count): estimator.train(train_input_fn, hooks=train_hooks, steps=train_steps // FLAGS.eval_count) if hvd.rank() == 0: eval_input_fn = eval_input_fns[0] results = estimator.evaluate(eval_input_fn, steps=None, hooks=eval_hooks) if __name__ == '__main__': tf.app.run()
TensorFlow2/Classification/ConvNets/efficientnet_v1/B4/inference
inference
inference_FP32
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. python3 main.py --cfg config/efficientnet_v1/b4_cfg.py \ --mode predict \ --use_xla \ --predict_ckpt /model \ --predict_img_dir /infer_data \ --predict_batch_size 50 \ --predict_img_size 380
PyTorch/SpeechSynthesis/FastPitch/fastpitch
fastpitch
data_function
# ***************************************************************************** # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** import functools import json import re from pathlib import Path import librosa import numpy as np import torch import torch.nn.functional as F from scipy import ndimage from scipy.stats import betabinom import common.layers as layers from common.text.text_processing import get_text_processing from common.utils import load_wav_to_torch, load_filepaths_and_text, to_gpu class BetaBinomialInterpolator: """Interpolates alignment prior matrices to save computation. Calculating beta-binomial priors is costly. Instead cache popular sizes and use img interpolation to get priors faster. """ def __init__(self, round_mel_len_to=100, round_text_len_to=20): self.round_mel_len_to = round_mel_len_to self.round_text_len_to = round_text_len_to self.bank = functools.lru_cache(beta_binomial_prior_distribution) def round(self, val, to): return max(1, int(np.round((val + 1) / to))) * to def __call__(self, w, h): bw = self.round(w, to=self.round_mel_len_to) bh = self.round(h, to=self.round_text_len_to) ret = ndimage.zoom(self.bank(bw, bh).T, zoom=(w / bw, h / bh), order=1) assert ret.shape[0] == w, ret.shape assert ret.shape[1] == h, ret.shape return ret def beta_binomial_prior_distribution(phoneme_count, mel_count, scaling=1.0): P = phoneme_count M = mel_count x = np.arange(0, P) mel_text_probs = [] for i in range(1, M+1): a, b = scaling * i, scaling * (M + 1 - i) rv = betabinom(P, a, b) mel_i_prob = rv.pmf(x) mel_text_probs.append(mel_i_prob) return torch.tensor(np.array(mel_text_probs)) def estimate_pitch(wav, mel_len, method='pyin', normalize_mean=None, normalize_std=None, n_formants=1): if type(normalize_mean) is float or type(normalize_mean) is list: normalize_mean = torch.tensor(normalize_mean) if type(normalize_std) is float or type(normalize_std) is list: normalize_std = torch.tensor(normalize_std) if method == 'pyin': snd, sr = librosa.load(wav) pitch_mel, voiced_flag, voiced_probs = librosa.pyin( snd, fmin=librosa.note_to_hz('C2'), fmax=librosa.note_to_hz('C7'), frame_length=1024) assert np.abs(mel_len - pitch_mel.shape[0]) <= 1.0 pitch_mel = np.where(np.isnan(pitch_mel), 0.0, pitch_mel) pitch_mel = torch.from_numpy(pitch_mel).unsqueeze(0) pitch_mel = F.pad(pitch_mel, (0, mel_len - pitch_mel.size(1))) if n_formants > 1: raise NotImplementedError else: raise ValueError pitch_mel = pitch_mel.float() if normalize_mean is not None: assert normalize_std is not None pitch_mel = normalize_pitch(pitch_mel, normalize_mean, normalize_std) return pitch_mel def normalize_pitch(pitch, mean, std): zeros = (pitch == 0.0) pitch -= mean[:, None] pitch /= std[:, None] pitch[zeros] = 0.0 return pitch class TTSDataset(torch.utils.data.Dataset): """ 1) loads audio,text pairs 2) normalizes text and converts them to sequences of one-hot vectors 3) computes mel-spectrograms from audio files. """ def __init__(self, dataset_path, audiopaths_and_text, text_cleaners, n_mel_channels, symbol_set='english_basic', p_arpabet=1.0, n_speakers=1, load_mel_from_disk=True, load_pitch_from_disk=True, pitch_mean=214.72203, # LJSpeech defaults pitch_std=65.72038, max_wav_value=None, sampling_rate=None, filter_length=None, hop_length=None, win_length=None, mel_fmin=None, mel_fmax=None, prepend_space_to_text=False, append_space_to_text=False, pitch_online_dir=None, betabinomial_online_dir=None, use_betabinomial_interpolator=True, pitch_online_method='pyin', **ignored): # Expect a list of filenames if type(audiopaths_and_text) is str: audiopaths_and_text = [audiopaths_and_text] self.dataset_path = dataset_path self.audiopaths_and_text = load_filepaths_and_text( dataset_path, audiopaths_and_text, has_speakers=(n_speakers > 1)) self.load_mel_from_disk = load_mel_from_disk if not load_mel_from_disk: self.max_wav_value = max_wav_value self.sampling_rate = sampling_rate self.stft = layers.TacotronSTFT( filter_length, hop_length, win_length, n_mel_channels, sampling_rate, mel_fmin, mel_fmax) self.load_pitch_from_disk = load_pitch_from_disk self.prepend_space_to_text = prepend_space_to_text self.append_space_to_text = append_space_to_text assert p_arpabet == 0.0 or p_arpabet == 1.0, ( 'Only 0.0 and 1.0 p_arpabet is currently supported. ' 'Variable probability breaks caching of betabinomial matrices.') self.tp = get_text_processing(symbol_set, text_cleaners, p_arpabet) self.n_speakers = n_speakers self.pitch_tmp_dir = pitch_online_dir self.f0_method = pitch_online_method self.betabinomial_tmp_dir = betabinomial_online_dir self.use_betabinomial_interpolator = use_betabinomial_interpolator if use_betabinomial_interpolator: self.betabinomial_interpolator = BetaBinomialInterpolator() expected_columns = (2 + int(load_pitch_from_disk) + (n_speakers > 1)) assert not (load_pitch_from_disk and self.pitch_tmp_dir is not None) if len(self.audiopaths_and_text[0]) < expected_columns: raise ValueError(f'Expected {expected_columns} columns in audiopaths file. ' 'The format is <mel_or_wav>|[<pitch>|]<text>[|<speaker_id>]') if len(self.audiopaths_and_text[0]) > expected_columns: print('WARNING: Audiopaths file has more columns than expected') to_tensor = lambda x: torch.Tensor([x]) if type(x) is float else x self.pitch_mean = to_tensor(pitch_mean) self.pitch_std = to_tensor(pitch_std) def __getitem__(self, index): # Separate filename and text if self.n_speakers > 1: audiopath, *extra, text, speaker = self.audiopaths_and_text[index] speaker = int(speaker) else: audiopath, *extra, text = self.audiopaths_and_text[index] speaker = None mel = self.get_mel(audiopath) text = self.get_text(text) pitch = self.get_pitch(index, mel.size(-1)) energy = torch.norm(mel.float(), dim=0, p=2) attn_prior = self.get_prior(index, mel.shape[1], text.shape[0]) assert pitch.size(-1) == mel.size(-1) # No higher formants? if len(pitch.size()) == 1: pitch = pitch[None, :] return (text, mel, len(text), pitch, energy, speaker, attn_prior, audiopath) def __len__(self): return len(self.audiopaths_and_text) def get_mel(self, filename): if not self.load_mel_from_disk: audio, sampling_rate = load_wav_to_torch(filename) if sampling_rate != self.stft.sampling_rate: raise ValueError("{} SR doesn't match target {} SR".format( sampling_rate, self.stft.sampling_rate)) audio_norm = audio / self.max_wav_value audio_norm = audio_norm.unsqueeze(0) audio_norm = torch.autograd.Variable(audio_norm, requires_grad=False) melspec = self.stft.mel_spectrogram(audio_norm) melspec = torch.squeeze(melspec, 0) else: melspec = torch.load(filename) # assert melspec.size(0) == self.stft.n_mel_channels, ( # 'Mel dimension mismatch: given {}, expected {}'.format( # melspec.size(0), self.stft.n_mel_channels)) return melspec def get_text(self, text): text = self.tp.encode_text(text) space = [self.tp.encode_text("A A")[1]] if self.prepend_space_to_text: text = space + text if self.append_space_to_text: text = text + space return torch.LongTensor(text) def get_prior(self, index, mel_len, text_len): if self.use_betabinomial_interpolator: return torch.from_numpy(self.betabinomial_interpolator(mel_len, text_len)) if self.betabinomial_tmp_dir is not None: audiopath, *_ = self.audiopaths_and_text[index] fname = Path(audiopath).relative_to(self.dataset_path) fname = fname.with_suffix('.pt') cached_fpath = Path(self.betabinomial_tmp_dir, fname) if cached_fpath.is_file(): return torch.load(cached_fpath) attn_prior = beta_binomial_prior_distribution(text_len, mel_len) if self.betabinomial_tmp_dir is not None: cached_fpath.parent.mkdir(parents=True, exist_ok=True) torch.save(attn_prior, cached_fpath) return attn_prior def get_pitch(self, index, mel_len=None): audiopath, *fields = self.audiopaths_and_text[index] if self.n_speakers > 1: spk = int(fields[-1]) else: spk = 0 if self.load_pitch_from_disk: pitchpath = fields[0] pitch = torch.load(pitchpath) if self.pitch_mean is not None: assert self.pitch_std is not None pitch = normalize_pitch(pitch, self.pitch_mean, self.pitch_std) return pitch if self.pitch_tmp_dir is not None: fname = Path(audiopath).relative_to(self.dataset_path) fname_method = fname.with_suffix('.pt') cached_fpath = Path(self.pitch_tmp_dir, fname_method) if cached_fpath.is_file(): return torch.load(cached_fpath) # No luck so far - calculate wav = audiopath if not wav.endswith('.wav'): wav = re.sub('/mels/', '/wavs/', wav) wav = re.sub('.pt$', '.wav', wav) pitch_mel = estimate_pitch(wav, mel_len, self.f0_method, self.pitch_mean, self.pitch_std) if self.pitch_tmp_dir is not None and not cached_fpath.is_file(): cached_fpath.parent.mkdir(parents=True, exist_ok=True) torch.save(pitch_mel, cached_fpath) return pitch_mel def ensure_disjoint(*tts_datasets): paths = [set(list(zip(*d.audiopaths_and_text))[0]) for d in tts_datasets] assert sum(len(p) for p in paths) == len(set().union(*paths)), ( "Your datasets (train, val) are not disjoint. " "Review filelists and restart training." ) class TTSCollate: """Zero-pads model inputs and targets based on number of frames per step""" def __call__(self, batch): """Collate training batch from normalized text and mel-spec""" # Right zero-pad all one-hot text sequences to max input length input_lengths, ids_sorted_decreasing = torch.sort( torch.LongTensor([len(x[0]) for x in batch]), dim=0, descending=True) max_input_len = input_lengths[0] text_padded = torch.LongTensor(len(batch), max_input_len) text_padded.zero_() for i in range(len(ids_sorted_decreasing)): text = batch[ids_sorted_decreasing[i]][0] text_padded[i, :text.size(0)] = text # Right zero-pad mel-spec num_mels = batch[0][1].size(0) max_target_len = max([x[1].size(1) for x in batch]) # Include mel padded and gate padded mel_padded = torch.FloatTensor(len(batch), num_mels, max_target_len) mel_padded.zero_() output_lengths = torch.LongTensor(len(batch)) for i in range(len(ids_sorted_decreasing)): mel = batch[ids_sorted_decreasing[i]][1] mel_padded[i, :, :mel.size(1)] = mel output_lengths[i] = mel.size(1) n_formants = batch[0][3].shape[0] pitch_padded = torch.zeros(mel_padded.size(0), n_formants, mel_padded.size(2), dtype=batch[0][3].dtype) energy_padded = torch.zeros_like(pitch_padded[:, 0, :]) for i in range(len(ids_sorted_decreasing)): pitch = batch[ids_sorted_decreasing[i]][3] energy = batch[ids_sorted_decreasing[i]][4] pitch_padded[i, :, :pitch.shape[1]] = pitch energy_padded[i, :energy.shape[0]] = energy if batch[0][5] is not None: speaker = torch.zeros_like(input_lengths) for i in range(len(ids_sorted_decreasing)): speaker[i] = batch[ids_sorted_decreasing[i]][5] else: speaker = None attn_prior_padded = torch.zeros(len(batch), max_target_len, max_input_len) attn_prior_padded.zero_() for i in range(len(ids_sorted_decreasing)): prior = batch[ids_sorted_decreasing[i]][6] attn_prior_padded[i, :prior.size(0), :prior.size(1)] = prior # Count number of items - characters in text len_x = [x[2] for x in batch] len_x = torch.Tensor(len_x) audiopaths = [batch[i][7] for i in ids_sorted_decreasing] return (text_padded, input_lengths, mel_padded, output_lengths, len_x, pitch_padded, energy_padded, speaker, attn_prior_padded, audiopaths) def batch_to_gpu(batch): (text_padded, input_lengths, mel_padded, output_lengths, len_x, pitch_padded, energy_padded, speaker, attn_prior, audiopaths) = batch text_padded = to_gpu(text_padded).long() input_lengths = to_gpu(input_lengths).long() mel_padded = to_gpu(mel_padded).float() output_lengths = to_gpu(output_lengths).long() pitch_padded = to_gpu(pitch_padded).float() energy_padded = to_gpu(energy_padded).float() attn_prior = to_gpu(attn_prior).float() if speaker is not None: speaker = to_gpu(speaker).long() # Alignments act as both inputs and targets - pass shallow copies x = [text_padded, input_lengths, mel_padded, output_lengths, pitch_padded, energy_padded, speaker, attn_prior, audiopaths] y = [mel_padded, input_lengths, output_lengths] len_x = torch.sum(output_lengths) return (x, y, len_x)
PyTorch/SpeechSynthesis/FastPitch/triton
triton
config_model_on_triton
#!/usr/bin/env python3 # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r""" To configure model on Triton, you can use `config_model_on_triton.py` script. This will prepare layout of Model Repository, including Model Configuration. ```shell script python ./triton/config_model_on_triton.py \ --model-repository /model_repository \ --model-path /models/exported/model.onnx \ --model-format onnx \ --model-name ResNet50 \ --model-version 1 \ --max-batch-size 32 \ --precision fp16 \ --backend-accelerator trt \ --load-model explicit \ --timeout 120 \ --verbose ``` If Triton server to which we prepare model repository is running with **explicit model control mode**, use `--load-model` argument to send request load_model request to Triton Inference Server. If server is listening on non-default address or port use `--server-url` argument to point server control endpoint. If it is required to use HTTP protocol to communicate with Triton server use `--http` argument. To improve inference throughput you can use [dynamic batching](https://github.com/triton-inference-server/server/blob/master/docs/model_configuration.md#dynamic-batcher) for your model by providing `--preferred-batch-sizes` and `--max-queue-delay-us` parameters. For models which doesn't support batching, set `--max-batch-sizes` to 0. By default Triton will [automatically obtain inputs and outputs definitions](https://github.com/triton-inference-server/server/blob/master/docs/model_configuration.md#auto-generated-model-configuration). but for TorchScript ang TF GraphDef models script uses file with I/O specs. This file is automatically generated when the model is converted to ScriptModule (either traced or scripted). If there is a need to pass different than default path to I/O spec file use `--io-spec` CLI argument. I/O spec file is yaml file with below structure: ```yaml - inputs: - name: input dtype: float32 # np.dtype name shape: [None, 224, 224, 3] - outputs: - name: probabilities dtype: float32 shape: [None, 1001] - name: classes dtype: int32 shape: [None, 1] ``` """ import argparse import logging import time from model_navigator.triton.config import BackendAccelerator as Accelerator from model_navigator.triton.config import TensorRTOptPrecision as Precision from model_navigator.model import Format from model_navigator.log import set_logger, log_dict from model_navigator.triton import ModelConfig, TritonClient, TritonModelStore LOGGER = logging.getLogger("config_model") def _available_enum_values(my_enum): return [item.value for item in my_enum] def main(): parser = argparse.ArgumentParser( description="Create Triton model repository and model configuration", allow_abbrev=False ) parser.add_argument("--model-repository", required=True, help="Path to Triton model repository.") parser.add_argument("--model-path", required=True, help="Path to model to configure") # TODO: automation parser.add_argument( "--model-format", required=True, choices=_available_enum_values(Format), help="Format of model to deploy", ) parser.add_argument("--model-name", required=True, help="Model name") parser.add_argument("--model-version", default="1", help="Version of model (default 1)") parser.add_argument( "--max-batch-size", type=int, default=32, help="Maximum batch size allowed for inference. " "A max_batch_size value of 0 indicates that batching is not allowed for the model", ) # TODO: automation parser.add_argument( "--precision", type=str, default=Precision.FP16.value, choices=_available_enum_values(Precision), help="Model precision (parameter used only by Tensorflow backend with TensorRT optimization)", ) # Triton Inference Server endpoint parser.add_argument( "--server-url", type=str, default="grpc://localhost:8001", help="Inference server URL in format protocol://host[:port] (default grpc://localhost:8001)", ) parser.add_argument( "--load-model", choices=["none", "poll", "explicit"], help="Loading model while Triton Server is in given model control mode", ) parser.add_argument( "--timeout", default=120, help="Timeout in seconds to wait till model load (default=120)", type=int ) # optimization related parser.add_argument( "--backend-accelerator", type=str, choices=_available_enum_values(Accelerator), default=Accelerator.TRT.value, help="Select Backend Accelerator used to serve model", ) parser.add_argument("--number-of-model-instances", type=int, default=1, help="Number of model instances per GPU") parser.add_argument( "--preferred-batch-sizes", type=int, nargs="*", help="Batch sizes that the dynamic batcher should attempt to create. " "In case --max-queue-delay-us is set and this parameter is not, default value will be --max-batch-size", ) parser.add_argument( "--max-queue-delay-us", type=int, default=0, help="Max delay time which dynamic batcher shall wait to form a batch (default 0)", ) parser.add_argument( "--capture-cuda-graph", type=int, default=0, help="Use cuda capture graph (used only by TensorRT platform)", ) parser.add_argument("-v", "--verbose", help="Provide verbose logs", action='store_true') args = parser.parse_args() set_logger(verbose=args.verbose) log_dict("args", vars(args)) config = ModelConfig.create( model_path=args.model_path, # model definition model_name=args.model_name, model_version=args.model_version, model_format=args.model_format, precision=args.precision, max_batch_size=args.max_batch_size, # optimization accelerator=args.backend_accelerator, gpu_engine_count=args.number_of_model_instances, preferred_batch_sizes=args.preferred_batch_sizes or [], max_queue_delay_us=args.max_queue_delay_us, capture_cuda_graph=args.capture_cuda_graph, ) model_store = TritonModelStore(args.model_repository) model_store.deploy_model(model_config=config, model_path=args.model_path) if args.load_model != "none": client = TritonClient(server_url=args.server_url, verbose=args.verbose) client.wait_for_server_ready(timeout=args.timeout) if args.load_model == "explicit": client.load_model(model_name=args.model_name) if args.load_model == "poll": time.sleep(15) client.wait_for_model(model_name=args.model_name, model_version=args.model_version, timeout_s=args.timeout) if __name__ == "__main__": main()
PyTorch/LanguageModeling/BART/utils
utils
logging
# coding=utf-8 # Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # Copyright 2020 Optuna, Hugging Face # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Logging utilities. """ import logging import os import sys import threading from logging import CRITICAL # NOQA from logging import DEBUG # NOQA from logging import ERROR # NOQA from logging import FATAL # NOQA from logging import INFO # NOQA from logging import NOTSET # NOQA from logging import WARN # NOQA from logging import WARNING # NOQA from typing import Optional _lock = threading.Lock() _default_handler: Optional[logging.Handler] = None log_levels = { "debug": logging.DEBUG, "info": logging.INFO, "warning": logging.WARNING, "error": logging.ERROR, "critical": logging.CRITICAL, } _default_log_level = logging.WARNING def _get_default_logging_level(): """ If TRANSFORMERS_VERBOSITY env var is set to one of the valid choices return that as the new default level. If it is not - fall back to ``_default_log_level`` """ env_level_str = os.getenv("TRANSFORMERS_VERBOSITY", None) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f"Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, " f"has to be one of: { ', '.join(log_levels.keys()) }" ) return _default_log_level def _get_library_name() -> str: return __name__.split(".")[0] def _get_library_root_logger() -> logging.Logger: return logging.getLogger(_get_library_name()) def _configure_library_root_logger() -> None: global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return _default_handler = logging.StreamHandler() # Set sys.stderr as stream. _default_handler.flush = sys.stderr.flush # Apply our default configuration to the library root logger. library_root_logger = _get_library_root_logger() library_root_logger.addHandler(_default_handler) library_root_logger.setLevel(_get_default_logging_level()) library_root_logger.propagate = False def _reset_library_root_logger() -> None: global _default_handler with _lock: if not _default_handler: return library_root_logger = _get_library_root_logger() library_root_logger.removeHandler(_default_handler) library_root_logger.setLevel(logging.NOTSET) _default_handler = None def get_logger(name: Optional[str] = None) -> logging.Logger: """ Return a logger with the specified name. This function is not supposed to be directly accessed unless you are writing a custom transformers module. """ if name is None: name = _get_library_name() _configure_library_root_logger() return logging.getLogger(name) def get_verbosity() -> int: """ Return the current level for the 🤗 Transformers's root logger as an int. Returns: :obj:`int`: The logging level. .. note:: 🤗 Transformers has following logging levels: - 50: ``transformers.logging.CRITICAL`` or ``transformers.logging.FATAL`` - 40: ``transformers.logging.ERROR`` - 30: ``transformers.logging.WARNING`` or ``transformers.logging.WARN`` - 20: ``transformers.logging.INFO`` - 10: ``transformers.logging.DEBUG`` """ _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def set_verbosity(verbosity: int) -> None: """ Set the vebosity level for the 🤗 Transformers's root logger. Args: verbosity (:obj:`int`): Logging level, e.g., one of: - ``transformers.logging.CRITICAL`` or ``transformers.logging.FATAL`` - ``transformers.logging.ERROR`` - ``transformers.logging.WARNING`` or ``transformers.logging.WARN`` - ``transformers.logging.INFO`` - ``transformers.logging.DEBUG`` """ _configure_library_root_logger() _get_library_root_logger().setLevel(verbosity) def set_verbosity_info(): """Set the verbosity to the :obj:`INFO` level.""" return set_verbosity(INFO) def set_verbosity_warning(): """Set the verbosity to the :obj:`WARNING` level.""" return set_verbosity(WARNING) def set_verbosity_debug(): """Set the verbosity to the :obj:`DEBUG` level.""" return set_verbosity(DEBUG) def set_verbosity_error(): """Set the verbosity to the :obj:`ERROR` level.""" return set_verbosity(ERROR) def disable_default_handler() -> None: """Disable the default handler of the HuggingFace Transformers's root logger.""" _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler) def enable_default_handler() -> None: """Enable the default handler of the HuggingFace Transformers's root logger.""" _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler) def disable_propagation() -> None: """ Disable propagation of the library log outputs. Note that log propagation is disabled by default. """ _configure_library_root_logger() _get_library_root_logger().propagate = False def enable_propagation() -> None: """ Enable propagation of the library log outputs. Please disable the HuggingFace Transformers's default handler to prevent double logging if the root logger has been configured. """ _configure_library_root_logger() _get_library_root_logger().propagate = True def enable_explicit_format() -> None: """ Enable explicit formatting for every HuggingFace Transformers's logger. The explicit formatter is as follows: :: [LEVELNAME|FILENAME|LINE NUMBER] TIME >> MESSAGE All handlers currently bound to the root logger are affected by this method. """ handlers = _get_library_root_logger().handlers for handler in handlers: formatter = logging.Formatter("[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s") handler.setFormatter(formatter) def reset_format() -> None: """ Resets the formatting for HuggingFace Transformers's loggers. All handlers currently bound to the root logger are affected by this method. """ handlers = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(None)
TensorFlow2/Recommendation/WideAndDeep/triton/deployment_toolkit/library
library
tensorrt
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import sys from pathlib import Path from typing import Dict, NamedTuple, Optional, Union import numpy as np # pytype: disable=import-error try: import pycuda.autoinit import pycuda.driver as cuda except Exception as e: logging.getLogger(__name__).warning(f"Problems with importing pycuda package; {e}") # pytype: enable=import-error import tensorrt as trt # pytype: disable=import-error from ..core import BaseLoader, BaseRunner, BaseRunnerSession, Format, Model, TensorSpec from ..extensions import loaders, runners LOGGER = logging.getLogger(__name__) TRT_LOGGER = trt.Logger(trt.Logger.INFO) # documentation: # https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/index.html # https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#python_samples_section _NP_DTYPE2TRT_DTYPE = { np.dtype("float32"): trt.DataType.FLOAT, np.dtype("float16"): trt.DataType.HALF, np.dtype("int8"): trt.DataType.INT8, np.dtype("int32"): trt.DataType.INT32, np.dtype("bool"): trt.DataType.BOOL, } class TensorRTLoader(BaseLoader): def load(self, model_path: Union[str, Path], **_) -> Model: model_path = Path(model_path) LOGGER.debug(f"Loading TensorRT engine from {model_path}") engine = self._load_engine(model_path) if engine is None: LOGGER.debug("Unable to load engine without plugins. Loading plugins.") trt.init_libnvinfer_plugins(logger=TRT_LOGGER, namespace="") LOGGER.debug(f"Loading TensorRT engine with plugins from {model_path}") engine = self._load_engine(model_path) if engine is None: raise RuntimeError(f"Could not load ICudaEngine from {model_path}") inputs = {} outputs = {} for binding_idx in range(engine.num_bindings): name = engine.get_binding_name(binding_idx) is_input = engine.binding_is_input(binding_idx) dtype = np.dtype(trt.nptype(engine.get_binding_dtype(binding_idx))).name shape = engine.get_binding_shape(binding_idx) if is_input: inputs[name] = TensorSpec(name, dtype, shape) else: outputs[name] = TensorSpec(name, dtype, shape) return Model(engine, None, inputs, outputs) def _load_engine(self, model_path: Path): with model_path.open("rb") as fh, trt.Runtime(TRT_LOGGER) as runtime: engine = runtime.deserialize_cuda_engine(fh.read()) return engine class TRTBuffers(NamedTuple): x_host: Optional[Dict[str, object]] x_dev: Dict[str, object] y_pred_host: Dict[str, object] y_pred_dev: Dict[str, object] class TensorRTRunner(BaseRunner): def __init__(self): pass def init_inference(self, model: Model): return TensorRTRunnerSession(model=model) class TensorRTRunnerSession(BaseRunnerSession): def __init__(self, model: Model): super().__init__(model) assert isinstance(model.handle, trt.ICudaEngine) self._model = model self._has_dynamic_shapes = None self._context = None self._engine: trt.ICudaEngine = self._model.handle self._cuda_context = pycuda.autoinit.context self._input_names = None self._output_names = None self._buffers = None def __enter__(self): self._context = self._engine.create_execution_context() self._context.__enter__() self._input_names = [ self._engine[idx] for idx in range(self._engine.num_bindings) if self._engine.binding_is_input(idx) ] self._output_names = [ self._engine[idx] for idx in range(self._engine.num_bindings) if not self._engine.binding_is_input(idx) ] # all_binding_shapes_specified is True for models without dynamic shapes # so initially this variable is False for models with dynamic shapes self._has_dynamic_shapes = not self._context.all_binding_shapes_specified return self def __exit__(self, exc_type, exc_value, traceback): self._context.__exit__(exc_type, exc_value, traceback) self._input_names = None self._output_names = None # TODO: are cuda buffers dealloc automatically? self._buffers = None def __call__(self, x): buffers = self._prepare_buffers_if_needed(x) bindings = self._update_bindings(buffers) for name in self._input_names: cuda.memcpy_htod(buffers.x_dev[name], buffers.x_host[name]) self._cuda_context.push() self._context.execute_v2(bindings=bindings) self._cuda_context.pop() for name in self._output_names: cuda.memcpy_dtoh(buffers.y_pred_host[name], buffers.y_pred_dev[name]) return buffers.y_pred_host def _update_bindings(self, buffers: TRTBuffers): bindings = [None] * self._engine.num_bindings for name in buffers.y_pred_dev: binding_idx: int = self._engine[name] bindings[binding_idx] = buffers.y_pred_dev[name] for name in buffers.x_dev: binding_idx: int = self._engine[name] bindings[binding_idx] = buffers.x_dev[name] return bindings def _set_dynamic_input_shapes(self, x_host): def _is_shape_dynamic(input_shape): return any([dim is None or dim == -1 for dim in input_shape]) for name in self._input_names: bindings_idx = self._engine[name] data_shape = x_host[name].shape # pytype: disable=attribute-error if self._engine.is_shape_binding(bindings_idx): input_shape = self._context.get_shape(bindings_idx) if _is_shape_dynamic(input_shape): self._context.set_shape_input(bindings_idx, data_shape) else: input_shape = self._engine.get_binding_shape(bindings_idx) if _is_shape_dynamic(input_shape): self._context.set_binding_shape(bindings_idx, data_shape) assert self._context.all_binding_shapes_specified and self._context.all_shape_inputs_specified def _prepare_buffers_if_needed(self, x_host: Dict[str, object]): # pytype: disable=attribute-error new_batch_size = list(x_host.values())[0].shape[0] current_batch_size = list(self._buffers.y_pred_host.values())[0].shape[0] if self._buffers else 0 # pytype: enable=attribute-error if self._has_dynamic_shapes or new_batch_size != current_batch_size: # TODO: are CUDA buffers dealloc automatically? self._set_dynamic_input_shapes(x_host) y_pred_host = {} for name in self._output_names: shape = self._context.get_binding_shape(self._engine[name]) binding_idx: int = self._engine[name] dtype_from_trt_binding = np.dtype(trt.nptype(self._engine.get_binding_dtype(binding_idx))) dtype_from_model_spec = np.dtype(self._model.outputs[name].dtype) assert dtype_from_model_spec == dtype_from_trt_binding y_pred_host[name] = np.zeros(shape, dtype=dtype_from_model_spec) y_pred_dev = {name: cuda.mem_alloc(data.nbytes) for name, data in y_pred_host.items()} # cast host input into binding dtype def _cast_input(name, data): binding_idx: int = self._engine[name] np_dtype = trt.nptype(self._engine.get_binding_dtype(binding_idx)) return data.astype(np_dtype) x_host = {name: _cast_input(name, host_input) for name, host_input in x_host.items()} x_dev = { name: cuda.mem_alloc(host_input.nbytes) for name, host_input in x_host.items() if name in self._input_names # pytype: disable=attribute-error } self._buffers = TRTBuffers(None, x_dev, y_pred_host, y_pred_dev) return self._buffers._replace(x_host=x_host) if "pycuda.driver" in sys.modules: loaders.register_extension(Format.TRT.value, TensorRTLoader) runners.register_extension(Format.TRT.value, TensorRTRunner) else: LOGGER.warning("Do not register TensorRT extension due problems with importing pycuda.driver package.")
PyTorch/Segmentation/MaskRCNN/pytorch/configs
configs
e2e_faster_rcnn_R_50_FPN_1x
MODEL: META_ARCHITECTURE: "GeneralizedRCNN" WEIGHT: "catalog://ImageNetPretrained/MSRA/R-50" BACKBONE: CONV_BODY: "R-50-FPN" OUT_CHANNELS: 256 RPN: USE_FPN: True ANCHOR_STRIDE: (4, 8, 16, 32, 64) PRE_NMS_TOP_N_TRAIN: 2000 PRE_NMS_TOP_N_TEST: 1000 POST_NMS_TOP_N_TEST: 1000 FPN_POST_NMS_TOP_N_TEST: 1000 ROI_HEADS: USE_FPN: True ROI_BOX_HEAD: POOLER_RESOLUTION: 7 POOLER_SCALES: (0.25, 0.125, 0.0625, 0.03125) POOLER_SAMPLING_RATIO: 2 FEATURE_EXTRACTOR: "FPN2MLPFeatureExtractor" PREDICTOR: "FPNPredictor" DATASETS: TRAIN: ("coco_2014_train", "coco_2014_valminusminival") TEST: ("coco_2014_minival",) DATALOADER: SIZE_DIVISIBILITY: 32 SOLVER: BASE_LR: 0.02 WEIGHT_DECAY: 0.0001 STEPS: (60000, 80000) MAX_ITER: 90000
PyTorch/Recommendation/DLRM/tests/feature_specs
feature_specs
10_num
channel_spec: categorical: - cat_0.bin - cat_1.bin - cat_2.bin - cat_3.bin - cat_4.bin - cat_5.bin - cat_6.bin - cat_7.bin - cat_8.bin - cat_9.bin - cat_10.bin - cat_11.bin - cat_12.bin - cat_13.bin - cat_14.bin - cat_15.bin - cat_16.bin - cat_17.bin - cat_18.bin - cat_19.bin - cat_20.bin - cat_21.bin - cat_22.bin - cat_23.bin - cat_24.bin - cat_25.bin label: - label numerical: &id001 - num_0 - num_1 - num_2 - num_3 - num_4 - num_5 - num_6 - num_7 - num_8 - num_9 feature_spec: cat_0.bin: cardinality: 100000 dtype: int32 cat_1.bin: cardinality: 100001 dtype: int32 cat_10.bin: cardinality: 100010 dtype: int32 cat_11.bin: cardinality: 100011 dtype: int32 cat_12.bin: cardinality: 100012 dtype: int32 cat_13.bin: cardinality: 100013 dtype: int32 cat_14.bin: cardinality: 100014 dtype: int32 cat_15.bin: cardinality: 100015 dtype: int32 cat_16.bin: cardinality: 100016 dtype: int32 cat_17.bin: cardinality: 100017 dtype: int32 cat_18.bin: cardinality: 100018 dtype: int32 cat_19.bin: cardinality: 100019 dtype: int32 cat_2.bin: cardinality: 100002 dtype: int32 cat_20.bin: cardinality: 100020 dtype: int32 cat_21.bin: cardinality: 100021 dtype: int32 cat_22.bin: cardinality: 100022 dtype: int32 cat_23.bin: cardinality: 100023 dtype: int32 cat_24.bin: cardinality: 100024 dtype: int32 cat_25.bin: cardinality: 100025 dtype: int32 cat_3.bin: cardinality: 100003 dtype: int32 cat_4.bin: cardinality: 100004 dtype: int32 cat_5.bin: cardinality: 100005 dtype: int32 cat_6.bin: cardinality: 100006 dtype: int32 cat_7.bin: cardinality: 100007 dtype: int32 cat_8.bin: cardinality: 100008 dtype: int32 cat_9.bin: cardinality: 100009 dtype: int32 label: dtype: bool num_0: dtype: float16 num_1: dtype: float16 num_2: dtype: float16 num_3: dtype: float16 num_4: dtype: float16 num_5: dtype: float16 num_6: dtype: float16 num_7: dtype: float16 num_8: dtype: float16 num_9: dtype: float16 metadata: {} source_spec: test: - features: *id001 files: - test/numerical.bin type: split_binary - features: - label files: - test/label.bin type: split_binary - features: - cat_0.bin files: - test/cat_0.bin type: split_binary - features: - cat_1.bin files: - test/cat_1.bin type: split_binary - features: - cat_2.bin files: - test/cat_2.bin type: split_binary - features: - cat_3.bin files: - test/cat_3.bin type: split_binary - features: - cat_4.bin files: - test/cat_4.bin type: split_binary - features: - cat_5.bin files: - test/cat_5.bin type: split_binary - features: - cat_6.bin files: - test/cat_6.bin type: split_binary - features: - cat_7.bin files: - test/cat_7.bin type: split_binary - features: - cat_8.bin files: - test/cat_8.bin type: split_binary - features: - cat_9.bin files: - test/cat_9.bin type: split_binary - features: - cat_10.bin files: - test/cat_10.bin type: split_binary - features: - cat_11.bin files: - test/cat_11.bin type: split_binary - features: - cat_12.bin files: - test/cat_12.bin type: split_binary - features: - cat_13.bin files: - test/cat_13.bin type: split_binary - features: - cat_14.bin files: - test/cat_14.bin type: split_binary - features: - cat_15.bin files: - test/cat_15.bin type: split_binary - features: - cat_16.bin files: - test/cat_16.bin type: split_binary - features: - cat_17.bin files: - test/cat_17.bin type: split_binary - features: - cat_18.bin files: - test/cat_18.bin type: split_binary - features: - cat_19.bin files: - test/cat_19.bin type: split_binary - features: - cat_20.bin files: - test/cat_20.bin type: split_binary - features: - cat_21.bin files: - test/cat_21.bin type: split_binary - features: - cat_22.bin files: - test/cat_22.bin type: split_binary - features: - cat_23.bin files: - test/cat_23.bin type: split_binary - features: - cat_24.bin files: - test/cat_24.bin type: split_binary - features: - cat_25.bin files: - test/cat_25.bin type: split_binary train: - features: *id001 files: - train/numerical.bin type: split_binary - features: - label files: - train/label.bin type: split_binary - features: - cat_0.bin files: - train/cat_0.bin type: split_binary - features: - cat_1.bin files: - train/cat_1.bin type: split_binary - features: - cat_2.bin files: - train/cat_2.bin type: split_binary - features: - cat_3.bin files: - train/cat_3.bin type: split_binary - features: - cat_4.bin files: - train/cat_4.bin type: split_binary - features: - cat_5.bin files: - train/cat_5.bin type: split_binary - features: - cat_6.bin files: - train/cat_6.bin type: split_binary - features: - cat_7.bin files: - train/cat_7.bin type: split_binary - features: - cat_8.bin files: - train/cat_8.bin type: split_binary - features: - cat_9.bin files: - train/cat_9.bin type: split_binary - features: - cat_10.bin files: - train/cat_10.bin type: split_binary - features: - cat_11.bin files: - train/cat_11.bin type: split_binary - features: - cat_12.bin files: - train/cat_12.bin type: split_binary - features: - cat_13.bin files: - train/cat_13.bin type: split_binary - features: - cat_14.bin files: - train/cat_14.bin type: split_binary - features: - cat_15.bin files: - train/cat_15.bin type: split_binary - features: - cat_16.bin files: - train/cat_16.bin type: split_binary - features: - cat_17.bin files: - train/cat_17.bin type: split_binary - features: - cat_18.bin files: - train/cat_18.bin type: split_binary - features: - cat_19.bin files: - train/cat_19.bin type: split_binary - features: - cat_20.bin files: - train/cat_20.bin type: split_binary - features: - cat_21.bin files: - train/cat_21.bin type: split_binary - features: - cat_22.bin files: - train/cat_22.bin type: split_binary - features: - cat_23.bin files: - train/cat_23.bin type: split_binary - features: - cat_24.bin files: - train/cat_24.bin type: split_binary - features: - cat_25.bin files: - train/cat_25.bin type: split_binary
TensorFlow/Detection/SSD/models/research/object_detection/predictors/heads
heads
keypoint_head_test
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for object_detection.predictors.heads.keypoint_head.""" import tensorflow as tf from google.protobuf import text_format from object_detection.builders import hyperparams_builder from object_detection.predictors.heads import keypoint_head from object_detection.protos import hyperparams_pb2 from object_detection.utils import test_case class MaskRCNNKeypointHeadTest(test_case.TestCase): def _build_arg_scope_with_hyperparams(self, op_type=hyperparams_pb2.Hyperparams.FC): hyperparams = hyperparams_pb2.Hyperparams() hyperparams_text_proto = """ activation: NONE regularizer { l2_regularizer { } } initializer { truncated_normal_initializer { } } """ text_format.Merge(hyperparams_text_proto, hyperparams) hyperparams.op = op_type return hyperparams_builder.build(hyperparams, is_training=True) def test_prediction_size(self): keypoint_prediction_head = keypoint_head.MaskRCNNKeypointHead( conv_hyperparams_fn=self._build_arg_scope_with_hyperparams()) roi_pooled_features = tf.random_uniform( [64, 14, 14, 1024], minval=-2.0, maxval=2.0, dtype=tf.float32) prediction = keypoint_prediction_head.predict( features=roi_pooled_features, num_predictions_per_location=1) self.assertAllEqual([64, 1, 17, 56, 56], prediction.get_shape().as_list()) if __name__ == '__main__': tf.test.main()
PyTorch/Classification/GPUNet/triton/runner
runner
configuration
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pathlib from typing import Any, Dict, Optional # method from PEP-366 to support relative import in executed modules if __name__ == "__main__" and __package__ is None: __package__ = pathlib.Path(__file__).parent.name from .task import DataObject class Configuration(DataObject): """ Configuration object - handle single experiment data """ def __init__( self, parameters: Dict, checkpoint: Optional[str], ): """ Args: parameters: Configuration parameters checkpoint: Checkpoint used for experiment """ self.parameters = parameters self.checkpoint = checkpoint
TensorFlow/LanguageModeling/BERT/biobert/scripts
scripts
run_pretraining_pubmed_base_phase_1
#! /bin/bash echo "Container nvidia build = " $NVIDIA_BUILD_ID train_batch_size=${1:-128} learning_rate=${2:-"9.625e-5"} cased=${3:-false} precision=${4:-"fp16"} use_xla=${5:-"true"} num_gpu=${6:-16} warmup_steps=${7:-"1953"} train_steps=${8:-19531} num_accumulation_steps=${9:-32} save_checkpoint_steps=${10:-5000} eval_batch_size=${11:-80} use_fp16="" if [ "$precision" = "fp16" ] ; then echo "fp16 activated!" use_fp16="--amp" else echo "fp32/tf32 activated!" use_fp16="--noamp" fi if [ "$use_xla" = "true" ] ; then use_xla_tag="--use_xla" echo "XLA activated" else use_xla_tag="--nouse_xla" fi if [ "$cased" = "true" ] ; then DO_LOWER_CASE=0 CASING_DIR_PREFIX="cased" else DO_LOWER_CASE=1 CASING_DIR_PREFIX="uncased" fi BERT_CONFIG=/workspace/bert/data/download/google_pretrained_weights/${CASING_DIR_PREFIX}_L-12_H-768_A-12/bert_config.json RESULTS_DIR=/results CHECKPOINTS_DIR=${RESULTS_DIR}/biobert_phase_1 mkdir -p ${CHECKPOINTS_DIR} INIT_CHECKPOINT=/workspace/bert/data/download/google_pretrained_weights/${CASING_DIR_PREFIX}_L-12_H-768_A-12/bert_model.ckpt INPUT_FILES_DIR="/workspace/bert/data/tfrecord/lower_case_${DO_LOWER_CASE}_seq_len_128_max_pred_20_masked_lm_prob_0.15_random_seed_12345_dupe_factor_5_shard_1472_test_split_10/pubmed_baseline/training" EVAL_FILES_DIR="/workspace/bert/data/tfrecord/lower_case_${DO_LOWER_CASE}_seq_len_128_max_pred_20_masked_lm_prob_0.15_random_seed_12345_dupe_factor_5_shard_1472_test_split_10/pubmed_baseline/test" if [ $num_gpu -gt 1 ] ; then mpi_command="mpirun -np $num_gpu -H localhost:$num_gpu \ --allow-run-as-root -bind-to none -map-by slot \ -x NCCL_DEBUG=INFO \ -x LD_LIBRARY_PATH \ -x PATH -mca pml ob1 -mca btl ^openib" use_hvd="--horovod" else mpi_command="" use_hvd="" fi export GBS=$(expr $train_batch_size \* $num_gpus \* num_accumulation_steps) printf -v TAG "tf_bert_bio_1n_phase1_cased_%s_%s_gbs%d" "$cased" "$precision" $GBS DATESTAMP=`date +'%y%m%d%H%M%S'` LOGFILE=$RESULTS_DIR/$TAG.$DATESTAMP.log printf "Logs written to %s\n" "$LOGFILE" $mpi python3 /workspace/bert/run_pretraining.py \ --input_files_dir=$INPUT_FILES_DIR \ --eval_files_dir=$EVAL_FILES_DIR \ --output_dir=$CHECKPOINTS_DIR \ --bert_config_file=$BERT_CONFIG \ --do_train=True \ --do_eval=True \ --train_batch_size=$train_batch_size \ --eval_batch_size=$eval_batch_size \ --max_seq_length=128 \ --max_predictions_per_seq=20 \ --num_train_steps=$train_steps \ --num_warmup_steps=$warmup_steps \ --save_checkpoints_steps=$save_checkpoint_steps \ --num_accumulation_steps=$num_accumulation_steps \ --learning_rate=$learning_rate \ --report_loss \ $use_hvd $use_fp16 $use_xla_tag \ --init_checkpoint=$INIT_CHECKPOINT |& tee $LOGFILE
TensorFlow/Segmentation/UNet_Medical
UNet_Medical
main
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Entry point of the application. This file serves as entry point to the training of UNet for segmentation of neuronal processes. Example: Training can be adjusted by modifying the arguments specified below:: $ python main.py --exec_mode train --model_dir /datasets ... """ import os import horovod.tensorflow as hvd import math import numpy as np import tensorflow as tf from PIL import Image from utils.setup import prepare_model_dir, get_logger, build_estimator, set_flags from utils.cmd_util import PARSER, parse_args from utils.data_loader import Dataset from utils.hooks.profiling_hook import ProfilingHook from utils.hooks.training_hook import TrainingHook def main(_): """ Starting point of the application """ hvd.init() set_flags() params = parse_args(PARSER.parse_args()) model_dir = prepare_model_dir(params) logger = get_logger(params) estimator = build_estimator(params, model_dir) dataset = Dataset(data_dir=params.data_dir, batch_size=params.batch_size, fold=params.crossvalidation_idx, augment=params.augment, gpu_id=hvd.rank(), num_gpus=hvd.size(), seed=params.seed) if 'train' in params.exec_mode: max_steps = params.max_steps // (1 if params.benchmark else hvd.size()) hooks = [hvd.BroadcastGlobalVariablesHook(0), TrainingHook(logger, max_steps=max_steps, log_every=params.log_every)] if params.benchmark and hvd.rank() == 0: hooks.append(ProfilingHook(logger, batch_size=params.batch_size, log_every=params.log_every, warmup_steps=params.warmup_steps, mode='train')) estimator.train( input_fn=dataset.train_fn, steps=max_steps, hooks=hooks) if 'evaluate' in params.exec_mode: if hvd.rank() == 0: results = estimator.evaluate(input_fn=dataset.eval_fn, steps=dataset.eval_size) logger.log(step=(), data={"eval_ce_loss": float(results["eval_ce_loss"]), "eval_dice_loss": float(results["eval_dice_loss"]), "eval_total_loss": float(results["eval_total_loss"]), "eval_dice_score": float(results["eval_dice_score"])}) if 'predict' in params.exec_mode: if hvd.rank() == 0: predict_steps = dataset.test_size hooks = None if params.benchmark: hooks = [ProfilingHook(logger, batch_size=params.batch_size, log_every=params.log_every, warmup_steps=params.warmup_steps, mode="test")] predict_steps = params.warmup_steps * 2 * params.batch_size predictions = estimator.predict( input_fn=lambda: dataset.test_fn(count=math.ceil(predict_steps / dataset.test_size)), hooks=hooks) binary_masks = [np.argmax(p['logits'], axis=-1).astype(np.uint8) * 255 for p in predictions] if not params.benchmark: multipage_tif = [Image.fromarray(mask).resize(size=(512, 512), resample=Image.BILINEAR) for mask in binary_masks] output_dir = os.path.join(params.model_dir, 'pred') if not os.path.exists(output_dir): os.makedirs(output_dir) multipage_tif[0].save(os.path.join(output_dir, 'test-masks.tif'), compression="tiff_deflate", save_all=True, append_images=multipage_tif[1:]) if __name__ == '__main__': tf.compat.v1.app.run()
PyTorch/LanguageModeling/BERT/triton
triton
run_performance_on_triton
#!/usr/bin/env python3 # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import csv import logging import os import pathlib import shutil from distutils.version import LooseVersion from enum import Enum from importlib.metadata import version from typing import Any, Dict, List import yaml # method from PEP-366 to support relative import in executed modules if __package__ is None: __package__ = pathlib.Path(__file__).parent.name from .deployment_toolkit.core import BatchingMode, EvaluationMode, MeasurementMode, OfflineMode, PerformanceTool from .deployment_toolkit.model_analyzer import ModelAnalyzer, ModelAnalyzerConfig, ModelAnalyzerMode from .deployment_toolkit.perf_analyzer import PerfAnalyzer, PerfAnalyzerConfig from .deployment_toolkit.report import save_results, show_results, sort_results from .deployment_toolkit.utils import parse_server_url from .deployment_toolkit.warmup import performance_evaluation_warmup LOGGER = logging.getLogger("run_performance_on_triton") TRITON_CLIENT_VERSION = LooseVersion(version("tritonclient")) def _log_dict(title: str, dict_: Dict[str, Any]): LOGGER.info(title) for key, value in dict_.items(): LOGGER.info(f"\t{key} = {value}") def _calculate_average_latency(r): avg_sum_fields = [ "Client Send", "Network+Server Send/Recv", "Server Queue", "Server Compute", "Server Compute Input", "Server Compute Infer", "Server Compute Output", "Client Recv", ] avg_latency = sum([int(r.get(f, 0)) for f in avg_sum_fields]) return avg_latency def _update_performance_data(results: List, batch_size: int, performance_partial_file: str): row: Dict = {"Batch": batch_size} with open(performance_partial_file) as csvfile: reader = csv.DictReader(csvfile) for r in reader: avg_latency = _calculate_average_latency(r) row = {**row, **r, "avg latency": avg_latency} results.append(row) def _model_analyzer_evaluation( server_url: str, model_name: str, input_data: str, input_shapes: List[str], batch_sizes: List[int], number_of_triton_instances: int, number_of_model_instances: int, measurement_mode: MeasurementMode, measurement_interval: int, measurement_request_count: int, concurrency_steps: int, batching_mode: BatchingMode, evaluation_mode: EvaluationMode, offline_mode: OfflineMode, model_repository: str, result_path: str, output_shared_memory_size: int = 102400, verbose: bool = False, ): _log_dict( "Selected configuration", { "server_url": server_url, "model_name": model_name, "input_data": input_data, "input_shapes": input_shapes, "batch_sizes": batch_sizes, "number_of_triton_instances": number_of_triton_instances, "number_of_model_instances": number_of_model_instances, "measurement_mode": measurement_mode, "measurement_interval": measurement_interval, "measurement_request_count": measurement_request_count, "concurrency_steps": concurrency_steps, "batching_mode": batching_mode, "evaluation_mode": evaluation_mode, "offline_mode": offline_mode, "output_shared_memory_size": output_shared_memory_size, "model_repository": model_repository, "result_path": result_path, "verbose": verbose, }, ) perf_analyzer_config = { "input-data": input_data, "measurement-interval": measurement_interval, } if TRITON_CLIENT_VERSION >= LooseVersion("2.11.0"): perf_analyzer_config["measurement-mode"] = measurement_mode.value perf_analyzer_config["measurement-request-count"] = measurement_request_count if evaluation_mode == EvaluationMode.OFFLINE: perf_analyzer_config["shared-memory"] = offline_mode.value perf_analyzer_config["output-shared-memory-size"] = output_shared_memory_size if input_shapes: perf_analyzer_config["shape"] = input_shapes[0] LOGGER.warning("Model Analyzer support only single shape param for Perf Analyzer.") if batching_mode == BatchingMode.STATIC: batch_sizes = batch_sizes concurrency = [number_of_triton_instances] elif batching_mode == BatchingMode.DYNAMIC: max_batch_size = max(batch_sizes) max_total_requests = 2 * max_batch_size * number_of_triton_instances * number_of_model_instances max_concurrency = min(256, max_total_requests) step = max(1, max_concurrency // concurrency_steps) min_concurrency = step concurrency = {"start": min_concurrency, "stop": max_concurrency, "step": step} batch_sizes = [max(1, max_total_requests // 256)] else: raise ValueError(f"Unsupported batching mode: {batching_mode}") protocol, host, port = parse_server_url(server_url) checkpoints = pathlib.Path("./checkpoints") if checkpoints.is_dir(): shutil.rmtree(checkpoints.as_posix()) checkpoints.mkdir(parents=True, exist_ok=True) config = { "model_repository": model_repository, "triton_launch_mode": "remote", "run_config_search_disable": True, "perf_analyzer_flags": perf_analyzer_config, "perf_analyzer_timeout": 3600, # Workaround for Perf Analyzer timeout - use 1h "profile_models": [model_name], "batch_sizes": batch_sizes, "concurrency": concurrency, "verbose": verbose, "checkpoint_directory": checkpoints.as_posix(), "override_output_model_repository": True, "client_protocol": protocol, f"triton_{protocol}_endpoint": f"{host}:{port}", } if verbose: _log_dict("Model Analyzer profiling configuration", config) with open("config.yaml", "w") as file: yaml.safe_dump(config, file) config = ModelAnalyzerConfig() model_analyzer = ModelAnalyzer(config=config) model_analyzer.run(mode=ModelAnalyzerMode.PROFILE, verbose=verbose) result_path = pathlib.Path(result_path) result_path.mkdir(parents=True, exist_ok=True) for file in checkpoints.iterdir(): if not file.is_file() or file.suffix != ".ckpt": continue LOGGER.info(f"Moving checkpoint {file.name} to {result_path}") shutil.move(file, result_path / file.name) inference_output_fields = [ "batch_size", "concurrency", "perf_throughput", "perf_latency", "perf_client_send_recv", "perf_client_response_wait", "perf_server_queue", "perf_server_compute_input", "perf_server_compute_infer", "perf_server_compute_output", ] gpu_output_fields = [ "gpu_uuid", "batch_size", "concurrency", "gpu_used_memory", "gpu_free_memory", "gpu_utilization", "gpu_power_usage", ] filename_model_inference = "metrics-model-inference.csv" filename_model_gpu = "metrics-model-gpu.csv" config = { "analysis_models": model_name, "checkpoint_directory": result_path.as_posix(), "export_path": "/tmp", "inference_output_fields": inference_output_fields, "gpu_output_fields": gpu_output_fields, "filename_model_inference": filename_model_inference, "filename_model_gpu": filename_model_gpu, "summarize": False, } if verbose: _log_dict("Model Analyzer analysis configuration", config) with open("config.yaml", "w") as file: yaml.safe_dump(config, file) config = ModelAnalyzerConfig() model_analyzer = ModelAnalyzer(config=config) model_analyzer.run(mode=ModelAnalyzerMode.ANALYZE, verbose=verbose) inference_metrics_file = pathlib.Path("/tmp") / "results" / filename_model_inference gpu_metrics_file = pathlib.Path("/tmp") / "results" / filename_model_gpu for file in [inference_metrics_file, gpu_metrics_file]: LOGGER.info(f"Moving metrics {file.name} to {result_path}") shutil.move(file, result_path / file.name) def _perf_analyzer_evaluation( server_url: str, model_name: str, input_data: str, input_shapes: List[str], batch_sizes: List[int], number_of_triton_instances: int, number_of_model_instances: int, measurement_mode: MeasurementMode, measurement_interval: int, measurement_request_count: int, concurrency_steps: int, batching_mode: BatchingMode, evaluation_mode: EvaluationMode, offline_mode: OfflineMode, result_path: str, output_shared_memory_size: int = 102400, verbose: bool = False, ): protocol, host, port = parse_server_url(server_url) if batching_mode == BatchingMode.STATIC: batch_sizes = batch_sizes max_concurrency = 1 min_concurrency = 1 step = 1 elif batching_mode == BatchingMode.DYNAMIC: max_batch_size = max(batch_sizes) max_total_requests = 2 * max_batch_size * number_of_triton_instances * number_of_model_instances max_concurrency = min(256, max_total_requests) step = max(1, max_concurrency // concurrency_steps) min_concurrency = step batch_sizes = [max(1, max_total_requests // 256)] else: raise ValueError(f"Unsupported batching mode: {batching_mode}") _log_dict( "Selected configuration", { "server_url": server_url, "model_name": model_name, "input_data": input_data, "input_shapes": input_shapes, "batch_sizes": batch_sizes, "number_of_triton_instances": number_of_triton_instances, "number_of_model_instances": number_of_model_instances, "measurement_mode": measurement_mode, "measurement_interval": measurement_interval, "measurement_request_count": measurement_request_count, "concurrency_steps": concurrency_steps, "batching_mode": batching_mode, "evaluation_mode": evaluation_mode, "offline_mode": offline_mode, "output_shared_memory_size": output_shared_memory_size, "result_path": result_path, "verbose": verbose, }, ) results: List[Dict] = list() for batch_size in batch_sizes: for concurrency in range(min_concurrency, max_concurrency + step, step): performance_partial_file = f"triton_performance_{evaluation_mode.value.lower()}_{batching_mode.value.lower()}_partial_{batch_size}_{concurrency}.csv" params = { "model-name": model_name, "model-version": 1, "batch-size": batch_size, "url": f"{host}:{port}", "protocol": protocol, "input-data": input_data, "measurement-interval": measurement_interval, "concurrency-range": f"{concurrency}:{concurrency}:1", "latency-report-file": performance_partial_file, } if verbose: params["extra-verbose"] = True if TRITON_CLIENT_VERSION >= LooseVersion("2.11.0"): params["measurement-mode"] = measurement_mode.value params["measurement-request-count"] = measurement_request_count if evaluation_mode == EvaluationMode.OFFLINE: params["shared-memory"] = offline_mode.value params["output-shared-memory-size"] = output_shared_memory_size if verbose: _log_dict(f"Perf Analyzer config for batch_size: {batch_size} and concurrency: {concurrency}", params) config = PerfAnalyzerConfig() for param, value in params.items(): config[param] = value for shape in input_shapes: config["shape"] = shape perf_analyzer = PerfAnalyzer(config=config) perf_analyzer.run() _update_performance_data(results, batch_size, performance_partial_file) os.remove(performance_partial_file) results = sort_results(results=results) save_results(filename=result_path, data=results) show_results(results=results) def _run_performance_analysis( server_url: str, model_name: str, input_data: str, input_shapes: List[str], batch_sizes: List[int], number_of_triton_instances: int, number_of_model_instances: int, measurement_mode: MeasurementMode, measurement_interval: int, measurement_request_count: int, concurrency_steps: int, batching_mode: BatchingMode, evaluation_mode: EvaluationMode, offline_mode: OfflineMode, output_shared_memory_size: int, performance_tool: PerformanceTool, model_repository: str, result_path: str, warmup: bool, verbose: bool, ): log_level = logging.INFO if not verbose else logging.DEBUG log_format = "%(asctime)s %(levelname)s %(name)s %(message)s" logging.basicConfig(level=log_level, format=log_format) if warmup: LOGGER.info("Running warmup before the main test") performance_evaluation_warmup( server_url=server_url, model_name=model_name, input_data=input_data, input_shapes=input_shapes, batch_sizes=batch_sizes, number_of_triton_instances=number_of_triton_instances, number_of_model_instances=number_of_model_instances, measurement_mode=measurement_mode, measurement_interval=measurement_interval, measurement_request_count=measurement_request_count, batching_mode=batching_mode, evaluation_mode=evaluation_mode, offline_mode=offline_mode, output_shared_memory_size=output_shared_memory_size, ) if performance_tool == PerformanceTool.MODEL_ANALYZER: LOGGER.info("Using Model Analyzer for performance evaluation") _model_analyzer_evaluation( server_url=server_url, model_name=model_name, input_data=input_data, input_shapes=input_shapes, batch_sizes=batch_sizes, number_of_triton_instances=number_of_triton_instances, number_of_model_instances=number_of_model_instances, measurement_mode=measurement_mode, measurement_interval=measurement_interval, measurement_request_count=measurement_request_count, concurrency_steps=concurrency_steps, batching_mode=batching_mode, evaluation_mode=evaluation_mode, offline_mode=offline_mode, output_shared_memory_size=output_shared_memory_size, model_repository=model_repository, result_path=result_path, verbose=verbose, ) elif performance_tool == PerformanceTool.PERF_ANALYZER: LOGGER.info("Using Perf Analyzer for performance evaluation") _perf_analyzer_evaluation( server_url=server_url, model_name=model_name, input_data=input_data, input_shapes=input_shapes, batch_sizes=batch_sizes, number_of_triton_instances=number_of_triton_instances, number_of_model_instances=number_of_model_instances, measurement_mode=measurement_mode, measurement_interval=measurement_interval, measurement_request_count=measurement_request_count, concurrency_steps=concurrency_steps, batching_mode=batching_mode, evaluation_mode=evaluation_mode, offline_mode=offline_mode, output_shared_memory_size=output_shared_memory_size, result_path=result_path, verbose=verbose, ) else: raise ValueError(f"Unsupported performance tool {performance_tool}") class MeasurementMode(Enum): """ Available measurement stabilization modes """ COUNT_WINDOWS = "count_windows" TIME_WINDOWS = "time_windows" def main(): parser = argparse.ArgumentParser() parser.add_argument( "--server-url", type=str, required=False, default="grpc://127.0.0.1:8001", help="Url to Triton server", ) parser.add_argument( "--model-name", type=str, required=True, help="Name of the model to test", ) parser.add_argument( "--input-data", type=str, required=False, default="random", help="Input data to perform profiling.", ) parser.add_argument( "--input-shapes", action="append", required=False, help="Input data shape in form INPUT_NAME:<full_shape_without_batch_axis>.", ) parser.add_argument( "--batch-sizes", type=str, required=True, help="List of batch sizes to tests. Comma separated.", ) parser.add_argument( "--number-of-triton-instances", type=int, default=1, help="Number of Triton Server instances", ) parser.add_argument( "--number-of-model-instances", type=int, default=1, help="Number of models instances on Triton Server", ) parser.add_argument( "--measurement-mode", choices=[item.value for item in MeasurementMode], default=MeasurementMode.COUNT_WINDOWS.value, type=str, help="Select measurement mode " "'time_windows' stabilize performance on measurement window. " "'count_windows' stabilize performance on number of samples.", ) parser.add_argument( "--measurement-interval", required=False, help="Time window perf_analyzer will wait to stabilize the measurement", default=5000, type=int, ) parser.add_argument( "--measurement-request-count", required=False, help="Number of samples on which perf_analyzer will stabilize the measurement", default=50, type=int, ) parser.add_argument( "--concurrency-steps", help="Define number of concurrency steps used for dynamic batching tests", default=32, type=int, ) parser.add_argument( "--batching-mode", choices=[item.value for item in BatchingMode], default=BatchingMode.STATIC.value, type=str, help="Select batching mode " "'static' run static batching scenario. " "'dynamic' run dynamic batching scenario.", ) parser.add_argument( "--evaluation-mode", choices=[item.value for item in EvaluationMode], default=EvaluationMode.OFFLINE.value, type=str, help="Select evaluation mode " "'offline' run offline analysis and use GPU memory to pass tensors. " "'online' run online analysis and use HTTP protocol.", ) parser.add_argument( "--offline-mode", choices=[item.value for item in OfflineMode], default=OfflineMode.SYSTEM.value, type=str, help="Select offline mode " "'system' pass tensors through CPU RAM memory. " "'cuda' pass tensors through GPU RAM memory.", ) parser.add_argument( "--output-shared-memory-size", default=100240, type=int, help="Size of memory buffer allocated for output with dynamic shapes in bytes. " "Has to be equal to maximal size of output tensor.", ) parser.add_argument( "--performance-tool", choices=[item.value for item in PerformanceTool], default=PerformanceTool.MODEL_ANALYZER.value, type=str, help="Select performance tool for measurement mode " "'model_analyzer' use Model Analyzer " "'perf_analyzer' use Perf Analyzer", ) parser.add_argument( "--model-repository", default=None, type=str, help="Path to model repository. Valid when using Model Analyzer", ) parser.add_argument("--result-path", type=str, required=True, help="Path where results files is stored.") parser.add_argument( "--warmup", help="Enable model warmup before performance test", action="store_true", default=False ) parser.add_argument("-v", "--verbose", help="Verbose logs", action="store_true", default=False) args = parser.parse_args() batch_sizes = list(map(lambda x: int(x), args.batch_sizes.split(","))) _run_performance_analysis( server_url=args.server_url, model_name=args.model_name, input_data=args.input_data, input_shapes=args.input_shapes or [], batch_sizes=batch_sizes, number_of_triton_instances=args.number_of_triton_instances, number_of_model_instances=args.number_of_model_instances, measurement_mode=MeasurementMode(args.measurement_mode), measurement_interval=args.measurement_interval, measurement_request_count=args.measurement_request_count, concurrency_steps=args.concurrency_steps, batching_mode=BatchingMode(args.batching_mode), evaluation_mode=EvaluationMode(args.evaluation_mode), offline_mode=OfflineMode(args.offline_mode), output_shared_memory_size=args.output_shared_memory_size, performance_tool=PerformanceTool(args.performance_tool), model_repository=args.model_repository, result_path=args.result_path, warmup=args.warmup, verbose=args.verbose, ) if __name__ == "__main__": main()
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/triton/runner
runner
pipeline
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pathlib from typing import Dict, Tuple # method from PEP-366 to support relative import in executed modules if __name__ == "__main__" and __package__ is None: __package__ = pathlib.Path(__file__).parent.name from .stages import ( ConversionStage, DeployStage, ExportStage, ResultsType, TritonPerformanceOfflineStage, TritonPerformanceOnlineStage, TritonPreparePerformanceProfilingDataStage, ) class Pipeline: """ Definition of stages that has to be executed before and during experiments """ # Stages to execute as part of single experiment _experiment_stages = [ ExportStage.label, ConversionStage.label, DeployStage.label, TritonPreparePerformanceProfilingDataStage.label, TritonPerformanceOfflineStage.label, TritonPerformanceOnlineStage.label, ] def __init__(self): """ Initialize pipeline """ self._stages: Dict = dict() def model_export(self, commands: Tuple[str, ...]) -> None: """ Model export stage Args: commands: Commands to be executed as part of stage Returns: None """ stage = ExportStage(commands=commands) self._stages[stage.label] = stage def model_conversion(self, commands: Tuple[str, ...]) -> None: """ Model conversion stage Args: commands: Commands to be executed as part of stage Returns: None """ stage = ConversionStage(commands=commands) self._stages[stage.label] = stage def model_deploy(self, commands: Tuple[str, ...]) -> None: """ Model deployment stage Args: commands: Commands to be executed as part of stage Returns: None """ stage = DeployStage(commands=commands) self._stages[stage.label] = stage def triton_prepare_performance_profiling_data(self, commands: Tuple[str, ...]) -> None: """ Model profiling data creation stage Args: commands: Commands to be executed as part of stage Returns: None """ stage = TritonPreparePerformanceProfilingDataStage(commands=commands) self._stages[stage.label] = stage def triton_performance_offline_tests(self, commands: Tuple[str, ...], result_path: str) -> None: """ Model performance offline test stage Args: commands: Commands to be executed as part of stage result_path: Path where results file is stored Returns: None """ stage = TritonPerformanceOfflineStage( commands=commands, result_path=result_path, result_type=ResultsType.TRITON_PERFORMANCE_OFFLINE, ) self._stages[stage.label] = stage def triton_performance_online_tests(self, commands: Tuple[str, ...], result_path: str) -> None: """ Model performance online test stage Args: commands: Commands to be executed as part of stage result_path: Path where results file is stored Returns: None """ stage = TritonPerformanceOnlineStage( commands=commands, result_path=result_path, result_type=ResultsType.TRITON_PERFORMANCE_ONLINE, ) self._stages[stage.label] = stage def stages(self): """ Generate stages which should be run per experiment Returns: Generator with stages object """ for stage_name in self._experiment_stages: stage = self._stages.get(stage_name) if not stage: continue yield stage
TensorFlow2/Segmentation/Contrib/UNet3P/data_preparation
data_preparation
README
For data two options are available - [Train on LiTS Data](#lits-liver-tumor-segmentation-challenge) - [Train on custom data](#train-on-custom-data) ## LiTS Liver Tumor Segmentation challenge This dataset consist of 131 Liver CT Scans. Register [here](https://competitions.codalab.org/competitions/17094) to get dataset access. Go to participate &rarr; Training Data to get dataset link. Download Training Batch 1 and Training Batch 2 zip files and past them under data folder. `Training Batch 1` size is 3.97GB and `Training Batch 2` zip file size is 11.5GB. Inside main directory `/workspace/unet3p` run below command to extract zip files ```shell bash data_preparation/extract_data.sh ``` After extraction `Training Batch 1` folder size will be 11.4GB and `Training Batch 2` folder size will be 38.5GB. - `Training Batch 1` consist of 28 scans which are used for testing - `Training Batch 2` consist of 103 scans which are used for training Default directory structure looks like this ├── data/ │ ├── Training Batch 1/ ├── segmentation-0.nii ├── volume-0.nii ├── ... ├── volume-27.nii │ ├── Training Batch 2/ ├── segmentation-28.nii ├── volume-28.nii ├── ... ├── volume-130.nii For testing, you can have any number of files in Training Batch 1 and Training Batch 2. But make sure the naming convention is similar. To prepare LiTS dataset for training run ``` python data_preparation/preprocess_data.py ``` > Note: Because of the extensive preprocessing, it will take some time, so relax and wait. #### Final directory After completion, you will have a directories like this ├── data/ │ ├── train/ ├── images ├── image_28_0.png ├── ... ├── mask ├── mask_28_0.png ├── ... │ ├── val/ ├── images ├── image_0_0.png ├── ... ├── mask ├── mask_0_0.png ├── ... After processing the `train` folder size will be 5GB and `val` folder size will be 1.7GB. #### Free space (Optional) At this stage you can delete the intermediate scans files to free space, run below command ```shell bash data_preparation/delete_extracted_scans_data.sh ``` You can also delete the data zip files using below command, but remember you cannot retrieve them back ```shell bash data_preparation/delete_zip_data.sh ``` > Note: It is recommended to delete scan files but not zip data because you may need it again. ## Train on custom data To train on custom dateset it's advised that you follow the same train and val directory structure like mentioned [above](#final-directory). In our case image file name can be mapped to it's corresponding mask file name by replacing `image` text with `mask`. If your data has different mapping then you need to update [image_to_mask_name](./../utils/images_utils.py#L63) function which is responsible for converting image name to it's corresponding file name. Each image should be a color image with 3 channels and `RGB` color format. Each mask is considered as a gray scale image, where each pixel value is the class on which each pixel belongs. Congratulations, now you can start training and testing on your new dataset!
PyTorch/LanguageModeling/Transformer-XL
Transformer-XL
.gitignore
**/.DS_Store __pycache__/ data/ results/ pytorch/LM-TFM/* *.out *.log
PyTorch/SpeechSynthesis/FastPitch/triton
triton
requirements
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. networkx==2.5 numpy onnx==1.8.0 onnxruntime==1.5.2 pycuda>=2019.1.2 PyYAML>=5.2 tqdm>=4.44.1 tabulate>=0.8.7 natsort>=7.0.0 # use tags instead of branch names - because there might be docker cache hit causing not fetching most recent changes on branch model_navigator @ git+https://github.com/triton-inference-server/[email protected]#egg=model_navigator
TensorFlow/Detection/SSD/models/research/object_detection/core
core
region_similarity_calculator
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Region Similarity Calculators for BoxLists. Region Similarity Calculators compare a pairwise measure of similarity between the boxes in two BoxLists. """ from abc import ABCMeta from abc import abstractmethod import tensorflow as tf from object_detection.core import box_list_ops from object_detection.core import standard_fields as fields class RegionSimilarityCalculator(object): """Abstract base class for region similarity calculator.""" __metaclass__ = ABCMeta def compare(self, boxlist1, boxlist2, scope=None): """Computes matrix of pairwise similarity between BoxLists. This op (to be overridden) computes a measure of pairwise similarity between the boxes in the given BoxLists. Higher values indicate more similarity. Note that this method simply measures similarity and does not explicitly perform a matching. Args: boxlist1: BoxList holding N boxes. boxlist2: BoxList holding M boxes. scope: Op scope name. Defaults to 'Compare' if None. Returns: a (float32) tensor of shape [N, M] with pairwise similarity score. """ with tf.name_scope(scope, 'Compare', [boxlist1, boxlist2]) as scope: return self._compare(boxlist1, boxlist2) @abstractmethod def _compare(self, boxlist1, boxlist2): pass class IouSimilarity(RegionSimilarityCalculator): """Class to compute similarity based on Intersection over Union (IOU) metric. This class computes pairwise similarity between two BoxLists based on IOU. """ def _compare(self, boxlist1, boxlist2): """Compute pairwise IOU similarity between the two BoxLists. Args: boxlist1: BoxList holding N boxes. boxlist2: BoxList holding M boxes. Returns: A tensor with shape [N, M] representing pairwise iou scores. """ return box_list_ops.iou(boxlist1, boxlist2) class NegSqDistSimilarity(RegionSimilarityCalculator): """Class to compute similarity based on the squared distance metric. This class computes pairwise similarity between two BoxLists based on the negative squared distance metric. """ def _compare(self, boxlist1, boxlist2): """Compute matrix of (negated) sq distances. Args: boxlist1: BoxList holding N boxes. boxlist2: BoxList holding M boxes. Returns: A tensor with shape [N, M] representing negated pairwise squared distance. """ return -1 * box_list_ops.sq_dist(boxlist1, boxlist2) class IoaSimilarity(RegionSimilarityCalculator): """Class to compute similarity based on Intersection over Area (IOA) metric. This class computes pairwise similarity between two BoxLists based on their pairwise intersections divided by the areas of second BoxLists. """ def _compare(self, boxlist1, boxlist2): """Compute pairwise IOA similarity between the two BoxLists. Args: boxlist1: BoxList holding N boxes. boxlist2: BoxList holding M boxes. Returns: A tensor with shape [N, M] representing pairwise IOA scores. """ return box_list_ops.ioa(boxlist1, boxlist2) class ThresholdedIouSimilarity(RegionSimilarityCalculator): """Class to compute similarity based on thresholded IOU and score. This class computes pairwise similarity between two BoxLists based on IOU and a 'score' present in boxlist1. If IOU > threshold, then the entry in the output pairwise tensor will contain `score`, otherwise 0. """ def __init__(self, iou_threshold=0): """Initialize the ThresholdedIouSimilarity. Args: iou_threshold: For a given pair of boxes, if the IOU is > iou_threshold, then the comparison result will be the foreground probability of the first box, otherwise it will be zero. """ self._iou_threshold = iou_threshold def _compare(self, boxlist1, boxlist2): """Compute pairwise IOU similarity between the two BoxLists and score. Args: boxlist1: BoxList holding N boxes. Must have a score field. boxlist2: BoxList holding M boxes. Returns: A tensor with shape [N, M] representing scores threholded by pairwise iou scores. """ ious = box_list_ops.iou(boxlist1, boxlist2) scores = boxlist1.get_field(fields.BoxListFields.scores) scores = tf.expand_dims(scores, axis=1) row_replicated_scores = tf.tile(scores, [1, tf.shape(ious)[-1]]) thresholded_ious = tf.where(ious > self._iou_threshold, row_replicated_scores, tf.zeros_like(ious)) return thresholded_ious
PyTorch/Detection/Efficientdet/scripts/D0
D0
inference_FP32_V100-32G
#!/bin/bash rm -rf *.json python -u -m bind_launch --nproc_per_node=${NUM_PROC:-1} validate.py '/workspace/object_detection/datasets/coco/' --model efficientdet_d0 -b ${BATCH_SIZE:-8} --torchscript --use-ema --checkpoint ${CKPT_PATH:-/checkpoints/Effdet_B0.pth} --inference
PyTorch/SpeechSynthesis/Tacotron2/trtis_cpp/src/trt/waveglow
waveglow
blending
/* * Copyright (c) 2019-2020, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the NVIDIA CORPORATION nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "blending.h" /****************************************************************************** * CONSTANTS ****************************************************************** *****************************************************************************/ namespace { constexpr const int BLOCK_SIZE = 1024; } /****************************************************************************** * KERNELS ******************************************************************** *****************************************************************************/ __global__ void linearBlendingKernel(const float* const newChunk, float* const base, const int chunkLength, const int overlapSize, const int spacing, const int offset) { const int idx = threadIdx.x + blockIdx.x * blockDim.x; if (idx < chunkLength) { const float weight = offset > 0 && idx < overlapSize ? static_cast<float>(idx) / static_cast<float>(overlapSize) : 1.0f; const int inputIdx = idx + (blockIdx.y * chunkLength); const int outputIdx = idx + offset + (blockIdx.y * spacing); float newValue; if (weight < 1.0f) { newValue = (1.0f - weight) * base[outputIdx] + newChunk[inputIdx] * weight; } else { newValue = newChunk[inputIdx]; } base[outputIdx] = newValue; } } /****************************************************************************** * HELPER FUNCTIONS *********************************************************** *****************************************************************************/ namespace { static int roundUpBlocks(const int num, const int blockSize) { return ((num - 1) / blockSize) + 1; } } // namespace /****************************************************************************** * PUBLIC STATIC METHODS ****************************************************** *****************************************************************************/ void Blending::linear(const int batchSize, const float* const newChunk, float* const base, const int chunkSize, const int overlapSize, const int outputSequenceSpacing, const int outputSequenceOffset, cudaStream_t stream) { const int blocksPerChunk = roundUpBlocks(chunkSize, BLOCK_SIZE); const dim3 grid(blocksPerChunk, batchSize); const dim3 block(BLOCK_SIZE); linearBlendingKernel<<<grid, block, 0, stream>>>( newChunk, base, chunkSize, overlapSize, outputSequenceSpacing, outputSequenceOffset); }
PyTorch/Detection/Efficientdet/effdet/layers
layers
cond_conv2d
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Copyright 2019-2022 Ross Wightman # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from functools import partial import numpy as np import torch from torch import nn as nn from torch.nn import functional as F from .helpers import tup_pair from .conv2d_same import conv2d_same from .padding import get_padding_value def get_condconv_initializer(initializer, num_experts, expert_shape): def condconv_initializer(weight): """CondConv initializer function.""" num_params = np.prod(expert_shape) if (len(weight.shape) != 2 or weight.shape[0] != num_experts or weight.shape[1] != num_params): raise (ValueError( 'CondConv variables must have shape [num_experts, num_params]')) for i in range(num_experts): initializer(weight[i].view(expert_shape)) return condconv_initializer class CondConv2d(nn.Module): """ Conditionally Parameterized Convolution Inspired by: https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/condconv/condconv_layers.py Grouped convolution hackery for parallel execution of the per-sample kernel filters inspired by this discussion: https://github.com/pytorch/pytorch/issues/17983 """ __constants__ = ['in_channels', 'out_channels', 'dynamic_padding'] def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding='', dilation=1, groups=1, bias=False, num_experts=4): super(CondConv2d, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = tup_pair(kernel_size) self.stride = tup_pair(stride) padding_val, is_padding_dynamic = get_padding_value( padding, kernel_size, stride=stride, dilation=dilation) self.dynamic_padding = is_padding_dynamic # if in forward to work with torchscript self.padding = tup_pair(padding_val) self.dilation = tup_pair(dilation) self.groups = groups self.num_experts = num_experts self.weight_shape = (self.out_channels, self.in_channels // self.groups) + self.kernel_size weight_num_param = 1 for wd in self.weight_shape: weight_num_param *= wd self.weight = torch.nn.Parameter(torch.Tensor(self.num_experts, weight_num_param)) if bias: self.bias_shape = (self.out_channels,) self.bias = torch.nn.Parameter(torch.Tensor(self.num_experts, self.out_channels)) else: self.register_parameter('bias', None) self.reset_parameters() def reset_parameters(self): init_weight = get_condconv_initializer( partial(nn.init.kaiming_uniform_, a=math.sqrt(5)), self.num_experts, self.weight_shape) init_weight(self.weight) if self.bias is not None: fan_in = np.prod(self.weight_shape[1:]) bound = 1 / math.sqrt(fan_in) init_bias = get_condconv_initializer( partial(nn.init.uniform_, a=-bound, b=bound), self.num_experts, self.bias_shape) init_bias(self.bias) def forward(self, x, routing_weights): B, C, H, W = x.shape weight = torch.matmul(routing_weights, self.weight) new_weight_shape = (B * self.out_channels, self.in_channels // self.groups) + self.kernel_size weight = weight.view(new_weight_shape) bias = None if self.bias is not None: bias = torch.matmul(routing_weights, self.bias) bias = bias.view(B * self.out_channels) # move batch elements with channels so each batch element can be efficiently convolved with separate kernel x = x.view(1, B * C, H, W) if self.dynamic_padding: out = conv2d_same( x, weight, bias, stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups * B) else: out = F.conv2d( x, weight, bias, stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups * B) out = out.permute([1, 0, 2, 3]).view(B, self.out_channels, out.shape[-2], out.shape[-1]) # Literal port (from TF definition) # x = torch.split(x, 1, 0) # weight = torch.split(weight, 1, 0) # if self.bias is not None: # bias = torch.matmul(routing_weights, self.bias) # bias = torch.split(bias, 1, 0) # else: # bias = [None] * B # out = [] # for xi, wi, bi in zip(x, weight, bias): # wi = wi.view(*self.weight_shape) # if bi is not None: # bi = bi.view(*self.bias_shape) # out.append(self.conv_fn( # xi, wi, bi, stride=self.stride, padding=self.padding, # dilation=self.dilation, groups=self.groups)) # out = torch.cat(out, 0) return out
TensorFlow2/Recommendation/SIM/sim/layers
layers
ctr_classification_mlp
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial import tensorflow as tf class CTRClassificationMLP(tf.keras.layers.Layer): def __init__( self, layer_sizes=(200,), num_outputs=1, activation_function=partial( tf.keras.layers.PReLU, alpha_initializer=tf.keras.initializers.Constant(0.1) ), use_bn=False, dropout_rate=-1 ): super().__init__() self.layer_sizes = layer_sizes self.activation_function = activation_function self.use_bn = use_bn self.dropout_rate = dropout_rate if self.use_bn: self.batch_norm = tf.keras.layers.BatchNormalization() self.layers = [] for layer_size in self.layer_sizes: # add dense layer and activation self.layers.append(tf.keras.layers.Dense(layer_size)) self.layers.append(self.activation_function()) if self.dropout_rate > 0.0: # add dropout between final representation and classification layer self.layers.append(tf.keras.layers.Dropout(rate=self.dropout_rate)) # add the scoring layer scoring_layer = tf.keras.layers.Dense(num_outputs, dtype='float32') self.layers.append(scoring_layer) def call(self, input, training=False): if self.use_bn: input = self.batch_norm(input, training=training) for layer in self.layers: input = layer(input, training=training) return input
TensorFlow/Segmentation/UNet_3D_Medical/scripts
scripts
unet3d_infer_benchmark_TF-AMP
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This script launches 3D-UNet run TF-AMP inference benchmark. # Usage: # bash examples/unet3d_infer_benchmark_TF-AMP.sh <path/to/dataset> <path/to/results/directory> <batch/size> python main.py --data_dir $1 --model_dir $2 --exec_mode predict --warmup_steps 20 --fold 0 --batch_size $3 --benchmark --amp --xla
Tools/PyTorch/TimeSeriesPredictionPlatform/evaluators
evaluators
evaluation_metrics
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import numpy as np from abc import ABC, abstractmethod class AbstractMetric(ABC): @staticmethod @abstractmethod def __call__(pred, label, weights): pass class SMAPE(AbstractMetric): name = "SMAPE" @staticmethod def __call__(preds, labels, weights): if not weights.size: weights = None return 100 * np.average(2 * np.abs(preds - labels) / (np.abs(labels) + np.abs(preds)), weights=weights) def normalised_quantile_loss(y_pred, y, quantile, weights=None): """Implementation of the q-Risk function from https://arxiv.org/pdf/1912.09363.pdf""" prediction_underflow = y - y_pred weighted_errors = quantile * np.maximum(prediction_underflow, 0.0) + (1.0 - quantile) * np.maximum( -prediction_underflow, 0.0 ) if weights is not None and weights.size: weighted_errors = weighted_errors * weights y = y * weights loss = weighted_errors.sum() normaliser = abs(y).sum() return 2 * loss / normaliser class P50_loss(AbstractMetric): name = "P50" selector = 1 @staticmethod def __call__(labels, preds, weights): return normalised_quantile_loss(labels, preds, 0.5,weights) class P90_loss(AbstractMetric): name = "P90" selector = 2 @staticmethod def __call__(labels, preds, weights): return normalised_quantile_loss(labels, preds, 0.9,weights) # Normalized Deviation class ND(AbstractMetric): name = "ND" @staticmethod def __call__(preds, labels, weights): diff = np.abs(labels - preds) if not weights.size: return np.sum(diff) / np.sum(np.abs(labels)) else: return np.sum(diff * weights) / np.sum(np.abs(labels) * weights) class MAE(AbstractMetric): name = "MAE" @staticmethod def __call__(preds, labels, weights, return_individual=False): if not weights.size: weights = None if return_individual: return np.average(np.abs(preds - labels), weights=weights, axis=0) else: return np.average(np.abs(preds - labels), weights=weights) class MSE(AbstractMetric): name = "MSE" @staticmethod def __call__(preds, labels, weights, return_individual=False): if not weights.size: weights = None if return_individual: return np.average((preds - labels)**2, weights=weights, axis=0) else: return np.average((preds - labels)**2, weights=weights) class RMSE(AbstractMetric): name = "RMSE" @staticmethod def __call__(preds, labels, weights): if not weights.size: weights = None return np.sqrt(np.average((preds - labels)**2, weights=weights)) class R_Squared(AbstractMetric): name = "R_Squared" @staticmethod def __call__(preds, labels, weights, return_individual=False): if not weights.size: if return_individual: return r2_score(preds, labels, multioutput="raw_values") return r2_score(preds, labels) else: values = r2_score(preds, labels, multioutput="raw_values") if return_individual: return values * weights return np.sum(values * weights) / np.sum(weights) class WMSMAPE(AbstractMetric): name = "WMSMAPE" @staticmethod def __call__(preds, labels, weights, return_individual=False): if weights.size: if return_individual: return 2 * weights * np.abs(preds - labels) / (np.maximum(labels, 1) + np.abs(preds)) else: return ( 100.0 / np.sum(weights) * np.sum(2 * weights * np.abs(preds - labels) / (np.maximum(labels, 1) + np.abs(preds))) ) if return_individual: return 2 * np.abs(preds - labels) / (np.maximum(labels, 1) + np.abs(preds)) else: return 100.0 / len(labels) * np.sum(2 * np.abs(preds - labels) / (np.maximum(labels, 1) + np.abs(preds))) METRICS = { "SMAPE": SMAPE, "WMSMAPE": WMSMAPE, "MSE": MSE, "MAE": MAE, "P50": P50_loss, "P90": P90_loss, "RMSE": RMSE, "R_Squared": R_Squared, "ND": ND, }
TensorFlow/Detection/SSD/models/research/object_detection/utils
utils
per_image_vrd_evaluation
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Evaluates Visual Relations Detection(VRD) result evaluation on an image. Annotate each VRD result as true positives or false positive according to a predefined IOU ratio. Multi-class detection is supported by default. Based on the settings, per image evaluation is performed either on phrase detection subtask or on relation detection subtask. """ import numpy as np from object_detection.utils import np_box_list from object_detection.utils import np_box_list_ops class PerImageVRDEvaluation(object): """Evaluate vrd result of a single image.""" def __init__(self, matching_iou_threshold=0.5): """Initialized PerImageVRDEvaluation by evaluation parameters. Args: matching_iou_threshold: A ratio of area intersection to union, which is the threshold to consider whether a detection is true positive or not; in phrase detection subtask. """ self.matching_iou_threshold = matching_iou_threshold def compute_detection_tp_fp(self, detected_box_tuples, detected_scores, detected_class_tuples, groundtruth_box_tuples, groundtruth_class_tuples): """Evaluates VRD as being tp, fp from a single image. Args: detected_box_tuples: A numpy array of structures with shape [N,], representing N tuples, each tuple containing the same number of named bounding boxes. Each box is of the format [y_min, x_min, y_max, x_max]. detected_scores: A float numpy array of shape [N,], representing the confidence scores of the detected N object instances. detected_class_tuples: A numpy array of structures shape [N,], representing the class labels of the corresponding bounding boxes and possibly additional classes. groundtruth_box_tuples: A float numpy array of structures with the shape [M,], representing M tuples, each tuple containing the same number of named bounding boxes. Each box is of the format [y_min, x_min, y_max, x_max]. groundtruth_class_tuples: A numpy array of structures shape [M,], representing the class labels of the corresponding bounding boxes and possibly additional classes. Returns: scores: A single numpy array with shape [N,], representing N scores detected with object class, sorted in descentent order. tp_fp_labels: A single boolean numpy array of shape [N,], representing N True/False positive label, one label per tuple. The labels are sorted so that the order of the labels matches the order of the scores. result_mapping: A numpy array with shape [N,] with original index of each entry. """ scores, tp_fp_labels, result_mapping = self._compute_tp_fp( detected_box_tuples=detected_box_tuples, detected_scores=detected_scores, detected_class_tuples=detected_class_tuples, groundtruth_box_tuples=groundtruth_box_tuples, groundtruth_class_tuples=groundtruth_class_tuples) return scores, tp_fp_labels, result_mapping def _compute_tp_fp(self, detected_box_tuples, detected_scores, detected_class_tuples, groundtruth_box_tuples, groundtruth_class_tuples): """Labels as true/false positives detection tuples across all classes. Args: detected_box_tuples: A numpy array of structures with shape [N,], representing N tuples, each tuple containing the same number of named bounding boxes. Each box is of the format [y_min, x_min, y_max, x_max] detected_scores: A float numpy array of shape [N,], representing the confidence scores of the detected N object instances. detected_class_tuples: A numpy array of structures shape [N,], representing the class labels of the corresponding bounding boxes and possibly additional classes. groundtruth_box_tuples: A float numpy array of structures with the shape [M,], representing M tuples, each tuple containing the same number of named bounding boxes. Each box is of the format [y_min, x_min, y_max, x_max] groundtruth_class_tuples: A numpy array of structures shape [M,], representing the class labels of the corresponding bounding boxes and possibly additional classes. Returns: scores: A single numpy array with shape [N,], representing N scores detected with object class, sorted in descentent order. tp_fp_labels: A single boolean numpy array of shape [N,], representing N True/False positive label, one label per tuple. The labels are sorted so that the order of the labels matches the order of the scores. result_mapping: A numpy array with shape [N,] with original index of each entry. """ unique_gt_tuples = np.unique( np.concatenate((groundtruth_class_tuples, detected_class_tuples))) result_scores = [] result_tp_fp_labels = [] result_mapping = [] for unique_tuple in unique_gt_tuples: detections_selector = (detected_class_tuples == unique_tuple) gt_selector = (groundtruth_class_tuples == unique_tuple) selector_mapping = np.where(detections_selector)[0] detection_scores_per_tuple = detected_scores[detections_selector] detection_box_per_tuple = detected_box_tuples[detections_selector] sorted_indices = np.argsort(detection_scores_per_tuple) sorted_indices = sorted_indices[::-1] tp_fp_labels = self._compute_tp_fp_for_single_class( detected_box_tuples=detection_box_per_tuple[sorted_indices], groundtruth_box_tuples=groundtruth_box_tuples[gt_selector]) result_scores.append(detection_scores_per_tuple[sorted_indices]) result_tp_fp_labels.append(tp_fp_labels) result_mapping.append(selector_mapping[sorted_indices]) if result_scores: result_scores = np.concatenate(result_scores) result_tp_fp_labels = np.concatenate(result_tp_fp_labels) result_mapping = np.concatenate(result_mapping) else: result_scores = np.array([], dtype=float) result_tp_fp_labels = np.array([], dtype=bool) result_mapping = np.array([], dtype=int) sorted_indices = np.argsort(result_scores) sorted_indices = sorted_indices[::-1] return result_scores[sorted_indices], result_tp_fp_labels[ sorted_indices], result_mapping[sorted_indices] def _get_overlaps_and_scores_relation_tuples(self, detected_box_tuples, groundtruth_box_tuples): """Computes overlaps and scores between detected and groundtruth tuples. Both detections and groundtruth boxes have the same class tuples. Args: detected_box_tuples: A numpy array of structures with shape [N,], representing N tuples, each tuple containing the same number of named bounding boxes. Each box is of the format [y_min, x_min, y_max, x_max] groundtruth_box_tuples: A float numpy array of structures with the shape [M,], representing M tuples, each tuple containing the same number of named bounding boxes. Each box is of the format [y_min, x_min, y_max, x_max] Returns: result_iou: A float numpy array of size [num_detected_tuples, num_gt_box_tuples]. """ result_iou = np.ones( (detected_box_tuples.shape[0], groundtruth_box_tuples.shape[0]), dtype=float) for field in detected_box_tuples.dtype.fields: detected_boxlist_field = np_box_list.BoxList(detected_box_tuples[field]) gt_boxlist_field = np_box_list.BoxList(groundtruth_box_tuples[field]) iou_field = np_box_list_ops.iou(detected_boxlist_field, gt_boxlist_field) result_iou = np.minimum(iou_field, result_iou) return result_iou def _compute_tp_fp_for_single_class(self, detected_box_tuples, groundtruth_box_tuples): """Labels boxes detected with the same class from the same image as tp/fp. Detection boxes are expected to be already sorted by score. Args: detected_box_tuples: A numpy array of structures with shape [N,], representing N tuples, each tuple containing the same number of named bounding boxes. Each box is of the format [y_min, x_min, y_max, x_max] groundtruth_box_tuples: A float numpy array of structures with the shape [M,], representing M tuples, each tuple containing the same number of named bounding boxes. Each box is of the format [y_min, x_min, y_max, x_max] Returns: tp_fp_labels: a boolean numpy array indicating whether a detection is a true positive. """ if detected_box_tuples.size == 0: return np.array([], dtype=bool) min_iou = self._get_overlaps_and_scores_relation_tuples( detected_box_tuples, groundtruth_box_tuples) num_detected_tuples = detected_box_tuples.shape[0] tp_fp_labels = np.zeros(num_detected_tuples, dtype=bool) if min_iou.shape[1] > 0: max_overlap_gt_ids = np.argmax(min_iou, axis=1) is_gt_tuple_detected = np.zeros(min_iou.shape[1], dtype=bool) for i in range(num_detected_tuples): gt_id = max_overlap_gt_ids[i] if min_iou[i, gt_id] >= self.matching_iou_threshold: if not is_gt_tuple_detected[gt_id]: tp_fp_labels[i] = True is_gt_tuple_detected[gt_id] = True return tp_fp_labels
TensorFlow/Recommendation/VAE-CF/vae/metrics
metrics
ndcg
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Discounted Cumulative Gain @ R is DCG@R(u,ω) := Σ_{r=1}^{R} I[ω(r) ∈ I_u] − 1 / log(r + 1) / IDCG@R(u,ω) IDCG@R(u,ω) := Σ_{r=1}^{|I_u|} 1 / log(r + 1) https://en.wikipedia.org/wiki/Discounted_cumulative_gain#Normalized_DCG https://arxiv.org/pdf/1802.05814.pdf, chapter 4.2 """ import numpy as np from scipy.sparse import csr_matrix def ndcg(X_true: csr_matrix, X_top_k: np.array, R=100) -> np.array: """ Calculate ndcg@R for each users in X_true and X_pred matrices Args: X_true: Matrix containing True values for user-item interactions X_top_k: Matrix containing inidices picked by model R: Number of elements taken into consideration Returns: Numpy array containing calculated ndcg@R for each user """ penalties = 1. / np.log2(np.arange(2, R + 2)) selected = np.take_along_axis(X_true, X_top_k[:, :R], axis=-1) DCG = selected * penalties cpenalties = np.empty(R + 1) np.cumsum(penalties, out=cpenalties[1:]) cpenalties[0] = 0 maxhit = np.minimum(X_true.getnnz(axis=1), R) IDCG = cpenalties[maxhit] return DCG / IDCG
Tools/DGLPyTorch/SyntheticGraphGeneration/syngen/preprocessing/datasets
datasets
cora
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import logging import shutil import subprocess from typing import List, Union, Optional import numpy as np import pandas as pd from syngen.configuration import SynGenDatasetFeatureSpec from syngen.preprocessing.base_preprocessing import BasePreprocessing from syngen.utils.types import MetaData logger = logging.getLogger(__name__) log = logger class CORAPreprocessing(BasePreprocessing): def __init__( self, source_path: str, destination_path: Optional[str] = None, download: bool = False, **kwargs, ): """ preprocessing for https://linqs-data.soe.ucsc.edu/public/lbc/cora.tgz """ super().__init__(source_path, destination_path, download, **kwargs) def transform(self, gpu=False, use_cache=False): assert not gpu, "CORA preprocessing does not support cudf preprocessing" if use_cache and os.path.exists(self.destination_path): return SynGenDatasetFeatureSpec.instantiate_from_preprocessed(self.destination_path) tabular_operator = pd operator = np examples = {} with open(os.path.join(self.source_path, 'cora.content'), "r") as cora_content: for line in cora_content: entries = line.rstrip("\n").split("\t") # entries contains [ID, Word1, Word2, ..., Label]; "Words" are 0/1 values. words = list(map(int, entries[1:-1])) example_id = int(entries[0]) label = entries[-1] features = { "id": example_id, "label": label, } for i, w in enumerate(words): features[f"w_{i}"] = w examples[example_id] = features tabular_data = tabular_operator.DataFrame.from_dict( examples, orient="index" ).reset_index(drop=True) node_features = [ { MetaData.NAME: f"w_{i}", MetaData.DTYPE: 'int64', MetaData.FEATURE_TYPE: MetaData.CATEGORICAL, } for i in range(len(words)) ] node_features.extend([ { MetaData.NAME: name, MetaData.DTYPE: 'int64', MetaData.FEATURE_TYPE: MetaData.CATEGORICAL, } for name in ["label"] ]) for c in tabular_data.columns: tabular_data[c] = tabular_data[c].astype("category").cat.codes.astype(int) tabular_data = tabular_data.set_index('id') structural_data = tabular_operator.read_csv(os.path.join(self.source_path, "cora.cites")) structural_data.columns = ["src", "dst"] for c in ["src", "dst"]: structural_data[c] = structural_data[c].astype(int) paper_ids = operator.unique(operator.concatenate([ structural_data["src"].values, structural_data["dst"].values, ])) mapping = operator.empty(int(paper_ids.max()) + 1, dtype=int) mapping[paper_ids] = operator.arange(len(paper_ids)) for c in ["src", "dst"]: structural_data[c] = mapping[structural_data[c]] graph_metadata = { MetaData.NODES: [ { MetaData.NAME: "paper", MetaData.COUNT: len(tabular_data), MetaData.FEATURES: node_features, MetaData.FEATURES_PATH: "paper.parquet", }, ], MetaData.EDGES: [{ MetaData.NAME: "cite", MetaData.COUNT: len(structural_data), MetaData.SRC_NODE_TYPE: "paper", MetaData.DST_NODE_TYPE: "paper", MetaData.DIRECTED: False, MetaData.FEATURES: [], MetaData.FEATURES_PATH: None, MetaData.STRUCTURE_PATH: "cite_edge_list.parquet", }] } shutil.rmtree(self.destination_path, ignore_errors=True) os.makedirs(self.destination_path) tabular_data.to_parquet(os.path.join(self.destination_path, "paper.parquet")) structural_data.to_parquet(os.path.join(self.destination_path, "cite_edge_list.parquet")) with open(os.path.join(self.destination_path, 'graph_metadata.json'), 'w') as f: json.dump(graph_metadata, f, indent=4) graph_metadata[MetaData.PATH] = self.destination_path return SynGenDatasetFeatureSpec(graph_metadata) def download(self): log.info("downloading CORA dataset...") cmds = [ fr"mkdir -p {self.source_path}", fr"wget 'https://linqs-data.soe.ucsc.edu/public/lbc/cora.tgz' -P {self.source_path}", fr"tar -xf {self.source_path}/cora.tgz -C {self.source_path}", fr"sed -i 's/\t/,/g' {self.source_path}/cora/cora.cites", fr"sed -i '1s/^/src,dst\n/' {self.source_path}/cora/cora.cites", fr"mv {self.source_path}/cora/* {self.source_path}/.", fr"rm -r {self.source_path}/cora", ] for cmd in cmds: try: subprocess.check_output(cmd, shell=True) except subprocess.CalledProcessError as e: raise Exception(e.output) def _check_files(self): files = ['cora.cites', 'cora.content'] return all(os.path.exists(os.path.join(self.source_path, file)) for file in files)
PyTorch/LanguageModeling/BERT/distillation
distillation
distillation_config_backbone
{"distillation": true, "distillation_config": {"use_attention_scores": true, "use_hidden_states": true, "use_value_states": true, "use_embedding_states": false, "use_pred_states": false, "attention_loss": "kld", "hidden_state_loss": "cosine", "embedding_state_loss": "cosine", "value_state_loss": "kld", "student_teacher_layer_mapping": "last_layer"} }
TensorFlow2/Segmentation/UNet_Medical/examples
examples
unet_INFER
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This script launches U-Net run in FP32 on 1 GPU for inference batch_size 1. Usage: # bash unet_INFER.sh <path to this repository> <path to dataset> <path to results directory> <fold> horovodrun -np 1 python main.py --data_dir $1 --model_dir $2 --batch_size 1 --exec_mode predict --xla --fold $3
PyTorch/Classification/GPUNet/triton/deployment_toolkit/triton_performance_runner/model_analyzer
model_analyzer
exceptions
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. class ModelAnalyzerException(Exception): def __init__(self, message: str): self._message = message def __str__(self): """ Get the exception string representation. Returns ------- str The message associated with this exception, or None if no message. """ return self._message @property def message(self): """ Get the exception message. Returns ------- str The message associated with this exception, or None if no message. """ return self._message
TensorFlow/Segmentation/UNet_Medical/examples
examples
unet_TRAIN_8GPU
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This script launches U-Net run in FP32 on 8 GPUs and runs 5-fold cross-validation training for 6400 iterations. # Usage: # bash unet_TRAIN_FP32_8GPU.sh <path to dataset> <path to results directory> <batch size> horovodrun -np 8 python main.py --data_dir $1 --model_dir $2 --log_every 100 --max_steps 6400 --batch_size $3 --exec_mode train_and_evaluate --crossvalidation_idx 0 --augment --xla > $2/log_FP32_8GPU_fold0.txt horovodrun -np 8 python main.py --data_dir $1 --model_dir $2 --log_every 100 --max_steps 6400 --batch_size $3 --exec_mode train_and_evaluate --crossvalidation_idx 1 --augment --xla > $2/log_FP32_8GPU_fold1.txt horovodrun -np 8 python main.py --data_dir $1 --model_dir $2 --log_every 100 --max_steps 6400 --batch_size $3 --exec_mode train_and_evaluate --crossvalidation_idx 2 --augment --xla > $2/log_FP32_8GPU_fold2.txt horovodrun -np 8 python main.py --data_dir $1 --model_dir $2 --log_every 100 --max_steps 6400 --batch_size $3 --exec_mode train_and_evaluate --crossvalidation_idx 3 --augment --xla > $2/log_FP32_8GPU_fold3.txt horovodrun -np 8 python main.py --data_dir $1 --model_dir $2 --log_every 100 --max_steps 6400 --batch_size $3 --exec_mode train_and_evaluate --crossvalidation_idx 4 --augment --xla > $2/log_FP32_8GPU_fold4.txt python utils/parse_results.py --model_dir $2 --exec_mode convergence --env FP32_8GPU
PyTorch/Recommendation/DLRM/tests/feature_specs
feature_specs
different_feature_names
channel_spec: categorical: - 65ytfg.bin - dgtwrg.bin - hmfgd.bin - 6tyjgh.bin - 67yu.bin - l6rtd.bin - ouikjhfg.bin - 65ry.bin - 5yhtrfg.bin - 65rty.bin - 34ywesh5rtg.bin - w4su6js.bin - 45wyhtr.bin - u65rhty.bin - tujy.bin - tyjdh.bin - ujtyesh.bin - 5e7tdyj.bin - 46rjydh.bin - 8kiujynrht.bin - fsgh.bin - 34eyr.bin - we5etydj.bin - fsghfsdgh.bin - hrthshs.bin - tujyhfg.bin label: - qwer numerical: &id001 - gadsfgsdfg - 5yrthf - 45ryhtf - u5j6yrhtfd - u5rtg3qq - j65ee5he5 - yhe5h - 4y5e6ru - 5yfwerf - g53g6y635 - 42c524 - bge5v6gve5 - jhw5rf feature_spec: 65ytfg.bin: cardinality: 100000 dtype: int32 dgtwrg.bin: cardinality: 100000 dtype: int32 34ywesh5rtg.bin: cardinality: 100000 dtype: int32 w4su6js.bin: cardinality: 100000 dtype: int32 45wyhtr.bin: cardinality: 100000 dtype: int32 u65rhty.bin: cardinality: 100000 dtype: int32 tujy.bin: cardinality: 100000 dtype: int32 tyjdh.bin: cardinality: 100000 dtype: int32 ujtyesh.bin: cardinality: 100000 dtype: int32 5e7tdyj.bin: cardinality: 100000 dtype: int32 46rjydh.bin: cardinality: 100000 dtype: int32 8kiujynrht.bin: cardinality: 100000 dtype: int32 hmfgd.bin: cardinality: 100000 dtype: int32 fsgh.bin: cardinality: 100000 dtype: int32 34eyr.bin: cardinality: 100000 dtype: int32 we5etydj.bin: cardinality: 100000 dtype: int32 fsghfsdgh.bin: cardinality: 100000 dtype: int32 hrthshs.bin: cardinality: 100000 dtype: int32 tujyhfg.bin: cardinality: 100000 dtype: int32 6tyjgh.bin: cardinality: 100000 dtype: int32 67yu.bin: cardinality: 100000 dtype: int32 l6rtd.bin: cardinality: 100000 dtype: int32 ouikjhfg.bin: cardinality: 100000 dtype: int32 65ry.bin: cardinality: 100000 dtype: int32 5yhtrfg.bin: cardinality: 100000 dtype: int32 65rty.bin: cardinality: 100000 dtype: int32 qwer: dtype: bool gadsfgsdfg: dtype: float16 5yrthf: dtype: float16 42c524: dtype: float16 bge5v6gve5: dtype: float16 jhw5rf: dtype: float16 45ryhtf: dtype: float16 u5j6yrhtfd: dtype: float16 u5rtg3qq: dtype: float16 j65ee5he5: dtype: float16 yhe5h: dtype: float16 4y5e6ru: dtype: float16 5yfwerf: dtype: float16 g53g6y635: dtype: float16 metadata: {} source_spec: test: - features: *id001 files: - test/numerical.bin type: split_binary - features: - qwer files: - test/label.bin type: split_binary - features: - 65ytfg.bin files: - test/65ytfg.bin type: split_binary - features: - dgtwrg.bin files: - test/dgtwrg.bin type: split_binary - features: - hmfgd.bin files: - test/hmfgd.bin type: split_binary - features: - 6tyjgh.bin files: - test/6tyjgh.bin type: split_binary - features: - 67yu.bin files: - test/67yu.bin type: split_binary - features: - l6rtd.bin files: - test/l6rtd.bin type: split_binary - features: - ouikjhfg.bin files: - test/ouikjhfg.bin type: split_binary - features: - 65ry.bin files: - test/65ry.bin type: split_binary - features: - 5yhtrfg.bin files: - test/5yhtrfg.bin type: split_binary - features: - 65rty.bin files: - test/65rty.bin type: split_binary - features: - 34ywesh5rtg.bin files: - test/34ywesh5rtg.bin type: split_binary - features: - w4su6js.bin files: - test/w4su6js.bin type: split_binary - features: - 45wyhtr.bin files: - test/45wyhtr.bin type: split_binary - features: - u65rhty.bin files: - test/u65rhty.bin type: split_binary - features: - tujy.bin files: - test/tujy.bin type: split_binary - features: - tyjdh.bin files: - test/tyjdh.bin type: split_binary - features: - ujtyesh.bin files: - test/ujtyesh.bin type: split_binary - features: - 5e7tdyj.bin files: - test/5e7tdyj.bin type: split_binary - features: - 46rjydh.bin files: - test/46rjydh.bin type: split_binary - features: - 8kiujynrht.bin files: - test/8kiujynrht.bin type: split_binary - features: - fsgh.bin files: - test/fsgh.bin type: split_binary - features: - 34eyr.bin files: - test/34eyr.bin type: split_binary - features: - we5etydj.bin files: - test/we5etydj.bin type: split_binary - features: - fsghfsdgh.bin files: - test/fsghfsdgh.bin type: split_binary - features: - hrthshs.bin files: - test/hrthshs.bin type: split_binary - features: - tujyhfg.bin files: - test/tujyhfg.bin type: split_binary train: - features: *id001 files: - train/numerical.bin type: split_binary - features: - qwer files: - train/label.bin type: split_binary - features: - 65ytfg.bin files: - train/65ytfg.bin type: split_binary - features: - dgtwrg.bin files: - train/dgtwrg.bin type: split_binary - features: - hmfgd.bin files: - train/hmfgd.bin type: split_binary - features: - 6tyjgh.bin files: - train/6tyjgh.bin type: split_binary - features: - 67yu.bin files: - train/67yu.bin type: split_binary - features: - l6rtd.bin files: - train/l6rtd.bin type: split_binary - features: - ouikjhfg.bin files: - train/ouikjhfg.bin type: split_binary - features: - 65ry.bin files: - train/65ry.bin type: split_binary - features: - 5yhtrfg.bin files: - train/5yhtrfg.bin type: split_binary - features: - 65rty.bin files: - train/65rty.bin type: split_binary - features: - 34ywesh5rtg.bin files: - train/34ywesh5rtg.bin type: split_binary - features: - w4su6js.bin files: - train/w4su6js.bin type: split_binary - features: - 45wyhtr.bin files: - train/45wyhtr.bin type: split_binary - features: - u65rhty.bin files: - train/u65rhty.bin type: split_binary - features: - tujy.bin files: - train/tujy.bin type: split_binary - features: - tyjdh.bin files: - train/tyjdh.bin type: split_binary - features: - ujtyesh.bin files: - train/ujtyesh.bin type: split_binary - features: - 5e7tdyj.bin files: - train/5e7tdyj.bin type: split_binary - features: - 46rjydh.bin files: - train/46rjydh.bin type: split_binary - features: - 8kiujynrht.bin files: - train/8kiujynrht.bin type: split_binary - features: - fsgh.bin files: - train/fsgh.bin type: split_binary - features: - 34eyr.bin files: - train/34eyr.bin type: split_binary - features: - we5etydj.bin files: - train/we5etydj.bin type: split_binary - features: - fsghfsdgh.bin files: - train/fsghfsdgh.bin type: split_binary - features: - hrthshs.bin files: - train/hrthshs.bin type: split_binary - features: - tujyhfg.bin files: - train/tujyhfg.bin type: split_binary
PyTorch/Recommendation/DLRM/tests
tests
test_all_configs
#!/bin/bash set -e set -x NAMES=${1:-'*.yaml'} TARGET=feature_specs/${NAMES} OPTIONS=${2-""} for file in ${TARGET}; do echo "${file}"; done for fspec_file in ${TARGET}; do SYNTH_DATA_DIR=/tmp/generated_data/${fspec_file} # generate data based on fspec python -m dlrm.scripts.prepare_synthetic_dataset --feature_spec ${fspec_file} --synthetic_dataset_dir ${SYNTH_DATA_DIR} # train on the data for mlp in True False; do for graphs in True; do for dot in cuda_dot dot; do for amp in True False; do python -m dlrm.scripts.main --mode train --dataset ${SYNTH_DATA_DIR} --optimized_mlp=${mlp} --cuda_graphs=${graphs} --interaction_op=${dot} --embedding_type=joint_sparse --amp=${amp} #DGX-2 python -m torch.distributed.launch --no_python --use_env --nproc_per_node 8 bash -c "/workspace/dlrm/bind.sh --cpu=exclusive -- python -m dlrm.scripts.main --dataset ${SYNTH_DATA_DIR} --optimized_mlp=${mlp} --cuda_graphs=${graphs} --interaction_op=${dot} --embedding_type=joint_sparse --amp=${amp}" #DGX A100 #python -m torch.distributed.launch --no_python --use_env --nproc_per_node 8 bash -c "/workspace/dlrm/bind.sh --cpu=/workspace/dlrm/dgxa100_ccx.sh --mem=/workspace/dlrm/dgxa100_ccx.sh python -m dlrm.scripts.main --dataset ${SYNTH_DATA_DIR} --optimized_mlp=${mlp} --cuda_graphs=${graphs} --interaction_op=${dot} --embedding_type=joint_sparse --amp=${amp}" done; done done done # delete the data rm -r ${SYNTH_DATA_DIR} done # # usage: # docker build . -t nvidia_dlrm_pyt # docker run --security-opt seccomp=unconfined --runtime=nvidia -it --rm --ipc=host -v ${PWD}/data:/data nvidia_dlrm_pyt bash # cd tests # bash test_custom_dot.sh
PyTorch/Detection/SSD/ssd
ssd
coco_pipeline
# Copyright (c) 2018-2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import ctypes import time import logging import numpy as np import torch # DALI imports import nvidia.dali as dali from nvidia.dali.pipeline import Pipeline from nvidia.dali.types import to_numpy_type class COCOPipeline(Pipeline): def __init__(self, batch_size, file_root, annotations_file, default_boxes, device_id, num_shards, output_fp16=False, output_nhwc=False, pad_output=False, num_threads=1, seed=15): super(COCOPipeline, self).__init__(batch_size=batch_size, device_id=device_id, num_threads=num_threads, seed=seed) if torch.distributed.is_initialized(): shard_id = torch.distributed.get_rank() else: shard_id = 0 # Data loader and image decoder self.input = dali.ops.readers.COCO(file_root=file_root, annotations_file=annotations_file, shard_id=shard_id, num_shards=num_shards, ratio=True, ltrb=True, shuffle_after_epoch=True, skip_empty=True) self.decode_slice = dali.ops.decoders.ImageSlice(device="cpu", output_type=dali.types.RGB) # Augumentation techniques ## Random crop self.crop = dali.ops.RandomBBoxCrop(device="cpu", aspect_ratio=[0.5, 2.0], thresholds=[0, 0.1, 0.3, 0.5, 0.7, 0.9], scaling=[0.3, 1.0], bbox_layout="xyXY", allow_no_crop=True, num_attempts=1) ## Color twist self.hsv = dali.ops.Hsv(device="gpu", dtype=dali.types.FLOAT) # use float to avoid clipping and quantizing the intermediate result self.bc = dali.ops.BrightnessContrast(device="gpu", contrast_center=128, # input is in the [0, 255] range dtype=dali.types.UINT8) ## Cropping and normalization dtype = dali.types.FLOAT16 if output_fp16 else dali.types.FLOAT output_layout = dali.types.NHWC if output_nhwc else dali.types.NCHW self.normalize = dali.ops.CropMirrorNormalize( device="gpu", crop=(300, 300), mean=[0.0, 0.0, 0.0], std=[255.0, 255.0, 255.0], mirror=0, dtype=dtype, output_layout=output_layout, pad_output=pad_output) ## Flipping self.flip = dali.ops.Flip(device="cpu") self.bbflip = dali.ops.BbFlip(device="cpu", ltrb=True) # Resize self.resize = dali.ops.Resize(device="cpu", resize_x=300, resize_y=300) # Random variables self.rng1 = dali.ops.random.Uniform(range=[0.5, 1.5]) self.rng2 = dali.ops.random.Uniform(range=[0.875, 1.125]) self.rng3 = dali.ops.random.Uniform(range=[-0.5, 0.5]) self.flip_coin = dali.ops.random.CoinFlip(probability=0.5) # bbox encoder self.anchors = default_boxes(order='ltrb').cpu().numpy().flatten().tolist() self.box_encoder = dali.ops.BoxEncoder(device="cpu", criteria=0.5, anchors=self.anchors) def define_graph(self): saturation = self.rng1() contrast = self.rng1() brightness = self.rng2() hue = self.rng3() coin_rnd = self.flip_coin() inputs, bboxes, labels = self.input(name="Reader") crop_begin, crop_size, bboxes, labels = self.crop(bboxes, labels) images = self.decode_slice(inputs, crop_begin, crop_size) images = self.flip(images, horizontal=coin_rnd) bboxes = self.bbflip(bboxes, horizontal=coin_rnd) images = self.resize(images) images = images.gpu() images = self.hsv(images, hue=hue, saturation=saturation) images = self.bc(images, brightness=brightness, contrast=contrast) images = self.normalize(images) bboxes, labels = self.box_encoder(bboxes, labels) # bboxes and images and labels on GPU return (images, bboxes.gpu(), labels.gpu()) to_torch_type = { np.float32 : torch.float32, np.float64 : torch.float64, np.float16 : torch.float16, np.uint8 : torch.uint8, np.int8 : torch.int8, np.int16 : torch.int16, np.int32 : torch.int32, np.int64 : torch.int64 } def feed_ndarray(dali_tensor, arr): """ Copy contents of DALI tensor to pyTorch's Tensor. Parameters ---------- `dali_tensor` : nvidia.dali.backend.TensorCPU or nvidia.dali.backend.TensorGPU Tensor from which to copy `arr` : torch.Tensor Destination of the copy """ assert dali_tensor.shape() == list(arr.size()), \ ("Shapes do not match: DALI tensor has size {0}" ", but PyTorch Tensor has size {1}".format(dali_tensor.shape(), list(arr.size()))) #turn raw int to a c void pointer c_type_pointer = ctypes.c_void_p(arr.data_ptr()) dali_tensor.copy_to_external(c_type_pointer) return arr class DALICOCOIterator(object): """ COCO DALI iterator for pyTorch. Parameters ---------- pipelines : list of nvidia.dali.pipeline.Pipeline List of pipelines to use size : int Epoch size. """ def __init__(self, pipelines, size): if not isinstance(pipelines, list): pipelines = [pipelines] self._num_gpus = len(pipelines) assert pipelines is not None, "Number of provided pipelines has to be at least 1" self.batch_size = pipelines[0].max_batch_size self._size = size self._pipes = pipelines # Build all pipelines for p in self._pipes: p.build() # Use double-buffering of data batches self._data_batches = [[None, None, None, None] for i in range(self._num_gpus)] self._counter = 0 self._current_data_batch = 0 self.output_map = ["image", "bboxes", "labels"] # We need data about the batches (like shape information), # so we need to run a single batch as part of setup to get that info self._first_batch = None self._first_batch = self.next() def __next__(self): if self._first_batch is not None: batch = self._first_batch self._first_batch = None return batch if self._counter > self._size: raise StopIteration # Gather outputs outputs = [] for p in self._pipes: p._prefetch() for p in self._pipes: outputs.append(p.share_outputs()) for i in range(self._num_gpus): dev_id = self._pipes[i].device_id out_images = [] bboxes = [] labels = [] # segregate outputs into image/labels/bboxes entries for j, out in enumerate(outputs[i]): if self.output_map[j] == "image": out_images.append(out) elif self.output_map[j] == "bboxes": bboxes.append(out) elif self.output_map[j] == "labels": labels.append(out) # Change DALI TensorLists into Tensors images = [x.as_tensor() for x in out_images] images_shape = [x.shape() for x in images] # Prepare bboxes shapes bboxes_shape = [] for j in range(len(bboxes)): bboxes_shape.append([]) for k in range(len(bboxes[j])): bboxes_shape[j].append(bboxes[j][k].shape()) # Prepare labels shapes and offsets labels_shape = [] bbox_offsets = [] torch.cuda.synchronize() for j in range(len(labels)): labels_shape.append([]) bbox_offsets.append([0]) for k in range(len(labels[j])): lshape = labels[j][k].shape() bbox_offsets[j].append(bbox_offsets[j][k] + lshape[0]) labels_shape[j].append(lshape) # We always need to alocate new memory as bboxes and labels varies in shape images_torch_type = to_torch_type[to_numpy_type(images[0].dtype)] bboxes_torch_type = to_torch_type[to_numpy_type(bboxes[0][0].dtype)] labels_torch_type = to_torch_type[to_numpy_type(labels[0][0].dtype)] torch_gpu_device = torch.device('cuda', dev_id) torch_cpu_device = torch.device('cpu') pyt_images = [torch.zeros(shape, dtype=images_torch_type, device=torch_gpu_device) for shape in images_shape] pyt_bboxes = [[torch.zeros(shape, dtype=bboxes_torch_type, device=torch_gpu_device) for shape in shape_list] for shape_list in bboxes_shape] pyt_labels = [[torch.zeros(shape, dtype=labels_torch_type, device=torch_gpu_device) for shape in shape_list] for shape_list in labels_shape] pyt_offsets = [torch.zeros(len(offset), dtype=torch.int32, device=torch_cpu_device) for offset in bbox_offsets] self._data_batches[i][self._current_data_batch] = (pyt_images, pyt_bboxes, pyt_labels, pyt_offsets) # Copy data from DALI Tensors to torch tensors for j, i_arr in enumerate(images): feed_ndarray(i_arr, pyt_images[j]) for j, b_list in enumerate(bboxes): for k in range(len(b_list)): if (pyt_bboxes[j][k].shape[0] != 0): feed_ndarray(b_list[k], pyt_bboxes[j][k]) pyt_bboxes[j] = torch.cat(pyt_bboxes[j]) for j, l_list in enumerate(labels): for k in range(len(l_list)): if (pyt_labels[j][k].shape[0] != 0): feed_ndarray(l_list[k], pyt_labels[j][k]) pyt_labels[j] = torch.cat(pyt_labels[j]) for j in range(len(pyt_offsets)): pyt_offsets[j] = torch.IntTensor(bbox_offsets[j]) for p in self._pipes: p.release_outputs() p.schedule_run() copy_db_index = self._current_data_batch # Change index for double buffering self._current_data_batch = (self._current_data_batch + 1) % 2 self._counter += self._num_gpus * self.batch_size return [db[copy_db_index] for db in self._data_batches] def next(self): """ Returns the next batch of data. """ return self.__next__(); def __iter__(self): return self def reset(self): """ Resets the iterator after the full epoch. DALI iterators do not support resetting before the end of the epoch and will ignore such request. """ if self._counter > self._size: self._counter = self._counter % self._size else: logging.warning("DALI iterator does not support resetting while epoch is not finished. Ignoring...")
PyTorch/SpeechSynthesis/FastPitch/notebooks
notebooks
FastPitch_voice_modification
#!/usr/bin/env python # coding: utf-8 # In[ ]: # Copyright 2020 NVIDIA Corporation. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # # FastPitch: Voice Modification with Pre-defined Pitch Transformations # The [FastPitch](https://arxiv.org/abs/2006.06873) model is based on the [FastSpeech](https://arxiv.org/abs/1905.09263) model. Similarly to [FastSpeech2](https://arxiv.org/abs/2006.04558), which has been developed concurrently, it learns to predict the pitch contour and conditions the generation on such contour. # # The simple mechanism of predicting the pitch on grapheme-level (rather than frame-level, as FastSpeech2 does) allows to easily alter the pitch during synthesis. FastPitch can thus change the perceived emotional state of the speaker, or slightly emphasise certain lexical units. # ## Requirements # Run the notebook inside the container. By default the container forwards port `8888`. # ``` # bash scripts/docker/interactive.sh # # # inside the container # cd notebooks # jupyter notebook --ip='*' --port=8888 # ``` # Please refer the Requirement section in `README.md` for more details and running outside the container. # In[ ]: import os assert os.getcwd().split('/')[-1] == 'notebooks' # ## Generate audio samples # Training a FastPitch model from scrath takes 3 to 27 hours depending on the type and number of GPUs, performance numbers can be found in Section "Training performance results" in `README.md`. Therefore, to save the time of running this notebook, we recommend to download the pretrained FastPitch checkpoints on NGC for inference. # # You can find FP32 checkpoint at [NGC](https://ngc.nvidia.com/catalog/models/nvidia:fastpitch_pyt_fp32_ckpt_v1/files) , and AMP (Automatic Mixed Precision) checkpoint at [NGC](https://ngc.nvidia.com/catalog/models/nvidia:fastpitch_pyt_amp_ckpt_v1/files). # # To synthesize audio, you will need a WaveGlow model, which generates waveforms based on mel-spectrograms generated by FastPitch.You can download a pre-trained WaveGlow AMP model at [NGC](https://ngc.nvidia.com/catalog/models/nvidia:waveglow256pyt_fp16). # In[ ]: get_ipython().system(' mkdir -p output') get_ipython().system(" MODEL_DIR='../pretrained_models' ../scripts/download_fastpitch.sh") get_ipython().system(" MODEL_DIR='../pretrained_models' ../scripts/download_waveglow.sh") # You can perform inference using the respective checkpoints that are passed as `--fastpitch` and `--waveglow` arguments. Next, you will use FastPitch model to generate audio samples for input text, including the basic version and the variations i npace, fade out, and pitch transforms, etc. # In[ ]: import IPython # store paths in aux variables fastp = '../pretrained_models/fastpitch/nvidia_fastpitch_200518.pt' waveg = '../pretrained_models/waveglow/waveglow_1076430_14000_amp.pt' flags = f'--cuda --fastpitch {fastp} --waveglow {waveg} --wn-channels 256' # ### 1. Basic speech synthesis # You need to create an input file with some text, or just input the text in the below cell: # In[ ]: get_ipython().run_cell_magic('writefile', 'text.txt', 'The forms of printed letters should be beautiful, and that their arrangement on the page should be reasonable and a help to the shapeliness of the letters themselves.\n') # Run the script below to generate audio from the input text file: # In[ ]: # basic systhesis get_ipython().system('python ../inference.py {flags} -i text.txt -o output/original > /dev/null') IPython.display.Audio("output/original/audio_0.wav") # ### 2. Add variations to the generated speech # FastPitch allows us to exert additional control over the synthesized utterances, the key parameters are the pace, fade out, and pitch transforms in particular. # ### 2.1 Pace # FastPitch allows you to linearly adjust the pace of synthesized speech, similar to [FastSpeech](https://arxiv.org/abs/1905.09263) model. For instance, pass --pace 0.5 for a twofold decrease in speed, --pace 1.0 = unchanged. # In[ ]: # Change the pace of speech to double with --pace 0.5 # (1.0 = unchanged) get_ipython().system('python ../inference.py {flags} -i text.txt -o output/pace --pace 0.5 > /dev/null') IPython.display.Audio("output/pace/audio_0.wav") # ### 2.2 Raise or lower the pitch # For every input character, the model predicts a pitch cue - an average pitch over a character in Hz. Pitch can be adjusted by transforming those pitch cues. A few simple examples are provided below. # In[ ]: # Raise/lower pitch by --pitch-transform-shift <Hz> # Synthesize with a -50 Hz shift get_ipython().system('python ../inference.py {flags} -i text.txt -o output/riselowpitch --pitch-transform-shift -50 > /dev/null') IPython.display.Audio("output/riselowpitch/audio_0.wav") # ### 2.3 Flatten the pitch # In[ ]: # Flatten the pitch to a constant value with --pitch-transform-flatten get_ipython().system('python ../inference.py {flags} -i text.txt -o output/flattenpitch --pitch-transform-flatten > /dev/null') IPython.display.Audio("output/flattenpitch/audio_0.wav") # ### 2.4 Invert the pitch # In[ ]: # Invert pitch wrt. to the mean pitch with --pitch-transform-invert get_ipython().system('python ../inference.py {flags} -i text.txt -o output/invertpitch --pitch-transform-invert > /dev/null') IPython.display.Audio("output/invertpitch/audio_0.wav") # ### 2.5 Amplify the pitch # In[ ]: # Amplify pitch wrt. to the mean pitch with --pitch-transform-amplify 2.0 # values in the (1.0, 3.0) range work the best get_ipython().system('python ../inference.py {flags} -i text.txt -o output/amplifypitch --pitch-transform-amplify 2.0 > /dev/null') IPython.display.Audio("output/amplifypitch/audio_0.wav") # ### 2.6 Combine the flags # The flags can be combined. You can find all the available options by calling python inference.py --help. # In[ ]: get_ipython().system('python ../inference.py --help') # Below example shows how to generate an audio with a combination of the flags --pace --pitch-transform-flatten --pitch-transform-shift --pitch-transform-invert --pitch-transform-amplify # In[ ]: # Dobuble the speed and combine multiple transformations get_ipython().system('python ../inference.py {flags} -i text.txt -o output/combine --pace 2.0 --pitch-transform-flatten --pitch-transform-shift 50 --pitch-transform-invert --pitch-transform-amplify 1.5 > /dev/null') IPython.display.Audio("output/combine/audio_0.wav") # ### 3. Inference performance benchmark # In[ ]: # Benchmark inference using AMP get_ipython().system('python ../inference.py {flags} --include-warmup --batch-size 8 --repeats 100 --torchscript --amp -i ../phrases/benchmark_8_128.tsv -o output/benchmark') # ### 4. Next step # Now you have learnt how to generate high quality audio from text using FastPitch, as well as add variations to the audio using the flags. You can experiment with more input texts, or change the hyperparameters of the models, such as pitch flags, batch size, different precisions, etc, to see if they could improve the inference results. # # If you are interested in learning more about FastPitch, please check more samples (trained with multi-speaker) presented at [samples page](https://fastpitch.github.io/).
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/csrc/cuda
cuda
box_encode
/** * Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <ATen/ATen.h> #include <ATen/cuda/CUDAContext.h> #include <THC/THC.h> #include <torch/torch.h> #include <vector> #include <iostream> __global__ void box_encode_kernel(float *targets_dx, float *targets_dy, float *targets_dw, float *targets_dh, float4 *boxes, float4 *anchors, float wx, float wy, float ww, float wh, size_t gt, size_t idxJump) { int idx = blockIdx.x * blockDim.x + threadIdx.x; size_t row_offset; float anchors_x1, anchors_x2, anchors_y1, anchors_y2, boxes_x1, boxes_x2, boxes_y1, boxes_y2, ex_w, ex_h, ex_ctr_x, ex_ctr_y, gt_w, gt_h, gt_ctr_x, gt_ctr_y; for (int i = idx; i < gt; i += idxJump){ row_offset = i; anchors_x1 = anchors[row_offset].x; anchors_y1 = anchors[row_offset].y; anchors_x2 = anchors[row_offset].z; anchors_y2 = anchors[row_offset].w; boxes_x1 = boxes[row_offset].x; boxes_y1 = boxes[row_offset].y; boxes_x2 = boxes[row_offset].z; boxes_y2 = boxes[row_offset].w; ex_w = anchors_x2 - anchors_x1 + 1; ex_h = anchors_y2 - anchors_y1 + 1; ex_ctr_x = anchors_x1 + 0.5 * ex_w; ex_ctr_y = anchors_y1 + 0.5 * ex_h; gt_w = boxes_x2 - boxes_x1 + 1; gt_h = boxes_y2 - boxes_y1 + 1; gt_ctr_x = boxes_x1 + 0.5 * gt_w; gt_ctr_y = boxes_y1 + 0.5 * gt_h; targets_dx[i] = wx * (gt_ctr_x - ex_ctr_x) / ex_w; targets_dy[i] = wy * (gt_ctr_y - ex_ctr_y) / ex_h; targets_dw[i] = ww * log(gt_w / ex_w); targets_dh[i] = wh * log(gt_h / ex_h); } } std::vector<at::Tensor> box_encode_cuda(at::Tensor boxes, at::Tensor anchors, float wx, float wy, float ww, float wh){ int minGridSize; int blockSize; cudaOccupancyMaxPotentialBlockSize(&minGridSize, &blockSize, (void*) box_encode_kernel, 0, // dynamic memory 0); // maximum utilized threads long size = boxes.size(0); auto targets_dx = torch::ones({size}, torch::CUDA(at::kFloat)); auto targets_dy = torch::ones({size}, torch::CUDA(at::kFloat)); auto targets_dw = torch::ones({size}, torch::CUDA(at::kFloat)); auto targets_dh = torch::ones({size}, torch::CUDA(at::kFloat)); dim3 gridDim(minGridSize); dim3 blockDim(blockSize); int idxJump = minGridSize * blockSize; auto stream = at::cuda::getCurrentCUDAStream(); box_encode_kernel<<<gridDim,blockDim,0,stream.stream()>>>(targets_dx.data_ptr<float>(), targets_dy.data_ptr<float>(), targets_dw.data_ptr<float>(), targets_dh.data_ptr<float>(), (float4*) boxes.data_ptr<float>(), (float4*) anchors.data_ptr<float>(), wx, wy, ww, wh, size, idxJump); std::vector<at::Tensor> result; result.push_back(targets_dx); result.push_back(targets_dy); result.push_back(targets_dw); result.push_back(targets_dh); return result; }
TensorFlow/Segmentation/UNet_Medical/examples
examples
unet_INFER
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This script launches U-Net run in FP32 on 1 GPU for inference batch_size 1. Usage: # bash unet_INFER_FP32.sh <path to this repository> <path to dataset> <path to results directory> horovodrun -np 1 python main.py --data_dir $1 --model_dir $2 --batch_size 1 --exec_mode predict --xla
DGLPyTorch/DrugDiscovery/SE3Transformer/se3_transformer/model/layers
layers
attention
# Copyright (c) 2021-2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. # # SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES # SPDX-License-Identifier: MIT import dgl import numpy as np import torch import torch.nn as nn from dgl import DGLGraph from dgl.ops import edge_softmax from torch import Tensor from typing import Dict, Optional, Union from se3_transformer.model.fiber import Fiber from se3_transformer.model.layers.convolution import ConvSE3, ConvSE3FuseLevel from se3_transformer.model.layers.linear import LinearSE3 from se3_transformer.runtime.utils import degree_to_dim, aggregate_residual, unfuse_features from torch.cuda.nvtx import range as nvtx_range class AttentionSE3(nn.Module): """ Multi-headed sparse graph self-attention (SE(3)-equivariant) """ def __init__( self, num_heads: int, key_fiber: Fiber, value_fiber: Fiber ): """ :param num_heads: Number of attention heads :param key_fiber: Fiber for the keys (and also for the queries) :param value_fiber: Fiber for the values """ super().__init__() self.num_heads = num_heads self.key_fiber = key_fiber self.value_fiber = value_fiber def forward( self, value: Union[Tensor, Dict[str, Tensor]], # edge features (may be fused) key: Union[Tensor, Dict[str, Tensor]], # edge features (may be fused) query: Dict[str, Tensor], # node features graph: DGLGraph ): with nvtx_range('AttentionSE3'): with nvtx_range('reshape keys and queries'): if isinstance(key, Tensor): # case where features of all types are fused key = key.reshape(key.shape[0], self.num_heads, -1) # need to reshape queries that way to keep the same layout as keys out = torch.cat([query[str(d)] for d in self.key_fiber.degrees], dim=-1) query = out.reshape(list(query.values())[0].shape[0], self.num_heads, -1) else: # features are not fused, need to fuse and reshape them key = self.key_fiber.to_attention_heads(key, self.num_heads) query = self.key_fiber.to_attention_heads(query, self.num_heads) with nvtx_range('attention dot product + softmax'): # Compute attention weights (softmax of inner product between key and query) edge_weights = dgl.ops.e_dot_v(graph, key, query).squeeze(-1) edge_weights = edge_weights / np.sqrt(self.key_fiber.num_features) edge_weights = edge_softmax(graph, edge_weights) edge_weights = edge_weights[..., None, None] with nvtx_range('weighted sum'): if isinstance(value, Tensor): # features of all types are fused v = value.view(value.shape[0], self.num_heads, -1, value.shape[-1]) weights = edge_weights * v feat_out = dgl.ops.copy_e_sum(graph, weights) feat_out = feat_out.view(feat_out.shape[0], -1, feat_out.shape[-1]) # merge heads out = unfuse_features(feat_out, self.value_fiber.degrees) else: out = {} for degree, channels in self.value_fiber: v = value[str(degree)].view(-1, self.num_heads, channels // self.num_heads, degree_to_dim(degree)) weights = edge_weights * v res = dgl.ops.copy_e_sum(graph, weights) out[str(degree)] = res.view(-1, channels, degree_to_dim(degree)) # merge heads return out class AttentionBlockSE3(nn.Module): """ Multi-headed sparse graph self-attention block with skip connection, linear projection (SE(3)-equivariant) """ def __init__( self, fiber_in: Fiber, fiber_out: Fiber, fiber_edge: Optional[Fiber] = None, num_heads: int = 4, channels_div: int = 2, use_layer_norm: bool = False, max_degree: bool = 4, fuse_level: ConvSE3FuseLevel = ConvSE3FuseLevel.FULL, low_memory: bool = False, **kwargs ): """ :param fiber_in: Fiber describing the input features :param fiber_out: Fiber describing the output features :param fiber_edge: Fiber describing the edge features (node distances excluded) :param num_heads: Number of attention heads :param channels_div: Divide the channels by this integer for computing values :param use_layer_norm: Apply layer normalization between MLP layers :param max_degree: Maximum degree used in the bases computation :param fuse_level: Maximum fuse level to use in TFN convolutions """ super().__init__() if fiber_edge is None: fiber_edge = Fiber({}) self.fiber_in = fiber_in # value_fiber has same structure as fiber_out but #channels divided by 'channels_div' value_fiber = Fiber([(degree, channels // channels_div) for degree, channels in fiber_out]) # key_query_fiber has the same structure as fiber_out, but only degrees which are in in_fiber # (queries are merely projected, hence degrees have to match input) key_query_fiber = Fiber([(fe.degree, fe.channels) for fe in value_fiber if fe.degree in fiber_in.degrees]) self.to_key_value = ConvSE3(fiber_in, value_fiber + key_query_fiber, pool=False, fiber_edge=fiber_edge, use_layer_norm=use_layer_norm, max_degree=max_degree, fuse_level=fuse_level, allow_fused_output=True, low_memory=low_memory) self.to_query = LinearSE3(fiber_in, key_query_fiber) self.attention = AttentionSE3(num_heads, key_query_fiber, value_fiber) self.project = LinearSE3(value_fiber + fiber_in, fiber_out) def forward( self, node_features: Dict[str, Tensor], edge_features: Dict[str, Tensor], graph: DGLGraph, basis: Dict[str, Tensor] ): with nvtx_range('AttentionBlockSE3'): with nvtx_range('keys / values'): fused_key_value = self.to_key_value(node_features, edge_features, graph, basis) key, value = self._get_key_value_from_fused(fused_key_value) with nvtx_range('queries'): query = self.to_query(node_features) z = self.attention(value, key, query, graph) z_concat = aggregate_residual(node_features, z, 'cat') return self.project(z_concat) def _get_key_value_from_fused(self, fused_key_value): # Extract keys and queries features from fused features if isinstance(fused_key_value, Tensor): # Previous layer was a fully fused convolution value, key = torch.chunk(fused_key_value, chunks=2, dim=-2) else: key, value = {}, {} for degree, feat in fused_key_value.items(): if int(degree) in self.fiber_in.degrees: value[degree], key[degree] = torch.chunk(feat, chunks=2, dim=-2) else: value[degree] = feat return key, value
PyTorch/Classification/GPUNet/triton/deployment_toolkit/triton_performance_runner/perf_analyzer
perf_analyzer
warmup
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import pathlib from distutils.version import LooseVersion from importlib.metadata import version from typing import List, Optional # method from PEP-366 to support relative import in executed modules if __package__ is None: __package__ = pathlib.Path(__file__).parent.name from ...core import EvaluationMode, MeasurementMode, OfflineMode from ...utils import parse_server_url from .perf_analyzer import PerfAnalyzer from .perf_config import PerfAnalyzerConfig LOGGER = logging.getLogger("warmup") TRITON_CLIENT_VERSION = LooseVersion(version("tritonclient")) class PerfAnalyzerWarmupRunner: def __init__( self, server_url: str, model_name: str, batch_sizes: List[int], concurrency: List[int], input_data: str, input_shapes: List[str], measurement_mode: MeasurementMode, measurement_interval: int, measurement_request_count: int, offline_mode: OfflineMode, evaluation_mode: EvaluationMode, output_shared_memory_size: int, timeout: Optional[int], ): self._model_name = model_name self._input_data = input_data self._input_shapes = input_shapes self._measurement_mode = measurement_mode self._offline_mode = offline_mode self._evaluation_mode = evaluation_mode self._output_shared_memory_size = output_shared_memory_size self._protocol, self._host, self._port = parse_server_url(server_url) self._measurement_interval = 2 * measurement_interval self._measurement_request_count = 2 * measurement_request_count self._batch_sizes = [min(batch_sizes)] self._concurrency = [max(concurrency)] self._timeout = timeout def run(self): for batch_size in self._batch_sizes: for concurrency in self._concurrency: params = { "model-name": self._model_name, "model-version": 1, "batch-size": batch_size, "url": f"{self._host}:{self._port}", "protocol": self._protocol.value, "input-data": self._input_data, "measurement-interval": self._measurement_interval, "concurrency-range": f"{concurrency}:{concurrency}:1", "verbose": True, } if TRITON_CLIENT_VERSION >= LooseVersion("2.11.0"): params["measurement-mode"] = self._measurement_mode.value params["measurement-request-count"] = self._measurement_request_count if self._evaluation_mode == EvaluationMode.OFFLINE: params["shared-memory"] = self._offline_mode.value params["output-shared-memory-size"] = self._output_shared_memory_size config = PerfAnalyzerConfig() for param, value in params.items(): config[param] = value for shape in self._input_shapes: config["shape"] = shape perf_analyzer = PerfAnalyzer(config=config, timeout=self._timeout) perf_analyzer.run()
TensorFlow/Classification/ConvNets/resnext101-32x4d/training
training
DGX2_RNxt101-32x4d_FP32_250E
#!/bin/bash # Copyright (c) 2019 NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. WORKSPACE=${1:-"/workspace/rn50v15_tf"} DATA_DIR=${2:-"/data"} OTHER=${@:3} if [[ ! -z "${BIND_TO_SOCKET}" ]]; then BIND_TO_SOCKET="--bind-to socket" fi mpiexec --allow-run-as-root ${BIND_TO_SOCKET} -np 8 python3 main.py --arch=resnext101-32x4d \ --mode=train_and_evaluate --iter_unit=epoch --num_iter=250 --mixup=0.2 \ --batch_size=64 --warmup_steps=100 --cosine_lr --label_smoothing 0.1 \ --lr_init=0.256 --lr_warmup_epochs=8 --momentum=0.875 --weight_decay=6.103515625e-05 \ --data_dir=${DATA_DIR}/tfrecords --data_idx_dir=${DATA_DIR}/dali_idx \ --results_dir=${WORKSPACE}/results --weight_init=fan_in ${OTHER}
TensorFlow/Classification/ConvNets/resnet50v1.5/training
training
DGX1_RN50_AMP_250E
#!/bin/bash # Copyright (c) 2019 NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. WORKSPACE=${1:-"/workspace/rn50v15_tf"} DATA_DIR=${2:-"/data"} OTHER=${@:3} if [[ ! -z "${BIND_TO_SOCKET}" ]]; then BIND_TO_SOCKET="--bind-to socket" fi mpiexec --allow-run-as-root ${BIND_TO_SOCKET} -np 8 python3 main.py --arch=resnet50 \ --mode=train_and_evaluate --iter_unit=epoch --num_iter=250 --mixup=0.2 \ --batch_size=256 --warmup_steps=100 --cosine_lr --label_smoothing 0.1 \ --lr_init=0.256 --lr_warmup_epochs=8 --momentum=0.875 --weight_decay=3.0517578125e-05 \ --amp --static_loss_scale 128 \ --data_dir=${DATA_DIR}/tfrecords --data_idx_dir=${DATA_DIR}/dali_idx \ --results_dir=${WORKSPACE}/results --weight_init=fan_in ${OTHER}
PyTorch/SpeechRecognition/wav2vec2/common
common
metrics
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time from collections import defaultdict from copy import copy import numpy as np import torch from common.utils import all_reduce_cpu_scalars, print_once def __levenshtein(a, b): """Calculates the Levenshtein distance between two sequences.""" n, m = len(a), len(b) if n > m: # Make sure n <= m, to use O(min(n,m)) space a, b = b, a n, m = m, n current = list(range(n + 1)) for i in range(1, m + 1): previous, current = current, [i] + [0] * n for j in range(1, n + 1): add, delete = previous[j] + 1, current[j - 1] + 1 change = previous[j - 1] if a[j - 1] != b[i - 1]: change = change + 1 current[j] = min(add, delete, change) return current[n] def word_error_rate(hypotheses, references): """Computes average Word Error Rate (WER) between two text lists.""" scores = 0 words = 0 len_diff = len(references) - len(hypotheses) if len_diff > 0: raise ValueError("Uneqal number of hypthoses and references: " "{0} and {1}".format(len(hypotheses), len(references))) elif len_diff < 0: hypotheses = hypotheses[:len_diff] for h, r in zip(hypotheses, references): h_list = h.split() r_list = r.split() words += len(r_list) scores += __levenshtein(h_list, r_list) if words != 0: wer = 1.0*scores/words else: wer = float('inf') return wer, scores, words class MetricsAggregator: def __init__(self, scopes=('train', 'train_avg'), dllogger_keys=(), benchmark_keys=(), benchmark_epochs=0, reduce_mean=(), reduce_last=(), group_tb_entries=False, cuda=True): """ Args: scopes: possible scopes of metrics accumulation dll_keys: metrics to log with dllogger benchmark_keys: metrics to log as benchmark metrics benchmark_epochs: num of last epochs to benchmark """ super().__init__() self.dll_keys = dllogger_keys self.partials = defaultdict(float) self.partial_counts = defaultdict(int) self.accum_reductions = defaultdict(lambda: 'sum') self.accum_reductions.update({k: 'mean' for k in reduce_mean}) self.accum_reductions.update({k: 'last' for k in reduce_last}) self.metrics = {scope: defaultdict(float) for scope in scopes} self.metric_counts = {scope: defaultdict(int) for scope in scopes} self.start_time = {scope: None for scope in scopes} self.done_accumulating = {scope: True for scope in scopes} self.benchmark_epochs = benchmark_epochs self.metrics['train_benchmark'] = defaultdict(list) self.benchmark_keys = benchmark_keys self.scopes = scopes self.group_tb_entries = group_tb_entries self.cuda = cuda def log_scalar(self, key, val, accum_reduction=None): """Main primitive for logging partial metrics from single batch. NOTE: Assumption: `log_scalar` cannot be called with different `accum_reduction` for the same `key`. This results in undefined behavior Args: key: metric key val: metric value accum_reduction: defines how to accumulate given metric: - 'sum': sums metrics across grad acc and devices batches - 'mean': same as 'sum' but with averaging - 'last': overwrites previous accumulated values. Useful for logging metric once in a grad acc batch, e.g. learning rate. If None, a default value is fetched from self.accum_reductions. If not None, overwrites defaults in self.accum_reductions """ if accum_reduction is None: accum_reduction = self.accum_reductions[key] else: self.accum_reductions[key] = accum_reduction if accum_reduction == 'sum': self.partials[key] += val self.partial_counts[key] = 1 elif accum_reduction == 'mean': self.partials[key] += val self.partial_counts[key] += 1 elif accum_reduction == 'last': self.partials[key] = val # overwrite accumulation self.partial_counts[key] = 1 else: raise ValueError(accum_reduction) def log_scalars(self, scalars_dict, accum_reduction=None): """ Log whole dict of metrics at once """ for k, v in scalars_dict.items(): self.log_scalar(k, v, accum_reduction) def __setitem__(self, key, val): """ Convenience logging method. Use sparingly (see NOTE below). Uses 'last' aggregation and extracts tensors. Example: >>> metrics['lr'] = optim.param_groups[0]['lr'] NOTE: `metrics['lr'] = ...` is very different from `metrics.partial['lr'] = ...` """ extract = lambda t: t.item() if type(t) is torch.Tensor else t if type(val) is dict: for k, v in val.items(): self.log_scalar(k, extract(v), 'last') else: self.log_scalar(key, extract(val), 'last') def accumulate(self, scopes=None): """ Accumulates partial metrics in metrics for given scopes. Defines boundaries of accum_reduction in `log_scalar` method. Intended to run after each gradient accumulation adjusted iteration. """ scopes = scopes if scopes is not None else self.scopes for scope in scopes: for k, v in self.partials.items(): self.metrics[scope][k] += v self.metric_counts[scope][k] += self.partial_counts.get(k, 1) self.partials.clear() self.partial_counts.clear() def all_reduce(self, world_size): """ Reduce metrics across devices. Currently assumes that all metrics are float scalars. After reducing, `log_scalar` method with accumulation other than 'last' shouldn't be called prior to calling `accumulate`. """ if world_size == 1: return self.partials = defaultdict(float, all_reduce_cpu_scalars(self.partials)) for k, v in self.partials.items(): if self.accum_reductions[k] in ('mean', 'last'): self.partial_counts[k] *= (world_size - self.partials.get('ignore', 0)) if self.partials.get('ignore', 0) > 0: assert self.accum_reductions[k] == 'mean' print_once(f'reducing with world size {world_size - self.partials.get("ignore", 0)}') def start_iter(self, iter): self._start_accumulating(iter, True, 'train') def start_epoch(self, epoch): if self.cuda: torch.cuda.synchronize() self._start_accumulating(epoch, True, 'train_avg') def start_val(self): if self.cuda: torch.cuda.synchronize() self._start_accumulating(None, True, 'val') def finish_iter(self): self._accumulate_time('train') def finish_logging_interval(self): self._finish_accumulating('train') def finish_epoch(self): if self.cuda: torch.cuda.synchronize() self._accumulate_time('train_avg') self._finish_accumulating('train_avg') metr = self.metrics['train_benchmark'] for k in self.benchmark_keys: metr[k].append(self.metrics['train_avg'][k]) if len(metr[k]) > self.benchmark_epochs: metr[k].pop(0) def finish_val(self, scope='val'): if self.cuda: torch.cuda.synchronize() self._accumulate_time(scope) self._finish_accumulating(scope) def get_metrics(self, scope='train', target='dll'): if scope == 'train_benchmark': metr = self.metrics[scope] ret = {'train_avg_' + k: np.mean(v) for k, v in metr.items()} ret['benchmark_epochs_num'] = len(list(metr.values())[0]) return ret assert self.done_accumulating[scope] ret = copy(self.metrics[scope]) if target == 'dll': ret = {f'{scope}_{k}': v for k, v in ret.items() if k in self.dll_keys} elif target == 'tb' and self.group_tb_entries: # Rename keys so they would group nicely inside TensorBoard def split_key(k): pos = k.rfind('_') return k[:pos] + '/' + k[pos+1:] if pos >= 0 else k ret = {split_key(k): v for k, v in ret.items()} return ret def _start_accumulating(self, step, start_timer=True, scope='train'): del step # unused assert not self.partials, 'metrics.accumulate call missed' assert not self.partial_counts, 'metrics.accumulate call missed' if self.done_accumulating[scope]: self.metrics[scope].clear() self.metric_counts[scope].clear() if start_timer: self.start_time[scope] = time.time() self.done_accumulating[scope] = False def _finish_accumulating(self, scope='train'): assert not self.done_accumulating[scope] metr = self.metrics[scope] counts = self.metric_counts[scope] for k, v in metr.items(): metr[k] = v / counts[k] self.done_accumulating[scope] = True def _accumulate_time(self, scope='train'): assert not self.done_accumulating[scope] took = time.time() - self.start_time[scope] self.start_time[scope] = None self.metrics[scope]['took'] += took self.metric_counts[scope]['took'] = 1 # not +=
PyTorch/Segmentation/MaskRCNN/pytorch/tools
tools
test_net
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # Set up custom environment before nearly anything else is imported # NOTE: this should be the first import (no not reorder) from maskrcnn_benchmark.utils.env import setup_environment # noqa F401 isort:skip import argparse import os import torch from maskrcnn_benchmark.config import cfg from maskrcnn_benchmark.data import make_data_loader from maskrcnn_benchmark.engine.inference import inference from maskrcnn_benchmark.modeling.detector import build_detection_model from maskrcnn_benchmark.utils.checkpoint import DetectronCheckpointer from maskrcnn_benchmark.utils.collect_env import collect_env_info from maskrcnn_benchmark.utils.comm import synchronize, get_rank, is_main_process from maskrcnn_benchmark.utils.logger import setup_logger from maskrcnn_benchmark.utils.miscellaneous import mkdir from maskrcnn_benchmark.utils.logger import format_step import dllogger def main(): parser = argparse.ArgumentParser(description="PyTorch Object Detection Inference") parser.add_argument( "--config-file", default="/workspace/object_detection/configs/e2e_mask_rcnn_R_50_FPN_1x.yaml", metavar="FILE", help="path to config file", ) parser.add_argument("--local_rank", type=int, default=os.getenv('LOCAL_RANK', 0)) parser.add_argument("--json-summary", help="Out file for DLLogger", default="dllogger_inference.out", type=str) parser.add_argument( "--skip-eval", dest="skip_eval", help="Do not eval the predictions", action="store_true", ) parser.add_argument( "--fp16", help="Mixed precision training", action="store_true", ) parser.add_argument( "--amp", help="Mixed precision training", action="store_true", ) parser.add_argument( "--infer_steps", help="Total inference steps", default=-1, type=int) parser.add_argument( "opts", help="Modify config options using the command-line", default=None, nargs=argparse.REMAINDER, ) args = parser.parse_args() args.fp16 = args.fp16 or args.amp num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1 distributed = num_gpus > 1 if distributed: torch.cuda.set_device(args.local_rank) torch.distributed.init_process_group( backend="nccl", init_method="env://" ) synchronize() cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) cfg.freeze() save_dir = "" logger = setup_logger("maskrcnn_benchmark", save_dir, get_rank()) if is_main_process(): dllogger.init(backends=[dllogger.JSONStreamBackend(verbosity=dllogger.Verbosity.VERBOSE, filename=args.json_summary), dllogger.StdOutBackend(verbosity=dllogger.Verbosity.VERBOSE, step_format=format_step)]) else: dllogger.init(backends=[]) dllogger.metadata("BBOX_mAP", {"unit": None}) dllogger.metadata("MASK_mAP", {"unit": None}) dllogger.metadata("e2e_infer_time", {"unit": "s"}) dllogger.metadata("inference_perf_fps", {"unit": "images/s"}) dllogger.metadata("latency_avg", {"unit": "s"}) dllogger.metadata("latency_90", {"unit": "s"}) dllogger.metadata("latency_95", {"unit": "s"}) dllogger.metadata("latency_99", {"unit": "s"}) save_dir = "" dllogger.log(step="PARAMETER", data={"config":cfg}) dllogger.log(step="PARAMETER", data={"gpu_count": num_gpus}) # dllogger.log(step="PARAMETER", data={"env_info": collect_env_info()}) model = build_detection_model(cfg) model.to(cfg.MODEL.DEVICE) # Initialize mixed-precision if args.fp16: use_mixed_precision = True else: use_mixed_precision = cfg.DTYPE == "float16" output_dir = cfg.OUTPUT_DIR checkpointer = DetectronCheckpointer(cfg, model, save_dir=output_dir) _ = checkpointer.load(cfg.MODEL.WEIGHT) iou_types = ("bbox",) if cfg.MODEL.MASK_ON: iou_types = iou_types + ("segm",) output_folders = [None] * len(cfg.DATASETS.TEST) dataset_names = cfg.DATASETS.TEST if cfg.OUTPUT_DIR: for idx, dataset_name in enumerate(dataset_names): output_folder = os.path.join(cfg.OUTPUT_DIR, "inference", dataset_name) mkdir(output_folder) output_folders[idx] = output_folder data_loaders_val = make_data_loader(cfg, is_train=False, is_distributed=distributed) results = [] for output_folder, dataset_name, data_loader_val in zip(output_folders, dataset_names, data_loaders_val): if use_mixed_precision: with torch.cuda.amp.autocast(): result = inference( model, data_loader_val, dataset_name=dataset_name, iou_types=iou_types, box_only=cfg.MODEL.RPN_ONLY, device=cfg.MODEL.DEVICE, expected_results=cfg.TEST.EXPECTED_RESULTS, expected_results_sigma_tol=cfg.TEST.EXPECTED_RESULTS_SIGMA_TOL, output_folder=output_folder, skip_eval=args.skip_eval, dllogger=dllogger, steps=args.infer_steps ) else: result = inference( model, data_loader_val, dataset_name=dataset_name, iou_types=iou_types, box_only=cfg.MODEL.RPN_ONLY, device=cfg.MODEL.DEVICE, expected_results=cfg.TEST.EXPECTED_RESULTS, expected_results_sigma_tol=cfg.TEST.EXPECTED_RESULTS_SIGMA_TOL, output_folder=output_folder, skip_eval=args.skip_eval, dllogger=dllogger, steps=args.infer_steps ) synchronize() results.append(result) if is_main_process() and not args.skip_eval: map_results, raw_results = results[0] bbox_map = map_results.results["bbox"]['AP'] segm_map = map_results.results["segm"]['AP'] dllogger.log(step=tuple(), data={"BBOX_mAP": bbox_map, "MASK_mAP": segm_map}) if __name__ == "__main__": main() dllogger.log(step=tuple(), data={})
TensorFlow/Detection/SSD/models/research/object_detection/dataset_tools
dataset_tools
create_kitti_tf_record
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== r"""Convert raw KITTI detection dataset to TFRecord for object_detection. Converts KITTI detection dataset to TFRecords with a standard format allowing to use this dataset to train object detectors. The raw dataset can be downloaded from: http://kitti.is.tue.mpg.de/kitti/data_object_image_2.zip. http://kitti.is.tue.mpg.de/kitti/data_object_label_2.zip Permission can be requested at the main website. KITTI detection dataset contains 7481 training images. Using this code with the default settings will set aside the first 500 images as a validation set. This can be altered using the flags, see details below. Example usage: python object_detection/dataset_tools/create_kitti_tf_record.py \ --data_dir=/home/user/kitti \ --output_path=/home/user/kitti.record """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import hashlib import io import os import numpy as np import PIL.Image as pil import tensorflow as tf from object_detection.utils import dataset_util from object_detection.utils import label_map_util from object_detection.utils.np_box_ops import iou tf.app.flags.DEFINE_string('data_dir', '', 'Location of root directory for the ' 'data. Folder structure is assumed to be:' '<data_dir>/training/label_2 (annotations) and' '<data_dir>/data_object_image_2/training/image_2' '(images).') tf.app.flags.DEFINE_string('output_path', '', 'Path to which TFRecord files' 'will be written. The TFRecord with the training set' 'will be located at: <output_path>_train.tfrecord.' 'And the TFRecord with the validation set will be' 'located at: <output_path>_val.tfrecord') tf.app.flags.DEFINE_string('classes_to_use', 'car,pedestrian,dontcare', 'Comma separated list of class names that will be' 'used. Adding the dontcare class will remove all' 'bboxs in the dontcare regions.') tf.app.flags.DEFINE_string('label_map_path', 'data/kitti_label_map.pbtxt', 'Path to label map proto.') tf.app.flags.DEFINE_integer('validation_set_size', '500', 'Number of images to' 'be used as a validation set.') FLAGS = tf.app.flags.FLAGS def convert_kitti_to_tfrecords(data_dir, output_path, classes_to_use, label_map_path, validation_set_size): """Convert the KITTI detection dataset to TFRecords. Args: data_dir: The full path to the unzipped folder containing the unzipped data from data_object_image_2 and data_object_label_2.zip. Folder structure is assumed to be: data_dir/training/label_2 (annotations) and data_dir/data_object_image_2/training/image_2 (images). output_path: The path to which TFRecord files will be written. The TFRecord with the training set will be located at: <output_path>_train.tfrecord And the TFRecord with the validation set will be located at: <output_path>_val.tfrecord classes_to_use: List of strings naming the classes for which data should be converted. Use the same names as presented in the KIITI README file. Adding dontcare class will remove all other bounding boxes that overlap with areas marked as dontcare regions. label_map_path: Path to label map proto validation_set_size: How many images should be left as the validation set. (Ffirst `validation_set_size` examples are selected to be in the validation set). """ label_map_dict = label_map_util.get_label_map_dict(label_map_path) train_count = 0 val_count = 0 annotation_dir = os.path.join(data_dir, 'training', 'label_2') image_dir = os.path.join(data_dir, 'data_object_image_2', 'training', 'image_2') train_writer = tf.python_io.TFRecordWriter('%s_train.tfrecord'% output_path) val_writer = tf.python_io.TFRecordWriter('%s_val.tfrecord'% output_path) images = sorted(tf.gfile.ListDirectory(image_dir)) for img_name in images: img_num = int(img_name.split('.')[0]) is_validation_img = img_num < validation_set_size img_anno = read_annotation_file(os.path.join(annotation_dir, str(img_num).zfill(6)+'.txt')) image_path = os.path.join(image_dir, img_name) # Filter all bounding boxes of this frame that are of a legal class, and # don't overlap with a dontcare region. # TODO(talremez) filter out targets that are truncated or heavily occluded. annotation_for_image = filter_annotations(img_anno, classes_to_use) example = prepare_example(image_path, annotation_for_image, label_map_dict) if is_validation_img: val_writer.write(example.SerializeToString()) val_count += 1 else: train_writer.write(example.SerializeToString()) train_count += 1 train_writer.close() val_writer.close() def prepare_example(image_path, annotations, label_map_dict): """Converts a dictionary with annotations for an image to tf.Example proto. Args: image_path: The complete path to image. annotations: A dictionary representing the annotation of a single object that appears in the image. label_map_dict: A map from string label names to integer ids. Returns: example: The converted tf.Example. """ with tf.gfile.GFile(image_path, 'rb') as fid: encoded_png = fid.read() encoded_png_io = io.BytesIO(encoded_png) image = pil.open(encoded_png_io) image = np.asarray(image) key = hashlib.sha256(encoded_png).hexdigest() width = int(image.shape[1]) height = int(image.shape[0]) xmin_norm = annotations['2d_bbox_left'] / float(width) ymin_norm = annotations['2d_bbox_top'] / float(height) xmax_norm = annotations['2d_bbox_right'] / float(width) ymax_norm = annotations['2d_bbox_bottom'] / float(height) difficult_obj = [0]*len(xmin_norm) example = tf.train.Example(features=tf.train.Features(feature={ 'image/height': dataset_util.int64_feature(height), 'image/width': dataset_util.int64_feature(width), 'image/filename': dataset_util.bytes_feature(image_path.encode('utf8')), 'image/source_id': dataset_util.bytes_feature(image_path.encode('utf8')), 'image/key/sha256': dataset_util.bytes_feature(key.encode('utf8')), 'image/encoded': dataset_util.bytes_feature(encoded_png), 'image/format': dataset_util.bytes_feature('png'.encode('utf8')), 'image/object/bbox/xmin': dataset_util.float_list_feature(xmin_norm), 'image/object/bbox/xmax': dataset_util.float_list_feature(xmax_norm), 'image/object/bbox/ymin': dataset_util.float_list_feature(ymin_norm), 'image/object/bbox/ymax': dataset_util.float_list_feature(ymax_norm), 'image/object/class/text': dataset_util.bytes_list_feature( [x.encode('utf8') for x in annotations['type']]), 'image/object/class/label': dataset_util.int64_list_feature( [label_map_dict[x] for x in annotations['type']]), 'image/object/difficult': dataset_util.int64_list_feature(difficult_obj), 'image/object/truncated': dataset_util.float_list_feature( annotations['truncated']), 'image/object/alpha': dataset_util.float_list_feature( annotations['alpha']), 'image/object/3d_bbox/height': dataset_util.float_list_feature( annotations['3d_bbox_height']), 'image/object/3d_bbox/width': dataset_util.float_list_feature( annotations['3d_bbox_width']), 'image/object/3d_bbox/length': dataset_util.float_list_feature( annotations['3d_bbox_length']), 'image/object/3d_bbox/x': dataset_util.float_list_feature( annotations['3d_bbox_x']), 'image/object/3d_bbox/y': dataset_util.float_list_feature( annotations['3d_bbox_y']), 'image/object/3d_bbox/z': dataset_util.float_list_feature( annotations['3d_bbox_z']), 'image/object/3d_bbox/rot_y': dataset_util.float_list_feature( annotations['3d_bbox_rot_y']), })) return example def filter_annotations(img_all_annotations, used_classes): """Filters out annotations from the unused classes and dontcare regions. Filters out the annotations that belong to classes we do now wish to use and (optionally) also removes all boxes that overlap with dontcare regions. Args: img_all_annotations: A list of annotation dictionaries. See documentation of read_annotation_file for more details about the format of the annotations. used_classes: A list of strings listing the classes we want to keep, if the list contains "dontcare", all bounding boxes with overlapping with dont care regions will also be filtered out. Returns: img_filtered_annotations: A list of annotation dictionaries that have passed the filtering. """ img_filtered_annotations = {} # Filter the type of the objects. relevant_annotation_indices = [ i for i, x in enumerate(img_all_annotations['type']) if x in used_classes ] for key in img_all_annotations.keys(): img_filtered_annotations[key] = ( img_all_annotations[key][relevant_annotation_indices]) if 'dontcare' in used_classes: dont_care_indices = [i for i, x in enumerate(img_filtered_annotations['type']) if x == 'dontcare'] # bounding box format [y_min, x_min, y_max, x_max] all_boxes = np.stack([img_filtered_annotations['2d_bbox_top'], img_filtered_annotations['2d_bbox_left'], img_filtered_annotations['2d_bbox_bottom'], img_filtered_annotations['2d_bbox_right']], axis=1) ious = iou(boxes1=all_boxes, boxes2=all_boxes[dont_care_indices]) # Remove all bounding boxes that overlap with a dontcare region. if ious.size > 0: boxes_to_remove = np.amax(ious, axis=1) > 0.0 for key in img_all_annotations.keys(): img_filtered_annotations[key] = ( img_filtered_annotations[key][np.logical_not(boxes_to_remove)]) return img_filtered_annotations def read_annotation_file(filename): """Reads a KITTI annotation file. Converts a KITTI annotation file into a dictionary containing all the relevant information. Args: filename: the path to the annotataion text file. Returns: anno: A dictionary with the converted annotation information. See annotation README file for details on the different fields. """ with open(filename) as f: content = f.readlines() content = [x.strip().split(' ') for x in content] anno = {} anno['type'] = np.array([x[0].lower() for x in content]) anno['truncated'] = np.array([float(x[1]) for x in content]) anno['occluded'] = np.array([int(x[2]) for x in content]) anno['alpha'] = np.array([float(x[3]) for x in content]) anno['2d_bbox_left'] = np.array([float(x[4]) for x in content]) anno['2d_bbox_top'] = np.array([float(x[5]) for x in content]) anno['2d_bbox_right'] = np.array([float(x[6]) for x in content]) anno['2d_bbox_bottom'] = np.array([float(x[7]) for x in content]) anno['3d_bbox_height'] = np.array([float(x[8]) for x in content]) anno['3d_bbox_width'] = np.array([float(x[9]) for x in content]) anno['3d_bbox_length'] = np.array([float(x[10]) for x in content]) anno['3d_bbox_x'] = np.array([float(x[11]) for x in content]) anno['3d_bbox_y'] = np.array([float(x[12]) for x in content]) anno['3d_bbox_z'] = np.array([float(x[13]) for x in content]) anno['3d_bbox_rot_y'] = np.array([float(x[14]) for x in content]) return anno def main(_): convert_kitti_to_tfrecords( data_dir=FLAGS.data_dir, output_path=FLAGS.output_path, classes_to_use=FLAGS.classes_to_use.split(','), label_map_path=FLAGS.label_map_path, validation_set_size=FLAGS.validation_set_size) if __name__ == '__main__': tf.app.run()
TensorFlow/LanguageModeling/BERT
BERT
run_squad
# coding=utf-8 # Copyright (c) 2019 NVIDIA CORPORATION. All rights reserved. # Copyright 2018 The Google AI Language Team Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Run BERT on SQuAD 1.1 and SQuAD 2.0.""" from __future__ import absolute_import, division, print_function import collections import json import math import os import random import shutil import time import horovod.tensorflow as hvd import numpy as np import six import tensorflow as tf from tensorflow.python.client import device_lib import modeling import optimization import tokenization from utils.create_squad_data import * from utils.utils import LogEvalRunHook, LogTrainRunHook, setup_xla_flags from utils.gpu_affinity import set_affinity import utils.dllogger_class from dllogger import Verbosity flags = tf.flags FLAGS = None def extract_run_squad_flags(): ## Required parameters flags.DEFINE_string( "bert_config_file", None, "The config json file corresponding to the pre-trained BERT model. " "This specifies the model architecture.") flags.DEFINE_string("vocab_file", None, "The vocabulary file that the BERT model was trained on.") flags.DEFINE_string( "output_dir", None, "The output directory where the model checkpoints will be written.") ## Other parameters flags.DEFINE_string( "dllog_path", "/results/bert_dllog.json", "filename where dllogger writes to") flags.DEFINE_string("train_file", None, "SQuAD json for training. E.g., train-v1.1.json") flags.DEFINE_string( "predict_file", None, "SQuAD json for predictions. E.g., dev-v1.1.json or test-v1.1.json") flags.DEFINE_string( "eval_script", None, "SQuAD evaluate.py file to compute f1 and exact_match E.g., evaluate-v1.1.py") flags.DEFINE_string( "init_checkpoint", None, "Initial checkpoint (usually from a pre-trained BERT model).") flags.DEFINE_bool( "do_lower_case", True, "Whether to lower case the input text. Should be True for uncased " "models and False for cased models.") flags.DEFINE_integer( "max_seq_length", 384, "The maximum total input sequence length after WordPiece tokenization. " "Sequences longer than this will be truncated, and sequences shorter " "than this will be padded.") flags.DEFINE_integer( "doc_stride", 128, "When splitting up a long document into chunks, how much stride to " "take between chunks.") flags.DEFINE_integer( "max_query_length", 64, "The maximum number of tokens for the question. Questions longer than " "this will be truncated to this length.") flags.DEFINE_bool("do_train", False, "Whether to run training.") flags.DEFINE_bool("do_predict", False, "Whether to run eval on the dev set.") flags.DEFINE_integer("train_batch_size", 8, "Total batch size for training.") flags.DEFINE_integer("predict_batch_size", 8, "Total batch size for predictions.") flags.DEFINE_float("learning_rate", 5e-6, "The initial learning rate for Adam.") flags.DEFINE_bool("use_trt", False, "Whether to use TF-TRT") flags.DEFINE_bool("horovod", False, "Whether to use Horovod for multi-gpu runs") flags.DEFINE_float("num_train_epochs", 3.0, "Total number of training epochs to perform.") flags.DEFINE_float( "warmup_proportion", 0.1, "Proportion of training to perform linear learning rate warmup for. " "E.g., 0.1 = 10% of training.") flags.DEFINE_integer("save_checkpoints_steps", 5000, "How often to save the model checkpoint.") flags.DEFINE_integer("display_loss_steps", 10, "How often to print loss from estimator") flags.DEFINE_integer("iterations_per_loop", 1000, "How many steps to make in each estimator call.") flags.DEFINE_integer("num_accumulation_steps", 1, "Number of accumulation steps before gradient update" "Global batch size = num_accumulation_steps * train_batch_size") flags.DEFINE_integer( "n_best_size", 20, "The total number of n-best predictions to generate in the " "nbest_predictions.json output file.") flags.DEFINE_integer( "max_answer_length", 30, "The maximum length of an answer that can be generated. This is needed " "because the start and end predictions are not conditioned on one another.") flags.DEFINE_bool( "verbose_logging", False, "If true, all of the warnings related to data processing will be printed. " "A number of warnings are expected for a normal SQuAD evaluation.") flags.DEFINE_bool( "version_2_with_negative", False, "If true, the SQuAD examples contain some that do not have an answer.") flags.DEFINE_float( "null_score_diff_threshold", 0.0, "If null_score - best_non_null is greater than the threshold predict null.") flags.DEFINE_bool("amp", True, "Whether to enable AMP ops. When false, uses TF32 on A100 and FP32 on V100 GPUS.") flags.DEFINE_bool("use_xla", True, "Whether to enable XLA JIT compilation.") flags.DEFINE_integer("num_eval_iterations", None, "How many eval iterations to run - performs inference on subset") # Triton Specific flags flags.DEFINE_bool("export_triton", False, "Whether to export saved model or run inference with Triton") flags.DEFINE_string("triton_model_name", "bert", "exports to appropriate directory for Triton") flags.DEFINE_integer("triton_model_version", 1, "exports to appropriate directory for Triton") flags.DEFINE_string("triton_server_url", "localhost:8001", "exports to appropriate directory for Triton") flags.DEFINE_bool("triton_model_overwrite", False, "If True, will overwrite an existing directory with the specified 'model_name' and 'version_name'") flags.DEFINE_integer("triton_max_batch_size", 8, "Specifies the 'max_batch_size' in the Triton model config. See the Triton documentation for more info.") flags.DEFINE_float("triton_dyn_batching_delay", 0, "Determines the dynamic_batching queue delay in milliseconds(ms) for the Triton model config. Use '0' or '-1' to specify static batching. See the Triton documentation for more info.") flags.DEFINE_integer("triton_engine_count", 1, "Specifies the 'instance_group' count value in the Triton model config. See the Triton documentation for more info.") flags.mark_flag_as_required("vocab_file") flags.mark_flag_as_required("bert_config_file") flags.mark_flag_as_required("output_dir") return flags.FLAGS def create_model(bert_config, is_training, input_ids, input_mask, segment_ids, use_one_hot_embeddings): """Creates a classification model.""" model = modeling.BertModel( config=bert_config, is_training=is_training, input_ids=input_ids, input_mask=input_mask, token_type_ids=segment_ids, use_one_hot_embeddings=use_one_hot_embeddings, compute_type=tf.float32) final_hidden = model.get_sequence_output() final_hidden_shape = modeling.get_shape_list(final_hidden, expected_rank=3) batch_size = final_hidden_shape[0] seq_length = final_hidden_shape[1] hidden_size = final_hidden_shape[2] output_weights = tf.get_variable( "cls/squad/output_weights", [2, hidden_size], initializer=tf.truncated_normal_initializer(stddev=0.02)) output_bias = tf.get_variable( "cls/squad/output_bias", [2], initializer=tf.zeros_initializer()) final_hidden_matrix = tf.reshape(final_hidden, [batch_size * seq_length, hidden_size]) logits = tf.matmul(final_hidden_matrix, output_weights, transpose_b=True) logits = tf.nn.bias_add(logits, output_bias) logits = tf.reshape(logits, [batch_size, seq_length, 2]) logits = tf.transpose(logits, [2, 0, 1]) unstacked_logits = tf.unstack(logits, axis=0, name='unstack') (start_logits, end_logits) = (unstacked_logits[0], unstacked_logits[1]) return (start_logits, end_logits) def get_frozen_tftrt_model(bert_config, shape, use_one_hot_embeddings, init_checkpoint): tf_config = tf.compat.v1.ConfigProto() tf_config.gpu_options.allow_growth = True output_node_names = ['unstack'] with tf.Session(config=tf_config) as tf_sess: input_ids = tf.placeholder(tf.int32, shape, 'input_ids') input_mask = tf.placeholder(tf.int32, shape, 'input_mask') segment_ids = tf.placeholder(tf.int32, shape, 'segment_ids') (start_logits, end_logits) = create_model(bert_config=bert_config, is_training=False, input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, use_one_hot_embeddings=use_one_hot_embeddings) tvars = tf.trainable_variables() (assignment_map, initialized_variable_names) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint) tf.train.init_from_checkpoint(init_checkpoint, assignment_map) tf_sess.run(tf.global_variables_initializer()) print("LOADED!") tf.compat.v1.logging.info("**** Trainable Variables ****") for var in tvars: init_string = "" if var.name in initialized_variable_names: init_string = ", *INIT_FROM_CKPT*" else: init_string = ", *NOTTTTTTTTTTTTTTTTTTTTT" tf.compat.v1.logging.info(" name = %s, shape = %s%s", var.name, var.shape, init_string) frozen_graph = tf.graph_util.convert_variables_to_constants(tf_sess, tf_sess.graph.as_graph_def(), output_node_names) num_nodes = len(frozen_graph.node) print('Converting graph using TensorFlow-TensorRT...') from tensorflow.python.compiler.tensorrt import trt_convert as trt converter = trt.TrtGraphConverter( input_graph_def=frozen_graph, nodes_blacklist=output_node_names, max_workspace_size_bytes=(4096 << 20) - 1000, precision_mode = "FP16" if FLAGS.amp else "FP32", minimum_segment_size=4, is_dynamic_op=True, maximum_cached_engines=1000 ) frozen_graph = converter.convert() print('Total node count before and after TF-TRT conversion:', num_nodes, '->', len(frozen_graph.node)) print('TRT node count:', len([1 for n in frozen_graph.node if str(n.op) == 'TRTEngineOp'])) with tf.io.gfile.GFile("frozen_modelTRT.pb", "wb") as f: f.write(frozen_graph.SerializeToString()) return frozen_graph def model_fn_builder(bert_config, init_checkpoint, learning_rate, num_train_steps, num_warmup_steps, hvd=None, amp=False, use_one_hot_embeddings=False): """Returns `model_fn` closure for Estimator.""" def model_fn(features, labels, mode, params): # pylint: disable=unused-argument """The `model_fn` for Estimator.""" if FLAGS.verbose_logging: tf.compat.v1.logging.info("*** Features ***") for name in sorted(features.keys()): tf.compat.v1.logging.info(" name = %s, shape = %s" % (name, features[name].shape)) unique_ids = features["unique_ids"] input_ids = features["input_ids"] input_mask = features["input_mask"] segment_ids = features["segment_ids"] is_training = (mode == tf.estimator.ModeKeys.TRAIN) if not is_training and FLAGS.use_trt: trt_graph = get_frozen_tftrt_model(bert_config, input_ids.shape, use_one_hot_embeddings, init_checkpoint) (start_logits, end_logits) = tf.import_graph_def(trt_graph, input_map={'input_ids':input_ids, 'input_mask':input_mask, 'segment_ids':segment_ids}, return_elements=['unstack:0', 'unstack:1'], name='') predictions = { "unique_ids": unique_ids, "start_logits": start_logits, "end_logits": end_logits, } output_spec = tf.estimator.EstimatorSpec( mode=mode, predictions=predictions) return output_spec (start_logits, end_logits) = create_model( bert_config=bert_config, is_training=is_training, input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, use_one_hot_embeddings=use_one_hot_embeddings) tvars = tf.trainable_variables() initialized_variable_names = {} if init_checkpoint and (hvd is None or hvd.rank() == 0): (assignment_map, initialized_variable_names ) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint) tf.train.init_from_checkpoint(init_checkpoint, assignment_map) if FLAGS.verbose_logging: tf.compat.v1.logging.info("**** Trainable Variables ****") for var in tvars: init_string = "" if var.name in initialized_variable_names: init_string = ", *INIT_FROM_CKPT*" tf.compat.v1.logging.info(" %d name = %s, shape = %s%s", 0 if hvd is None else hvd.rank(), var.name, var.shape, init_string) output_spec = None if mode == tf.estimator.ModeKeys.TRAIN: seq_length = modeling.get_shape_list(input_ids)[1] def compute_loss(logits, positions): one_hot_positions = tf.one_hot( positions, depth=seq_length, dtype=tf.float32) log_probs = tf.nn.log_softmax(logits, axis=-1) loss = -tf.reduce_mean( tf.reduce_sum(one_hot_positions * log_probs, axis=-1)) return loss start_positions = features["start_positions"] end_positions = features["end_positions"] start_loss = compute_loss(start_logits, start_positions) end_loss = compute_loss(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2.0 train_op = optimization.create_optimizer( total_loss, learning_rate, num_train_steps, num_warmup_steps, hvd, False, amp, FLAGS.num_accumulation_steps) output_spec = tf.estimator.EstimatorSpec( mode=mode, loss=total_loss, train_op=train_op) elif mode == tf.estimator.ModeKeys.PREDICT: dummy_op = tf.no_op() # Need to call mixed precision graph rewrite if fp16 to enable graph rewrite if amp: loss_scaler = tf.train.experimental.FixedLossScale(1) dummy_op = tf.train.experimental.enable_mixed_precision_graph_rewrite( optimization.LAMBOptimizer(learning_rate=0.0), loss_scaler) predictions = { "unique_ids": tf.identity(unique_ids), "start_logits": start_logits, "end_logits": end_logits, } output_spec = tf.estimator.EstimatorSpec( mode=mode, predictions=predictions) else: raise ValueError( "Only TRAIN and PREDICT modes are supported: %s" % (mode)) return output_spec return model_fn def input_fn_builder(input_file, batch_size, seq_length, is_training, drop_remainder, hvd=None): """Creates an `input_fn` closure to be passed to Estimator.""" name_to_features = { "unique_ids": tf.io.FixedLenFeature([], tf.int64), "input_ids": tf.io.FixedLenFeature([seq_length], tf.int64), "input_mask": tf.io.FixedLenFeature([seq_length], tf.int64), "segment_ids": tf.io.FixedLenFeature([seq_length], tf.int64), } if is_training: name_to_features["start_positions"] = tf.io.FixedLenFeature([], tf.int64) name_to_features["end_positions"] = tf.io.FixedLenFeature([], tf.int64) def _decode_record(record, name_to_features): """Decodes a record to a TensorFlow example.""" example = tf.parse_single_example(record, name_to_features) # tf.Example only supports tf.int64, but the TPU only supports tf.int32. # So cast all int64 to int32. for name in list(example.keys()): t = example[name] if t.dtype == tf.int64: t = tf.to_int32(t) example[name] = t return example def input_fn(): """The actual input function.""" # For training, we want a lot of parallel reading and shuffling. # For eval, we want no shuffling and parallel reading doesn't matter. if is_training: d = tf.data.TFRecordDataset(input_file, num_parallel_reads=4) if hvd is not None: d = d.shard(hvd.size(), hvd.rank()) d = d.apply(tf.data.experimental.ignore_errors()) d = d.shuffle(buffer_size=100) d = d.repeat() else: d = tf.data.TFRecordDataset(input_file) d = d.apply( tf.contrib.data.map_and_batch( lambda record: _decode_record(record, name_to_features), batch_size=batch_size, drop_remainder=drop_remainder)) return d return input_fn RawResult = collections.namedtuple("RawResult", ["unique_id", "start_logits", "end_logits"]) def get_predictions(all_examples, all_features, all_results, n_best_size, max_answer_length, do_lower_case, version_2_with_negative, verbose_logging): """Get final predictions""" example_index_to_features = collections.defaultdict(list) for feature in all_features: example_index_to_features[feature.example_index].append(feature) unique_id_to_result = {} for result in all_results: unique_id_to_result[result.unique_id] = result _PrelimPrediction = collections.namedtuple( # pylint: disable=invalid-name "PrelimPrediction", ["feature_index", "start_index", "end_index", "start_logit", "end_logit"]) all_predictions = collections.OrderedDict() all_nbest_json = collections.OrderedDict() scores_diff_json = collections.OrderedDict() for (example_index, example) in enumerate(all_examples): features = example_index_to_features[example_index] prelim_predictions = [] # keep track of the minimum score of null start+end of position 0 score_null = 1000000 # large and positive min_null_feature_index = 0 # the paragraph slice with min mull score null_start_logit = 0 # the start logit at the slice with min null score null_end_logit = 0 # the end logit at the slice with min null score for (feature_index, feature) in enumerate(features): result = unique_id_to_result[feature.unique_id] start_indexes = _get_best_indexes(result.start_logits, n_best_size) end_indexes = _get_best_indexes(result.end_logits, n_best_size) # if we could have irrelevant answers, get the min score of irrelevant if version_2_with_negative: feature_null_score = result.start_logits[0] + result.end_logits[0] if feature_null_score < score_null: score_null = feature_null_score min_null_feature_index = feature_index null_start_logit = result.start_logits[0] null_end_logit = result.end_logits[0] for start_index in start_indexes: for end_index in end_indexes: # We could hypothetically create invalid predictions, e.g., predict # that the start of the span is in the question. We throw out all # invalid predictions. if start_index >= len(feature.tokens): continue if end_index >= len(feature.tokens): continue if start_index not in feature.token_to_orig_map: continue if end_index not in feature.token_to_orig_map: continue if not feature.token_is_max_context.get(start_index, False): continue if end_index < start_index: continue length = end_index - start_index + 1 if length > max_answer_length: continue prelim_predictions.append( _PrelimPrediction( feature_index=feature_index, start_index=start_index, end_index=end_index, start_logit=result.start_logits[start_index], end_logit=result.end_logits[end_index])) if version_2_with_negative: prelim_predictions.append( _PrelimPrediction( feature_index=min_null_feature_index, start_index=0, end_index=0, start_logit=null_start_logit, end_logit=null_end_logit)) prelim_predictions = sorted( prelim_predictions, key=lambda x: (x.start_logit + x.end_logit), reverse=True) _NbestPrediction = collections.namedtuple( # pylint: disable=invalid-name "NbestPrediction", ["text", "start_logit", "end_logit"]) seen_predictions = {} nbest = [] for pred in prelim_predictions: if len(nbest) >= n_best_size: break feature = features[pred.feature_index] if pred.start_index > 0: # this is a non-null prediction tok_tokens = feature.tokens[pred.start_index:(pred.end_index + 1)] orig_doc_start = feature.token_to_orig_map[pred.start_index] orig_doc_end = feature.token_to_orig_map[pred.end_index] orig_tokens = example.doc_tokens[orig_doc_start:(orig_doc_end + 1)] tok_text = " ".join(tok_tokens) # De-tokenize WordPieces that have been split off. tok_text = tok_text.replace(" ##", "") tok_text = tok_text.replace("##", "") # Clean whitespace tok_text = tok_text.strip() tok_text = " ".join(tok_text.split()) orig_text = " ".join(orig_tokens) final_text = get_final_text(tok_text, orig_text, do_lower_case, verbose_logging) if final_text in seen_predictions: continue seen_predictions[final_text] = True else: final_text = "" seen_predictions[final_text] = True nbest.append( _NbestPrediction( text=final_text, start_logit=pred.start_logit, end_logit=pred.end_logit)) # if we didn't inlude the empty option in the n-best, inlcude it if version_2_with_negative: if "" not in seen_predictions: nbest.append( _NbestPrediction( text="", start_logit=null_start_logit, end_logit=null_end_logit)) # In very rare edge cases we could have no valid predictions. So we # just create a nonce prediction in this case to avoid failure. if not nbest: nbest.append( _NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0)) assert len(nbest) >= 1 total_scores = [] best_non_null_entry = None for entry in nbest: total_scores.append(entry.start_logit + entry.end_logit) if not best_non_null_entry: if entry.text: best_non_null_entry = entry probs = _compute_softmax(total_scores) nbest_json = [] for (i, entry) in enumerate(nbest): output = collections.OrderedDict() output["text"] = entry.text output["probability"] = probs[i] output["start_logit"] = entry.start_logit output["end_logit"] = entry.end_logit nbest_json.append(output) assert len(nbest_json) >= 1 if not version_2_with_negative: all_predictions[example.qas_id] = nbest_json[0]["text"] else: # predict "" iff the null score - the score of best non-null > threshold score_diff = score_null - best_non_null_entry.start_logit - ( best_non_null_entry.end_logit) scores_diff_json[example.qas_id] = score_diff try: null_score_diff_threshold = FLAGS.null_score_diff_threshold except: null_score_diff_threshold = 0.0 if score_diff > null_score_diff_threshold: all_predictions[example.qas_id] = "" else: all_predictions[example.qas_id] = best_non_null_entry.text all_nbest_json[example.qas_id] = nbest_json return all_predictions, all_nbest_json, scores_diff_json def write_predictions(all_examples, all_features, all_results, n_best_size, max_answer_length, do_lower_case, output_prediction_file, output_nbest_file, output_null_log_odds_file, version_2_with_negative, verbose_logging): """Write final predictions to the json file and log-odds of null if needed.""" tf.compat.v1.logging.info("Writing predictions to: %s" % (output_prediction_file)) tf.compat.v1.logging.info("Writing nbest to: %s" % (output_nbest_file)) all_predictions, all_nbest_json, scores_diff_json = get_predictions(all_examples, all_features, all_results, n_best_size, max_answer_length, do_lower_case, version_2_with_negative, verbose_logging) with tf.io.gfile.GFile(output_prediction_file, "w") as writer: writer.write(json.dumps(all_predictions, indent=4) + "\n") with tf.io.gfile.GFile(output_nbest_file, "w") as writer: writer.write(json.dumps(all_nbest_json, indent=4) + "\n") if version_2_with_negative: with tf.io.gfile.GFile(output_null_log_odds_file, "w") as writer: writer.write(json.dumps(scores_diff_json, indent=4) + "\n") def get_final_text(pred_text, orig_text, do_lower_case, verbose_logging): """Project the tokenized prediction back to the original text.""" # When we created the data, we kept track of the alignment between original # (whitespace tokenized) tokens and our WordPiece tokenized tokens. So # now `orig_text` contains the span of our original text corresponding to the # span that we predicted. # # However, `orig_text` may contain extra characters that we don't want in # our prediction. # # For example, let's say: # pred_text = steve smith # orig_text = Steve Smith's # # We don't want to return `orig_text` because it contains the extra "'s". # # We don't want to return `pred_text` because it's already been normalized # (the SQuAD eval script also does punctuation stripping/lower casing but # our tokenizer does additional normalization like stripping accent # characters). # # What we really want to return is "Steve Smith". # # Therefore, we have to apply a semi-complicated alignment heruistic between # `pred_text` and `orig_text` to get a character-to-charcter alignment. This # can fail in certain cases in which case we just return `orig_text`. def _strip_spaces(text): ns_chars = [] ns_to_s_map = collections.OrderedDict() for (i, c) in enumerate(text): if c == " ": continue ns_to_s_map[len(ns_chars)] = i ns_chars.append(c) ns_text = "".join(ns_chars) return (ns_text, ns_to_s_map) # We first tokenize `orig_text`, strip whitespace from the result # and `pred_text`, and check if they are the same length. If they are # NOT the same length, the heuristic has failed. If they are the same # length, we assume the characters are one-to-one aligned. tokenizer = tokenization.BasicTokenizer(do_lower_case=do_lower_case) tok_text = " ".join(tokenizer.tokenize(orig_text)) start_position = tok_text.find(pred_text) if start_position == -1: if verbose_logging: tf.compat.v1.logging.info( "Unable to find text: '%s' in '%s'" % (pred_text, orig_text)) return orig_text end_position = start_position + len(pred_text) - 1 (orig_ns_text, orig_ns_to_s_map) = _strip_spaces(orig_text) (tok_ns_text, tok_ns_to_s_map) = _strip_spaces(tok_text) if len(orig_ns_text) != len(tok_ns_text): if verbose_logging: tf.compat.v1.logging.info("Length not equal after stripping spaces: '%s' vs '%s'", orig_ns_text, tok_ns_text) return orig_text # We then project the characters in `pred_text` back to `orig_text` using # the character-to-character alignment. tok_s_to_ns_map = {} for (i, tok_index) in six.iteritems(tok_ns_to_s_map): tok_s_to_ns_map[tok_index] = i orig_start_position = None if start_position in tok_s_to_ns_map: ns_start_position = tok_s_to_ns_map[start_position] if ns_start_position in orig_ns_to_s_map: orig_start_position = orig_ns_to_s_map[ns_start_position] if orig_start_position is None: if verbose_logging: tf.compat.v1.logging.info("Couldn't map start position") return orig_text orig_end_position = None if end_position in tok_s_to_ns_map: ns_end_position = tok_s_to_ns_map[end_position] if ns_end_position in orig_ns_to_s_map: orig_end_position = orig_ns_to_s_map[ns_end_position] if orig_end_position is None: if verbose_logging: tf.compat.v1.logging.info("Couldn't map end position") return orig_text output_text = orig_text[orig_start_position:(orig_end_position + 1)] return output_text def _get_best_indexes(logits, n_best_size): """Get the n-best logits from a list.""" index_and_score = sorted(enumerate(logits), key=lambda x: x[1], reverse=True) best_indexes = [] for i in range(len(index_and_score)): if i >= n_best_size: break best_indexes.append(index_and_score[i][0]) return best_indexes def _compute_softmax(scores): """Compute softmax probability over raw logits.""" if not scores: return [] max_score = None for score in scores: if max_score is None or score > max_score: max_score = score exp_scores = [] total_sum = 0.0 for score in scores: x = math.exp(score - max_score) exp_scores.append(x) total_sum += x probs = [] for score in exp_scores: probs.append(score / total_sum) return probs def validate_flags_or_throw(bert_config): """Validate the input FLAGS or throw an exception.""" tokenization.validate_case_matches_checkpoint(FLAGS.do_lower_case, FLAGS.init_checkpoint) if not FLAGS.do_train and not FLAGS.do_predict and not FLAGS.export_triton: raise ValueError("At least one of `do_train` or `do_predict` or `export_SavedModel` must be True.") if FLAGS.do_train: if not FLAGS.train_file: raise ValueError( "If `do_train` is True, then `train_file` must be specified.") if FLAGS.do_predict: if not FLAGS.predict_file: raise ValueError( "If `do_predict` is True, then `predict_file` must be specified.") if FLAGS.max_seq_length > bert_config.max_position_embeddings: raise ValueError( "Cannot use sequence length %d because the BERT model " "was only trained up to sequence length %d" % (FLAGS.max_seq_length, bert_config.max_position_embeddings)) if FLAGS.max_seq_length <= FLAGS.max_query_length + 3: raise ValueError( "The max_seq_length (%d) must be greater than max_query_length " "(%d) + 3" % (FLAGS.max_seq_length, FLAGS.max_query_length)) def export_model(estimator, export_dir, init_checkpoint): """Exports a checkpoint in SavedModel format in a directory structure compatible with Triton.""" def serving_input_fn(): label_ids = tf.placeholder(tf.int32, [None,], name='unique_ids') input_ids = tf.placeholder(tf.int32, [None, FLAGS.max_seq_length], name='input_ids') input_mask = tf.placeholder(tf.int32, [None, FLAGS.max_seq_length], name='input_mask') segment_ids = tf.placeholder(tf.int32, [None, FLAGS.max_seq_length], name='segment_ids') input_fn = tf.estimator.export.build_raw_serving_input_receiver_fn({ 'unique_ids': label_ids, 'input_ids': input_ids, 'input_mask': input_mask, 'segment_ids': segment_ids, })() return input_fn saved_dir = estimator.export_savedmodel( export_dir, serving_input_fn, assets_extra=None, as_text=False, checkpoint_path=init_checkpoint, strip_default_attrs=False) model_name = FLAGS.triton_model_name model_folder = export_dir + "/triton_models/" + model_name version_folder = model_folder + "/" + str(FLAGS.triton_model_version) final_model_folder = version_folder + "/model.savedmodel" if not os.path.exists(version_folder): os.makedirs(version_folder) if (not os.path.exists(final_model_folder)): os.rename(saved_dir, final_model_folder) print("Model saved to dir", final_model_folder) else: if (FLAGS.triton_model_overwrite): shutil.rmtree(final_model_folder) os.rename(saved_dir, final_model_folder) print("WARNING: Existing model was overwritten. Model dir: {}".format(final_model_folder)) else: print("ERROR: Could not save Triton model. Folder already exists. Use '--triton_model_overwrite=True' if you would like to overwrite an existing model. Model dir: {}".format(final_model_folder)) return # Now build the config for Triton. Check to make sure we can overwrite it, if it exists config_filename = os.path.join(model_folder, "config.pbtxt") optimization_str = "" if FLAGS.amp: optimization_str = r""" optimization { execution_accelerators { gpu_execution_accelerator : [ { name : "auto_mixed_precision" } ] } }""" if (os.path.exists(config_filename) and not FLAGS.triton_model_overwrite): print("ERROR: Could not save Triton model config. Config file already exists. Use '--triton_model_overwrite=True' if you would like to overwrite an existing model config. Model config: {}".format(config_filename)) return config_template = r""" name: "{model_name}" platform: "tensorflow_savedmodel" max_batch_size: {max_batch_size} {optimization_str} input [ {{ name: "unique_ids" data_type: TYPE_INT32 dims: [ 1 ] reshape: {{ shape: [ ] }} }}, {{ name: "segment_ids" data_type: TYPE_INT32 dims: {seq_length} }}, {{ name: "input_ids" data_type: TYPE_INT32 dims: {seq_length} }}, {{ name: "input_mask" data_type: TYPE_INT32 dims: {seq_length} }} ] output [ {{ name: "end_logits" data_type: TYPE_FP32 dims: {seq_length} }}, {{ name: "start_logits" data_type: TYPE_FP32 dims: {seq_length} }} ] {dynamic_batching} instance_group [ {{ count: {engine_count} }} ]""" batching_str = "" max_batch_size = FLAGS.triton_max_batch_size if (FLAGS.triton_dyn_batching_delay > 0): # Use only full and half full batches pref_batch_size = [int(max_batch_size / 2.0), max_batch_size] batching_str = r""" dynamic_batching {{ preferred_batch_size: [{0}] max_queue_delay_microseconds: {1} }}""".format(", ".join([str(x) for x in pref_batch_size]), int(FLAGS.triton_dyn_batching_delay * 1000.0)) config_values = { "model_name": model_name, "max_batch_size": max_batch_size, "seq_length": FLAGS.max_seq_length, "dynamic_batching": batching_str, "engine_count": FLAGS.triton_engine_count, "optimization_str":optimization_str, } with open(model_folder + "/config.pbtxt", "w") as file: final_config_str = config_template.format_map(config_values) file.write(final_config_str) def main(_): setup_xla_flags() tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.INFO) dllogging = utils.dllogger_class.dllogger_class(FLAGS.dllog_path) if FLAGS.horovod: hvd.init() bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file) validate_flags_or_throw(bert_config) tf.io.gfile.makedirs(FLAGS.output_dir) tokenizer = tokenization.FullTokenizer( vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case) master_process = True training_hooks = [] global_batch_size = FLAGS.train_batch_size * FLAGS.num_accumulation_steps hvd_rank = 0 config = tf.compat.v1.ConfigProto() learning_rate = FLAGS.learning_rate if FLAGS.horovod: tf.compat.v1.logging.info("Multi-GPU training with TF Horovod") tf.compat.v1.logging.info("hvd.size() = %d hvd.rank() = %d", hvd.size(), hvd.rank()) global_batch_size = FLAGS.train_batch_size * hvd.size() * FLAGS.num_accumulation_steps learning_rate = learning_rate * hvd.size() master_process = (hvd.rank() == 0) hvd_rank = hvd.rank() config.gpu_options.visible_device_list = str(hvd.local_rank()) set_affinity(hvd.local_rank()) if hvd.size() > 1: training_hooks.append(hvd.BroadcastGlobalVariablesHook(0)) if FLAGS.use_xla: config.graph_options.optimizer_options.global_jit_level = tf.compat.v1.OptimizerOptions.ON_1 if FLAGS.amp: tf.enable_resource_variables() run_config = tf.estimator.RunConfig( model_dir=FLAGS.output_dir if master_process else None, session_config=config, save_checkpoints_steps=FLAGS.save_checkpoints_steps if master_process else None, save_summary_steps=FLAGS.save_checkpoints_steps if master_process else None, log_step_count_steps=FLAGS.display_loss_steps, keep_checkpoint_max=1) if master_process: tf.compat.v1.logging.info("***** Configuaration *****") for key in FLAGS.__flags.keys(): tf.compat.v1.logging.info(' {}: {}'.format(key, getattr(FLAGS, key))) tf.compat.v1.logging.info("**************************") train_examples = None num_train_steps = None num_warmup_steps = None training_hooks.append(LogTrainRunHook(global_batch_size, hvd_rank, FLAGS.save_checkpoints_steps)) # Prepare Training Data if FLAGS.do_train: train_examples = read_squad_examples( input_file=FLAGS.train_file, is_training=True, version_2_with_negative=FLAGS.version_2_with_negative) num_train_steps = int( len(train_examples) / global_batch_size * FLAGS.num_train_epochs) num_warmup_steps = int(num_train_steps * FLAGS.warmup_proportion) # Pre-shuffle the input to avoid having to make a very large shuffle # buffer in in the `input_fn`. rng = random.Random(12345) rng.shuffle(train_examples) start_index = 0 end_index = len(train_examples) tmp_filenames = [os.path.join(FLAGS.output_dir, "train.tf_record")] if FLAGS.horovod: tmp_filenames = [os.path.join(FLAGS.output_dir, "train.tf_record{}".format(i)) for i in range(hvd.size())] num_examples_per_rank = len(train_examples) // hvd.size() remainder = len(train_examples) % hvd.size() if hvd.rank() < remainder: start_index = hvd.rank() * (num_examples_per_rank+1) end_index = start_index + num_examples_per_rank + 1 else: start_index = hvd.rank() * num_examples_per_rank + remainder end_index = start_index + (num_examples_per_rank) model_fn = model_fn_builder( bert_config=bert_config, init_checkpoint=FLAGS.init_checkpoint, learning_rate=learning_rate, num_train_steps=num_train_steps, num_warmup_steps=num_warmup_steps, hvd=None if not FLAGS.horovod else hvd, amp=FLAGS.amp) estimator = tf.estimator.Estimator( model_fn=model_fn, config=run_config) if FLAGS.do_train: # We write to a temporary file to avoid storing very large constant tensors # in memory. train_writer = FeatureWriter( filename=tmp_filenames[hvd_rank], is_training=True) convert_examples_to_features( examples=train_examples[start_index:end_index], tokenizer=tokenizer, max_seq_length=FLAGS.max_seq_length, doc_stride=FLAGS.doc_stride, max_query_length=FLAGS.max_query_length, is_training=True, output_fn=train_writer.process_feature, verbose_logging=FLAGS.verbose_logging) train_writer.close() tf.compat.v1.logging.info("***** Running training *****") tf.compat.v1.logging.info(" Num orig examples = %d", end_index - start_index) tf.compat.v1.logging.info(" Num split examples = %d", train_writer.num_features) tf.compat.v1.logging.info(" Batch size = %d", FLAGS.train_batch_size) tf.compat.v1.logging.info(" Num steps = %d", num_train_steps) tf.compat.v1.logging.info(" LR = %f", learning_rate) del train_examples train_input_fn = input_fn_builder( input_file=tmp_filenames, batch_size=FLAGS.train_batch_size, seq_length=FLAGS.max_seq_length, is_training=True, drop_remainder=True, hvd=None if not FLAGS.horovod else hvd) train_start_time = time.time() estimator.train(input_fn=train_input_fn, hooks=training_hooks, max_steps=num_train_steps) train_time_elapsed = time.time() - train_start_time train_time_wo_overhead = training_hooks[-1].total_time avg_sentences_per_second = num_train_steps * global_batch_size * 1.0 / train_time_elapsed ss_sentences_per_second = (num_train_steps - training_hooks[-1].skipped) * global_batch_size * 1.0 / train_time_wo_overhead if master_process: tf.compat.v1.logging.info("-----------------------------") tf.compat.v1.logging.info("Total Training Time = %0.2f for Sentences = %d", train_time_elapsed, num_train_steps * global_batch_size) tf.compat.v1.logging.info("Total Training Time W/O Overhead = %0.2f for Sentences = %d", train_time_wo_overhead, (num_train_steps - training_hooks[-1].skipped) * global_batch_size) tf.compat.v1.logging.info("Throughput Average (sentences/sec) with overhead = %0.2f", avg_sentences_per_second) tf.compat.v1.logging.info("Throughput Average (sentences/sec) = %0.2f", ss_sentences_per_second) dllogging.logger.log(step=(), data={"throughput_train": ss_sentences_per_second}, verbosity=Verbosity.DEFAULT) tf.compat.v1.logging.info("-----------------------------") if FLAGS.export_triton and master_process: export_model(estimator, FLAGS.output_dir, FLAGS.init_checkpoint) if FLAGS.do_predict and master_process: eval_examples = read_squad_examples( input_file=FLAGS.predict_file, is_training=False, version_2_with_negative=FLAGS.version_2_with_negative) # Perform evaluation on subset, useful for profiling if FLAGS.num_eval_iterations is not None: eval_examples = eval_examples[:FLAGS.num_eval_iterations*FLAGS.predict_batch_size] eval_writer = FeatureWriter( filename=os.path.join(FLAGS.output_dir, "eval.tf_record"), is_training=False) eval_features = [] def append_feature(feature): eval_features.append(feature) eval_writer.process_feature(feature) convert_examples_to_features( examples=eval_examples, tokenizer=tokenizer, max_seq_length=FLAGS.max_seq_length, doc_stride=FLAGS.doc_stride, max_query_length=FLAGS.max_query_length, is_training=False, output_fn=append_feature, verbose_logging=FLAGS.verbose_logging) eval_writer.close() tf.compat.v1.logging.info("***** Running predictions *****") tf.compat.v1.logging.info(" Num orig examples = %d", len(eval_examples)) tf.compat.v1.logging.info(" Num split examples = %d", len(eval_features)) tf.compat.v1.logging.info(" Batch size = %d", FLAGS.predict_batch_size) predict_input_fn = input_fn_builder( input_file=eval_writer.filename, batch_size=FLAGS.predict_batch_size, seq_length=FLAGS.max_seq_length, is_training=False, drop_remainder=False) all_results = [] eval_hooks = [LogEvalRunHook(FLAGS.predict_batch_size)] eval_start_time = time.time() for result in estimator.predict( predict_input_fn, yield_single_examples=True, hooks=eval_hooks): if len(all_results) % 1000 == 0: tf.compat.v1.logging.info("Processing example: %d" % (len(all_results))) unique_id = int(result["unique_ids"]) start_logits = [float(x) for x in result["start_logits"].flat] end_logits = [float(x) for x in result["end_logits"].flat] all_results.append( RawResult( unique_id=unique_id, start_logits=start_logits, end_logits=end_logits)) eval_time_elapsed = time.time() - eval_start_time time_list = eval_hooks[-1].time_list time_list.sort() # Removing outliers (init/warmup) in throughput computation. eval_time_wo_overhead = sum(time_list[:int(len(time_list) * 0.99)]) num_sentences = (int(len(time_list) * 0.99)) * FLAGS.predict_batch_size avg = np.mean(time_list) cf_50 = max(time_list[:int(len(time_list) * 0.50)]) cf_90 = max(time_list[:int(len(time_list) * 0.90)]) cf_95 = max(time_list[:int(len(time_list) * 0.95)]) cf_99 = max(time_list[:int(len(time_list) * 0.99)]) cf_100 = max(time_list[:int(len(time_list) * 1)]) ss_sentences_per_second = num_sentences * 1.0 / eval_time_wo_overhead tf.compat.v1.logging.info("-----------------------------") tf.compat.v1.logging.info("Total Inference Time = %0.2f for Sentences = %d", eval_time_elapsed, eval_hooks[-1].count * FLAGS.predict_batch_size) tf.compat.v1.logging.info("Total Inference Time W/O Overhead = %0.2f for Sentences = %d", eval_time_wo_overhead, num_sentences) tf.compat.v1.logging.info("Summary Inference Statistics") tf.compat.v1.logging.info("Batch size = %d", FLAGS.predict_batch_size) tf.compat.v1.logging.info("Sequence Length = %d", FLAGS.max_seq_length) tf.compat.v1.logging.info("Precision = %s", "fp16" if FLAGS.amp else "fp32") tf.compat.v1.logging.info("Latency Confidence Level 50 (ms) = %0.2f", cf_50 * 1000) tf.compat.v1.logging.info("Latency Confidence Level 90 (ms) = %0.2f", cf_90 * 1000) tf.compat.v1.logging.info("Latency Confidence Level 95 (ms) = %0.2f", cf_95 * 1000) tf.compat.v1.logging.info("Latency Confidence Level 99 (ms) = %0.2f", cf_99 * 1000) tf.compat.v1.logging.info("Latency Confidence Level 100 (ms) = %0.2f", cf_100 * 1000) tf.compat.v1.logging.info("Latency Average (ms) = %0.2f", avg * 1000) tf.compat.v1.logging.info("Throughput Average (sentences/sec) = %0.2f", ss_sentences_per_second) dllogging.logger.log(step=(), data={"throughput_val": ss_sentences_per_second}, verbosity=Verbosity.DEFAULT) tf.compat.v1.logging.info("-----------------------------") output_prediction_file = os.path.join(FLAGS.output_dir, "predictions.json") output_nbest_file = os.path.join(FLAGS.output_dir, "nbest_predictions.json") output_null_log_odds_file = os.path.join(FLAGS.output_dir, "null_odds.json") write_predictions(eval_examples, eval_features, all_results, FLAGS.n_best_size, FLAGS.max_answer_length, FLAGS.do_lower_case, output_prediction_file, output_nbest_file, output_null_log_odds_file, FLAGS.version_2_with_negative, FLAGS.verbose_logging) if FLAGS.eval_script: import sys import subprocess eval_out = subprocess.check_output([sys.executable, FLAGS.eval_script, FLAGS.predict_file, output_prediction_file]) scores = str(eval_out).strip() exact_match = float(scores.split(":")[1].split(",")[0]) f1 = float(scores.split(":")[2].split("}")[0]) dllogging.logger.log(step=(), data={"f1": f1}, verbosity=Verbosity.DEFAULT) dllogging.logger.log(step=(), data={"exact_match": exact_match}, verbosity=Verbosity.DEFAULT) print(str(eval_out)) if __name__ == "__main__": FLAGS = extract_run_squad_flags() tf.app.run()
CUDA-Optimized/FastSpeech/fastspeech/utils
utils
tensorboard
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import matplotlib.pyplot as plt import numpy as np import cv2 import data as global_data plt.switch_backend('Agg') def image_plot(x, name='image'): fig, ax = plt.subplots() ax.imshow(x, cmap='magma', aspect='auto') fig.canvas.draw() buf = np.array(fig.canvas.renderer._renderer) plt.clf() plt.close('all') cv2.imshow(name, buf) cv2.waitKey(0) def plot_to_buf(x, align=True): fig, ax = plt.subplots() ax.plot(x) if align: ax.set_ylim([-1, 1]) fig.canvas.draw() im = np.array(fig.canvas.renderer._renderer) plt.clf() plt.close('all') return np.rollaxis(im[..., :3], 2) def imshow_to_buf(x, scale01=False): def softmax(x): """Compute softmax values for each sets of scores in x.""" return np.exp(x) / np.sum(np.exp(x), axis=0) if scale01: x = (x - x.min()) / (x.max() - x.min()) if x.max() > 1.: x = softmax(x) if len(x.shape) == 3: x = x[0] fig, ax = plt.subplots() ax.imshow(x, cmap='magma', aspect='auto') fig.canvas.draw() im = np.array(fig.canvas.renderer._renderer) plt.clf() plt.close('all') return np.rollaxis(im[..., :3], 2) def origin_to_chrs(target): results = [] for t in target: idx = t - 1 if t - 1 >= 0 else 0 if idx < len(global_data.idx2chr): results.append(global_data.idx2chr[idx]) else: break return ''.join(results)
PyTorch/DrugDiscovery/MoFlow/scripts
scripts
predict
#!/bin/bash # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. bs=${1:-512} prec=${2:-amp} flags="${@:3}" cmd="python \ /workspace/moflow_pyt/moflow/runtime/generate.py \ --batch_size ${bs} \ --jit \ --correct_validity \ ${flags} \ " if [ $prec == "amp" ]; then cmd="${cmd} --amp" fi set -x bash -c "${cmd}"
PaddlePaddle/LanguageModeling/BERT/vocab
vocab
bert-base-uncased-vocab
[PAD] [unused0] [unused1] [unused2] [unused3] [unused4] [unused5] [unused6] [unused7] [unused8] [unused9] [unused10] [unused11] [unused12] [unused13] [unused14] [unused15] [unused16] [unused17] [unused18] [unused19] [unused20] [unused21] [unused22] [unused23] [unused24] [unused25] [unused26] [unused27] [unused28] [unused29] [unused30] [unused31] [unused32] [unused33] [unused34] [unused35] [unused36] [unused37] [unused38] [unused39] [unused40] [unused41] [unused42] [unused43] [unused44] [unused45] [unused46] [unused47] [unused48] [unused49] [unused50] [unused51] [unused52] [unused53] [unused54] [unused55] [unused56] [unused57] [unused58] [unused59] [unused60] [unused61] [unused62] [unused63] [unused64] [unused65] [unused66] [unused67] [unused68] [unused69] [unused70] [unused71] [unused72] [unused73] [unused74] [unused75] [unused76] [unused77] [unused78] [unused79] [unused80] [unused81] [unused82] [unused83] [unused84] [unused85] [unused86] [unused87] [unused88] [unused89] [unused90] [unused91] [unused92] [unused93] [unused94] [unused95] [unused96] [unused97] [unused98] [UNK] [CLS] [SEP] [MASK] [unused99] [unused100] [unused101] [unused102] [unused103] [unused104] [unused105] [unused106] [unused107] [unused108] [unused109] [unused110] [unused111] [unused112] [unused113] [unused114] [unused115] [unused116] [unused117] [unused118] [unused119] [unused120] [unused121] [unused122] [unused123] [unused124] [unused125] [unused126] [unused127] [unused128] [unused129] [unused130] [unused131] [unused132] [unused133] [unused134] [unused135] [unused136] [unused137] [unused138] [unused139] [unused140] [unused141] [unused142] [unused143] [unused144] [unused145] [unused146] [unused147] [unused148] [unused149] [unused150] [unused151] [unused152] [unused153] [unused154] [unused155] [unused156] [unused157] [unused158] [unused159] [unused160] [unused161] [unused162] [unused163] [unused164] [unused165] [unused166] [unused167] [unused168] [unused169] [unused170] [unused171] [unused172] [unused173] [unused174] [unused175] [unused176] [unused177] [unused178] [unused179] [unused180] [unused181] [unused182] [unused183] [unused184] [unused185] [unused186] [unused187] [unused188] [unused189] [unused190] [unused191] [unused192] [unused193] [unused194] [unused195] [unused196] [unused197] [unused198] [unused199] [unused200] [unused201] [unused202] [unused203] [unused204] [unused205] [unused206] [unused207] [unused208] [unused209] [unused210] [unused211] [unused212] [unused213] [unused214] [unused215] [unused216] [unused217] [unused218] [unused219] [unused220] [unused221] [unused222] [unused223] [unused224] [unused225] [unused226] [unused227] [unused228] [unused229] [unused230] [unused231] [unused232] [unused233] [unused234] [unused235] [unused236] [unused237] [unused238] [unused239] [unused240] [unused241] [unused242] [unused243] [unused244] [unused245] [unused246] [unused247] [unused248] [unused249] [unused250] [unused251] [unused252] [unused253] [unused254] [unused255] [unused256] [unused257] [unused258] [unused259] [unused260] [unused261] [unused262] [unused263] [unused264] [unused265] [unused266] [unused267] [unused268] [unused269] [unused270] [unused271] [unused272] [unused273] [unused274] [unused275] [unused276] [unused277] [unused278] [unused279] [unused280] [unused281] [unused282] [unused283] [unused284] [unused285] [unused286] [unused287] [unused288] [unused289] [unused290] [unused291] [unused292] [unused293] [unused294] [unused295] [unused296] [unused297] [unused298] [unused299] [unused300] [unused301] [unused302] [unused303] [unused304] [unused305] [unused306] [unused307] [unused308] [unused309] [unused310] [unused311] [unused312] [unused313] [unused314] [unused315] [unused316] [unused317] [unused318] [unused319] [unused320] [unused321] [unused322] [unused323] [unused324] [unused325] [unused326] [unused327] [unused328] [unused329] [unused330] [unused331] [unused332] [unused333] [unused334] [unused335] [unused336] [unused337] [unused338] [unused339] [unused340] [unused341] [unused342] [unused343] [unused344] [unused345] [unused346] [unused347] [unused348] [unused349] [unused350] [unused351] [unused352] [unused353] [unused354] [unused355] [unused356] [unused357] [unused358] [unused359] [unused360] [unused361] [unused362] [unused363] [unused364] [unused365] [unused366] [unused367] [unused368] [unused369] [unused370] [unused371] [unused372] [unused373] [unused374] [unused375] [unused376] [unused377] [unused378] [unused379] [unused380] [unused381] [unused382] [unused383] [unused384] [unused385] [unused386] [unused387] [unused388] [unused389] [unused390] [unused391] [unused392] [unused393] [unused394] [unused395] [unused396] [unused397] [unused398] [unused399] [unused400] [unused401] [unused402] [unused403] [unused404] [unused405] [unused406] [unused407] [unused408] [unused409] [unused410] [unused411] [unused412] [unused413] [unused414] [unused415] [unused416] [unused417] [unused418] [unused419] [unused420] [unused421] [unused422] [unused423] [unused424] [unused425] [unused426] [unused427] [unused428] [unused429] [unused430] [unused431] [unused432] [unused433] [unused434] [unused435] [unused436] [unused437] [unused438] [unused439] [unused440] [unused441] [unused442] [unused443] [unused444] [unused445] [unused446] [unused447] [unused448] [unused449] [unused450] [unused451] [unused452] [unused453] [unused454] [unused455] [unused456] [unused457] [unused458] [unused459] [unused460] [unused461] [unused462] [unused463] [unused464] [unused465] [unused466] [unused467] [unused468] [unused469] [unused470] [unused471] [unused472] [unused473] [unused474] [unused475] [unused476] [unused477] [unused478] [unused479] [unused480] [unused481] [unused482] [unused483] [unused484] [unused485] [unused486] [unused487] [unused488] [unused489] [unused490] [unused491] [unused492] [unused493] [unused494] [unused495] [unused496] [unused497] [unused498] [unused499] [unused500] [unused501] [unused502] [unused503] [unused504] [unused505] [unused506] [unused507] [unused508] [unused509] [unused510] [unused511] [unused512] [unused513] [unused514] [unused515] [unused516] [unused517] [unused518] [unused519] [unused520] [unused521] [unused522] [unused523] [unused524] [unused525] [unused526] [unused527] [unused528] [unused529] [unused530] [unused531] [unused532] [unused533] [unused534] [unused535] [unused536] [unused537] [unused538] [unused539] [unused540] [unused541] [unused542] [unused543] [unused544] [unused545] [unused546] [unused547] [unused548] [unused549] [unused550] [unused551] [unused552] [unused553] [unused554] [unused555] [unused556] [unused557] [unused558] [unused559] [unused560] [unused561] [unused562] [unused563] [unused564] [unused565] [unused566] [unused567] [unused568] [unused569] [unused570] [unused571] [unused572] [unused573] [unused574] [unused575] [unused576] [unused577] [unused578] [unused579] [unused580] [unused581] [unused582] [unused583] [unused584] [unused585] [unused586] [unused587] [unused588] [unused589] [unused590] [unused591] [unused592] [unused593] [unused594] [unused595] [unused596] [unused597] [unused598] [unused599] [unused600] [unused601] [unused602] [unused603] [unused604] [unused605] [unused606] [unused607] [unused608] [unused609] [unused610] [unused611] [unused612] [unused613] [unused614] [unused615] [unused616] [unused617] [unused618] [unused619] [unused620] [unused621] [unused622] [unused623] [unused624] [unused625] [unused626] [unused627] [unused628] [unused629] [unused630] [unused631] [unused632] [unused633] [unused634] [unused635] [unused636] [unused637] [unused638] [unused639] [unused640] [unused641] [unused642] [unused643] [unused644] [unused645] [unused646] [unused647] [unused648] [unused649] [unused650] [unused651] [unused652] [unused653] [unused654] [unused655] [unused656] [unused657] [unused658] [unused659] [unused660] [unused661] [unused662] [unused663] [unused664] [unused665] [unused666] [unused667] [unused668] [unused669] [unused670] [unused671] [unused672] [unused673] [unused674] [unused675] [unused676] [unused677] [unused678] [unused679] [unused680] [unused681] [unused682] [unused683] [unused684] [unused685] [unused686] [unused687] [unused688] [unused689] [unused690] [unused691] [unused692] [unused693] [unused694] [unused695] [unused696] [unused697] [unused698] [unused699] [unused700] [unused701] [unused702] [unused703] [unused704] [unused705] [unused706] [unused707] [unused708] [unused709] [unused710] [unused711] [unused712] [unused713] [unused714] [unused715] [unused716] [unused717] [unused718] [unused719] [unused720] [unused721] [unused722] [unused723] [unused724] [unused725] [unused726] [unused727] [unused728] [unused729] [unused730] [unused731] [unused732] [unused733] [unused734] [unused735] [unused736] [unused737] [unused738] [unused739] [unused740] [unused741] [unused742] [unused743] [unused744] [unused745] [unused746] [unused747] [unused748] [unused749] [unused750] [unused751] [unused752] [unused753] [unused754] [unused755] [unused756] [unused757] [unused758] [unused759] [unused760] [unused761] [unused762] [unused763] [unused764] [unused765] [unused766] [unused767] [unused768] [unused769] [unused770] [unused771] [unused772] [unused773] [unused774] [unused775] [unused776] [unused777] [unused778] [unused779] [unused780] [unused781] [unused782] [unused783] [unused784] [unused785] [unused786] [unused787] [unused788] [unused789] [unused790] [unused791] [unused792] [unused793] [unused794] [unused795] [unused796] [unused797] [unused798] [unused799] [unused800] [unused801] [unused802] [unused803] [unused804] [unused805] [unused806] [unused807] [unused808] [unused809] [unused810] [unused811] [unused812] [unused813] [unused814] [unused815] [unused816] [unused817] [unused818] [unused819] [unused820] [unused821] [unused822] [unused823] [unused824] [unused825] [unused826] [unused827] [unused828] [unused829] [unused830] [unused831] [unused832] [unused833] [unused834] [unused835] [unused836] [unused837] [unused838] [unused839] [unused840] [unused841] [unused842] [unused843] [unused844] [unused845] [unused846] [unused847] [unused848] [unused849] [unused850] [unused851] [unused852] [unused853] [unused854] [unused855] [unused856] [unused857] [unused858] [unused859] [unused860] [unused861] [unused862] [unused863] [unused864] [unused865] [unused866] [unused867] [unused868] [unused869] [unused870] [unused871] [unused872] [unused873] [unused874] [unused875] [unused876] [unused877] [unused878] [unused879] [unused880] [unused881] [unused882] [unused883] [unused884] [unused885] [unused886] [unused887] [unused888] [unused889] [unused890] [unused891] [unused892] [unused893] [unused894] [unused895] [unused896] [unused897] [unused898] [unused899] [unused900] [unused901] [unused902] [unused903] [unused904] [unused905] [unused906] [unused907] [unused908] [unused909] [unused910] [unused911] [unused912] [unused913] [unused914] [unused915] [unused916] [unused917] [unused918] [unused919] [unused920] [unused921] [unused922] [unused923] [unused924] [unused925] [unused926] [unused927] [unused928] [unused929] [unused930] [unused931] [unused932] [unused933] [unused934] [unused935] [unused936] [unused937] [unused938] [unused939] [unused940] [unused941] [unused942] [unused943] [unused944] [unused945] [unused946] [unused947] [unused948] [unused949] [unused950] [unused951] [unused952] [unused953] [unused954] [unused955] [unused956] [unused957] [unused958] [unused959] [unused960] [unused961] [unused962] [unused963] [unused964] [unused965] [unused966] [unused967] [unused968] [unused969] [unused970] [unused971] [unused972] [unused973] [unused974] [unused975] [unused976] [unused977] [unused978] [unused979] [unused980] [unused981] [unused982] [unused983] [unused984] [unused985] [unused986] [unused987] [unused988] [unused989] [unused990] [unused991] [unused992] [unused993] ! " # $ % & ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ [ \ ] ^ _ ` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~ ¡ ¢ £ ¤ ¥ ¦ § ¨ © ª « ¬ ® ° ± ² ³ ´ µ ¶ · ¹ º » ¼ ½ ¾ ¿ × ß æ ð ÷ ø þ đ ħ ı ł ŋ œ ƒ ɐ ɑ ɒ ɔ ɕ ə ɛ ɡ ɣ ɨ ɪ ɫ ɬ ɯ ɲ ɴ ɹ ɾ ʀ ʁ ʂ ʃ ʉ ʊ ʋ ʌ ʎ ʐ ʑ ʒ ʔ ʰ ʲ ʳ ʷ ʸ ʻ ʼ ʾ ʿ ˈ ː ˡ ˢ ˣ ˤ α β γ δ ε ζ η θ ι κ λ μ ν ξ ο π ρ ς σ τ υ φ χ ψ ω а б в г д е ж з и к л м н о п р с т у ф х ц ч ш щ ъ ы ь э ю я ђ є і ј љ њ ћ ӏ ա բ գ դ ե թ ի լ կ հ մ յ ն ո պ ս վ տ ր ւ ք ־ א ב ג ד ה ו ז ח ט י ך כ ל ם מ ן נ ס ע ף פ ץ צ ק ר ש ת ، ء ا ب ة ت ث ج ح خ د ذ ر ز س ش ص ض ط ظ ع غ ـ ف ق ك ل م ن ه و ى ي ٹ پ چ ک گ ں ھ ہ ی ے अ आ उ ए क ख ग च ज ट ड ण त थ द ध न प ब भ म य र ल व श ष स ह ा ि ी ो । ॥ ং অ আ ই উ এ ও ক খ গ চ ছ জ ট ড ণ ত থ দ ধ ন প ব ভ ম য র ল শ ষ স হ া ি ী ে க ச ட த ந ன ப ம ய ர ல ள வ ா ி ு ே ை ನ ರ ಾ ක ය ර ල ව ා ก ง ต ท น พ ม ย ร ล ว ส อ า เ ་ ། ག ང ད ན པ བ མ འ ར ལ ས မ ა ბ გ დ ე ვ თ ი კ ლ მ ნ ო რ ს ტ უ ᄀ ᄂ ᄃ ᄅ ᄆ ᄇ ᄉ ᄊ ᄋ ᄌ ᄎ ᄏ ᄐ ᄑ ᄒ ᅡ ᅢ ᅥ ᅦ ᅧ ᅩ ᅪ ᅭ ᅮ ᅯ ᅲ ᅳ ᅴ ᅵ ᆨ ᆫ ᆯ ᆷ ᆸ ᆼ ᴬ ᴮ ᴰ ᴵ ᴺ ᵀ ᵃ ᵇ ᵈ ᵉ ᵍ ᵏ ᵐ ᵒ ᵖ ᵗ ᵘ ᵢ ᵣ ᵤ ᵥ ᶜ ᶠ ‐ ‑ ‒ – — ― ‖ ‘ ’ ‚ “ ” „ † ‡ • … ‰ ′ ″ › ‿ ⁄ ⁰ ⁱ ⁴ ⁵ ⁶ ⁷ ⁸ ⁹ ⁺ ⁻ ⁿ ₀ ₁ ₂ ₃ ₄ ₅ ₆ ₇ ₈ ₉ ₊ ₍ ₎ ₐ ₑ ₒ ₓ ₕ ₖ ₗ ₘ ₙ ₚ ₛ ₜ ₤ ₩ € ₱ ₹ ℓ № ℝ ™ ⅓ ⅔ ← ↑ → ↓ ↔ ↦ ⇄ ⇌ ⇒ ∂ ∅ ∆ ∇ ∈ − ∗ ∘ √ ∞ ∧ ∨ ∩ ∪ ≈ ≡ ≤ ≥ ⊂ ⊆ ⊕ ⊗ ⋅ ─ │ ■ ▪ ● ★ ☆ ☉ ♠ ♣ ♥ ♦ ♭ ♯ ⟨ ⟩ ⱼ ⺩ ⺼ ⽥ 、 。 〈 〉 《 》 「 」 『 』 〜 あ い う え お か き く け こ さ し す せ そ た ち っ つ て と な に ぬ ね の は ひ ふ へ ほ ま み む め も や ゆ よ ら り る れ ろ を ん ァ ア ィ イ ウ ェ エ オ カ キ ク ケ コ サ シ ス セ タ チ ッ ツ テ ト ナ ニ ノ ハ ヒ フ ヘ ホ マ ミ ム メ モ ャ ュ ョ ラ リ ル レ ロ ワ ン ・ ー 一 三 上 下 不 世 中 主 久 之 也 事 二 五 井 京 人 亻 仁 介 代 仮 伊 会 佐 侍 保 信 健 元 光 八 公 内 出 分 前 劉 力 加 勝 北 区 十 千 南 博 原 口 古 史 司 合 吉 同 名 和 囗 四 国 國 土 地 坂 城 堂 場 士 夏 外 大 天 太 夫 奈 女 子 学 宀 宇 安 宗 定 宣 宮 家 宿 寺 將 小 尚 山 岡 島 崎 川 州 巿 帝 平 年 幸 广 弘 張 彳 後 御 德 心 忄 志 忠 愛 成 我 戦 戸 手 扌 政 文 新 方 日 明 星 春 昭 智 曲 書 月 有 朝 木 本 李 村 東 松 林 森 楊 樹 橋 歌 止 正 武 比 氏 民 水 氵 氷 永 江 沢 河 治 法 海 清 漢 瀬 火 版 犬 王 生 田 男 疒 発 白 的 皇 目 相 省 真 石 示 社 神 福 禾 秀 秋 空 立 章 竹 糹 美 義 耳 良 艹 花 英 華 葉 藤 行 街 西 見 訁 語 谷 貝 貴 車 軍 辶 道 郎 郡 部 都 里 野 金 鈴 镇 長 門 間 阝 阿 陳 陽 雄 青 面 風 食 香 馬 高 龍 龸 fi fl ! ( ) , - . / : ? ~ the of and in to was he is as for on with that it his by at from her ##s she you had an were but be this are not my they one which or have him me first all also their has up who out been when after there into new two its ##a time would no what about said we over then other so more ##e can if like back them only some could ##i where just ##ing during before ##n do ##o made school through than now years most world may between down well three ##d year while will ##ed ##r ##y later ##t city under around did such being used state people part know against your many second university both national ##er these don known off way until re how even get head ... didn ##ly team american because de ##l born united film since still long work south us became any high again day family see right man eyes house season war states including took life north same each called name much place however go four group another found won area here going 10 away series left home music best make hand number company several never last john 000 very album take end good too following released game played little began district ##m old want those side held own early county ll league use west ##u face think ##es 2010 government ##h march came small general town june ##on line based something ##k september thought looked along international 2011 air july club went january october our august april york 12 few 2012 2008 east show member college 2009 father public ##us come men five set station church ##c next former november room party located december 2013 age got 2007 ##g system let love 2006 though every 2014 look song water century without body black night within great women single ve building large population river named band white started ##an once 15 20 should 18 2015 service top built british open death king moved local times children february book why 11 door need president order final road wasn although due major died village third knew 2016 asked turned st wanted say ##p together received main son served different ##en behind himself felt members power football law voice play ##in near park history 30 having 2005 16 ##man saw mother ##al army point front help english street art late hands games award ##ia young 14 put published country division across told 13 often ever french london center six red 2017 led days include light 25 find tell among species really according central half 2004 form original gave office making enough lost full opened must included live given german player run business woman community cup might million land 2000 court development 17 short round ii km seen class story always become sure research almost director council la ##2 career things using island ##z couldn car ##is 24 close force ##1 better free support control field students 2003 education married ##b nothing worked others record big inside level anything continued give james ##3 military established non returned feel does title written thing feet william far co association hard already 2002 ##ra championship human western 100 ##na department hall role various production 21 19 heart 2001 living fire version ##ers ##f television royal ##4 produced working act case society region present radio period looking least total keep england wife program per brother mind special 22 ##le am works soon ##6 political george services taken created ##7 further able reached david union joined upon done important social information either ##ic ##x appeared position ground lead rock dark election 23 board france hair course arms site police girl instead real sound ##v words moment ##te someone ##8 summer project announced san less wrote past followed ##5 blue founded al finally india taking records america ##ne 1999 design considered northern god stop battle toward european outside described track today playing language 28 call 26 heard professional low australia miles california win yet green ##ie trying blood ##ton southern science maybe everything match square 27 mouth video race recorded leave above ##9 daughter points space 1998 museum change middle common ##0 move tv post ##ta lake seven tried elected closed ten paul minister ##th months start chief return canada person sea release similar modern brought rest hit formed mr ##la 1997 floor event doing thomas 1996 robert care killed training star week needed turn finished railway rather news health sent example ran term michael coming currently yes forces despite gold areas 50 stage fact 29 dead says popular 2018 originally germany probably developed result pulled friend stood money running mi signed word songs child eventually met tour average teams minutes festival current deep kind 1995 decided usually eastern seemed ##ness episode bed added table indian private charles route available idea throughout centre addition appointed style 1994 books eight construction press mean wall friends remained schools study ##ch ##um institute oh chinese sometimes events possible 1992 australian type brown forward talk process food debut seat performance committee features character arts herself else lot strong russian range hours peter arm ##da morning dr sold ##ry quickly directed 1993 guitar china ##w 31 list ##ma performed media uk players smile ##rs myself 40 placed coach province towards wouldn leading whole boy official designed grand census ##el europe attack japanese henry 1991 ##re ##os cross getting alone action lower network wide washington japan 1990 hospital believe changed sister ##ar hold gone sir hadn ship ##ka studies academy shot rights below base bad involved kept largest ##ist bank future especially beginning mark movement section female magazine plan professor lord longer ##ian sat walked hill actually civil energy model families size thus aircraft completed includes data captain ##or fight vocals featured richard bridge fourth 1989 officer stone hear ##ism means medical groups management self lips competition entire lived technology leaving federal tournament bit passed hot independent awards kingdom mary spent fine doesn reported ##ling jack fall raised itself stay true studio 1988 sports replaced paris systems saint leader theatre whose market capital parents spanish canadian earth ##ity cut degree writing bay christian awarded natural higher bill ##as coast provided previous senior ft valley organization stopped onto countries parts conference queen security interest saying allowed master earlier phone matter smith winning try happened moving campaign los ##ley breath nearly mid 1987 certain girls date italian african standing fell artist ##ted shows deal mine industry 1986 ##ng everyone republic provide collection library student ##ville primary owned older via heavy 1st makes ##able attention anyone africa ##ri stated length ended fingers command staff skin foreign opening governor okay medal kill sun cover job 1985 introduced chest hell feeling ##ies success meet reason standard meeting novel 1984 trade source buildings ##land rose guy goal ##ur chapter native husband previously unit limited entered weeks producer operations mountain takes covered forced related roman complete successful key texas cold ##ya channel 1980 traditional films dance clear approximately 500 nine van prince question active tracks ireland regional silver author personal sense operation ##ine economic 1983 holding twenty isbn additional speed hour edition regular historic places whom shook movie km² secretary prior report chicago read foundation view engine scored 1982 units ask airport property ready immediately lady month listed contract ##de manager themselves lines ##ki navy writer meant ##ts runs ##ro practice championships singer glass commission required forest starting culture generally giving access attended test couple stand catholic martin caught executive ##less eye ##ey thinking chair quite shoulder 1979 hope decision plays defeated municipality whether structure offered slowly pain ice direction ##ion paper mission 1981 mostly 200 noted individual managed nature lives plant ##ha helped except studied computer figure relationship issue significant loss die smiled gun ago highest 1972 ##am male bring goals mexico problem distance commercial completely location annual famous drive 1976 neck 1978 surface caused italy understand greek highway wrong hotel comes appearance joseph double issues musical companies castle income review assembly bass initially parliament artists experience 1974 particular walk foot engineering talking window dropped ##ter miss baby boys break 1975 stars edge remember policy carried train stadium bar sex angeles evidence ##ge becoming assistant soviet 1977 upper step wing 1970 youth financial reach ##ll actor numerous ##se ##st nodded arrived ##ation minute ##nt believed sorry complex beautiful victory associated temple 1968 1973 chance perhaps metal ##son 1945 bishop ##et lee launched particularly tree le retired subject prize contains yeah theory empire ##ce suddenly waiting trust recording ##to happy terms camp champion 1971 religious pass zealand names 2nd port ancient tom corner represented watch legal anti justice cause watched brothers 45 material changes simply response louis fast ##ting answer 60 historical 1969 stories straight create feature increased rate administration virginia el activities cultural overall winner programs basketball legs guard beyond cast doctor mm flight results remains cost effect winter ##ble larger islands problems chairman grew commander isn 1967 pay failed selected hurt fort box regiment majority journal 35 edward plans ##ke ##ni shown pretty irish characters directly scene likely operated allow spring ##j junior matches looks mike houses fellow ##tion beach marriage ##ham ##ive rules oil 65 florida expected nearby congress sam peace recent iii wait subsequently cell ##do variety serving agreed please poor joe pacific attempt wood democratic piece prime ##ca rural mile touch appears township 1964 1966 soldiers ##men ##ized 1965 pennsylvania closer fighting claimed score jones physical editor ##ous filled genus specific sitting super mom ##va therefore supported status fear cases store meaning wales minor spain tower focus vice frank follow parish separate golden horse fifth remaining branch 32 presented stared ##id uses secret forms ##co baseball exactly ##ck choice note discovered travel composed truth russia ball color kiss dad wind continue ring referred numbers digital greater ##ns metres slightly direct increase 1960 responsible crew rule trees troops ##no broke goes individuals hundred weight creek sleep memory defense provides ordered code value jewish windows 1944 safe judge whatever corps realized growing pre ##ga cities alexander gaze lies spread scott letter showed situation mayor transport watching workers extended ##li expression normal ##ment chart multiple border ##ba host ##ner daily mrs walls piano ##ko heat cannot ##ate earned products drama era authority seasons join grade ##io sign difficult machine 1963 territory mainly ##wood stations squadron 1962 stepped iron 19th ##led serve appear sky speak broken charge knowledge kilometres removed ships article campus simple ##ty pushed britain ##ve leaves recently cd soft boston latter easy acquired poland ##sa quality officers presence planned nations mass broadcast jean share image influence wild offer emperor electric reading headed ability promoted yellow ministry 1942 throat smaller politician ##by latin spoke cars williams males lack pop 80 ##ier acting seeing consists ##ti estate 1961 pressure johnson newspaper jr chris olympics online conditions beat elements walking vote ##field needs carolina text featuring global block shirt levels francisco purpose females et dutch duke ahead gas twice safety serious turning highly lieutenant firm maria amount mixed daniel proposed perfect agreement affairs 3rd seconds contemporary paid 1943 prison save kitchen label administrative intended constructed academic nice teacher races 1956 formerly corporation ben nation issued shut 1958 drums housing victoria seems opera 1959 graduated function von mentioned picked build recognized shortly protection picture notable exchange elections 1980s loved percent racing fish elizabeth garden volume hockey 1941 beside settled ##ford 1940 competed replied drew 1948 actress marine scotland steel glanced farm steve 1957 risk tonight positive magic singles effects gray screen dog ##ja residents bus sides none secondary literature polish destroyed flying founder households 1939 lay reserve usa gallery ##ler 1946 industrial younger approach appearances urban ones 1950 finish avenue powerful fully growth page honor jersey projects advanced revealed basic 90 infantry pair equipment visit 33 evening search grant effort solo treatment buried republican primarily bottom owner 1970s israel gives jim dream bob remain spot 70 notes produce champions contact ed soul accepted ways del ##ally losing split price capacity basis trial questions ##ina 1955 20th guess officially memorial naval initial ##ization whispered median engineer ##ful sydney ##go columbia strength 300 1952 tears senate 00 card asian agent 1947 software 44 draw warm supposed com pro ##il transferred leaned ##at candidate escape mountains asia potential activity entertainment seem traffic jackson murder 36 slow product orchestra haven agency bbc taught website comedy unable storm planning albums rugby environment scientific grabbed protect ##hi boat typically 1954 1953 damage principal divided dedicated mount ohio ##berg pick fought driver ##der empty shoulders sort thank berlin prominent account freedom necessary efforts alex headquarters follows alongside des simon andrew suggested operating learning steps 1949 sweet technical begin easily 34 teeth speaking settlement scale ##sh renamed ray max enemy semi joint compared ##rd scottish leadership analysis offers georgia pieces captured animal deputy guest organized ##lin tony combined method challenge 1960s huge wants battalion sons rise crime types facilities telling path 1951 platform sit 1990s ##lo tells assigned rich pull ##ot commonly alive ##za letters concept conducted wearing happen bought becomes holy gets ocean defeat languages purchased coffee occurred titled ##q declared applied sciences concert sounds jazz brain ##me painting fleet tax nick ##ius michigan count animals leaders episodes ##line content ##den birth ##it clubs 64 palace critical refused fair leg laughed returning surrounding participated formation lifted pointed connected rome medicine laid taylor santa powers adam tall shared focused knowing yards entrance falls ##wa calling ##ad sources chosen beneath resources yard ##ite nominated silence zone defined ##que gained thirty 38 bodies moon ##ard adopted christmas widely register apart iran premier serves du unknown parties ##les generation ##ff continues quick fields brigade quiet teaching clothes impact weapons partner flat theater supreme 1938 37 relations ##tor plants suffered 1936 wilson kids begins ##age 1918 seats armed internet models worth laws 400 communities classes background knows thanks quarter reaching humans carry killing format kong hong setting 75 architecture disease railroad inc possibly wish arthur thoughts harry doors density ##di crowd illinois stomach tone unique reports anyway ##ir liberal der vehicle thick dry drug faced largely facility theme holds creation strange colonel ##mi revolution bell politics turns silent rail relief independence combat shape write determined sales learned 4th finger oxford providing 1937 heritage fiction situated designated allowing distribution hosted ##est sight interview estimated reduced ##ria toronto footballer keeping guys damn claim motion sport sixth stayed ##ze en rear receive handed twelve dress audience granted brazil ##well spirit ##ated noticed etc olympic representative eric tight trouble reviews drink vampire missing roles ranked newly household finals wave critics ##ee phase massachusetts pilot unlike philadelphia bright guns crown organizations roof 42 respectively clearly tongue marked circle fox korea bronze brian expanded sexual supply yourself inspired labour fc ##ah reference vision draft connection brand reasons 1935 classic driving trip jesus cells entry 1920 neither trail claims atlantic orders labor nose afraid identified intelligence calls cancer attacked passing stephen positions imperial grey jason 39 sunday 48 swedish avoid extra uncle message covers allows surprise materials fame hunter ##ji 1930 citizens figures davis environmental confirmed shit titles di performing difference acts attacks ##ov existing votes opportunity nor shop entirely trains opposite pakistan ##pa develop resulted representatives actions reality pressed ##ish barely wine conversation faculty northwest ends documentary nuclear stock grace sets eat alternative ##ps bag resulting creating surprised cemetery 1919 drop finding sarah cricket streets tradition ride 1933 exhibition target ear explained rain composer injury apartment municipal educational occupied netherlands clean billion constitution learn 1914 maximum classical francis lose opposition jose ontario bear core hills rolled ending drawn permanent fun ##tes ##lla lewis sites chamber ryan ##way scoring height 1934 ##house lyrics staring 55 officials 1917 snow oldest ##tic orange ##ger qualified interior apparently succeeded thousand dinner lights existence fans heavily 41 greatest conservative send bowl plus enter catch ##un economy duty 1929 speech authorities princess performances versions shall graduate pictures effective remembered poetry desk crossed starring starts passenger sharp ##ant acres ass weather falling rank fund supporting check adult publishing heads cm southeast lane ##burg application bc ##ura les condition transfer prevent display ex regions earl federation cool relatively answered besides 1928 obtained portion ##town mix ##ding reaction liked dean express peak 1932 ##tte counter religion chain rare miller convention aid lie vehicles mobile perform squad wonder lying crazy sword ##ping attempted centuries weren philosophy category ##ize anna interested 47 sweden wolf frequently abandoned kg literary alliance task entitled ##ay threw promotion factory tiny soccer visited matt fm achieved 52 defence internal persian 43 methods ##ging arrested otherwise cambridge programming villages elementary districts rooms criminal conflict worry trained 1931 attempts waited signal bird truck subsequent programme ##ol ad 49 communist details faith sector patrick carrying laugh ##ss controlled korean showing origin fuel evil 1927 ##ent brief identity darkness address pool missed publication web planet ian anne wings invited ##tt briefly standards kissed ##be ideas climate causing walter worse albert articles winners desire aged northeast dangerous gate doubt 1922 wooden multi ##ky poet rising funding 46 communications communication violence copies prepared ford investigation skills 1924 pulling electronic ##ak ##ial ##han containing ultimately offices singing understanding restaurant tomorrow fashion christ ward da pope stands 5th flow studios aired commissioned contained exist fresh americans ##per wrestling approved kid employed respect suit 1925 angel asking increasing frame angry selling 1950s thin finds ##nd temperature statement ali explain inhabitants towns extensive narrow 51 jane flowers images promise somewhere object fly closely ##ls 1912 bureau cape 1926 weekly presidential legislative 1921 ##ai ##au launch founding ##ny 978 ##ring artillery strike un institutions roll writers landing chose kevin anymore pp ##ut attorney fit dan billboard receiving agricultural breaking sought dave admitted lands mexican ##bury charlie specifically hole iv howard credit moscow roads accident 1923 proved wear struck hey guards stuff slid expansion 1915 cat anthony ##kin melbourne opposed sub southwest architect failure plane 1916 ##ron map camera tank listen regarding wet introduction metropolitan link ep fighter inch grown gene anger fixed buy dvd khan domestic worldwide chapel mill functions examples ##head developing 1910 turkey hits pocket antonio papers grow unless circuit 18th concerned attached journalist selection journey converted provincial painted hearing aren bands negative aside wondered knight lap survey ma ##ow noise billy ##ium shooting guide bedroom priest resistance motor homes sounded giant ##mer 150 scenes equal comic patients hidden solid actual bringing afternoon touched funds wedding consisted marie canal sr kim treaty turkish recognition residence cathedral broad knees incident shaped fired norwegian handle cheek contest represent ##pe representing beauty ##sen birds advantage emergency wrapped drawing notice pink broadcasting ##ong somehow bachelor seventh collected registered establishment alan assumed chemical personnel roger retirement jeff portuguese wore tied device threat progress advance ##ised banks hired manchester nfl teachers structures forever ##bo tennis helping saturday sale applications junction hip incorporated neighborhood dressed ceremony ##ds influenced hers visual stairs decades inner kansas hung hoped gain scheduled downtown engaged austria clock norway certainly pale protected 1913 victor employees plate putting surrounded ##ists finishing blues tropical ##ries minnesota consider philippines accept 54 retrieved 1900 concern anderson properties institution gordon successfully vietnam ##dy backing outstanding muslim crossing folk producing usual demand occurs observed lawyer educated ##ana kelly string pleasure budget items quietly colorado philip typical ##worth derived 600 survived asks mental ##ide 56 jake jews distinguished ltd 1911 sri extremely 53 athletic loud thousands worried shadow transportation horses weapon arena importance users tim objects contributed dragon douglas aware senator johnny jordan sisters engines flag investment samuel shock capable clark row wheel refers session familiar biggest wins hate maintained drove hamilton request expressed injured underground churches walker wars tunnel passes stupid agriculture softly cabinet regarded joining indiana ##ea ##ms push dates spend behavior woods protein gently chase morgan mention burning wake combination occur mirror leads jimmy indeed impossible singapore paintings covering ##nes soldier locations attendance sell historian wisconsin invasion argued painter diego changing egypt ##don experienced inches ##ku missouri vol grounds spoken switzerland ##gan reform rolling ha forget massive resigned burned allen tennessee locked values improved ##mo wounded universe sick dating facing pack purchase user ##pur moments ##ul merged anniversary 1908 coal brick understood causes dynasty queensland establish stores crisis promote hoping views cards referee extension ##si raise arizona improve colonial formal charged ##rt palm lucky hide rescue faces 95 feelings candidates juan ##ell goods 6th courses weekend 59 luke cash fallen ##om delivered affected installed carefully tries swiss hollywood costs lincoln responsibility ##he shore file proper normally maryland assistance jump constant offering friendly waters persons realize contain trophy 800 partnership factor 58 musicians cry bound oregon indicated hero houston medium ##ure consisting somewhat ##ara 57 cycle ##che beer moore frederick gotten eleven worst weak approached arranged chin loan universal bond fifteen pattern disappeared ##ney translated ##zed lip arab capture interests insurance ##chi shifted cave prix warning sections courts coat plot smell feed golf favorite maintain knife vs voted degrees finance quebec opinion translation manner ruled operate productions choose musician discovery confused tired separated stream techniques committed attend ranking kings throw passengers measure horror fan mining sand danger salt calm decade dam require runner ##ik rush associate greece ##ker rivers consecutive matthew ##ski sighed sq documents steam edited closing tie accused 1905 ##ini islamic distributed directors organisation bruce 7th breathing mad lit arrival concrete taste 08 composition shaking faster amateur adjacent stating 1906 twin flew ##ran tokyo publications ##tone obviously ridge storage 1907 carl pages concluded desert driven universities ages terminal sequence borough 250 constituency creative cousin economics dreams margaret notably reduce montreal mode 17th ears saved jan vocal ##ica 1909 andy ##jo riding roughly threatened ##ise meters meanwhile landed compete repeated grass czech regularly charges tea sudden appeal ##ung solution describes pierre classification glad parking ##ning belt physics 99 rachel add hungarian participate expedition damaged gift childhood 85 fifty ##red mathematics jumped letting defensive mph ##ux ##gh testing ##hip hundreds shoot owners matters smoke israeli kentucky dancing mounted grandfather emma designs profit argentina ##gs truly li lawrence cole begun detroit willing branches smiling decide miami enjoyed recordings ##dale poverty ethnic gay ##bi gary arabic 09 accompanied ##one ##ons fishing determine residential acid ##ary alice returns starred mail ##ang jonathan strategy ##ue net forty cook businesses equivalent commonwealth distinct ill ##cy seriously ##ors ##ped shift harris replace rio imagine formula ensure ##ber additionally scheme conservation occasionally purposes feels favor ##and ##ore 1930s contrast hanging hunt movies 1904 instruments victims danish christopher busy demon sugar earliest colony studying balance duties ##ks belgium slipped carter 05 visible stages iraq fifa ##im commune forming zero 07 continuing talked counties legend bathroom option tail clay daughters afterwards severe jaw visitors ##ded devices aviation russell kate ##vi entering subjects ##ino temporary swimming forth smooth ghost audio bush operates rocks movements signs eddie ##tz ann voices honorary 06 memories dallas pure measures racial promised 66 harvard ceo 16th parliamentary indicate benefit flesh dublin louisiana 1902 1901 patient sleeping 1903 membership coastal medieval wanting element scholars rice 62 limit survive makeup rating definitely collaboration obvious ##tan boss ms baron birthday linked soil diocese ##lan ncaa ##mann offensive shell shouldn waist ##tus plain ross organ resolution manufacturing adding relative kennedy 98 whilst moth marketing gardens crash 72 heading partners credited carlos moves cable ##zi marshall ##out depending bottle represents rejected responded existed 04 jobs denmark lock ##ating treated graham routes talent commissioner drugs secure tests reign restored photography ##gi contributions oklahoma designer disc grin seattle robin paused atlanta unusual ##gate praised las laughing satellite hungary visiting ##sky interesting factors deck poems norman ##water stuck speaker rifle domain premiered ##her dc comics actors 01 reputation eliminated 8th ceiling prisoners script ##nce leather austin mississippi rapidly admiral parallel charlotte guilty tools gender divisions fruit ##bs laboratory nelson fantasy marry rapid aunt tribe requirements aspects suicide amongst adams bone ukraine abc kick sees edinburgh clothing column rough gods hunting broadway gathered concerns ##ek spending ty 12th snapped requires solar bones cavalry ##tta iowa drinking waste index franklin charity thompson stewart tip flash landscape friday enjoy singh poem listening ##back eighth fred differences adapted bomb ukrainian surgery corporate masters anywhere ##more waves odd sean portugal orleans dick debate kent eating puerto cleared 96 expect cinema 97 guitarist blocks electrical agree involving depth dying panel struggle ##ged peninsula adults novels emerged vienna metro debuted shoes tamil songwriter meets prove beating instance heaven scared sending marks artistic passage superior 03 significantly shopping ##tive retained ##izing malaysia technique cheeks ##ola warren maintenance destroy extreme allied 120 appearing ##yn fill advice alabama qualifying policies cleveland hat battery smart authors 10th soundtrack acted dated lb glance equipped coalition funny outer ambassador roy possibility couples campbell dna loose ethan supplies 1898 gonna 88 monster ##res shake agents frequency springs dogs practices 61 gang plastic easier suggests gulf blade exposed colors industries markets pan nervous electoral charts legislation ownership ##idae mac appointment shield copy assault socialist abbey monument license throne employment jay 93 replacement charter cloud powered suffering accounts oak connecticut strongly wright colour crystal 13th context welsh networks voiced gabriel jerry ##cing forehead mp ##ens manage schedule totally remix ##ii forests occupation print nicholas brazilian strategic vampires engineers 76 roots seek correct instrumental und alfred backed hop ##des stanley robinson traveled wayne welcome austrian achieve 67 exit rates 1899 strip whereas ##cs sing deeply adventure bobby rick jamie careful components cap useful personality knee ##shi pushing hosts 02 protest ca ottoman symphony ##sis 63 boundary 1890 processes considering considerable tons ##work ##ft ##nia cooper trading dear conduct 91 illegal apple revolutionary holiday definition harder ##van jacob circumstances destruction ##lle popularity grip classified liverpool donald baltimore flows seeking honour approval 92 mechanical till happening statue critic increasingly immediate describe commerce stare ##ster indonesia meat rounds boats baker orthodox depression formally worn naked claire muttered sentence 11th emily document 77 criticism wished vessel spiritual bent virgin parker minimum murray lunch danny printed compilation keyboards false blow belonged 68 raising 78 cutting ##board pittsburgh ##up 9th shadows 81 hated indigenous jon 15th barry scholar ah ##zer oliver ##gy stick susan meetings attracted spell romantic ##ver ye 1895 photo demanded customers ##ac 1896 logan revival keys modified commanded jeans ##ious upset raw phil detective hiding resident vincent ##bly experiences diamond defeating coverage lucas external parks franchise helen bible successor percussion celebrated il lift profile clan romania ##ied mills ##su nobody achievement shrugged fault 1897 rhythm initiative breakfast carbon 700 69 lasted violent 74 wound ken killer gradually filmed °c dollars processing 94 remove criticized guests sang chemistry ##vin legislature disney ##bridge uniform escaped integrated proposal purple denied liquid karl influential morris nights stones intense experimental twisted 71 84 ##ld pace nazi mitchell ny blind reporter newspapers 14th centers burn basin forgotten surviving filed collections monastery losses manual couch description appropriate merely tag missions sebastian restoration replacing triple 73 elder julia warriors benjamin julian convinced stronger amazing declined versus merchant happens output finland bare barbara absence ignored dawn injuries ##port producers ##ram 82 luis ##ities kw admit expensive electricity nba exception symbol ##ving ladies shower sheriff characteristics ##je aimed button ratio effectively summit angle jury bears foster vessels pants executed evans dozen advertising kicked patrol 1889 competitions lifetime principles athletics ##logy birmingham sponsored 89 rob nomination 1893 acoustic ##sm creature longest ##tra credits harbor dust josh ##so territories milk infrastructure completion thailand indians leon archbishop ##sy assist pitch blake arrangement girlfriend serbian operational hence sad scent fur dj sessions hp refer rarely ##ora exists 1892 ##ten scientists dirty penalty burst portrait seed 79 pole limits rival 1894 stable alpha grave constitutional alcohol arrest flower mystery devil architectural relationships greatly habitat ##istic larry progressive remote cotton ##ics ##ok preserved reaches ##ming cited 86 vast scholarship decisions cbs joy teach 1885 editions knocked eve searching partly participation gap animated fate excellent ##ett na 87 alternate saints youngest ##ily climbed ##ita ##tors suggest ##ct discussion staying choir lakes jacket revenue nevertheless peaked instrument wondering annually managing neil 1891 signing terry ##ice apply clinical brooklyn aim catherine fuck farmers figured ninth pride hugh evolution ordinary involvement comfortable shouted tech encouraged taiwan representation sharing ##lia ##em panic exact cargo competing fat cried 83 1920s occasions pa cabin borders utah marcus ##isation badly muscles ##ance victorian transition warner bet permission ##rin slave terrible similarly shares seth uefa possession medals benefits colleges lowered perfectly mall transit ##ye ##kar publisher ##ened harrison deaths elevation ##ae asleep machines sigh ash hardly argument occasion parent leo decline 1888 contribution ##ua concentration 1000 opportunities hispanic guardian extent emotions hips mason volumes bloody controversy diameter steady mistake phoenix identify violin ##sk departure richmond spin funeral enemies 1864 gear literally connor random sergeant grab confusion 1865 transmission informed op leaning sacred suspended thinks gates portland luck agencies yours hull expert muscle layer practical sculpture jerusalem latest lloyd statistics deeper recommended warrior arkansas mess supports greg eagle 1880 recovered rated concerts rushed ##ano stops eggs files premiere keith ##vo delhi turner pit affair belief paint ##zing mate ##ach ##ev victim ##ology withdrew bonus styles fled ##ud glasgow technologies funded nbc adaptation ##ata portrayed cooperation supporters judges bernard justin hallway ralph ##ick graduating controversial distant continental spider bite ##ho recognize intention mixing ##ese egyptian bow tourism suppose claiming tiger dominated participants vi ##ru nurse partially tape ##rum psychology ##rn essential touring duo voting civilian emotional channels ##king apparent hebrew 1887 tommy carrier intersection beast hudson ##gar ##zo lab nova bench discuss costa ##ered detailed behalf drivers unfortunately obtain ##lis rocky ##dae siege friendship honey ##rian 1861 amy hang posted governments collins respond wildlife preferred operator ##po laura pregnant videos dennis suspected boots instantly weird automatic businessman alleged placing throwing ph mood 1862 perry venue jet remainder ##lli ##ci passion biological boyfriend 1863 dirt buffalo ron segment fa abuse ##era genre thrown stroke colored stress exercise displayed ##gen struggled ##tti abroad dramatic wonderful thereafter madrid component widespread ##sed tale citizen todd monday 1886 vancouver overseas forcing crying descent ##ris discussed substantial ranks regime 1870 provinces switch drum zane ted tribes proof lp cream researchers volunteer manor silk milan donated allies venture principle delivery enterprise ##ves ##ans bars traditionally witch reminded copper ##uk pete inter links colin grinned elsewhere competitive frequent ##oy scream ##hu tension texts submarine finnish defending defend pat detail 1884 affiliated stuart themes villa periods tool belgian ruling crimes answers folded licensed resort demolished hans lucy 1881 lion traded photographs writes craig ##fa trials generated beth noble debt percentage yorkshire erected ss viewed grades confidence ceased islam telephone retail ##ible chile m² roberts sixteen ##ich commented hampshire innocent dual pounds checked regulations afghanistan sung rico liberty assets bigger options angels relegated tribute wells attending leaf ##yan butler romanian forum monthly lisa patterns gmina ##tory madison hurricane rev ##ians bristol ##ula elite valuable disaster democracy awareness germans freyja ##ins loop absolutely paying populations maine sole prayer spencer releases doorway bull ##ani lover midnight conclusion ##sson thirteen lily mediterranean ##lt nhl proud sample ##hill drummer guinea ##ova murphy climb ##ston instant attributed horn ain railways steven ##ao autumn ferry opponent root traveling secured corridor stretched tales sheet trinity cattle helps indicates manhattan murdered fitted 1882 gentle grandmother mines shocked vegas produces ##light caribbean ##ou belong continuous desperate drunk historically trio waved raf dealing nathan bat murmured interrupted residing scientist pioneer harold aaron ##net delta attempting minority mini believes chorus tend lots eyed indoor load shots updated jail ##llo concerning connecting wealth ##ved slaves arrive rangers sufficient rebuilt ##wick cardinal flood muhammad whenever relation runners moral repair viewers arriving revenge punk assisted bath fairly breathe lists innings illustrated whisper nearest voters clinton ties ultimate screamed beijing lions andre fictional gathering comfort radar suitable dismissed hms ban pine wrist atmosphere voivodeship bid timber ##ned ##nan giants ##ane cameron recovery uss identical categories switched serbia laughter noah ensemble therapy peoples touching ##off locally pearl platforms everywhere ballet tables lanka herbert outdoor toured derek 1883 spaces contested swept 1878 exclusive slight connections ##dra winds prisoner collective bangladesh tube publicly wealthy thai ##ys isolated select ##ric insisted pen fortune ticket spotted reportedly animation enforcement tanks 110 decides wider lowest owen ##time nod hitting ##hn gregory furthermore magazines fighters solutions ##ery pointing requested peru reed chancellor knights mask worker eldest flames reduction 1860 volunteers ##tis reporting ##hl wire advisory endemic origins settlers pursue knock consumer 1876 eu compound creatures mansion sentenced ivan deployed guitars frowned involves mechanism kilometers perspective shops maps terminus duncan alien fist bridges ##pers heroes fed derby swallowed ##ros patent sara illness characterized adventures slide hawaii jurisdiction ##op organised ##side adelaide walks biology se ##ties rogers swing tightly boundaries ##rie prepare implementation stolen ##sha certified colombia edwards garage ##mm recalled ##ball rage harm nigeria breast ##ren furniture pupils settle ##lus cuba balls client alaska 21st linear thrust celebration latino genetic terror ##cia ##ening lightning fee witness lodge establishing skull ##ique earning hood ##ei rebellion wang sporting warned missile devoted activist porch worship fourteen package 1871 decorated ##shire housed ##ock chess sailed doctors oscar joan treat garcia harbour jeremy ##ire traditions dominant jacques ##gon ##wan relocated 1879 amendment sized companion simultaneously volleyball spun acre increases stopping loves belongs affect drafted tossed scout battles 1875 filming shoved munich tenure vertical romance pc ##cher argue ##ical craft ranging www opens honest tyler yesterday virtual ##let muslims reveal snake immigrants radical screaming speakers firing saving belonging ease lighting prefecture blame farmer hungry grows rubbed beam sur subsidiary ##cha armenian sao dropping conventional ##fer microsoft reply qualify spots 1867 sweat festivals ##ken immigration physician discover exposure sandy explanation isaac implemented ##fish hart initiated connect stakes presents heights householder pleased tourist regardless slip closest ##ction surely sultan brings riley preparation aboard slammed baptist experiment ongoing interstate organic playoffs ##ika 1877 130 ##tar hindu error tours tier plenty arrangements talks trapped excited sank ho athens 1872 denver welfare suburb athletes trick diverse belly exclusively yelled 1868 ##med conversion ##ette 1874 internationally computers conductor abilities sensitive hello dispute measured globe rocket prices amsterdam flights tigers inn municipalities emotion references 3d ##mus explains airlines manufactured pm archaeological 1873 interpretation devon comment ##ites settlements kissing absolute improvement suite impressed barcelona sullivan jefferson towers jesse julie ##tin ##lu grandson hi gauge regard rings interviews trace raymond thumb departments burns serial bulgarian scores demonstrated ##ix 1866 kyle alberta underneath romanized ##ward relieved acquisition phrase cliff reveals han cuts merger custom ##dar nee gilbert graduation ##nts assessment cafe difficulty demands swung democrat jennifer commons 1940s grove ##yo completing focuses sum substitute bearing stretch reception ##py reflected essentially destination pairs ##ched survival resource ##bach promoting doubles messages tear ##down ##fully parade florence harvey incumbent partial framework 900 pedro frozen procedure olivia controls ##mic shelter personally temperatures ##od brisbane tested sits marble comprehensive oxygen leonard ##kov inaugural iranian referring quarters attitude ##ivity mainstream lined mars dakota norfolk unsuccessful ##° explosion helicopter congressional ##sing inspector bitch seal departed divine ##ters coaching examination punishment manufacturer sink columns unincorporated signals nevada squeezed dylan dining photos martial manuel eighteen elevator brushed plates ministers ivy congregation ##len slept specialized taxes curve restricted negotiations likes statistical arnold inspiration execution bold intermediate significance margin ruler wheels gothic intellectual dependent listened eligible buses widow syria earn cincinnati collapsed recipient secrets accessible philippine maritime goddess clerk surrender breaks playoff database ##ified ##lon ideal beetle aspect soap regulation strings expand anglo shorter crosses retreat tough coins wallace directions pressing ##oon shipping locomotives comparison topics nephew ##mes distinction honors travelled sierra ibn ##over fortress sa recognised carved 1869 clients ##dan intent ##mar coaches describing bread ##ington beaten northwestern ##ona merit youtube collapse challenges em historians objective submitted virus attacking drake assume ##ere diseases marc stem leeds ##cus ##ab farming glasses ##lock visits nowhere fellowship relevant carries restaurants experiments 101 constantly bases targets shah tenth opponents verse territorial ##ira writings corruption ##hs instruction inherited reverse emphasis ##vic employee arch keeps rabbi watson payment uh ##ala nancy ##tre venice fastest sexy banned adrian properly ruth touchdown dollar boards metre circles edges favour comments ok travels liberation scattered firmly ##ular holland permitted diesel kenya den originated ##ral demons resumed dragged rider ##rus servant blinked extend torn ##ias ##sey input meal everybody cylinder kinds camps ##fe bullet logic ##wn croatian evolved healthy fool chocolate wise preserve pradesh ##ess respective 1850 ##ew chicken artificial gross corresponding convicted cage caroline dialogue ##dor narrative stranger mario br christianity failing trent commanding buddhist 1848 maurice focusing yale bike altitude ##ering mouse revised ##sley veteran ##ig pulls theology crashed campaigns legion ##ability drag excellence customer cancelled intensity excuse ##lar liga participating contributing printing ##burn variable ##rk curious bin legacy renaissance ##my symptoms binding vocalist dancer ##nie grammar gospel democrats ya enters sc diplomatic hitler ##ser clouds mathematical quit defended oriented ##heim fundamental hardware impressive equally convince confederate guilt chuck sliding ##ware magnetic narrowed petersburg bulgaria otto phd skill ##ama reader hopes pitcher reservoir hearts automatically expecting mysterious bennett extensively imagined seeds monitor fix ##ative journalism struggling signature ranch encounter photographer observation protests ##pin influences ##hr calendar ##all cruz croatia locomotive hughes naturally shakespeare basement hook uncredited faded theories approaches dare phillips filling fury obama ##ain efficient arc deliver min raid breeding inducted leagues efficiency axis montana eagles ##ked supplied instructions karen picking indicating trap anchor practically christians tomb vary occasional electronics lords readers newcastle faint innovation collect situations engagement 160 claude mixture ##feld peer tissue logo lean ##ration °f floors ##ven architects reducing ##our ##ments rope 1859 ottawa ##har samples banking declaration proteins resignation francois saudi advocate exhibited armor twins divorce ##ras abraham reviewed jo temporarily matrix physically pulse curled ##ena difficulties bengal usage ##ban annie riders certificate ##pi holes warsaw distinctive jessica ##mon mutual 1857 customs circular eugene removal loaded mere vulnerable depicted generations dame heir enormous lightly climbing pitched lessons pilots nepal ram google preparing brad louise renowned ##₂ liam ##ably plaza shaw sophie brilliant bills ##bar ##nik fucking mainland server pleasant seized veterans jerked fail beta brush radiation stored warmth southeastern nate sin raced berkeley joke athlete designation trunk ##low roland qualification archives heels artwork receives judicial reserves ##bed woke installation abu floating fake lesser excitement interface concentrated addressed characteristic amanda saxophone monk auto ##bus releasing egg dies interaction defender ce outbreak glory loving ##bert sequel consciousness http awake ski enrolled ##ress handling rookie brow somebody biography warfare amounts contracts presentation fabric dissolved challenged meter psychological lt elevated rally accurate ##tha hospitals undergraduate specialist venezuela exhibit shed nursing protestant fluid structural footage jared consistent prey ##ska succession reflect exile lebanon wiped suspect shanghai resting integration preservation marvel variant pirates sheep rounded capita sailing colonies manuscript deemed variations clarke functional emerging boxing relaxed curse azerbaijan heavyweight nickname editorial rang grid tightened earthquake flashed miguel rushing ##ches improvements boxes brooks 180 consumption molecular felix societies repeatedly variation aids civic graphics professionals realm autonomous receiver delayed workshop militia chairs trump canyon ##point harsh extending lovely happiness ##jan stake eyebrows embassy wellington hannah ##ella sony corners bishops swear cloth contents xi namely commenced 1854 stanford nashville courage graphic commitment garrison ##bin hamlet clearing rebels attraction literacy cooking ruins temples jenny humanity celebrate hasn freight sixty rebel bastard ##art newton ##ada deer ##ges ##ching smiles delaware singers ##ets approaching assists flame ##ph boulevard barrel planted ##ome pursuit ##sia consequences posts shallow invitation rode depot ernest kane rod concepts preston topic chambers striking blast arrives descendants montgomery ranges worlds ##lay ##ari span chaos praise ##ag fewer 1855 sanctuary mud fbi ##ions programmes maintaining unity harper bore handsome closure tournaments thunder nebraska linda facade puts satisfied argentine dale cork dome panama ##yl 1858 tasks experts ##ates feeding equation ##las ##ida ##tu engage bryan ##ax um quartet melody disbanded sheffield blocked gasped delay kisses maggie connects ##non sts poured creator publishers ##we guided ellis extinct hug gaining ##ord complicated ##bility poll clenched investigate ##use thereby quantum spine cdp humor kills administered semifinals ##du encountered ignore ##bu commentary ##maker bother roosevelt 140 plains halfway flowing cultures crack imprisoned neighboring airline ##ses ##view ##mate ##ec gather wolves marathon transformed ##ill cruise organisations carol punch exhibitions numbered alarm ratings daddy silently ##stein queens colours impression guidance liu tactical ##rat marshal della arrow ##ings rested feared tender owns bitter advisor escort ##ides spare farms grants ##ene dragons encourage colleagues cameras ##und sucked pile spirits prague statements suspension landmark fence torture recreation bags permanently survivors pond spy predecessor bombing coup ##og protecting transformation glow ##lands ##book dug priests andrea feat barn jumping ##chen ##ologist ##con casualties stern auckland pipe serie revealing ba ##bel trevor mercy spectrum yang consist governing collaborated possessed epic comprises blew shane ##ack lopez honored magical sacrifice judgment perceived hammer mtv baronet tune das missionary sheets 350 neutral oral threatening attractive shade aims seminary ##master estates 1856 michel wounds refugees manufacturers ##nic mercury syndrome porter ##iya ##din hamburg identification upstairs purse widened pause cared breathed affiliate santiago prevented celtic fisher 125 recruited byzantine reconstruction farther ##mp diet sake au spite sensation ##ert blank separation 105 ##hon vladimir armies anime ##lie accommodate orbit cult sofia archive ##ify ##box founders sustained disorder honours northeastern mia crops violet threats blanket fires canton followers southwestern prototype voyage assignment altered moderate protocol pistol ##eo questioned brass lifting 1852 math authored ##ual doug dimensional dynamic ##san 1851 pronounced grateful quest uncomfortable boom presidency stevens relating politicians chen barrier quinn diana mosque tribal cheese palmer portions sometime chester treasure wu bend download millions reforms registration ##osa consequently monitoring ate preliminary brandon invented ps eaten exterior intervention ports documented log displays lecture sally favourite ##itz vermont lo invisible isle breed ##ator journalists relay speaks backward explore midfielder actively stefan procedures cannon blond kenneth centered servants chains libraries malcolm essex henri slavery ##hal facts fairy coached cassie cats washed cop ##fi announcement item 2000s vinyl activated marco frontier growled curriculum ##das loyal accomplished leslie ritual kenny ##00 vii napoleon hollow hybrid jungle stationed friedrich counted ##ulated platinum theatrical seated col rubber glen 1840 diversity healing extends id provisions administrator columbus ##oe tributary te assured org ##uous prestigious examined lectures grammy ronald associations bailey allan essays flute believing consultant proceedings travelling 1853 kit kerala yugoslavia buddy methodist ##ith burial centres batman ##nda discontinued bo dock stockholm lungs severely ##nk citing manga ##ugh steal mumbai iraqi robot celebrity bride broadcasts abolished pot joel overhead franz packed reconnaissance johann acknowledged introduce handled doctorate developments drinks alley palestine ##nis ##aki proceeded recover bradley grain patch afford infection nationalist legendary ##ath interchange virtually gen gravity exploration amber vital wishes powell doctrine elbow screenplay ##bird contribute indonesian pet creates ##com enzyme kylie discipline drops manila hunger ##ien layers suffer fever bits monica keyboard manages ##hood searched appeals ##bad testament grande reid ##war beliefs congo ##ification ##dia si requiring ##via casey 1849 regret streak rape depends syrian sprint pound tourists upcoming pub ##xi tense ##els practiced echo nationwide guild motorcycle liz ##zar chiefs desired elena bye precious absorbed relatives booth pianist ##mal citizenship exhausted wilhelm ##ceae ##hed noting quarterback urge hectares ##gue ace holly ##tal blonde davies parked sustainable stepping twentieth airfield galaxy nest chip ##nell tan shaft paulo requirement ##zy paradise tobacco trans renewed vietnamese ##cker ##ju suggesting catching holmes enjoying md trips colt holder butterfly nerve reformed cherry bowling trailer carriage goodbye appreciate toy joshua interactive enabled involve ##kan collar determination bunch facebook recall shorts superintendent episcopal frustration giovanni nineteenth laser privately array circulation ##ovic armstrong deals painful permit discrimination ##wi aires retiring cottage ni ##sta horizon ellen jamaica ripped fernando chapters playstation patron lecturer navigation behaviour genes georgian export solomon rivals swift seventeen rodriguez princeton independently sox 1847 arguing entity casting hank criteria oakland geographic milwaukee reflection expanding conquest dubbed ##tv halt brave brunswick doi arched curtis divorced predominantly somerset streams ugly zoo horrible curved buenos fierce dictionary vector theological unions handful stability chan punjab segments ##lly altar ignoring gesture monsters pastor ##stone thighs unexpected operators abruptly coin compiled associates improving migration pin ##ose compact collegiate reserved ##urs quarterfinals roster restore assembled hurry oval ##cies 1846 flags martha ##del victories sharply ##rated argues deadly neo drawings symbols performer ##iel griffin restrictions editing andrews java journals arabia compositions dee pierce removing hindi casino runway civilians minds nasa hotels ##zation refuge rent retain potentially conferences suburban conducting ##tto ##tions ##tle descended massacre ##cal ammunition terrain fork souls counts chelsea durham drives cab ##bank perth realizing palestinian finn simpson ##dal betty ##ule moreover particles cardinals tent evaluation extraordinary ##oid inscription ##works wednesday chloe maintains panels ashley trucks ##nation cluster sunlight strikes zhang ##wing dialect canon ##ap tucked ##ws collecting ##mas ##can ##sville maker quoted evan franco aria buying cleaning eva closet provision apollo clinic rat ##ez necessarily ac ##gle ##ising venues flipped cent spreading trustees checking authorized ##sco disappointed ##ado notion duration trumpet hesitated topped brussels rolls theoretical hint define aggressive repeat wash peaceful optical width allegedly mcdonald strict copyright ##illa investors mar jam witnesses sounding miranda michelle privacy hugo harmony ##pp valid lynn glared nina 102 headquartered diving boarding gibson ##ncy albanian marsh routine dealt enhanced er intelligent substance targeted enlisted discovers spinning observations pissed smoking rebecca capitol visa varied costume seemingly indies compensation surgeon thursday arsenal westminster suburbs rid anglican ##ridge knots foods alumni lighter fraser whoever portal scandal ##ray gavin advised instructor flooding terrorist ##ale teenage interim senses duck teen thesis abby eager overcome ##ile newport glenn rises shame ##cc prompted priority forgot bomber nicolas protective 360 cartoon katherine breeze lonely trusted henderson richardson relax banner candy palms remarkable ##rio legends cricketer essay ordained edmund rifles trigger ##uri ##away sail alert 1830 audiences penn sussex siblings pursued indianapolis resist rosa consequence succeed avoided 1845 ##ulation inland ##tie ##nna counsel profession chronicle hurried ##una eyebrow eventual bleeding innovative cure ##dom committees accounting con scope hardy heather tenor gut herald codes tore scales wagon ##oo luxury tin prefer fountain triangle bonds darling convoy dried traced beings troy accidentally slam findings smelled joey lawyers outcome steep bosnia configuration shifting toll brook performers lobby philosophical construct shrine aggregate boot cox phenomenon savage insane solely reynolds lifestyle ##ima nationally holdings consideration enable edgar mo mama ##tein fights relegation chances atomic hub conjunction awkward reactions currency finale kumar underwent steering elaborate gifts comprising melissa veins reasonable sunshine chi solve trails inhabited elimination ethics huh ana molly consent apartments layout marines ##ces hunters bulk ##oma hometown ##wall ##mont cracked reads neighbouring withdrawn admission wingspan damned anthology lancashire brands batting forgive cuban awful ##lyn 104 dimensions imagination ##ade dante ##ship tracking desperately goalkeeper ##yne groaned workshops confident burton gerald milton circus uncertain slope copenhagen sophia fog philosopher portraits accent cycling varying gripped larvae garrett specified scotia mature luther kurt rap ##kes aerial 750 ferdinand heated es transported ##shan safely nonetheless ##orn ##gal motors demanding ##sburg startled ##brook ally generate caps ghana stained demo mentions beds ap afterward diary ##bling utility ##iro richards 1837 conspiracy conscious shining footsteps observer cyprus urged loyalty developer probability olive upgraded gym miracle insects graves 1844 ourselves hydrogen amazon katie tickets poets ##pm planes ##pan prevention witnessed dense jin randy tang warehouse monroe bang archived elderly investigations alec granite mineral conflicts controlling aboriginal carlo ##zu mechanics stan stark rhode skirt est ##berry bombs respected ##horn imposed limestone deny nominee memphis grabbing disabled ##als amusement aa frankfurt corn referendum varies slowed disk firms unconscious incredible clue sue ##zhou twist ##cio joins idaho chad developers computing destroyer 103 mortal tucker kingston choices yu carson 1800 os whitney geneva pretend dimension staged plateau maya ##une freestyle ##bc rovers hiv ##ids tristan classroom prospect ##hus honestly diploma lied thermal auxiliary feast unlikely iata ##tel morocco pounding treasury lithuania considerably 1841 dish 1812 geological matching stumbled destroying marched brien advances cake nicole belle settling measuring directing ##mie tuesday bassist capabilities stunned fraud torpedo ##list ##phone anton wisdom surveillance ruined ##ulate lawsuit healthcare theorem halls trend aka horizontal dozens acquire lasting swim hawk gorgeous fees vicinity decrease adoption tactics ##ography pakistani ##ole draws ##hall willie burke heath algorithm integral powder elliott brigadier jackie tate varieties darker ##cho lately cigarette specimens adds ##ree ##ensis ##inger exploded finalist cia murders wilderness arguments nicknamed acceptance onwards manufacture robertson jets tampa enterprises blog loudly composers nominations 1838 ai malta inquiry automobile hosting viii rays tilted grief museums strategies furious euro equality cohen poison surrey wireless governed ridiculous moses ##esh ##room vanished ##ito barnes attract morrison istanbul ##iness absent rotation petition janet ##logical satisfaction custody deliberately observatory comedian surfaces pinyin novelist strictly canterbury oslo monks embrace ibm jealous photograph continent dorothy marina doc excess holden allegations explaining stack avoiding lance storyline majesty poorly spike dos bradford raven travis classics proven voltage pillow fists butt 1842 interpreted ##car 1839 gage telegraph lens promising expelled casual collector zones ##min silly nintendo ##kh ##bra downstairs chef suspicious afl flies vacant uganda pregnancy condemned lutheran estimates cheap decree saxon proximity stripped idiot deposits contrary presenter magnus glacier im offense edwin ##ori upright ##long bolt ##ois toss geographical ##izes environments delicate marking abstract xavier nails windsor plantation occurring equity saskatchewan fears drifted sequences vegetation revolt ##stic 1843 sooner fusion opposing nato skating 1836 secretly ruin lease ##oc edit ##nne flora anxiety ruby ##ological ##mia tel bout taxi emmy frost rainbow compounds foundations rainfall assassination nightmare dominican ##win achievements deserve orlando intact armenia ##nte calgary valentine 106 marion proclaimed theodore bells courtyard thigh gonzalez console troop minimal monte everyday ##ence ##if supporter terrorism buck openly presbyterian activists carpet ##iers rubbing uprising ##yi cute conceived legally ##cht millennium cello velocity ji rescued cardiff 1835 rex concentrate senators beard rendered glowing battalions scouts competitors sculptor catalogue arctic ion raja bicycle wow glancing lawn ##woman gentleman lighthouse publish predicted calculated ##val variants ##gne strain ##ui winston deceased ##nus touchdowns brady caleb sinking echoed crush hon blessed protagonist hayes endangered magnitude editors ##tine estimate responsibilities ##mel backup laying consumed sealed zurich lovers frustrated ##eau ahmed kicking mit treasurer 1832 biblical refuse terrified pump agrees genuine imprisonment refuses plymouth ##hen lou ##nen tara trembling antarctic ton learns ##tas crap crucial faction atop ##borough wrap lancaster odds hopkins erik lyon ##eon bros ##ode snap locality tips empress crowned cal acclaimed chuckled ##ory clara sends mild towel ##fl ##day ##а wishing assuming interviewed ##bal ##die interactions eden cups helena ##lf indie beck ##fire batteries filipino wizard parted ##lam traces ##born rows idol albany delegates ##ees ##sar discussions ##ex notre instructed belgrade highways suggestion lauren possess orientation alexandria abdul beats salary reunion ludwig alright wagner intimate pockets slovenia hugged brighton merchants cruel stole trek slopes repairs enrollment politically underlying promotional counting boeing ##bb isabella naming ##и keen bacteria listing separately belfast ussr 450 lithuanian anybody ribs sphere martinez cock embarrassed proposals fragments nationals ##fs ##wski premises fin 1500 alpine matched freely bounded jace sleeve ##af gaming pier populated evident ##like frances flooded ##dle frightened pour trainer framed visitor challenging pig wickets ##fold infected email ##pes arose ##aw reward ecuador oblast vale ch shuttle ##usa bach rankings forbidden cornwall accordance salem consumers bruno fantastic toes machinery resolved julius remembering propaganda iceland bombardment tide contacts wives ##rah concerto macdonald albania implement daisy tapped sudan helmet angela mistress ##lic crop sunk finest ##craft hostile ##ute ##tsu boxer fr paths adjusted habit ballot supervision soprano ##zen bullets wicked sunset regiments disappear lamp performs app ##gia ##oa rabbit digging incidents entries ##cion dishes ##oi introducing ##ati ##fied freshman slot jill tackles baroque backs ##iest lone sponsor destiny altogether convert ##aro consensus shapes demonstration basically feminist auction artifacts ##bing strongest twitter halifax 2019 allmusic mighty smallest precise alexandra viola ##los ##ille manuscripts ##illo dancers ari managers monuments blades barracks springfield maiden consolidated electron ##end berry airing wheat nobel inclusion blair payments geography bee cc eleanor react ##hurst afc manitoba ##yu su lineup fitness recreational investments airborne disappointment ##dis edmonton viewing ##row renovation ##cast infant bankruptcy roses aftermath pavilion ##yer carpenter withdrawal ladder ##hy discussing popped reliable agreements rochester ##abad curves bombers 220 rao reverend decreased choosing 107 stiff consulting naples crawford tracy ka ribbon cops ##lee crushed deciding unified teenager accepting flagship explorer poles sanchez inspection revived skilled induced exchanged flee locals tragedy swallow loading hanna demonstrate ##ela salvador flown contestants civilization ##ines wanna rhodes fletcher hector knocking considers ##ough nash mechanisms sensed mentally walt unclear ##eus renovated madame ##cks crews governmental ##hin undertaken monkey ##ben ##ato fatal armored copa caves governance grasp perception certification froze damp tugged wyoming ##rg ##ero newman ##lor nerves curiosity graph 115 ##ami withdraw tunnels dull meredith moss exhibits neighbors communicate accuracy explored raiders republicans secular kat superman penny criticised ##tch freed update conviction wade ham likewise delegation gotta doll promises technological myth nationality resolve convent ##mark sharon dig sip coordinator entrepreneur fold ##dine capability councillor synonym blown swan cursed 1815 jonas haired sofa canvas keeper rivalry ##hart rapper speedway swords postal maxwell estonia potter recurring ##nn ##ave errors ##oni cognitive 1834 ##² claws nadu roberto bce wrestler ellie ##ations infinite ink ##tia presumably finite staircase 108 noel patricia nacional ##cation chill eternal tu preventing prussia fossil limbs ##logist ernst frog perez rene ##ace pizza prussian ##ios ##vy molecules regulatory answering opinions sworn lengths supposedly hypothesis upward habitats seating ancestors drank yield hd synthesis researcher modest ##var mothers peered voluntary homeland ##the acclaim ##igan static valve luxembourg alto carroll fe receptor norton ambulance ##tian johnston catholics depicting jointly elephant gloria mentor badge ahmad distinguish remarked councils precisely allison advancing detection crowded ##10 cooperative ankle mercedes dagger surrendered pollution commit subway jeffrey lesson sculptures provider ##fication membrane timothy rectangular fiscal heating teammate basket particle anonymous deployment ##ple missiles courthouse proportion shoe sec ##ller complaints forbes blacks abandon remind sizes overwhelming autobiography natalie ##awa risks contestant countryside babies scorer invaded enclosed proceed hurling disorders ##cu reflecting continuously cruiser graduates freeway investigated ore deserved maid blocking phillip jorge shakes dove mann variables lacked burden accompanying que consistently organizing provisional complained endless ##rm tubes juice georges krishna mick labels thriller ##uch laps arcade sage snail ##table shannon fi laurence seoul vacation presenting hire churchill surprisingly prohibited savannah technically ##oli 170 ##lessly testimony suited speeds toys romans mlb flowering measurement talented kay settings charleston expectations shattered achieving triumph ceremonies portsmouth lanes mandatory loser stretching cologne realizes seventy cornell careers webb ##ulating americas budapest ava suspicion ##ison yo conrad ##hai sterling jessie rector ##az 1831 transform organize loans christine volcanic warrant slender summers subfamily newer danced dynamics rhine proceeds heinrich gastropod commands sings facilitate easter ra positioned responses expense fruits yanked imported 25th velvet vic primitive tribune baldwin neighbourhood donna rip hay pr ##uro 1814 espn welcomed ##aria qualifier glare highland timing ##cted shells eased geometry louder exciting slovakia ##sion ##iz ##lot savings prairie ##ques marching rafael tonnes ##lled curtain preceding shy heal greene worthy ##pot detachment bury sherman ##eck reinforced seeks bottles contracted duchess outfit walsh ##sc mickey ##ase geoffrey archer squeeze dawson eliminate invention ##enberg neal ##eth stance dealer coral maple retire polo simplified ##ht 1833 hid watts backwards jules ##oke genesis mt frames rebounds burma woodland moist santos whispers drained subspecies ##aa streaming ulster burnt correspondence maternal gerard denis stealing ##load genius duchy ##oria inaugurated momentum suits placement sovereign clause thames ##hara confederation reservation sketch yankees lets rotten charm hal verses ultra commercially dot salon citation adopt winnipeg mist allocated cairo ##boy jenkins interference objectives ##wind 1820 portfolio armoured sectors ##eh initiatives ##world integrity exercises robe tap ab gazed ##tones distracted rulers 111 favorable jerome tended cart factories ##eri diplomat valued gravel charitable ##try calvin exploring chang shepherd terrace pdf pupil ##ural reflects ups ##rch governors shelf depths ##nberg trailed crest tackle ##nian ##ats hatred ##kai clare makers ethiopia longtime detected embedded lacking slapped rely thomson anticipation iso morton successive agnes screenwriter straightened philippe playwright haunted licence iris intentions sutton 112 logical correctly ##weight branded licked tipped silva ricky narrator requests ##ents greeted supernatural cow ##wald lung refusing employer strait gaelic liner ##piece zoe sabha ##mba driveway harvest prints bates reluctantly threshold algebra ira wherever coupled 240 assumption picks ##air designers raids gentlemen ##ean roller blowing leipzig locks screw dressing strand ##lings scar dwarf depicts ##nu nods ##mine differ boris ##eur yuan flip ##gie mob invested questioning applying ##ture shout ##sel gameplay blamed illustrations bothered weakness rehabilitation ##of ##zes envelope rumors miners leicester subtle kerry ##ico ferguson ##fu premiership ne ##cat bengali prof catches remnants dana ##rily shouting presidents baltic ought ghosts dances sailors shirley fancy dominic ##bie madonna ##rick bark buttons gymnasium ashes liver toby oath providence doyle evangelical nixon cement carnegie embarked hatch surroundings guarantee needing pirate essence ##bee filter crane hammond projected immune percy twelfth ##ult regent doctoral damon mikhail ##ichi lu critically elect realised abortion acute screening mythology steadily ##fc frown nottingham kirk wa minneapolis ##rra module algeria mc nautical encounters surprising statues availability shirts pie alma brows munster mack soup crater tornado sanskrit cedar explosive bordered dixon planets stamp exam happily ##bble carriers kidnapped ##vis accommodation emigrated ##met knockout correspondent violation profits peaks lang specimen agenda ancestry pottery spelling equations obtaining ki linking 1825 debris asylum ##20 buddhism teddy ##ants gazette ##nger ##sse dental eligibility utc fathers averaged zimbabwe francesco coloured hissed translator lynch mandate humanities mackenzie uniforms lin ##iana ##gio asset mhz fitting samantha genera wei rim beloved shark riot entities expressions indo carmen slipping owing abbot neighbor sidney ##av rats recommendations encouraging squadrons anticipated commanders conquered ##oto donations diagnosed ##mond divide ##iva guessed decoration vernon auditorium revelation conversations ##kers ##power herzegovina dash alike protested lateral herman accredited mg ##gent freeman mel fiji crow crimson ##rine livestock ##pped humanitarian bored oz whip ##lene ##ali legitimate alter grinning spelled anxious oriental wesley ##nin ##hole carnival controller detect ##ssa bowed educator kosovo macedonia ##sin occupy mastering stephanie janeiro para unaware nurses noon 135 cam hopefully ranger combine sociology polar rica ##eer neill ##sman holocaust ##ip doubled lust 1828 109 decent cooling unveiled ##card 1829 nsw homer chapman meyer ##gin dive mae reagan expertise ##gled darwin brooke sided prosecution investigating comprised petroleum genres reluctant differently trilogy johns vegetables corpse highlighted lounge pension unsuccessfully elegant aided ivory beatles amelia cain dubai sunny immigrant babe click ##nder underwater pepper combining mumbled atlas horns accessed ballad physicians homeless gestured rpm freak louisville corporations patriots prizes rational warn modes decorative overnight din troubled phantom ##ort monarch sheer ##dorf generals guidelines organs addresses ##zon enhance curling parishes cord ##kie linux caesar deutsche bavaria ##bia coleman cyclone ##eria bacon petty ##yama ##old hampton diagnosis 1824 throws complexity rita disputed ##₃ pablo ##sch marketed trafficking ##ulus examine plague formats ##oh vault faithful ##bourne webster ##ox highlights ##ient ##ann phones vacuum sandwich modeling ##gated bolivia clergy qualities isabel ##nas ##ars wears screams reunited annoyed bra ##ancy ##rate differential transmitter tattoo container poker ##och excessive resides cowboys ##tum augustus trash providers statute retreated balcony reversed void storey preceded masses leap laughs neighborhoods wards schemes falcon santo battlefield pad ronnie thread lesbian venus ##dian beg sandstone daylight punched gwen analog stroked wwe acceptable measurements dec toxic ##kel adequate surgical economist parameters varsity ##sberg quantity ella ##chy ##rton countess generating precision diamonds expressway ga ##ı 1821 uruguay talents galleries expenses scanned colleague outlets ryder lucien ##ila paramount ##bon syracuse dim fangs gown sweep ##sie toyota missionaries websites ##nsis sentences adviser val trademark spells ##plane patience starter slim ##borg toe incredibly shoots elliot nobility ##wyn cowboy endorsed gardner tendency persuaded organisms emissions kazakhstan amused boring chips themed ##hand llc constantinople chasing systematic guatemala borrowed erin carey ##hard highlands struggles 1810 ##ifying ##ced wong exceptions develops enlarged kindergarten castro ##ern ##rina leigh zombie juvenile ##most consul ##nar sailor hyde clarence intensive pinned nasty useless jung clayton stuffed exceptional ix apostolic 230 transactions ##dge exempt swinging cove religions ##ash shields dairy bypass 190 pursuing bug joyce bombay chassis southampton chat interact redesignated ##pen nascar pray salmon rigid regained malaysian grim publicity constituted capturing toilet delegate purely tray drift loosely striker weakened trinidad mitch itv defines transmitted ming scarlet nodding fitzgerald fu narrowly sp tooth standings virtue ##₁ ##wara ##cting chateau gloves lid ##nel hurting conservatory ##pel sinclair reopened sympathy nigerian strode advocated optional chronic discharge ##rc suck compatible laurel stella shi fails wage dodge 128 informal sorts levi buddha villagers ##aka chronicles heavier summoned gateway 3000 eleventh jewelry translations accordingly seas ##ency fiber pyramid cubic dragging ##ista caring ##ops android contacted lunar ##dt kai lisbon patted 1826 sacramento theft madagascar subtropical disputes ta holidays piper willow mare cane itunes newfoundland benny companions dong raj observe roar charming plaque tibetan fossils enacted manning bubble tina tanzania ##eda ##hir funk swamp deputies cloak ufc scenario par scratch metals anthem guru engaging specially ##boat dialects nineteen cecil duet disability messenger unofficial ##lies defunct eds moonlight drainage surname puzzle honda switching conservatives mammals knox broadcaster sidewalk cope ##ried benson princes peterson ##sal bedford sharks eli wreck alberto gasp archaeology lgbt teaches securities madness compromise waving coordination davidson visions leased possibilities eighty jun fernandez enthusiasm assassin sponsorship reviewer kingdoms estonian laboratories ##fy ##nal applies verb celebrations ##zzo rowing lightweight sadness submit mvp balanced dude ##vas explicitly metric magnificent mound brett mohammad mistakes irregular ##hing ##ass sanders betrayed shipped surge ##enburg reporters termed georg pity verbal bulls abbreviated enabling appealed ##are ##atic sicily sting heel sweetheart bart spacecraft brutal monarchy ##tter aberdeen cameo diane ##ub survivor clyde ##aries complaint ##makers clarinet delicious chilean karnataka coordinates 1818 panties ##rst pretending ar dramatically kiev bella tends distances 113 catalog launching instances telecommunications portable lindsay vatican ##eim angles aliens marker stint screens bolton ##rne judy wool benedict plasma europa spark imaging filmmaker swiftly ##een contributor ##nor opted stamps apologize financing butter gideon sophisticated alignment avery chemicals yearly speculation prominence professionally ##ils immortal institutional inception wrists identifying tribunal derives gains ##wo papal preference linguistic vince operative brewery ##ont unemployment boyd ##ured ##outs albeit prophet 1813 bi ##rr ##face ##rad quarterly asteroid cleaned radius temper ##llen telugu jerk viscount menu ##ote glimpse ##aya yacht hawaiian baden ##rl laptop readily ##gu monetary offshore scots watches ##yang ##arian upgrade needle xbox lea encyclopedia flank fingertips ##pus delight teachings confirm roth beaches midway winters ##iah teasing daytime beverly gambling bonnie ##backs regulated clement hermann tricks knot ##shing ##uring ##vre detached ecological owed specialty byron inventor bats stays screened unesco midland trim affection ##ander ##rry jess thoroughly feedback ##uma chennai strained heartbeat wrapping overtime pleaded ##sworth mon leisure oclc ##tate ##ele feathers angelo thirds nuts surveys clever gill commentator ##dos darren rides gibraltar ##nc ##mu dissolution dedication shin meals saddle elvis reds chaired taller appreciation functioning niece favored advocacy robbie criminals suffolk yugoslav passport constable congressman hastings vera ##rov consecrated sparks ecclesiastical confined ##ovich muller floyd nora 1822 paved 1827 cumberland ned saga spiral ##flow appreciated yi collaborative treating similarities feminine finishes ##ib jade import ##nse ##hot champagne mice securing celebrities helsinki attributes ##gos cousins phases ache lucia gandhi submission vicar spear shine tasmania biting detention constitute tighter seasonal ##gus terrestrial matthews ##oka effectiveness parody philharmonic ##onic 1816 strangers encoded consortium guaranteed regards shifts tortured collision supervisor inform broader insight theaters armour emeritus blink incorporates mapping ##50 ##ein handball flexible ##nta substantially generous thief ##own carr loses 1793 prose ucla romeo generic metallic realization damages mk commissioners zach default ##ther helicopters lengthy stems spa partnered spectators rogue indication penalties teresa 1801 sen ##tric dalton ##wich irving photographic ##vey dell deaf peters excluded unsure ##vable patterson crawled ##zio resided whipped latvia slower ecole pipes employers maharashtra comparable va textile pageant ##gel alphabet binary irrigation chartered choked antoine offs waking supplement ##wen quantities demolition regain locate urdu folks alt 114 ##mc scary andreas whites ##ava classrooms mw aesthetic publishes valleys guides cubs johannes bryant conventions affecting ##itt drain awesome isolation prosecutor ambitious apology captive downs atmospheric lorenzo aisle beef foul ##onia kidding composite disturbed illusion natives ##ffer emi rockets riverside wartime painters adolf melted ##ail uncertainty simulation hawks progressed meantime builder spray breach unhappy regina russians ##urg determining ##tation tram 1806 ##quin aging ##12 1823 garion rented mister diaz terminated clip 1817 depend nervously disco owe defenders shiva notorious disbelief shiny worcester ##gation ##yr trailing undertook islander belarus limitations watershed fuller overlooking utilized raphael 1819 synthetic breakdown klein ##nate moaned memoir lamb practicing ##erly cellular arrows exotic ##graphy witches 117 charted rey hut hierarchy subdivision freshwater giuseppe aloud reyes qatar marty sideways utterly sexually jude prayers mccarthy softball blend damien ##gging ##metric wholly erupted lebanese negro revenues tasted comparative teamed transaction labeled maori sovereignty parkway trauma gran malay 121 advancement descendant 2020 buzz salvation inventory symbolic ##making antarctica mps ##gas ##bro mohammed myanmar holt submarines tones ##lman locker patriarch bangkok emerson remarks predators kin afghan confession norwich rental emerge advantages ##zel rca ##hold shortened storms aidan ##matic autonomy compliance ##quet dudley atp ##osis 1803 motto documentation summary professors spectacular christina archdiocese flashing innocence remake ##dell psychic reef scare employ rs sticks meg gus leans ##ude accompany bergen tomas ##iko doom wages pools ##nch ##bes breasts scholarly alison outline brittany breakthrough willis realistic ##cut ##boro competitor ##stan pike picnic icon designing commercials washing villain skiing micro costumes auburn halted executives ##hat logistics cycles vowel applicable barrett exclaimed eurovision eternity ramon ##umi ##lls modifications sweeping disgust ##uck torch aviv ensuring rude dusty sonic donovan outskirts cu pathway ##band ##gun ##lines disciplines acids cadet paired ##40 sketches ##sive marriages ##⁺ folding peers slovak implies admired ##beck 1880s leopold instinct attained weston megan horace ##ination dorsal ingredients evolutionary ##its complications deity lethal brushing levy deserted institutes posthumously delivering telescope coronation motivated rapids luc flicked pays volcano tanner weighed ##nica crowds frankie gifted addressing granddaughter winding ##rna constantine gomez ##front landscapes rudolf anthropology slate werewolf ##lio astronomy circa rouge dreaming sack knelt drowned naomi prolific tracked freezing herb ##dium agony randall twisting wendy deposit touches vein wheeler ##bbled ##bor batted retaining tire presently compare specification daemon nigel ##grave merry recommendation czechoslovakia sandra ng roma ##sts lambert inheritance sheikh winchester cries examining ##yle comeback cuisine nave ##iv ko retrieve tomatoes barker polished defining irene lantern personalities begging tract swore 1809 175 ##gic omaha brotherhood ##rley haiti ##ots exeter ##ete ##zia steele dumb pearson 210 surveyed elisabeth trends ##ef fritz ##rf premium bugs fraction calmly viking ##birds tug inserted unusually ##ield confronted distress crashing brent turks resign ##olo cambodia gabe sauce ##kal evelyn 116 extant clusters quarry teenagers luna ##lers ##ister affiliation drill ##ashi panthers scenic libya anita strengthen inscriptions ##cated lace sued judith riots ##uted mint ##eta preparations midst dub challenger ##vich mock cf displaced wicket breaths enables schmidt analyst ##lum ag highlight automotive axe josef newark sufficiently resembles 50th ##pal flushed mum traits ##ante commodore incomplete warming titular ceremonial ethical 118 celebrating eighteenth cao lima medalist mobility strips snakes ##city miniature zagreb barton escapes umbrella automated doubted differs cooled georgetown dresden cooked fade wyatt rna jacobs carlton abundant stereo boost madras inning ##hia spur ip malayalam begged osaka groan escaping charging dose vista ##aj bud papa communists advocates edged tri ##cent resemble peaking necklace fried montenegro saxony goose glances stuttgart curator recruit grocery sympathetic ##tting ##fort 127 lotus randolph ancestor ##rand succeeding jupiter 1798 macedonian ##heads hiking 1808 handing fischer ##itive garbage node ##pies prone singular papua inclined attractions italia pouring motioned grandma garnered jacksonville corp ego ringing aluminum ##hausen ordering ##foot drawer traders synagogue ##play ##kawa resistant wandering fragile fiona teased var hardcore soaked jubilee decisive exposition mercer poster valencia hale kuwait 1811 ##ises ##wr ##eed tavern gamma 122 johan ##uer airways amino gil ##ury vocational domains torres ##sp generator folklore outcomes ##keeper canberra shooter fl beams confrontation ##lling ##gram feb aligned forestry pipeline jax motorway conception decay ##tos coffin ##cott stalin 1805 escorted minded ##nam sitcom purchasing twilight veronica additions passive tensions straw 123 frequencies 1804 refugee cultivation ##iate christie clary bulletin crept disposal ##rich ##zong processor crescent ##rol bmw emphasized whale nazis aurora ##eng dwelling hauled sponsors toledo mega ideology theatres tessa cerambycidae saves turtle cone suspects kara rusty yelling greeks mozart shades cocked participant ##tro shire spit freeze necessity ##cos inmates nielsen councillors loaned uncommon omar peasants botanical offspring daniels formations jokes 1794 pioneers sigma licensing ##sus wheelchair polite 1807 liquor pratt trustee ##uta forewings balloon ##zz kilometre camping explicit casually shawn foolish teammates nm hassan carrie judged satisfy vanessa knives selective cnn flowed ##lice eclipse stressed eliza mathematician cease cultivated ##roy commissions browns ##ania destroyers sheridan meadow ##rius minerals ##cial downstream clash gram memoirs ventures baha seymour archie midlands edith fare flynn invite canceled tiles stabbed boulder incorporate amended camden facial mollusk unreleased descriptions yoga grabs 550 raises ramp shiver ##rose coined pioneering tunes qing warwick tops 119 melanie giles ##rous wandered ##inal annexed nov 30th unnamed ##ished organizational airplane normandy stoke whistle blessing violations chased holders shotgun ##ctic outlet reactor ##vik tires tearing shores fortified mascot constituencies nc columnist productive tibet ##rta lineage hooked oct tapes judging cody ##gger hansen kashmir triggered ##eva solved cliffs ##tree resisted anatomy protesters transparent implied ##iga injection mattress excluding ##mbo defenses helpless devotion ##elli growl liberals weber phenomena atoms plug ##iff mortality apprentice howe convincing aaa swimmer barber leone promptly sodium def nowadays arise ##oning gloucester corrected dignity norm erie ##ders elders evacuated sylvia compression ##yar hartford pose backpack reasoning accepts 24th wipe millimetres marcel ##oda dodgers albion 1790 overwhelmed aerospace oaks 1795 showcase acknowledge recovering nolan ashe hurts geology fashioned disappearance farewell swollen shrug marquis wimbledon 124 rue 1792 commemorate reduces experiencing inevitable calcutta intel ##court murderer sticking fisheries imagery bloom 280 brake ##inus gustav hesitation memorable po viral beans accidents tunisia antenna spilled consort treatments aye perimeter ##gard donation hostage migrated banker addiction apex lil trout ##ously conscience ##nova rams sands genome passionate troubles ##lets ##set amid ##ibility ##ret higgins exceed vikings ##vie payne ##zan muscular ##ste defendant sucking ##wal ibrahim fuselage claudia vfl europeans snails interval ##garh preparatory statewide tasked lacrosse viktor ##lation angola ##hra flint implications employs teens patrons stall weekends barriers scrambled nucleus tehran jenna parsons lifelong robots displacement 5000 ##bles precipitation ##gt knuckles clutched 1802 marrying ecology marx accusations declare scars kolkata mat meadows bermuda skeleton finalists vintage crawl coordinate affects subjected orchestral mistaken ##tc mirrors dipped relied 260 arches candle ##nick incorporating wildly fond basilica owl fringe rituals whispering stirred feud tertiary slick goat honorable whereby skip ricardo stripes parachute adjoining submerged synthesizer ##gren intend positively ninety phi beaver partition fellows alexis prohibition carlisle bizarre fraternity ##bre doubts icy cbc aquatic sneak sonny combines airports crude supervised spatial merge alfonso ##bic corrupt scan undergo ##ams disabilities colombian comparing dolphins perkins ##lish reprinted unanimous bounced hairs underworld midwest semester bucket paperback miniseries coventry demise ##leigh demonstrations sensor rotating yan ##hler arrange soils ##idge hyderabad labs ##dr brakes grandchildren ##nde negotiated rover ferrari continuation directorate augusta stevenson counterpart gore ##rda nursery rican ave collectively broadly pastoral repertoire asserted discovering nordic styled fiba cunningham harley middlesex survives tumor tempo zack aiming lok urgent ##rade ##nto devils ##ement contractor turin ##wl ##ool bliss repaired simmons moan astronomical cr negotiate lyric 1890s lara bred clad angus pbs ##ience engineered posed ##lk hernandez possessions elbows psychiatric strokes confluence electorate lifts campuses lava alps ##ep ##ution ##date physicist woody ##page ##ographic ##itis juliet reformation sparhawk 320 complement suppressed jewel ##½ floated ##kas continuity sadly ##ische inability melting scanning paula flour judaism safer vague ##lm solving curb ##stown financially gable bees expired miserable cassidy dominion 1789 cupped 145 robbery facto amos warden resume tallest marvin ing pounded usd declaring gasoline ##aux darkened 270 650 sophomore ##mere erection gossip televised risen dial ##eu pillars ##link passages profound ##tina arabian ashton silicon nail ##ead ##lated ##wer ##hardt fleming firearms ducked circuits blows waterloo titans ##lina atom fireplace cheshire financed activation algorithms ##zzi constituent catcher cherokee partnerships sexuality platoon tragic vivian guarded whiskey meditation poetic ##late ##nga ##ake porto listeners dominance kendra mona chandler factions 22nd salisbury attitudes derivative ##ido ##haus intake paced javier illustrator barrels bias cockpit burnett dreamed ensuing ##anda receptors someday hawkins mattered ##lal slavic 1799 jesuit cameroon wasted tai wax lowering victorious freaking outright hancock librarian sensing bald calcium myers tablet announcing barack shipyard pharmaceutical ##uan greenwich flush medley patches wolfgang pt speeches acquiring exams nikolai ##gg hayden kannada ##type reilly ##pt waitress abdomen devastated capped pseudonym pharmacy fulfill paraguay 1796 clicked ##trom archipelago syndicated ##hman lumber orgasm rejection clifford lorraine advent mafia rodney brock ##ght ##used ##elia cassette chamberlain despair mongolia sensors developmental upstream ##eg ##alis spanning 165 trombone basque seeded interred renewable rhys leapt revision molecule ##ages chord vicious nord shivered 23rd arlington debts corpus sunrise bays blackburn centimetres ##uded shuddered gm strangely gripping cartoons isabelle orbital ##ppa seals proving ##lton refusal strengthened bust assisting baghdad batsman portrayal mara pushes spears og ##cock reside nathaniel brennan 1776 confirmation caucus ##worthy markings yemen nobles ku lazy viewer catalan encompasses sawyer ##fall sparked substances patents braves arranger evacuation sergio persuade dover tolerance penguin cum jockey insufficient townships occupying declining plural processed projection puppet flanders introduces liability ##yon gymnastics antwerp taipei hobart candles jeep wes observers 126 chaplain bundle glorious ##hine hazel flung sol excavations dumped stares sh bangalore triangular icelandic intervals expressing turbine ##vers songwriting crafts ##igo jasmine ditch rite ##ways entertaining comply sorrow wrestlers basel emirates marian rivera helpful ##some caution downward networking ##atory ##tered darted genocide emergence replies specializing spokesman convenient unlocked fading augustine concentrations resemblance elijah investigator andhra ##uda promotes bean ##rrell fleeing wan simone announcer ##ame ##bby lydia weaver 132 residency modification ##fest stretches ##ast alternatively nat lowe lacks ##ented pam tile concealed inferior abdullah residences tissues vengeance ##ided moisture peculiar groove zip bologna jennings ninja oversaw zombies pumping batch livingston emerald installations 1797 peel nitrogen rama ##fying ##star schooling strands responding werner ##ost lime casa accurately targeting ##rod underway ##uru hemisphere lester ##yard occupies 2d griffith angrily reorganized ##owing courtney deposited ##dd ##30 estadio ##ifies dunn exiled ##ying checks ##combe ##о ##fly successes unexpectedly blu assessed ##flower ##ه observing sacked spiders kn ##tail mu nodes prosperity audrey divisional 155 broncos tangled adjust feeds erosion paolo surf directory snatched humid admiralty screwed gt reddish ##nese modules trench lamps bind leah bucks competes ##nz ##form transcription ##uc isles violently clutching pga cyclist inflation flats ragged unnecessary ##hian stubborn coordinated harriet baba disqualified 330 insect wolfe ##fies reinforcements rocked duel winked embraced bricks ##raj hiatus defeats pending brightly jealousy ##xton ##hm ##uki lena gdp colorful ##dley stein kidney ##shu underwear wanderers ##haw ##icus guardians m³ roared habits ##wise permits gp uranium punished disguise bundesliga elise dundee erotic partisan pi collectors float individually rendering behavioral bucharest ser hare valerie corporal nutrition proportional ##isa immense ##kis pavement ##zie ##eld sutherland crouched 1775 ##lp suzuki trades endurance operas crosby prayed priory rory socially ##urn gujarat ##pu walton cube pasha privilege lennon floods thorne waterfall nipple scouting approve ##lov minorities voter dwight extensions assure ballroom slap dripping privileges rejoined confessed demonstrating patriotic yell investor ##uth pagan slumped squares ##cle ##kins confront bert embarrassment ##aid aston urging sweater starr yuri brains williamson commuter mortar structured selfish exports ##jon cds ##him unfinished ##rre mortgage destinations ##nagar canoe solitary buchanan delays magistrate fk ##pling motivation ##lier ##vier recruiting assess ##mouth malik antique 1791 pius rahman reich tub zhou smashed airs galway xii conditioning honduras discharged dexter ##pf lionel 129 debates lemon tiffany volunteered dom dioxide procession devi sic tremendous advertisements colts transferring verdict hanover decommissioned utter relate pac racism ##top beacon limp similarity terra occurrence ant ##how becky capt updates armament richie pal ##graph halloween mayo ##ssen ##bone cara serena fcc dolls obligations ##dling violated lafayette jakarta exploitation ##ime infamous iconic ##lah ##park kitty moody reginald dread spill crystals olivier modeled bluff equilibrium separating notices ordnance extinction onset cosmic attachment sammy expose privy anchored ##bil abbott admits bending baritone emmanuel policeman vaughan winged climax dresses denny polytechnic mohamed burmese authentic nikki genetics grandparents homestead gaza postponed metacritic una ##sby ##bat unstable dissertation ##rial ##cian curls obscure uncovered bronx praying disappearing ##hoe prehistoric coke turret mutations nonprofit pits monaco ##ي ##usion prominently dispatched podium ##mir uci ##uation 133 fortifications birthplace kendall ##lby ##oll preacher rack goodman ##rman persistent ##ott countless jaime recorder lexington persecution jumps renewal wagons ##11 crushing ##holder decorations ##lake abundance wrath laundry £1 garde ##rp jeanne beetles peasant ##sl splitting caste sergei ##rer ##ema scripts ##ively rub satellites ##vor inscribed verlag scrapped gale packages chick potato slogan kathleen arabs ##culture counterparts reminiscent choral ##tead rand retains bushes dane accomplish courtesy closes ##oth slaughter hague krakow lawson tailed elias ginger ##ttes canopy betrayal rebuilding turf ##hof frowning allegiance brigades kicks rebuild polls alias nationalism td rowan audition bowie fortunately recognizes harp dillon horrified ##oro renault ##tics ropes ##α presumed rewarded infrared wiping accelerated illustration ##rid presses practitioners badminton ##iard detained ##tera recognizing relates misery ##sies ##tly reproduction piercing potatoes thornton esther manners hbo ##aan ours bullshit ernie perennial sensitivity illuminated rupert ##jin ##iss ##ear rfc nassau ##dock staggered socialism ##haven appointments nonsense prestige sharma haul ##tical solidarity gps ##ook ##rata igor pedestrian ##uit baxter tenants wires medication unlimited guiding impacts diabetes ##rama sasha pas clive extraction 131 continually constraints ##bilities sonata hunted sixteenth chu planting quote mayer pretended abs spat ##hua ceramic ##cci curtains pigs pitching ##dad latvian sore dayton ##sted ##qi patrols slice playground ##nted shone stool apparatus inadequate mates treason ##ija desires ##liga ##croft somalia laurent mir leonardo oracle grape obliged chevrolet thirteenth stunning enthusiastic ##ede accounted concludes currents basil ##kovic drought ##rica mai ##aire shove posting ##shed pilgrimage humorous packing fry pencil wines smells 144 marilyn aching newest clung bon neighbours sanctioned ##pie mug ##stock drowning ##mma hydraulic ##vil hiring reminder lilly investigators ##ncies sour ##eous compulsory packet ##rion ##graphic ##elle cannes ##inate depressed ##rit heroic importantly theresa ##tled conway saturn marginal rae ##xia corresponds royce pact jasper explosives packaging aluminium ##ttered denotes rhythmic spans assignments hereditary outlined originating sundays lad reissued greeting beatrice ##dic pillar marcos plots handbook alcoholic judiciary avant slides extract masculine blur ##eum ##force homage trembled owens hymn trey omega signaling socks accumulated reacted attic theo lining angie distraction primera talbot ##key 1200 ti creativity billed ##hey deacon eduardo identifies proposition dizzy gunner hogan ##yam ##pping ##hol ja ##chan jensen reconstructed ##berger clearance darius ##nier abe harlem plea dei circled emotionally notation fascist neville exceeded upwards viable ducks ##fo workforce racer limiting shri ##lson possesses 1600 kerr moths devastating laden disturbing locking ##cture gal fearing accreditation flavor aide 1870s mountainous ##baum melt ##ures motel texture servers soda ##mb herd ##nium erect puzzled hum peggy examinations gould testified geoff ren devised sacks ##law denial posters grunted cesar tutor ec gerry offerings byrne falcons combinations ct incoming pardon rocking 26th avengers flared mankind seller uttar loch nadia stroking exposing ##hd fertile ancestral instituted ##has noises prophecy taxation eminent vivid pol ##bol dart indirect multimedia notebook upside displaying adrenaline referenced geometric ##iving progression ##ddy blunt announce ##far implementing ##lav aggression liaison cooler cares headache plantations gorge dots impulse thickness ashamed averaging kathy obligation precursor 137 fowler symmetry thee 225 hears ##rai undergoing ads butcher bowler ##lip cigarettes subscription goodness ##ically browne ##hos ##tech kyoto donor ##erty damaging friction drifting expeditions hardened prostitution 152 fauna blankets claw tossing snarled butterflies recruits investigative coated healed 138 communal hai xiii academics boone psychologist restless lahore stephens mba brendan foreigners printer ##pc ached explode 27th deed scratched dared ##pole cardiac 1780 okinawa proto commando compelled oddly electrons ##base replica thanksgiving ##rist sheila deliberate stafford tidal representations hercules ou ##path ##iated kidnapping lenses ##tling deficit samoa mouths consuming computational maze granting smirk razor fixture ideals inviting aiden nominal ##vs issuing julio pitt ramsey docks ##oss exhaust ##owed bavarian draped anterior mating ethiopian explores noticing ##nton discarded convenience hoffman endowment beasts cartridge mormon paternal probe sleeves interfere lump deadline ##rail jenks bulldogs scrap alternating justified reproductive nam seize descending secretariat kirby coupe grouped smash panther sedan tapping ##18 lola cheer germanic unfortunate ##eter unrelated ##fan subordinate ##sdale suzanne advertisement ##ility horsepower ##lda cautiously discourse luigi ##mans ##fields noun prevalent mao schneider everett surround governorate kira ##avia westward ##take misty rails sustainability 134 unused ##rating packs toast unwilling regulate thy suffrage nile awe assam definitions travelers affordable ##rb conferred sells undefeated beneficial torso basal repeating remixes ##pass bahrain cables fang ##itated excavated numbering statutory ##rey deluxe ##lian forested ramirez derbyshire zeus slamming transfers astronomer banana lottery berg histories bamboo ##uchi resurrection posterior bowls vaguely ##thi thou preserving tensed offence ##inas meyrick callum ridden watt langdon tying lowland snorted daring truman ##hale ##girl aura overly filing weighing goa infections philanthropist saunders eponymous ##owski latitude perspectives reviewing mets commandant radial ##kha flashlight reliability koch vowels amazed ada elaine supper ##rth ##encies predator debated soviets cola ##boards ##nah compartment crooked arbitrary fourteenth ##ctive havana majors steelers clips profitable ambush exited packers ##tile nude cracks fungi ##е limb trousers josie shelby tens frederic ##ος definite smoothly constellation insult baton discs lingering ##nco conclusions lent staging becker grandpa shaky ##tron einstein obstacles sk adverse elle economically ##moto mccartney thor dismissal motions readings nostrils treatise ##pace squeezing evidently prolonged 1783 venezuelan je marguerite beirut takeover shareholders ##vent denise digit airplay norse ##bbling imaginary pills hubert blaze vacated eliminating ##ello vine mansfield ##tty retrospective barrow borne clutch bail forensic weaving ##nett ##witz desktop citadel promotions worrying dorset ieee subdivided ##iating manned expeditionary pickup synod chuckle 185 barney ##rz ##ffin functionality karachi litigation meanings uc lick turbo anders ##ffed execute curl oppose ankles typhoon ##د ##ache ##asia linguistics compassion pressures grazing perfection ##iting immunity monopoly muddy backgrounds 136 namibia francesca monitors attracting stunt tuition ##ии vegetable ##mates ##quent mgm jen complexes forts ##ond cellar bites seventeenth royals flemish failures mast charities ##cular peruvian capitals macmillan ipswich outward frigate postgraduate folds employing ##ouse concurrently fiery ##tai contingent nightmares monumental nicaragua ##kowski lizard mal fielding gig reject ##pad harding ##ipe coastline ##cin ##nos beethoven humphrey innovations ##tam ##nge norris doris solicitor huang obey 141 ##lc niagara ##tton shelves aug bourbon curry nightclub specifications hilton ##ndo centennial dispersed worm neglected briggs sm font kuala uneasy plc ##nstein ##bound ##aking ##burgh awaiting pronunciation ##bbed ##quest eh optimal zhu raped greens presided brenda worries ##life venetian marxist turnout ##lius refined braced sins grasped sunderland nickel speculated lowell cyrillic communism fundraising resembling colonists mutant freddie usc ##mos gratitude ##run mural ##lous chemist wi reminds 28th steals tess pietro ##ingen promoter ri microphone honoured rai sant ##qui feather ##nson burlington kurdish terrorists deborah sickness ##wed ##eet hazard irritated desperation veil clarity ##rik jewels xv ##gged ##ows ##cup berkshire unfair mysteries orchid winced exhaustion renovations stranded obe infinity ##nies adapt redevelopment thanked registry olga domingo noir tudor ole ##atus commenting behaviors ##ais crisp pauline probable stirling wigan ##bian paralympics panting surpassed ##rew luca barred pony famed ##sters cassandra waiter carolyn exported ##orted andres destructive deeds jonah castles vacancy suv ##glass 1788 orchard yep famine belarusian sprang ##forth skinny ##mis administrators rotterdam zambia zhao boiler discoveries ##ride ##physics lucius disappointing outreach spoon ##frame qualifications unanimously enjoys regency ##iidae stade realism veterinary rodgers dump alain chestnut castile censorship rumble gibbs ##itor communion reggae inactivated logs loads ##houses homosexual ##iano ale informs ##cas phrases plaster linebacker ambrose kaiser fascinated 850 limerick recruitment forge mastered ##nding leinster rooted threaten ##strom borneo ##hes suggestions scholarships propeller documentaries patronage coats constructing invest neurons comet entirety shouts identities annoying unchanged wary ##antly ##ogy neat oversight ##kos phillies replay constance ##kka incarnation humble skies minus ##acy smithsonian ##chel guerrilla jar cadets ##plate surplus audit ##aru cracking joanna louisa pacing ##lights intentionally ##iri diner nwa imprint australians tong unprecedented bunker naive specialists ark nichols railing leaked pedal ##uka shrub longing roofs v8 captains neural tuned ##ntal ##jet emission medina frantic codex definitive sid abolition intensified stocks enrique sustain genoa oxide ##written clues cha ##gers tributaries fragment venom ##rity ##ente ##sca muffled vain sire laos ##ingly ##hana hastily snapping surfaced sentiment motive ##oft contests approximate mesa luckily dinosaur exchanges propelled accord bourne relieve tow masks offended ##ues cynthia ##mmer rains bartender zinc reviewers lois ##sai legged arrogant rafe rosie comprise handicap blockade inlet lagoon copied drilling shelley petals ##inian mandarin obsolete ##inated onward arguably productivity cindy praising seldom busch discusses raleigh shortage ranged stanton encouragement firstly conceded overs temporal ##uke cbe ##bos woo certainty pumps ##pton stalked ##uli lizzie periodic thieves weaker ##night gases shoving chooses wc ##chemical prompting weights ##kill robust flanked sticky hu tuberculosis ##eb ##eal christchurch resembled wallet reese inappropriate pictured distract fixing fiddle giggled burger heirs hairy mechanic torque apache obsessed chiefly cheng logging ##tag extracted meaningful numb ##vsky gloucestershire reminding ##bay unite ##lit breeds diminished clown glove 1860s ##ن ##ug archibald focal freelance sliced depiction ##yk organism switches sights stray crawling ##ril lever leningrad interpretations loops anytime reel alicia delighted ##ech inhaled xiv suitcase bernie vega licenses northampton exclusion induction monasteries racecourse homosexuality ##right ##sfield ##rky dimitri michele alternatives ions commentators genuinely objected pork hospitality fencing stephan warships peripheral wit drunken wrinkled quentin spends departing chung numerical spokesperson ##zone johannesburg caliber killers ##udge assumes neatly demographic abigail bloc ##vel mounting ##lain bentley slightest xu recipients ##jk merlin ##writer seniors prisons blinking hindwings flickered kappa ##hel 80s strengthening appealing brewing gypsy mali lashes hulk unpleasant harassment bio treaties predict instrumentation pulp troupe boiling mantle ##ffe ins ##vn dividing handles verbs ##onal coconut senegal 340 thorough gum momentarily ##sto cocaine panicked destined ##turing teatro denying weary captained mans ##hawks ##code wakefield bollywood thankfully ##16 cyril ##wu amendments ##bahn consultation stud reflections kindness 1787 internally ##ovo tex mosaic distribute paddy seeming 143 ##hic piers ##15 ##mura ##verse popularly winger kang sentinel mccoy ##anza covenant ##bag verge fireworks suppress thrilled dominate ##jar swansea ##60 142 reconciliation ##ndi stiffened cue dorian ##uf damascus amor ida foremost ##aga porsche unseen dir ##had ##azi stony lexi melodies ##nko angular integer podcast ants inherent jaws justify persona ##olved josephine ##nr ##ressed customary flashes gala cyrus glaring backyard ariel physiology greenland html stir avon atletico finch methodology ked ##lent mas catholicism townsend branding quincy fits containers 1777 ashore aragon ##19 forearm poisoning ##sd adopting conquer grinding amnesty keller finances evaluate forged lankan instincts ##uto guam bosnian photographed workplace desirable protector ##dog allocation intently encourages willy ##sten bodyguard electro brighter ##ν bihar ##chev lasts opener amphibious sal verde arte ##cope captivity vocabulary yields ##tted agreeing desmond pioneered ##chus strap campaigned railroads ##ович emblem ##dre stormed 501 ##ulous marijuana northumberland ##gn ##nath bowen landmarks beaumont ##qua danube ##bler attorneys th ge flyers critique villains cass mutation acc ##0s colombo mckay motif sampling concluding syndicate ##rell neon stables ds warnings clint mourning wilkinson ##tated merrill leopard evenings exhaled emil sonia ezra discrete stove farrell fifteenth prescribed superhero ##rier worms helm wren ##duction ##hc expo ##rator hq unfamiliar antony prevents acceleration fiercely mari painfully calculations cheaper ign clifton irvine davenport mozambique ##np pierced ##evich wonders ##wig ##cate ##iling crusade ware ##uel enzymes reasonably mls ##coe mater ambition bunny eliot kernel ##fin asphalt headmaster torah aden lush pins waived ##care ##yas joao substrate enforce ##grad ##ules alvarez selections epidemic tempted ##bit bremen translates ensured waterfront 29th forrest manny malone kramer reigning cookies simpler absorption 205 engraved ##ffy evaluated 1778 haze 146 comforting crossover ##abe thorn ##rift ##imo ##pop suppression fatigue cutter ##tr 201 wurttemberg ##orf enforced hovering proprietary gb samurai syllable ascent lacey tick lars tractor merchandise rep bouncing defendants ##yre huntington ##ground ##oko standardized ##hor ##hima assassinated nu predecessors rainy liar assurance lyrical ##uga secondly flattened ios parameter undercover ##mity bordeaux punish ridges markers exodus inactive hesitate debbie nyc pledge savoy nagar offset organist ##tium hesse marin converting ##iver diagram propulsion pu validity reverted supportive ##dc ministries clans responds proclamation ##inae ##ø ##rea ein pleading patriot sf birch islanders strauss hates ##dh brandenburg concession rd ##ob 1900s killings textbook antiquity cinematography wharf embarrassing setup creed farmland inequality centred signatures fallon 370 ##ingham ##uts ceylon gazing directive laurie ##tern globally ##uated ##dent allah excavation threads ##cross 148 frantically icc utilize determines respiratory thoughtful receptions ##dicate merging chandra seine 147 builders builds diagnostic dev visibility goddamn analyses dhaka cho proves chancel concurrent curiously canadians pumped restoring 1850s turtles jaguar sinister spinal traction declan vows 1784 glowed capitalism swirling install universidad ##lder ##oat soloist ##genic ##oor coincidence beginnings nissan dip resorts caucasus combustion infectious ##eno pigeon serpent ##itating conclude masked salad jew ##gr surreal toni ##wc harmonica 151 ##gins ##etic ##coat fishermen intending bravery ##wave klaus titan wembley taiwanese ransom 40th incorrect hussein eyelids jp cooke dramas utilities ##etta ##print eisenhower principally granada lana ##rak openings concord ##bl bethany connie morality sega ##mons ##nard earnings ##kara ##cine wii communes ##rel coma composing softened severed grapes ##17 nguyen analyzed warlord hubbard heavenly behave slovenian ##hit ##ony hailed filmmakers trance caldwell skye unrest coward likelihood ##aging bern sci taliban honolulu propose ##wang 1700 browser imagining cobra contributes dukes instinctively conan violinist ##ores accessories gradual ##amp quotes sioux ##dating undertake intercepted sparkling compressed 139 fungus tombs haley imposing rests degradation lincolnshire retailers wetlands tulsa distributor dungeon nun greenhouse convey atlantis aft exits oman dresser lyons ##sti joking eddy judgement omitted digits ##cts ##game juniors ##rae cents stricken une ##ngo wizards weir breton nan technician fibers liking royalty ##cca 154 persia terribly magician ##rable ##unt vance cafeteria booker camille warmer ##static consume cavern gaps compass contemporaries foyer soothing graveyard maj plunged blush ##wear cascade demonstrates ordinance ##nov boyle ##lana rockefeller shaken banjo izzy ##ense breathless vines ##32 ##eman alterations chromosome dwellings feudal mole 153 catalonia relics tenant mandated ##fm fridge hats honesty patented raul heap cruisers accusing enlightenment infants wherein chatham contractors zen affinity hc osborne piston 156 traps maturity ##rana lagos ##zal peering ##nay attendant dealers protocols subset prospects biographical ##cre artery ##zers insignia nuns endured ##eration recommend schwartz serbs berger cromwell crossroads ##ctor enduring clasped grounded ##bine marseille twitched abel choke https catalyst moldova italians ##tist disastrous wee ##oured ##nti wwf nope ##piration ##asa expresses thumbs 167 ##nza coca 1781 cheating ##ption skipped sensory heidelberg spies satan dangers semifinal 202 bohemia whitish confusing shipbuilding relies surgeons landings ravi baku moor suffix alejandro ##yana litre upheld ##unk rajasthan ##rek coaster insists posture scenarios etienne favoured appoint transgender elephants poked greenwood defences fulfilled militant somali 1758 chalk potent ##ucci migrants wink assistants nos restriction activism niger ##ario colon shaun ##sat daphne ##erated swam congregations reprise considerations magnet playable xvi ##р overthrow tobias knob chavez coding ##mers propped katrina orient newcomer ##suke temperate ##pool farmhouse interrogation ##vd committing ##vert forthcoming strawberry joaquin macau ponds shocking siberia ##cellular chant contributors ##nant ##ologists sped absorb hail 1782 spared ##hore barbados karate opus originates saul ##xie evergreen leaped ##rock correlation exaggerated weekday unification bump tracing brig afb pathways utilizing ##ners mod mb disturbance kneeling ##stad ##guchi 100th pune ##thy decreasing 168 manipulation miriam academia ecosystem occupational rbi ##lem rift ##14 rotary stacked incorporation awakening generators guerrero racist ##omy cyber derivatives culminated allie annals panzer sainte wikipedia pops zu austro ##vate algerian politely nicholson mornings educate tastes thrill dartmouth ##gating db ##jee regan differing concentrating choreography divinity ##media pledged alexandre routing gregor madeline ##idal apocalypse ##hora gunfire culminating elves fined liang lam programmed tar guessing transparency gabrielle ##gna cancellation flexibility ##lining accession shea stronghold nets specializes ##rgan abused hasan sgt ling exceeding ##₄ admiration supermarket ##ark photographers specialised tilt resonance hmm perfume 380 sami threatens garland botany guarding boiled greet puppy russo supplier wilmington vibrant vijay ##bius paralympic grumbled paige faa licking margins hurricanes ##gong fest grenade ripping ##uz counseling weigh ##sian needles wiltshire edison costly ##not fulton tramway redesigned staffordshire cache gasping watkins sleepy candidacy ##group monkeys timeline throbbing ##bid ##sos berth uzbekistan vanderbilt bothering overturned ballots gem ##iger sunglasses subscribers hooker compelling ang exceptionally saloon stab ##rdi carla terrifying rom ##vision coil ##oids satisfying vendors 31st mackay deities overlooked ambient bahamas felipe olympia whirled botanist advertised tugging ##dden disciples morales unionist rites foley morse motives creepy ##₀ soo ##sz bargain highness frightening turnpike tory reorganization ##cer depict biographer ##walk unopposed manifesto ##gles institut emile accidental kapoor ##dam kilkenny cortex lively ##13 romanesque jain shan cannons ##ood ##ske petrol echoing amalgamated disappears cautious proposes sanctions trenton ##ر flotilla aus contempt tor canary cote theirs ##hun conceptual deleted fascinating paso blazing elf honourable hutchinson ##eiro ##outh ##zin surveyor tee amidst wooded reissue intro ##ono cobb shelters newsletter hanson brace encoding confiscated dem caravan marino scroll melodic cows imam ##adi ##aneous northward searches biodiversity cora 310 roaring ##bers connell theologian halo compose pathetic unmarried dynamo ##oot az calculation toulouse deserves humour nr forgiveness tam undergone martyr pamela myths whore counselor hicks 290 heavens battleship electromagnetic ##bbs stellar establishments presley hopped ##chin temptation 90s wills nas ##yuan nhs ##nya seminars ##yev adaptations gong asher lex indicator sikh tobago cites goin ##yte satirical ##gies characterised correspond bubbles lure participates ##vid eruption skate therapeutic 1785 canals wholesale defaulted sac 460 petit ##zzled virgil leak ravens 256 portraying ##yx ghetto creators dams portray vicente ##rington fae namesake bounty ##arium joachim ##ota ##iser aforementioned axle snout depended dismantled reuben 480 ##ibly gallagher ##lau ##pd earnest ##ieu ##iary inflicted objections ##llar asa gritted ##athy jericho ##sea ##was flick underside ceramics undead substituted 195 eastward undoubtedly wheeled chimney ##iche guinness cb ##ager siding ##bell traitor baptiste disguised inauguration 149 tipperary choreographer perched warmed stationary eco ##ike ##ntes bacterial ##aurus flores phosphate ##core attacker invaders alvin intersects a1 indirectly immigrated businessmen cornelius valves narrated pill sober ul nationale monastic applicants scenery ##jack 161 motifs constitutes cpu ##osh jurisdictions sd tuning irritation woven ##uddin fertility gao ##erie antagonist impatient glacial hides boarded denominations interception ##jas cookie nicola ##tee algebraic marquess bahn parole buyers bait turbines paperwork bestowed natasha renee oceans purchases 157 vaccine 215 ##tock fixtures playhouse integrate jai oswald intellectuals ##cky booked nests mortimer ##isi obsession sept ##gler ##sum 440 scrutiny simultaneous squinted ##shin collects oven shankar penned remarkably ##я slips luggage spectral 1786 collaborations louie consolidation ##ailed ##ivating 420 hoover blackpool harness ignition vest tails belmont mongol skinner ##nae visually mage derry ##tism ##unce stevie transitional ##rdy redskins drying prep prospective ##21 annoyance oversee ##loaded fills ##books ##iki announces fda scowled respects prasad mystic tucson ##vale revue springer bankrupt 1772 aristotle salvatore habsburg ##geny dal natal nut pod chewing darts moroccan walkover rosario lenin punjabi ##ße grossed scattering wired invasive hui polynomial corridors wakes gina portrays ##cratic arid retreating erich irwin sniper ##dha linen lindsey maneuver butch shutting socio bounce commemorative postseason jeremiah pines 275 mystical beads bp abbas furnace bidding consulted assaulted empirical rubble enclosure sob weakly cancel polly yielded ##emann curly prediction battered 70s vhs jacqueline render sails barked detailing grayson riga sloane raging ##yah herbs bravo ##athlon alloy giggle imminent suffers assumptions waltz ##itate accomplishments ##ited bathing remixed deception prefix ##emia deepest ##tier ##eis balkan frogs ##rong slab ##pate philosophers peterborough grains imports dickinson rwanda ##atics 1774 dirk lan tablets ##rove clone ##rice caretaker hostilities mclean ##gre regimental treasures norms impose tsar tango diplomacy variously complain 192 recognise arrests 1779 celestial pulitzer ##dus bing libretto ##moor adele splash ##rite expectation lds confronts ##izer spontaneous harmful wedge entrepreneurs buyer ##ope bilingual translate rugged conner circulated uae eaton ##gra ##zzle lingered lockheed vishnu reelection alonso ##oom joints yankee headline cooperate heinz laureate invading ##sford echoes scandinavian ##dham hugging vitamin salute micah hind trader ##sper radioactive ##ndra militants poisoned ratified remark campeonato deprived wander prop ##dong outlook ##tani ##rix ##eye chiang darcy ##oping mandolin spice statesman babylon 182 walled forgetting afro ##cap 158 giorgio buffer ##polis planetary ##gis overlap terminals kinda centenary ##bir arising manipulate elm ke 1770 ak ##tad chrysler mapped moose pomeranian quad macarthur assemblies shoreline recalls stratford ##rted noticeable ##evic imp ##rita ##sque accustomed supplying tents disgusted vogue sipped filters khz reno selecting luftwaffe mcmahon tyne masterpiece carriages collided dunes exercised flare remembers muzzle ##mobile heck ##rson burgess lunged middleton boycott bilateral ##sity hazardous lumpur multiplayer spotlight jackets goldman liege porcelain rag waterford benz attracts hopeful battling ottomans kensington baked hymns cheyenne lattice levine borrow polymer clashes michaels monitored commitments denounced ##25 ##von cavity ##oney hobby akin ##holders futures intricate cornish patty ##oned illegally dolphin ##lag barlow yellowish maddie apologized luton plagued ##puram nana ##rds sway fanny łodz ##rino psi suspicions hanged ##eding initiate charlton ##por nak competent 235 analytical annex wardrobe reservations ##rma sect 162 fairfax hedge piled buckingham uneven bauer simplicity snyder interpret accountability donors moderately byrd continents ##cite ##max disciple hr jamaican ping nominees ##uss mongolian diver attackers eagerly ideological pillows miracles apartheid revolver sulfur clinics moran 163 ##enko ile katy rhetoric ##icated chronology recycling ##hrer elongated mughal pascal profiles vibration databases domination ##fare ##rant matthias digest rehearsal polling weiss initiation reeves clinging flourished impress ngo ##hoff ##ume buckley symposium rhythms weed emphasize transforming ##taking ##gence ##yman accountant analyze flicker foil priesthood voluntarily decreases ##80 ##hya slater sv charting mcgill ##lde moreno ##iu besieged zur robes ##phic admitting api deported turmoil peyton earthquakes ##ares nationalists beau clair brethren interrupt welch curated galerie requesting 164 ##ested impending steward viper ##vina complaining beautifully brandy foam nl 1660 ##cake alessandro punches laced explanations ##lim attribute clit reggie discomfort ##cards smoothed whales ##cene adler countered duffy disciplinary widening recipe reliance conducts goats gradient preaching ##shaw matilda quasi striped meridian cannabis cordoba certificates ##agh ##tering graffiti hangs pilgrims repeats ##ych revive urine etat ##hawk fueled belts fuzzy susceptible ##hang mauritius salle sincere beers hooks ##cki arbitration entrusted advise sniffed seminar junk donnell processors principality strapped celia mendoza everton fortunes prejudice starving reassigned steamer ##lund tuck evenly foreman ##ffen dans 375 envisioned slit ##xy baseman liberia rosemary ##weed electrified periodically potassium stride contexts sperm slade mariners influx bianca subcommittee ##rane spilling icao estuary ##nock delivers iphone ##ulata isa mira bohemian dessert ##sbury welcoming proudly slowing ##chs musee ascension russ ##vian waits ##psy africans exploit ##morphic gov eccentric crab peck ##ull entrances formidable marketplace groom bolted metabolism patton robbins courier payload endure ##ifier andes refrigerator ##pr ornate ##uca ruthless illegitimate masonry strasbourg bikes adobe ##³ apples quintet willingly niche bakery corpses energetic ##cliffe ##sser ##ards 177 centimeters centro fuscous cretaceous rancho ##yde andrei telecom tottenham oasis ordination vulnerability presiding corey cp penguins sims ##pis malawi piss ##48 correction ##cked ##ffle ##ryn countdown detectives psychiatrist psychedelic dinosaurs blouse ##get choi vowed ##oz randomly ##pol 49ers scrub blanche bruins dusseldorf ##using unwanted ##ums 212 dominique elevations headlights om laguna ##oga 1750 famously ignorance shrewsbury ##aine ajax breuning che confederacy greco overhaul ##screen paz skirts disagreement cruelty jagged phoebe shifter hovered viruses ##wes mandy ##lined ##gc landlord squirrel dashed ##ι ornamental gag wally grange literal spurs undisclosed proceeding yin ##text billie orphan spanned humidity indy weighted presentations explosions lucian ##tary vaughn hindus ##anga ##hell psycho 171 daytona protects efficiently rematch sly tandem ##oya rebranded impaired hee metropolis peach godfrey diaspora ethnicity prosperous gleaming dar grossing playback ##rden stripe pistols ##tain births labelled ##cating 172 rudy alba ##onne aquarium hostility ##gb ##tase shudder sumatra hardest lakers consonant creeping demos homicide capsule zeke liberties expulsion pueblo ##comb trait transporting ##ddin ##neck ##yna depart gregg mold ledge hangar oldham playboy termination analysts gmbh romero ##itic insist cradle filthy brightness slash shootout deposed bordering ##truct isis microwave tumbled sheltered cathy werewolves messy andersen convex clapped clinched satire wasting edo vc rufus ##jak mont ##etti poznan ##keeping restructuring transverse ##rland azerbaijani slovene gestures roommate choking shear ##quist vanguard oblivious ##hiro disagreed baptism ##lich coliseum ##aceae salvage societe cory locke relocation relying versailles ahl swelling ##elo cheerful ##word ##edes gin sarajevo obstacle diverted ##nac messed thoroughbred fluttered utrecht chewed acquaintance assassins dispatch mirza ##wart nike salzburg swell yen ##gee idle ligue samson ##nds ##igh playful spawned ##cise tease ##case burgundy ##bot stirring skeptical interceptions marathi ##dies bedrooms aroused pinch ##lik preferences tattoos buster digitally projecting rust ##ital kitten priorities addison pseudo ##guard dusk icons sermon ##psis ##iba bt ##lift ##xt ju truce rink ##dah ##wy defects psychiatry offences calculate glucose ##iful ##rized ##unda francaise ##hari richest warwickshire carly 1763 purity redemption lending ##cious muse bruises cerebral aero carving ##name preface terminology invade monty ##int anarchist blurred ##iled rossi treats guts shu foothills ballads undertaking premise cecilia affiliates blasted conditional wilder minors drone rudolph buffy swallowing horton attested ##hop rutherford howell primetime livery penal ##bis minimize hydro wrecked wrought palazzo ##gling cans vernacular friedman nobleman shale walnut danielle ##ection ##tley sears ##kumar chords lend flipping streamed por dracula gallons sacrifices gamble orphanage ##iman mckenzie ##gible boxers daly ##balls ##ان 208 ##ific ##rative ##iq exploited slated ##uity circling hillary pinched goldberg provost campaigning lim piles ironically jong mohan successors usaf ##tem ##ught autobiographical haute preserves ##ending acquitted comparisons 203 hydroelectric gangs cypriot torpedoes rushes chrome derive bumps instability fiat pets ##mbe silas dye reckless settler ##itation info heats ##writing 176 canonical maltese fins mushroom stacy aspen avid ##kur ##loading vickers gaston hillside statutes wilde gail kung sabine comfortably motorcycles ##rgo 169 pneumonia fetch ##sonic axel faintly parallels ##oop mclaren spouse compton interdisciplinary miner ##eni 181 clamped ##chal ##llah separates versa ##mler scarborough labrador ##lity ##osing rutgers hurdles como 166 burt divers ##100 wichita cade coincided ##erson bruised mla ##pper vineyard ##ili ##brush notch mentioning jase hearted kits doe ##acle pomerania ##ady ronan seizure pavel problematic ##zaki domenico ##ulin catering penelope dependence parental emilio ministerial atkinson ##bolic clarkson chargers colby grill peeked arises summon ##aged fools ##grapher faculties qaeda ##vial garner refurbished ##hwa geelong disasters nudged bs shareholder lori algae reinstated rot ##ades ##nous invites stainless 183 inclusive ##itude diocesan til ##icz denomination ##xa benton floral registers ##ider ##erman ##kell absurd brunei guangzhou hitter retaliation ##uled ##eve blanc nh consistency contamination ##eres ##rner dire palermo broadcasters diaries inspire vols brewer tightening ky mixtape hormone ##tok stokes ##color ##dly ##ssi pg ##ometer ##lington sanitation ##tility intercontinental apps ##adt ¹⁄₂ cylinders economies favourable unison croix gertrude odyssey vanity dangling ##logists upgrades dice middleweight practitioner ##ight 206 henrik parlor orion angered lac python blurted ##rri sensual intends swings angled ##phs husky attain peerage precinct textiles cheltenham shuffled dai confess tasting bhutan ##riation tyrone segregation abrupt ruiz ##rish smirked blackwell confidential browning amounted ##put vase scarce fabulous raided staple guyana unemployed glider shay ##tow carmine troll intervene squash superstar ##uce cylindrical len roadway researched handy ##rium ##jana meta lao declares ##rring ##tadt ##elin ##kova willem shrubs napoleonic realms skater qi volkswagen ##ł tad hara archaeologist awkwardly eerie ##kind wiley ##heimer ##24 titus organizers cfl crusaders lama usb vent enraged thankful occupants maximilian ##gaard possessing textbooks ##oran collaborator quaker ##ulo avalanche mono silky straits isaiah mustang surged resolutions potomac descend cl kilograms plato strains saturdays ##olin bernstein ##ype holstein ponytail ##watch belize conversely heroine perpetual ##ylus charcoal piedmont glee negotiating backdrop prologue ##jah ##mmy pasadena climbs ramos sunni ##holm ##tner ##tri anand deficiency hertfordshire stout ##avi aperture orioles ##irs doncaster intrigued bombed coating otis ##mat cocktail ##jit ##eto amir arousal sar ##proof ##act ##ories dixie pots ##bow whereabouts 159 ##fted drains bullying cottages scripture coherent fore poe appetite ##uration sampled ##ators ##dp derrick rotor jays peacock installment ##rro advisors ##coming rodeo scotch ##mot ##db ##fen ##vant ensued rodrigo dictatorship martyrs twenties ##н towed incidence marta rainforest sai scaled ##cles oceanic qualifiers symphonic mcbride dislike generalized aubrey colonization ##iation ##lion ##ssing disliked lublin salesman ##ulates spherical whatsoever sweating avalon contention punt severity alderman atari ##dina ##grant ##rop scarf seville vertices annexation fairfield fascination inspiring launches palatinate regretted ##rca feral ##iom elk nap olsen reddy yong ##leader ##iae garment transports feng gracie outrage viceroy insides ##esis breakup grady organizer softer grimaced 222 murals galicia arranging vectors ##rsten bas ##sb ##cens sloan ##eka bitten ara fender nausea bumped kris banquet comrades detector persisted ##llan adjustment endowed cinemas ##shot sellers ##uman peek epa kindly neglect simpsons talon mausoleum runaway hangul lookout ##cic rewards coughed acquainted chloride ##ald quicker accordion neolithic ##qa artemis coefficient lenny pandora tx ##xed ecstasy litter segunda chairperson gemma hiss rumor vow nasal antioch compensate patiently transformers ##eded judo morrow penis posthumous philips bandits husbands denote flaming ##any ##phones langley yorker 1760 walters ##uo ##kle gubernatorial fatty samsung leroy outlaw ##nine unpublished poole jakob ##ᵢ ##ₙ crete distorted superiority ##dhi intercept crust mig claus crashes positioning 188 stallion 301 frontal armistice ##estinal elton aj encompassing camel commemorated malaria woodward calf cigar penetrate ##oso willard ##rno ##uche illustrate amusing convergence noteworthy ##lma ##rva journeys realise manfred ##sable 410 ##vocation hearings fiance ##posed educators provoked adjusting ##cturing modular stockton paterson vlad rejects electors selena maureen ##tres uber ##rce swirled ##num proportions nanny pawn naturalist parma apostles awoke ethel wen ##bey monsoon overview ##inating mccain rendition risky adorned ##ih equestrian germain nj conspicuous confirming ##yoshi shivering ##imeter milestone rumours flinched bounds smacked token ##bei lectured automobiles ##shore impacted ##iable nouns nero ##leaf ismail prostitute trams ##lace bridget sud stimulus impressions reins revolves ##oud ##gned giro honeymoon ##swell criterion ##sms ##uil libyan prefers ##osition 211 preview sucks accusation bursts metaphor diffusion tolerate faye betting cinematographer liturgical specials bitterly humboldt ##ckle flux rattled ##itzer archaeologists odor authorised marshes discretion ##ов alarmed archaic inverse ##leton explorers ##pine drummond tsunami woodlands ##minate ##tland booklet insanity owning insert crafted calculus ##tore receivers ##bt stung ##eca ##nched prevailing travellers eyeing lila graphs ##borne 178 julien ##won morale adaptive therapist erica cw libertarian bowman pitches vita ##ional crook ##ads ##entation caledonia mutiny ##sible 1840s automation ##ß flock ##pia ironic pathology ##imus remarried ##22 joker withstand energies ##att shropshire hostages madeleine tentatively conflicting mateo recipes euros ol mercenaries nico ##ndon albuquerque augmented mythical bel freud ##child cough ##lica 365 freddy lillian genetically nuremberg calder 209 bonn outdoors paste suns urgency vin restraint tyson ##cera ##selle barrage bethlehem kahn ##par mounts nippon barony happier ryu makeshift sheldon blushed castillo barking listener taped bethel fluent headlines pornography rum disclosure sighing mace doubling gunther manly ##plex rt interventions physiological forwards emerges ##tooth ##gny compliment rib recession visibly barge faults connector exquisite prefect ##rlin patio ##cured elevators brandt italics pena 173 wasp satin ea botswana graceful respectable ##jima ##rter ##oic franciscan generates ##dl alfredo disgusting ##olate ##iously sherwood warns cod promo cheryl sino ##ة ##escu twitch ##zhi brownish thom ortiz ##dron densely ##beat carmel reinforce ##bana 187 anastasia downhill vertex contaminated remembrance harmonic homework ##sol fiancee gears olds angelica loft ramsay quiz colliery sevens ##cape autism ##hil walkway ##boats ruben abnormal ounce khmer ##bbe zachary bedside morphology punching ##olar sparrow convinces ##35 hewitt queer remastered rods mabel solemn notified lyricist symmetric ##xide 174 encore passports wildcats ##uni baja ##pac mildly ##ease bleed commodity mounds glossy orchestras ##omo damian prelude ambitions ##vet awhile remotely ##aud asserts imply ##iques distinctly modelling remedy ##dded windshield dani xiao ##endra audible powerplant 1300 invalid elemental acquisitions ##hala immaculate libby plata smuggling ventilation denoted minh ##morphism 430 differed dion kelley lore mocking sabbath spikes hygiene drown runoff stylized tally liberated aux interpreter righteous aba siren reaper pearce millie ##cier ##yra gaius ##iso captures ##ttering dorm claudio ##sic benches knighted blackness ##ored discount fumble oxidation routed ##ς novak perpendicular spoiled fracture splits ##urt pads topology ##cats axes fortunate offenders protestants esteem 221 broadband convened frankly hound prototypes isil facilitated keel ##sher sahara awaited bubba orb prosecutors 186 hem 520 ##xing relaxing remnant romney sorted slalom stefano ulrich ##active exemption folder pauses foliage hitchcock epithet 204 criticisms ##aca ballistic brody hinduism chaotic youths equals ##pala pts thicker analogous capitalist improvised overseeing sinatra ascended beverage ##tl straightforward ##kon curran ##west bois 325 induce surveying emperors sax unpopular ##kk cartoonist fused ##mble unto ##yuki localities ##cko ##ln darlington slain academie lobbying sediment puzzles ##grass defiance dickens manifest tongues alumnus arbor coincide 184 appalachian mustafa examiner cabaret traumatic yves bracelet draining heroin magnum baths odessa consonants mitsubishi ##gua kellan vaudeville ##fr joked null straps probation ##ław ceded interfaces ##pas ##zawa blinding viet 224 rothschild museo 640 huddersfield ##vr tactic ##storm brackets dazed incorrectly ##vu reg glazed fearful manifold benefited irony ##sun stumbling ##rte willingness balkans mei wraps ##aba injected ##lea gu syed harmless ##hammer bray takeoff poppy timor cardboard astronaut purdue weeping southbound cursing stalls diagonal ##neer lamar bryce comte weekdays harrington ##uba negatively ##see lays grouping ##cken ##henko affirmed halle modernist ##lai hodges smelling aristocratic baptized dismiss justification oilers ##now coupling qin snack healer ##qing gardener layla battled formulated stephenson gravitational ##gill ##jun 1768 granny coordinating suites ##cd ##ioned monarchs ##cote ##hips sep blended apr barrister deposition fia mina policemen paranoid ##pressed churchyard covert crumpled creep abandoning tr transmit conceal barr understands readiness spire ##cology ##enia ##erry 610 startling unlock vida bowled slots ##nat ##islav spaced trusting admire rig ##ink slack ##70 mv 207 casualty ##wei classmates ##odes ##rar ##rked amherst furnished evolve foundry menace mead ##lein flu wesleyan ##kled monterey webber ##vos wil ##mith ##на bartholomew justices restrained ##cke amenities 191 mediated sewage trenches ml mainz ##thus 1800s ##cula ##inski caine bonding 213 converts spheres superseded marianne crypt sweaty ensign historia ##br spruce ##post ##ask forks thoughtfully yukon pamphlet ames ##uter karma ##yya bryn negotiation sighs incapable ##mbre ##ntial actresses taft ##mill luce prevailed ##amine 1773 motionless envoy testify investing sculpted instructors provence kali cullen horseback ##while goodwin ##jos gaa norte ##ldon modify wavelength abd 214 skinned sprinter forecast scheduling marries squared tentative ##chman boer ##isch bolts swap fisherman assyrian impatiently guthrie martins murdoch 194 tanya nicely dolly lacy med ##45 syn decks fashionable millionaire ##ust surfing ##ml ##ision heaved tammy consulate attendees routinely 197 fuse saxophonist backseat malaya ##lord scowl tau ##ishly 193 sighted steaming ##rks 303 911 ##holes ##hong ching ##wife bless conserved jurassic stacey unix zion chunk rigorous blaine 198 peabody slayer dismay brewers nz ##jer det ##glia glover postwar int penetration sylvester imitation vertically airlift heiress knoxville viva ##uin 390 macon ##rim ##fighter ##gonal janice ##orescence ##wari marius belongings leicestershire 196 blanco inverted preseason sanity sobbing ##due ##elt ##dled collingwood regeneration flickering shortest ##mount ##osi feminism ##lat sherlock cabinets fumbled northbound precedent snaps ##mme researching ##akes guillaume insights manipulated vapor neighbour sap gangster frey f1 stalking scarcely callie barnett tendencies audi doomed assessing slung panchayat ambiguous bartlett ##etto distributing violating wolverhampton ##hetic swami histoire ##urus liable pounder groin hussain larsen popping surprises ##atter vie curt ##station mute relocate musicals authorization richter ##sef immortality tna bombings ##press deteriorated yiddish ##acious robbed colchester cs pmid ao verified balancing apostle swayed recognizable oxfordshire retention nottinghamshire contender judd invitational shrimp uhf ##icient cleaner longitudinal tanker ##mur acronym broker koppen sundance suppliers ##gil 4000 clipped fuels petite ##anne landslide helene diversion populous landowners auspices melville quantitative ##xes ferries nicky ##llus doo haunting roche carver downed unavailable ##pathy approximation hiroshima ##hue garfield valle comparatively keyboardist traveler ##eit congestion calculating subsidiaries ##bate serb modernization fairies deepened ville averages ##lore inflammatory tonga ##itch co₂ squads ##hea gigantic serum enjoyment retailer verona 35th cis ##phobic magna technicians ##vati arithmetic ##sport levin ##dation amtrak chow sienna ##eyer backstage entrepreneurship ##otic learnt tao ##udy worcestershire formulation baggage hesitant bali sabotage ##kari barren enhancing murmur pl freshly putnam syntax aces medicines resentment bandwidth ##sier grins chili guido ##sei framing implying gareth lissa genevieve pertaining admissions geo thorpe proliferation sato bela analyzing parting ##gor awakened ##isman huddled secrecy ##kling hush gentry 540 dungeons ##ego coasts ##utz sacrificed ##chule landowner mutually prevalence programmer adolescent disrupted seaside gee trusts vamp georgie ##nesian ##iol schedules sindh ##market etched hm sparse bey beaux scratching gliding unidentified 216 collaborating gems jesuits oro accumulation shaping mbe anal ##xin 231 enthusiasts newscast ##egan janata dewey parkinson 179 ankara biennial towering dd inconsistent 950 ##chet thriving terminate cabins furiously eats advocating donkey marley muster phyllis leiden ##user grassland glittering iucn loneliness 217 memorandum armenians ##ddle popularized rhodesia 60s lame ##illon sans bikini header orbits ##xx ##finger ##ulator sharif spines biotechnology strolled naughty yates ##wire fremantle milo ##mour abducted removes ##atin humming wonderland ##chrome ##ester hume pivotal ##rates armand grams believers elector rte apron bis scraped ##yria endorsement initials ##llation eps dotted hints buzzing emigration nearer ##tom indicators ##ulu coarse neutron protectorate ##uze directional exploits pains loire 1830s proponents guggenheim rabbits ritchie 305 hectare inputs hutton ##raz verify ##ako boilers longitude ##lev skeletal yer emilia citrus compromised ##gau pokemon prescription paragraph eduard cadillac attire categorized kenyan weddings charley ##bourg entertain monmouth ##lles nutrients davey mesh incentive practised ecosystems kemp subdued overheard ##rya bodily maxim ##nius apprenticeship ursula ##fight lodged rug silesian unconstitutional patel inspected coyote unbeaten ##hak 34th disruption convict parcel ##cl ##nham collier implicated mallory ##iac ##lab susannah winkler ##rber shia phelps sediments graphical robotic ##sner adulthood mart smoked ##isto kathryn clarified ##aran divides convictions oppression pausing burying ##mt federico mathias eileen ##tana kite hunched ##acies 189 ##atz disadvantage liza kinetic greedy paradox yokohama dowager trunks ventured ##gement gupta vilnius olaf ##thest crimean hopper ##ej progressively arturo mouthed arrondissement ##fusion rubin simulcast oceania ##orum ##stra ##rred busiest intensely navigator cary ##vine ##hini ##bies fife rowe rowland posing insurgents shafts lawsuits activate conor inward culturally garlic 265 ##eering eclectic ##hui ##kee ##nl furrowed vargas meteorological rendezvous ##aus culinary commencement ##dition quota ##notes mommy salaries overlapping mule ##iology ##mology sums wentworth ##isk ##zione mainline subgroup ##illy hack plaintiff verdi bulb differentiation engagements multinational supplemented bertrand caller regis ##naire ##sler ##arts ##imated blossom propagation kilometer viaduct vineyards ##uate beckett optimization golfer songwriters seminal semitic thud volatile evolving ridley ##wley trivial distributions scandinavia jiang ##ject wrestled insistence ##dio emphasizes napkin ##ods adjunct rhyme ##ricted ##eti hopeless surrounds tremble 32nd smoky ##ntly oils medicinal padded steer wilkes 219 255 concessions hue uniquely blinded landon yahoo ##lane hendrix commemorating dex specify chicks ##ggio intercity 1400 morley ##torm highlighting ##oting pang oblique stalled ##liner flirting newborn 1769 bishopric shaved 232 currie ##ush dharma spartan ##ooped favorites smug novella sirens abusive creations espana ##lage paradigm semiconductor sheen ##rdo ##yen ##zak nrl renew ##pose ##tur adjutant marches norma ##enity ineffective weimar grunt ##gat lordship plotting expenditure infringement lbs refrain av mimi mistakenly postmaster 1771 ##bara ras motorsports tito 199 subjective ##zza bully stew ##kaya prescott 1a ##raphic ##zam bids styling paranormal reeve sneaking exploding katz akbar migrant syllables indefinitely ##ogical destroys replaces applause ##phine pest ##fide 218 articulated bertie ##thing ##cars ##ptic courtroom crowley aesthetics cummings tehsil hormones titanic dangerously ##ibe stadion jaenelle auguste ciudad ##chu mysore partisans ##sio lucan philipp ##aly debating henley interiors ##rano ##tious homecoming beyonce usher henrietta prepares weeds ##oman ely plucked ##pire ##dable luxurious ##aq artifact password pasture juno maddy minsk ##dder ##ologies ##rone assessments martian royalist 1765 examines ##mani ##rge nino 223 parry scooped relativity ##eli ##uting ##cao congregational noisy traverse ##agawa strikeouts nickelodeon obituary transylvania binds depictions polk trolley ##yed ##lard breeders ##under dryly hokkaido 1762 strengths stacks bonaparte connectivity neared prostitutes stamped anaheim gutierrez sinai ##zzling bram fresno madhya ##86 proton ##lena ##llum ##phon reelected wanda ##anus ##lb ample distinguishing ##yler grasping sermons tomato bland stimulation avenues ##eux spreads scarlett fern pentagon assert baird chesapeake ir calmed distortion fatalities ##olis correctional pricing ##astic ##gina prom dammit ying collaborate ##chia welterweight 33rd pointer substitution bonded umpire communicating multitude paddle ##obe federally intimacy ##insky betray ssr ##lett ##lean ##lves ##therapy airbus ##tery functioned ud bearer biomedical netflix ##hire ##nca condom brink ik ##nical macy ##bet flap gma experimented jelly lavender ##icles ##ulia munro ##mian ##tial rye ##rle 60th gigs hottest rotated predictions fuji bu ##erence ##omi barangay ##fulness ##sas clocks ##rwood ##liness cereal roe wight decker uttered babu onion xml forcibly ##df petra sarcasm hartley peeled storytelling ##42 ##xley ##ysis ##ffa fibre kiel auditor fig harald greenville ##berries geographically nell quartz ##athic cemeteries ##lr crossings nah holloway reptiles chun sichuan snowy 660 corrections ##ivo zheng ambassadors blacksmith fielded fluids hardcover turnover medications melvin academies ##erton ro roach absorbing spaniards colton ##founded outsider espionage kelsey 245 edible ##ulf dora establishes ##sham ##tries contracting ##tania cinematic costello nesting ##uron connolly duff ##nology mma ##mata fergus sexes gi optics spectator woodstock banning ##hee ##fle differentiate outfielder refinery 226 312 gerhard horde lair drastically ##udi landfall ##cheng motorsport odi ##achi predominant quay skins ##ental edna harshly complementary murdering ##aves wreckage ##90 ono outstretched lennox munitions galen reconcile 470 scalp bicycles gillespie questionable rosenberg guillermo hostel jarvis kabul volvo opium yd ##twined abuses decca outpost ##cino sensible neutrality ##64 ponce anchorage atkins turrets inadvertently disagree libre vodka reassuring weighs ##yal glide jumper ceilings repertory outs stain ##bial envy ##ucible smashing heightened policing hyun mixes lai prima ##ples celeste ##bina lucrative intervened kc manually ##rned stature staffed bun bastards nairobi priced ##auer thatcher ##kia tripped comune ##ogan ##pled brasil incentives emanuel hereford musica ##kim benedictine biennale ##lani eureka gardiner rb knocks sha ##ael ##elled ##onate efficacy ventura masonic sanford maize leverage ##feit capacities santana ##aur novelty vanilla ##cter ##tour benin ##oir ##rain neptune drafting tallinn ##cable humiliation ##boarding schleswig fabian bernardo liturgy spectacle sweeney pont routledge ##tment cosmos ut hilt sleek universally ##eville ##gawa typed ##dry favors allegheny glaciers ##rly recalling aziz ##log parasite requiem auf ##berto ##llin illumination ##breaker ##issa festivities bows govern vibe vp 333 sprawled larson pilgrim bwf leaping ##rts ##ssel alexei greyhound hoarse ##dler ##oration seneca ##cule gaping ##ulously ##pura cinnamon ##gens ##rricular craven fantasies houghton engined reigned dictator supervising ##oris bogota commentaries unnatural fingernails spirituality tighten ##tm canadiens protesting intentional cheers sparta ##ytic ##iere ##zine widen belgarath controllers dodd iaaf navarre ##ication defect squire steiner whisky ##mins 560 inevitably tome ##gold chew ##uid ##lid elastic ##aby streaked alliances jailed regal ##ined ##phy czechoslovak narration absently ##uld bluegrass guangdong quran criticizing hose hari ##liest ##owa skier streaks deploy ##lom raft bose dialed huff ##eira haifa simplest bursting endings ib sultanate ##titled franks whitman ensures sven ##ggs collaborators forster organising ui banished napier injustice teller layered thump ##otti roc battleships evidenced fugitive sadie robotics ##roud equatorial geologist ##iza yielding ##bron ##sr internationale mecca ##diment sbs skyline toad uploaded reflective undrafted lal leafs bayern ##dai lakshmi shortlisted ##stick ##wicz camouflage donate af christi lau ##acio disclosed nemesis 1761 assemble straining northamptonshire tal ##asi bernardino premature heidi 42nd coefficients galactic reproduce buzzed sensations zionist monsieur myrtle ##eme archery strangled musically viewpoint antiquities bei trailers seahawks cured pee preferring tasmanian lange sul ##mail ##working colder overland lucivar massey gatherings haitian ##smith disapproval flaws ##cco ##enbach 1766 npr ##icular boroughs creole forums techno 1755 dent abdominal streetcar ##eson ##stream procurement gemini predictable ##tya acheron christoph feeder fronts vendor bernhard jammu tumors slang ##uber goaltender twists curving manson vuelta mer peanut confessions pouch unpredictable allowance theodor vascular ##factory bala authenticity metabolic coughing nanjing ##cea pembroke ##bard splendid 36th ff hourly ##ahu elmer handel ##ivate awarding thrusting dl experimentation ##hesion ##46 caressed entertained steak ##rangle biologist orphans baroness oyster stepfather ##dridge mirage reefs speeding ##31 barons 1764 227 inhabit preached repealed ##tral honoring boogie captives administer johanna ##imate gel suspiciously 1767 sobs ##dington backbone hayward garry ##folding ##nesia maxi ##oof ##ppe ellison galileo ##stand crimea frenzy amour bumper matrices natalia baking garth palestinians ##grove smack conveyed ensembles gardening ##manship ##rup ##stituting 1640 harvesting topography jing shifters dormitory ##carriage ##lston ist skulls ##stadt dolores jewellery sarawak ##wai ##zier fences christy confinement tumbling credibility fir stench ##bria ##plication ##nged ##sam virtues ##belt marjorie pba ##eem ##made celebrates schooner agitated barley fulfilling anthropologist ##pro restrict novi regulating ##nent padres ##rani ##hesive loyola tabitha milky olson proprietor crambidae guarantees intercollegiate ljubljana hilda ##sko ignorant hooded ##lts sardinia ##lidae ##vation frontman privileged witchcraft ##gp jammed laude poking ##than bracket amazement yunnan ##erus maharaja linnaeus 264 commissioning milano peacefully ##logies akira rani regulator ##36 grasses ##rance luzon crows compiler gretchen seaman edouard tab buccaneers ellington hamlets whig socialists ##anto directorial easton mythological ##kr ##vary rhineland semantic taut dune inventions succeeds ##iter replication branched ##pired jul prosecuted kangaroo penetrated ##avian middlesbrough doses bleak madam predatory relentless ##vili reluctance ##vir hailey crore silvery 1759 monstrous swimmers transmissions hawthorn informing ##eral toilets caracas crouch kb ##sett 295 cartel hadley ##aling alexia yvonne ##biology cinderella eton superb blizzard stabbing industrialist maximus ##gm ##orus groves maud clade oversized comedic ##bella rosen nomadic fulham montane beverages galaxies redundant swarm ##rot ##folia ##llis buckinghamshire fen bearings bahadur ##rom gilles phased dynamite faber benoit vip ##ount ##wd booking fractured tailored anya spices westwood cairns auditions inflammation steamed ##rocity ##acion ##urne skyla thereof watford torment archdeacon transforms lulu demeanor fucked serge ##sor mckenna minas entertainer ##icide caress originate residue ##sty 1740 ##ilised ##org beech ##wana subsidies ##ghton emptied gladstone ru firefighters voodoo ##rcle het nightingale tamara edmond ingredient weaknesses silhouette 285 compatibility withdrawing hampson ##mona anguish giggling ##mber bookstore ##jiang southernmost tilting ##vance bai economical rf briefcase dreadful hinted projections shattering totaling ##rogate analogue indicted periodical fullback ##dman haynes ##tenberg ##ffs ##ishment 1745 thirst stumble penang vigorous ##ddling ##kor ##lium octave ##ove ##enstein ##inen ##ones siberian ##uti cbn repeal swaying ##vington khalid tanaka unicorn otago plastered lobe riddle ##rella perch ##ishing croydon filtered graeme tripoli ##ossa crocodile ##chers sufi mined ##tung inferno lsu ##phi swelled utilizes £2 cale periodicals styx hike informally coop lund ##tidae ala hen qui transformations disposed sheath chickens ##cade fitzroy sas silesia unacceptable odisha 1650 sabrina pe spokane ratios athena massage shen dilemma ##drum ##riz ##hul corona doubtful niall ##pha ##bino fines cite acknowledging bangor ballard bathurst ##resh huron mustered alzheimer garments kinase tyre warship ##cp flashback pulmonary braun cheat kamal cyclists constructions grenades ndp traveller excuses stomped signalling trimmed futsal mosques relevance ##wine wta ##23 ##vah ##lter hoc ##riding optimistic ##´s deco sim interacting rejecting moniker waterways ##ieri ##oku mayors gdansk outnumbered pearls ##ended ##hampton fairs totals dominating 262 notions stairway compiling pursed commodities grease yeast ##jong carthage griffiths residual amc contraction laird sapphire ##marine ##ivated amalgamation dissolve inclination lyle packaged altitudes suez canons graded lurched narrowing boasts guise wed enrico ##ovsky rower scarred bree cub iberian protagonists bargaining proposing trainers voyages vans fishes ##aea ##ivist ##verance encryption artworks kazan sabre cleopatra hepburn rotting supremacy mecklenburg ##brate burrows hazards outgoing flair organizes ##ctions scorpion ##usions boo 234 chevalier dunedin slapping ##34 ineligible pensions ##38 ##omic manufactures emails bismarck 238 weakening blackish ding mcgee quo ##rling northernmost xx manpower greed sampson clicking ##ange ##horpe ##inations ##roving torre ##eptive ##moral symbolism 38th asshole meritorious outfits splashed biographies sprung astros ##tale 302 737 filly raoul nw tokugawa linden clubhouse ##apa tracts romano ##pio putin tags ##note chained dickson gunshot moe gunn rashid ##tails zipper ##bas ##nea contrasted ##ply ##udes plum pharaoh ##pile aw comedies ingrid sandwiches subdivisions 1100 mariana nokia kamen hz delaney veto herring ##words possessive outlines ##roup siemens stairwell rc gallantry messiah palais yells 233 zeppelin ##dm bolivar ##cede smackdown mckinley ##mora ##yt muted geologic finely unitary avatar hamas maynard rees bog contrasting ##rut liv chico disposition pixel ##erate becca dmitry yeshiva narratives ##lva ##ulton mercenary sharpe tempered navigate stealth amassed keynes ##lini untouched ##rrie havoc lithium ##fighting abyss graf southward wolverine balloons implements ngos transitions ##icum ambushed concacaf dormant economists ##dim costing csi rana universite boulders verity ##llon collin mellon misses cypress fluorescent lifeless spence ##ulla crewe shepard pak revelations ##م jolly gibbons paw ##dro ##quel freeing ##test shack fries palatine ##51 ##hiko accompaniment cruising recycled ##aver erwin sorting synthesizers dyke realities sg strides enslaved wetland ##ghan competence gunpowder grassy maroon reactors objection ##oms carlson gearbox macintosh radios shelton ##sho clergyman prakash 254 mongols trophies oricon 228 stimuli twenty20 cantonese cortes mirrored ##saurus bhp cristina melancholy ##lating enjoyable nuevo ##wny downfall schumacher ##ind banging lausanne rumbled paramilitary reflex ax amplitude migratory ##gall ##ups midi barnard lastly sherry ##hp ##nall keystone ##kra carleton slippery ##53 coloring foe socket otter ##rgos mats ##tose consultants bafta bison topping ##km 490 primal abandonment transplant atoll hideous mort pained reproduced tae howling ##turn unlawful billionaire hotter poised lansing ##chang dinamo retro messing nfc domesday ##mina blitz timed ##athing ##kley ascending gesturing ##izations signaled tis chinatown mermaid savanna jameson ##aint catalina ##pet ##hers cochrane cy chatting ##kus alerted computation mused noelle majestic mohawk campo octagonal ##sant ##hend 241 aspiring ##mart comprehend iona paralyzed shimmering swindon rhone ##eley reputed configurations pitchfork agitation francais gillian lipstick ##ilo outsiders pontifical resisting bitterness sewer rockies ##edd ##ucher misleading 1756 exiting galloway ##nging risked ##heart 246 commemoration schultz ##rka integrating ##rsa poses shrieked ##weiler guineas gladys jerking owls goldsmith nightly penetrating ##unced lia ##33 ignited betsy ##aring ##thorpe follower vigorously ##rave coded kiran knit zoology tbilisi ##28 ##bered repository govt deciduous dino growling ##bba enhancement unleashed chanting pussy biochemistry ##eric kettle repression toxicity nrhp ##arth ##kko ##bush ernesto commended outspoken 242 mca parchment sms kristen ##aton bisexual raked glamour navajo a2 conditioned showcased ##hma spacious youthful ##esa usl appliances junta brest layne conglomerate enchanted chao loosened picasso circulating inspect montevideo ##centric ##kti piazza spurred ##aith bari freedoms poultry stamford lieu ##ect indigo sarcastic bahia stump attach dvds frankenstein lille approx scriptures pollen ##script nmi overseen ##ivism tides proponent newmarket inherit milling ##erland centralized ##rou distributors credentials drawers abbreviation ##lco ##xon downing uncomfortably ripe ##oes erase franchises ##ever populace ##bery ##khar decomposition pleas ##tet daryl sabah ##stle ##wide fearless genie lesions annette ##ogist oboe appendix nair dripped petitioned maclean mosquito parrot rpg hampered 1648 operatic reservoirs ##tham irrelevant jolt summarized ##fp medallion ##taff ##− clawed harlow narrower goddard marcia bodied fremont suarez altering tempest mussolini porn ##isms sweetly oversees walkers solitude grimly shrines hk ich supervisors hostess dietrich legitimacy brushes expressive ##yp dissipated ##rse localized systemic ##nikov gettysburg ##js ##uaries dialogues muttering 251 housekeeper sicilian discouraged ##frey beamed kaladin halftime kidnap ##amo ##llet 1754 synonymous depleted instituto insulin reprised ##opsis clashed ##ctric interrupting radcliffe insisting medici 1715 ejected playfully turbulent ##47 starvation ##rini shipment rebellious petersen verification merits ##rified cakes ##charged 1757 milford shortages spying fidelity ##aker emitted storylines harvested seismic ##iform cheung kilda theoretically barbie lynx ##rgy ##tius goblin mata poisonous ##nburg reactive residues obedience ##евич conjecture ##rac 401 hating sixties kicker moaning motown ##bha emancipation neoclassical ##hering consoles ebert professorship ##tures sustaining assaults obeyed affluent incurred tornadoes ##eber ##zow emphasizing highlanders cheated helmets ##ctus internship terence bony executions legislators berries peninsular tinged ##aco 1689 amplifier corvette ribbons lavish pennant ##lander worthless ##chfield ##forms mariano pyrenees expenditures ##icides chesterfield mandir tailor 39th sergey nestled willed aristocracy devotees goodnight raaf rumored weaponry remy appropriations harcourt burr riaa ##lence limitation unnoticed guo soaking swamps ##tica collapsing tatiana descriptive brigham psalm ##chment maddox ##lization patti caliph ##aja akron injuring serra ##ganj basins ##sari astonished launcher ##church hilary wilkins sewing ##sf stinging ##fia ##ncia underwood startup ##ition compilations vibrations embankment jurist ##nity bard juventus groundwater kern palaces helium boca cramped marissa soto ##worm jae princely ##ggy faso bazaar warmly ##voking 229 pairing ##lite ##grate ##nets wien freaked ulysses rebirth ##alia ##rent mummy guzman jimenez stilled ##nitz trajectory tha woken archival professions ##pts ##pta hilly shadowy shrink ##bolt norwood glued migrate stereotypes devoid ##pheus 625 evacuate horrors infancy gotham knowles optic downloaded sachs kingsley parramatta darryl mor ##onale shady commence confesses kan ##meter ##placed marlborough roundabout regents frigates io ##imating gothenburg revoked carvings clockwise convertible intruder ##sche banged ##ogo vicky bourgeois ##mony dupont footing ##gum pd ##real buckle yun penthouse sane 720 serviced stakeholders neumann bb ##eers comb ##gam catchment pinning rallies typing ##elles forefront freiburg sweetie giacomo widowed goodwill worshipped aspirations midday ##vat fishery ##trick bournemouth turk 243 hearth ethanol guadalajara murmurs sl ##uge afforded scripted ##hta wah ##jn coroner translucent 252 memorials puck progresses clumsy ##race 315 candace recounted ##27 ##slin ##uve filtering ##mac howl strata heron leveled ##ays dubious ##oja ##т ##wheel citations exhibiting ##laya ##mics ##pods turkic ##lberg injunction ##ennial ##mit antibodies ##44 organise ##rigues cardiovascular cushion inverness ##zquez dia cocoa sibling ##tman ##roid expanse feasible tunisian algiers ##relli rus bloomberg dso westphalia bro tacoma 281 downloads ##ours konrad duran ##hdi continuum jett compares legislator secession ##nable ##gues ##zuka translating reacher ##gley ##ła aleppo ##agi tc orchards trapping linguist versatile drumming postage calhoun superiors ##mx barefoot leary ##cis ignacio alfa kaplan ##rogen bratislava mori ##vot disturb haas 313 cartridges gilmore radiated salford tunic hades ##ulsive archeological delilah magistrates auditioned brewster charters empowerment blogs cappella dynasties iroquois whipping ##krishna raceway truths myra weaken judah mcgregor ##horse mic refueling 37th burnley bosses markus premio query ##gga dunbar ##economic darkest lyndon sealing commendation reappeared ##mun addicted ezio slaughtered satisfactory shuffle ##eves ##thic ##uj fortification warrington ##otto resurrected fargo mane ##utable ##lei ##space foreword ox ##aris ##vern abrams hua ##mento sakura ##alo uv sentimental ##skaya midfield ##eses sturdy scrolls macleod ##kyu entropy ##lance mitochondrial cicero excelled thinner convoys perceive ##oslav ##urable systematically grind burkina 287 ##tagram ops ##aman guantanamo ##cloth ##tite forcefully wavy ##jou pointless ##linger ##tze layton portico superficial clerical outlaws ##hism burials muir ##inn creditors hauling rattle ##leg calais monde archers reclaimed dwell wexford hellenic falsely remorse ##tek dough furnishings ##uttered gabon neurological novice ##igraphy contemplated pulpit nightstand saratoga ##istan documenting pulsing taluk ##firmed busted marital ##rien disagreements wasps ##yes hodge mcdonnell mimic fran pendant dhabi musa ##nington congratulations argent darrell concussion losers regrets thessaloniki reversal donaldson hardwood thence achilles ritter ##eran demonic jurgen prophets goethe eki classmate buff ##cking yank irrational ##inging perished seductive qur sourced ##crat ##typic mustard ravine barre horizontally characterization phylogenetic boise ##dit ##runner ##tower brutally intercourse seduce ##bbing fay ferris ogden amar nik unarmed ##inator evaluating kyrgyzstan sweetness ##lford ##oki mccormick meiji notoriety stimulate disrupt figuring instructional mcgrath ##zoo groundbreaking ##lto flinch khorasan agrarian bengals mixer radiating ##sov ingram pitchers nad tariff ##cript tata ##codes ##emi ##ungen appellate lehigh ##bled ##giri brawl duct texans ##ciation ##ropolis skipper speculative vomit doctrines stresses 253 davy graders whitehead jozef timely cumulative haryana paints appropriately boon cactus ##ales ##pid dow legions ##pit perceptions 1730 picturesque ##yse periphery rune wr ##aha celtics sentencing whoa ##erin confirms variance 425 moines mathews spade rave m1 fronted fx blending alleging reared ##gl 237 ##paper grassroots eroded ##free ##physical directs ordeal ##sław accelerate hacker rooftop ##inia lev buys cebu devote ##lce specialising ##ulsion choreographed repetition warehouses ##ryl paisley tuscany analogy sorcerer hash huts shards descends exclude nix chaplin gaga ito vane ##drich causeway misconduct limo orchestrated glands jana ##kot u2 ##mple ##sons branching contrasts scoop longed ##virus chattanooga ##75 syrup cornerstone ##tized ##mind ##iaceae careless precedence frescoes ##uet chilled consult modelled snatch peat ##thermal caucasian humane relaxation spins temperance ##lbert occupations lambda hybrids moons mp3 ##oese 247 rolf societal yerevan ness ##ssler befriended mechanized nominate trough boasted cues seater ##hom bends ##tangle conductors emptiness ##lmer eurasian adriatic tian ##cie anxiously lark propellers chichester jock ev 2a ##holding credible recounts tori loyalist abduction ##hoot ##redo nepali ##mite ventral tempting ##ango ##crats steered ##wice javelin dipping laborers prentice looming titanium ##ː badges emir tensor ##ntation egyptians rash denies hawthorne lombard showers wehrmacht dietary trojan ##reus welles executing horseshoe lifeboat ##lak elsa infirmary nearing roberta boyer mutter trillion joanne ##fine ##oked sinks vortex uruguayan clasp sirius ##block accelerator prohibit sunken byu chronological diplomats ochreous 510 symmetrical 1644 maia ##tology salts reigns atrocities ##ия hess bared issn ##vyn cater saturated ##cycle ##isse sable voyager dyer yusuf ##inge fountains wolff ##39 ##nni engraving rollins atheist ominous ##ault herr chariot martina strung ##fell ##farlane horrific sahib gazes saetan erased ptolemy ##olic flushing lauderdale analytic ##ices 530 navarro beak gorilla herrera broom guadalupe raiding sykes 311 bsc deliveries 1720 invasions carmichael tajikistan thematic ecumenical sentiments onstage ##rians ##brand ##sume catastrophic flanks molten ##arns waller aimee terminating ##icing alternately ##oche nehru printers outraged ##eving empires template banners repetitive za ##oise vegetarian ##tell guiana opt cavendish lucknow synthesized ##hani ##mada finalized ##ctable fictitious mayoral unreliable ##enham embracing peppers rbis ##chio ##neo inhibition slashed togo orderly embroidered safari salty 236 barron benito totaled ##dak pubs simulated caden devin tolkien momma welding sesame ##ept gottingen hardness 630 shaman temeraire 620 adequately pediatric ##kit ck assertion radicals composure cadence seafood beaufort lazarus mani warily cunning kurdistan 249 cantata ##kir ares ##41 ##clusive nape townland geared insulted flutter boating violate draper dumping malmo ##hh ##romatic firearm alta bono obscured ##clave exceeds panorama unbelievable ##train preschool ##essed disconnected installing rescuing secretaries accessibility ##castle ##drive ##ifice ##film bouts slug waterway mindanao ##buro ##ratic halves ##ل calming liter maternity adorable bragg electrification mcc ##dote roxy schizophrenia ##body munoz kaye whaling 239 mil tingling tolerant ##ago unconventional volcanoes ##finder deportivo ##llie robson kaufman neuroscience wai deportation masovian scraping converse ##bh hacking bulge ##oun administratively yao 580 amp mammoth booster claremont hooper nomenclature pursuits mclaughlin melinda ##sul catfish barclay substrates taxa zee originals kimberly packets padma ##ality borrowing ostensibly solvent ##bri ##genesis ##mist lukas shreveport veracruz ##ь ##lou ##wives cheney tt anatolia hobbs ##zyn cyclic radiant alistair greenish siena dat independents ##bation conform pieter hyper applicant bradshaw spores telangana vinci inexpensive nuclei 322 jang nme soho spd ##ign cradled receptionist pow ##43 ##rika fascism ##ifer experimenting ##ading ##iec ##region 345 jocelyn maris stair nocturnal toro constabulary elgin ##kker msc ##giving ##schen ##rase doherty doping sarcastically batter maneuvers ##cano ##apple ##gai ##git intrinsic ##nst ##stor 1753 showtime cafes gasps lviv ushered ##thed fours restart astonishment transmitting flyer shrugs ##sau intriguing cones dictated mushrooms medial ##kovsky ##elman escorting gaped ##26 godfather ##door ##sell djs recaptured timetable vila 1710 3a aerodrome mortals scientology ##orne angelina mag convection unpaid insertion intermittent lego ##nated endeavor kota pereira ##lz 304 bwv glamorgan insults agatha fey ##cend fleetwood mahogany protruding steamship zeta ##arty mcguire suspense ##sphere advising urges ##wala hurriedly meteor gilded inline arroyo stalker ##oge excitedly revered ##cure earle introductory ##break ##ilde mutants puff pulses reinforcement ##haling curses lizards stalk correlated ##fixed fallout macquarie ##unas bearded denton heaving 802 ##ocation winery assign dortmund ##lkirk everest invariant charismatic susie ##elling bled lesley telegram sumner bk ##ogen ##к wilcox needy colbert duval ##iferous ##mbled allotted attends imperative ##hita replacements hawker ##inda insurgency ##zee ##eke casts ##yla 680 ives transitioned ##pack ##powering authoritative baylor flex cringed plaintiffs woodrow ##skie drastic ape aroma unfolded commotion nt preoccupied theta routines lasers privatization wand domino ek clenching nsa strategically showered bile handkerchief pere storing christophe insulting 316 nakamura romani asiatic magdalena palma cruises stripping 405 konstantin soaring ##berman colloquially forerunner havilland incarcerated parasites sincerity ##utus disks plank saigon ##ining corbin homo ornaments powerhouse ##tlement chong fastened feasibility idf morphological usable ##nish ##zuki aqueduct jaguars keepers ##flies aleksandr faust assigns ewing bacterium hurled tricky hungarians integers wallis 321 yamaha ##isha hushed oblivion aviator evangelist friars ##eller monograph ode ##nary airplanes labourers charms ##nee 1661 hagen tnt rudder fiesta transcript dorothea ska inhibitor maccabi retorted raining encompassed clauses menacing 1642 lineman ##gist vamps ##ape ##dick gloom ##rera dealings easing seekers ##nut ##pment helens unmanned ##anu ##isson basics ##amy ##ckman adjustments 1688 brutality horne ##zell sui ##55 ##mable aggregator ##thal rhino ##drick ##vira counters zoom ##01 ##rting mn montenegrin packard ##unciation ##♭ ##kki reclaim scholastic thugs pulsed ##icia syriac quan saddam banda kobe blaming buddies dissent ##lusion ##usia corbett jaya delle erratic lexie ##hesis 435 amiga hermes ##pressing ##leen chapels gospels jamal ##uating compute revolving warp ##sso ##thes armory ##eras ##gol antrim loki ##kow ##asian ##good ##zano braid handwriting subdistrict funky pantheon ##iculate concurrency estimation improper juliana ##his newcomers johnstone staten communicated ##oco ##alle sausage stormy ##stered ##tters superfamily ##grade acidic collateral tabloid ##oped ##rza bladder austen ##ellant mcgraw ##hay hannibal mein aquino lucifer wo badger boar cher christensen greenberg interruption ##kken jem 244 mocked bottoms cambridgeshire ##lide sprawling ##bbly eastwood ghent synth ##buck advisers ##bah nominally hapoel qu daggers estranged fabricated towels vinnie wcw misunderstanding anglia nothin unmistakable ##dust ##lova chilly marquette truss ##edge ##erine reece ##lty ##chemist ##connected 272 308 41st bash raion waterfalls ##ump ##main labyrinth queue theorist ##istle bharatiya flexed soundtracks rooney leftist patrolling wharton plainly alleviate eastman schuster topographic engages immensely unbearable fairchild 1620 dona lurking parisian oliveira ia indictment hahn bangladeshi ##aster vivo ##uming ##ential antonia expects indoors kildare harlan ##logue ##ogenic ##sities forgiven ##wat childish tavi ##mide ##orra plausible grimm successively scooted ##bola ##dget ##rith spartans emery flatly azure epilogue ##wark flourish ##iny ##tracted ##overs ##oshi bestseller distressed receipt spitting hermit topological ##cot drilled subunit francs ##layer eel ##fk ##itas octopus footprint petitions ufo ##say ##foil interfering leaking palo ##metry thistle valiant ##pic narayan mcpherson ##fast gonzales ##ym ##enne dustin novgorod solos ##zman doin ##raph ##patient ##meyer soluble ashland cuffs carole pendleton whistling vassal ##river deviation revisited constituents rallied rotate loomed ##eil ##nting amateurs augsburg auschwitz crowns skeletons ##cona bonnet 257 dummy globalization simeon sleeper mandal differentiated ##crow ##mare milne bundled exasperated talmud owes segregated ##feng ##uary dentist piracy props ##rang devlin ##torium malicious paws ##laid dependency ##ergy ##fers ##enna 258 pistons rourke jed grammatical tres maha wig 512 ghostly jayne ##achal ##creen ##ilis ##lins ##rence designate ##with arrogance cambodian clones showdown throttle twain ##ception lobes metz nagoya 335 braking ##furt 385 roaming ##minster amin crippled ##37 ##llary indifferent hoffmann idols intimidating 1751 261 influenza memo onions 1748 bandage consciously ##landa ##rage clandestine observes swiped tangle ##ener ##jected ##trum ##bill ##lta hugs congresses josiah spirited ##dek humanist managerial filmmaking inmate rhymes debuting grimsby ur ##laze duplicate vigor ##tf republished bolshevik refurbishment antibiotics martini methane newscasts royale horizons levant iain visas ##ischen paler ##around manifestation snuck alf chop futile pedestal rehab ##kat bmg kerman res fairbanks jarrett abstraction saharan ##zek 1746 procedural clearer kincaid sash luciano ##ffey crunch helmut ##vara revolutionaries ##tute creamy leach ##mmon 1747 permitting nes plight wendell ##lese contra ts clancy ipa mach staples autopsy disturbances nueva karin pontiac ##uding proxy venerable haunt leto bergman expands ##helm wal ##pipe canning celine cords obesity ##enary intrusion planner ##phate reasoned sequencing 307 harrow ##chon ##dora marred mcintyre repay tarzan darting 248 harrisburg margarita repulsed ##hur ##lding belinda hamburger novo compliant runways bingham registrar skyscraper ic cuthbert improvisation livelihood ##corp ##elial admiring ##dened sporadic believer casablanca popcorn ##29 asha shovel ##bek ##dice coiled tangible ##dez casper elsie resin tenderness rectory ##ivision avail sonar ##mori boutique ##dier guerre bathed upbringing vaulted sandals blessings ##naut ##utnant 1680 306 foxes pia corrosion hesitantly confederates crystalline footprints shapiro tirana valentin drones 45th microscope shipments texted inquisition wry guernsey unauthorized resigning 760 ripple schubert stu reassure felony ##ardo brittle koreans ##havan ##ives dun implicit tyres ##aldi ##lth magnolia ##ehan ##puri ##poulos aggressively fei gr familiarity ##poo indicative ##trust fundamentally jimmie overrun 395 anchors moans ##opus britannia armagh ##ggle purposely seizing ##vao bewildered mundane avoidance cosmopolitan geometridae quartermaster caf 415 chatter engulfed gleam purge ##icate juliette jurisprudence guerra revisions ##bn casimir brew ##jm 1749 clapton cloudy conde hermitage 278 simulations torches vincenzo matteo ##rill hidalgo booming westbound accomplishment tentacles unaffected ##sius annabelle flopped sloping ##litz dreamer interceptor vu ##loh consecration copying messaging breaker climates hospitalized 1752 torino afternoons winfield witnessing ##teacher breakers choirs sawmill coldly ##ege sipping haste uninhabited conical bibliography pamphlets severn edict ##oca deux illnesses grips ##pl rehearsals sis thinkers tame ##keepers 1690 acacia reformer ##osed ##rys shuffling ##iring ##shima eastbound ionic rhea flees littered ##oum rocker vomiting groaning champ overwhelmingly civilizations paces sloop adoptive ##tish skaters ##vres aiding mango ##joy nikola shriek ##ignon pharmaceuticals ##mg tuna calvert gustavo stocked yearbook ##urai ##mana computed subsp riff hanoi kelvin hamid moors pastures summons jihad nectar ##ctors bayou untitled pleasing vastly republics intellect ##η ##ulio ##tou crumbling stylistic sb ##ی consolation frequented h₂o walden widows ##iens 404 ##ignment chunks improves 288 grit recited ##dev snarl sociological ##arte ##gul inquired ##held bruise clube consultancy homogeneous hornets multiplication pasta prick savior ##grin ##kou ##phile yoon ##gara grimes vanishing cheering reacting bn distillery ##quisite ##vity coe dockyard massif ##jord escorts voss ##valent byte chopped hawke illusions workings floats ##koto ##vac kv annapolis madden ##onus alvaro noctuidae ##cum ##scopic avenge steamboat forte illustrates erika ##trip 570 dew nationalities bran manifested thirsty diversified muscled reborn ##standing arson ##lessness ##dran ##logram ##boys ##kushima ##vious willoughby ##phobia 286 alsace dashboard yuki ##chai granville myspace publicized tricked ##gang adjective ##ater relic reorganisation enthusiastically indications saxe ##lassified consolidate iec padua helplessly ramps renaming regulars pedestrians accents convicts inaccurate lowers mana ##pati barrie bjp outta someplace berwick flanking invoked marrow sparsely excerpts clothed rei ##ginal wept ##straße ##vish alexa excel ##ptive membranes aquitaine creeks cutler sheppard implementations ns ##dur fragrance budge concordia magnesium marcelo ##antes gladly vibrating ##rral ##ggles montrose ##omba lew seamus 1630 cocky ##ament ##uen bjorn ##rrick fielder fluttering ##lase methyl kimberley mcdowell reductions barbed ##jic ##tonic aeronautical condensed distracting ##promising huffed ##cala ##sle claudius invincible missy pious balthazar ci ##lang butte combo orson ##dication myriad 1707 silenced ##fed ##rh coco netball yourselves ##oza clarify heller peg durban etudes offender roast blackmail curvature ##woods vile 309 illicit suriname ##linson overture 1685 bubbling gymnast tucking ##mming ##ouin maldives ##bala gurney ##dda ##eased ##oides backside pinto jars racehorse tending ##rdial baronetcy wiener duly ##rke barbarian cupping flawed ##thesis bertha pleistocene puddle swearing ##nob ##tically fleeting prostate amulet educating ##mined ##iti ##tler 75th jens respondents analytics cavaliers papacy raju ##iente ##ulum ##tip funnel 271 disneyland ##lley sociologist ##iam 2500 faulkner louvre menon ##dson 276 ##ower afterlife mannheim peptide referees comedians meaningless ##anger ##laise fabrics hurley renal sleeps ##bour ##icle breakout kristin roadside animator clover disdain unsafe redesign ##urity firth barnsley portage reset narrows 268 commandos expansive speechless tubular ##lux essendon eyelashes smashwords ##yad ##bang ##claim craved sprinted chet somme astor wrocław orton 266 bane ##erving ##uing mischief ##amps ##sund scaling terre ##xious impairment offenses undermine moi soy contiguous arcadia inuit seam ##tops macbeth rebelled ##icative ##iot 590 elaborated frs uniformed ##dberg 259 powerless priscilla stimulated 980 qc arboretum frustrating trieste bullock ##nified enriched glistening intern ##adia locus nouvelle ollie ike lash starboard ee tapestry headlined hove rigged ##vite pollock ##yme thrive clustered cas roi gleamed olympiad ##lino pressured regimes ##hosis ##lick ripley ##ophone kickoff gallon rockwell ##arable crusader glue revolutions scrambling 1714 grover ##jure englishman aztec 263 contemplating coven ipad preach triumphant tufts ##esian rotational ##phus 328 falkland ##brates strewn clarissa rejoin environmentally glint banded drenched moat albanians johor rr maestro malley nouveau shaded taxonomy v6 adhere bunk airfields ##ritan 1741 encompass remington tran ##erative amelie mazda friar morals passions ##zai breadth vis ##hae argus burnham caressing insider rudd ##imov ##mini ##rso italianate murderous textual wainwright armada bam weave timer ##taken ##nh fra ##crest ardent salazar taps tunis ##ntino allegro gland philanthropic ##chester implication ##optera esq judas noticeably wynn ##dara inched indexed crises villiers bandit royalties patterned cupboard interspersed accessory isla kendrick entourage stitches ##esthesia headwaters ##ior interlude distraught draught 1727 ##basket biased sy transient triad subgenus adapting kidd shortstop ##umatic dimly spiked mcleod reprint nellie pretoria windmill ##cek singled ##mps 273 reunite ##orous 747 bankers outlying ##omp ##ports ##tream apologies cosmetics patsy ##deh ##ocks ##yson bender nantes serene ##nad lucha mmm 323 ##cius ##gli cmll coinage nestor juarez ##rook smeared sprayed twitching sterile irina embodied juveniles enveloped miscellaneous cancers dq gulped luisa crested swat donegal ref ##anov ##acker hearst mercantile ##lika doorbell ua vicki ##alla ##som bilbao psychologists stryker sw horsemen turkmenistan wits ##national anson mathew screenings ##umb rihanna ##agne ##nessy aisles ##iani ##osphere hines kenton saskatoon tasha truncated ##champ ##itan mildred advises fredrik interpreting inhibitors ##athi spectroscopy ##hab ##kong karim panda ##oia ##nail ##vc conqueror kgb leukemia ##dity arrivals cheered pisa phosphorus shielded ##riated mammal unitarian urgently chopin sanitary ##mission spicy drugged hinges ##tort tipping trier impoverished westchester ##caster 267 epoch nonstop ##gman ##khov aromatic centrally cerro ##tively ##vio billions modulation sedimentary 283 facilitating outrageous goldstein ##eak ##kt ld maitland penultimate pollard ##dance fleets spaceship vertebrae ##nig alcoholism als recital ##bham ##ference ##omics m2 ##bm trois ##tropical ##в commemorates ##meric marge ##raction 1643 670 cosmetic ravaged ##ige catastrophe eng ##shida albrecht arterial bellamy decor harmon ##rde bulbs synchronized vito easiest shetland shielding wnba ##glers ##ssar ##riam brianna cumbria ##aceous ##rard cores thayer ##nsk brood hilltop luminous carts keynote larkin logos ##cta ##ا ##mund ##quay lilith tinted 277 wrestle mobilization ##uses sequential siam bloomfield takahashi 274 ##ieving presenters ringo blazed witty ##oven ##ignant devastation haydn harmed newt therese ##peed gershwin molina rabbis sudanese 001 innate restarted ##sack ##fus slices wb ##shah enroll hypothetical hysterical 1743 fabio indefinite warped ##hg exchanging 525 unsuitable ##sboro gallo 1603 bret cobalt homemade ##hunter mx operatives ##dhar terraces durable latch pens whorls ##ctuated ##eaux billing ligament succumbed ##gly regulators spawn ##brick ##stead filmfare rochelle ##nzo 1725 circumstance saber supplements ##nsky ##tson crowe wellesley carrot ##9th ##movable primate drury sincerely topical ##mad ##rao callahan kyiv smarter tits undo ##yeh announcements anthologies barrio nebula ##islaus ##shaft ##tyn bodyguards 2021 assassinate barns emmett scully ##mah ##yd ##eland ##tino ##itarian demoted gorman lashed prized adventist writ ##gui alla invertebrates ##ausen 1641 amman 1742 align healy redistribution ##gf ##rize insulation ##drop adherents hezbollah vitro ferns yanking 269 php registering uppsala cheerleading confines mischievous tully ##ross 49th docked roam stipulated pumpkin ##bry prompt ##ezer blindly shuddering craftsmen frail scented katharine scramble shaggy sponge helix zaragoza 279 ##52 43rd backlash fontaine seizures posse cowan nonfiction telenovela wwii hammered undone ##gpur encircled irs ##ivation artefacts oneself searing smallpox ##belle ##osaurus shandong breached upland blushing rankin infinitely psyche tolerated docking evicted ##col unmarked ##lving gnome lettering litres musique ##oint benevolent ##jal blackened ##anna mccall racers tingle ##ocene ##orestation introductions radically 292 ##hiff ##باد 1610 1739 munchen plead ##nka condo scissors ##sight ##tens apprehension ##cey ##yin hallmark watering formulas sequels ##llas aggravated bae commencing ##building enfield prohibits marne vedic civilized euclidean jagger beforehand blasts dumont ##arney ##nem 740 conversions hierarchical rios simulator ##dya ##lellan hedges oleg thrusts shadowed darby maximize 1744 gregorian ##nded ##routed sham unspecified ##hog emory factual ##smo ##tp fooled ##rger ortega wellness marlon ##oton ##urance casket keating ley enclave ##ayan char influencing jia ##chenko 412 ammonia erebidae incompatible violins cornered ##arat grooves astronauts columbian rampant fabrication kyushu mahmud vanish ##dern mesopotamia ##lete ict ##rgen caspian kenji pitted ##vered 999 grimace roanoke tchaikovsky twinned ##analysis ##awan xinjiang arias clemson kazakh sizable 1662 ##khand ##vard plunge tatum vittorio ##nden cholera ##dana ##oper bracing indifference projectile superliga ##chee realises upgrading 299 porte retribution ##vies nk stil ##resses ama bureaucracy blackberry bosch testosterone collapses greer ##pathic ioc fifties malls ##erved bao baskets adolescents siegfried ##osity ##tosis mantra detecting existent fledgling ##cchi dissatisfied gan telecommunication mingled sobbed 6000 controversies outdated taxis ##raus fright slams ##lham ##fect ##tten detectors fetal tanned ##uw fray goth olympian skipping mandates scratches sheng unspoken hyundai tracey hotspur restrictive ##buch americana mundo ##bari burroughs diva vulcan ##6th distinctions thumping ##ngen mikey sheds fide rescues springsteen vested valuation ##ece ##ely pinnacle rake sylvie ##edo almond quivering ##irus alteration faltered ##wad 51st hydra ticked ##kato recommends ##dicated antigua arjun stagecoach wilfred trickle pronouns ##pon aryan nighttime ##anian gall pea stitch ##hei leung milos ##dini eritrea nexus starved snowfall kant parasitic cot discus hana strikers appleton kitchens ##erina ##partisan ##itha ##vius disclose metis ##channel 1701 tesla ##vera fitch 1735 blooded ##tila decimal ##tang ##bai cyclones eun bottled peas pensacola basha bolivian crabs boil lanterns partridge roofed 1645 necks ##phila opined patting ##kla ##lland chuckles volta whereupon ##nche devout euroleague suicidal ##dee inherently involuntary knitting nasser ##hide puppets colourful courageous southend stills miraculous hodgson richer rochdale ethernet greta uniting prism umm ##haya ##itical ##utation deterioration pointe prowess ##ropriation lids scranton billings subcontinent ##koff ##scope brute kellogg psalms degraded ##vez stanisław ##ructured ferreira pun astonishing gunnar ##yat arya prc gottfried ##tight excursion ##ographer dina ##quil ##nare huffington illustrious wilbur gundam verandah ##zard naacp ##odle constructive fjord kade ##naud generosity thrilling baseline cayman frankish plastics accommodations zoological ##fting cedric qb motorized ##dome ##otted squealed tackled canucks budgets situ asthma dail gabled grasslands whimpered writhing judgments ##65 minnie pv ##carbon bananas grille domes monique odin maguire markham tierney ##estra ##chua libel poke speedy atrium laval notwithstanding ##edly fai kala ##sur robb ##sma listings luz supplementary tianjin ##acing enzo jd ric scanner croats transcribed ##49 arden cv ##hair ##raphy ##lver ##uy 357 seventies staggering alam horticultural hs regression timbers blasting ##ounded montagu manipulating ##cit catalytic 1550 troopers ##meo condemnation fitzpatrick ##oire ##roved inexperienced 1670 castes ##lative outing 314 dubois flicking quarrel ste learners 1625 iq whistled ##class 282 classify tariffs temperament 355 folly liszt ##yles immersed jordanian ceasefire apparel extras maru fished ##bio harta stockport assortment craftsman paralysis transmitters ##cola blindness ##wk fatally proficiency solemnly ##orno repairing amore groceries ultraviolet ##chase schoolhouse ##tua resurgence nailed ##otype ##× ruse saliva diagrams ##tructing albans rann thirties 1b antennas hilarious cougars paddington stats ##eger breakaway ipod reza authorship prohibiting scoffed ##etz ##ttle conscription defected trondheim ##fires ivanov keenan ##adan ##ciful ##fb ##slow locating ##ials ##tford cadiz basalt blankly interned rags rattling ##tick carpathian reassured sync bum guildford iss staunch ##onga astronomers sera sofie emergencies susquehanna ##heard duc mastery vh1 williamsburg bayer buckled craving ##khan ##rdes bloomington ##write alton barbecue ##bians justine ##hri ##ndt delightful smartphone newtown photon retrieval peugeot hissing ##monium ##orough flavors lighted relaunched tainted ##games ##lysis anarchy microscopic hopping adept evade evie ##beau inhibit sinn adjustable hurst intuition wilton cisco 44th lawful lowlands stockings thierry ##dalen ##hila ##nai fates prank tb maison lobbied provocative 1724 4a utopia ##qual carbonate gujarati purcell ##rford curtiss ##mei overgrown arenas mediation swallows ##rnik respectful turnbull ##hedron ##hope alyssa ozone ##ʻi ami gestapo johansson snooker canteen cuff declines empathy stigma ##ags ##iner ##raine taxpayers gui volga ##wright ##copic lifespan overcame tattooed enactment giggles ##ador ##camp barrington bribe obligatory orbiting peng ##enas elusive sucker ##vating cong hardship empowered anticipating estrada cryptic greasy detainees planck sudbury plaid dod marriott kayla ##ears ##vb ##zd mortally ##hein cognition radha 319 liechtenstein meade richly argyle harpsichord liberalism trumpets lauded tyrant salsa tiled lear promoters reused slicing trident ##chuk ##gami ##lka cantor checkpoint ##points gaul leger mammalian ##tov ##aar ##schaft doha frenchman nirvana ##vino delgado headlining ##eron ##iography jug tko 1649 naga intersections ##jia benfica nawab ##suka ashford gulp ##deck ##vill ##rug brentford frazier pleasures dunne potsdam shenzhen dentistry ##tec flanagan ##dorff ##hear chorale dinah prem quezon ##rogated relinquished sutra terri ##pani flaps ##rissa poly ##rnet homme aback ##eki linger womb ##kson ##lewood doorstep orthodoxy threaded westfield ##rval dioceses fridays subsided ##gata loyalists ##biotic ##ettes letterman lunatic prelate tenderly invariably souza thug winslow ##otide furlongs gogh jeopardy ##runa pegasus ##umble humiliated standalone tagged ##roller freshmen klan ##bright attaining initiating transatlantic logged viz ##uance 1723 combatants intervening stephane chieftain despised grazed 317 cdc galveston godzilla macro simulate ##planes parades ##esses 960 ##ductive ##unes equator overdose ##cans ##hosh ##lifting joshi epstein sonora treacherous aquatics manchu responsive ##sation supervisory ##christ ##llins ##ibar ##balance ##uso kimball karlsruhe mab ##emy ignores phonetic reuters spaghetti 820 almighty danzig rumbling tombstone designations lured outset ##felt supermarkets ##wt grupo kei kraft susanna ##blood comprehension genealogy ##aghan ##verted redding ##ythe 1722 bowing ##pore ##roi lest sharpened fulbright valkyrie sikhs ##unds swans bouquet merritt ##tage ##venting commuted redhead clerks leasing cesare dea hazy ##vances fledged greenfield servicemen ##gical armando blackout dt sagged downloadable intra potion pods ##4th ##mism xp attendants gambia stale ##ntine plump asteroids rediscovered buds flea hive ##neas 1737 classifications debuts ##eles olympus scala ##eurs ##gno ##mute hummed sigismund visuals wiggled await pilasters clench sulfate ##ances bellevue enigma trainee snort ##sw clouded denim ##rank ##rder churning hartman lodges riches sima ##missible accountable socrates regulates mueller ##cr 1702 avoids solids himalayas nutrient pup ##jevic squat fades nec ##lates ##pina ##rona ##ου privateer tequila ##gative ##mpton apt hornet immortals ##dou asturias cleansing dario ##rries ##anta etymology servicing zhejiang ##venor ##nx horned erasmus rayon relocating £10 ##bags escalated promenade stubble 2010s artisans axial liquids mora sho yoo ##tsky bundles oldies ##nally notification bastion ##ths sparkle ##lved 1728 leash pathogen highs ##hmi immature 880 gonzaga ignatius mansions monterrey sweets bryson ##loe polled regatta brightest pei rosy squid hatfield payroll addict meath cornerback heaviest lodging ##mage capcom rippled ##sily barnet mayhem ymca snuggled rousseau ##cute blanchard 284 fragmented leighton chromosomes risking ##md ##strel ##utter corinne coyotes cynical hiroshi yeomanry ##ractive ebook grading mandela plume agustin magdalene ##rkin bea femme trafford ##coll ##lun ##tance 52nd fourier upton ##mental camilla gust iihf islamabad longevity ##kala feldman netting ##rization endeavour foraging mfa orr ##open greyish contradiction graz ##ruff handicapped marlene tweed oaxaca spp campos miocene pri configured cooks pluto cozy pornographic ##entes 70th fairness glided jonny lynne rounding sired ##emon ##nist remade uncover ##mack complied lei newsweek ##jured ##parts ##enting ##pg 293 finer guerrillas athenian deng disused stepmother accuse gingerly seduction 521 confronting ##walker ##going gora nostalgia sabres virginity wrenched ##minated syndication wielding eyre ##56 ##gnon ##igny behaved taxpayer sweeps ##growth childless gallant ##ywood amplified geraldine scrape ##ffi babylonian fresco ##rdan ##kney ##position 1718 restricting tack fukuoka osborn selector partnering ##dlow 318 gnu kia tak whitley gables ##54 ##mania mri softness immersion ##bots ##evsky 1713 chilling insignificant pcs ##uis elites lina purported supplemental teaming ##americana ##dding ##inton proficient rouen ##nage ##rret niccolo selects ##bread fluffy 1621 gruff knotted mukherjee polgara thrash nicholls secluded smoothing thru corsica loaf whitaker inquiries ##rrier ##kam indochina 289 marlins myles peking ##tea extracts pastry superhuman connacht vogel ##ditional ##het ##udged ##lash gloss quarries refit teaser ##alic ##gaon 20s materialized sling camped pickering tung tracker pursuant ##cide cranes soc ##cini ##typical ##viere anhalt overboard workout chores fares orphaned stains ##logie fenton surpassing joyah triggers ##itte grandmaster ##lass ##lists clapping fraudulent ledger nagasaki ##cor ##nosis ##tsa eucalyptus tun ##icio ##rney ##tara dax heroism ina wrexham onboard unsigned ##dates moshe galley winnie droplets exiles praises watered noodles ##aia fein adi leland multicultural stink bingo comets erskine modernized canned constraint domestically chemotherapy featherweight stifled ##mum darkly irresistible refreshing hasty isolate ##oys kitchener planners ##wehr cages yarn implant toulon elects childbirth yue ##lind ##lone cn rightful sportsman junctions remodeled specifies ##rgh 291 ##oons complimented ##urgent lister ot ##logic bequeathed cheekbones fontana gabby ##dial amadeus corrugated maverick resented triangles ##hered ##usly nazareth tyrol 1675 assent poorer sectional aegean ##cous 296 nylon ghanaian ##egorical ##weig cushions forbid fusiliers obstruction somerville ##scia dime earrings elliptical leyte oder polymers timmy atm midtown piloted settles continual externally mayfield ##uh enrichment henson keane persians 1733 benji braden pep 324 ##efe contenders pepsi valet ##isches 298 ##asse ##earing goofy stroll ##amen authoritarian occurrences adversary ahmedabad tangent toppled dorchester 1672 modernism marxism islamist charlemagne exponential racks unicode brunette mbc pic skirmish ##bund ##lad ##powered ##yst hoisted messina shatter ##ctum jedi vantage ##music ##neil clemens mahmoud corrupted authentication lowry nils ##washed omnibus wounding jillian ##itors ##opped serialized narcotics handheld ##arm ##plicity intersecting stimulating ##onis crate fellowships hemingway casinos climatic fordham copeland drip beatty leaflets robber brothel madeira ##hedral sphinx ultrasound ##vana valor forbade leonid villas ##aldo duane marquez ##cytes disadvantaged forearms kawasaki reacts consular lax uncles uphold ##hopper concepcion dorsey lass ##izan arching passageway 1708 researches tia internationals ##graphs ##opers distinguishes javanese divert ##uven plotted ##listic ##rwin ##erik ##tify affirmative signifies validation ##bson kari felicity georgina zulu ##eros ##rained ##rath overcoming ##dot argyll ##rbin 1734 chiba ratification windy earls parapet ##marks hunan pristine astrid punta ##gart brodie ##kota ##oder malaga minerva rouse ##phonic bellowed pagoda portals reclamation ##gur ##odies ##⁄₄ parentheses quoting allergic palette showcases benefactor heartland nonlinear ##tness bladed cheerfully scans ##ety ##hone 1666 girlfriends pedersen hiram sous ##liche ##nator 1683 ##nery ##orio ##umen bobo primaries smiley ##cb unearthed uniformly fis metadata 1635 ind ##oted recoil ##titles ##tura ##ια 406 hilbert jamestown mcmillan tulane seychelles ##frid antics coli fated stucco ##grants 1654 bulky accolades arrays caledonian carnage optimism puebla ##tative ##cave enforcing rotherham seo dunlop aeronautics chimed incline zoning archduke hellenistic ##oses ##sions candi thong ##ople magnate rustic ##rsk projective slant ##offs danes hollis vocalists ##ammed congenital contend gesellschaft ##ocating ##pressive douglass quieter ##cm ##kshi howled salim spontaneously townsville buena southport ##bold kato 1638 faerie stiffly ##vus ##rled 297 flawless realising taboo ##7th bytes straightening 356 jena ##hid ##rmin cartwright berber bertram soloists 411 noses 417 coping fission hardin inca ##cen 1717 mobilized vhf ##raf biscuits curate ##85 ##anial 331 gaunt neighbourhoods 1540 ##abas blanca bypassed sockets behold coincidentally ##bane nara shave splinter terrific ##arion ##erian commonplace juris redwood waistband boxed caitlin fingerprints jennie naturalized ##ired balfour craters jody bungalow hugely quilt glitter pigeons undertaker bulging constrained goo ##sil ##akh assimilation reworked ##person persuasion ##pants felicia ##cliff ##ulent 1732 explodes ##dun ##inium ##zic lyman vulture hog overlook begs northwards ow spoil ##urer fatima favorably accumulate sargent sorority corresponded dispersal kochi toned ##imi ##lita internacional newfound ##agger ##lynn ##rigue booths peanuts ##eborg medicare muriel nur ##uram crates millennia pajamas worsened ##breakers jimi vanuatu yawned ##udeau carousel ##hony hurdle ##ccus ##mounted ##pod rv ##eche airship ambiguity compulsion recapture ##claiming arthritis ##osomal 1667 asserting ngc sniffing dade discontent glendale ported ##amina defamation rammed ##scent fling livingstone ##fleet 875 ##ppy apocalyptic comrade lcd ##lowe cessna eine persecuted subsistence demi hoop reliefs 710 coptic progressing stemmed perpetrators 1665 priestess ##nio dobson ebony rooster itf tortricidae ##bbon ##jian cleanup ##jean ##øy 1721 eighties taxonomic holiness ##hearted ##spar antilles showcasing stabilized ##nb gia mascara michelangelo dawned ##uria ##vinsky extinguished fitz grotesque £100 ##fera ##loid ##mous barges neue throbbed cipher johnnie ##a1 ##mpt outburst ##swick spearheaded administrations c1 heartbreak pixels pleasantly ##enay lombardy plush ##nsed bobbie ##hly reapers tremor xiang minogue substantive hitch barak ##wyl kwan ##encia 910 obscene elegance indus surfer bribery conserve ##hyllum ##masters horatio ##fat apes rebound psychotic ##pour iteration ##mium ##vani botanic horribly antiques dispose paxton ##hli ##wg timeless 1704 disregard engraver hounds ##bau ##version looted uno facilitates groans masjid rutland antibody disqualification decatur footballers quake slacks 48th rein scribe stabilize commits exemplary tho ##hort ##chison pantry traversed ##hiti disrepair identifiable vibrated baccalaureate ##nnis csa interviewing ##iensis ##raße greaves wealthiest 343 classed jogged £5 ##58 ##atal illuminating knicks respecting ##uno scrubbed ##iji ##dles kruger moods growls raider silvia chefs kam vr cree percival ##terol gunter counterattack defiant henan ze ##rasia ##riety equivalence submissions ##fra ##thor bautista mechanically ##heater cornice herbal templar ##mering outputs ruining ligand renumbered extravagant mika blockbuster eta insurrection ##ilia darkening ferocious pianos strife kinship ##aer melee ##anor ##iste ##may ##oue decidedly weep ##jad ##missive ##ppel 354 puget unease ##gnant 1629 hammering kassel ob wessex ##lga bromwich egan paranoia utilization ##atable ##idad contradictory provoke ##ols ##ouring ##tangled knesset ##very ##lette plumbing ##sden ##¹ greensboro occult sniff 338 zev beaming gamer haggard mahal ##olt ##pins mendes utmost briefing gunnery ##gut ##pher ##zh ##rok 1679 khalifa sonya ##boot principals urbana wiring ##liffe ##minating ##rrado dahl nyu skepticism np townspeople ithaca lobster somethin ##fur ##arina ##−1 freighter zimmerman biceps contractual ##herton amend hurrying subconscious ##anal 336 meng clermont spawning ##eia ##lub dignitaries impetus snacks spotting twigs ##bilis ##cz ##ouk libertadores nic skylar ##aina ##firm gustave asean ##anum dieter legislatures flirt bromley trolls umar ##bbies ##tyle blah parc bridgeport crank negligence ##nction 46th constantin molded bandages seriousness 00pm siegel carpets compartments upbeat statehood ##dner ##edging marko 730 platt ##hane paving ##iy 1738 abbess impatience limousine nbl ##talk 441 lucille mojo nightfall robbers ##nais karel brisk calves replicate ascribed telescopes ##olf intimidated ##reen ballast specialization ##sit aerodynamic caliphate rainer visionary ##arded epsilon ##aday ##onte aggregation auditory boosted reunification kathmandu loco robyn 402 acknowledges appointing humanoid newell redeveloped restraints ##tained barbarians chopper 1609 italiana ##lez ##lho investigates wrestlemania ##anies ##bib 690 ##falls creaked dragoons gravely minions stupidity volley ##harat ##week musik ##eries ##uously fungal massimo semantics malvern ##ahl ##pee discourage embryo imperialism 1910s profoundly ##ddled jiangsu sparkled stat ##holz sweatshirt tobin ##iction sneered ##cheon ##oit brit causal smyth ##neuve diffuse perrin silvio ##ipes ##recht detonated iqbal selma ##nism ##zumi roasted ##riders tay ##ados ##mament ##mut ##rud 840 completes nipples cfa flavour hirsch ##laus calderon sneakers moravian ##ksha 1622 rq 294 ##imeters bodo ##isance ##pre ##ronia anatomical excerpt ##lke dh kunst ##tablished ##scoe biomass panted unharmed gael housemates montpellier ##59 coa rodents tonic hickory singleton ##taro 451 1719 aldo breaststroke dempsey och rocco ##cuit merton dissemination midsummer serials ##idi haji polynomials ##rdon gs enoch prematurely shutter taunton £3 ##grating ##inates archangel harassed ##asco 326 archway dazzling ##ecin 1736 sumo wat ##kovich 1086 honneur ##ently ##nostic ##ttal ##idon 1605 403 1716 blogger rents ##gnan hires ##ikh ##dant howie ##rons handler retracted shocks 1632 arun duluth kepler trumpeter ##lary peeking seasoned trooper ##mara laszlo ##iciencies ##rti heterosexual ##inatory ##ssion indira jogging ##inga ##lism beit dissatisfaction malice ##ately nedra peeling ##rgeon 47th stadiums 475 vertigo ##ains iced restroom ##plify ##tub illustrating pear ##chner ##sibility inorganic rappers receipts watery ##kura lucinda ##oulos reintroduced ##8th ##tched gracefully saxons nutritional wastewater rained favourites bedrock fisted hallways likeness upscale ##lateral 1580 blinds prequel ##pps ##tama deter humiliating restraining tn vents 1659 laundering recess rosary tractors coulter federer ##ifiers ##plin persistence ##quitable geschichte pendulum quakers ##beam bassett pictorial buffet koln ##sitor drills reciprocal shooters ##57 ##cton ##tees converge pip dmitri donnelly yamamoto aqua azores demographics hypnotic spitfire suspend wryly roderick ##rran sebastien ##asurable mavericks ##fles ##200 himalayan prodigy ##iance transvaal demonstrators handcuffs dodged mcnamara sublime 1726 crazed ##efined ##till ivo pondered reconciled shrill sava ##duk bal cad heresy jaipur goran ##nished 341 lux shelly whitehall ##hre israelis peacekeeping ##wled 1703 demetrius ousted ##arians ##zos beale anwar backstroke raged shrinking cremated ##yck benign towing wadi darmstadt landfill parana soothe colleen sidewalks mayfair tumble hepatitis ferrer superstructure ##gingly ##urse ##wee anthropological translators ##mies closeness hooves ##pw mondays ##roll ##vita landscaping ##urized purification sock thorns thwarted jalan tiberius ##taka saline ##rito confidently khyber sculptors ##ij brahms hammersmith inspectors battista fivb fragmentation hackney ##uls arresting exercising antoinette bedfordshire ##zily dyed ##hema 1656 racetrack variability ##tique 1655 austrians deteriorating madman theorists aix lehman weathered 1731 decreed eruptions 1729 flaw quinlan sorbonne flutes nunez 1711 adored downwards fable rasped 1712 moritz mouthful renegade shivers stunts dysfunction restrain translit 327 pancakes ##avio ##cision ##tray 351 vial ##lden bain ##maid ##oxide chihuahua malacca vimes ##rba ##rnier 1664 donnie plaques ##ually 337 bangs floppy huntsville loretta nikolay ##otte eater handgun ubiquitous ##hett eras zodiac 1634 ##omorphic 1820s ##zog cochran ##bula ##lithic warring ##rada dalai excused blazers mcconnell reeling bot este ##abi geese hoax taxon ##bla guitarists ##icon condemning hunts inversion moffat taekwondo ##lvis 1624 stammered ##rest ##rzy sousa fundraiser marylebone navigable uptown cabbage daniela salman shitty whimper ##kian ##utive programmers protections rm ##rmi ##rued forceful ##enes fuss ##tao ##wash brat oppressive reykjavik spartak ticking ##inkles ##kiewicz adolph horst maui protege straighten cpc landau concourse clements resultant ##ando imaginative joo reactivated ##rem ##ffled ##uising consultative ##guide flop kaitlyn mergers parenting somber ##vron supervise vidhan ##imum courtship exemplified harmonies medallist refining ##rrow ##ка amara ##hum 780 goalscorer sited overshadowed rohan displeasure secretive multiplied osman ##orth engravings padre ##kali ##veda miniatures mis ##yala clap pali rook ##cana 1692 57th antennae astro oskar 1628 bulldog crotch hackett yucatan ##sure amplifiers brno ferrara migrating ##gree thanking turing ##eza mccann ting andersson onslaught gaines ganga incense standardization ##mation sentai scuba stuffing turquoise waivers alloys ##vitt regaining vaults ##clops ##gizing digger furry memorabilia probing ##iad payton rec deutschland filippo opaque seamen zenith afrikaans ##filtration disciplined inspirational ##merie banco confuse grafton tod ##dgets championed simi anomaly biplane ##ceptive electrode ##para 1697 cleavage crossbow swirl informant ##lars ##osta afi bonfire spec ##oux lakeside slump ##culus ##lais ##qvist ##rrigan 1016 facades borg inwardly cervical xl pointedly 050 stabilization ##odon chests 1699 hacked ctv orthogonal suzy ##lastic gaulle jacobite rearview ##cam ##erted ashby ##drik ##igate ##mise ##zbek affectionately canine disperse latham ##istles ##ivar spielberg ##orin ##idium ezekiel cid ##sg durga middletown ##cina customized frontiers harden ##etano ##zzy 1604 bolsheviks ##66 coloration yoko ##bedo briefs slabs debra liquidation plumage ##oin blossoms dementia subsidy 1611 proctor relational jerseys parochial ter ##ici esa peshawar cavalier loren cpi idiots shamrock 1646 dutton malabar mustache ##endez ##ocytes referencing terminates marche yarmouth ##sop acton mated seton subtly baptised beige extremes jolted kristina telecast ##actic safeguard waldo ##baldi ##bular endeavors sloppy subterranean ##ensburg ##itung delicately pigment tq ##scu 1626 ##ound collisions coveted herds ##personal ##meister ##nberger chopra ##ricting abnormalities defective galician lucie ##dilly alligator likened ##genase burundi clears complexion derelict deafening diablo fingered champaign dogg enlist isotope labeling mrna ##erre brilliance marvelous ##ayo 1652 crawley ether footed dwellers deserts hamish rubs warlock skimmed ##lizer 870 buick embark heraldic irregularities ##ajan kiara ##kulam ##ieg antigen kowalski ##lge oakley visitation ##mbit vt ##suit 1570 murderers ##miento ##rites chimneys ##sling condemn custer exchequer havre ##ghi fluctuations ##rations dfb hendricks vaccines ##tarian nietzsche biking juicy ##duced brooding scrolling selangor ##ragan 352 annum boomed seminole sugarcane ##dna departmental dismissing innsbruck arteries ashok batavia daze kun overtook ##rga ##tlan beheaded gaddafi holm electronically faulty galilee fractures kobayashi ##lized gunmen magma aramaic mala eastenders inference messengers bf ##qu 407 bathrooms ##vere 1658 flashbacks ideally misunderstood ##jali ##weather mendez ##grounds 505 uncanny ##iii 1709 friendships ##nbc sacrament accommodated reiterated logistical pebbles thumped ##escence administering decrees drafts ##flight ##cased ##tula futuristic picket intimidation winthrop ##fahan interfered 339 afar francoise morally uta cochin croft dwarfs ##bruck ##dents ##nami biker ##hner ##meral nano ##isen ##ometric ##pres ##ан brightened meek parcels securely gunners ##jhl ##zko agile hysteria ##lten ##rcus bukit champs chevy cuckoo leith sadler theologians welded ##section 1663 jj plurality xander ##rooms ##formed shredded temps intimately pau tormented ##lok ##stellar 1618 charred ems essen ##mmel alarms spraying ascot blooms twinkle ##abia ##apes internment obsidian ##chaft snoop ##dav ##ooping malibu ##tension quiver ##itia hays mcintosh travers walsall ##ffie 1623 beverley schwarz plunging structurally m3 rosenthal vikram ##tsk 770 ghz ##onda ##tiv chalmers groningen pew reckon unicef ##rvis 55th ##gni 1651 sulawesi avila cai metaphysical screwing turbulence ##mberg augusto samba 56th baffled momentary toxin ##urian ##wani aachen condoms dali steppe ##3d ##app ##oed ##year adolescence dauphin electrically inaccessible microscopy nikita ##ega atv ##cel ##enter ##oles ##oteric ##ы accountants punishments wrongly bribes adventurous clinch flinders southland ##hem ##kata gough ##ciency lads soared ##ה undergoes deformation outlawed rubbish ##arus ##mussen ##nidae ##rzburg arcs ##ingdon ##tituted 1695 wheelbase wheeling bombardier campground zebra ##lices ##oj ##bain lullaby ##ecure donetsk wylie grenada ##arding ##ης squinting eireann opposes ##andra maximal runes ##broken ##cuting ##iface ##ror ##rosis additive britney adultery triggering ##drome detrimental aarhus containment jc swapped vichy ##ioms madly ##oric ##rag brant ##ckey ##trix 1560 1612 broughton rustling ##stems ##uder asbestos mentoring ##nivorous finley leaps ##isan apical pry slits substitutes ##dict intuitive fantasia insistent unreasonable ##igen ##vna domed hannover margot ponder ##zziness impromptu jian lc rampage stemming ##eft andrey gerais whichever amnesia appropriated anzac clicks modifying ultimatum cambrian maids verve yellowstone ##mbs conservatoire ##scribe adherence dinners spectra imperfect mysteriously sidekick tatar tuba ##aks ##ifolia distrust ##athan ##zle c2 ronin zac ##pse celaena instrumentalist scents skopje ##mbling comical compensated vidal condor intersect jingle wavelengths ##urrent mcqueen ##izzly carp weasel 422 kanye militias postdoctoral eugen gunslinger ##ɛ faux hospice ##for appalled derivation dwarves ##elis dilapidated ##folk astoria philology ##lwyn ##otho ##saka inducing philanthropy ##bf ##itative geek markedly sql ##yce bessie indices rn ##flict 495 frowns resolving weightlifting tugs cleric contentious 1653 mania rms ##miya ##reate ##ruck ##tucket bien eels marek ##ayton ##cence discreet unofficially ##ife leaks ##bber 1705 332 dung compressor hillsborough pandit shillings distal ##skin 381 ##tat ##you nosed ##nir mangrove undeveloped ##idia textures ##inho ##500 ##rise ae irritating nay amazingly bancroft apologetic compassionate kata symphonies ##lovic airspace ##lch 930 gifford precautions fulfillment sevilla vulgar martinique ##urities looting piccolo tidy ##dermott quadrant armchair incomes mathematicians stampede nilsson ##inking ##scan foo quarterfinal ##ostal shang shouldered squirrels ##owe 344 vinegar ##bner ##rchy ##systems delaying ##trics ars dwyer rhapsody sponsoring ##gration bipolar cinder starters ##olio ##urst 421 signage ##nty aground figurative mons acquaintances duets erroneously soyuz elliptic recreated ##cultural ##quette ##ssed ##tma ##zcz moderator scares ##itaire ##stones ##udence juniper sighting ##just ##nsen britten calabria ry bop cramer forsyth stillness ##л airmen gathers unfit ##umber ##upt taunting ##rip seeker streamlined ##bution holster schumann tread vox ##gano ##onzo strive dil reforming covent newbury predicting ##orro decorate tre ##puted andover ie asahi dept dunkirk gills ##tori buren huskies ##stis ##stov abstracts bets loosen ##opa 1682 yearning ##glio ##sir berman effortlessly enamel napoli persist ##peration ##uez attache elisa b1 invitations ##kic accelerating reindeer boardwalk clutches nelly polka starbucks ##kei adamant huey lough unbroken adventurer embroidery inspecting stanza ##ducted naia taluka ##pone ##roids chases deprivation florian ##jing ##ppet earthly ##lib ##ssee colossal foreigner vet freaks patrice rosewood triassic upstate ##pkins dominates ata chants ks vo ##400 ##bley ##raya ##rmed 555 agra infiltrate ##ailing ##ilation ##tzer ##uppe ##werk binoculars enthusiast fujian squeak ##avs abolitionist almeida boredom hampstead marsden rations ##ands inflated 334 bonuses rosalie patna ##rco 329 detachments penitentiary 54th flourishing woolf ##dion ##etched papyrus ##lster ##nsor ##toy bobbed dismounted endelle inhuman motorola tbs wince wreath ##ticus hideout inspections sanjay disgrace infused pudding stalks ##urbed arsenic leases ##hyl ##rrard collarbone ##waite ##wil dowry ##bant ##edance genealogical nitrate salamanca scandals thyroid necessitated ##! ##" ### ##$ ##% ##& ##' ##( ##) ##* ##+ ##, ##- ##. ##/ ##: ##; ##< ##= ##> ##? ##@ ##[ ##\ ##] ##^ ##_ ##` ##{ ##| ##} ##~ ##¡ ##¢ ##£ ##¤ ##¥ ##¦ ##§ ##¨ ##© ##ª ##« ##¬ ##® ##± ##´ ##µ ##¶ ##· ##º ##» ##¼ ##¾ ##¿ ##æ ##ð ##÷ ##þ ##đ ##ħ ##ŋ ##œ ##ƒ ##ɐ ##ɑ ##ɒ ##ɔ ##ɕ ##ə ##ɡ ##ɣ ##ɨ ##ɪ ##ɫ ##ɬ ##ɯ ##ɲ ##ɴ ##ɹ ##ɾ ##ʀ ##ʁ ##ʂ ##ʃ ##ʉ ##ʊ ##ʋ ##ʌ ##ʎ ##ʐ ##ʑ ##ʒ ##ʔ ##ʰ ##ʲ ##ʳ ##ʷ ##ʸ ##ʻ ##ʼ ##ʾ ##ʿ ##ˈ ##ˡ ##ˢ ##ˣ ##ˤ ##β ##γ ##δ ##ε ##ζ ##θ ##κ ##λ ##μ ##ξ ##ο ##π ##ρ ##σ ##τ ##υ ##φ ##χ ##ψ ##ω ##б ##г ##д ##ж ##з ##м ##п ##с ##у ##ф ##х ##ц ##ч ##ш ##щ ##ъ ##э ##ю ##ђ ##є ##і ##ј ##љ ##њ ##ћ ##ӏ ##ա ##բ ##գ ##դ ##ե ##թ ##ի ##լ ##կ ##հ ##մ ##յ ##ն ##ո ##պ ##ս ##վ ##տ ##ր ##ւ ##ք ##־ ##א ##ב ##ג ##ד ##ו ##ז ##ח ##ט ##י ##ך ##כ ##ל ##ם ##מ ##ן ##נ ##ס ##ע ##ף ##פ ##ץ ##צ ##ק ##ר ##ש ##ת ##، ##ء ##ب ##ت ##ث ##ج ##ح ##خ ##ذ ##ز ##س ##ش ##ص ##ض ##ط ##ظ ##ع ##غ ##ـ ##ف ##ق ##ك ##و ##ى ##ٹ ##پ ##چ ##ک ##گ ##ں ##ھ ##ہ ##ے ##अ ##आ ##उ ##ए ##क ##ख ##ग ##च ##ज ##ट ##ड ##ण ##त ##थ ##द ##ध ##न ##प ##ब ##भ ##म ##य ##र ##ल ##व ##श ##ष ##स ##ह ##ा ##ि ##ी ##ो ##। ##॥ ##ং ##অ ##আ ##ই ##উ ##এ ##ও ##ক ##খ ##গ ##চ ##ছ ##জ ##ট ##ড ##ণ ##ত ##থ ##দ ##ধ ##ন ##প ##ব ##ভ ##ম ##য ##র ##ল ##শ ##ষ ##স ##হ ##া ##ি ##ী ##ে ##க ##ச ##ட ##த ##ந ##ன ##ப ##ம ##ய ##ர ##ல ##ள ##வ ##ா ##ி ##ு ##ே ##ை ##ನ ##ರ ##ಾ ##ක ##ය ##ර ##ල ##ව ##ා ##ก ##ง ##ต ##ท ##น ##พ ##ม ##ย ##ร ##ล ##ว ##ส ##อ ##า ##เ ##་ ##། ##ག ##ང ##ད ##ན ##པ ##བ ##མ ##འ ##ར ##ལ ##ས ##မ ##ა ##ბ ##გ ##დ ##ე ##ვ ##თ ##ი ##კ ##ლ ##მ ##ნ ##ო ##რ ##ს ##ტ ##უ ##ᄀ ##ᄂ ##ᄃ ##ᄅ ##ᄆ ##ᄇ ##ᄉ ##ᄊ ##ᄋ ##ᄌ ##ᄎ ##ᄏ ##ᄐ ##ᄑ ##ᄒ ##ᅡ ##ᅢ ##ᅥ ##ᅦ ##ᅧ ##ᅩ ##ᅪ ##ᅭ ##ᅮ ##ᅯ ##ᅲ ##ᅳ ##ᅴ ##ᅵ ##ᆨ ##ᆫ ##ᆯ ##ᆷ ##ᆸ ##ᆼ ##ᴬ ##ᴮ ##ᴰ ##ᴵ ##ᴺ ##ᵀ ##ᵃ ##ᵇ ##ᵈ ##ᵉ ##ᵍ ##ᵏ ##ᵐ ##ᵒ ##ᵖ ##ᵗ ##ᵘ ##ᵣ ##ᵤ ##ᵥ ##ᶜ ##ᶠ ##‐ ##‑ ##‒ ##– ##— ##― ##‖ ##‘ ##’ ##‚ ##“ ##” ##„ ##† ##‡ ##• ##… ##‰ ##′ ##″ ##› ##‿ ##⁄ ##⁰ ##ⁱ ##⁴ ##⁵ ##⁶ ##⁷ ##⁸ ##⁹ ##⁻ ##ⁿ ##₅ ##₆ ##₇ ##₈ ##₉ ##₊ ##₍ ##₎ ##ₐ ##ₑ ##ₒ ##ₓ ##ₕ ##ₖ ##ₗ ##ₘ ##ₚ ##ₛ ##ₜ ##₤ ##₩ ##€ ##₱ ##₹ ##ℓ ##№ ##ℝ ##™ ##⅓ ##⅔ ##← ##↑ ##→ ##↓ ##↔ ##↦ ##⇄ ##⇌ ##⇒ ##∂ ##∅ ##∆ ##∇ ##∈ ##∗ ##∘ ##√ ##∞ ##∧ ##∨ ##∩ ##∪ ##≈ ##≡ ##≤ ##≥ ##⊂ ##⊆ ##⊕ ##⊗ ##⋅ ##─ ##│ ##■ ##▪ ##● ##★ ##☆ ##☉ ##♠ ##♣ ##♥ ##♦ ##♯ ##⟨ ##⟩ ##ⱼ ##⺩ ##⺼ ##⽥ ##、 ##。 ##〈 ##〉 ##《 ##》 ##「 ##」 ##『 ##』 ##〜 ##あ ##い ##う ##え ##お ##か ##き ##く ##け ##こ ##さ ##し ##す ##せ ##そ ##た ##ち ##っ ##つ ##て ##と ##な ##に ##ぬ ##ね ##の ##は ##ひ ##ふ ##へ ##ほ ##ま ##み ##む ##め ##も ##や ##ゆ ##よ ##ら ##り ##る ##れ ##ろ ##を ##ん ##ァ ##ア ##ィ ##イ ##ウ ##ェ ##エ ##オ ##カ ##キ ##ク ##ケ ##コ ##サ ##シ ##ス ##セ ##タ ##チ ##ッ ##ツ ##テ ##ト ##ナ ##ニ ##ノ ##ハ ##ヒ ##フ ##ヘ ##ホ ##マ ##ミ ##ム ##メ ##モ ##ャ ##ュ ##ョ ##ラ ##リ ##ル ##レ ##ロ ##ワ ##ン ##・ ##ー ##一 ##三 ##上 ##下 ##不 ##世 ##中 ##主 ##久 ##之 ##也 ##事 ##二 ##五 ##井 ##京 ##人 ##亻 ##仁 ##介 ##代 ##仮 ##伊 ##会 ##佐 ##侍 ##保 ##信 ##健 ##元 ##光 ##八 ##公 ##内 ##出 ##分 ##前 ##劉 ##力 ##加 ##勝 ##北 ##区 ##十 ##千 ##南 ##博 ##原 ##口 ##古 ##史 ##司 ##合 ##吉 ##同 ##名 ##和 ##囗 ##四 ##国 ##國 ##土 ##地 ##坂 ##城 ##堂 ##場 ##士 ##夏 ##外 ##大 ##天 ##太 ##夫 ##奈 ##女 ##子 ##学 ##宀 ##宇 ##安 ##宗 ##定 ##宣 ##宮 ##家 ##宿 ##寺 ##將 ##小 ##尚 ##山 ##岡 ##島 ##崎 ##川 ##州 ##巿 ##帝 ##平 ##年 ##幸 ##广 ##弘 ##張 ##彳 ##後 ##御 ##德 ##心 ##忄 ##志 ##忠 ##愛 ##成 ##我 ##戦 ##戸 ##手 ##扌 ##政 ##文 ##新 ##方 ##日 ##明 ##星 ##春 ##昭 ##智 ##曲 ##書 ##月 ##有 ##朝 ##木 ##本 ##李 ##村 ##東 ##松 ##林 ##森 ##楊 ##樹 ##橋 ##歌 ##止 ##正 ##武 ##比 ##氏 ##民 ##水 ##氵 ##氷 ##永 ##江 ##沢 ##河 ##治 ##法 ##海 ##清 ##漢 ##瀬 ##火 ##版 ##犬 ##王 ##生 ##田 ##男 ##疒 ##発 ##白 ##的 ##皇 ##目 ##相 ##省 ##真 ##石 ##示 ##社 ##神 ##福 ##禾 ##秀 ##秋 ##空 ##立 ##章 ##竹 ##糹 ##美 ##義 ##耳 ##良 ##艹 ##花 ##英 ##華 ##葉 ##藤 ##行 ##街 ##西 ##見 ##訁 ##語 ##谷 ##貝 ##貴 ##車 ##軍 ##辶 ##道 ##郎 ##郡 ##部 ##都 ##里 ##野 ##金 ##鈴 ##镇 ##長 ##門 ##間 ##阝 ##阿 ##陳 ##陽 ##雄 ##青 ##面 ##風 ##食 ##香 ##馬 ##高 ##龍 ##龸 ##fi ##fl ##! ##( ##) ##, ##- ##. ##/ ##: ##? ##~
TensorFlow/Detection/SSD/models/research/slim/scripts
scripts
export_mobilenet
#!/bin/bash # Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # This script prepares the various different versions of MobileNet models for # use in a mobile application. If you don't specify your own trained checkpoint # file, it will download pretrained checkpoints for ImageNet. You'll also need # to have a copy of the TensorFlow source code to run some of the commands, # by default it will be looked for in ./tensorflow, but you can set the # TENSORFLOW_PATH environment variable before calling the script if your source # is in a different location. # The main slim/nets/mobilenet_v1.md description has more details about the # model, but the main points are that it comes in four size versions, 1.0, 0.75, # 0.50, and 0.25, which controls the number of parameters and so the file size # of the model, and the input image size, which can be 224, 192, 160, or 128 # pixels, and affects the amount of computation needed, and the latency. # Here's an example generating a frozen model from pretrained weights: # set -e print_usage () { echo "Creates a frozen mobilenet model suitable for mobile use" echo "Usage:" echo "$0 <mobilenet version> <input size> [checkpoint path]" } MOBILENET_VERSION=$1 IMAGE_SIZE=$2 CHECKPOINT=$3 if [[ ${MOBILENET_VERSION} = "1.0" ]]; then SLIM_NAME=mobilenet_v1 elif [[ ${MOBILENET_VERSION} = "0.75" ]]; then SLIM_NAME=mobilenet_v1_075 elif [[ ${MOBILENET_VERSION} = "0.50" ]]; then SLIM_NAME=mobilenet_v1_050 elif [[ ${MOBILENET_VERSION} = "0.25" ]]; then SLIM_NAME=mobilenet_v1_025 else echo "Bad mobilenet version, should be one of 1.0, 0.75, 0.50, or 0.25" print_usage exit 1 fi if [[ ${IMAGE_SIZE} -ne "224" ]] && [[ ${IMAGE_SIZE} -ne "192" ]] && [[ ${IMAGE_SIZE} -ne "160" ]] && [[ ${IMAGE_SIZE} -ne "128" ]]; then echo "Bad input image size, should be one of 224, 192, 160, or 128" print_usage exit 1 fi if [[ ${TENSORFLOW_PATH} -eq "" ]]; then TENSORFLOW_PATH=../tensorflow fi if [[ ! -d ${TENSORFLOW_PATH} ]]; then echo "TensorFlow source folder not found. You should download the source and then set" echo "the TENSORFLOW_PATH environment variable to point to it, like this:" echo "export TENSORFLOW_PATH=/my/path/to/tensorflow" print_usage exit 1 fi MODEL_FOLDER=/tmp/mobilenet_v1_${MOBILENET_VERSION}_${IMAGE_SIZE} if [[ -d ${MODEL_FOLDER} ]]; then echo "Model folder ${MODEL_FOLDER} already exists!" echo "If you want to overwrite it, then 'rm -rf ${MODEL_FOLDER}' first." print_usage exit 1 fi mkdir ${MODEL_FOLDER} if [[ ${CHECKPOINT} = "" ]]; then echo "*******" echo "Downloading pretrained weights" echo "*******" curl "http://download.tensorflow.org/models/mobilenet_v1_${MOBILENET_VERSION}_${IMAGE_SIZE}_2017_06_14.tar.gz" \ -o ${MODEL_FOLDER}/checkpoints.tar.gz tar xzf ${MODEL_FOLDER}/checkpoints.tar.gz --directory ${MODEL_FOLDER} CHECKPOINT=${MODEL_FOLDER}/mobilenet_v1_${MOBILENET_VERSION}_${IMAGE_SIZE}.ckpt fi echo "*******" echo "Exporting graph architecture to ${MODEL_FOLDER}/unfrozen_graph.pb" echo "*******" bazel run slim:export_inference_graph -- \ --model_name=${SLIM_NAME} --image_size=${IMAGE_SIZE} --logtostderr \ --output_file=${MODEL_FOLDER}/unfrozen_graph.pb --dataset_dir=${MODEL_FOLDER} cd ../tensorflow echo "*******" echo "Freezing graph to ${MODEL_FOLDER}/frozen_graph.pb" echo "*******" bazel run tensorflow/python/tools:freeze_graph -- \ --input_graph=${MODEL_FOLDER}/unfrozen_graph.pb \ --input_checkpoint=${CHECKPOINT} \ --input_binary=true --output_graph=${MODEL_FOLDER}/frozen_graph.pb \ --output_node_names=MobilenetV1/Predictions/Reshape_1 echo "Quantizing weights to ${MODEL_FOLDER}/quantized_graph.pb" bazel run tensorflow/tools/graph_transforms:transform_graph -- \ --in_graph=${MODEL_FOLDER}/frozen_graph.pb \ --out_graph=${MODEL_FOLDER}/quantized_graph.pb \ --inputs=input --outputs=MobilenetV1/Predictions/Reshape_1 \ --transforms='fold_constants fold_batch_norms quantize_weights' echo "*******" echo "Running label_image using the graph" echo "*******" bazel build tensorflow/examples/label_image:label_image bazel-bin/tensorflow/examples/label_image/label_image \ --input_layer=input --output_layer=MobilenetV1/Predictions/Reshape_1 \ --graph=${MODEL_FOLDER}/quantized_graph.pb --input_mean=-127 --input_std=127 \ --image=tensorflow/examples/label_image/data/grace_hopper.jpg \ --input_width=${IMAGE_SIZE} --input_height=${IMAGE_SIZE} --labels=${MODEL_FOLDER}/labels.txt echo "*******" echo "Saved graphs to ${MODEL_FOLDER}/frozen_graph.pb and ${MODEL_FOLDER}/quantized_graph.pb" echo "*******"
CUDA-Optimized/FastSpeech
FastSpeech
.gitignore
.idea __pycache__ .DS_Store *.egg-info .vscode
TensorFlow2/Segmentation/UNet_Medical/data_loading
data_loading
data_loader
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Dataset class encapsulates the data loading""" import multiprocessing import os from collections import deque import numpy as np import tensorflow as tf from PIL import Image, ImageSequence class Dataset: """Load, separate and prepare the data for training and prediction""" def __init__(self, data_dir, batch_size, fold, augment=False, gpu_id=0, num_gpus=1, seed=0, amp=False): if not os.path.exists(data_dir): raise FileNotFoundError('Cannot find data dir: {}'.format(data_dir)) self._data_dir = data_dir self._batch_size = batch_size self._augment = augment self.precision = tf.float16 if amp else tf.float32 self._seed = seed images = self._load_multipage_tiff(os.path.join(self._data_dir, 'train-volume.tif')) masks = self._load_multipage_tiff(os.path.join(self._data_dir, 'train-labels.tif')) self._test_images = \ self._load_multipage_tiff(os.path.join(self._data_dir, 'test-volume.tif')) train_indices, val_indices = self._get_val_train_indices(len(images), fold) self._train_images = images[train_indices] self._train_masks = masks[train_indices] self._val_images = images[val_indices] self._val_masks = masks[val_indices] self._num_gpus = num_gpus self._gpu_id = gpu_id @property def train_size(self): return len(self._train_images) @property def eval_size(self): return len(self._val_images) @property def test_size(self): return len(self._test_images) def _load_multipage_tiff(self, path): """Load tiff images containing many images in the channel dimension""" return np.array([np.array(p) for p in ImageSequence.Iterator(Image.open(path))]) def _get_val_train_indices(self, length, fold, ratio=0.8): assert 0 < ratio <= 1, "Train/total data ratio must be in range (0.0, 1.0]" np.random.seed(self._seed) indices = np.arange(0, length, 1, dtype=np.int) np.random.shuffle(indices) if fold is not None: indices = deque(indices) indices.rotate(fold * int((1.0 - ratio) * length)) indices = np.array(indices) train_indices = indices[:int(ratio * len(indices))] val_indices = indices[int(ratio * len(indices)):] else: train_indices = indices val_indices = [] return train_indices, val_indices def _normalize_inputs(self, inputs): """Normalize inputs""" inputs = tf.expand_dims(tf.cast(inputs, tf.float32), -1) # Center around zero inputs = tf.divide(inputs, 127.5) - 1 # Resize to match output size inputs = tf.image.resize(inputs, (388, 388)) return tf.image.resize_with_crop_or_pad(inputs, 572, 572) def _normalize_labels(self, labels): """Normalize labels""" labels = tf.expand_dims(tf.cast(labels, tf.float32), -1) labels = tf.divide(labels, 255) # Resize to match output size labels = tf.image.resize(labels, (388, 388)) labels = tf.image.resize_with_crop_or_pad(labels, 572, 572) cond = tf.less(labels, 0.5 * tf.ones(tf.shape(input=labels))) labels = tf.where(cond, tf.zeros(tf.shape(input=labels)), tf.ones(tf.shape(input=labels))) return tf.one_hot(tf.squeeze(tf.cast(labels, tf.int32)), 2) @tf.function def _preproc_samples(self, inputs, labels, augment=True): """Preprocess samples and perform random augmentations""" inputs = self._normalize_inputs(inputs) labels = self._normalize_labels(labels) if self._augment and augment: # Horizontal flip h_flip = tf.random.uniform([]) > 0.5 inputs = tf.cond(pred=h_flip, true_fn=lambda: tf.image.flip_left_right(inputs), false_fn=lambda: inputs) labels = tf.cond(pred=h_flip, true_fn=lambda: tf.image.flip_left_right(labels), false_fn=lambda: labels) # Vertical flip v_flip = tf.random.uniform([]) > 0.5 inputs = tf.cond(pred=v_flip, true_fn=lambda: tf.image.flip_up_down(inputs), false_fn=lambda: inputs) labels = tf.cond(pred=v_flip, true_fn=lambda: tf.image.flip_up_down(labels), false_fn=lambda: labels) # Prepare for batched transforms inputs = tf.expand_dims(inputs, 0) labels = tf.expand_dims(labels, 0) # Random crop and resize left = tf.random.uniform([]) * 0.3 right = 1 - tf.random.uniform([]) * 0.3 top = tf.random.uniform([]) * 0.3 bottom = 1 - tf.random.uniform([]) * 0.3 inputs = tf.image.crop_and_resize(inputs, [[top, left, bottom, right]], [0], (572, 572)) labels = tf.image.crop_and_resize(labels, [[top, left, bottom, right]], [0], (572, 572)) # Gray value variations # Adjust brightness and keep values in range inputs = tf.image.random_brightness(inputs, max_delta=0.2) inputs = tf.clip_by_value(inputs, clip_value_min=-1, clip_value_max=1) inputs = tf.squeeze(inputs, 0) labels = tf.squeeze(labels, 0) # Bring back labels to network's output size and remove interpolation artifacts labels = tf.image.resize_with_crop_or_pad(labels, target_width=388, target_height=388) cond = tf.less(labels, 0.5 * tf.ones(tf.shape(input=labels))) labels = tf.where(cond, tf.zeros(tf.shape(input=labels)), tf.ones(tf.shape(input=labels))) return tf.cast(inputs, self.precision), labels @tf.function def _preproc_eval_samples(self, inputs, labels): """Preprocess samples and perform random augmentations""" inputs = self._normalize_inputs(inputs) labels = self._normalize_labels(labels) # Bring back labels to network's output size and remove interpolation artifacts labels = tf.image.resize_with_crop_or_pad(labels, target_width=388, target_height=388) cond = tf.less(labels, 0.5 * tf.ones(tf.shape(input=labels))) labels = tf.where(cond, tf.zeros(tf.shape(input=labels)), tf.ones(tf.shape(input=labels))) return tf.cast(inputs, self.precision), labels @tf.function def _preproc_test_samples(self, inputs): inputs = self._normalize_inputs(inputs) return tf.cast(inputs, self.precision) def train_fn(self, drop_remainder=False): """Input function for training""" dataset = tf.data.Dataset.from_tensor_slices( (self._train_images, self._train_masks)) dataset = dataset.shard(self._num_gpus, self._gpu_id) dataset = dataset.repeat() dataset = dataset.shuffle(self._batch_size * 3) dataset = dataset.map(self._preproc_samples, num_parallel_calls=multiprocessing.cpu_count()//self._num_gpus) dataset = dataset.batch(self._batch_size, drop_remainder=drop_remainder) dataset = dataset.prefetch(self._batch_size) return dataset def eval_fn(self, count, drop_remainder=False): """Input function for validation""" dataset = tf.data.Dataset.from_tensor_slices( (self._val_images, self._val_masks)) dataset = dataset.repeat(count=count) dataset = dataset.map(self._preproc_eval_samples, num_parallel_calls=multiprocessing.cpu_count()) dataset = dataset.batch(self._batch_size, drop_remainder=drop_remainder) dataset = dataset.prefetch(self._batch_size) return dataset def test_fn(self, count, drop_remainder=False): """Input function for testing""" dataset = tf.data.Dataset.from_tensor_slices( self._test_images) dataset = dataset.repeat(count=count) dataset = dataset.map(self._preproc_test_samples) dataset = dataset.batch(self._batch_size, drop_remainder=drop_remainder) dataset = dataset.prefetch(self._batch_size) return dataset def synth_fn(self): """Synthetic data function for testing""" inputs = tf.random.truncated_normal((572, 572, 1), dtype=tf.float32, mean=127.5, stddev=1, seed=self._seed, name='synth_inputs') masks = tf.random.truncated_normal((388, 388, 2), dtype=tf.float32, mean=0.01, stddev=0.1, seed=self._seed, name='synth_masks') dataset = tf.data.Dataset.from_tensors((inputs, masks)) dataset = dataset.cache() dataset = dataset.repeat() dataset = dataset.batch(self._batch_size) dataset = dataset.prefetch(buffer_size=tf.data.experimental.AUTOTUNE) return dataset
PyTorch/Classification/GPUNet/triton
triton
dataloader
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import json from timm.data import create_dataset, create_loader import torch def update_argparser(parser): parser.add_argument( "--config", type=str, required=True, help="Network to deploy") parser.add_argument("--val-path", type=str, help="Path to dataset to be used", required=True) parser.add_argument("--batch-size", type=int, help="Batch size to use", default=10) parser.add_argument("--precision", type=str, default="fp32", choices=["fp32", "fp16"], help="Inference precision") parser.add_argument( "--is-prunet", type=bool, required=True, help="Bool on whether network is a prunet") def get_dataloader_fn(config, val_path, batch_size, precision, is_prunet): imagenet_val_path = val_path dataset = create_dataset( root=imagenet_val_path, name='', split='validation', load_bytes=False, class_map='') with open(config) as configFile: modelJSON = json.load(configFile) configFile.close() config = modelJSON assert len(config) > 0 dataLayer = config[0] assert dataLayer['layer_type'] == 'data' assert dataLayer['img_resolution'] > 0 imgRes = dataLayer['img_resolution'] crop_pct = 1.0 if is_prunet == "True": crop_pct = 0.875 data_config = {'input_size': (3, imgRes, imgRes), 'interpolation': 'bicubic', 'mean': (0.485, 0.456, 0.406), 'std': (0.229, 0.224, 0.225), 'crop_pct': crop_pct} batch_size = int(batch_size) loader = create_loader( dataset, input_size=data_config['input_size'], batch_size=batch_size, use_prefetcher=True, interpolation=data_config['interpolation'], mean=data_config['mean'], std=data_config['std'], num_workers=1, crop_pct=data_config['crop_pct'], pin_memory=False, tf_preprocessing=False) dtype = precision if dtype == 'fp16': dtype = torch.float16 elif dtype == 'fp32': dtype = torch.float32 else: raise NotImplementedError def _get_dataloader(): for batch_idx, (input, target) in enumerate(loader): x = {"INPUT__0": input.to(dtype).cpu().numpy()} y_real = {"OUTPUT__0": np.tile(target.to(dtype).cpu().numpy()[:, np.newaxis], (1, 1000))} ids = np.tile(batch_idx, target.shape[0]) yield (ids, x, y_real) return _get_dataloader
PyTorch/Classification/GPUNet/triton
triton
run_performance_on_triton
#!/usr/bin/env python3 # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import logging import pathlib # method from PEP-366 to support relative import in executed modules if __package__ is None: __package__ = pathlib.Path(__file__).parent.name from .deployment_toolkit.core import EvaluationMode, MeasurementMode, OfflineMode, PerformanceTool from .deployment_toolkit.triton_performance_runner import TritonPerformanceRunner LOGGER = logging.getLogger("run_performance_on_triton") def main(): parser = argparse.ArgumentParser() parser.add_argument( "--model-name", type=str, required=True, help="Name of the model to test", ) parser.add_argument( "--result-path", type=pathlib.Path, required=True, help="Path where results files is stored.", ) parser.add_argument( "--server-url", type=str, default="http://127.0.0.1:8000", help="Url to Triton server", ) parser.add_argument( "--model-version", type=str, default=1, help="Version of model", ) parser.add_argument( "--input-data", type=str, default="random", help="Input data to perform profiling.", ) parser.add_argument( "--input-shapes", action="append", help="Input data shape in form INPUT_NAME:<full_shape_without_batch_axis>.", ) parser.add_argument( "--batch-sizes", type=int, default=[1], help="List of batch sizes to tests.", nargs="*", ) parser.add_argument( "--concurrency", type=int, default=[1], help="List of concurrency modes.", nargs="*", ) parser.add_argument( "--measurement-mode", choices=[item.value for item in MeasurementMode], default=MeasurementMode.COUNT_WINDOWS.value, type=str, help="Select measurement mode " "'time_windows' stabilize performance on measurement window. " "'count_windows' stabilize performance on number of samples.", ) parser.add_argument( "--measurement-interval", help="Time window perf_analyzer will wait to stabilize the measurement", default=5000, type=int, ) parser.add_argument( "--measurement-request-count", help="Number of samples on which perf_analyzer will stabilize the measurement", default=50, type=int, ) parser.add_argument( "--evaluation-mode", choices=[item.value for item in EvaluationMode], default=EvaluationMode.OFFLINE.value, type=str, help="Select evaluation mode " "'offline' run offline analysis and use GPU memory to pass tensors. " "'online' run online analysis and use HTTP protocol.", ) parser.add_argument( "--offline-mode", choices=[item.value for item in OfflineMode], default=OfflineMode.SYSTEM.value, type=str, help="Select offline mode " "'system' pass tensors through CPU RAM memory. " "'cuda' pass tensors through GPU RAM memory.", ) parser.add_argument( "--output-shared-memory-size", default=102400, type=int, help="Size of memory buffer allocated for output with dynamic shapes in bytes. " "Has to be equal to maximal size of output tensor.", ) parser.add_argument( "--performance-tool", choices=[item.value for item in PerformanceTool], default=PerformanceTool.MODEL_ANALYZER.value, type=str, help="Select performance tool for measurement mode " "'model_analyzer' use Model Analyzer " "'perf_analyzer' use Perf Analyzer", ) parser.add_argument( "--model-repository", default=None, type=str, help="Path to model repository. Valid when using Model Analyzer", ) parser.add_argument( "--warmup", help="Enable model warmup before performance test", action="store_true", default=False, ) parser.add_argument( "--timeout", help="Timeout for performance analysis", type=int, default=None, required=False, ) parser.add_argument( "-v", "--verbose", help="Verbose logs", action="store_true", default=False, ) args = parser.parse_args() log_level = logging.INFO if not args.verbose else logging.DEBUG log_format = "%(asctime)s %(levelname)s %(name)s %(message)s" logging.basicConfig(level=log_level, format=log_format) runner = TritonPerformanceRunner( server_url=args.server_url, model_name=args.model_name, input_data=args.input_data, input_shapes=args.input_shapes or [], batch_sizes=args.batch_sizes, measurement_mode=MeasurementMode(args.measurement_mode), measurement_interval=args.measurement_interval, measurement_request_count=args.measurement_request_count, concurrency=args.concurrency, evaluation_mode=EvaluationMode(args.evaluation_mode), offline_mode=OfflineMode(args.offline_mode), output_shared_memory_size=args.output_shared_memory_size, performance_tool=PerformanceTool(args.performance_tool), model_repository=args.model_repository, result_path=args.result_path, warmup=args.warmup, timeout=args.timeout, verbose=args.verbose, ) runner.run() if __name__ == "__main__": main()
TensorFlow2/Detection/Efficientdet/object_detection
object_detection
argmax_matcher
# Copyright 2020 Google Research. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Argmax matcher implementation. This class takes a similarity matrix and matches columns to rows based on the maximum value per column. One can specify matched_thresholds and to prevent columns from matching to rows (generally resulting in a negative training example) and unmatched_theshold to ignore the match (generally resulting in neither a positive or negative training example). This matcher is used in Fast(er)-RCNN. Note: matchers are used in TargetAssigners. There is a create_target_assigner factory function for popular implementations. """ import tensorflow.compat.v1 as tf from object_detection import matcher from object_detection import shape_utils class ArgMaxMatcher(matcher.Matcher): """Matcher based on highest value. This class computes matches from a similarity matrix. Each column is matched to a single row. To support object detection target assignment this class enables setting both matched_threshold (upper threshold) and unmatched_threshold (lower thresholds) defining three categories of similarity which define whether examples are positive, negative, or ignored: (1) similarity >= matched_threshold: Highest similarity. Matched/Positive! (2) matched_threshold > similarity >= unmatched_threshold: Medium similarity. Depending on negatives_lower_than_unmatched, this is either Unmatched/Negative OR Ignore. (3) unmatched_threshold > similarity: Lowest similarity. Depending on flag negatives_lower_than_unmatched, either Unmatched/Negative OR Ignore. For ignored matches this class sets the values in the Match object to -2. """ def __init__(self, matched_threshold, unmatched_threshold=None, negatives_lower_than_unmatched=True, force_match_for_each_row=False): """Construct ArgMaxMatcher. Args: matched_threshold: Threshold for positive matches. Positive if sim >= matched_threshold, where sim is the maximum value of the similarity matrix for a given column. Set to None for no threshold. unmatched_threshold: Threshold for negative matches. Negative if sim < unmatched_threshold. Defaults to matched_threshold when set to None. negatives_lower_than_unmatched: Boolean which defaults to True. If True then negative matches are the ones below the unmatched_threshold, whereas ignored matches are in between the matched and unmatched threshold. If False, then negative matches are in between the matched and unmatched threshold, and everything lower than unmatched is ignored. force_match_for_each_row: If True, ensures that each row is matched to at least one column (which is not guaranteed otherwise if the matched_threshold is high). Defaults to False. See argmax_matcher_test.testMatcherForceMatch() for an example. Raises: ValueError: if unmatched_threshold is set but matched_threshold is not set or if unmatched_threshold > matched_threshold. """ if (matched_threshold is None) and (unmatched_threshold is not None): raise ValueError('Need to also define matched_threshold when' 'unmatched_threshold is defined') self._matched_threshold = matched_threshold if unmatched_threshold is None: self._unmatched_threshold = matched_threshold else: if unmatched_threshold > matched_threshold: raise ValueError('unmatched_threshold needs to be smaller or equal' 'to matched_threshold') self._unmatched_threshold = unmatched_threshold if not negatives_lower_than_unmatched: if self._unmatched_threshold == self._matched_threshold: raise ValueError('When negatives are in between matched and ' 'unmatched thresholds, these cannot be of equal ' 'value. matched: %s, unmatched: %s', self._matched_threshold, self._unmatched_threshold) self._force_match_for_each_row = force_match_for_each_row self._negatives_lower_than_unmatched = negatives_lower_than_unmatched def _match(self, similarity_matrix): """Tries to match each column of the similarity matrix to a row. Args: similarity_matrix: tensor of shape [N, M] representing any similarity metric. Returns: Match object with corresponding matches for each of M columns. """ def _match_when_rows_are_empty(): """Performs matching when the rows of similarity matrix are empty. When the rows are empty, all detections are false positives. So we return a tensor of -1's to indicate that the columns do not match to any rows. Returns: matches: int32 tensor indicating the row each column matches to. """ similarity_matrix_shape = shape_utils.combined_static_and_dynamic_shape( similarity_matrix) return -1 * tf.ones([similarity_matrix_shape[1]], dtype=tf.int32) def _match_when_rows_are_non_empty(): """Performs matching when the rows of similarity matrix are non empty. Returns: matches: int32 tensor indicating the row each column matches to. """ # Matches for each column matches = tf.argmax(similarity_matrix, 0, output_type=tf.int32) # Deal with matched and unmatched threshold if self._matched_threshold is not None: # Get logical indices of ignored and unmatched columns as tf.int64 matched_vals = tf.reduce_max(similarity_matrix, 0) below_unmatched_threshold = tf.greater(self._unmatched_threshold, matched_vals) between_thresholds = tf.logical_and( tf.greater_equal(matched_vals, self._unmatched_threshold), tf.greater(self._matched_threshold, matched_vals)) if self._negatives_lower_than_unmatched: matches = self._set_values_using_indicator(matches, below_unmatched_threshold, -1) matches = self._set_values_using_indicator(matches, between_thresholds, -2) else: matches = self._set_values_using_indicator(matches, below_unmatched_threshold, -2) matches = self._set_values_using_indicator(matches, between_thresholds, -1) if self._force_match_for_each_row: similarity_matrix_shape = shape_utils.combined_static_and_dynamic_shape( similarity_matrix) force_match_column_ids = tf.argmax(similarity_matrix, 1, output_type=tf.int32) force_match_column_indicators = tf.one_hot( force_match_column_ids, depth=similarity_matrix_shape[1]) force_match_row_ids = tf.argmax(force_match_column_indicators, 0, output_type=tf.int32) force_match_column_mask = tf.cast( tf.reduce_max(force_match_column_indicators, 0), tf.bool) final_matches = tf.where(force_match_column_mask, force_match_row_ids, matches) return final_matches else: return matches if similarity_matrix.shape.is_fully_defined(): if similarity_matrix.shape[0] == 0: return _match_when_rows_are_empty() else: return _match_when_rows_are_non_empty() else: return tf.cond( tf.greater(tf.shape(similarity_matrix)[0], 0), _match_when_rows_are_non_empty, _match_when_rows_are_empty) def _set_values_using_indicator(self, x, indicator, val): """Set the indicated fields of x to val. Args: x: tensor. indicator: boolean with same shape as x. val: scalar with value to set. Returns: modified tensor. """ indicator = tf.cast(indicator, x.dtype) return x * (1 - indicator) + val * indicator
PyTorch/SpeechSynthesis/Tacotron2/tacotron2_common
tacotron2_common
utils
# ***************************************************************************** # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** import numpy as np from scipy.io.wavfile import read import torch import os import argparse import json class ParseFromConfigFile(argparse.Action): def __init__(self, option_strings, type, dest, help=None, required=False): super(ParseFromConfigFile, self).__init__(option_strings=option_strings, type=type, dest=dest, help=help, required=required) def __call__(self, parser, namespace, values, option_string): with open(values, 'r') as f: data = json.load(f) for group in data.keys(): for k,v in data[group].items(): underscore_k = k.replace('-', '_') setattr(namespace, underscore_k, v) def get_mask_from_lengths(lengths): max_len = torch.max(lengths).item() ids = torch.arange(0, max_len, device=lengths.device, dtype=lengths.dtype) mask = (ids < lengths.unsqueeze(1)).byte() mask = torch.le(mask, 0) return mask def load_wav_to_torch(full_path): sampling_rate, data = read(full_path) return torch.FloatTensor(data.astype(np.float32)), sampling_rate def load_filepaths_and_text(dataset_path, filename, split="|"): with open(filename, encoding='utf-8') as f: def split_line(root, line): parts = line.strip().split(split) if len(parts) > 2: raise Exception( "incorrect line format for file: {}".format(filename)) path = os.path.join(root, parts[0]) text = parts[1] return path,text filepaths_and_text = [split_line(dataset_path, line) for line in f] return filepaths_and_text def to_gpu(x): x = x.contiguous() if torch.cuda.is_available(): x = x.cuda(non_blocking=True) return x
PyTorch/Classification/GPUNet/triton/085ms/runner
runner
pipeline_impl
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pathlib if __name__ == "__main__" and __package__ is None: __package__ = pathlib.Path(__file__).parent.name from ...runner.pipeline import Pipeline pipeline = Pipeline() pipeline.model_export( commands=( r""" if [[ "${EXPORT_FORMAT}" == "torchscript" ]]; then export FORMAT_SUFFIX="pt" else export FORMAT_SUFFIX="${EXPORT_FORMAT}" fi python3 triton/export_model.py \ --input-path triton/model.py \ --input-type pyt \ --output-path ${SHARED_DIR}/exported_model.${FORMAT_SUFFIX} \ --output-type ${EXPORT_FORMAT} \ --ignore-unknown-parameters \ --onnx-opset 13 \ --torch-jit ${TORCH_JIT} \ \ --config /workspace/gpunet/configs/batch1/GV100/0.85ms.json \ --checkpoint ${CHECKPOINT_DIR}/0.85ms.pth.tar \ --precision ${EXPORT_PRECISION} \ \ --dataloader triton/dataloader.py \ --val-path ${DATASETS_DIR}/ \ --is-prunet False \ --batch-size 1 """, ) ) pipeline.model_conversion( commands=( r""" if [[ "${EXPORT_FORMAT}" == "torchscript" ]]; then export FORMAT_SUFFIX="pt" else export FORMAT_SUFFIX="${EXPORT_FORMAT}" fi model-navigator convert \ --model-name ${MODEL_NAME} \ --model-path ${SHARED_DIR}/exported_model.${FORMAT_SUFFIX} \ --output-path ${SHARED_DIR}/converted_model \ --target-formats ${FORMAT} \ --target-precisions ${PRECISION} \ --launch-mode local \ --override-workspace \ --verbose \ \ --onnx-opsets 13 \ --max-batch-size ${MAX_BATCH_SIZE} \ --container-version 21.12 \ --max-workspace-size 10000000000 \ --atol OUTPUT__0=100 \ --rtol OUTPUT__0=100 """, ) ) pipeline.model_deploy( commands=( r""" model-navigator triton-config-model \ --model-repository ${MODEL_REPOSITORY_PATH} \ --model-name ${MODEL_NAME} \ --model-version 1 \ --model-path ${SHARED_DIR}/converted_model \ --model-format ${FORMAT} \ --model-control-mode explicit \ --load-model \ --load-model-timeout-s 100 \ --verbose \ \ --backend-accelerator ${BACKEND_ACCELERATOR} \ --tensorrt-precision ${PRECISION} \ --tensorrt-capture-cuda-graph \ --tensorrt-max-workspace-size 10000000000 \ --max-batch-size ${MAX_BATCH_SIZE} \ --batching ${MODEL_BATCHING} \ --preferred-batch-sizes ${MAX_BATCH_SIZE} \ --engine-count-per-device gpu=${NUMBER_OF_MODEL_INSTANCES} """, ) ) pipeline.triton_performance_offline_tests( commands=( r""" python triton/run_performance_on_triton.py \ --model-repository ${MODEL_REPOSITORY_PATH} \ --model-name ${MODEL_NAME} \ --input-data random \ --batch-sizes 1 2 4 8 16 32 64 \ --concurrency 1 \ --evaluation-mode offline \ --measurement-request-count 10 \ --warmup \ --performance-tool perf_analyzer \ --result-path ${SHARED_DIR}/triton_performance_offline.csv """, ), result_path="${SHARED_DIR}/triton_performance_offline.csv", ) pipeline.triton_performance_online_tests( commands=( r""" python triton/run_performance_on_triton.py \ --model-repository ${MODEL_REPOSITORY_PATH} \ --model-name ${MODEL_NAME} \ --input-data random \ --batch-sizes 1 \ --concurrency 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136 144 152 160 168 176 184 192 200 208 216 224 232 240 248 256 \ --evaluation-mode online \ --measurement-request-count 500 \ --warmup \ --performance-tool perf_analyzer \ --result-path ${SHARED_DIR}/triton_performance_online.csv """, ), result_path="${SHARED_DIR}/triton_performance_online.csv", )
TensorFlow/Detection/SSD/models/research/object_detection/core
core
model
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Abstract detection model. This file defines a generic base class for detection models. Programs that are designed to work with arbitrary detection models should only depend on this class. We intend for the functions in this class to follow tensor-in/tensor-out design, thus all functions have tensors or lists/dictionaries holding tensors as inputs and outputs. Abstractly, detection models predict output tensors given input images which can be passed to a loss function at training time or passed to a postprocessing function at eval time. The computation graphs at a high level consequently look as follows: Training time: inputs (images tensor) -> preprocess -> predict -> loss -> outputs (loss tensor) Evaluation time: inputs (images tensor) -> preprocess -> predict -> postprocess -> outputs (boxes tensor, scores tensor, classes tensor, num_detections tensor) DetectionModels must thus implement four functions (1) preprocess, (2) predict, (3) postprocess and (4) loss. DetectionModels should make no assumptions about the input size or aspect ratio --- they are responsible for doing any resize/reshaping necessary (see docstring for the preprocess function). Output classes are always integers in the range [0, num_classes). Any mapping of these integers to semantic labels is to be handled outside of this class. Images are resized in the `preprocess` method. All of `preprocess`, `predict`, and `postprocess` should be reentrant. The `preprocess` method runs `image_resizer_fn` that returns resized_images and `true_image_shapes`. Since `image_resizer_fn` can pad the images with zeros, true_image_shapes indicate the slices that contain the image without padding. This is useful for padding images to be a fixed size for batching. The `postprocess` method uses the true image shapes to clip predictions that lie outside of images. By default, DetectionModels produce bounding box detections; However, we support a handful of auxiliary annotations associated with each bounding box, namely, instance masks and keypoints. """ from abc import ABCMeta from abc import abstractmethod from object_detection.core import standard_fields as fields class DetectionModel(object): """Abstract base class for detection models.""" __metaclass__ = ABCMeta def __init__(self, num_classes): """Constructor. Args: num_classes: number of classes. Note that num_classes *does not* include background categories that might be implicitly predicted in various implementations. """ self._num_classes = num_classes self._groundtruth_lists = {} @property def num_classes(self): return self._num_classes def groundtruth_lists(self, field): """Access list of groundtruth tensors. Args: field: a string key, options are fields.BoxListFields.{boxes,classes,masks,keypoints} or fields.InputDataFields.is_annotated. Returns: a list of tensors holding groundtruth information (see also provide_groundtruth function below), with one entry for each image in the batch. Raises: RuntimeError: if the field has not been provided via provide_groundtruth. """ if field not in self._groundtruth_lists: raise RuntimeError('Groundtruth tensor {} has not been provided'.format( field)) return self._groundtruth_lists[field] def groundtruth_has_field(self, field): """Determines whether the groundtruth includes the given field. Args: field: a string key, options are fields.BoxListFields.{boxes,classes,masks,keypoints} or fields.InputDataFields.is_annotated. Returns: True if the groundtruth includes the given field, False otherwise. """ return field in self._groundtruth_lists @abstractmethod def preprocess(self, inputs): """Input preprocessing. To be overridden by implementations. This function is responsible for any scaling/shifting of input values that is necessary prior to running the detector on an input image. It is also responsible for any resizing, padding that might be necessary as images are assumed to arrive in arbitrary sizes. While this function could conceivably be part of the predict method (below), it is often convenient to keep these separate --- for example, we may want to preprocess on one device, place onto a queue, and let another device (e.g., the GPU) handle prediction. A few important notes about the preprocess function: + We assume that this operation does not have any trainable variables nor does it affect the groundtruth annotations in any way (thus data augmentation operations such as random cropping should be performed externally). + There is no assumption that the batchsize in this function is the same as the batch size in the predict function. In fact, we recommend calling the preprocess function prior to calling any batching operations (which should happen outside of the model) and thus assuming that batch sizes are equal to 1 in the preprocess function. + There is also no explicit assumption that the output resolutions must be fixed across inputs --- this is to support "fully convolutional" settings in which input images can have different shapes/resolutions. Args: inputs: a [batch, height_in, width_in, channels] float32 tensor representing a batch of images with values between 0 and 255.0. Returns: preprocessed_inputs: a [batch, height_out, width_out, channels] float32 tensor representing a batch of images. true_image_shapes: int32 tensor of shape [batch, 3] where each row is of the form [height, width, channels] indicating the shapes of true images in the resized images, as resized images can be padded with zeros. """ pass @abstractmethod def predict(self, preprocessed_inputs, true_image_shapes): """Predict prediction tensors from inputs tensor. Outputs of this function can be passed to loss or postprocess functions. Args: preprocessed_inputs: a [batch, height, width, channels] float32 tensor representing a batch of images. true_image_shapes: int32 tensor of shape [batch, 3] where each row is of the form [height, width, channels] indicating the shapes of true images in the resized images, as resized images can be padded with zeros. Returns: prediction_dict: a dictionary holding prediction tensors to be passed to the Loss or Postprocess functions. """ pass @abstractmethod def postprocess(self, prediction_dict, true_image_shapes, **params): """Convert predicted output tensors to final detections. Outputs adhere to the following conventions: * Classes are integers in [0, num_classes); background classes are removed and the first non-background class is mapped to 0. If the model produces class-agnostic detections, then no output is produced for classes. * Boxes are to be interpreted as being in [y_min, x_min, y_max, x_max] format and normalized relative to the image window. * `num_detections` is provided for settings where detections are padded to a fixed number of boxes. * We do not specifically assume any kind of probabilistic interpretation of the scores --- the only important thing is their relative ordering. Thus implementations of the postprocess function are free to output logits, probabilities, calibrated probabilities, or anything else. Args: prediction_dict: a dictionary holding prediction tensors. true_image_shapes: int32 tensor of shape [batch, 3] where each row is of the form [height, width, channels] indicating the shapes of true images in the resized images, as resized images can be padded with zeros. **params: Additional keyword arguments for specific implementations of DetectionModel. Returns: detections: a dictionary containing the following fields detection_boxes: [batch, max_detections, 4] detection_scores: [batch, max_detections] detection_classes: [batch, max_detections] (If a model is producing class-agnostic detections, this field may be missing) instance_masks: [batch, max_detections, image_height, image_width] (optional) keypoints: [batch, max_detections, num_keypoints, 2] (optional) num_detections: [batch] """ pass @abstractmethod def loss(self, prediction_dict, true_image_shapes): """Compute scalar loss tensors with respect to provided groundtruth. Calling this function requires that groundtruth tensors have been provided via the provide_groundtruth function. Args: prediction_dict: a dictionary holding predicted tensors true_image_shapes: int32 tensor of shape [batch, 3] where each row is of the form [height, width, channels] indicating the shapes of true images in the resized images, as resized images can be padded with zeros. Returns: a dictionary mapping strings (loss names) to scalar tensors representing loss values. """ pass def provide_groundtruth(self, groundtruth_boxes_list, groundtruth_classes_list, groundtruth_masks_list=None, groundtruth_keypoints_list=None, groundtruth_weights_list=None, groundtruth_confidences_list=None, groundtruth_is_crowd_list=None, is_annotated_list=None): """Provide groundtruth tensors. Args: groundtruth_boxes_list: a list of 2-D tf.float32 tensors of shape [num_boxes, 4] containing coordinates of the groundtruth boxes. Groundtruth boxes are provided in [y_min, x_min, y_max, x_max] format and assumed to be normalized and clipped relative to the image window with y_min <= y_max and x_min <= x_max. groundtruth_classes_list: a list of 2-D tf.float32 one-hot (or k-hot) tensors of shape [num_boxes, num_classes] containing the class targets with the 0th index assumed to map to the first non-background class. groundtruth_masks_list: a list of 3-D tf.float32 tensors of shape [num_boxes, height_in, width_in] containing instance masks with values in {0, 1}. If None, no masks are provided. Mask resolution `height_in`x`width_in` must agree with the resolution of the input image tensor provided to the `preprocess` function. groundtruth_keypoints_list: a list of 3-D tf.float32 tensors of shape [num_boxes, num_keypoints, 2] containing keypoints. Keypoints are assumed to be provided in normalized coordinates and missing keypoints should be encoded as NaN. groundtruth_weights_list: A list of 1-D tf.float32 tensors of shape [num_boxes] containing weights for groundtruth boxes. groundtruth_confidences_list: A list of 2-D tf.float32 tensors of shape [num_boxes, num_classes] containing class confidences for groundtruth boxes. groundtruth_is_crowd_list: A list of 1-D tf.bool tensors of shape [num_boxes] containing is_crowd annotations is_annotated_list: A list of scalar tf.bool tensors indicating whether images have been labeled or not. """ self._groundtruth_lists[fields.BoxListFields.boxes] = groundtruth_boxes_list self._groundtruth_lists[ fields.BoxListFields.classes] = groundtruth_classes_list if groundtruth_weights_list: self._groundtruth_lists[fields.BoxListFields. weights] = groundtruth_weights_list if groundtruth_confidences_list: self._groundtruth_lists[fields.BoxListFields. confidences] = groundtruth_confidences_list if groundtruth_masks_list: self._groundtruth_lists[ fields.BoxListFields.masks] = groundtruth_masks_list if groundtruth_keypoints_list: self._groundtruth_lists[ fields.BoxListFields.keypoints] = groundtruth_keypoints_list if groundtruth_is_crowd_list: self._groundtruth_lists[ fields.BoxListFields.is_crowd] = groundtruth_is_crowd_list if is_annotated_list: self._groundtruth_lists[ fields.InputDataFields.is_annotated] = is_annotated_list @abstractmethod def regularization_losses(self): """Returns a list of regularization losses for this model. Returns a list of regularization losses for this model that the estimator needs to use during training/optimization. Returns: A list of regularization loss tensors. """ pass @abstractmethod def restore_map(self, fine_tune_checkpoint_type='detection'): """Returns a map of variables to load from a foreign checkpoint. Returns a map of variable names to load from a checkpoint to variables in the model graph. This enables the model to initialize based on weights from another task. For example, the feature extractor variables from a classification model can be used to bootstrap training of an object detector. When loading from an object detection model, the checkpoint model should have the same parameters as this detection model with exception of the num_classes parameter. Args: fine_tune_checkpoint_type: whether to restore from a full detection checkpoint (with compatible variable names) or to restore from a classification checkpoint for initialization prior to training. Valid values: `detection`, `classification`. Default 'detection'. Returns: A dict mapping variable names (to load from a checkpoint) to variables in the model graph. """ pass @abstractmethod def updates(self): """Returns a list of update operators for this model. Returns a list of update operators for this model that must be executed at each training step. The estimator's train op needs to have a control dependency on these updates. Returns: A list of update operators. """ pass
PyTorch/SpeechSynthesis/Tacotron2/platform
platform
DGX1_waveglow_AMP_4NGPU_train
mkdir -p output python -m multiproc train.py -m WaveGlow -o output/ --amp -lr 1e-4 --epochs 1001 -bs 10 --segment-length 8000 --weight-decay 0 --grad-clip-thresh 65504.0 --cudnn-benchmark --cudnn-enabled --log-file nvlog.json
TensorFlow2/Recommendation/DLRM_and_DCNv2/deployment
deployment
evaluate_accuracy
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # author: Tomasz Grel ([email protected]) import dataloading.feature_spec import os import numpy as np import argparse import dllogger from dataloading.dataloader import create_input_pipelines from nn.evaluator import Evaluator from utils.logging import IterTimer, init_logging import deployment.tf.triton_ensemble_wrapper import deployment.hps.triton_ensemble_wrapper def log_results(auc, test_loss, latencies, batch_size, compute_latencies=False, warmup_steps=10): # don't benchmark the first few warmup steps latencies = latencies[warmup_steps:] result_data = { 'mean_inference_throughput': batch_size / np.mean(latencies), 'mean_inference_latency': np.mean(latencies) } if compute_latencies: for percentile in [90, 95, 99]: result_data[f'p{percentile}_inference_latency'] = np.percentile(latencies, percentile) result_data['auc'] = auc result_data['test_loss'] = test_loss dllogger.log(data=result_data, step=tuple()) def parse_args(): parser = argparse.ArgumentParser(description='') parser.add_argument('--dataset_path', type=str, required=True, help='') parser.add_argument('--dataset_type', default='tf_raw', type=str, help='') parser.add_argument('--feature_spec', default='feature_spec.yaml', type=str, help='') parser.add_argument('--batch_size', type=int, default=32768, help='Batch size') parser.add_argument('--auc_thresholds', type=int, default=8000, help='') parser.add_argument('--max_steps', type=int, default=None, help='') parser.add_argument('--print_freq', type=int, default=10, help='') parser.add_argument('--log_path', type=str, default='dlrm_tf_log.json', help='triton_inference_log.json') parser.add_argument('--verbose', action='store_true', default=False, help='') parser.add_argument('--test_on_train', action='store_true', default=False, help='Run validation on the training set.') parser.add_argument('--fused_embedding', action='store_true', default=False, help='Fuse the embedding table together for better GPU utilization.') parser.add_argument("--model_name", type=str, help="The name of the model used for inference.", required=True) parser.add_argument("--sparse_input_format", type=str, choices=["tf-savedmodel", "hps"], required=True, default="tf-savedmodel") args = parser.parse_args() return args def main(): args = parse_args() init_logging(log_path=args.log_path, params_dict=args.__dict__) fspec = dataloading.feature_spec.FeatureSpec.from_yaml(os.path.join(args.dataset_path, args.feature_spec)) num_tables = len(fspec.get_categorical_sizes()) table_ids = list(range(num_tables)) # possibly wrong ordering, to be tested train_pipeline, validation_pipeline = create_input_pipelines(dataset_type=args.dataset_type, dataset_path=args.dataset_path, train_batch_size=args.batch_size, test_batch_size=args.batch_size, table_ids=table_ids, feature_spec=args.feature_spec, rank=0, world_size=1) if args.test_on_train: validation_pipeline = train_pipeline if args.sparse_input_format == 'hps': wrapper_cls = deployment.hps.triton_ensemble_wrapper.RecsysTritonEnsemble else: wrapper_cls = deployment.tf.triton_ensemble_wrapper.RecsysTritonEnsemble model = wrapper_cls(model_name=args.model_name, num_tables=num_tables, verbose=args.verbose, categorical_sizes=fspec.get_categorical_sizes(), fused_embedding=args.fused_embedding) timer = IterTimer(train_batch_size=args.batch_size, test_batch_size=args.batch_size, optimizer=None, print_freq=args.print_freq, enabled=True) evaluator = Evaluator(model=model, timer=timer, auc_thresholds=args.auc_thresholds, max_steps=args.max_steps, cast_dtype=None) auc, test_loss, latencies = evaluator(validation_pipeline=validation_pipeline) log_results(auc, test_loss, latencies, batch_size=args.batch_size) print('DONE') if __name__ == '__main__': main()
TensorFlow/Recommendation/WideAndDeep/scripts
scripts
DGX1_benchmark_training_fp32_8gpu
#!/bin/bash # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. set -x set -e mpiexec --allow-run-as-root --bind-to socket -np 8 \ python -m trainer.task \ --hvd \ --benchmark_warmup_steps 500 \ --benchmark_steps 1000 \ --gpu \ --benchmark
Tools/DGLPyTorch/SyntheticGraphGeneration/syngen/cli/commands
commands
__init__
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
TensorFlow/Classification/ConvNets/triton
triton
calculate_metrics
#!/usr/bin/env python3 # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r""" Using `calculate_metrics.py` script, you can obtain model accuracy/error metrics using defined `MetricsCalculator` class. Data provided to `MetricsCalculator` are obtained from dump files stored in directory pointed by `--dump-dir` argument. Above files are prepared by `run_inference_on_fw.py` and `run_inference_on_triton.py` scripts. Output data is stored in csv file pointed by `--csv` argument. Example call: ```shell script python ./triton/calculate_metrics.py \ --dump-dir /results/dump_triton \ --csv /results/accuracy_results.csv \ --metrics metrics.py \ --metric-class-param1 value ``` """ import argparse import csv import logging import string from pathlib import Path # method from PEP-366 to support relative import in executed modules if __package__ is None: __package__ = Path(__file__).parent.name from .deployment_toolkit.args import ArgParserGenerator from .deployment_toolkit.core import BaseMetricsCalculator, load_from_file from .deployment_toolkit.dump import JsonDumpReader LOGGER = logging.getLogger("calculate_metrics") TOTAL_COLUMN_NAME = "_total_" def main(): logging.basicConfig(level=logging.INFO) parser = argparse.ArgumentParser(description="Run models with given dataloader", allow_abbrev=False) parser.add_argument("--metrics", help="Path to python module containing metrics calculator", required=True) parser.add_argument("--csv", help="Path to csv file", required=True) parser.add_argument("--dump-dir", help="Path to directory with dumped outputs (and labels)", required=True) args, *_ = parser.parse_known_args() MetricsCalculator = load_from_file(args.metrics, "metrics", "MetricsCalculator") ArgParserGenerator(MetricsCalculator).update_argparser(parser) args = parser.parse_args() LOGGER.info("args:") for key, value in vars(args).items(): LOGGER.info(f" {key} = {value}") MetricsCalculator = load_from_file(args.metrics, "metrics", "MetricsCalculator") metrics_calculator: BaseMetricsCalculator = ArgParserGenerator(MetricsCalculator).from_args(args) reader = JsonDumpReader(args.dump_dir) for ids, x, y_true, y_pred in reader.iterate_over(["ids", "inputs", "labels", "outputs"]): ids = list(ids["ids"]) if ids is not None else None metrics_calculator.update(ids=ids, x=x, y_pred=y_pred, y_real=y_true) metrics = metrics_calculator.metrics metric_names_with_space = [name for name in metrics if any([c in string.whitespace for c in name])] if metric_names_with_space: raise ValueError(f"Metric names shall have no spaces; Incorrect names: {', '.join(metric_names_with_space)}") csv_path = Path(args.csv) csv_path.parent.mkdir(parents=True, exist_ok=True) with csv_path.open("w") as csv_file: writer = csv.DictWriter(csv_file, fieldnames=list(metrics.keys())) writer.writeheader() writer.writerow(metrics) if __name__ == "__main__": main()