relative_path
stringclasses
812 values
section
stringclasses
339 values
filename
stringlengths
2
61
text
stringlengths
6
1.76M
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/triton/runner
runner
start_NVIDIA-T4
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #!/bin/bash # Install Docker . /etc/os-release && \ curl -fsSL https://download.docker.com/linux/debian/gpg | apt-key add - && \ echo "deb [arch=amd64] https://download.docker.com/linux/debian buster stable" > /etc/apt/sources.list.d/docker.list && \ curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey| apt-key add - && \ curl -s -L https://nvidia.github.io/nvidia-docker/$ID$VERSION_ID/nvidia-docker.list > /etc/apt/sources.list.d/nvidia-docker.list && \ apt-get update && \ apt-get install -y docker-ce docker-ce-cli containerd.io nvidia-docker2 # Install packages pip install -r triton/runner/requirements.txt # Evaluate Runner python3 -m "triton.runner.__main__" \ --config-path "triton/runner/config_NVIDIA-T4.yaml" \ --device 0
TensorFlow2/Recommendation/WideAndDeep/triton/deployment_toolkit/library
library
utils
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import Counter from typing import Callable, Dict, List, Optional import networkx as nx from ..core import ShapeSpec def infer_precision( nx_graph: nx.Graph, input_names: List[str], output_names: List[str], get_node_dtype_fn: Callable, ): node_dtypes = [nx_graph.nodes[node_name].get("dtype", None) for node_name in nx_graph.nodes] node_dtypes = [dt for dt in node_dtypes if dt is None or dt.kind not in ["i", "b"]] dtypes_counter = Counter(node_dtypes) return dtypes_counter.most_common()[0][0] def get_shapes_with_dynamic_axes(dataloader, batch_size_dim: Optional[int] = None): def _set_dynamic_shapes(t, shapes): for k, v in t.items(): shape = list(v.shape) for dim, s in enumerate(shape): if shapes[k][dim] != -1 and shapes[k][dim] != s: shapes[k][dim] = -1 def _mark_batch_axis(shape, batch_axis: int): shape = list(shape) shape[batch_axis] = -1 return tuple(shape) ## get all shapes from input and output tensors input_shapes = {} output_shapes = {} for batch in dataloader: _, x, y = batch for k, v in x.items(): input_shapes[k] = list(v.shape) for k, v in y.items(): output_shapes[k] = list(v.shape) break # based on max <max_num_iters> iterations, check which # dimensions differ to determine dynamic_axes max_num_iters = 100 for idx, batch in enumerate(dataloader): if idx >= max_num_iters: break _, x, y = batch _set_dynamic_shapes(x, input_shapes) _set_dynamic_shapes(y, output_shapes) if batch_size_dim is not None: input_shapes = {name: _mark_batch_axis(shape, batch_size_dim) for name, shape in input_shapes.items()} output_shapes = {name: _mark_batch_axis(shape, batch_size_dim) for name, shape in output_shapes.items()} return input_shapes, output_shapes def get_dynamic_axes(dataloader, batch_size_dim: Optional[int] = None): input_shapes, output_shapes = get_shapes_with_dynamic_axes(dataloader, batch_size_dim=batch_size_dim) all_shapes = {**input_shapes, **output_shapes} dynamic_axes = {} for k, shape in all_shapes.items(): for idx, s in enumerate(shape): if s == -1: dynamic_axes[k] = {idx: k + "_" + str(idx)} for k in all_shapes: if k in dynamic_axes: dynamic_axes[k].update({batch_size_dim: "batch_size_" + str(batch_size_dim)}) else: dynamic_axes[k] = {batch_size_dim: "batch_size_" + str(batch_size_dim)} return dynamic_axes def get_input_shapes(dataloader, max_batch_size=1) -> Dict[str, ShapeSpec]: def init_counters_and_shapes(x, counters, min_shapes, max_shapes): for k, v in x.items(): counters[k] = Counter() min_shapes[k] = [float("inf")] * v.ndim max_shapes[k] = [float("-inf")] * v.ndim counters = {} min_shapes: Dict[str, tuple] = {} max_shapes: Dict[str, tuple] = {} for idx, batch in enumerate(dataloader): ids, x, y = batch if idx == 0: init_counters_and_shapes(x, counters, min_shapes, max_shapes) for k, v in x.items(): shape = v.shape counters[k][shape] += 1 min_shapes[k] = tuple(min(a, b) for a, b in zip(min_shapes[k], shape)) max_shapes[k] = tuple(max(a, b) for a, b in zip(max_shapes[k], shape)) opt_shapes: Dict[str, tuple] = {} for k, v in counters.items(): opt_shapes[k] = v.most_common(1)[0][0] shapes = {} for k in opt_shapes.keys(): # same keys in min_shapes and max_shapes shapes[k] = ShapeSpec( min=(1,) + min_shapes[k][1:], max=(max_batch_size,) + max_shapes[k][1:], opt=(max_batch_size,) + opt_shapes[k][1:], ) return shapes
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/triton/runner
runner
pipeline_impl
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pathlib if __name__ == "__main__" and __package__ is None: __package__ = pathlib.Path(__file__).parent.name from .pipeline import Pipeline pipeline = Pipeline() pipeline.model_export( commands=( r""" if [[ "${EXPORT_FORMAT}" == "ts-trace" || "${EXPORT_FORMAT}" == "ts-script" ]]; then export FORMAT_SUFFIX="pt" else export FORMAT_SUFFIX="${EXPORT_FORMAT}" fi python3 triton/export_model.py \ --input-path triton/model.py \ --input-type pyt \ --output-path ${SHARED_DIR}/exported_model.${FORMAT_SUFFIX} \ --output-type ${EXPORT_FORMAT} \ --ignore-unknown-parameters \ --onnx-opset 13 \ \ --checkpoint ${CHECKPOINT_DIR}/ \ --precision ${EXPORT_PRECISION} \ \ --dataloader triton/dataloader.py \ --dataset ${DATASETS_DIR}/${DATASET} \ --batch-size 1 """, ) ) pipeline.model_conversion( commands=( r""" if [[ "${EXPORT_FORMAT}" == "ts-trace" || "${EXPORT_FORMAT}" == "ts-script" ]]; then export FORMAT_SUFFIX="pt" else export FORMAT_SUFFIX="${EXPORT_FORMAT}" fi model-navigator convert \ --model-name ${MODEL_NAME} \ --model-path ${SHARED_DIR}/exported_model.${FORMAT_SUFFIX} \ --output-path ${SHARED_DIR}/converted_model \ --target-formats ${FORMAT} \ --target-precisions ${PRECISION} \ --launch-mode local \ --override-workspace \ --verbose \ \ --onnx-opsets 13 \ --max-batch-size ${MAX_BATCH_SIZE} \ --container-version 21.08 \ --max-workspace-size 10000000000 \ --atol target__0=100 \ --rtol target__0=100 """, ) ) pipeline.model_deploy( commands=( r""" if [[ "${FORMAT}" == "ts-trace" || "${FORMAT}" == "ts-script" ]]; then export CONFIG_FORMAT="torchscript" else export CONFIG_FORMAT="${FORMAT}" fi model-navigator triton-config-model \ --model-repository ${MODEL_REPOSITORY_PATH} \ --model-name ${MODEL_NAME} \ --model-version 1 \ --model-path ${SHARED_DIR}/converted_model \ --model-format ${CONFIG_FORMAT} \ --model-control-mode ${TRITON_LOAD_MODEL_METHOD} \ --load-model \ --load-model-timeout-s 100 \ --verbose \ \ --backend-accelerator ${ACCELERATOR} \ --tensorrt-precision ${PRECISION} \ --tensorrt-capture-cuda-graph \ --tensorrt-max-workspace-size 10000000000 \ --max-batch-size ${MAX_BATCH_SIZE} \ --batching dynamic \ --preferred-batch-sizes ${TRITON_PREFERRED_BATCH_SIZES} \ --max-queue-delay-us ${TRITON_MAX_QUEUE_DELAY} \ --engine-count-per-device ${DEVICE}=${TRITON_GPU_ENGINE_COUNT} """, ) ) pipeline.triton_prepare_performance_profiling_data( commands=( r""" mkdir -p ${SHARED_DIR}/input_data """, r""" python triton/prepare_input_data.py \ --input-data-dir ${SHARED_DIR}/input_data/ \ --dataset ${DATASETS_DIR}/${DATASET} \ --checkpoint ${CHECKPOINT_DIR}/ \ """, ) ) pipeline.triton_performance_offline_tests( commands=( r""" python triton/run_performance_on_triton.py \ --model-repository ${MODEL_REPOSITORY_PATH} \ --model-name ${MODEL_NAME} \ --input-data ${SHARED_DIR}/input_data/data.json \ --batch-sizes ${BATCH_SIZE} \ --number-of-triton-instances ${TRITON_INSTANCES} \ --batching-mode static \ --evaluation-mode offline \ --measurement-request-count ${REQUEST_COUNT} \ --warmup \ --performance-tool perf_analyzer \ --result-path ${SHARED_DIR}/triton_performance_offline.csv """, ), result_path="${SHARED_DIR}/triton_performance_offline.csv", ) pipeline.triton_performance_online_tests( commands=( r""" python triton/run_performance_on_triton.py \ --model-repository ${MODEL_REPOSITORY_PATH} \ --model-name ${MODEL_NAME} \ --input-data ${SHARED_DIR}/input_data/data.json \ --batch-sizes ${BATCH_SIZE} \ --number-of-triton-instances ${TRITON_INSTANCES} \ --number-of-model-instances ${TRITON_GPU_ENGINE_COUNT} \ --batching-mode dynamic \ --evaluation-mode online \ --measurement-request-count 500 \ --warmup \ --performance-tool perf_analyzer \ --result-path ${SHARED_DIR}/triton_performance_online.csv """, ), result_path="${SHARED_DIR}/triton_performance_online.csv", )
TensorFlow/Translation/GNMT/scripts/docker
docker
interactive
#!/bin/bash nvidia-docker run -it --rm --shm-size=1g --ulimit memlock=-1 --ulimit stack=67108864 -v $PWD:/workspace/gnmt gnmt_tf bash
PyTorch/Classification/GPUNet/triton
triton
run_inference_on_fw
#!/usr/bin/env python3 # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r""" To infer the model on framework runtime, you can use `run_inference_on_fw.py` script. It infers data obtained from pointed data loader locally and saves received data into dump files. Those files are stored in directory pointed by `--output-dir` argument. Example call: ```shell script python ./triton/run_inference_on_fw.py \ --input-path /models/exported/model.onnx \ --input-type onnx \ --dataloader triton/dataloader.py \ --data-dir /data/imagenet \ --batch-size 32 \ --output-dir /results/dump_local \ --dump-labels ``` """ import argparse import logging import os from pathlib import Path from tqdm import tqdm # method from PEP-366 to support relative import in executed modules if __package__ is None: __package__ = Path(__file__).parent.name os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" os.environ["TF_ENABLE_DEPRECATION_WARNINGS"] = "0" from .deployment_toolkit.args import ArgParserGenerator # noqa: E402 module level import not at top of file from .deployment_toolkit.core import ( # noqa: E402 module level import not at top of file DATALOADER_FN_NAME, BaseLoader, BaseRunner, load_from_file, ) from .deployment_toolkit.dump import JsonDumpWriter # noqa: E402 module level import not at top of file from .deployment_toolkit.extensions import loaders, runners # noqa: E402 module level import not at top of file LOGGER = logging.getLogger("run_inference_on_fw") def _verify_and_format_dump(args, ids, x, y_pred, y_real): data = {"outputs": y_pred, "ids": {"ids": ids}} if args.dump_inputs: data["inputs"] = x if args.dump_labels: if not y_real: raise ValueError( "Found empty label values. Please provide labels in dataloader_fn or do not use --dump-labels argument" ) data["labels"] = y_real return data def _parse_and_validate_args(): supported_inputs = set(runners.supported_extensions) & set(loaders.supported_extensions) parser = argparse.ArgumentParser(description="Dump local inference output of given model", allow_abbrev=False) parser.add_argument("--input-path", help="Path to input model", required=True) parser.add_argument("--input-type", help="Input model type", choices=supported_inputs, required=True) parser.add_argument("--dataloader", help="Path to python file containing dataloader.", required=True) parser.add_argument("--output-dir", help="Path to dir where output files will be stored", required=True) parser.add_argument("--dump-labels", help="Dump labels to output dir", action="store_true", default=False) parser.add_argument("--dump-inputs", help="Dump inputs to output dir", action="store_true", default=False) parser.add_argument("-v", "--verbose", help="Verbose logs", action="store_true", default=False) args, *_ = parser.parse_known_args() get_dataloader_fn = load_from_file(args.dataloader, label="dataloader", target=DATALOADER_FN_NAME) ArgParserGenerator(get_dataloader_fn).update_argparser(parser) Loader: BaseLoader = loaders.get(args.input_type) ArgParserGenerator(Loader, module_path=args.input_path).update_argparser(parser) Runner: BaseRunner = runners.get(args.input_type) ArgParserGenerator(Runner).update_argparser(parser) args = parser.parse_args() types_requiring_io_params = [] if args.input_type in types_requiring_io_params and not all(p for p in [args.inputs, args.outptputs]): parser.error(f"For {args.input_type} input provide --inputs and --outputs parameters") return args def main(): args = _parse_and_validate_args() log_level = logging.INFO if not args.verbose else logging.DEBUG log_format = "%(asctime)s %(levelname)s %(name)s %(message)s" logging.basicConfig(level=log_level, format=log_format) LOGGER.info("args:") for key, value in vars(args).items(): LOGGER.info(f" {key} = {value}") Loader: BaseLoader = loaders.get(args.input_type) Runner: BaseRunner = runners.get(args.input_type) loader = ArgParserGenerator(Loader, module_path=args.input_path).from_args(args) runner = ArgParserGenerator(Runner).from_args(args) LOGGER.info(f"Loading {args.input_path}") model = loader.load(args.input_path) with runner.init_inference(model=model) as runner_session, JsonDumpWriter(args.output_dir) as writer: get_dataloader_fn = load_from_file(args.dataloader, label="dataloader", target=DATALOADER_FN_NAME) dataloader_fn = ArgParserGenerator(get_dataloader_fn).from_args(args) LOGGER.info("Data loader initialized; Running inference") for ids, x, y_real in tqdm(dataloader_fn(), unit="batch", mininterval=10): y_pred = runner_session(x) data = _verify_and_format_dump(args, ids=ids, x=x, y_pred=y_pred, y_real=y_real) writer.write(**data) LOGGER.info("Inference finished") if __name__ == "__main__": main()
TensorFlow2/Segmentation/UNet_Medical/examples
examples
unet_TRAIN_BENCHMARK
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This script launches U-Net run in FP32 for training benchmarking. Usage: # bash unet_TRAIN_BENCHMARK.sh <number of gpus> <path to dataset> <path to results directory> <batch size> horovodrun -np $1 python main.py --data_dir $2 --model_dir $3 --batch_size $4 --exec_mode train --augment --benchmark --warmup_steps 200 --max_steps 1000 --xla
TensorFlow/Detection/SSD/models/research/object_detection/samples/configs
configs
ssdlite_mobilenet_v2_coco
# SSDLite with Mobilenet v2 configuration for MSCOCO Dataset. # Users should configure the fine_tune_checkpoint field in the train config as # well as the label_map_path and input_path fields in the train_input_reader and # eval_input_reader. Search for "PATH_TO_BE_CONFIGURED" to find the fields that # should be configured. model { ssd { num_classes: 90 box_coder { faster_rcnn_box_coder { y_scale: 10.0 x_scale: 10.0 height_scale: 5.0 width_scale: 5.0 } } matcher { argmax_matcher { matched_threshold: 0.5 unmatched_threshold: 0.5 ignore_thresholds: false negatives_lower_than_unmatched: true force_match_for_each_row: true } } similarity_calculator { iou_similarity { } } anchor_generator { ssd_anchor_generator { num_layers: 6 min_scale: 0.2 max_scale: 0.95 aspect_ratios: 1.0 aspect_ratios: 2.0 aspect_ratios: 0.5 aspect_ratios: 3.0 aspect_ratios: 0.3333 } } image_resizer { fixed_shape_resizer { height: 300 width: 300 } } box_predictor { convolutional_box_predictor { min_depth: 0 max_depth: 0 num_layers_before_predictor: 0 use_dropout: false dropout_keep_probability: 0.8 kernel_size: 3 use_depthwise: true box_code_size: 4 apply_sigmoid_to_scores: false conv_hyperparams { activation: RELU_6, regularizer { l2_regularizer { weight: 0.00004 } } initializer { truncated_normal_initializer { stddev: 0.03 mean: 0.0 } } batch_norm { train: true, scale: true, center: true, decay: 0.9997, epsilon: 0.001, } } } } feature_extractor { type: 'ssd_mobilenet_v2' min_depth: 16 depth_multiplier: 1.0 use_depthwise: true conv_hyperparams { activation: RELU_6, regularizer { l2_regularizer { weight: 0.00004 } } initializer { truncated_normal_initializer { stddev: 0.03 mean: 0.0 } } batch_norm { train: true, scale: true, center: true, decay: 0.9997, epsilon: 0.001, } } } loss { classification_loss { weighted_sigmoid { } } localization_loss { weighted_smooth_l1 { } } hard_example_miner { num_hard_examples: 3000 iou_threshold: 0.99 loss_type: CLASSIFICATION max_negatives_per_positive: 3 min_negatives_per_image: 3 } classification_weight: 1.0 localization_weight: 1.0 } normalize_loss_by_num_matches: true post_processing { batch_non_max_suppression { score_threshold: 1e-8 iou_threshold: 0.6 max_detections_per_class: 100 max_total_detections: 100 } score_converter: SIGMOID } } } train_config: { batch_size: 24 optimizer { rms_prop_optimizer: { learning_rate: { exponential_decay_learning_rate { initial_learning_rate: 0.004 decay_steps: 800720 decay_factor: 0.95 } } momentum_optimizer_value: 0.9 decay: 0.9 epsilon: 1.0 } } fine_tune_checkpoint: "PATH_TO_BE_CONFIGURED/model.ckpt" fine_tune_checkpoint_type: "detection" # Note: The below line limits the training process to 200K steps, which we # empirically found to be sufficient enough to train the pets dataset. This # effectively bypasses the learning rate schedule (the learning rate will # never decay). Remove the below line to train indefinitely. num_steps: 200000 data_augmentation_options { random_horizontal_flip { } } data_augmentation_options { ssd_random_crop { } } } train_input_reader: { tf_record_input_reader { input_path: "PATH_TO_BE_CONFIGURED/mscoco_train.record-?????-of-00100" } label_map_path: "PATH_TO_BE_CONFIGURED/mscoco_label_map.pbtxt" } eval_config: { num_examples: 8000 # Note: The below line limits the evaluation process to 10 evaluations. # Remove the below line to evaluate indefinitely. max_evals: 10 } eval_input_reader: { tf_record_input_reader { input_path: "PATH_TO_BE_CONFIGURED/mscoco_val.record-?????-of-00010" } label_map_path: "PATH_TO_BE_CONFIGURED/mscoco_label_map.pbtxt" shuffle: false num_readers: 1 }
PyTorch/SpeechRecognition/wav2vec2/utils
utils
preprocessing_utils
#!/usr/bin/env python3 # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import multiprocessing import functools import sox from tqdm import tqdm def preprocess(data, input_dir, dest_dir, target_sr=None, speed=None, overwrite=True): speed = speed or [] speed.append(1) speed = list(set(speed)) # Make uniqe input_fname = os.path.join(input_dir, data['input_relpath'], data['input_fname']) input_sr = sox.file_info.sample_rate(input_fname) target_sr = target_sr or input_sr os.makedirs(os.path.join(dest_dir, data['input_relpath']), exist_ok=True) output_dict = {} output_dict['transcript'] = data['transcript'].lower().strip() output_dict['files'] = [] fname = os.path.splitext(data['input_fname'])[0] for s in speed: output_fname = fname + '{}.wav'.format('' if s == 1 else '-{}'.format(s)) output_fpath = os.path.join(dest_dir, data['input_relpath'], output_fname) if not os.path.exists(output_fpath) or overwrite: cbn = sox.Transformer().speed(factor=s).convert(target_sr) cbn.build(input_fname, output_fpath) file_info = sox.file_info.info(output_fpath) file_info['fname'] = os.path.join(os.path.basename(dest_dir), data['input_relpath'], output_fname) file_info['speed'] = s output_dict['files'].append(file_info) if s == 1: file_info = sox.file_info.info(output_fpath) output_dict['original_duration'] = file_info['duration'] output_dict['original_num_samples'] = file_info['num_samples'] return output_dict def parallel_preprocess(dataset, input_dir, dest_dir, target_sr, speed, overwrite, parallel): with multiprocessing.Pool(parallel) as p: func = functools.partial(preprocess, input_dir=input_dir, dest_dir=dest_dir, target_sr=target_sr, speed=speed, overwrite=overwrite) dataset = list(tqdm(p.imap(func, dataset), total=len(dataset))) return dataset
TensorFlow2/Detection/Efficientdet/model
model
fpn_configs
# Copyright 2020 Google Research. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """BiFPN/QuFPN and other FPN configs. BiFPN is presented in the EfficientDet paper. QuFPN is proposed in https://github.com/google/automl/pull/580 """ import itertools from utils import hparams_config def bifpn_config(min_level, max_level, weight_method): """A dynamic bifpn config that can adapt to different min/max levels.""" p = hparams_config.Config() p.weight_method = weight_method or 'fastattn' # Node id starts from the input features and monotonically increase whenever # a new node is added. Here is an example for level P3 - P7: # P7 (4) P7" (12) # P6 (3) P6' (5) P6" (11) # P5 (2) P5' (6) P5" (10) # P4 (1) P4' (7) P4" (9) # P3 (0) P3" (8) # So output would be like: # [ # {'feat_level': 6, 'inputs_offsets': [3, 4]}, # for P6' # {'feat_level': 5, 'inputs_offsets': [2, 5]}, # for P5' # {'feat_level': 4, 'inputs_offsets': [1, 6]}, # for P4' # {'feat_level': 3, 'inputs_offsets': [0, 7]}, # for P3" # {'feat_level': 4, 'inputs_offsets': [1, 7, 8]}, # for P4" # {'feat_level': 5, 'inputs_offsets': [2, 6, 9]}, # for P5" # {'feat_level': 6, 'inputs_offsets': [3, 5, 10]}, # for P6" # {'feat_level': 7, 'inputs_offsets': [4, 11]}, # for P7" # ] num_levels = max_level - min_level + 1 node_ids = {min_level + i: [i] for i in range(num_levels)} level_last_id = lambda level: node_ids[level][-1] level_all_ids = lambda level: node_ids[level] id_cnt = itertools.count(num_levels) p.nodes = [] for i in range(max_level - 1, min_level - 1, -1): # top-down path. p.nodes.append({ 'feat_level': i, 'inputs_offsets': [level_last_id(i), level_last_id(i + 1)] }) node_ids[i].append(next(id_cnt)) for i in range(min_level + 1, max_level + 1): # bottom-up path. p.nodes.append({ 'feat_level': i, 'inputs_offsets': level_all_ids(i) + [level_last_id(i - 1)] }) node_ids[i].append(next(id_cnt)) return p def qufpn_config(min_level, max_level, weight_method=None): """A dynamic quad fpn config that can adapt to different min/max levels.""" # It extends the idea of BiFPN, and has four paths: # (up_down -> bottom_up) + (bottom_up -> up_down). # See test for an example for level 2 and 7. p = hparams_config.Config() p.weight_method = weight_method or 'fastattn' p.quad_method = 'fastattn' num_levels = max_level - min_level + 1 node_ids = {min_level + i: [i] for i in range(num_levels)} level_last_id = lambda level: node_ids[level][-1] level_all_ids = lambda level: node_ids[level] level_first_id = lambda level: node_ids[level][0] id_cnt = itertools.count(num_levels) p.nodes = [] for i in range(max_level - 1, min_level - 1, -1): # top-down path 1. p.nodes.append({ 'feat_level': i, 'inputs_offsets': [level_last_id(i), level_last_id(i + 1)], 'weight_method': p.weight_method }) node_ids[i].append(next(id_cnt)) node_ids[max_level].append(node_ids[max_level][-1]) for i in range(min_level + 1, max_level): # bottom-up path 2. p.nodes.append({ 'feat_level': i, 'inputs_offsets': level_all_ids(i) + [level_last_id(i - 1)], 'weight_method': p.weight_method }) node_ids[i].append(next(id_cnt)) i = max_level p.nodes.append({ 'feat_level': i, 'inputs_offsets': [level_first_id(i)] + [level_last_id(i - 1)], 'weight_method': p.weight_method }) node_ids[i].append(next(id_cnt)) node_ids[min_level].append(node_ids[min_level][-1]) for i in range(min_level + 1, max_level + 1, 1): # bottom-up path 3. p.nodes.append({ 'feat_level': i, 'inputs_offsets': [ level_first_id(i), level_last_id(i - 1) if i != min_level + 1 else level_first_id(i - 1) ], 'weight_method': p.weight_method }) node_ids[i].append(next(id_cnt)) node_ids[min_level].append(node_ids[min_level][-1]) for i in range(max_level - 1, min_level, -1): # top-down path 4. p.nodes.append({ 'feat_level': i, 'inputs_offsets': [node_ids[i][0]] + [node_ids[i][-1]] + [level_last_id(i + 1)], 'weight_method': p.weight_method }) node_ids[i].append(next(id_cnt)) i = min_level p.nodes.append({ 'feat_level': i, 'inputs_offsets': [node_ids[i][0]] + [level_last_id(i + 1)], 'weight_method': p.weight_method }) node_ids[i].append(next(id_cnt)) node_ids[max_level].append(node_ids[max_level][-1]) for i in range(max_level, min_level - 1, -1): # quad-add path. p.nodes.append({ 'feat_level': i, 'inputs_offsets': [node_ids[i][2], node_ids[i][4]], 'weight_method': p.quad_method }) node_ids[i].append(next(id_cnt)) return p def get_fpn_config(fpn_name, min_level, max_level, weight_method): """Get fpn related configuration.""" if not fpn_name: fpn_name = 'bifpn' name_to_config = { 'bifpn': bifpn_config(min_level, max_level, weight_method), 'qufpn': qufpn_config(min_level, max_level, weight_method), # legacy only: to be deprecated. 'bifpn_dyn': bifpn_config(min_level, max_level, weight_method), } return name_to_config[fpn_name]
PyTorch/SpeechSynthesis/FastPitch/hifigan
hifigan
data_function
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # MIT License # # Copyright (c) 2020 Jungil Kong # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # The following functions/classes were based on code from https://github.com/jik876/hifi-gan: # mel_spectrogram, MelDataset import math import os import numpy as np import torch import torch.nn.functional as F import torch.utils.data from librosa.filters import mel as librosa_mel_fn from librosa.util import normalize from numpy import random from torch.utils.data import DataLoader from torch.utils.data.distributed import DistributedSampler from common.audio_processing import dynamic_range_compression from common.utils import load_filepaths_and_text, load_wav MAX_WAV_VALUE = 32768.0 mel_basis = {} hann_window = {} def mel_spectrogram(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False): if torch.min(y) < -1.: print('min value is ', torch.min(y)) if torch.max(y) > 1.: print('max value is ', torch.max(y)) global mel_basis, hann_window fmax_key = f'{fmax}_{y.device}' if fmax_key not in mel_basis: mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax) mel_basis[fmax_key] = torch.from_numpy(mel).float().to(y.device) hann_window[str(y.device)] = torch.hann_window(win_size).to(y.device) pad = int((n_fft-hop_size)/2) y = F.pad(y.unsqueeze(1), (pad, pad), mode='reflect') y = y.squeeze(1) spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[str(y.device)], center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=True) spec = torch.view_as_real(spec) spec = torch.sqrt(spec.pow(2).sum(-1)+(1e-9)) spec = torch.matmul(mel_basis[str(fmax)+'_'+str(y.device)], spec) spec = dynamic_range_compression(spec) # spectral normalize return spec class MelDataset(torch.utils.data.Dataset): def __init__(self, training_files, segment_size, n_fft, num_mels, hop_size, win_size, sampling_rate, fmin, fmax, split=True, device=None, fmax_loss=None, fine_tuning=False, base_mels_path=None, repeat=1, deterministic=False, max_wav_value=MAX_WAV_VALUE): self.audio_files = training_files self.segment_size = segment_size self.sampling_rate = sampling_rate self.split = split self.n_fft = n_fft self.num_mels = num_mels self.hop_size = hop_size self.win_size = win_size self.fmin = fmin self.fmax = fmax self.fmax_loss = fmax_loss self.max_wav_value = max_wav_value self.fine_tuning = fine_tuning self.base_mels_path = base_mels_path self.repeat = repeat self.deterministic = deterministic self.rng = random.default_rng() def __getitem__(self, index): if index >= len(self): raise IndexError('Dataset index out of range') rng = random.default_rng(index) if self.deterministic else self.rng index = index % len(self.audio_files) # collapse **after** setting seed filename = self.audio_files[index] audio, sampling_rate = load_wav(filename) audio = audio / self.max_wav_value if not self.fine_tuning: audio = normalize(audio) * 0.95 if sampling_rate != self.sampling_rate: raise ValueError("{} SR doesn't match target {} SR".format( sampling_rate, self.sampling_rate)) audio = torch.FloatTensor(audio) audio = audio.unsqueeze(0) if not self.fine_tuning: if self.split: if audio.size(1) >= self.segment_size: max_audio_start = audio.size(1) - self.segment_size audio_start = rng.integers(0, max_audio_start) audio = audio[:, audio_start:audio_start+self.segment_size] else: audio = F.pad(audio, (0, self.segment_size - audio.size(1))) mel = mel_spectrogram(audio, self.n_fft, self.num_mels, self.sampling_rate, self.hop_size, self.win_size, self.fmin, self.fmax, center=False) else: mel = np.load( os.path.join(self.base_mels_path, os.path.splitext(os.path.split(filename)[-1])[0] + '.npy')) mel = torch.from_numpy(mel).float() if len(mel.shape) < 3: mel = mel.unsqueeze(0) if self.split: frames_per_seg = math.ceil(self.segment_size / self.hop_size) if audio.size(1) >= self.segment_size: mel_start = rng.integers(0, mel.size(2) - frames_per_seg - 1) mel = mel[:, :, mel_start:mel_start + frames_per_seg] a = mel_start * self.hop_size b = (mel_start + frames_per_seg) * self.hop_size audio = audio[:, a:b] else: mel = F.pad(mel, (0, frames_per_seg - mel.size(2))) audio = F.pad(audio, (0, self.segment_size - audio.size(1))) mel_loss = mel_spectrogram(audio, self.n_fft, self.num_mels, self.sampling_rate, self.hop_size, self.win_size, self.fmin, self.fmax_loss, center=False) return (mel.squeeze(), audio.squeeze(0), filename, mel_loss.squeeze()) def __len__(self): return len(self.audio_files) * self.repeat def get_data_loader(args, distributed_run, train=True, batch_size=None, val_kwargs=None): filelists = args.training_files if train else args.validation_files files = load_filepaths_and_text(args.dataset_path, filelists) files = list(zip(*files))[0] dataset_kw = { 'segment_size': args.segment_size, 'n_fft': args.filter_length, 'num_mels': args.num_mels, 'hop_size': args.hop_length, 'win_size': args.win_length, 'sampling_rate': args.sampling_rate, 'fmin': args.mel_fmin, 'fmax': args.mel_fmax, 'fmax_loss': args.mel_fmax_loss, 'max_wav_value': args.max_wav_value, 'fine_tuning': args.fine_tuning, 'base_mels_path': args.input_mels_dir, 'deterministic': not train } if train: dataset = MelDataset(files, **dataset_kw) sampler = DistributedSampler(dataset) if distributed_run else None else: dataset_kw.update(val_kwargs or {}) dataset = MelDataset(files, **dataset_kw) sampler = (DistributedSampler(dataset, shuffle=False) if distributed_run else None) loader = DataLoader(dataset, # NOTE On DGX-1 and DGX A100 =1 is optimal num_workers=args.num_workers if train else 1, shuffle=(train and not distributed_run), sampler=sampler, batch_size=batch_size or args.batch_size, pin_memory=True, persistent_workers=True, drop_last=train) return loader
TensorFlow/Translation/GNMT
GNMT
nmt
# Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TensorFlow NMT model implementation.""" from __future__ import print_function import argparse import os import random import sys import subprocess # import matplotlib.image as mpimg import numpy as np import time import tensorflow as tf import dllogger import estimator from utils import evaluation_utils from utils import iterator_utils from utils import misc_utils as utils from utils import vocab_utils from variable_mgr import constants utils.check_tensorflow_version() FLAGS = None # LINT.IfChange def add_arguments(parser): """Build ArgumentParser.""" parser.register("type", "bool", lambda v: v.lower() == "true") # network parser.add_argument( "--num_units", type=int, default=1024, help="Network size.") parser.add_argument( "--num_layers", type=int, default=4, help="Network depth.") parser.add_argument("--num_encoder_layers", type=int, default=None, help="Encoder depth, equal to num_layers if None.") parser.add_argument("--num_decoder_layers", type=int, default=None, help="Decoder depth, equal to num_layers if None.") parser.add_argument( "--encoder_type", type=str, default="gnmt", help="""\ uni | bi | gnmt. For bi, we build num_encoder_layers/2 bi-directional layers. For gnmt, we build 1 bi-directional layer, and (num_encoder_layers - 1) uni-directional layers.\ """) parser.add_argument( "--residual", type="bool", nargs="?", const=True, default=True, help="Whether to add residual connections.") parser.add_argument("--time_major", type="bool", nargs="?", const=True, default=True, help="Whether to use time-major mode for dynamic RNN.") parser.add_argument("--num_embeddings_partitions", type=int, default=0, help="Number of partitions for embedding vars.") # attention mechanisms parser.add_argument( "--attention", type=str, default="normed_bahdanau", help="""\ luong | scaled_luong | bahdanau | normed_bahdanau or set to "" for no attention\ """) parser.add_argument( "--attention_architecture", type=str, default="gnmt_v2", help="""\ standard | gnmt | gnmt_v2. standard: use top layer to compute attention. gnmt: GNMT style of computing attention, use previous bottom layer to compute attention. gnmt_v2: similar to gnmt, but use current bottom layer to compute attention.\ """) parser.add_argument( "--output_attention", type="bool", nargs="?", const=True, default=True, help="""\ Only used in standard attention_architecture. Whether use attention as the cell output at each timestep. .\ """) parser.add_argument( "--pass_hidden_state", type="bool", nargs="?", const=True, default=True, help="""\ Whether to pass encoder's hidden state to decoder when using an attention based model.\ """) # optimizer parser.add_argument( "--optimizer", type=str, default="adam", help="sgd | adam") parser.add_argument( "--learning_rate", type=float, default=5e-4, help="Learning rate. Adam: 0.001 | 0.0001") parser.add_argument("--warmup_steps", type=int, default=200, help="How many steps we inverse-decay learning.") parser.add_argument("--warmup_scheme", type=str, default="t2t", help="""\ How to warmup learning rates. Options include: t2t: Tensor2Tensor's way, start with lr 100 times smaller, then exponentiate until the specified lr.\ """) parser.add_argument( "--decay_scheme", type=str, default="luong234", help="""\ How we decay learning rate. Options include: luong234: after 2/3 num train steps, we start halving the learning rate for 4 times before finishing. luong5: after 1/2 num train steps, we start halving the learning rate for 5 times before finishing.\ luong10: after 1/2 num train steps, we start halving the learning rate for 10 times before finishing.\ """) parser.add_argument( "--max_train_epochs", type=int, default=6, help="Max number of epochs.") parser.add_argument( "--target_bleu", type=float, default=None, help="Target bleu.") parser.add_argument("--colocate_gradients_with_ops", type="bool", nargs="?", const=True, default=True, help=("Whether try colocating gradients with " "corresponding op")) parser.add_argument("--label_smoothing", type=float, default=0.1, help=("If nonzero, smooth the labels towards " "1/num_classes.")) # initializer parser.add_argument("--init_op", type=str, default="uniform", help="uniform | glorot_normal | glorot_uniform") parser.add_argument("--init_weight", type=float, default=0.1, help=("for uniform init_op, initialize weights " "between [-this, this].")) # data parser.add_argument( "--src", type=str, default="en", help="Source suffix, e.g., en.") parser.add_argument( "--tgt", type=str, default="de", help="Target suffix, e.g., de.") parser.add_argument( "--data_dir", type=str, default="data/wmt16_de_en", help="Training/eval data directory.") parser.add_argument( "--train_prefix", type=str, default="train.tok.clean.bpe.32000", help="Train prefix, expect files with src/tgt suffixes.") parser.add_argument( "--test_prefix", type=str, default="newstest2014.tok.bpe.32000", help="Test prefix, expect files with src/tgt suffixes.") parser.add_argument( "--translate_file", type=str, help="File to translate, works only with translate mode") parser.add_argument( "--output_dir", type=str, default="results", help="Store log/model files.") # Vocab parser.add_argument( "--vocab_prefix", type=str, default="vocab.bpe.32000", help="""\ Vocab prefix, expect files with src/tgt suffixes.\ """) parser.add_argument( "--embed_prefix", type=str, default=None, help="""\ Pretrained embedding prefix, expect files with src/tgt suffixes. The embedding files should be Glove formatted txt files.\ """) parser.add_argument("--sos", type=str, default="<s>", help="Start-of-sentence symbol.") parser.add_argument("--eos", type=str, default="</s>", help="End-of-sentence symbol.") parser.add_argument( "--share_vocab", type="bool", nargs="?", const=True, default=True, help="""\ Whether to use the source vocab and embeddings for both source and target.\ """) parser.add_argument("--check_special_token", type="bool", default=True, help="""\ Whether check special sos, eos, unk tokens exist in the vocab files.\ """) # Sequence lengths parser.add_argument( "--src_max_len", type=int, default=50, help="Max length of src sequences during training (including EOS).") parser.add_argument( "--tgt_max_len", type=int, default=50, help="Max length of tgt sequences during training (including BOS).") parser.add_argument("--src_max_len_infer", type=int, default=None, help="Max length of src sequences during inference (including EOS).") parser.add_argument("--tgt_max_len_infer", type=int, default=80, help="""\ Max length of tgt sequences during inference (including BOS). Also use to restrict the maximum decoding length.\ """) # Default settings works well (rarely need to change) parser.add_argument("--unit_type", type=str, default="lstm", help="lstm | gru | layer_norm_lstm | nas") parser.add_argument("--forget_bias", type=float, default=0.0, help="Forget bias for BasicLSTMCell.") parser.add_argument("--dropout", type=float, default=0.2, help="Dropout rate (not keep_prob)") parser.add_argument("--max_gradient_norm", type=float, default=5.0, help="Clip gradients to this norm.") parser.add_argument("--batch_size", type=int, default=128, help="Total batch size.") parser.add_argument( "--num_buckets", type=int, default=5, help="Put data into similar-length buckets (only for training).") # SPM parser.add_argument("--subword_option", type=str, default="bpe", choices=["", "bpe", "spm"], help="""\ Set to bpe or spm to activate subword desegmentation.\ """) # Experimental encoding feature. parser.add_argument("--use_char_encode", type="bool", default=False, help="""\ Whether to split each word or bpe into character, and then generate the word-level representation from the character reprentation. """) # Misc parser.add_argument( "--save_checkpoints_steps", type=int, default=2000, help="save_checkpoints_steps") parser.add_argument( "--log_step_count_steps", type=int, default=10, help=("The frequency, in number of global steps, that the global step " "and the loss will be logged during training")) parser.add_argument( "--num_gpus", type=int, default=1, help="Number of gpus in each worker.") parser.add_argument("--hparams_path", type=str, default=None, help=("Path to standard hparams json file that overrides" "hparams values from FLAGS.")) parser.add_argument( "--random_seed", type=int, default=1, help="Random seed (>0, set a specific seed).") parser.add_argument("--language_model", type="bool", nargs="?", const=True, default=False, help="True to train a language model, ignoring encoder") # Inference parser.add_argument("--ckpt", type=str, default=None, help="Checkpoint file to load a model for inference. (defaults to newest checkpoint)") parser.add_argument( "--infer_batch_size", type=int, default=128, help="Batch size for inference mode.") parser.add_argument("--detokenizer_file", type=str, default=None, help=("""Detokenizer script file. Default: DATA_DIR/mosesdecoder/scripts/tokenizer/detokenizer.perl""")) parser.add_argument("--tokenizer_file", type=str, default=None, help=("""Tokenizer script file. Default: DATA_DIR/mosesdecoder/scripts/tokenizer/tokenizer.perl""")) # Advanced inference arguments parser.add_argument("--infer_mode", type=str, default="beam_search", choices=["greedy", "beam_search"], help="Which type of decoder to use during inference.") parser.add_argument("--beam_width", type=int, default=5, help=("""\ beam width when using beam search decoder. If 0, use standard decoder with greedy helper.\ """)) parser.add_argument( "--length_penalty_weight", type=float, default=0.6, help="Length penalty for beam search.") parser.add_argument( "--coverage_penalty_weight", type=float, default=0.1, help="Coverage penalty for beam search.") # Job info parser.add_argument("--num_workers", type=int, default=1, help="Number of workers (inference only).") parser.add_argument("--amp", action='store_true', help="use amp for training and inference") parser.add_argument("--use_fastmath", type="bool", default=False, help="use_fastmath for training and inference") parser.add_argument("--use_fp16", type="bool", default=False, help="use_fp16 for training and inference") parser.add_argument( "--fp16_loss_scale", type=float, default=128, help="If fp16 is enabled, the loss is multiplied by this amount " "right before gradients are computed, then each gradient " "is divided by this amount. Mathematically, this has no " "effect, but it helps avoid fp16 underflow. Set to 1 to " "effectively disable.") parser.add_argument( "--enable_auto_loss_scale", type="bool", default=True, help="If True and use_fp16 is True, automatically adjust the " "loss scale during training.") parser.add_argument( "--fp16_inc_loss_scale_every_n", type=int, default=128, help="If fp16 is enabled and enable_auto_loss_scale is " "True, increase the loss scale every n steps.") parser.add_argument( "--check_tower_loss_numerics", type="bool", default=False, # Set to false for xla.compile() help="whether to check tower loss numerics") parser.add_argument( "--use_fp32_batch_matmul", type="bool", default=False, help="Whether to use fp32 batch matmul") # Performance # XLA parser.add_argument( "--force_inputs_padding", type="bool", default=False, help="Force padding input batch to src_max_len and tgt_max_len") parser.add_argument( "--use_xla", type="bool", default=False, help="Use xla to compile a few selected locations, mostly Defuns.") parser.add_argument( "--xla_compile", type="bool", default=False, help="Use xla.compile() for each tower's fwd and bak pass.") parser.add_argument( "--use_autojit_xla", type="bool", default=False, help="Use auto jit xla.") # GPU knobs parser.add_argument( "--use_pintohost_optimizer", type="bool", default=False, help="whether to use PinToHost optimizer") parser.add_argument( "--use_cudnn_lstm", type="bool", default=False, help="whether to use cudnn_lstm for encoder, non residual layers") parser.add_argument( "--use_loose_bidi_cudnn_lstm", type="bool", default=False, help="whether to use loose bidi cudnn_lstm") parser.add_argument( "--use_fused_lstm", type="bool", default=True, help="whether to use fused lstm and variant. If enabled, training will " "use LSTMBlockFusedCell, infer will use LSTMBlockCell when appropriate.") parser.add_argument( "--use_fused_lstm_dec", type="bool", default=False, help="whether to use fused lstm for decoder (training only).") parser.add_argument( "--gpu_indices", type=str, default="", help="Indices of worker GPUs in ring order") # Graph knobs parser.add_argument("--parallel_iterations", type=int, default=10, help="number of parallel iterations in dynamic_rnn") parser.add_argument("--use_dist_strategy", type="bool", default=False, help="whether to use distribution strategy") parser.add_argument( "--hierarchical_copy", type="bool", default=False, help="Use hierarchical copies. Currently only optimized for " "use on a DGX-1 with 8 GPUs and may perform poorly on " "other hardware. Requires --num_gpus > 1, and only " "recommended when --num_gpus=8") parser.add_argument( "--network_topology", type=constants.NetworkTopology, default=constants.NetworkTopology.DGX1, choices=list(constants.NetworkTopology)) parser.add_argument( "--use_block_lstm", type="bool", default=False, help="whether to use block lstm") parser.add_argument( "--use_defun", type="bool", default=False, help="whether to use Defun") # Gradient tricks parser.add_argument( "--gradient_repacking", type=int, default=0, help="Use gradient repacking. It" "currently only works with replicated mode. At the end of" "of each step, it repacks the gradients for more efficient" "cross-device transportation. A non-zero value specifies" "the number of split packs that will be formed.") parser.add_argument( "--compact_gradient_transfer", type="bool", default=True, help="Compact gradient as much as possible for cross-device transfer and " "aggregation.") parser.add_argument( "--all_reduce_spec", type=str, default="nccl", help="A specification of the all_reduce algorithm to be used " "for reducing gradients. For more details, see " "parse_all_reduce_spec in variable_mgr.py. An " "all_reduce_spec has BNF form:\n" "int ::= positive whole number\n" "g_int ::= int[KkMGT]?\n" "alg_spec ::= alg | alg#int\n" "range_spec ::= alg_spec | alg_spec/alg_spec\n" "spec ::= range_spec | range_spec:g_int:range_spec\n" "NOTE: not all syntactically correct constructs are " "supported.\n\n" "Examples:\n " "\"xring\" == use one global ring reduction for all " "tensors\n" "\"pscpu\" == use CPU at worker 0 to reduce all tensors\n" "\"nccl\" == use NCCL to locally reduce all tensors. " "Limited to 1 worker.\n" "\"nccl/xring\" == locally (to one worker) reduce values " "using NCCL then ring reduce across workers.\n" "\"pscpu:32k:xring\" == use pscpu algorithm for tensors of " "size up to 32kB, then xring for larger tensors.") parser.add_argument( "--agg_small_grads_max_bytes", type=int, default=0, help="If > 0, try to aggregate tensors of less than this " "number of bytes prior to all-reduce.") parser.add_argument( "--agg_small_grads_max_group", type=int, default=10, help="When aggregating small tensors for all-reduce do not " "aggregate more than this many into one new tensor.") parser.add_argument( "--allreduce_merge_scope", type=int, default=1, help="Establish a name scope around this many " "gradients prior to creating the all-reduce operations. " "It may affect the ability of the backend to merge " "parallel ops.") # Other knobs parser.add_argument( "--local_parameter_device", type=str, default="gpu", help="Device to use as parameter server: cpu or gpu. For " "distributed training, it can affect where caching of " "variables happens.") parser.add_argument( "--use_resource_vars", type="bool", default=False, help="Use resource variables instead of normal variables. " "Resource variables are slower, but this option is useful " "for debugging their performance.") parser.add_argument("--debug", type="bool", default=False, help="Debug train and eval") parser.add_argument( "--debug_num_train_steps", type=int, default=None, help="Num steps to train.") parser.add_argument("--show_metrics", type="bool", default=True, help="whether to show detailed metrics") parser.add_argument("--clip_grads", type="bool", default=True, help="whether to clip gradients") parser.add_argument("--profile", type="bool", default=False, help="If generate profile") parser.add_argument("--profile_save_steps", type=int, default=10, help="Save timeline every N steps.") parser.add_argument("--use_dynamic_rnn", type="bool", default=True) parser.add_argument("--use_synthetic_data", type="bool", default=False) parser.add_argument( "--mode", type=str, default="train_and_eval", choices=("train_and_eval", "infer", "translate")) def create_hparams(flags): """Create training hparams.""" return tf.contrib.training.HParams( # Data src=flags.src, tgt=flags.tgt, train_prefix=os.path.join(flags.data_dir, flags.train_prefix), test_prefix=os.path.join(flags.data_dir, flags.test_prefix), translate_file=flags.translate_file, vocab_prefix=os.path.join(flags.data_dir, flags.vocab_prefix), embed_prefix=flags.embed_prefix, output_dir=flags.output_dir, # Networks num_units=flags.num_units, num_encoder_layers=(flags.num_encoder_layers or flags.num_layers), num_decoder_layers=(flags.num_decoder_layers or flags.num_layers), dropout=flags.dropout, unit_type=flags.unit_type, encoder_type=flags.encoder_type, residual=flags.residual, time_major=flags.time_major, num_embeddings_partitions=flags.num_embeddings_partitions, # Attention mechanisms attention=flags.attention, attention_architecture=flags.attention_architecture, output_attention=flags.output_attention, pass_hidden_state=flags.pass_hidden_state, # Train optimizer=flags.optimizer, max_train_epochs=flags.max_train_epochs, target_bleu=flags.target_bleu, label_smoothing=flags.label_smoothing, batch_size=flags.batch_size, init_op=flags.init_op, init_weight=flags.init_weight, max_gradient_norm=flags.max_gradient_norm, learning_rate=flags.learning_rate, warmup_steps=flags.warmup_steps, warmup_scheme=flags.warmup_scheme, decay_scheme=flags.decay_scheme, colocate_gradients_with_ops=flags.colocate_gradients_with_ops, # Data constraints num_buckets=flags.num_buckets, src_max_len=flags.src_max_len, tgt_max_len=flags.tgt_max_len, # Inference src_max_len_infer=flags.src_max_len_infer, tgt_max_len_infer=flags.tgt_max_len_infer, ckpt=flags.ckpt, infer_batch_size=flags.infer_batch_size, detokenizer_file=flags.detokenizer_file if flags.detokenizer_file is not None \ else os.path.join(flags.data_dir, 'mosesdecoder/scripts/tokenizer/detokenizer.perl'), tokenizer_file=flags.tokenizer_file if flags.tokenizer_file is not None \ else os.path.join(flags.data_dir, 'mosesdecoder/scripts/tokenizer/tokenizer.perl'), # Advanced inference arguments infer_mode=flags.infer_mode, beam_width=flags.beam_width, length_penalty_weight=flags.length_penalty_weight, coverage_penalty_weight=flags.coverage_penalty_weight, # Vocab sos=flags.sos if flags.sos else vocab_utils.SOS, eos=flags.eos if flags.eos else vocab_utils.EOS, subword_option=flags.subword_option, check_special_token=flags.check_special_token, use_char_encode=flags.use_char_encode, # Misc forget_bias=flags.forget_bias, num_gpus=flags.num_gpus, save_checkpoints_steps=flags.save_checkpoints_steps, log_step_count_steps=flags.log_step_count_steps, epoch_step=0, # record where we were within an epoch. share_vocab=flags.share_vocab, random_seed=flags.random_seed, language_model=flags.language_model, amp=flags.amp, use_fastmath=flags.use_fastmath, use_fp16=flags.use_fp16, fp16_loss_scale=flags.fp16_loss_scale, enable_auto_loss_scale=flags.enable_auto_loss_scale, fp16_inc_loss_scale_every_n=flags.fp16_inc_loss_scale_every_n, check_tower_loss_numerics=flags.check_tower_loss_numerics, use_fp32_batch_matmul=flags.use_fp32_batch_matmul, # Performance # GPU knbs force_inputs_padding=flags.force_inputs_padding, use_xla=flags.use_xla, xla_compile=flags.xla_compile, use_autojit_xla=flags.use_autojit_xla, use_pintohost_optimizer=flags.use_pintohost_optimizer, use_cudnn_lstm=flags.use_cudnn_lstm, use_loose_bidi_cudnn_lstm=flags.use_loose_bidi_cudnn_lstm, use_fused_lstm=flags.use_fused_lstm, use_fused_lstm_dec=flags.use_fused_lstm_dec, gpu_indices=flags.gpu_indices, # Graph knobs parallel_iterations=flags.parallel_iterations, use_dynamic_rnn=flags.use_dynamic_rnn, use_dist_strategy=flags.use_dist_strategy, hierarchical_copy=flags.hierarchical_copy, network_topology=flags.network_topology, use_block_lstm=flags.use_block_lstm, # Grad tricks gradient_repacking=flags.gradient_repacking, compact_gradient_transfer=flags.compact_gradient_transfer, all_reduce_spec=flags.all_reduce_spec, agg_small_grads_max_bytes=flags.agg_small_grads_max_bytes, agg_small_grads_max_group=flags.agg_small_grads_max_group, allreduce_merge_scope=flags.allreduce_merge_scope, # Other knobs local_parameter_device=("cpu" if flags.num_gpus ==0 else flags.local_parameter_device), use_resource_vars=flags.use_resource_vars, debug=flags.debug, debug_num_train_steps=flags.debug_num_train_steps, clip_grads=flags.clip_grads, profile=flags.profile, profile_save_steps=flags.profile_save_steps, show_metrics=flags.show_metrics, use_synthetic_data=flags.use_synthetic_data, mode=flags.mode, ) def _add_argument(hparams, key, value, update=True): """Add an argument to hparams; if exists, change the value if update==True.""" if hasattr(hparams, key): if update: setattr(hparams, key, value) else: hparams.add_hparam(key, value) def extend_hparams(hparams): """Add new arguments to hparams.""" # Sanity checks if hparams.encoder_type == "bi" and hparams.num_encoder_layers % 2 != 0: raise ValueError("For bi, num_encoder_layers %d should be even" % hparams.num_encoder_layers) if (hparams.attention_architecture in ["gnmt"] and hparams.num_encoder_layers < 2): raise ValueError("For gnmt attention architecture, " "num_encoder_layers %d should be >= 2" % hparams.num_encoder_layers) if hparams.subword_option and hparams.subword_option not in ["spm", "bpe"]: raise ValueError("subword option must be either spm, or bpe") if hparams.infer_mode == "beam_search" and hparams.beam_width <= 0: raise ValueError("beam_width must greater than 0 when using beam_search" "decoder.") if hparams.mode == "translate" and not hparams.translate_file: raise ValueError("--translate_file flag must be specified in translate mode") # Different number of encoder / decoder layers assert hparams.num_encoder_layers and hparams.num_decoder_layers if hparams.num_encoder_layers != hparams.num_decoder_layers: hparams.pass_hidden_state = False utils.print_out("Num encoder layer %d is different from num decoder layer" " %d, so set pass_hidden_state to False" % ( hparams.num_encoder_layers, hparams.num_decoder_layers)) # Set residual layers num_encoder_residual_layers = 0 num_decoder_residual_layers = 0 if hparams.residual: if hparams.num_encoder_layers > 1: num_encoder_residual_layers = hparams.num_encoder_layers - 1 if hparams.num_decoder_layers > 1: num_decoder_residual_layers = hparams.num_decoder_layers - 1 if hparams.encoder_type == "gnmt": # The first unidirectional layer (after the bi-directional layer) in # the GNMT encoder can't have residual connection due to the input is # the concatenation of fw_cell and bw_cell's outputs. num_encoder_residual_layers = hparams.num_encoder_layers - 2 # Compatible for GNMT models if hparams.num_encoder_layers == hparams.num_decoder_layers: num_decoder_residual_layers = num_encoder_residual_layers _add_argument(hparams, "num_encoder_residual_layers", num_encoder_residual_layers) _add_argument(hparams, "num_decoder_residual_layers", num_decoder_residual_layers) # Language modeling if hparams.language_model: hparams.attention = "" hparams.attention_architecture = "" hparams.pass_hidden_state = False hparams.share_vocab = True hparams.src = hparams.tgt utils.print_out("For language modeling, we turn off attention and " "pass_hidden_state; turn on share_vocab; set src to tgt.") ## Vocab # Get vocab file names first if hparams.vocab_prefix: src_vocab_file = hparams.vocab_prefix + "." + hparams.src tgt_vocab_file = hparams.vocab_prefix + "." + hparams.tgt else: raise ValueError("hparams.vocab_prefix must be provided.") # Source vocab src_vocab_size, src_vocab_file = vocab_utils.check_vocab( src_vocab_file, hparams.output_dir, check_special_token=hparams.check_special_token, sos=hparams.sos, eos=hparams.eos, unk=vocab_utils.UNK, pad_vocab=True) # Target vocab if hparams.share_vocab: utils.print_out(" using source vocab for target") tgt_vocab_file = src_vocab_file tgt_vocab_size = src_vocab_size else: tgt_vocab_size, tgt_vocab_file = vocab_utils.check_vocab( tgt_vocab_file, hparams.output_dir, check_special_token=hparams.check_special_token, sos=hparams.sos, eos=hparams.eos, unk=vocab_utils.UNK) _add_argument(hparams, "src_vocab_size", src_vocab_size) _add_argument(hparams, "tgt_vocab_size", tgt_vocab_size) _add_argument(hparams, "src_vocab_file", src_vocab_file) _add_argument(hparams, "tgt_vocab_file", tgt_vocab_file) # Num embedding partitions _add_argument( hparams, "num_enc_emb_partitions", hparams.num_embeddings_partitions) _add_argument( hparams, "num_dec_emb_partitions", hparams.num_embeddings_partitions) # Pretrained Embeddings _add_argument(hparams, "src_embed_file", "") _add_argument(hparams, "tgt_embed_file", "") if hparams.embed_prefix: src_embed_file = hparams.embed_prefix + "." + hparams.src tgt_embed_file = hparams.embed_prefix + "." + hparams.tgt if tf.gfile.Exists(src_embed_file): utils.print_out(" src_embed_file %s exist" % src_embed_file) hparams.src_embed_file = src_embed_file utils.print_out( "For pretrained embeddings, set num_enc_emb_partitions to 1") hparams.num_enc_emb_partitions = 1 else: utils.print_out(" src_embed_file %s doesn't exist" % src_embed_file) if tf.gfile.Exists(tgt_embed_file): utils.print_out(" tgt_embed_file %s exist" % tgt_embed_file) hparams.tgt_embed_file = tgt_embed_file utils.print_out( "For pretrained embeddings, set num_dec_emb_partitions to 1") hparams.num_dec_emb_partitions = 1 else: utils.print_out(" tgt_embed_file %s doesn't exist" % tgt_embed_file) # Evaluation metric = "bleu" best_metric_dir = os.path.join(hparams.output_dir, "best_" + metric) tf.gfile.MakeDirs(best_metric_dir) _add_argument(hparams, "best_" + metric, 0, update=False) _add_argument(hparams, "best_" + metric + "_dir", best_metric_dir) return hparams def create_or_load_hparams(default_hparams, hparams_path): """Create hparams or load hparams from output_dir.""" hparams = utils.maybe_parse_standard_hparams(default_hparams, hparams_path) hparams = extend_hparams(hparams) # Print HParams utils.print_hparams(hparams) return hparams def run_main(flags, default_hparams, estimator_fn): """Run main.""" # Random random_seed = flags.random_seed if random_seed is not None and random_seed > 0: utils.print_out("# Set random seed to %d" % random_seed) random.seed(random_seed) np.random.seed(random_seed) tf.set_random_seed(random_seed) # Model output directory output_dir = flags.output_dir if output_dir and not tf.gfile.Exists(output_dir): utils.print_out("# Creating output directory %s ..." % output_dir) tf.gfile.MakeDirs(output_dir) # Load hparams. hparams = create_or_load_hparams(default_hparams, flags.hparams_path) # Train or Evaluation estimator_fn(hparams) return hparams def tokenize(hparams, file, tokenized_file): utils.print_out("tokenizing {} -> {}".format(file, tokenized_file)) with open(file, 'rb') as input_file: with open(tokenized_file, 'wb') as output_file: subprocess.run([hparams.tokenizer_file, '-l', hparams.src], stdin=input_file, stdout=output_file) def detokenize(hparams, file, detokenized_file): utils.print_out("detokenizing {} -> {}".format(file, detokenized_file)) with open(file, 'rb') as input_file: with open(detokenized_file, 'wb') as output_file: subprocess.run([hparams.detokenizer_file, '-l', hparams.tgt], stdin=input_file, stdout=output_file) def main(unused_argv): experiment_start = time.time() tf.logging.set_verbosity(tf.logging.INFO) if FLAGS.use_fp16 and FLAGS.use_dist_strategy: raise ValueError("use_fp16 and use_dist_strategy aren't compatible") if FLAGS.use_fp16 + FLAGS.amp + FLAGS.use_fastmath > 1: raise ValueError("Only one of use_fp16, amp, use_fastmath can be set") if FLAGS.amp: utils.print_out('Enabling TF-AMP') os.environ['TF_ENABLE_AUTO_MIXED_PRECISION'] = '1' if FLAGS.use_fastmath: utils.print_out('Enabling FastMath') os.environ["TF_ENABLE_CUBLAS_TENSOR_OP_MATH_FP32"] = '1' os.environ["TF_ENABLE_CUDNN_TENSOR_OP_MATH_FP32"] = '1' os.environ["TF_ENABLE_CUDNN_RNN_TENSOR_OP_MATH_FP32"] = '1' # Set up hacky envvars. # Hack that affects Defun in attention_wrapper.py active_xla_option_nums = np.sum([FLAGS.use_xla, FLAGS.use_autojit_xla, FLAGS.xla_compile]) if active_xla_option_nums > 1: raise ValueError( "Only one of use_xla, xla_compile, use_autojit_xla can be set") os.environ["use_xla"] = str(FLAGS.use_xla).lower() if FLAGS.use_xla: os.environ["use_defun"] = str(True).lower() else: os.environ["use_defun"] = str(FLAGS.use_defun).lower() utils.print_out("use_defun is %s for attention" % os.environ["use_defun"]) # TODO(jamesqin): retire this config after Cuda9.1 os.environ["use_fp32_batch_matmul"] = ("true" if FLAGS.use_fp32_batch_matmul else "false") os.environ["xla_compile"] = "true" if FLAGS.xla_compile else "false" os.environ["force_inputs_padding"] = ( "true" if FLAGS.force_inputs_padding else "false") if FLAGS.mode == "train": utils.print_out("Running training mode.") default_hparams = create_hparams(FLAGS) run_main(FLAGS, default_hparams, estimator.train_fn) elif FLAGS.mode == "infer" or FLAGS.mode == "translate": if FLAGS.mode == "infer": utils.print_out("Running inference mode.") translate_mode = False else: utils.print_out("Running translate mode on file {}.".format(FLAGS.translate_file)) translate_mode = True # Random random_seed = FLAGS.random_seed if random_seed is not None and random_seed > 0: utils.print_out("# Set random seed to %d" % random_seed) random.seed(random_seed) np.random.seed(random_seed) tf.set_random_seed(random_seed) # Model output directory output_dir = FLAGS.output_dir if output_dir and not tf.gfile.Exists(output_dir): utils.print_out("# Creating output directory %s ..." % output_dir) tf.gfile.MakeDirs(output_dir) dllogger.init(backends=[ dllogger.StdOutBackend(dllogger.Verbosity.DEFAULT), dllogger.JSONStreamBackend(dllogger.Verbosity.VERBOSE, os.path.join(FLAGS.output_dir, FLAGS.mode + '-report.json')), ]) dllogger.log('PARAMETER', vars(FLAGS)) # Load hparams. default_hparams = create_hparams(FLAGS) default_hparams.num_buckets = 1 # The estimator model_fn is written in a way allowing train hparams to be # passed in infer mode. hparams = create_or_load_hparams(default_hparams, FLAGS.hparams_path) utils.print_out("infer_hparams:") utils.print_hparams(hparams) if translate_mode: tokenize(hparams, hparams.translate_file, hparams.translate_file + ".tok") eval_sentences, eval_src_tokens, _ = iterator_utils.get_effective_epoch_size(hparams, train=False) # Run evaluation when there's a new checkpoint tf.logging.info("Starting to evaluate...") eval_start = time.time() _, (eval_speed, eval_latencies), eval_output_tokens = estimator.eval_fn(hparams, hparams.ckpt, only_translate=translate_mode) eval_end = time.time() eval_delta = eval_end - eval_start utils.print_out("eval time for ckpt: %.2f mins (%.2f sent/sec, %.2f tokens/sec)" % (eval_delta / 60., eval_speed, eval_speed * (eval_src_tokens + eval_output_tokens) / eval_sentences), f=sys.stderr) logging_data = { 'infer_speed_sent': eval_speed, 'infer_speed_toks': eval_speed * (eval_src_tokens + eval_output_tokens) / eval_sentences, } for lat in sorted(eval_latencies): utils.print_out("eval latency_%s for ckpt: %.2f ms" % (lat, eval_latencies[lat] * 1000)) logging_data['infer_latency_{}'.format(lat)] = eval_latencies[lat] * 1000 dllogger.log((), logging_data) dllogger.flush() if translate_mode: detokenize(hparams, hparams.translate_file + ".trans.tok", hparams.translate_file + ".trans") else: assert FLAGS.mode == "train_and_eval" utils.print_out("Running train and eval mode.") # Random random_seed = FLAGS.random_seed if random_seed is not None and random_seed > 0: utils.print_out("# Set random seed to %d" % random_seed) random.seed(random_seed) np.random.seed(random_seed) tf.set_random_seed(random_seed) # Model output directory output_dir = FLAGS.output_dir if output_dir and not tf.gfile.Exists(output_dir): utils.print_out("# Creating output directory %s ..." % output_dir) tf.gfile.MakeDirs(output_dir) dllogger.init(backends=[ dllogger.StdOutBackend(dllogger.Verbosity.DEFAULT), dllogger.JSONStreamBackend(dllogger.Verbosity.VERBOSE, os.path.join(FLAGS.output_dir, FLAGS.mode + '-report.json')), ]) dllogger.log('PARAMETER', vars(FLAGS)) dllogger.metadata("bleu", {"unit": None}) dllogger.metadata("train_speed_sent", {"unit": "sequences/s"}) dllogger.metadata("train_speed_toks", {"unit": "tokens/s"}) # Load hparams. default_hparams = create_hparams(FLAGS) hparams = create_or_load_hparams(default_hparams, FLAGS.hparams_path) utils.print_out("training hparams:") utils.print_hparams(hparams) with tf.gfile.GFile(os.path.join(output_dir, "train_hparams.txt"), "w") as f: f.write(utils.serialize_hparams(hparams) + "\n") # The estimator model_fn is written in a way allowing train hparams to be # passed in infer mode. infer_hparams = tf.contrib.training.HParams(**hparams.values()) infer_hparams.num_buckets = 1 utils.print_out("infer_hparams:") utils.print_hparams(infer_hparams) with tf.gfile.GFile(os.path.join(output_dir, "infer_hparams.txt"), "w") as f: f.write(utils.serialize_hparams(infer_hparams) + "\n") epochs = 0 should_stop = epochs >= FLAGS.max_train_epochs train_sentences, train_src_tokens, train_tgt_tokens = iterator_utils.get_effective_epoch_size(hparams) eval_sentences, eval_src_tokens, _ = iterator_utils.get_effective_epoch_size(hparams, train=False) while not should_stop: utils.print_out("Starting epoch %d" % epochs) try: train_start = time.time() train_speed, _ = estimator.train_fn(hparams) except tf.errors.OutOfRangeError: utils.print_out("training hits OutOfRangeError", f=sys.stderr) train_end = time.time() train_delta = train_end - train_start utils.print_out("training time for epoch %d: %.2f mins (%.2f sent/sec, %.2f tokens/sec)" % (epochs + 1, train_delta / 60., train_speed, train_speed * (train_src_tokens + train_tgt_tokens) / train_sentences), f=sys.stderr) logging_data = { 'train_speed_sent': train_speed, 'train_speed_toks': train_speed * (train_src_tokens + train_tgt_tokens) / train_sentences, } # This is probably sub-optimal, doing eval per-epoch eval_start = time.time() bleu_score, (eval_speed, eval_latencies), eval_output_tokens = estimator.eval_fn(infer_hparams) eval_end = time.time() eval_delta = eval_end - eval_start utils.print_out("eval time for epoch %d: %.2f mins (%.2f sent/sec, %.2f tokens/sec)" % (epochs + 1, eval_delta / 60., eval_speed, eval_speed * (eval_src_tokens + eval_output_tokens) / eval_sentences), f=sys.stderr) logging_data.update({ 'bleu': bleu_score, 'infer_speed_sent': eval_speed, 'infer_speed_toks': eval_speed * (eval_src_tokens + eval_output_tokens) / eval_sentences, }) for lat in sorted(eval_latencies): utils.print_out("eval latency_%s for epoch %d: %.2f ms" % (lat, epochs + 1, eval_latencies[lat] * 1000)) logging_data['eval_latency_{}'.format(lat)] = eval_latencies[lat] * 1000 dllogger.log((epochs,), logging_data) dllogger.flush() if FLAGS.debug or (FLAGS.target_bleu is not None and bleu_score > FLAGS.target_bleu): should_stop = True utils.print_out( "Stop job since target bleu is reached at epoch %d ." % epochs, f=sys.stderr) epochs += 1 if epochs >= FLAGS.max_train_epochs: should_stop = True utils.print_out("Stop job since max_train_epochs is reached.", f=sys.stderr) dllogger.log((), logging_data) dllogger.flush() experiment_end = time.time() utils.print_out('Experiment took {} min'.format((experiment_end - experiment_start) / 60)) if __name__ == "__main__": nmt_parser = argparse.ArgumentParser() add_arguments(nmt_parser) FLAGS, unparsed = nmt_parser.parse_known_args() tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
PyTorch/SpeechSynthesis/Tacotron2/trtis_cpp/src/trt/tacotron2
tacotron2
encoderInstance
/* * Copyright (c) 2019-2020, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the NVIDIA CORPORATION nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef TT2I_ENCODERINSTANCE_H #define TT2I_ENCODERINSTANCE_H #include "binding.h" #include "engineDriver.h" #include "timedObject.h" #include "trtPtr.h" #include "NvInfer.h" #include "cuda_runtime.h" #include <string> namespace tts { class EncoderInstance : public TimedObject, public EngineDriver { public: /** * @brief Tensor of shape {1 x INPUT_LENGTH} */ static constexpr const char* const INPUT_NAME = "input_encoder"; /** * @brief Tensor of shape {1 x INPUT_LENGTH x 1} */ static constexpr const char* const INPUT_MASK_NAME = "input_encoder_mask"; /** * @brief Tensor of shape {INPUT_LENGTH} */ static constexpr const char* const INPUT_LENGTH_NAME = "input_encoder_length"; /** * @brief Tensor of shape {1 x INPUT_LENGTH x NUM_DIMENSIONS} */ static constexpr const char* const OUTPUT_NAME = "output_encoder"; /** * @brief Tensor of shape {INPUT_LENGTH x NUM_PROCESSED_DIMENSIONS x 1 x 1} */ static constexpr const char* const OUTPUT_PROCESSED_NAME = "output_processed_encoder"; static constexpr const char* const ENGINE_NAME = "tacotron2_encoder"; /** * @brief Create a new encoder instance. * * @param engine The TRT Engine implementing Tacotron2's encoder. */ EncoderInstance(TRTPtr<nvinfer1::ICudaEngine> engine); // disable copying EncoderInstance(const EncoderInstance& other) = delete; EncoderInstance& operator=(const EncoderInstance& other) = delete; /** * @brief Perform inference. * * @param stream The CUDA stream. * @param batchSize The size of the batch. * @param inputDevice The input on the GPU. * @param inputMaskDevice The input mask on the GPU (all 1's for the length of * the actual input and all 0's for the length of the padding). * @param inputLengthDevice The length of the input sequences on the GPU. * @param outputDevice The output on the GPU (must be of input length x number * of encoding dimensions). * @param outputProcessedDevice The output on the GPU processed through the * memory layer (must be of input length x number of processed dimensions). */ void infer(cudaStream_t stream, int batchSize, const int32_t* inputDevice, const float* inputMaskDevice, const int32_t* inputLengthDevice, float* outputDevice, float* outputProcessedDevice); /** * @brief Get the length of input (padded size). * * @return The input length. */ int getInputLength() const; /** * @brief Get the number of encoding dimensions. * * @return The number of encoding dimensions. */ int getNumDimensions() const; /** * @brief Get the number of processed dimensions (attention). * * @return The number of processed dimensions. */ int getNumProcessedDimensions() const; private: Binding mBinding; TRTPtr<nvinfer1::IExecutionContext> mContext; int mInputLength; }; } // namespace tts #endif
PyTorch/Forecasting/TFT/triton/deployment_toolkit/model_analyzer
model_analyzer
exceptions
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. class ModelAnalyzerException(Exception): def __init__(self, message: str): self._message = message def __str__(self): """ Get the exception string representation. Returns ------- str The message associated with this exception, or None if no message. """ return self._message @property def message(self): """ Get the exception message. Returns ------- str The message associated with this exception, or None if no message. """ return self._message
PyTorch/Classification/ConvNets/scripts
scripts
sernxt_partial
FLAGS=$1 STAGE_ID=$2 STAGE_LEN=$3 python ./multiproc.py \ --nproc_per_node 8 \ ./main.py /imagenet \ -j5 -p 100 \ --data-backend pytorch \ --raport-file report_$STAGE_ID.json \ --lr 1.024 \ --batch-size 128 \ --optimizer-batch-size 1024 \ --static-loss-scale 128 \ --warmup 8 \ --arch se-resnext101-32x4d -c fanin \ --label-smoothing 0.1 \ --lr-schedule cosine \ --mom 0.875 \ --wd 6.103515625e-05 \ --workspace /results \ --epochs 90 \ --run-epochs $STAGE_LEN \ $FLAGS \ --resume /results/checkpoint_$( expr $STAGE_ID - 1).pth.tar \ --checkpoint checkpoint_$STAGE_ID.pth.tar
PyTorch/SpeechRecognition/Jasper/triton/scripts
scripts
run_perf_client
#!/bin/bash # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. trap "exit" INT SCRIPT_DIR=$(cd $(dirname $0); pwd) PROJECT_DIR=${SCRIPT_DIR}/../.. TRITON_CLIENT_CONTAINER_TAG=${TRITON_CLIENT_CONTAINER_TAG:-jasper:triton} SERVER_HOSTNAME=${SERVER_HOSTNAME:-localhost} MODEL_NAME=${MODEL_NAME:-jasper-tensorrt-ensemble} MODEL_VERSION=${MODEL_VERSION:-1} BATCH_SIZE=${BATCH_SIZE:-1} AUDIO_LENGTH=${AUDIO_LENGTH:-32000} RESULT_DIR=${RESULT_DIR:-${PROJECT_DIR}/results} MAX_LATENCY=${MAX_LATENCY:-500} MAX_CONCURRENCY=${MAX_CONCURRENCY:-64} MEASUREMENT_WINDOW=${MEASUREMENT_WINDOW:-3000} TIMESTAMP=$(date "+%y%m%d_%H%M") # RESULT_DIR_H is the path on the host, outside the container. Inside the container RESULT_DIR_H is always mounted to /results RESULT_DIR_H="${RESULT_DIR}/perf_client/${MODEL_NAME}" # Set the output folder using the first argument or pick a default if [ -z ${1+x} ]; then RESULT_DIR_H=${RESULT_DIR_H}/batch_${BATCH_SIZE}_len_${AUDIO_LENGTH} else RESULT_DIR_H=${RESULT_DIR_H}/"$1" shift fi # Make the directory if it doesnt exist if [ ! -d "${RESULT_DIR_H}" ]; then mkdir -p "${RESULT_DIR_H}" fi echo "Saving output to ${RESULT_DIR_H}" LOGNAME="${RESULT_DIR_H}/log_${TIMESTAMP}.log" OUTPUT_FILE_CSV="results_${TIMESTAMP}.csv" ARGS="\ -m ${MODEL_NAME} \ -x ${MODEL_VERSION} \ -p ${MEASUREMENT_WINDOW} \ -v \ -i gRPC \ -u ${SERVER_HOSTNAME}:8001 \ -b ${BATCH_SIZE} \ -l ${MAX_LATENCY} \ --max-threads ${MAX_CONCURRENCY} " curl -s "http://${SERVER_HOSTNAME}:8000/api/status/${MODEL_NAME}" | grep ready_state | grep SERVER_READY || (echo "Model ${MODEL_NAME} is not ready, perf_client skipped..." && exit 1) echo "=== STARTING: perf client ${ARGS} --concurrency-range 1:4:1 ===" set -x docker run -e DISPLAY=${DISPLAY} --runtime nvidia --rm \ --privileged --net=host \ -v ${RESULT_DIR_H}:/results --name jasper-perf-client \ ${TRITON_CLIENT_CONTAINER_TAG} perf_client $ARGS -f /results/${OUTPUT_FILE_CSV}_p1 --shape AUDIO_SIGNAL:${AUDIO_LENGTH} --concurrency-range 1:4:1 2>&1 | tee -a $LOGNAME set +x echo "=== STARTING: perf client ${ARGS} --concurrency-range 8:${MAX_CONCURRENCY}:8 ===" set -x docker run -e DISPLAY=${DISPLAY} --runtime nvidia --rm \ --privileged --net=host \ -v ${RESULT_DIR_H}:/results --name jasper-perf-client \ ${TRITON_CLIENT_CONTAINER_TAG} perf_client $ARGS -f /results/${OUTPUT_FILE_CSV}_p2 --shape AUDIO_SIGNAL:${AUDIO_LENGTH} --concurrency-range 8:${MAX_CONCURRENCY}:8 2>&1 | tee -a $LOGNAME set +x cat ${RESULT_DIR_H}/${OUTPUT_FILE_CSV}_p1 ${RESULT_DIR_H}/${OUTPUT_FILE_CSV}_p2 > ${RESULT_DIR_H}/${OUTPUT_FILE_CSV}
TensorFlow/Segmentation/UNet_Industrial/model/layers
layers
drop_layers
#!/usr/bin/env python # -*- coding: utf-8 -*- # ============================================================================== # # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ============================================================================== import tensorflow as tf from model.layers.utils import _log_hparams __all__ = ['dropout'] def dropout(inputs, rate=0.5, noise_shape=None, seed=None, training=False, name=None): layer = tf.keras.layers.Dropout(rate, noise_shape=noise_shape, seed=seed, name=name) net = layer.apply(inputs, training=training) _log_hparams( classname='Dropout', layername=net.name, noise_shape=noise_shape, training=training, seed=seed, out_shape=str(net.get_shape()), out_dtype=net.dtype ) return net
TensorFlow/Translation/GNMT/scripts
scripts
filter_dataset
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from collections import Counter def parse_args(): parser = argparse.ArgumentParser(description='Clean dataset') parser.add_argument('-f1', '--file1', help='file1') parser.add_argument('-f2', '--file2', help='file2') return parser.parse_args() def save_output(fname, data): with open(fname, 'w') as f: f.writelines(data) def main(): """ Discards all pairs of sentences which can't be decoded by latin-1 encoder. It aims to filter out sentences with rare unicode glyphs and pairs which are most likely not valid English-German sentences. Examples of discarded sentences: ✿★★★Hommage au king de la pop ★★★✿ ✿★★★Que son âme repos... Для их осуществления нам, прежде всего, необходимо преодолеть возражения рыночных фундаменталистов, которые хотят ликвидировать или уменьшить роль МВФ. practised as a scientist in various medical departments of the ⇗Medical University of Hanover , the ⇗University of Ulm , and the ⇗RWTH Aachen (rheumatology, pharmacology, physiology, pathology, microbiology, immunology and electron-microscopy). The same shift】 and press 【】 【alt out with a smaller diameter circle. Brought to you by ABMSUBS ♥leira(Coordinator/Translator) ♥chibichan93(Timer/Typesetter) ♥ja... Some examples: &0u - ☺ &0U - ☻ &tel - ☏ &PI - ¶ &SU - ☼ &cH- - ♥ &M2=♫ &sn - ﺵ SGML maps SGML to unicode. """ args = parse_args() c = Counter() skipped = 0 valid = 0 data1 = [] data2 = [] with open(args.file1) as f1, open(args.file2) as f2: for idx, lines in enumerate(zip(f1, f2)): line1, line2 = lines if idx % 100000 == 1: print('Processed {} lines'.format(idx)) try: line1.encode('latin1') line2.encode('latin1') except UnicodeEncodeError: skipped += 1 else: data1.append(line1) data2.append(line2) valid += 1 c.update(line1) ratio = valid / (skipped + valid) print('Skipped: {}, Valid: {}, Valid ratio {}'.format(skipped, valid, ratio)) print('Character frequency:', c) save_output(args.file1, data1) save_output(args.file2, data2) if __name__ == '__main__': main()
TensorFlow/Segmentation/UNet_Medical/utils
utils
setup
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import dllogger as logger import tensorflow as tf import horovod.tensorflow as hvd import numpy as np from dllogger import StdOutBackend, Verbosity, JSONStreamBackend from utils.model_fn import unet_fn def set_flags(): os.environ['CUDA_CACHE_DISABLE'] = '1' os.environ['HOROVOD_GPU_ALLREDUCE'] = 'NCCL' os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' os.environ['TF_GPU_THREAD_MODE'] = 'gpu_private' os.environ['TF_USE_CUDNN_BATCHNORM_SPATIAL_PERSISTENT'] = '0' os.environ['TF_ADJUST_HUE_FUSED'] = '1' os.environ['TF_ADJUST_SATURATION_FUSED'] = '1' os.environ['TF_ENABLE_WINOGRAD_NONFUSED'] = '1' os.environ['TF_SYNC_ON_FINISH'] = '0' os.environ['TF_AUTOTUNE_THRESHOLD'] = '2' def prepare_model_dir(params): model_dir = os.path.join(params.model_dir, "model_checkpoint") model_dir = model_dir if (hvd.rank() == 0 and not params.benchmark) else None if model_dir is not None: os.makedirs(model_dir, exist_ok=True) if ('train' in params.exec_mode) and (not params.resume_training): os.system('rm -rf {}/*'.format(model_dir)) return model_dir def build_estimator(params, model_dir): if params.use_amp: os.environ['TF_ENABLE_AUTO_MIXED_PRECISION'] = '1' else: os.environ['TF_ENABLE_AUTO_MIXED_PRECISION'] = '0' np.random.seed(params.seed) tf.compat.v1.random.set_random_seed(params.seed) tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR) gpu_options = tf.compat.v1.GPUOptions() config = tf.compat.v1.ConfigProto(gpu_options=gpu_options, allow_soft_placement=True) if params.use_xla: config.graph_options.optimizer_options.global_jit_level = tf.compat.v1.OptimizerOptions.ON_1 config.gpu_options.allow_growth = True config.gpu_options.visible_device_list = str(hvd.local_rank()) run_config = tf.estimator.RunConfig( save_summary_steps=1, tf_random_seed=params.seed, session_config=config, save_checkpoints_steps=(params.max_steps // hvd.size()) if hvd.rank() == 0 else None, keep_checkpoint_max=1) estimator = tf.estimator.Estimator( model_fn=unet_fn, model_dir=model_dir, config=run_config, params=params) return estimator def get_logger(params): backends = [] if hvd.rank() == 0: backends += [StdOutBackend(Verbosity.VERBOSE)] if params.log_dir: backends += [JSONStreamBackend(Verbosity.VERBOSE, params.log_dir)] logger.init(backends=backends) logger.metadata("eval_dice_score", {"unit": None}) logger.metadata("throughput_test", {"unit": "images/s"}) logger.metadata("throughput_train", {"unit": "images/s"}) return logger
TensorFlow2/LanguageModeling/BERT/official/nlp/modeling/layers
layers
dense_einsum_test
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Keras-based einsum layer.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf from tensorflow.python.keras import keras_parameterized # pylint: disable=g-direct-tensorflow-import from official.nlp.modeling.layers import dense_einsum # This decorator runs the test in V1, V2-Eager, and V2-Functional mode. It # guarantees forward compatibility of this code for the V2 switchover. @keras_parameterized.run_all_keras_modes class DenseEinsumLayer(keras_parameterized.TestCase): def test_3D_einsum_with_two_bound_dimensions(self): test_layer = dense_einsum.DenseEinsum( output_shape=(64,), num_summed_dimensions=2) # Create a 4-dimensional input (the first dimension is implicit). input_tensor = tf.keras.Input(shape=(None, 40, 80)) _ = test_layer(input_tensor) self.assertEqual(test_layer._einsum_string, "abcd,cde->abe") self.assertEqual(test_layer._kernel_shape, (40, 80, 64)) def test_3D_einsum_with_one_bound_dimensions(self): test_layer = dense_einsum.DenseEinsum( output_shape=(64, 32), num_summed_dimensions=1) # Create a 3-dimensional input (the first dimension is implicit). input_tensor = tf.keras.Input(shape=(None, 80)) _ = test_layer(input_tensor) self.assertEqual(test_layer._einsum_string, "abc,cde->abde") self.assertEqual(test_layer._kernel_shape, (80, 64, 32)) def test_2D_einsum_with_one_bound_dimensions(self): test_layer = dense_einsum.DenseEinsum( output_shape=(64,), num_summed_dimensions=1) # Create a 3-dimensional input (the first dimension is implicit). input_tensor = tf.keras.Input(shape=(None, 80)) _ = test_layer(input_tensor) self.assertEqual(test_layer._einsum_string, "abc,cd->abd") self.assertEqual(test_layer._kernel_shape, (80, 64)) def test_bias_term_can_be_disabled(self): # A layer created using the bias should have two weights. test_layer = dense_einsum.DenseEinsum( output_shape=64, num_summed_dimensions=1, use_bias=True) input_tensor = tf.keras.Input(shape=(None, 80)) _ = test_layer(input_tensor) self.assertEqual(2, len(test_layer.get_weights())) # A layer created without the bias should have only one weight. test_layer = dense_einsum.DenseEinsum( output_shape=64, num_summed_dimensions=1, use_bias=False) input_tensor = tf.keras.Input(shape=(None, 80)) _ = test_layer(input_tensor) self.assertEqual(1, len(test_layer.get_weights())) def test_activation(self): # Create a model that does not use an activation. no_activation_layer = dense_einsum.DenseEinsum( output_shape=64, num_summed_dimensions=1, activation=None) input_tensor = tf.keras.Input(shape=(None, 80)) output_tensor = no_activation_layer(input_tensor) no_activation_model = tf.keras.Model(input_tensor, output_tensor) # Create a model that uses a softmax activation. activation_layer = dense_einsum.DenseEinsum( output_shape=64, num_summed_dimensions=1, activation="softmax") input_tensor = tf.keras.Input(shape=(None, 80)) output_tensor = activation_layer(input_tensor) activation_model = tf.keras.Model(input_tensor, output_tensor) # Make sure the models' weights are identical. activation_model.set_weights(no_activation_model.get_weights()) # Predict using each model on the same input data. The output should be # different, since one is using a softmax - even though the models' weights # are the same. input_values = 10 * np.random.random_sample((10, 4, 80)) non_activated_data = no_activation_model.predict(input_values) activated_data = activation_model.predict(input_values) self.assertNotAllClose(activated_data, non_activated_data) def test_non_iterable_output_shape(self): test_layer = dense_einsum.DenseEinsum( output_shape=64, num_summed_dimensions=1) # Create a 3-dimensional input (the first dimension is implicit). input_tensor = tf.keras.Input(shape=(None, 80)) _ = test_layer(input_tensor) self.assertEqual(test_layer._einsum_string, "abc,cd->abd") self.assertEqual(test_layer._kernel_shape, (80, 64)) def test_with_explicit_initializer(self): test_layer = dense_einsum.DenseEinsum( output_shape=(64,), num_summed_dimensions=2, kernel_initializer=tf.keras.initializers.TruncatedNormal(stddev=0.02)) # Create a 4-dimensional input (the first dimension is implicit). input_tensor = tf.keras.Input(shape=(None, 40, 80)) _ = test_layer(input_tensor) self.assertEqual(test_layer._einsum_string, "abcd,cde->abe") self.assertEqual(test_layer._kernel_shape, (40, 80, 64)) if __name__ == "__main__": tf.test.main()
TensorFlow2/Recommendation/DLRM_and_DCNv2/preproc
preproc
spark_data_utils
# Copyright (c) 2020 NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import sys from argparse import ArgumentParser from collections import OrderedDict from contextlib import contextmanager from operator import itemgetter from time import time from pyspark import broadcast from pyspark.sql import Row, SparkSession, Window from pyspark.sql.functions import * from pyspark.sql.types import * LABEL_COL = 0 INT_COLS = list(range(1, 14)) CAT_COLS = list(range(14, 40)) def get_column_counts_with_frequency_limit(df, frequency_limit = None): cols = ['_c%d' % i for i in CAT_COLS] df = (df .select(posexplode(array(*cols))) .withColumnRenamed('pos', 'column_id') .withColumnRenamed('col', 'data') .filter('data is not null') .groupBy('column_id', 'data') .count()) if frequency_limit: frequency_limit = frequency_limit.split(",") exclude = [] default_limit = None for fl in frequency_limit: frequency_pair = fl.split(":") if len(frequency_pair) == 1: default_limit = int(frequency_pair[0]) elif len(frequency_pair) == 2: df = df.filter((col('column_id') != int(frequency_pair[0]) - CAT_COLS[0]) | (col('count') >= int(frequency_pair[1]))) exclude.append(int(frequency_pair[0])) if default_limit: remain = [x - CAT_COLS[0] for x in CAT_COLS if x not in exclude] df = df.filter((~col('column_id').isin(remain)) | (col('count') >= default_limit)) # for comparing isin and separate filter # for i in remain: # df = df.filter((col('column_id') != i - CAT_COLS[0]) | (col('count') >= default_limit)) return df def assign_id_with_window(df): windowed = Window.partitionBy('column_id').orderBy(desc('count')) return (df .withColumn('id', row_number().over(windowed)) .withColumnRenamed('count', 'model_count')) def assign_low_mem_partial_ids(df): # To avoid some scaling issues with a simple window operation, we use a more complex method # to compute the same thing, but in a more distributed spark specific way df = df.orderBy(asc('column_id'), desc('count')) # The monotonically_increasing_id is the partition id in the top 31 bits and the rest # is an increasing count of the rows within that partition. So we split it into two parts, # the partion id part_id and the count mono_id df = df.withColumn('part_id', spark_partition_id()) return df.withColumn('mono_id', monotonically_increasing_id() - shiftLeft(col('part_id'), 33)) def assign_low_mem_final_ids(df): # Now we can find the minimum and maximum mono_ids within a given column/partition pair sub_model = df.groupBy('column_id', 'part_id').agg(max('mono_id').alias('top'), min('mono_id').alias('bottom')) sub_model = sub_model.withColumn('diff', col('top') - col('bottom') + 1) sub_model = sub_model.drop('top') # This window function is over aggregated column/partition pair table. It will do a running sum of the rows # within that column windowed = Window.partitionBy('column_id').orderBy('part_id').rowsBetween(Window.unboundedPreceding, -1) sub_model = sub_model.withColumn('running_sum', sum('diff').over(windowed)).na.fill(0, ["running_sum"]) joined = df.withColumnRenamed('column_id', 'i_column_id') joined = joined.withColumnRenamed('part_id', 'i_part_id') joined = joined.withColumnRenamed('count', 'model_count') # Then we can join the original input with the pair it is a part of joined = joined.join(sub_model, (col('i_column_id') == col('column_id')) & (col('part_id') == col('i_part_id'))) # So with all that we can subtract bottom from mono_id makeing it start at 0 for each partition # and then add in the running_sum so the id is contiguous and unique for the entire column. + 1 to make it match the 1 based indexing # for row_number ret = joined.select(col('column_id'), col('data'), (col('mono_id') - col('bottom') + col('running_sum') + 1).cast(IntegerType()).alias('id'), col('model_count')) return ret def get_column_models(combined_model): for i in CAT_COLS: model = (combined_model .filter('column_id == %d' % (i - CAT_COLS[0])) .drop('column_id')) yield i, model def col_of_rand_long(): return (rand() * (1 << 52)).cast(LongType()) def skewed_join(df, model, col_name, cutoff): # Most versions of spark don't have a good way # to deal with a skewed join out of the box. # Some do and if you want to replace this with # one of those that would be great. # Because we have statistics about the skewedness # that we can used we divide the model up into two parts # one part is the highly skewed part and we do a # broadcast join for that part, but keep the result in # a separate column b_model = broadcast(model.filter(col('model_count') >= cutoff) .withColumnRenamed('data', col_name) .drop('model_count')) df = (df .join(b_model, col_name, how='left') .withColumnRenamed('id', 'id_tmp')) # We also need to spread the skewed data that matched # evenly. We will use a source of randomness for this # but use a -1 for anything that still needs to be matched if 'ordinal' in df.columns: rand_column = col('ordinal') else: rand_column = col_of_rand_long() df = df.withColumn('join_rand', # null values are not in the model, they are filtered out # but can be a source of skewedness so include them in # the even distribution when(col('id_tmp').isNotNull() | col(col_name).isNull(), rand_column) .otherwise(lit(-1))) # Null out the string data that already matched to save memory df = df.withColumn(col_name, when(col('id_tmp').isNotNull(), None) .otherwise(col(col_name))) # Now do the second join, which will be a non broadcast join. # Sadly spark is too smart for its own good and will optimize out # joining on a column it knows will always be a constant value. # So we have to make a convoluted version of assigning a -1 to the # randomness column for the model itself to work around that. nb_model = (model .withColumn('join_rand', when(col('model_count') < cutoff, lit(-1)).otherwise(lit(-2))) .filter(col('model_count') < cutoff) .withColumnRenamed('data', col_name) .drop('model_count')) df = (df .join(nb_model, ['join_rand', col_name], how='left') .drop(col_name, 'join_rand') # Pick either join result as an answer .withColumn(col_name, coalesce(col('id'), col('id_tmp'))) .drop('id', 'id_tmp')) return df def apply_models(df, models, broadcast_model = False, skew_broadcast_pct = 1.0): # sort the models so broadcast joins come first. This is # so we reduce the amount of shuffle data sooner than later # If we parsed the string hex values to ints early on this would # not make a difference. models = sorted(models, key=itemgetter(3), reverse=True) for i, model, original_rows, would_broadcast in models: col_name = '_c%d' % i if not (would_broadcast or broadcast_model): # The data is highly skewed so we need to offset that cutoff = int(original_rows * skew_broadcast_pct/100.0) df = skewed_join(df, model, col_name, cutoff) else: # broadcast joins can handle skewed data so no need to # do anything special model = (model.drop('model_count') .withColumnRenamed('data', col_name)) model = broadcast(model) if broadcast_model else model df = (df .join(model, col_name, how='left') .drop(col_name) .withColumnRenamed('id', col_name)) return df.fillna(0, ['_c%d' % i for i in CAT_COLS]) def transform_log(df, transform_log = False): cols = ['_c%d' % i for i in INT_COLS] if transform_log: for col_name in cols: df = df.withColumn(col_name, log(df[col_name] + 3)) return df.fillna(0, cols) def would_broadcast(spark, str_path): sc = spark.sparkContext config = sc._jsc.hadoopConfiguration() path = sc._jvm.org.apache.hadoop.fs.Path(str_path) fs = sc._jvm.org.apache.hadoop.fs.FileSystem.get(config) stat = fs.listFiles(path, True) sum = 0 while stat.hasNext(): sum = sum + stat.next().getLen() sql_conf = sc._jvm.org.apache.spark.sql.internal.SQLConf() cutoff = sql_conf.autoBroadcastJoinThreshold() * sql_conf.fileCompressionFactor() return sum <= cutoff def delete_data_source(spark, path): sc = spark.sparkContext config = sc._jsc.hadoopConfiguration() path = sc._jvm.org.apache.hadoop.fs.Path(path) sc._jvm.org.apache.hadoop.fs.FileSystem.get(config).delete(path, True) def load_raw(spark, folder, day_range): label_fields = [StructField('_c%d' % LABEL_COL, IntegerType())] int_fields = [StructField('_c%d' % i, IntegerType()) for i in INT_COLS] str_fields = [StructField('_c%d' % i, StringType()) for i in CAT_COLS] schema = StructType(label_fields + int_fields + str_fields) paths = [os.path.join(folder, 'day_%d' % i) for i in day_range] return (spark .read .schema(schema) .option('sep', '\t') .csv(paths)) def rand_ordinal(df): # create a random long from the double precision float. # The fraction part of a double is 52 bits, so we try to capture as much # of that as possible return df.withColumn('ordinal', col_of_rand_long()) def day_from_ordinal(df, num_days): return df.withColumn('day', (col('ordinal') % num_days).cast(IntegerType())) def day_from_input_file(df): return df.withColumn('day', substring_index(input_file_name(), '_', -1).cast(IntegerType())) def psudo_sort_by_day_plus(spark, df, num_days): # Sort is very expensive because it needs to calculate the partitions # which in our case may involve rereading all of the data. In some cases # we can avoid this by repartitioning the data and sorting within a single partition shuffle_parts = int(spark.conf.get('spark.sql.shuffle.partitions')) extra_parts = int(shuffle_parts/num_days) if extra_parts <= 0: df = df.repartition('day') else: #We want to spread out the computation to about the same amount as shuffle_parts divided = (col('ordinal') / num_days).cast(LongType()) extra_ident = divided % extra_parts df = df.repartition(col('day'), extra_ident) return df.sortWithinPartitions('day', 'ordinal') def load_combined_model(spark, model_folder): path = os.path.join(model_folder, 'combined.parquet') return spark.read.parquet(path) def save_combined_model(df, model_folder, mode=None): path = os.path.join(model_folder, 'combined.parquet') df.write.parquet(path, mode=mode) def delete_combined_model(spark, model_folder): path = os.path.join(model_folder, 'combined.parquet') delete_data_source(spark, path) def load_low_mem_partial_ids(spark, model_folder): path = os.path.join(model_folder, 'partial_ids.parquet') return spark.read.parquet(path) def save_low_mem_partial_ids(df, model_folder, mode=None): path = os.path.join(model_folder, 'partial_ids.parquet') df.write.parquet(path, mode=mode) def delete_low_mem_partial_ids(spark, model_folder): path = os.path.join(model_folder, 'partial_ids.parquet') delete_data_source(spark, path) def load_column_models(spark, model_folder, count_required): for i in CAT_COLS: path = os.path.join(model_folder, '%d.parquet' % i) df = spark.read.parquet(path) if count_required: values = df.agg(sum('model_count').alias('sum'), count('*').alias('size')).collect() else: values = df.agg(sum('model_count').alias('sum')).collect() yield i, df, values[0], would_broadcast(spark, path) def save_column_models(column_models, model_folder, mode=None): for i, model in column_models: path = os.path.join(model_folder, '%d.parquet' % i) model.write.parquet(path, mode=mode) def save_model_size(model_size, path, write_mode): if os.path.exists(path) and write_mode == 'errorifexists': print('Error: model size file %s exists' % path) sys.exit(1) os.makedirs(os.path.dirname(os.path.abspath(path)), exist_ok=True) with open(path, 'w') as fp: json.dump(model_size, fp, indent=4) _benchmark = {} @contextmanager def _timed(step): start = time() yield end = time() _benchmark[step] = end - start def _parse_args(): parser = ArgumentParser() parser.add_argument( '--mode', required=True, choices=['generate_models', 'transform']) parser.add_argument('--days', required=True) parser.add_argument('--input_folder', required=True) parser.add_argument('--output_folder') parser.add_argument('--model_size_file') parser.add_argument('--model_folder', required=True) parser.add_argument( '--write_mode', choices=['overwrite', 'errorifexists'], default='errorifexists') parser.add_argument('--frequency_limit') parser.add_argument('--no_numeric_log_col', action='store_true') #Support for running in a lower memory environment parser.add_argument('--low_mem', action='store_true') parser.add_argument( '--output_ordering', choices=['total_random', 'day_random', 'any', 'input'], default='total_random') parser.add_argument( '--output_partitioning', choices=['day', 'none'], default='none') parser.add_argument('--dict_build_shuffle_parallel_per_day', type=int, default=2) parser.add_argument('--apply_shuffle_parallel_per_day', type=int, default=25) parser.add_argument('--skew_broadcast_pct', type=float, default=1.0) parser.add_argument('--debug_mode', action='store_true') args = parser.parse_args() start, end = args.days.split('-') args.day_range = list(range(int(start), int(end) + 1)) args.days = len(args.day_range) return args def _main(): args = _parse_args() spark = SparkSession.builder.getOrCreate() df = load_raw(spark, args.input_folder, args.day_range) if args.mode == 'generate_models': spark.conf.set('spark.sql.shuffle.partitions', args.days * args.dict_build_shuffle_parallel_per_day) with _timed('generate models'): col_counts = get_column_counts_with_frequency_limit(df, args.frequency_limit) if args.low_mem: # in low memory mode we have to save an intermediate result # because if we try to do it in one query spark ends up assigning the # partial ids in two different locations that are not guaranteed to line up # this prevents that from happening by assigning the partial ids # and then writeing them out. save_low_mem_partial_ids( assign_low_mem_partial_ids(col_counts), args.model_folder, args.write_mode) save_combined_model( assign_low_mem_final_ids(load_low_mem_partial_ids(spark, args.model_folder)), args.model_folder, args.write_mode) if not args.debug_mode: delete_low_mem_partial_ids(spark, args.model_folder) else: save_combined_model( assign_id_with_window(col_counts), args.model_folder, args.write_mode) save_column_models( get_column_models(load_combined_model(spark, args.model_folder)), args.model_folder, args.write_mode) if not args.debug_mode: delete_combined_model(spark, args.model_folder) if args.mode == 'transform': spark.conf.set('spark.sql.shuffle.partitions', args.days * args.apply_shuffle_parallel_per_day) with _timed('transform'): if args.output_ordering == 'total_random': df = rand_ordinal(df) if args.output_partitioning == 'day': df = day_from_ordinal(df, args.days) elif args.output_ordering == 'day_random': df = rand_ordinal(df) df = day_from_input_file(df) elif args.output_ordering == 'input': df = df.withColumn('ordinal', monotonically_increasing_id()) if args.output_partitioning == 'day': df = day_from_input_file(df) else: # any ordering if args.output_partitioning == 'day': df = day_from_input_file(df) models = list(load_column_models(spark, args.model_folder, bool(args.model_size_file))) if args.model_size_file: save_model_size( OrderedDict(('_c%d' % i, agg.size) for i, _, agg, _ in models), args.model_size_file, args.write_mode) models = [(i, df, agg.sum, flag) for i, df, agg, flag in models] df = apply_models( df, models, not args.low_mem, args.skew_broadcast_pct) df = transform_log(df, not args.no_numeric_log_col) if args.output_partitioning == 'day': partitionBy = 'day' else: partitionBy = None if args.output_ordering == 'total_random': if args.output_partitioning == 'day': df = psudo_sort_by_day_plus(spark, df, args.days) else: # none # Don't do a full sort it is expensive. Order is random so # just make it random df = df.repartition('ordinal').sortWithinPartitions('ordinal') df = df.drop('ordinal') elif args.output_ordering == 'day_random': df = psudo_sort_by_day_plus(spark, df, args.days) df = df.drop('ordinal') if args.output_partitioning != 'day': df = df.drop('day') elif args.output_ordering == 'input': if args.low_mem: # This is the slowest option. We totally messed up the order so we have to put # it back in the correct order df = df.orderBy('ordinal') else: # Applying the dictionary happened within a single task so we are already really # close to the correct order, just need to sort within the partition df = df.sortWithinPartitions('ordinal') df = df.drop('ordinal') if args.output_partitioning != 'day': df = df.drop('day') # else: any ordering so do nothing the ordering does not matter df.write.parquet( args.output_folder, mode=args.write_mode, partitionBy=partitionBy) print('=' * 100) print(_benchmark) if __name__ == '__main__': _main()
TensorFlow/Detection/SSD/models/research/slim/nets
nets
inception
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Brings all inception models under one namespace.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function # pylint: disable=unused-import from nets.inception_resnet_v2 import inception_resnet_v2 from nets.inception_resnet_v2 import inception_resnet_v2_arg_scope from nets.inception_resnet_v2 import inception_resnet_v2_base from nets.inception_v1 import inception_v1 from nets.inception_v1 import inception_v1_arg_scope from nets.inception_v1 import inception_v1_base from nets.inception_v2 import inception_v2 from nets.inception_v2 import inception_v2_arg_scope from nets.inception_v2 import inception_v2_base from nets.inception_v3 import inception_v3 from nets.inception_v3 import inception_v3_arg_scope from nets.inception_v3 import inception_v3_base from nets.inception_v4 import inception_v4 from nets.inception_v4 import inception_v4_arg_scope from nets.inception_v4 import inception_v4_base # pylint: enable=unused-import
PyTorch/SpeechSynthesis/FastPitch/platform
platform
DGX1_FastPitch_FP32_4GPU
#!/bin/bash set -a : ${NUM_GPUS:=4} : ${BATCH_SIZE:=16} : ${GRAD_ACCUMULATION:=4} : ${AMP:=false} bash scripts/train.sh "$@"
TensorFlow/LanguageModeling/BERT/scripts
scripts
run_glue
#!/usr/bin/env bash # Copyright (c) 2019 NVIDIA CORPORATION. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. echo "Container nvidia build = " $NVIDIA_BUILD_ID task_name=${1:-"MRPC"} batch_size=${2:-"16"} learning_rate=${3:-"3e-6"} precision=${4:-"fp16"} use_xla=${5:-"true"} num_gpu=${6:-"8"} seq_length=${7:-"128"} doc_stride=${8:-"64"} bert_model=${9:-"large"} if [ "$bert_model" = "large" ] ; then export BERT_DIR=data/download/nvidia_pretrained/bert_tf_pretraining_large_lamb else export BERT_DIR=data/download/google_pretrained_weights/uncased_L-12_H-768_A-12 fi export GLUE_DIR=data/download epochs=${10:-"3.0"} ws=${11:-"0.1"} init_checkpoint=${12:-"$BERT_DIR/model.ckpt"} echo "GLUE directory set as " $GLUE_DIR " BERT directory set as " $BERT_DIR use_fp16="" if [ "$precision" = "fp16" ] ; then echo "fp16 activated!" use_fp16="--amp" else echo "fp32/tf32 activated!" use_fp16="--noamp" fi if [ "$use_xla" = "true" ] ; then use_xla_tag="--use_xla" echo "XLA activated" else use_xla_tag="--nouse_xla" fi if [ $num_gpu -gt 1 ] ; then mpi_command="mpirun -np $num_gpu -H localhost:$num_gpu \ --allow-run-as-root -bind-to none -map-by slot \ -x NCCL_DEBUG=INFO \ -x LD_LIBRARY_PATH \ -x PATH -mca pml ob1 -mca btl ^openib" else mpi_command="" fi export GBS=$(expr $batch_size \* $num_gpu) printf -v TAG "tf_bert_finetuning_glue_%s_%s_%s_gbs%d" "$task_name" "$bert_model" "$precision" $GBS DATESTAMP=`date +'%y%m%d%H%M%S'` #Edit to save logs & checkpoints in a different directory RESULTS_DIR=/results/${TAG}_${DATESTAMP} LOGFILE=$RESULTS_DIR/$TAG.$DATESTAMP.log mkdir -m 777 -p $RESULTS_DIR printf "Saving checkpoints to %s\n" "$RESULTS_DIR" printf "Logs written to %s\n" "$LOGFILE" #Check if all necessary files are available before training for DIR_or_file in $GLUE_DIR/${task_name} $RESULTS_DIR $BERT_DIR/vocab.txt $BERT_DIR/bert_config.json; do echo $DIR_or_file if [ ! -d "$DIR_or_file" ] && [ ! -f "$DIR_or_file" ]; then echo "Error! $DIR_or_file directory missing. Please mount correctly" exit -1 fi done $mpi_command python run_classifier.py \ --task_name=$task_name \ --do_train=true \ --do_eval=true \ --data_dir=$GLUE_DIR/$task_name \ --vocab_file=$BERT_DIR/vocab.txt \ --bert_config_file=$BERT_DIR/bert_config.json \ --init_checkpoint=$init_checkpoint \ --max_seq_length=$seq_length \ --doc_stride=$doc_stride \ --train_batch_size=$batch_size \ --learning_rate=$learning_rate \ --num_train_epochs=$epochs \ --output_dir=$RESULTS_DIR \ --horovod "$use_fp16" \ $use_xla_tag --warmup_proportion=$ws |& tee $LOGFILE
TensorFlow/Classification/ConvNets/triton
triton
requirements
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. networkx==2.5 onnx>=1.8.0 onnxruntime>=1.9.0 pycuda>=2019.1.2 PyYAML>=5.2 tqdm>=4.44.1 tf2onnx==1.8.3 tabulate>=0.8.7 natsort>=7.0.0 # use tags instead of branch names - because there might be docker cache hit causing not fetching most recent changes on branch model_navigator @ git+https://github.com/triton-inference-server/[email protected]#egg=model_navigator
TensorFlow2/LanguageModeling/BERT/data
data
PubMedTextFormatting
# Copyright (c) 2019 NVIDIA CORPORATION. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import glob import os import pubmed_parser as pmp class PubMedTextFormatting: def __init__(self, pubmed_path, output_filename, recursive = False): self.pubmed_path = pubmed_path self.recursive = recursive self.output_filename = output_filename # This puts one article per line def merge(self): print('PubMed path:', self.pubmed_path) with open(self.output_filename, mode='w', newline='\n') as ofile: for filename in glob.glob(self.pubmed_path + '/*.xml*', recursive=self.recursive): print('file:', filename) dicts_out = pmp.parse_medline_xml(filename) for dict_out in dicts_out: if not dict_out['abstract']: continue try: for line in dict_out['abstract'].splitlines(): if len(line) < 30: continue ofile.write(line.strip() + " ") ofile.write("\n\n") except: ofile.write("\n\n") continue
PyTorch/SpeechRecognition/Jasper/triton/model_repo_configs/fp32/feature-extractor-ts-trace
feature-extractor-ts-trace
config
name: "feature-extractor-ts-trace" platform: "pytorch_libtorch" default_model_filename: "model.pt" max_batch_size: 64 input [ { name: "input__0" data_type: TYPE_FP32 dims: [ -1 ] }, { name: "input__1" data_type: TYPE_INT32 dims: [ 1 ] reshape { shape: [] } } ] output [ { name: "output__0" data_type: TYPE_FP32 dims: [64, -1] }, { name: "output__1" data_type: TYPE_INT32 dims: [ 1 ] reshape: { shape: [] } } ]
TensorFlow2/LanguageModeling/BERT/official/nlp/modeling/networks
networks
bert_pretrainer
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Trainer network for BERT-style models.""" from __future__ import absolute_import from __future__ import division # from __future__ import google_type_annotations from __future__ import print_function import copy import tensorflow as tf from official.nlp.modeling import networks @tf.keras.utils.register_keras_serializable(package='Text') class BertPretrainer(tf.keras.Model): """BERT network training model. This is an implementation of the network structure surrounding a transformer encoder as described in "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding" (https://arxiv.org/abs/1810.04805). The BertTrainer allows a user to pass in a transformer stack, and instantiates the masked language model and classification networks that are used to create the training objectives. Attributes: network: A transformer network. This network should output a sequence output and a classification output. Furthermore, it should expose its embedding table via a "get_embedding_table" method. num_classes: Number of classes to predict from the classification network. num_token_predictions: Number of tokens to predict from the masked LM. activation: The activation (if any) to use in the masked LM and classification networks. If None, no activation will be used. initializer: The initializer (if any) to use in the masked LM and classification networks. Defaults to a Glorot uniform initializer. output: The output style for this network. Can be either 'logits' or 'predictions'. """ def __init__(self, network, num_classes, num_token_predictions, float_type, activation=None, output_activation=None, initializer='glorot_uniform', output='logits', **kwargs): self._self_setattr_tracking = False self._config = { 'network': network, 'num_classes': num_classes, 'num_token_predictions': num_token_predictions, 'activation': activation, 'output_activation': output_activation, 'initializer': initializer, 'output': output, } # We want to use the inputs of the passed network as the inputs to this # Model. To do this, we need to keep a copy of the network inputs for use # when we construct the Model object at the end of init. (We keep a copy # because we'll be adding another tensor to the copy later.) network_inputs = network.inputs inputs = copy.copy(network_inputs) # Because we have a copy of inputs to create this Model object, we can # invoke the Network object with its own input tensors to start the Model. # Note that, because of how deferred construction happens, we can't use # the copy of the list here - by the time the network is invoked, the list # object contains the additional input added below. sequence_output, cls_output = network(network_inputs) sequence_output_length = sequence_output.shape.as_list()[1] if sequence_output_length < num_token_predictions: raise ValueError( "The passed network's output length is %s, which is less than the " 'requested num_token_predictions %s.' % (sequence_output_length, num_token_predictions)) masked_lm_positions = tf.keras.layers.Input( shape=(num_token_predictions,), name='masked_lm_positions', dtype=tf.int32) inputs.append(masked_lm_positions) self.masked_lm = networks.MaskedLM( num_predictions=num_token_predictions, input_width=sequence_output.shape[-1], source_network=network, float_type=float_type, activation=activation, initializer=initializer, output=output, name='masked_lm') lm_outputs = self.masked_lm([sequence_output, masked_lm_positions]) self.classification = networks.Classification( input_width=cls_output.shape[-1], num_classes=num_classes, initializer=initializer, output=output, name='classification') sentence_outputs = self.classification(cls_output) super(BertPretrainer, self).__init__( inputs=inputs, outputs=[lm_outputs, sentence_outputs], **kwargs) def get_config(self): return self._config @classmethod def from_config(cls, config, custom_objects=None): return cls(**config)
PyTorch/SpeechRecognition/wav2vec2/scripts
scripts
finetune_base_100h
#!/usr/bin/env bash # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. set -a # A100 80GiB FP16: UPDATE_FREQ=1 # A100 80GiB TF32: UPDATE_FREQ=1 # IO : ${DATASET_DIR:="/datasets/LibriSpeech"} : ${TRAIN_SUBSET:="train-clean-100"} : ${OUTPUT_DIR:="results/finetune_base_100h"} : ${PRETRAINED_MODEL:=results/finetune_base/wav2vec2_update400000.pt} # Batching : ${NUM_GPUS:=8} : ${MAX_TOKENS:=3200000} : ${NUM_CONCAT_BATCHES:=1} : ${UPDATE_FREQ:=1} # Training : ${LEARNING_RATE:=0.00003} : ${FREEZE_FINETUNE_UPDATES:=0} : ${MAX_UPDATE:=80000} : ${MASK_CHANNEL_PROB:=0.5} : ${MASK_PROB:=0.65} bash scripts/finetune_vox_960h.sh "$@"
PyTorch/SpeechRecognition/Jasper/jasper
jasper
model
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn as nn import torch.nn.functional as F from common import filter_warnings activations = { "hardtanh": nn.Hardtanh, "relu": nn.ReLU, "selu": nn.SELU, } def init_weights(m, mode='xavier_uniform'): if type(m) == nn.Conv1d or type(m) == MaskedConv1d: if mode == 'xavier_uniform': nn.init.xavier_uniform_(m.weight, gain=1.0) elif mode == 'xavier_normal': nn.init.xavier_normal_(m.weight, gain=1.0) elif mode == 'kaiming_uniform': nn.init.kaiming_uniform_(m.weight, nonlinearity="relu") elif mode == 'kaiming_normal': nn.init.kaiming_normal_(m.weight, nonlinearity="relu") else: raise ValueError("Unknown Initialization mode: {0}".format(mode)) elif type(m) == nn.BatchNorm1d: if m.track_running_stats: m.running_mean.zero_() m.running_var.fill_(1) m.num_batches_tracked.zero_() if m.affine: nn.init.ones_(m.weight) nn.init.zeros_(m.bias) def get_same_padding(kernel_size, stride, dilation): if stride > 1 and dilation > 1: raise ValueError("Only stride OR dilation may be greater than 1") return (kernel_size // 2) * dilation class MaskedConv1d(nn.Conv1d): """1D convolution with sequence masking """ __constants__ = ["masked"] def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=False, masked=True): super(MaskedConv1d, self).__init__( in_channels, out_channels, kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias) self.masked = masked def get_seq_len(self, lens): # rounding_mode not available in 20.10 container # return torch.div((lens + 2 * self.padding[0] - self.dilation[0] # * (self.kernel_size[0] - 1) - 1), self.stride[0], rounding_mode="floor") + 1 return torch.floor((lens + 2 * self.padding[0] - self.dilation[0] * (self.kernel_size[0] - 1) - 1) / self.stride[0]).long() + 1 def forward(self, x, x_lens=None): if self.masked: max_len = x.size(2) idxs = torch.arange(max_len, dtype=x_lens.dtype, device=x_lens.device) mask = idxs.expand(x_lens.size(0), max_len) >= x_lens.unsqueeze(1) x = x.masked_fill(mask.unsqueeze(1).to(device=x.device), 0) x_lens = self.get_seq_len(x_lens) return super(MaskedConv1d, self).forward(x), x_lens class JasperBlock(nn.Module): __constants__ = ["use_conv_masks"] """Jasper Block. See https://arxiv.org/pdf/1904.03288.pdf """ def __init__(self, infilters, filters, repeat=3, kernel_size=11, stride=1, dilation=1, padding='same', dropout=0.2, activation=None, residual=True, residual_panes=[], use_conv_masks=False): super(JasperBlock, self).__init__() assert padding == "same", "Only 'same' padding is supported." padding_val = get_same_padding(kernel_size[0], stride[0], dilation[0]) self.use_conv_masks = use_conv_masks self.conv = nn.ModuleList() for i in range(repeat): self.conv.extend(self._conv_bn(infilters if i == 0 else filters, filters, kernel_size=kernel_size, stride=stride, dilation=dilation, padding=padding_val)) if i < repeat - 1: self.conv.extend(self._act_dropout(dropout, activation)) self.res = nn.ModuleList() if residual else None res_panes = residual_panes.copy() self.dense_residual = residual if residual: if len(residual_panes) == 0: res_panes = [infilters] self.dense_residual = False for ip in res_panes: self.res.append(nn.ModuleList( self._conv_bn(ip, filters, kernel_size=1))) self.out = nn.Sequential(*self._act_dropout(dropout, activation)) def _conv_bn(self, in_channels, out_channels, **kw): return [MaskedConv1d(in_channels, out_channels, masked=self.use_conv_masks, **kw), nn.BatchNorm1d(out_channels, eps=1e-3, momentum=0.1)] def _act_dropout(self, dropout=0.2, activation=None): return [activation or nn.Hardtanh(min_val=0.0, max_val=20.0), nn.Dropout(p=dropout)] def forward(self, xs, xs_lens=None): if not self.use_conv_masks: xs_lens = 0 # forward convolutions out = xs[-1] lens = xs_lens for i, l in enumerate(self.conv): if isinstance(l, MaskedConv1d): out, lens = l(out, lens) else: out = l(out) # residuals if self.res is not None: for i, layer in enumerate(self.res): res_out = xs[i] for j, res_layer in enumerate(layer): if j == 0: # and self.use_conv_mask: res_out, _ = res_layer(res_out, xs_lens) else: res_out = res_layer(res_out) out += res_out # output out = self.out(out) if self.res is not None and self.dense_residual: out = xs + [out] else: out = [out] if self.use_conv_masks: return out, lens else: return out, None class JasperEncoder(nn.Module): __constants__ = ["use_conv_masks"] def __init__(self, in_feats, activation, frame_splicing=1, init='xavier_uniform', use_conv_masks=False, blocks=[]): super(JasperEncoder, self).__init__() self.use_conv_masks = use_conv_masks self.layers = nn.ModuleList() in_feats *= frame_splicing all_residual_panes = [] for i,blk in enumerate(blocks): blk['activation'] = activations[activation]() has_residual_dense = blk.pop('residual_dense', False) if has_residual_dense: all_residual_panes += [in_feats] blk['residual_panes'] = all_residual_panes else: blk['residual_panes'] = [] self.layers.append( JasperBlock(in_feats, use_conv_masks=use_conv_masks, **blk)) in_feats = blk['filters'] self.apply(lambda x: init_weights(x, mode=init)) def forward(self, x, x_lens=None): out, out_lens = [x], x_lens for l in self.layers: out, out_lens = l(out, out_lens) return out, out_lens class JasperDecoderForCTC(nn.Module): def __init__(self, in_feats, n_classes, init='xavier_uniform'): super(JasperDecoderForCTC, self).__init__() self.layers = nn.Sequential( nn.Conv1d(in_feats, n_classes, kernel_size=1, bias=True),) self.apply(lambda x: init_weights(x, mode=init)) def forward(self, enc_out): out = self.layers(enc_out[-1]).transpose(1, 2) return F.log_softmax(out, dim=2) class GreedyCTCDecoder(nn.Module): @torch.no_grad() def forward(self, log_probs, log_prob_lens=None): if log_prob_lens is not None: max_len = log_probs.size(1) idxs = torch.arange(max_len, dtype=log_prob_lens.dtype, device=log_prob_lens.device) mask = idxs.unsqueeze(0) >= log_prob_lens.unsqueeze(1) log_probs[:,:,-1] = log_probs[:,:,-1].masked_fill(mask, float("Inf")) return log_probs.argmax(dim=-1, keepdim=False).int() class Jasper(nn.Module): def __init__(self, encoder_kw, decoder_kw, transpose_in=False): super(Jasper, self).__init__() self.transpose_in = transpose_in self.encoder = JasperEncoder(**encoder_kw) self.decoder = JasperDecoderForCTC(**decoder_kw) def forward(self, x, x_lens=None): if self.encoder.use_conv_masks: assert x_lens is not None enc, enc_lens = self.encoder(x, x_lens) out = self.decoder(enc) return out, enc_lens else: if self.transpose_in: x = x.transpose(1, 2) enc, _ = self.encoder(x) out = self.decoder(enc) return out # torchscript refuses to output None # TODO Explicitly add x_lens=None for inference (now x can be a Tensor or tuple) def infer(self, x, x_lens=None): if self.encoder.use_conv_masks: return self.forward(x, x_lens) else: ret = self.forward(x) return ret, len(ret) class CTCLossNM: def __init__(self, n_classes): self._criterion = nn.CTCLoss(blank=n_classes-1, reduction='none') def __call__(self, log_probs, targets, input_length, target_length): input_length = input_length.long() target_length = target_length.long() targets = targets.long() loss = self._criterion(log_probs.transpose(1, 0), targets, input_length, target_length) # note that this is different from reduction = 'mean' # because we are not dividing by target lengths return torch.mean(loss)
PyTorch/Forecasting/TFT
TFT
utils
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time import torch.distributed as dist import torch class PerformanceMeter(): def __init__(self, benchmark_mode=True): self.benchmark_mode = benchmark_mode self.reset() def reset(self): if self.benchmark_mode: torch.cuda.synchronize() self.avg = 0 self.count = 0 self.total_time = 0 self.last_update_time = time.time() self.intervals = [] def update(self, n, exclude_from_total=False): if self.benchmark_mode: torch.cuda.synchronize() delta = time.time() - self.last_update_time self.intervals.append(delta) if not exclude_from_total: self.total_time += delta self.count += n self.avg = self.count / self.total_time self.last_update_time = time.time() return n/delta def reset_current_lap(self): if self.benchmark_mode: torch.cuda.synchronize() self.last_update_time = time.time() def p(self, i): assert i <= 100 idx = int(len(self.intervals) * i / 100) return sorted(self.intervals)[idx] def print_once(*args, **kwargs): if not dist.is_initialized() or dist.get_rank() == 0: print(*args, **kwargs)
TensorFlow2/LanguageModeling/BERT/official/nlp/modeling/networks
networks
masked_lm
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Masked language model network.""" from __future__ import absolute_import from __future__ import division # from __future__ import google_type_annotations from __future__ import print_function import tensorflow as tf from official.modeling import tf_utils @tf.keras.utils.register_keras_serializable(package='Text') class MaskedLM(tf.keras.Model): """Masked language model network head for BERT modeling. This network implements a masked language model based on the provided network. It assumes that the network being passed has a "get_embedding_table()" method. Attributes: input_width: The innermost dimension of the input tensor to this network. num_predictions: The number of predictions to make per sequence. source_network: The network with the embedding layer to use for the embedding layer. activation: The activation, if any, for the dense layer in this network. initializer: The intializer for the dense layer in this network. Defaults to a Glorot uniform initializer. output: The output style for this network. Can be either 'logits' or 'predictions'. """ def __init__(self, input_width, num_predictions, source_network, float_type, activation=None, initializer='glorot_uniform', output='logits', **kwargs): embedding_table = source_network.get_embedding_table() vocab_size, hidden_size = embedding_table.shape sequence_data = tf.keras.layers.Input( shape=(None, input_width), name='sequence_data', dtype=tf.float32) masked_lm_positions = tf.keras.layers.Input( shape=(num_predictions,), name='masked_lm_positions', dtype=tf.int32) masked_lm_input = tf.keras.layers.Lambda( lambda x: self._gather_indexes(x[0], x[1]))( [sequence_data, masked_lm_positions]) lm_data = ( tf.keras.layers.Dense( hidden_size, activation=activation, kernel_initializer=initializer, name='cls/predictions/transform/dense')(masked_lm_input)) lm_data = tf.keras.layers.LayerNormalization( axis=-1, epsilon=1e-12, name='cls/predictions/transform/LayerNorm')( lm_data) lm_data = tf.keras.layers.Lambda( lambda x: tf.matmul(x, tf.cast(embedding_table, float_type), transpose_b=True))( lm_data) logits = Bias( initializer=tf.keras.initializers.Zeros(), name='cls/predictions/output_bias')( lm_data) # We can't use the standard Keras reshape layer here, since it expects # the input and output batch size to be the same. reshape_layer = tf.keras.layers.Lambda( lambda x: tf.reshape(x, [-1, num_predictions, vocab_size])) self.logits = reshape_layer(logits) predictions = tf.keras.layers.Activation(tf.nn.log_softmax, dtype='float32')(self.logits) if output == 'logits': output_tensors = self.logits elif output == 'predictions': output_tensors = predictions else: raise ValueError( ('Unknown `output` value "%s". `output` can be either "logits" or ' '"predictions"') % output) super(MaskedLM, self).__init__( inputs=[sequence_data, masked_lm_positions], outputs=output_tensors, **kwargs) def get_config(self): raise NotImplementedError('MaskedLM cannot be directly serialized at this ' 'time. Please use it only in Layers or ' 'functionally subclassed Models/Networks.') def _gather_indexes(self, sequence_tensor, positions): """Gathers the vectors at the specific positions. Args: sequence_tensor: Sequence output of `BertModel` layer of shape (`batch_size`, `seq_length`, num_hidden) where num_hidden is number of hidden units of `BertModel` layer. positions: Positions ids of tokens in sequence to mask for pretraining of with dimension (batch_size, num_predictions) where `num_predictions` is maximum number of tokens to mask out and predict per each sequence. Returns: Masked out sequence tensor of shape (batch_size * num_predictions, num_hidden). """ sequence_shape = tf_utils.get_shape_list( sequence_tensor, name='sequence_output_tensor') batch_size, seq_length, width = sequence_shape flat_offsets = tf.keras.backend.reshape( tf.range(0, batch_size, dtype=tf.int32) * seq_length, [-1, 1]) flat_positions = tf.keras.backend.reshape(positions + flat_offsets, [-1]) flat_sequence_tensor = tf.keras.backend.reshape( sequence_tensor, [batch_size * seq_length, width]) output_tensor = tf.gather(flat_sequence_tensor, flat_positions) return output_tensor @tf.keras.utils.register_keras_serializable(package='Text') # Temporary until we can create a Dense layer that ties the embedding. class Bias(tf.keras.layers.Layer): """Adds a bias term to an input.""" def __init__(self, initializer='zeros', regularizer=None, constraint=None, activation=None, **kwargs): super(Bias, self).__init__(**kwargs) self._initializer = tf.keras.initializers.get(initializer) self._regularizer = tf.keras.regularizers.get(regularizer) self._constraint = tf.keras.constraints.get(constraint) self._activation = tf.keras.activations.get(activation) def build(self, input_shape): input_shape = tf.TensorShape(input_shape) self._bias = self.add_weight( 'bias', shape=input_shape[1:], initializer=self._initializer, regularizer=self._regularizer, constraint=self._constraint, dtype=self._dtype, trainable=True) super(Bias, self).build(input_shape) def get_config(self): config = { 'activation': tf.keras.activations.serialize(self._activation), 'initializer': tf.keras.initializers.serialize(self._initializer), 'regularizer': tf.keras.regularizers.serialize(self._regularizer), 'constraint': tf.keras.constraints.serialize(self._constraint) } base_config = super(Bias, self).get_config() return dict(list(base_config.items()) + list(config.items())) def call(self, inputs): outputs = tf.nn.bias_add(inputs, self._bias) if self._activation is not None: return self._activation(outputs) # pylint: disable=not-callable else: return outputs
PyTorch/Translation/GNMT
GNMT
README
# GNMT v2 For PyTorch This repository provides a script and recipe to train the GNMT v2 model to achieve state of the art accuracy, and is tested and maintained by NVIDIA. ## Table Of Contents <!-- TOC GFM --> * [Model overview](#model-overview) * [Model architecture](#model-architecture) * [Default configuration](#default-configuration) * [Feature support matrix](#feature-support-matrix) * [Features](#features) * [Mixed precision training](#mixed-precision-training) * [Enabling mixed precision](#enabling-mixed-precision) * [Enabling TF32](#enabling-tf32) * [Setup](#setup) * [Requirements](#requirements) * [Quick Start Guide](#quick-start-guide) * [Advanced](#advanced) * [Scripts and sample code](#scripts-and-sample-code) * [Parameters](#parameters) * [Command-line options](#command-line-options) * [Getting the data](#getting-the-data) * [Dataset guidelines](#dataset-guidelines) * [Training process](#training-process) * [Inference process](#inference-process) * [Performance](#performance) * [Benchmarking](#benchmarking) * [Training performance benchmark](#training-performance-benchmark) * [Inference performance benchmark](#inference-performance-benchmark) * [Results](#results) * [Training accuracy results](#training-accuracy-results) * [Training accuracy: NVIDIA DGX A100 (8x A100 40GB)](#training-accuracy-nvidia-dgx-a100-8x-a100-40gb) * [Training accuracy: NVIDIA DGX-1 (8x V100 16GB)](#training-accuracy-nvidia-dgx-1-8x-v100-16gb) * [Training accuracy: NVIDIA DGX-2H (16x V100 32GB)](#training-accuracy-nvidia-dgx-2h-16x-v100-32gb) * [Training stability test](#training-stability-test) * [Training throughput results](#training-throughput-results) * [Training throughput: NVIDIA DGX A100 (8x A100 40GB)](#training-throughput-nvidia-dgx-a100-8x-a100-40gb) * [Training throughput: NVIDIA DGX-1 (8x V100 16GB)](#training-throughput-nvidia-dgx-1-8x-v100-16gb) * [Training throughput: NVIDIA DGX-2H (16x V100 32GB)](#training-throughput-nvidia-dgx-2h-16x-v100-32gb) * [Inference accuracy results](#inference-accuracy-results) * [Inference accuracy: NVIDIA A100 40GB](#inference-accuracy-nvidia-a100-40gb) * [Inference accuracy: NVIDIA Tesla V100 16GB](#inference-accuracy-nvidia-tesla-v100-16gb) * [Inference accuracy: NVIDIA T4](#inference-accuracy-nvidia-t4) * [Inference throughput results](#inference-throughput-results) * [Inference throughput: NVIDIA A100 40GB](#inference-throughput-nvidia-a100-40gb) * [Inference throughput: NVIDIA T4](#inference-throughput-nvidia-t4) * [Inference latency results](#inference-latency-results) * [Inference latency: NVIDIA A100 40GB](#inference-latency-nvidia-a100-40gb) * [Inference latency: NVIDIA T4](#inference-latency-nvidia-t4) * [Release notes](#release-notes) * [Changelog](#changelog) * [Known issues](#known-issues) <!-- /TOC --> ## Model overview The GNMT v2 model is similar to the one discussed in the [Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation](https://arxiv.org/abs/1609.08144) paper. The most important difference between the two models is in the attention mechanism. In our model, the output from the first LSTM layer of the decoder goes into the attention module, then the re-weighted context is concatenated with inputs to all subsequent LSTM layers in the decoder at the current time step. The same attention mechanism is also implemented in the default GNMT-like models from [TensorFlow Neural Machine Translation Tutorial](https://github.com/tensorflow/nmt) and [NVIDIA OpenSeq2Seq Toolkit](https://github.com/NVIDIA/OpenSeq2Seq). ### Model architecture ![ModelArchitecture](./img/diagram.png) ### Default configuration The following features were implemented in this model: * general: * encoder and decoder are using shared embeddings * data-parallel multi-GPU training * dynamic loss scaling with backoff for Tensor Cores (mixed precision) training * trained with label smoothing loss (smoothing factor 0.1) * encoder: * 4-layer LSTM, hidden size 1024, first layer is bidirectional, the rest are unidirectional * with residual connections starting from 3rd layer * uses standard PyTorch nn.LSTM layer * dropout is applied on input to all LSTM layers, probability of dropout is set to 0.2 * hidden state of LSTM layers is initialized with zeros * weights and bias of LSTM layers is initialized with uniform(-0.1,0.1) distribution * decoder: * 4-layer unidirectional LSTM with hidden size 1024 and fully-connected classifier * with residual connections starting from 3rd layer * uses standard PyTorch nn.LSTM layer * dropout is applied on input to all LSTM layers, probability of dropout is set to 0.2 * hidden state of LSTM layers is initialized with zeros * weights and bias of LSTM layers is initialized with uniform(-0.1,0.1) distribution * weights and bias of fully-connected classifier is initialized with uniform(-0.1,0.1) distribution * attention: * normalized Bahdanau attention * output from first LSTM layer of decoder goes into attention, then re-weighted context is concatenated with the input to all subsequent LSTM layers of the decoder at the current timestep * linear transform of keys and queries is initialized with uniform(-0.1, 0.1), normalization scalar is initialized with 1.0/sqrt(1024), normalization bias is initialized with zero * inference: * beam search with default beam size of 5 * with coverage penalty and length normalization, coverage penalty factor is set to 0.1, length normalization factor is set to 0.6 and length normalization constant is set to 5.0 * de-tokenized BLEU computed by [SacreBLEU](https://github.com/mjpost/sacrebleu) * [motivation](https://github.com/mjpost/sacrebleu#motivation) for choosing SacreBLEU When comparing the BLEU score, there are various tokenization approaches and BLEU calculation methodologies; therefore, ensure you align similar metrics. Code from this repository can be used to train a larger, 8-layer GNMT v2 model. Our experiments show that a 4-layer model is significantly faster to train and yields comparable accuracy on the public [WMT16 English-German](http://www.statmt.org/wmt16/translation-task.html) dataset. The number of LSTM layers is controlled by the `--num-layers` parameter in the `train.py` training script. ### Feature support matrix The following features are supported by this model. | **Feature** | **GNMT v2** | |:------------|------------:| |[Apex AMP](https://nvidia.github.io/apex/amp.html) | Yes | |[Apex DistributedDataParallel](https://nvidia.github.io/apex/parallel.html#apex.parallel.DistributedDataParallel) | Yes | #### Features [Apex AMP](https://nvidia.github.io/apex/amp.html) - a tool that enables Tensor Core-accelerated training. Refer to the [Enabling mixed precision](#enabling-mixed-precision) section for more details. [Apex DistributedDataParallel](https://nvidia.github.io/apex/parallel.html#apex.parallel.DistributedDataParallel) - a module wrapper that enables easy multiprocess distributed data parallel training, similar to [torch.nn.parallel.DistributedDataParallel](https://pytorch.org/docs/stable/nn.html#torch.nn.parallel.DistributedDataParallel). `DistributedDataParallel` is optimized for use with [NCCL](https://github.com/NVIDIA/nccl). It achieves high performance by overlapping communication with computation during `backward()` and bucketing smaller gradient transfers to reduce the total number of transfers required. ### Mixed precision training Mixed precision is the combined use of different numerical precisions in a computational method. [Mixed precision](https://arxiv.org/abs/1710.03740) training offers significant computational speedup by performing operations in half-precision format, while storing minimal information in single-precision to retain as much information as possible in critical parts of the network. Since the introduction of [Tensor Cores](https://developer.nvidia.com/tensor-cores) in Volta, and following with both the Turing and Ampere architectures, significant training speedups are experienced by switching to mixed precision -- up to 3x overall speedup on the most arithmetically intense model architectures. Using mixed precision training previously required two steps: 1. Porting the model to use the FP16 data type where appropriate. 2. Manually adding loss scaling to preserve small gradient values. The ability to train deep learning networks with lower precision was introduced in the Pascal architecture and first supported in [CUDA 8](https://devblogs.nvidia.com/parallelforall/tag/fp16/) in the NVIDIA Deep Learning SDK. For information about: * How to train using mixed precision, see the [Mixed Precision Training](https://arxiv.org/abs/1710.03740) paper and [Training With Mixed Precision](https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html) documentation. * Techniques used for mixed precision training, see the [Mixed-Precision Training of Deep Neural Networks](https://devblogs.nvidia.com/mixed-precision-training-deep-neural-networks/) blog. * APEX tools for mixed precision training, see the [NVIDIA Apex: Tools for Easy Mixed-Precision Training in PyTorch](https://devblogs.nvidia.com/apex-pytorch-easy-mixed-precision-training/) . #### Enabling mixed precision Mixed precision is enabled in PyTorch by using the Automatic Mixed Precision (AMP), library from [APEX](https://github.com/NVIDIA/apex) that casts variables to half-precision upon retrieval, while storing variables in single-precision format. Furthermore, to preserve small gradient magnitudes in backpropagation, a [loss scaling](https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html#lossscaling) step must be included when applying gradients. In PyTorch, loss scaling can be easily applied by using `scale_loss()` method provided by AMP. The scaling value to be used can be [dynamic](https://nvidia.github.io/apex/amp.html#apex.amp.initialize) or fixed. For an in-depth walk through on AMP, check out sample usage [here](https://nvidia.github.io/apex/amp.html#). [APEX](https://github.com/NVIDIA/apex) is a PyTorch extension that contains utility libraries, such as AMP, which require minimal network code changes to leverage Tensor Cores performance. The following steps were needed to enable mixed precision training in GNMT: * Import AMP from APEX (file: `seq2seq/train/trainer.py`): ``` from apex import amp ``` * Initialize AMP and wrap the model and the optimizer (file: `seq2seq/train/trainer.py`, class: `Seq2SeqTrainer`): ``` self.model, self.optimizer = amp.initialize( self.model, self.optimizer, cast_model_outputs=torch.float16, keep_batchnorm_fp32=False, opt_level='O2') ``` * Apply `scale_loss` context manager (file: `seq2seq/train/fp_optimizers.py`, class: `AMPOptimizer`): ``` with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() ``` * Apply gradient clipping on single precision master weights (file: `seq2seq/train/fp_optimizers.py`, class: `AMPOptimizer`): ``` if self.grad_clip != float('inf'): clip_grad_norm_(amp.master_params(optimizer), self.grad_clip) ``` #### Enabling TF32 TensorFloat-32 (TF32) is the new math mode in [NVIDIA A100](https://www.nvidia.com/en-us/data-center/a100/) GPUs for handling the matrix math also called tensor operations. TF32 running on Tensor Cores in A100 GPUs can provide up to 10x speedups compared to single-precision floating-point math (FP32) on Volta GPUs. TF32 Tensor Cores can speed up networks using FP32, typically with no loss of accuracy. It is more robust than FP16 for models which require high dynamic range for weights or activations. For more information, refer to the [TensorFloat-32 in the A100 GPU Accelerates AI Training, HPC up to 20x](https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/) blog post. TF32 is supported in the NVIDIA Ampere GPU architecture and is enabled by default. ## Setup The following section lists the requirements in order to start training the GNMT v2 model. ### Requirements This repository contains `Dockerfile` which extends the PyTorch NGC container and encapsulates some dependencies. Aside from these dependencies, ensure you have the following components: * [NVIDIA Docker](https://github.com/NVIDIA/nvidia-docker) * [PyTorch 20.06-py3 NGC container](https://ngc.nvidia.com/registry/nvidia-pytorch) * GPU architecture: * [NVIDIA Volta](https://www.nvidia.com/en-us/data-center/volta-gpu-architecture/) * [NVIDIA Turing](https://www.nvidia.com/en-us/geforce/turing/) * [NVIDIA Ampere architecture](https://www.nvidia.com/en-us/data-center/nvidia-ampere-gpu-architecture/) For more information about how to get started with NGC containers, see the following sections from the NVIDIA GPU Cloud Documentation and the Deep Learning DGX Documentation: * [Getting Started Using NVIDIA GPU Cloud](https://docs.nvidia.com/ngc/ngc-getting-started-guide/index.html), * [Accessing And Pulling From The NGC container registry](https://docs.nvidia.com/deeplearning/dgx/user-guide/index.html#accessing_registry), * [Running PyTorch](https://docs.nvidia.com/deeplearning/dgx/pytorch-release-notes/running.html#running). For those unable to use the Pytorch NGC container, to set up the required environment or create your own container, see the versioned [NVIDIA Container Support Matrix](https://docs.nvidia.com/deeplearning/frameworks/support-matrix/index.html). ## Quick Start Guide To train your model using mixed or TF32 precision with Tensor Cores or using FP32, perform the following steps using the default parameters of the GNMT v2 model on the WMT16 English German dataset. For the specifics concerning training and inference, see the [Advanced](#advanced) section. **1. Clone the repository.** ``` git clone https://github.com/NVIDIA/DeepLearningExamples cd DeepLearningExamples/PyTorch/Translation/GNMT ``` **2. Build the GNMT v2 Docker container.** ``` bash scripts/docker/build.sh ``` **3. Start an interactive session in the container to run training/inference.** ``` bash scripts/docker/interactive.sh ``` **4. Download and preprocess the dataset.** Data will be downloaded to the `data` directory (on the host). The `data` directory is mounted to the `/workspace/gnmt/data` location in the Docker container. ``` bash scripts/wmt16_en_de.sh ``` **5. Start training.** The training script saves only one checkpoint with the lowest value of the loss function on the validation dataset. All results and logs are saved to the `gnmt` directory (on the host) or to the `/workspace/gnmt/gnmt` directory (in the container). By default, the `train.py` script will launch mixed precision training with Tensor Cores. You can change this behavior by setting: * the `--math fp32` flag to launch single precision training (for NVIDIA Volta and NVIDIA Turing architectures) or * the `--math tf32` flag to launch TF32 training with Tensor Cores (for NVIDIA Ampere architecture) for the `train.py` training script. To launch mixed precision training on 1, 4 or 8 GPUs, run: ``` python3 -m torch.distributed.launch --nproc_per_node=<#GPUs> train.py --seed 2 --train-global-batch-size 1024 ``` To launch mixed precision training on 16 GPUs, run: ``` python3 -m torch.distributed.launch --nproc_per_node=16 train.py --seed 2 --train-global-batch-size 2048 ``` By default, the training script will launch training with batch size 128 per GPU. If `--train-global-batch-size` is specified and larger than 128 times the number of GPUs available for the training then the training script will accumulate gradients over consecutive iterations and then perform the weight update. For example, 1 GPU training with `--train-global-batch-size 1024` will accumulate gradients over 8 iterations before doing the weight update with accumulated gradients. **6. Start evaluation.** The training process automatically runs evaluation and outputs the BLEU score after each training epoch. Additionally, after the training is done, you can manually run inference on the test dataset with the checkpoint saved during the training. To launch FP16 inference on the `newstest2014.en` test set, run: ``` python3 translate.py \ --input data/wmt16_de_en/newstest2014.en \ --reference data/wmt16_de_en/newstest2014.de \ --output /tmp/output \ --model gnmt/model_best.pth ``` The script will load the checkpoint specified by the `--model` option, then it will launch inference on the file specified by the `--input` option, and compute BLEU score against the reference translation specified by the `--reference` option. Outputs will be stored to the location specified by the `--output` option. Additionally, one can pass the input text directly from the command-line: ``` python3 translate.py \ --input-text "The quick brown fox jumps over the lazy dog" \ --model gnmt/model_best.pth ``` Translated output will be printed to the console: ``` (...) 0: Translated output: Der schnelle braune Fuchs springt über den faulen Hund ``` By default, the `translate.py` script will launch FP16 inference with Tensor Cores. You can change this behavior by setting: * the `--math fp32` flag to launch single precision inference (for NVIDIA Volta and NVIDIA Turing architectures) or * the `--math tf32` flag to launch TF32 inference with Tensor Cores (for NVIDIA Ampere architecture) for the `translate.py` inference script. ## Advanced The following sections provide greater details of the dataset, running training and inference, and the training results. ### Scripts and sample code In the `root` directory, the most important files are: * `train.py`: serves as the entry point to launch the training * `translate.py`: serves as the entry point to launch inference * `Dockerfile`: container with the basic set of dependencies to run GNMT v2 * `requirements.txt`: set of extra requirements for running GNMT v2 The `seq2seq/model` directory contains the implementation of GNMT v2 building blocks: * `attention.py`: implementation of normalized Bahdanau attention * `encoder.py`: implementation of recurrent encoder * `decoder.py`: implementation of recurrent decoder with attention * `seq2seq_base.py`: base class for seq2seq models * `gnmt.py`: implementation of GNMT v2 model The `seq2seq/train` directory encapsulates the necessary tools to execute training: * `trainer.py`: implementation of training loop * `smoothing.py`: implementation of cross-entropy with label smoothing * `lr_scheduler.py`: implementation of exponential learning rate warmup and step decay * `fp_optimizers.py`: implementation of optimizers for various floating point precisions The `seq2seq/inference` directory contains scripts required to run inference: * `beam_search.py`: implementation of beam search with length normalization and length penalty * `translator.py`: implementation of auto-regressive inference The `seq2seq/data` directory contains implementation of components needed for data loading: * `dataset.py`: implementation of text datasets * `sampler.py`: implementation of batch samplers with bucketing by sequence length * `tokenizer.py`: implementation of tokenizer (maps integer vocabulary indices to text) ### Parameters Training The complete list of available parameters for the `train.py` training script contains: ``` dataset setup: --dataset-dir DATASET_DIR path to the directory with training/test data (default: data/wmt16_de_en) --src-lang SRC_LANG source language (default: en) --tgt-lang TGT_LANG target language (default: de) --vocab VOCAB path to the vocabulary file (relative to DATASET_DIR directory) (default: vocab.bpe.32000) -bpe BPE_CODES, --bpe-codes BPE_CODES path to the file with bpe codes (relative to DATASET_DIR directory) (default: bpe.32000) --train-src TRAIN_SRC path to the training source data file (relative to DATASET_DIR directory) (default: train.tok.clean.bpe.32000.en) --train-tgt TRAIN_TGT path to the training target data file (relative to DATASET_DIR directory) (default: train.tok.clean.bpe.32000.de) --val-src VAL_SRC path to the validation source data file (relative to DATASET_DIR directory) (default: newstest_dev.tok.clean.bpe.32000.en) --val-tgt VAL_TGT path to the validation target data file (relative to DATASET_DIR directory) (default: newstest_dev.tok.clean.bpe.32000.de) --test-src TEST_SRC path to the test source data file (relative to DATASET_DIR directory) (default: newstest2014.tok.bpe.32000.en) --test-tgt TEST_TGT path to the test target data file (relative to DATASET_DIR directory) (default: newstest2014.de) --train-max-size TRAIN_MAX_SIZE use at most TRAIN_MAX_SIZE elements from training dataset (useful for benchmarking), by default uses entire dataset (default: None) results setup: --save-dir SAVE_DIR path to directory with results, it will be automatically created if it does not exist (default: gnmt) --print-freq PRINT_FREQ print log every PRINT_FREQ batches (default: 10) model setup: --hidden-size HIDDEN_SIZE hidden size of the model (default: 1024) --num-layers NUM_LAYERS number of RNN layers in encoder and in decoder (default: 4) --dropout DROPOUT dropout applied to input of RNN cells (default: 0.2) --share-embedding use shared embeddings for encoder and decoder (use '-- no-share-embedding' to disable) (default: True) --smoothing SMOOTHING label smoothing, if equal to zero model will use CrossEntropyLoss, if not zero model will be trained with label smoothing loss (default: 0.1) general setup: --math {fp16,fp32,tf32,manual_fp16} precision (default: fp16) --seed SEED master seed for random number generators, if "seed" is undefined then the master seed will be sampled from random.SystemRandom() (default: None) --prealloc-mode {off,once,always} controls preallocation (default: always) --dllog-file DLLOG_FILE Name of the DLLogger output file (default: train_log.json) --eval run validation and test after every epoch (use '--no- eval' to disable) (default: True) --env print info about execution env (use '--no-env' to disable) (default: True) --cuda enables cuda (use '--no-cuda' to disable) (default: True) --cudnn enables cudnn (use '--no-cudnn' to disable) (default: True) --log-all-ranks enables logging from all distributed ranks, if disabled then only logs from rank 0 are reported (use '--no-log-all-ranks' to disable) (default: True) training setup: --train-batch-size TRAIN_BATCH_SIZE training batch size per worker (default: 128) --train-global-batch-size TRAIN_GLOBAL_BATCH_SIZE global training batch size, this argument does not have to be defined, if it is defined it will be used to automatically compute train_iter_size using the equation: train_iter_size = train_global_batch_size // (train_batch_size * world_size) (default: None) --train-iter-size N training iter size, training loop will accumulate gradients over N iterations and execute optimizer every N steps (default: 1) --epochs EPOCHS max number of training epochs (default: 6) --grad-clip GRAD_CLIP enables gradient clipping and sets maximum norm of gradients (default: 5.0) --train-max-length TRAIN_MAX_LENGTH maximum sequence length for training (including special BOS and EOS tokens) (default: 50) --train-min-length TRAIN_MIN_LENGTH minimum sequence length for training (including special BOS and EOS tokens) (default: 0) --train-loader-workers TRAIN_LOADER_WORKERS number of workers for training data loading (default: 2) --batching {random,sharding,bucketing} select batching algorithm (default: bucketing) --shard-size SHARD_SIZE shard size for "sharding" batching algorithm, in multiples of global batch size (default: 80) --num-buckets NUM_BUCKETS number of buckets for "bucketing" batching algorithm (default: 5) optimizer setup: --optimizer OPTIMIZER training optimizer (default: Adam) --lr LR learning rate (default: 0.002) --optimizer-extra OPTIMIZER_EXTRA extra options for the optimizer (default: {}) mixed precision loss scaling setup: --init-scale INIT_SCALE initial loss scale (default: 8192) --upscale-interval UPSCALE_INTERVAL loss upscaling interval (default: 128) learning rate scheduler setup: --warmup-steps WARMUP_STEPS number of learning rate warmup iterations (default: 200) --remain-steps REMAIN_STEPS starting iteration for learning rate decay (default: 0.666) --decay-interval DECAY_INTERVAL interval between learning rate decay steps (default: None) --decay-steps DECAY_STEPS max number of learning rate decay steps (default: 4) --decay-factor DECAY_FACTOR learning rate decay factor (default: 0.5) validation setup: --val-batch-size VAL_BATCH_SIZE batch size for validation (default: 64) --val-max-length VAL_MAX_LENGTH maximum sequence length for validation (including special BOS and EOS tokens) (default: 125) --val-min-length VAL_MIN_LENGTH minimum sequence length for validation (including special BOS and EOS tokens) (default: 0) --val-loader-workers VAL_LOADER_WORKERS number of workers for validation data loading (default: 0) test setup: --test-batch-size TEST_BATCH_SIZE batch size for test (default: 128) --test-max-length TEST_MAX_LENGTH maximum sequence length for test (including special BOS and EOS tokens) (default: 150) --test-min-length TEST_MIN_LENGTH minimum sequence length for test (including special BOS and EOS tokens) (default: 0) --beam-size BEAM_SIZE beam size (default: 5) --len-norm-factor LEN_NORM_FACTOR length normalization factor (default: 0.6) --cov-penalty-factor COV_PENALTY_FACTOR coverage penalty factor (default: 0.1) --len-norm-const LEN_NORM_CONST length normalization constant (default: 5.0) --intra-epoch-eval N evaluate within training epoch, this option will enable extra N equally spaced evaluations executed during each training epoch (default: 0) --test-loader-workers TEST_LOADER_WORKERS number of workers for test data loading (default: 0) checkpointing setup: --start-epoch START_EPOCH manually set initial epoch counter (default: 0) --resume PATH resumes training from checkpoint from PATH (default: None) --save-all saves checkpoint after every epoch (default: False) --save-freq SAVE_FREQ save checkpoint every SAVE_FREQ batches (default: 5000) --keep-checkpoints KEEP_CHECKPOINTS keep only last KEEP_CHECKPOINTS checkpoints, affects only checkpoints controlled by --save-freq option (default: 0) benchmark setup: --target-perf TARGET_PERF target training performance (in tokens per second) (default: None) --target-bleu TARGET_BLEU target accuracy (default: None) ``` Inference The complete list of available parameters for the `translate.py` inference script contains: ``` data setup: -o OUTPUT, --output OUTPUT full path to the output file if not specified, then the output will be printed (default: None) -r REFERENCE, --reference REFERENCE full path to the file with reference translations (for sacrebleu, raw text) (default: None) -m MODEL, --model MODEL full path to the model checkpoint file (default: None) --synthetic use synthetic dataset (default: False) --synthetic-batches SYNTHETIC_BATCHES number of synthetic batches to generate (default: 64) --synthetic-vocab SYNTHETIC_VOCAB size of synthetic vocabulary (default: 32320) --synthetic-len SYNTHETIC_LEN sequence length of synthetic samples (default: 50) -i INPUT, --input INPUT full path to the input file (raw text) (default: None) -t INPUT_TEXT [INPUT_TEXT ...], --input-text INPUT_TEXT [INPUT_TEXT ...] raw input text (default: None) --sort sorts dataset by sequence length (use '--no-sort' to disable) (default: False) inference setup: --batch-size BATCH_SIZE [BATCH_SIZE ...] batch size per GPU (default: [128]) --beam-size BEAM_SIZE [BEAM_SIZE ...] beam size (default: [5]) --max-seq-len MAX_SEQ_LEN maximum generated sequence length (default: 80) --len-norm-factor LEN_NORM_FACTOR length normalization factor (default: 0.6) --cov-penalty-factor COV_PENALTY_FACTOR coverage penalty factor (default: 0.1) --len-norm-const LEN_NORM_CONST length normalization constant (default: 5.0) general setup: --math {fp16,fp32,tf32} [{fp16,fp32,tf32} ...] precision (default: ['fp16']) --env print info about execution env (use '--no-env' to disable) (default: False) --bleu compares with reference translation and computes BLEU (use '--no-bleu' to disable) (default: True) --cuda enables cuda (use '--no-cuda' to disable) (default: True) --cudnn enables cudnn (use '--no-cudnn' to disable) (default: True) --batch-first uses (batch, seq, feature) data format for RNNs (default: True) --seq-first uses (seq, batch, feature) data format for RNNs (default: True) --save-dir SAVE_DIR path to directory with results, it will be automatically created if it does not exist (default: gnmt) --dllog-file DLLOG_FILE Name of the DLLogger output file (default: eval_log.json) --print-freq PRINT_FREQ, -p PRINT_FREQ print log every PRINT_FREQ batches (default: 1) benchmark setup: --target-perf TARGET_PERF target inference performance (in tokens per second) (default: None) --target-bleu TARGET_BLEU target accuracy (default: None) --repeat REPEAT [REPEAT ...] loops over the dataset REPEAT times, flag accepts multiple arguments, one for each specified batch size (default: [1]) --warmup WARMUP warmup iterations for performance counters (default: 0) --percentiles PERCENTILES [PERCENTILES ...] Percentiles for confidence intervals for throughput/latency benchmarks (default: (90, 95, 99)) --tables print accuracy, throughput and latency results in tables (use '--no-tables' to disable) (default: False) ``` ### Command-line options To see the full list of available options and their descriptions, use the `-h` or `--help` command line option. For example, for training: ``` python3 train.py --help usage: train.py [-h] [--dataset-dir DATASET_DIR] [--src-lang SRC_LANG] [--tgt-lang TGT_LANG] [--vocab VOCAB] [-bpe BPE_CODES] [--train-src TRAIN_SRC] [--train-tgt TRAIN_TGT] [--val-src VAL_SRC] [--val-tgt VAL_TGT] [--test-src TEST_SRC] [--test-tgt TEST_TGT] [--save-dir SAVE_DIR] [--print-freq PRINT_FREQ] [--hidden-size HIDDEN_SIZE] [--num-layers NUM_LAYERS] [--dropout DROPOUT] [--share-embedding] [--smoothing SMOOTHING] [--math {fp16,fp32,tf32,manual_fp16}] [--seed SEED] [--prealloc-mode {off,once,always}] [--dllog-file DLLOG_FILE] [--eval] [--env] [--cuda] [--cudnn] [--log-all-ranks] [--train-max-size TRAIN_MAX_SIZE] [--train-batch-size TRAIN_BATCH_SIZE] [--train-global-batch-size TRAIN_GLOBAL_BATCH_SIZE] [--train-iter-size N] [--epochs EPOCHS] [--grad-clip GRAD_CLIP] [--train-max-length TRAIN_MAX_LENGTH] [--train-min-length TRAIN_MIN_LENGTH] [--train-loader-workers TRAIN_LOADER_WORKERS] [--batching {random,sharding,bucketing}] [--shard-size SHARD_SIZE] [--num-buckets NUM_BUCKETS] [--optimizer OPTIMIZER] [--lr LR] [--optimizer-extra OPTIMIZER_EXTRA] [--init-scale INIT_SCALE] [--upscale-interval UPSCALE_INTERVAL] [--warmup-steps WARMUP_STEPS] [--remain-steps REMAIN_STEPS] [--decay-interval DECAY_INTERVAL] [--decay-steps DECAY_STEPS] [--decay-factor DECAY_FACTOR] [--val-batch-size VAL_BATCH_SIZE] [--val-max-length VAL_MAX_LENGTH] [--val-min-length VAL_MIN_LENGTH] [--val-loader-workers VAL_LOADER_WORKERS] [--test-batch-size TEST_BATCH_SIZE] [--test-max-length TEST_MAX_LENGTH] [--test-min-length TEST_MIN_LENGTH] [--beam-size BEAM_SIZE] [--len-norm-factor LEN_NORM_FACTOR] [--cov-penalty-factor COV_PENALTY_FACTOR] [--len-norm-const LEN_NORM_CONST] [--intra-epoch-eval N] [--test-loader-workers TEST_LOADER_WORKERS] [--start-epoch START_EPOCH] [--resume PATH] [--save-all] [--save-freq SAVE_FREQ] [--keep-checkpoints KEEP_CHECKPOINTS] [--target-perf TARGET_PERF] [--target-bleu TARGET_BLEU] [--local_rank LOCAL_RANK] ``` For example, for inference: ``` python3 translate.py --help usage: translate.py [-h] [-o OUTPUT] [-r REFERENCE] [-m MODEL] [--synthetic] [--synthetic-batches SYNTHETIC_BATCHES] [--synthetic-vocab SYNTHETIC_VOCAB] [--synthetic-len SYNTHETIC_LEN] [-i INPUT | -t INPUT_TEXT [INPUT_TEXT ...]] [--sort] [--batch-size BATCH_SIZE [BATCH_SIZE ...]] [--beam-size BEAM_SIZE [BEAM_SIZE ...]] [--max-seq-len MAX_SEQ_LEN] [--len-norm-factor LEN_NORM_FACTOR] [--cov-penalty-factor COV_PENALTY_FACTOR] [--len-norm-const LEN_NORM_CONST] [--math {fp16,fp32,tf32} [{fp16,fp32,tf32} ...]] [--env] [--bleu] [--cuda] [--cudnn] [--batch-first | --seq-first] [--save-dir SAVE_DIR] [--dllog-file DLLOG_FILE] [--print-freq PRINT_FREQ] [--target-perf TARGET_PERF] [--target-bleu TARGET_BLEU] [--repeat REPEAT [REPEAT ...]] [--warmup WARMUP] [--percentiles PERCENTILES [PERCENTILES ...]] [--tables] [--local_rank LOCAL_RANK] ``` ### Getting the data The GNMT v2 model was trained on the [WMT16 English-German](http://www.statmt.org/wmt16/translation-task.html) dataset. Concatenation of the newstest2015 and newstest2016 test sets are used as a validation dataset and the newstest2014 is used as a testing dataset. This repository contains the `scripts/wmt16_en_de.sh` download script which automatically downloads and preprocesses the training, validation and test datasets. By default, data is downloaded to the `data` directory. Our download script is very similar to the `wmt16_en_de.sh` script from the [tensorflow/nmt](https://github.com/tensorflow/nmt/blob/master/nmt/scripts/wmt16_en_de.sh) repository. Our download script contains an extra preprocessing step, which discards all pairs of sentences which can't be decoded by *latin-1* encoder. The `scripts/wmt16_en_de.sh` script uses the [subword-nmt](https://github.com/rsennrich/subword-nmt) package to segment text into subword units (Byte Pair Encodings - [BPE](https://en.wikipedia.org/wiki/Byte_pair_encoding)). By default, the script builds the shared vocabulary of 32,000 tokens. In order to test with other datasets, the script needs to be customized accordingly. #### Dataset guidelines The process of downloading and preprocessing the data can be found in the `scripts/wmt16_en_de.sh` script. Initially, data is downloaded from [www.statmt.org](www.statmt.org). Then `europarl-v7`, `commoncrawl` and `news-commentary` corpora are concatenated to form the training dataset, similarly `newstest2015` and `newstest2016` are concatenated to form the validation dataset. Raw data is preprocessed with [Moses](https://github.com/moses-smt/mosesdecoder), first by launching [Moses tokenizer](https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl) (tokenizer breaks up text into individual words), then by launching [clean-corpus-n.perl](https://github.com/moses-smt/mosesdecoder/blob/master/scripts/training/clean-corpus-n.perl) which removes invalid sentences and does initial filtering by sequence length. Second stage of preprocessing is done by launching the `scripts/filter_dataset.py` script, which discards all pairs of sentences that can't be decoded by latin-1 encoder. Third state of preprocessing uses the [subword-nmt](https://github.com/rsennrich/subword-nmt) package. First it builds shared [byte pair encoding](https://en.wikipedia.org/wiki/Byte_pair_encoding) vocabulary with 32,000 merge operations (command `subword-nmt learn-bpe`), then it applies generated vocabulary to training, validation and test corpora (command `subword-nmt apply-bpe`). ### Training process The default training configuration can be launched by running the `train.py` training script. By default, the training script saves only one checkpoint with the lowest value of the loss function on the validation dataset. An evaluation is then performed after each training epoch. Results are stored in the `gnmt` directory. The training script launches data-parallel training with batch size 128 per GPU on all available GPUs. We have tested reliance on up to 16 GPUs on a single node. After each training epoch, the script runs an evaluation on the validation dataset and outputs a BLEU score on the test dataset (newstest2014). BLEU is computed by the [SacreBLEU](https://github.com/mjpost/sacreBLEU) package. Logs from the training and evaluation are saved to the `gnmt` directory. The summary after each training epoch is printed in the following format: ``` 0: Summary: Epoch: 3 Training Loss: 3.1336 Validation Loss: 2.9587 Test BLEU: 23.18 0: Performance: Epoch: 3 Training: 418772 Tok/s Validation: 1445331 Tok/s ``` The training loss is averaged over an entire training epoch, the validation loss is averaged over the validation dataset and the BLEU score is computed on the test dataset. Performance is reported in total tokens per second. The result is averaged over an entire training epoch and summed over all GPUs participating in the training. By default, the `train.py` script will launch mixed precision training with Tensor Cores. You can change this behavior by setting: * the `--math fp32` flag to launch single precision training (for NVIDIA Volta and NVIDIA Turing architectures) or * the `--math tf32` flag to launch TF32 training with Tensor Cores (for NVIDIA Ampere architecture) for the `train.py` training script. To view all available options for training, run `python3 train.py --help`. ### Inference process Inference can be run by launching the `translate.py` inference script, although, it requires a pre-trained model checkpoint and tokenized input. The inference script, `translate.py`, supports batched inference. By default, it launches beam search with beam size of 5, coverage penalty term and length normalization term. Greedy decoding can be enabled by setting the beam size to 1. To view all available options for inference, run `python3 translate.py --help`. ## Performance The performance measurements in this document were conducted at the time of publication and may not reflect the performance achieved from NVIDIA’s latest software release. For the most up-to-date performance measurements, go to [NVIDIA Data Center Deep Learning Product Performance](https://developer.nvidia.com/deep-learning-performance-training-inference). ### Benchmarking The following section shows how to run benchmarks measuring the model performance in training and inference modes. #### Training performance benchmark Training is launched on batches of text data, different batches have different sequence lengths (number of tokens in the longest sequence). Sequence length and batch efficiency (ratio of non-pad tokens to total number of tokens) affect performance of the training, therefore it's recommended to run the training on a large chunk of training dataset to get a stable and reliable average training performance. Ideally at least one full epoch of training should be launched to get a good estimate of training performance. The following commands will launch one epoch of training: To launch mixed precision training on 1, 4 or 8 GPUs, run: ``` python3 -m torch.distributed.launch --nproc_per_node=<#GPUs> train.py --seed 2 --train-global-batch-size 1024 --epochs 1 --math fp16 ``` To launch mixed precision training on 16 GPUs, run: ``` python3 -m torch.distributed.launch --nproc_per_node=16 train.py --seed 2 --train-global-batch-size 2048 --epochs 1 --math fp16 ``` Change `--math fp16` to `--math fp32` to launch single precision training (for NVIDIA Volta and NVIDIA Turing architectures) or to `--math tf32` to launch TF32 training with Tensor Cores (for NVIDIA Ampere architecture). After the training is completed, the `train.py` script prints a summary to standard output. Performance results are printed in the following format: ``` (...) 0: Performance: Epoch: 0 Training: 418926 Tok/s Validation: 1430828 Tok/s (...) ``` `Training: 418926 Tok/s` represents training throughput averaged over an entire training epoch and summed over all GPUs participating in the training. #### Inference performance benchmark The inference performance and accuracy benchmarks require a checkpoint from a fully trained model. Command to launch the inference accuracy benchmark on NVIDIA Volta or on NVIDIA Turing architectures: ``` python3 translate.py \ --model gnmt/model_best.pth \ --input data/wmt16_de_en/newstest2014.en \ --reference data/wmt16_de_en/newstest2014.de \ --output /tmp/output \ --math fp16 fp32 \ --batch-size 128 \ --beam-size 1 2 5 \ --tables ``` Command to launch the inference accuracy benchmark on NVIDIA Ampere architecture: ``` python3 translate.py \ --model gnmt/model_best.pth \ --input data/wmt16_de_en/newstest2014.en \ --reference data/wmt16_de_en/newstest2014.de \ --output /tmp/output \ --math fp16 tf32 \ --batch-size 128 \ --beam-size 1 2 5 \ --tables ``` Command to launch the inference throughput and latency benchmarks on NVIDIA Volta or NVIDIA Turing architectures: ``` python3 translate.py \ --model gnmt/model_best.pth \ --input data/wmt16_de_en/newstest2014.en \ --reference data/wmt16_de_en/newstest2014.de \ --output /tmp/output \ --math fp16 fp32 \ --batch-size 1 2 4 8 32 128 512 \ --repeat 1 1 1 1 2 8 16 \ --beam-size 1 2 5 \ --warmup 5 \ --tables ``` Command to launch the inference throughput and latency benchmarks on NVIDIA Ampere architecture: ``` python3 translate.py \ --model gnmt/model_best.pth \ --input data/wmt16_de_en/newstest2014.en \ --reference data/wmt16_de_en/newstest2014.de \ --output /tmp/output \ --math fp16 tf32 \ --batch-size 1 2 4 8 32 128 512 \ --repeat 1 1 1 1 2 8 16 \ --beam-size 1 2 5 \ --warmup 5 \ --tables ``` ### Results The following sections provide details on how we achieved our performance and accuracy in training and inference. #### Training accuracy results ##### Training accuracy: NVIDIA DGX A100 (8x A100 40GB) Our results were obtained by running the `train.py` script with the default batch size = 128 per GPU in the pytorch-20.06-py3 NGC container on NVIDIA DGX A100 with 8x A100 40GB GPUs. Command to launch the training: ``` python3 -m torch.distributed.launch --nproc_per_node=<#GPUs> train.py --seed 2 --train-global-batch-size 1024 --math fp16 ``` Change `--math fp16` to `--math tf32` to launch TF32 training with Tensor Cores. | **GPUs** | **Batch Size / GPU** | **Accuracy - TF32 (BLEU)** | **Accuracy - Mixed precision (BLEU)** | **Time to Train - TF32 (minutes)** | **Time to Train - Mixed precision (minutes)** | **Time to Train Speedup (TF32 to Mixed precision)** | | --- | --- | ----- | ----- | ----- | ------ | ---- | | 8 | 128 | 24.46 | 24.60 | 34.7 | 22.7 | 1.53 | To achieve these same results, follow the [Quick Start Guide](#quick-start-guide) outlined above. ##### Training accuracy: NVIDIA DGX-1 (8x V100 16GB) Our results were obtained by running the `train.py` script with the default batch size = 128 per GPU in the pytorch-20.06-py3 NGC container on NVIDIA DGX-1 with 8x V100 16GB GPUs. Command to launch the training: ``` python3 -m torch.distributed.launch --nproc_per_node=<#GPUs> train.py --seed 2 --train-global-batch-size 1024 --math fp16 ``` Change `--math fp16` to `--math fp32` to launch single precision training. | **GPUs** | **Batch Size / GPU** | **Accuracy - FP32 (BLEU)** | **Accuracy - Mixed precision (BLEU)** | **Time to Train - FP32 (minutes)** | **Time to Train - Mixed precision (minutes)** | **Time to Train Speedup (FP32 to Mixed precision)** | | --- | --- | ----- | ----- | ----- | ------ | ---- | | 1 | 128 | 24.41 | 24.42 | 810.0 | 224.0 | 3.62 | | 4 | 128 | 24.40 | 24.33 | 218.2 | 69.5 | 3.14 | | 8 | 128 | 24.45 | 24.38 | 112.0 | 38.6 | 2.90 | To achieve these same results, follow the [Quick Start Guide](#quick-start-guide) outlined above. ##### Training accuracy: NVIDIA DGX-2H (16x V100 32GB) Our results were obtained by running the `train.py` script with the default batch size = 128 per GPU in the pytorch-20.06-py3 NGC container on NVIDIA DGX-2H with 16x V100 32GB GPUs. To launch mixed precision training on 16 GPUs, run: ``` python3 -m torch.distributed.launch --nproc_per_node=16 train.py --seed 2 --train-global-batch-size 2048 --math fp16 ``` Change `--math fp16` to `--math fp32` to launch single precision training. | **GPUs** | **Batch Size / GPU** | **Accuracy - FP32 (BLEU)** | **Accuracy - Mixed precision (BLEU)** | **Time to Train - FP32 (minutes)** | **Time to Train - Mixed precision (minutes)** | **Time to Train Speedup (FP32 to Mixed precision)** | | --- | --- | ----- | ----- | ------ | ----- | ---- | | 16 | 128 | 24.41 | 24.38 | 52.1 | 19.4 | 2.69 | To achieve these same results, follow the [Quick Start Guide](#quick-start-guide) outlined above. ![TrainingLoss](./img/training_loss.png) ##### Training stability test The GNMT v2 model was trained for 6 epochs, starting from 32 different initial random seeds. After each training epoch, the model was evaluated on the test dataset and the BLEU score was recorded. The training was performed in the pytorch-20.06-py3 Docker container on NVIDIA DGX A100 with 8x A100 40GB GPUs. The following table summarizes the results of the stability test. In the following table, the BLEU scores after each training epoch for different initial random seeds are displayed. | **Epoch** | **Average** | **Standard deviation** | **Minimum** | **Maximum** | **Median** | | --- | ------ | ----- | ------ | ------ | ------ | | 1 | 19.959 | 0.238 | 19.410 | 20.390 | 19.970 | | 2 | 21.772 | 0.293 | 20.960 | 22.280 | 21.820 | | 3 | 22.435 | 0.264 | 21.740 | 22.870 | 22.465 | | 4 | 23.167 | 0.166 | 22.870 | 23.620 | 23.195 | | 5 | 24.233 | 0.149 | 23.820 | 24.530 | 24.235 | | 6 | 24.416 | 0.131 | 24.140 | 24.660 | 24.390 | #### Training throughput results ##### Training throughput: NVIDIA DGX A100 (8x A100 40GB) Our results were obtained by running the `train.py` training script in the pytorch-20.06-py3 NGC container on NVIDIA DGX A100 with 8x A100 40GB GPUs. Throughput performance numbers (in tokens per second) were averaged over an entire training epoch. | **GPUs** | **Batch size / GPU** | **Throughput - TF32 (tok/s)** | **Throughput - Mixed precision (tok/s)** | **Throughput speedup (TF32 to Mixed precision)** | **Strong Scaling - TF32** | **Strong Scaling - Mixed precision** | | --- | --- | ------ | ------ | ----- | ----- | ----- | | 1 | 128 | 83214 | 140909 | 1.693 | 1.000 | 1.000 | | 4 | 128 | 278576 | 463144 | 1.663 | 3.348 | 3.287 | | 8 | 128 | 519952 | 822024 | 1.581 | 6.248 | 5.834 | To achieve these same results, follow the [Quick Start Guide](#quick-start-guide) outlined above. ##### Training throughput: NVIDIA DGX-1 (8x V100 16GB) Our results were obtained by running the `train.py` training script in the pytorch-20.06-py3 NGC container on NVIDIA DGX-1 with 8x V100 16GB GPUs. Throughput performance numbers (in tokens per second) were averaged over an entire training epoch. | **GPUs** | **Batch size / GPU** | **Throughput - FP32 (tok/s)** | **Throughput - Mixed precision (tok/s)** | **Throughput speedup (FP32 to Mixed precision)** | **Strong Scaling - FP32** | **Strong Scaling - Mixed precision** | | --- | --- | ------ | ------ | ----- | ----- | ----- | | 1 | 128 | 21860 | 76438 | 3.497 | 1.000 | 1.000 | | 4 | 128 | 80224 | 249168 | 3.106 | 3.670 | 3.260 | | 8 | 128 | 154168 | 447832 | 2.905 | 7.053 | 5.859 | To achieve these same results, follow the [Quick Start Guide](#quick-start-guide) outlined above. ##### Training throughput: NVIDIA DGX-2H (16x V100 32GB) Our results were obtained by running the `train.py` training script in the pytorch-20.06-py3 NGC container on NVIDIA DGX-2H with 16x V100 32GB GPUs. Throughput performance numbers (in tokens per second) were averaged over an entire training epoch. | **GPUs** | **Batch size / GPU** | **Throughput - FP32 (tok/s)** | **Throughput - Mixed precision (tok/s)** | **Throughput speedup (FP32 to Mixed precision)** | **Strong Scaling - FP32** | **Strong Scaling - Mixed precision** | | --- | --- | ------ | ------ | ----- | ------ | ------ | | 1 | 128 | 25583 | 87829 | 3.433 | 1.000 | 1.000 | | 4 | 128 | 91400 | 290640 | 3.180 | 3.573 | 3.309 | | 8 | 128 | 176616 | 522008 | 2.956 | 6.904 | 5.943 | | 16 | 128 | 351792 | 1010880 | 2.874 | 13.751 | 11.510 | To achieve these same results, follow the [Quick Start Guide](#quick-start-guide) outlined above. #### Inference accuracy results ##### Inference accuracy: NVIDIA A100 40GB Our results were obtained by running the `translate.py` script in the pytorch-20.06-py3 NGC Docker container with NVIDIA A100 40GB GPU. Full command to launch the inference accuracy benchmark was provided in the [Inference performance benchmark](#inference-performance-benchmark) section. | **Batch Size** | **Beam Size** | **Accuracy - TF32 (BLEU)** | **Accuracy - FP16 (BLEU)** | | -------------: | ------------: | -------------------------: | -------------------------: | | 128 | 1 | 23.07 | 23.07 | | 128 | 2 | 23.81 | 23.81 | | 128 | 5 | 24.41 | 24.43 | ##### Inference accuracy: NVIDIA Tesla V100 16GB Our results were obtained by running the `translate.py` script in the pytorch-20.06-py3 NGC Docker container with NVIDIA Tesla V100 16GB GPU. Full command to launch the inference accuracy benchmark was provided in the [Inference performance benchmark](#inference-performance-benchmark) section. | **Batch Size** | **Beam Size** | **Accuracy - FP32 (BLEU)** | **Accuracy - FP16 (BLEU)** | | -------------: | ------------: | -------------------------: | -------------------------: | | 128 | 1 | 23.07 | 23.07 | | 128 | 2 | 23.81 | 23.79 | | 128 | 5 | 24.40 | 24.43 | ##### Inference accuracy: NVIDIA T4 Our results were obtained by running the `translate.py` script in the pytorch-20.06-py3 NGC Docker container with NVIDIA Tesla T4. Full command to launch the inference accuracy benchmark was provided in the [Inference performance benchmark](#inference-performance-benchmark) section. | **Batch Size** | **Beam Size** | **Accuracy - FP32 (BLEU)** | **Accuracy - FP16 (BLEU)** | | -------------: | ------------: | -------------------------: | -------------------------: | | 128 | 1 | 23.07 | 23.08 | | 128 | 2 | 23.81 | 23.80 | | 128 | 5 | 24.40 | 24.39 | To achieve these same results, follow the [Quick Start Guide](#quick-start-guide) outlined above. #### Inference throughput results Tables presented in this section show the average inference throughput (columns **Avg (tok/s)**) and inference throughput for various confidence intervals (columns **N% (ms)**, where `N` denotes the confidence interval). Inference throughput is measured in tokens per second. Speedups reported in FP16 subsections are relative to FP32 (for NVIDIA Volta and NVIDIA Turing) and relative to TF32 (for NVIDIA Ampere) numbers for corresponding configuration. ##### Inference throughput: NVIDIA A100 40GB Our results were obtained by running the `translate.py` script in the pytorch-20.06-py3 NGC Docker container with NVIDIA A100 40GB. Full command to launch the inference throughput benchmark was provided in the [Inference performance benchmark](#inference-performance-benchmark) section. **FP16** |**Batch Size**|**Beam Size**|**Avg (tok/s)**|**Speedup**|**90% (tok/s)**|**Speedup**|**95% (tok/s)**|**Speedup**|**99% (tok/s)**|**Speedup**| |-------------:|------------:|--------------:|----------:|--------------:|----------:|--------------:|----------:|--------------:|----------:| | 1| 1| 1291.6| 1.031| 1195.7| 1.029| 1165.8| 1.029| 1104.7| 1.030| | 1| 2| 882.7| 1.019| 803.4| 1.015| 769.2| 1.015| 696.7| 1.017| | 1| 5| 848.3| 1.042| 753.0| 1.037| 715.0| 1.043| 636.4| 1.033| | 2| 1| 2060.5| 1.034| 1700.8| 1.032| 1621.8| 1.032| 1487.4| 1.022| | 2| 2| 1445.7| 1.026| 1197.6| 1.024| 1132.5| 1.023| 1043.7| 1.033| | 2| 5| 1402.3| 1.063| 1152.4| 1.056| 1100.5| 1.053| 992.9| 1.053| | 4| 1| 3465.6| 1.046| 2838.3| 1.040| 2672.7| 1.043| 2392.8| 1.043| | 4| 2| 2425.4| 1.041| 2002.5| 1.028| 1898.3| 1.033| 1690.2| 1.028| | 4| 5| 2364.4| 1.075| 1930.0| 1.067| 1822.0| 1.065| 1626.1| 1.058| | 8| 1| 6151.1| 1.099| 5078.0| 1.087| 4786.5| 1.096| 4206.9| 1.090| | 8| 2| 4241.9| 1.075| 3494.1| 1.066| 3293.6| 1.066| 2970.9| 1.064| | 8| 5| 4117.7| 1.118| 3430.9| 1.103| 3224.5| 1.104| 2833.5| 1.110| | 32| 1| 18830.4| 1.147| 16210.0| 1.152| 15563.9| 1.138| 13973.2| 1.135| | 32| 2| 12698.2| 1.133| 10812.3| 1.114| 10256.1| 1.145| 9330.2| 1.101| | 32| 5| 11802.6| 1.355| 9998.8| 1.318| 9671.6| 1.329| 9058.4| 1.335| | 128| 1| 53394.5| 1.350| 48867.6| 1.342| 46898.5| 1.414| 40670.6| 1.305| | 128| 2| 34876.4| 1.483| 31687.4| 1.491| 30025.4| 1.505| 27677.1| 1.421| | 128| 5| 28201.3| 1.986| 25660.5| 1.997| 24306.0| 1.967| 23326.2| 2.007| | 512| 1| 119675.3| 1.904| 112400.5| 1.971| 109694.8| 1.927| 108781.3| 1.919| | 512| 2| 74514.7| 2.126| 69578.9| 2.209| 69348.1| 2.210| 69253.7| 2.212| | 512| 5| 47003.2| 2.760| 43348.2| 2.893| 43080.3| 2.884| 42878.4| 2.881| ##### Inference throughput: NVIDIA T4 Our results were obtained by running the `translate.py` script in the pytorch-20.06-py3 NGC Docker container with NVIDIA T4. Full command to launch the inference throughput benchmark was provided in the [Inference performance benchmark](#inference-performance-benchmark) section. **FP16** |**Batch Size**|**Beam Size**|**Avg (tok/s)**|**Speedup**|**90% (tok/s)**|**Speedup**|**95% (tok/s)**|**Speedup**|**99% (tok/s)**|**Speedup**| |-------------:|------------:|--------------:|----------:|--------------:|----------:|--------------:|----------:|--------------:|----------:| | 1| 1| 1133.8| 1.266| 1059.1| 1.253| 1036.6| 1.251| 989.5| 1.242| | 1| 2| 793.9| 1.169| 728.3| 1.165| 698.1| 1.163| 637.1| 1.157| | 1| 5| 766.8| 1.343| 685.6| 1.335| 649.3| 1.335| 584.1| 1.318| | 2| 1| 1759.8| 1.233| 1461.6| 1.239| 1402.3| 1.242| 1302.1| 1.242| | 2| 2| 1313.3| 1.186| 1088.7| 1.185| 1031.6| 1.180| 953.2| 1.178| | 2| 5| 1257.2| 1.301| 1034.1| 1.316| 990.3| 1.313| 886.3| 1.265| | 4| 1| 2974.0| 1.261| 2440.3| 1.255| 2294.6| 1.257| 2087.7| 1.261| | 4| 2| 2204.7| 1.320| 1826.3| 1.283| 1718.9| 1.260| 1548.4| 1.260| | 4| 5| 2106.1| 1.340| 1727.8| 1.345| 1625.7| 1.353| 1467.7| 1.346| | 8| 1| 5076.6| 1.423| 4207.9| 1.367| 3904.4| 1.360| 3475.3| 1.355| | 8| 2| 3761.7| 1.311| 3108.1| 1.285| 2931.6| 1.300| 2628.7| 1.300| | 8| 5| 3578.2| 1.660| 2998.2| 1.614| 2812.1| 1.609| 2447.6| 1.523| | 32| 1| 14637.8| 1.636| 12702.5| 1.644| 12070.3| 1.634| 11036.9| 1.647| | 32| 2| 10627.3| 1.818| 9198.3| 1.818| 8431.6| 1.725| 8000.0| 1.773| | 32| 5| 8205.7| 2.598| 7117.6| 2.476| 6825.2| 2.497| 6293.2| 2.437| | 128| 1| 33800.5| 2.755| 30824.5| 2.816| 27685.2| 2.661| 26580.9| 2.694| | 128| 2| 20829.4| 2.795| 18665.2| 2.778| 17372.1| 2.639| 16820.5| 2.821| | 128| 5| 11753.9| 3.309| 10658.1| 3.273| 10308.7| 3.205| 9630.7| 3.328| | 512| 1| 44474.6| 3.327| 40108.1| 3.394| 39816.6| 3.378| 39708.0| 3.381| | 512| 2| 26057.9| 3.295| 23197.3| 3.294| 23019.8| 3.284| 22951.4| 3.284| | 512| 5| 12161.5| 3.428| 10777.5| 3.418| 10733.1| 3.414| 10710.5| 3.420| To achieve these same results, follow the [Quick Start Guide](#quick-start-guide) outlined above. #### Inference latency results Tables presented in this section show the average inference latency (columns **Avg (ms)**) and inference latency for various confidence intervals (columns **N% (ms)**, where `N` denotes the confidence interval). Inference latency is measured in milliseconds. Speedups reported in FP16 subsections are relative to FP32 (for NVIDIA Volta and NVIDIA Turing) and relative to TF32 (for NVIDIA Ampere) numbers for corresponding configuration. ##### Inference latency: NVIDIA A100 40GB Our results were obtained by running the `translate.py` script in the pytorch-20.06-py3 NGC Docker container with NVIDIA A100 40GB. Full command to launch the inference latency benchmark was provided in the [Inference performance benchmark](#inference-performance-benchmark) section. **FP16** |**Batch Size**|**Beam Size**|**Avg (ms)**|**Speedup**|**90% (ms)**|**Speedup**|**95% (ms)**|**Speedup**|**99% (ms)**|**Speedup**| |-------------:|------------:|-----------:|----------:|-----------:|----------:|-----------:|----------:|-----------:|----------:| | 1| 1| 44.69| 1.032| 74.04| 1.035| 84.61| 1.034| 99.14| 1.042| | 1| 2| 64.76| 1.020| 105.18| 1.018| 118.92| 1.019| 139.42| 1.023| | 1| 5| 67.06| 1.043| 107.56| 1.049| 121.82| 1.054| 143.85| 1.054| | 2| 1| 56.57| 1.034| 85.59| 1.037| 92.55| 1.038| 107.59| 1.046| | 2| 2| 80.22| 1.027| 119.22| 1.027| 128.43| 1.030| 150.06| 1.028| | 2| 5| 82.54| 1.063| 121.37| 1.067| 132.35| 1.069| 156.34| 1.059| | 4| 1| 67.29| 1.047| 92.69| 1.048| 100.08| 1.056| 112.63| 1.064| | 4| 2| 95.86| 1.041| 129.83| 1.040| 139.48| 1.044| 162.34| 1.045| | 4| 5| 98.34| 1.075| 133.83| 1.076| 142.70| 1.068| 168.30| 1.075| | 8| 1| 75.60| 1.099| 97.87| 1.103| 104.13| 1.099| 117.40| 1.102| | 8| 2| 109.38| 1.074| 137.71| 1.079| 147.69| 1.069| 168.79| 1.065| | 8| 5| 112.71| 1.116| 143.50| 1.104| 153.17| 1.118| 172.60| 1.113| | 32| 1| 98.40| 1.146| 117.02| 1.153| 123.42| 1.150| 129.01| 1.128| | 32| 2| 145.87| 1.133| 171.71| 1.159| 184.01| 1.127| 188.64| 1.141| | 32| 5| 156.82| 1.357| 189.10| 1.374| 194.95| 1.392| 196.65| 1.419| | 128| 1| 137.97| 1.350| 150.04| 1.348| 151.52| 1.349| 154.52| 1.434| | 128| 2| 211.58| 1.484| 232.96| 1.490| 237.46| 1.505| 239.86| 1.567| | 128| 5| 261.44| 1.990| 288.54| 2.017| 291.63| 2.052| 298.73| 2.136| | 512| 1| 245.93| 1.906| 262.51| 1.998| 264.24| 1.999| 265.23| 2.000| | 512| 2| 395.61| 2.129| 428.54| 2.219| 431.58| 2.224| 433.86| 2.227| | 512| 5| 627.21| 2.767| 691.72| 2.878| 696.01| 2.895| 702.13| 2.887| ##### Inference latency: NVIDIA T4 Our results were obtained by running the `translate.py` script in the pytorch-20.06-py3 NGC Docker container with NVIDIA T4. Full command to launch the inference latency benchmark was provided in the [Inference performance benchmark](#inference-performance-benchmark) section. **FP16** |**Batch Size**|**Beam Size**|**Avg (ms)**|**Speedup**|**90% (ms)**|**Speedup**|**95% (ms)**|**Speedup**|**99% (ms)**|**Speedup**| |-------------:|------------:|-----------:|----------:|-----------:|----------:|-----------:|----------:|-----------:|----------:| | 1| 1| 51.08| 1.261| 84.82| 1.254| 97.45| 1.251| 114.6| 1.257| | 1| 2| 72.05| 1.168| 117.41| 1.165| 132.33| 1.170| 155.8| 1.174| | 1| 5| 74.20| 1.345| 119.45| 1.352| 135.07| 1.354| 160.3| 1.354| | 2| 1| 66.31| 1.232| 100.90| 1.232| 108.52| 1.235| 126.9| 1.238| | 2| 2| 88.35| 1.185| 131.47| 1.188| 141.46| 1.185| 164.7| 1.191| | 2| 5| 92.12| 1.305| 136.30| 1.310| 148.66| 1.309| 174.8| 1.320| | 4| 1| 78.54| 1.260| 108.53| 1.256| 117.19| 1.259| 133.7| 1.259| | 4| 2| 105.54| 1.315| 142.74| 1.317| 154.36| 1.307| 178.7| 1.303| | 4| 5| 110.43| 1.351| 150.62| 1.388| 161.61| 1.397| 191.2| 1.427| | 8| 1| 91.65| 1.418| 117.92| 1.421| 126.60| 1.405| 144.0| 1.411| | 8| 2| 123.39| 1.315| 156.00| 1.337| 167.34| 1.347| 193.4| 1.340| | 8| 5| 129.69| 1.666| 165.01| 1.705| 178.18| 1.723| 200.3| 1.765| | 32| 1| 126.53| 1.641| 153.23| 1.689| 159.58| 1.692| 167.0| 1.700| | 32| 2| 174.37| 1.822| 209.04| 1.899| 219.59| 1.877| 228.6| 1.878| | 32| 5| 226.15| 2.598| 277.38| 2.636| 290.27| 2.648| 299.4| 2.664| | 128| 1| 218.29| 2.755| 238.94| 2.826| 243.18| 2.843| 267.1| 2.828| | 128| 2| 354.83| 2.796| 396.63| 2.832| 410.53| 2.803| 433.2| 2.866| | 128| 5| 628.32| 3.311| 699.57| 3.353| 723.98| 3.323| 771.0| 3.337| | 512| 1| 663.07| 3.330| 748.62| 3.388| 753.20| 3.388| 758.0| 3.378| | 512| 2| 1134.04| 3.295| 1297.85| 3.283| 1302.25| 3.304| 1306.9| 3.308| | 512| 5| 2428.82| 3.428| 2771.72| 3.415| 2801.32| 3.427| 2817.6| 3.422| To achieve these same results, follow the [Quick Start Guide](#quick-start-guide) outlined above. ## Release notes ### Changelog * July 2020 * Added support for NVIDIA DGX A100 * Default container updated to NGC PyTorch 20.06-py3 * June 2019 * Default container updated to NGC PyTorch 19.05-py3 * Mixed precision training implemented using APEX AMP * Added inference throughput and latency results on NVIDIA T4 and NVIDIA Tesla V100 16GB * Added option to run inference on user-provided raw input text from command line * February 2019 * Different batching algorithm (bucketing with 5 equal-width buckets) * Additional dropouts before first LSTM layer in encoder and in decoder * Weight initialization changed to uniform (-0.1,0.1) * Switched order of dropout and concatenation with attention in decoder * Default container updated to NGC PyTorch 19.01-py3 * December 2018 * Added exponential warm-up and step learning rate decay * Multi-GPU (distributed) inference and validation * Default container updated to NGC PyTorch 18.11-py3 * General performance improvements * August 2018 * Initial release ### Known issues There are no known issues in this release.
PyTorch/Forecasting/TFT/triton/deployment_toolkit/bermuda
bermuda
onnx
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from pathlib import Path from typing import Dict, Optional, Union import numpy as np # pytype: disable=import-error import onnx import onnx.shape_inference import onnxruntime from google.protobuf import text_format from onnx.mapping import TENSOR_TYPE_TO_NP_TYPE from ..core import BaseLoader, BaseRunner, BaseRunnerSession, BaseSaver, Format, Model, Precision, TensorSpec from ..extensions import loaders, runners, savers from .utils import infer_precision # pytype: enable=import-error LOGGER = logging.getLogger(__name__) def _value_info2tensor_spec(value_info: onnx.ValueInfoProto): onnx_data_type_map = {"float": "float32", "double": "float64"} elem_type_name = onnx.TensorProto.DataType.Name(value_info.type.tensor_type.elem_type).lower() dtype = onnx_data_type_map.get(elem_type_name, elem_type_name) def _get_dim(dim): which = dim.WhichOneof("value") if which is not None: # which is None when dim is None dim = getattr(dim, which) return None if isinstance(dim, (str, bytes)) else dim shape = value_info.type.tensor_type.shape shape = tuple(_get_dim(d) for d in shape.dim) return TensorSpec(value_info.name, dtype=dtype, shape=shape) def _infer_graph_precision(onnx_graph: onnx.GraphProto) -> Optional[Precision]: import networkx as nx # build directed graph nx_graph = nx.DiGraph() def _get_dtype(vi): t = vi.type if hasattr(t, "tensor_type"): type_id = t.tensor_type.elem_type else: raise NotImplementedError("Not implemented yet") return TENSOR_TYPE_TO_NP_TYPE[type_id] node_output2type = {vi.name: _get_dtype(vi) for vi in onnx_graph.value_info} node_outputs2node = {output_name: node for node in onnx_graph.node for output_name in node.output} node_inputs2node = {input_name: node for node in onnx_graph.node for input_name in node.input} for node in onnx_graph.node: node_dtype = node_output2type.get("+".join(node.output), None) nx_graph.add_node( node.name, op=node.op_type, attr={a.name: a for a in node.attribute}, dtype=node_dtype, ) for input_name in node.input: prev_node = node_outputs2node.get(input_name, None) if prev_node: nx_graph.add_edge(prev_node.name, node.name) for input_node in onnx_graph.input: input_name = input_node.name nx_graph.add_node(input_name, op="input", dtype=_get_dtype(input_node)) next_node = node_inputs2node.get(input_name, None) if next_node: nx_graph.add_edge(input_name, next_node.name) for output in onnx_graph.output: output_name = output.name nx_graph.add_node(output_name, op="output", dtype=_get_dtype(output)) prev_node = node_outputs2node.get(output_name, None) if prev_node: nx_graph.add_edge(prev_node.name, output_name) else: LOGGER.warning(f"Could not find previous node for {output_name}") input_names = [n.name for n in onnx_graph.input] output_names = [n.name for n in onnx_graph.output] most_common_dtype = infer_precision(nx_graph, input_names, output_names, lambda node: node.get("dtype", None)) if most_common_dtype is not None: precision = {np.dtype("float32"): Precision.FP32, np.dtype("float16"): Precision.FP16}[most_common_dtype] else: precision = None return precision class OnnxLoader(BaseLoader): def load(self, model_path: Union[str, Path], **_) -> Model: if isinstance(model_path, Path): model_path = model_path.as_posix() model = onnx.load(model_path) onnx.checker.check_model(model) onnx.helper.strip_doc_string(model) model = onnx.shape_inference.infer_shapes(model) # TODO: probably modification of onnx model ios causes error on optimize # from onnx.utils import polish_model # model = polish_model(model) # run checker, docs strip, optimizer and shape inference inputs = {vi.name: _value_info2tensor_spec(vi) for vi in model.graph.input} outputs = {vi.name: _value_info2tensor_spec(vi) for vi in model.graph.output} precision = _infer_graph_precision(model.graph) return Model(model, precision, inputs, outputs) class OnnxSaver(BaseSaver): def __init__(self, as_text: bool = False): self._as_text = as_text def save(self, model: Model, model_path: Union[str, Path], dataloader_fn) -> None: model_path = Path(model_path) LOGGER.debug(f"Saving ONNX model to {model_path.as_posix()}") model_path.parent.mkdir(parents=True, exist_ok=True) onnx_model: onnx.ModelProto = model.handle if self._as_text: with model_path.open("w") as f: f.write(text_format.MessageToString(onnx_model)) else: with model_path.open("wb") as f: f.write(onnx_model.SerializeToString()) """ ExecutionProviders on onnxruntime 1.4.0 ['TensorrtExecutionProvider', 'CUDAExecutionProvider', 'MIGraphXExecutionProvider', 'NGRAPHExecutionProvider', 'OpenVINOExecutionProvider', 'DnnlExecutionProvider', 'NupharExecutionProvider', 'VitisAIExecutionProvider', 'ArmNNExecutionProvider', 'ACLExecutionProvider', 'CPUExecutionProvider'] """ def _check_providers(providers): providers = providers or [] if not isinstance(providers, (list, tuple)): providers = [providers] available_providers = onnxruntime.get_available_providers() unavailable = set(providers) - set(available_providers) if unavailable: raise RuntimeError(f"Unavailable providers {unavailable}") return providers class OnnxRunner(BaseRunner): def __init__(self, verbose_runtime_logs: bool = False): self._providers = None self._verbose_runtime_logs = verbose_runtime_logs def init_inference(self, model: Model): assert isinstance(model.handle, onnx.ModelProto) return OnnxRunnerSession( model=model, providers=self._providers, verbose_runtime_logs=self._verbose_runtime_logs ) class OnnxRunnerSession(BaseRunnerSession): def __init__(self, model: Model, providers, verbose_runtime_logs: bool = False): super().__init__(model) self._input_names = None self._output_names = None self._session = None self._providers = providers self._verbose_runtime_logs = verbose_runtime_logs self._old_env_values = {} def __enter__(self): self._old_env_values = self._set_env_variables() sess_options = onnxruntime.SessionOptions() # default session options if self._verbose_runtime_logs: sess_options.log_severity_level = 0 sess_options.log_verbosity_level = 1 LOGGER.info( f"Starting inference session for onnx model providers={self._providers} sess_options={sess_options}" ) self._input_names = list(self._model.inputs) self._output_names = list(self._model.outputs) model_payload = self._model.handle.SerializeToString() self._session = onnxruntime.InferenceSession( model_payload, providers=self._providers, sess_options=sess_options ) return self def __exit__(self, exc_type, exc_value, traceback): self._input_names = None self._output_names = None self._session = None self._recover_env_variables(self._old_env_values) def __call__(self, x: Dict[str, object]): feed_dict = {k: x[k] for k in self._input_names} y_pred = self._session.run(self._output_names, feed_dict) y_pred = dict(zip(self._output_names, y_pred)) return y_pred loaders.register_extension(Format.ONNX.value, OnnxLoader) runners.register_extension(Format.ONNX.value, OnnxRunner) savers.register_extension(Format.ONNX.value, OnnxSaver)
TensorFlow/Classification/ConvNets/resnext101-32x4d/training
training
training_perf
#!/bin/bash # Copyright (c) 2019 NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. MAX_FP32_BS=${1:-64} MAX_AMP_BS=${2:-128} GPU_NAME=$(nvidia-smi --query-gpu=gpu_name --format=csv,noheader | uniq) GPU_COUNT=$(nvidia-smi --query-gpu=gpu_name --format=csv,noheader | wc -l) function run_benchmark() { BATCH_SIZE=$1 MODE_SIZE=$2 if [[ $4 -eq "1" ]]; then XLA="--xla" else XLA="" fi case $2 in "amp") MODE_FLAGS="--amp --static_loss_scale 128";; "fp32"|"tf32") MODE_FLAGS="";; *) echo "Unsupported configuration, use amp, tf32 or fp32";; esac CMD_LINE="--arch=resnext101-32x4d --mode=training_benchmark --warmup_steps 200 --num_iter 500 --iter_unit batch --batch_size $BATCH_SIZE \ --data_dir=/data/tfrecords/ --results_dir=/tmp/result $MODE_FLAGS $XLA" mkdir -p /tmp/result/ if [[ $3 -eq "1" ]]; then python ./main.py ${CMD_LINE} > /tmp/result/logs.txt else mpiexec --allow-run-as-root --bind-to socket -np $3 python3 main.py ${CMD_LINE} > /tmp/result/logs.txt fi tail -n1 /tmp/result/logs.txt | sed \ 's/^DLL \([0-9]*-\)*[0-9]* \([0-9]*:\)*[0-9]*.[0-9]* - ()/BS='$BATCH_SIZE','$2',XLA='$4'/' >> ./training_benchmark.txt rm -rf /tmp/result } run_benchmark $MAX_AMP_BS amp 1 0 run_benchmark $MAX_AMP_BS amp 1 1 run_benchmark $MAX_FP32_BS fp32 1 0 run_benchmark $MAX_FP32_BS fp32 1 1 if [[ $GPU_COUNT -ne "1" ]]; then run_benchmark $MAX_AMP_BS amp $GPU_COUNT 0 run_benchmark $MAX_AMP_BS amp $GPU_COUNT 1 run_benchmark $MAX_FP32_BS fp32 $GPU_COUNT 0 run_benchmark $MAX_FP32_BS fp32 $GPU_COUNT 1 fi cat ./training_benchmark.txt
PyTorch/SpeechRecognition/Jasper/common/text
text
cleaners
# Copyright (c) 2017 Keith Ito # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ from https://github.com/keithito/tacotron Modified to add puncturation removal """ ''' Cleaners are transformations that run over the input text at both training and eval time. Cleaners can be selected by passing a comma-delimited list of cleaner names as the "cleaners" hyperparameter. Some cleaners are English-specific. You'll typically want to use: 1. "english_cleaners" for English text 2. "transliteration_cleaners" for non-English text that can be transliterated to ASCII using the Unidecode library (https://pypi.python.org/pypi/Unidecode) 3. "basic_cleaners" if you do not want to transliterate (in this case, you should also update the symbols in symbols.py to match your data). ''' import re from .numbers import normalize_numbers from .unidecoder import unidecoder # Regular expression matching whitespace: _whitespace_re = re.compile(r'\s+') # List of (regular expression, replacement) pairs for abbreviations: _abbreviations = [(re.compile('\\b%s\\.' % x[0], re.IGNORECASE), x[1]) for x in [ ('mrs', 'misess'), ('mr', 'mister'), ('dr', 'doctor'), ('st', 'saint'), ('co', 'company'), ('jr', 'junior'), ('maj', 'major'), ('gen', 'general'), ('drs', 'doctors'), ('rev', 'reverend'), ('lt', 'lieutenant'), ('hon', 'honorable'), ('sgt', 'sergeant'), ('capt', 'captain'), ('esq', 'esquire'), ('ltd', 'limited'), ('col', 'colonel'), ('ft', 'fort'), ]] def expand_abbreviations(text): for regex, replacement in _abbreviations: text = re.sub(regex, replacement, text) return text def expand_numbers(text): return normalize_numbers(text) def lowercase(text): return text.lower() def collapse_whitespace(text): return re.sub(_whitespace_re, ' ', text) def convert_to_ascii(text): text2 = unidecoder(text) if text != text2: print(text) print(text2) return unidecoder(text) def remove_punctuation(text, table): text = text.translate(table) text = re.sub(r'&', " and ", text) text = re.sub(r'\+', " plus ", text) return text def basic_cleaners(text): '''Basic pipeline that lowercases and collapses whitespace without transliteration.''' text = lowercase(text) text = collapse_whitespace(text) return text def transliteration_cleaners(text): '''Pipeline for non-English text that transliterates to ASCII.''' text = convert_to_ascii(text) text = lowercase(text) text = collapse_whitespace(text) return text def english_cleaners(text, table=None): '''Pipeline for English text, including number and abbreviation expansion.''' text = convert_to_ascii(text) text = lowercase(text) text = expand_numbers(text) text = expand_abbreviations(text) if table is not None: text = remove_punctuation(text, table) text = collapse_whitespace(text) return text
TensorFlow2/Classification/ConvNets/efficientnet_v2/S/training/FP32
FP32
train_benchmark_8xV100-32G
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. horovodrun -np 8 bash ./scripts/bind.sh --cpu=exclusive --ib=single -- python3 main.py \ --cfg config/efficientnet_v2/s_cfg.py \ --mode train_and_eval \ --use_xla \ --model_dir ./output/ \ --data_dir /data/ \ --log_steps 500 \ --save_checkpoint_freq 10 \ --n_stages 1 \ --max_epochs 3 \ --steps_per_epoch 2000 \ --train_batch_size 64 \ --train_img_size 300 \ --lr_decay cosine \ --lr_init 0.005 \ --weight_decay .000005 \ --opt_epsilon 0.001 \ --moving_average_decay 0.9999 \ --eval_img_size 384 \ --eval_batch_size 128 \ --augmenter_name randaugment \ --raug_num_layers 2 \ --raug_magnitude 15 \ --cutmix_alpha 0 \ --mixup_alpha 0 \ --defer_img_mixing
TensorFlow/LanguageModeling/Transformer-XL/tf
tf
model
import tensorflow as tf def positional_embedding(pos_seq, inv_freq, bsz=None): sinusoid_inp = tf.einsum('i,j->ij', pos_seq, inv_freq) pos_emb = tf.concat([tf.sin(sinusoid_inp), tf.cos(sinusoid_inp)], -1) if bsz is not None: return tf.tile(pos_emb[:, None, :], [1, bsz, 1]) else: return pos_emb[:, None, :] def positionwise_FF(inp, d_model, d_inner, dropout, kernel_initializer, scope='ff', is_training=True): output = inp with tf.variable_scope(scope): output = tf.layers.dense(inp, d_inner, activation=tf.nn.relu, kernel_initializer=kernel_initializer, name='layer_1') output = tf.layers.dropout(output, dropout, training=is_training, name='drop_1') output = tf.layers.dense(output, d_model, kernel_initializer=kernel_initializer, name='layer_2') output = tf.layers.dropout(output, dropout, training=is_training, name='drop_2') output = tf.contrib.layers.layer_norm(output + inp, begin_norm_axis=-1) return output def rel_shift(x): x_size = tf.shape(x) x = tf.pad(x, [[0, 0], [0, 0], [0, 0], [1, 0]]) x = tf.reshape(x, [x_size[0], x_size[1], x_size[3] + 1, x_size[2]]) x = tf.slice(x, [0, 0, 1, 0], [-1, -1, -1, -1]) x = tf.reshape(x, x_size) return x def rel_multihead_attn(w, r, r_w_bias, r_r_bias, attn_mask, mems, d_model, n_head, d_head, dropout, dropatt, is_training, kernel_initializer, scope='rel_attn'): scale = 1 / (d_head ** 0.5) with tf.variable_scope(scope): qlen = tf.shape(w)[0] rlen = tf.shape(r)[0] bsz = tf.shape(w)[1] cat = tf.concat([mems, w], 0) if mems is not None and mems.shape.ndims > 1 else w w_heads = tf.layers.dense(cat, 3 * n_head * d_head, use_bias=False, kernel_initializer=kernel_initializer, name='qkv') r_head_k = tf.layers.dense(r, n_head * d_head, use_bias=False, kernel_initializer=kernel_initializer, name='r') w_head_q, w_head_k, w_head_v = tf.split(w_heads, 3, -1) w_head_q = w_head_q[-qlen:] klen = tf.shape(w_head_k)[0] w_head_q = tf.reshape(w_head_q, [qlen, bsz, n_head, d_head]) w_head_k = tf.reshape(w_head_k, [klen, bsz, n_head, d_head]) w_head_v = tf.reshape(w_head_v, [klen, bsz, n_head, d_head]) r_head_k = tf.reshape(r_head_k, [rlen, n_head, d_head]) rw_head_q = w_head_q + r_w_bias rr_head_q = w_head_q + r_r_bias AC = tf.einsum('ibnd,jbnd->bnij', rw_head_q, w_head_k) BD = tf.einsum('ibnd,jnd->bnij', rr_head_q, r_head_k) BD = rel_shift(BD) attn_score = (AC + BD) * scale attn_mask_t = attn_mask[None, None, :, :] attn_score = attn_score * (1 - attn_mask_t) - 1e30 * attn_mask_t attn_prob = tf.nn.softmax(attn_score, 3) attn_prob = tf.layers.dropout(attn_prob, dropatt, training=is_training) attn_vec = tf.einsum('bnij,jbnd->ibnd', attn_prob, w_head_v) size_t = tf.shape(attn_vec) attn_vec = tf.reshape(attn_vec, [size_t[0], size_t[1], n_head * d_head]) attn_out = tf.layers.dense(attn_vec, d_model, use_bias=False, kernel_initializer=kernel_initializer, name='o') attn_out = tf.layers.dropout(attn_out, dropout, training=is_training) output = tf.contrib.layers.layer_norm(attn_out + w, begin_norm_axis=-1) return output def embedding_lookup(lookup_table, x, use_tpu=True): if use_tpu: n_token = tf.shape(lookup_table)[0] one_hot_idx = tf.one_hot(x, n_token) if one_hot_idx.shape.ndims == 2: return tf.einsum('nd,in->id', lookup_table, one_hot_idx) else: return tf.einsum('nd,ibn->ibd', lookup_table, one_hot_idx) else: return tf.nn.embedding_lookup(lookup_table, x) def mask_adaptive_embedding_lookup(x, n_token, d_embed, d_proj, cutoffs, initializer, proj_initializer, div_val=1, proj_same_dim=True, scope='adaptive_embed', **kwargs): emb_scale = d_proj ** 0.5 with tf.variable_scope(scope): if div_val == 1: lookup_table = tf.get_variable('lookup_table', [n_token, d_embed], initializer=initializer) y = embedding_lookup(lookup_table, x, use_tpu=False) if d_proj != d_embed: proj_W = tf.get_variable('proj_W', [d_embed, d_proj], initializer=proj_initializer) y = tf.einsum('ibe,ed->ibd', y, proj_W) else: proj_W = None ret_params = [lookup_table, proj_W] else: tables, projs = [], [] cutoff_ends = [0] + cutoffs + [n_token] x_size = tf.shape(x) y = tf.zeros([x_size[0], x_size[1], d_proj]) for i in range(len(cutoff_ends) - 1): with tf.variable_scope('cutoff_{}'.format(i)): l_idx, r_idx = cutoff_ends[i], cutoff_ends[i + 1] mask = (x >= l_idx) & (x < r_idx) cur_x = tf.boolean_mask(x, mask) - l_idx cur_d_embed = d_embed // (div_val ** i) lookup_table = tf.get_variable('lookup_table', [r_idx - l_idx, cur_d_embed], initializer=initializer) cur_y = embedding_lookup(lookup_table, cur_x, use_tpu=False) if d_proj == cur_d_embed and not proj_same_dim: proj_W = None else: proj_W = tf.get_variable('proj_W', [cur_d_embed, d_proj], initializer=proj_initializer) cur_y = tf.einsum('id,de->ie', cur_y, proj_W) mask_idx = tf.to_int64(tf.where(mask)) y += tf.scatter_nd(mask_idx, cur_y, tf.to_int64(tf.shape(y))) tables.append(lookup_table) projs.append(proj_W) ret_params = [tables, projs] y *= emb_scale return y, ret_params def mul_adaptive_embedding_lookup(x, n_token, d_embed, d_proj, cutoffs, initializer, proj_initializer, div_val=1, perms=None, proj_same_dim=True, scope='adaptive_embed'): """ perms: If None, first compute W = W1 x W2 (projection for each bin), and then compute X x W (embedding lookup). If not None, use bin-based embedding lookup with max_bin_size defined by the shape of perms. """ emb_scale = d_proj ** 0.5 with tf.variable_scope(scope): if div_val == 1: lookup_table = tf.get_variable('lookup_table', [n_token, d_embed], initializer=initializer) y = embedding_lookup(lookup_table, x) if d_proj != d_embed: proj_W = tf.get_variable('proj_W', [d_embed, d_proj], initializer=proj_initializer) y = tf.einsum('ibe,ed->ibd', y, proj_W) else: proj_W = None ret_params = [lookup_table, proj_W] else: tables, projs = [], [] cutoff_ends = [0] + cutoffs + [n_token] x_size = tf.shape(x) if perms is None: cat_lookup = [] else: cat_lookup = tf.zeros([x_size[0], x_size[1], d_proj]) for i in range(len(cutoff_ends) - 1): with tf.variable_scope('cutoff_{}'.format(i)): l_idx, r_idx = cutoff_ends[i], cutoff_ends[i + 1] cur_d_embed = d_embed // (div_val ** i) lookup_table = tf.get_variable('lookup_table', [r_idx - l_idx, cur_d_embed], initializer=initializer) if cur_d_embed == d_proj and not proj_same_dim: proj_W = None else: proj_W = tf.get_variable('proj_W', [cur_d_embed, d_proj], initializer=proj_initializer) if perms is None: cat_lookup.append(tf.einsum('ie,ed->id', lookup_table, proj_W)) else: # speed up the computation of the first bin # also save some meory if i == 0: cur_y = embedding_lookup(lookup_table, tf.minimum(x, r_idx - 1)) if proj_W is not None: cur_y = tf.einsum('ibe,ed->ibd', cur_y, proj_W) cur_y *= perms[i][:, :, None] cat_lookup += cur_y else: cur_x = tf.einsum('ib,ibk->k', tf.to_float(x - l_idx), perms[i]) cur_x = tf.to_int32(cur_x) cur_y = embedding_lookup(lookup_table, cur_x) if proj_W is not None: cur_y = tf.einsum('ke,ed->kd', cur_y, proj_W) cat_lookup += tf.einsum('kd,ibk->ibd', cur_y, perms[i]) tables.append(lookup_table) projs.append(proj_W) if perms is None: cat_lookup = tf.concat(cat_lookup, 0) y = embedding_lookup(cat_lookup, x) else: y = cat_lookup ret_params = [tables, projs] y *= emb_scale return y, ret_params def mask_adaptive_logsoftmax(hidden, target, n_token, d_embed, d_proj, cutoffs, params, tie_projs, initializer=None, proj_initializer=None, div_val=1, scope='adaptive_softmax', proj_same_dim=True, return_mean=True, **kwargs): def _logit(x, W, b, proj): y = x if proj is not None: y = tf.einsum('ibd,ed->ibe', y, proj) return tf.einsum('ibd,nd->ibn', y, W) + b params_W, params_projs = params[0], params[1] def _gather_logprob(logprob, target): lp_size = tf.shape(logprob) r = tf.range(lp_size[0]) idx = tf.stack([r, target], 1) return tf.gather_nd(logprob, idx) with tf.variable_scope(scope): if len(cutoffs) == 0: softmax_b = tf.get_variable('bias', [n_token], initializer=tf.zeros_initializer()) output = _logit(hidden, params_W, softmax_b, params_projs) nll = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=target, logits=output) else: cutoff_ends = [0] + cutoffs + [n_token] nll = tf.zeros_like(target, dtype=tf.float32) for i in range(len(cutoff_ends) - 1): with tf.variable_scope('cutoff_{}'.format(i)): l_idx, r_idx = cutoff_ends[i], cutoff_ends[i + 1] mask = (target >= l_idx) & (target < r_idx) mask_idx = tf.where(mask) cur_target = tf.boolean_mask(target, mask) - l_idx cur_d_embed = d_embed // (div_val ** i) if div_val == 1: cur_W = params_W[l_idx: r_idx] else: cur_W = params_W[i] cur_b = tf.get_variable('b', [r_idx - l_idx], initializer=tf.zeros_initializer()) if tie_projs[i]: if div_val == 1: cur_proj = params_projs else: cur_proj = params_projs[i] else: if (div_val == 1 or not proj_same_dim) and d_proj == cur_d_embed: cur_proj = None else: cur_proj = tf.get_variable('proj', [cur_d_embed, d_proj], initializer=proj_initializer) if i == 0: cluster_W = tf.get_variable('cluster_W', [len(cutoffs), d_embed], initializer=tf.zeros_initializer()) cluster_b = tf.get_variable('cluster_b', [len(cutoffs)], initializer=tf.zeros_initializer()) cur_W = tf.concat([cur_W, cluster_W], 0) cur_b = tf.concat([cur_b, cluster_b], 0) head_logit = _logit(hidden, cur_W, cur_b, cur_proj) head_logprob = tf.nn.log_softmax(head_logit) cur_head_logprob = tf.boolean_mask(head_logprob, mask) cur_logprob = _gather_logprob(cur_head_logprob, cur_target) else: cur_head_logprob = tf.boolean_mask(head_logprob, mask) cur_hidden = tf.boolean_mask(hidden, mask) tail_logit = tf.squeeze(_logit( cur_hidden[None], cur_W, cur_b, cur_proj), 0) tail_logprob = tf.nn.log_softmax(tail_logit) cur_logprob = (cur_head_logprob[:, cutoff_ends[1] + i - 1] + _gather_logprob(tail_logprob, cur_target)) nll += tf.scatter_nd(mask_idx, -cur_logprob, tf.to_int64(tf.shape(nll))) if return_mean: nll = tf.reduce_mean(nll) return nll def mul_adaptive_logsoftmax(hidden, target, n_token, d_embed, d_proj, cutoffs, params, tie_projs, initializer=None, proj_initializer=None, div_val=1, perms=None, proj_same_dim=True, scope='adaptive_softmax', **kwargs): def _logit(x, W, b, proj): y = x if x.shape.ndims == 3: if proj is not None: y = tf.einsum('ibd,ed->ibe', y, proj) return tf.einsum('ibd,nd->ibn', y, W) + b else: if proj is not None: y = tf.einsum('id,ed->ie', y, proj) return tf.einsum('id,nd->in', y, W) + b params_W, params_projs = params[0], params[1] with tf.variable_scope(scope): if len(cutoffs) == 0: softmax_b = tf.get_variable('bias', [n_token], initializer=tf.zeros_initializer()) output = _logit(hidden, params_W, softmax_b, params_projs) nll = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=target, logits=output) nll = tf.reduce_mean(nll) else: total_loss, total_cnt = 0, 0 cutoff_ends = [0] + cutoffs + [n_token] for i in range(len(cutoff_ends) - 1): with tf.variable_scope('cutoff_{}'.format(i)): l_idx, r_idx = cutoff_ends[i], cutoff_ends[i + 1] cur_d_embed = d_embed // (div_val ** i) if div_val == 1: cur_W = params_W[l_idx: r_idx] else: cur_W = params_W[i] cur_b = tf.get_variable('b', [r_idx - l_idx], initializer=tf.zeros_initializer()) if tie_projs[i]: if div_val == 1: cur_proj = params_projs else: cur_proj = params_projs[i] else: if (div_val == 1 or not proj_same_dim) and d_proj == cur_d_embed: cur_proj = None else: cur_proj = tf.get_variable('proj', [cur_d_embed, d_proj], initializer=proj_initializer) if i == 0: cluster_W = tf.get_variable('cluster_W', [len(cutoffs), d_embed], initializer=tf.zeros_initializer()) cluster_b = tf.get_variable('cluster_b', [len(cutoffs)], initializer=tf.zeros_initializer()) cur_W = tf.concat([cur_W, cluster_W], 0) cur_b = tf.concat([cur_b, cluster_b], 0) head_logit = _logit(hidden, cur_W, cur_b, cur_proj) head_target = kwargs.get("head_target") head_nll = tf.nn.sparse_softmax_cross_entropy_with_logits( labels=head_target, logits=head_logit) masked_loss = head_nll * perms[i] total_loss += tf.reduce_sum(masked_loss) total_cnt += tf.reduce_sum(perms[i]) else: cur_head_nll = tf.einsum('ib,ibk->k', head_nll, perms[i]) cur_hidden = tf.einsum('ibd,ibk->kd', hidden, perms[i]) tail_logit = _logit(cur_hidden, cur_W, cur_b, cur_proj) tail_target = tf.einsum('ib,ibk->k', tf.to_float(target - l_idx), perms[i]) tail_nll = tf.nn.sparse_softmax_cross_entropy_with_logits( labels=tf.to_int32(tail_target), logits=tail_logit) sum_nll = cur_head_nll + tail_nll mask = tf.reduce_sum(perms[i], [0, 1]) masked_loss = sum_nll * mask total_loss += tf.reduce_sum(masked_loss) total_cnt += tf.reduce_sum(mask) nll = total_loss / total_cnt return nll def _create_mask(qlen, mlen, same_length=False): attn_mask = tf.ones([qlen, qlen]) mask_u = tf.matrix_band_part(attn_mask, 0, -1) mask_dia = tf.matrix_band_part(attn_mask, 0, 0) attn_mask_pad = tf.zeros([qlen, mlen]) ret = tf.concat([attn_mask_pad, mask_u - mask_dia], 1) if same_length: mask_l = tf.matrix_band_part(attn_mask, -1, 0) ret = tf.concat([ret[:, :qlen] + mask_l - mask_dia, ret[:, qlen:]], 1) return ret def _cache_mem(curr_out, prev_mem, mem_len=None): if mem_len is None or prev_mem is None: new_mem = curr_out elif mem_len == 0: return prev_mem else: new_mem = tf.concat([prev_mem, curr_out], 0)[- mem_len:] return tf.stop_gradient(new_mem) def transformer(dec_inp, target, mems, n_token, n_layer, d_model, d_embed, n_head, d_head, d_inner, dropout, dropatt, initializer, is_training, proj_initializer=None, mem_len=None, cutoffs=[], div_val=1, tie_projs=[], same_length=False, clamp_len=-1, use_tpu=False, input_perms=None, target_perms=None, head_target=None, untie_r=False, proj_same_dim=True, scope='transformer'): """ cutoffs: a list of python int. Cutoffs for adaptive softmax. tie_projs: a list of python bools. Whether to tie the projections. use_tpu: if True, use one_hot in embedding lookup and bin-based implementation of adaptive softmax. perms: a list of tensors. Each tensor should of size [len, bsz, bin_size]. Only used in the adaptive setting. """ new_mems = [] with tf.variable_scope(scope): if untie_r: r_w_bias = tf.get_variable('r_w_bias', [n_layer, n_head, d_head], initializer=initializer) r_r_bias = tf.get_variable('r_r_bias', [n_layer, n_head, d_head], initializer=initializer) else: r_w_bias = tf.get_variable('r_w_bias', [n_head, d_head], initializer=initializer) r_r_bias = tf.get_variable('r_r_bias', [n_head, d_head], initializer=initializer) qlen = tf.shape(dec_inp)[0] mlen = tf.shape(mems[0])[0] if mems is not None else 0 klen = mlen + qlen if proj_initializer is None: proj_initializer = initializer lookup_fn = (mul_adaptive_embedding_lookup if use_tpu else mask_adaptive_embedding_lookup) embeddings, shared_params = lookup_fn( x=dec_inp, n_token=n_token, d_embed=d_embed, d_proj=d_model, cutoffs=cutoffs, initializer=initializer, proj_initializer=proj_initializer, div_val= div_val, perms=input_perms, proj_same_dim=proj_same_dim) attn_mask = _create_mask(qlen, mlen, same_length) pos_seq = tf.range(klen - 1, -1, -1.0) if clamp_len > 0: pos_seq = tf.minimum(pos_seq, clamp_len) inv_freq = 1 / (10000 ** (tf.range(0, d_model, 2.0) / d_model)) pos_emb = positional_embedding(pos_seq, inv_freq) output = tf.layers.dropout(embeddings, dropout, training=is_training) pos_emb = tf.layers.dropout(pos_emb, dropout, training=is_training) if mems is None: mems = [None] * n_layer for i in range(n_layer): # cache new mems new_mems.append(_cache_mem(output, mems[i], mem_len)) with tf.variable_scope('layer_{}'.format(i)): output = rel_multihead_attn( w=output, r=pos_emb, r_w_bias=r_w_bias if not untie_r else r_w_bias[i], r_r_bias=r_r_bias if not untie_r else r_r_bias[i], attn_mask=attn_mask, mems=mems[i], d_model=d_model, n_head=n_head, d_head=d_head, dropout=dropout, dropatt=dropatt, is_training=is_training, kernel_initializer=initializer) output = positionwise_FF( inp=output, d_model=d_model, d_inner=d_inner, dropout=dropout, kernel_initializer=initializer, is_training=is_training) output = tf.layers.dropout(output, dropout, training=is_training) logsoftmax_fn = (mul_adaptive_logsoftmax if use_tpu else mask_adaptive_logsoftmax) loss = logsoftmax_fn( hidden=output, target=target, n_token=n_token, d_embed=d_embed, d_proj=d_model, cutoffs=cutoffs, params=shared_params, tie_projs=tie_projs, initializer=initializer, proj_initializer=proj_initializer, div_val=div_val, perms=target_perms, head_target=head_target, proj_same_dim=proj_same_dim) return loss, new_mems
PyTorch/SpeechSynthesis/HiFiGAN/fastpitch
fastpitch
loss_function
# ***************************************************************************** # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** import torch import torch.nn.functional as F from torch import nn from common.utils import mask_from_lens from fastpitch.attn_loss_function import AttentionCTCLoss class FastPitchLoss(nn.Module): def __init__(self, dur_predictor_loss_scale=1.0, pitch_predictor_loss_scale=1.0, attn_loss_scale=1.0, energy_predictor_loss_scale=0.1): super(FastPitchLoss, self).__init__() self.dur_predictor_loss_scale = dur_predictor_loss_scale self.pitch_predictor_loss_scale = pitch_predictor_loss_scale self.energy_predictor_loss_scale = energy_predictor_loss_scale self.attn_loss_scale = attn_loss_scale self.attn_ctc_loss = AttentionCTCLoss() def forward(self, model_out, targets, is_training=True, meta_agg='mean'): (mel_out, dec_mask, dur_pred, log_dur_pred, pitch_pred, pitch_tgt, energy_pred, energy_tgt, attn_soft, attn_hard, attn_dur, attn_logprob) = model_out (mel_tgt, in_lens, out_lens) = targets dur_tgt = attn_dur dur_lens = in_lens mel_tgt.requires_grad = False # (B,H,T) => (B,T,H) mel_tgt = mel_tgt.transpose(1, 2) dur_mask = mask_from_lens(dur_lens, max_len=dur_tgt.size(1)) log_dur_tgt = torch.log(dur_tgt.float() + 1) loss_fn = F.mse_loss dur_pred_loss = loss_fn(log_dur_pred, log_dur_tgt, reduction='none') dur_pred_loss = (dur_pred_loss * dur_mask).sum() / dur_mask.sum() ldiff = mel_tgt.size(1) - mel_out.size(1) mel_out = F.pad(mel_out, (0, 0, 0, ldiff, 0, 0), value=0.0) mel_mask = mel_tgt.ne(0).float() loss_fn = F.mse_loss mel_loss = loss_fn(mel_out, mel_tgt, reduction='none') mel_loss = (mel_loss * mel_mask).sum() / mel_mask.sum() ldiff = pitch_tgt.size(2) - pitch_pred.size(2) pitch_pred = F.pad(pitch_pred, (0, ldiff, 0, 0, 0, 0), value=0.0) pitch_loss = F.mse_loss(pitch_tgt, pitch_pred, reduction='none') pitch_loss = (pitch_loss * dur_mask.unsqueeze(1)).sum() / dur_mask.sum() if energy_pred is not None: energy_pred = F.pad(energy_pred, (0, ldiff, 0, 0), value=0.0) energy_loss = F.mse_loss(energy_tgt, energy_pred, reduction='none') energy_loss = (energy_loss * dur_mask).sum() / dur_mask.sum() else: energy_loss = 0 # Attention loss attn_loss = self.attn_ctc_loss(attn_logprob, in_lens, out_lens) loss = (mel_loss + dur_pred_loss * self.dur_predictor_loss_scale + pitch_loss * self.pitch_predictor_loss_scale + energy_loss * self.energy_predictor_loss_scale + attn_loss * self.attn_loss_scale) meta = { 'loss': loss.clone().detach(), 'mel_loss': mel_loss.clone().detach(), 'duration_predictor_loss': dur_pred_loss.clone().detach(), 'pitch_loss': pitch_loss.clone().detach(), 'attn_loss': attn_loss.clone().detach(), 'dur_error': (torch.abs(dur_pred - dur_tgt).sum() / dur_mask.sum()).detach(), } if energy_pred is not None: meta['energy_loss'] = energy_loss.clone().detach() assert meta_agg in ('sum', 'mean') if meta_agg == 'sum': bsz = mel_out.size(0) meta = {k: v * bsz for k, v in meta.items()} return loss, meta
PyTorch/Classification/ConvNets
ConvNets
LOC_synset_mapping
["tench, Tinca tinca", "goldfish, Carassius auratus", "great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias", "tiger shark, Galeocerdo cuvieri", "hammerhead, hammerhead shark", "electric ray, crampfish, numbfish, torpedo", "stingray", "cock", "hen", "ostrich, Struthio camelus", "brambling, Fringilla montifringilla", "goldfinch, Carduelis carduelis", "house finch, linnet, Carpodacus mexicanus", "junco, snowbird", "indigo bunting, indigo finch, indigo bird, Passerina cyanea", "robin, American robin, Turdus migratorius", "bulbul", "jay", "magpie", "chickadee", "water ouzel, dipper", "kite", "bald eagle, American eagle, Haliaeetus leucocephalus", "vulture", "great grey owl, great gray owl, Strix nebulosa", "European fire salamander, Salamandra salamandra", "common newt, Triturus vulgaris", "eft", "spotted salamander, Ambystoma maculatum", "axolotl, mud puppy, Ambystoma mexicanum", "bullfrog, Rana catesbeiana", "tree frog, tree-frog", "tailed frog, bell toad, ribbed toad, tailed toad, Ascaphus trui", "loggerhead, loggerhead turtle, Caretta caretta", "leatherback turtle, leatherback, leathery turtle, Dermochelys coriacea", "mud turtle", "terrapin", "box turtle, box tortoise", "banded gecko", "common iguana, iguana, Iguana iguana", "American chameleon, anole, Anolis carolinensis", "whiptail, whiptail lizard", "agama", "frilled lizard, Chlamydosaurus kingi", "alligator lizard", "Gila monster, Heloderma suspectum", "green lizard, Lacerta viridis", "African chameleon, Chamaeleo chamaeleon", "Komodo dragon, Komodo lizard, dragon lizard, giant lizard, Varanus komodoensis", "African crocodile, Nile crocodile, Crocodylus niloticus", "American alligator, Alligator mississipiensis", "triceratops", "thunder snake, worm snake, Carphophis amoenus", "ringneck snake, ring-necked snake, ring snake", "hognose snake, puff adder, sand viper", "green snake, grass snake", "king snake, kingsnake", "garter snake, grass snake", "water snake", "vine snake", "night snake, Hypsiglena torquata", "boa constrictor, Constrictor constrictor", "rock python, rock snake, Python sebae", "Indian cobra, Naja naja", "green mamba", "sea snake", "horned viper, cerastes, sand viper, horned asp, Cerastes cornutus", "diamondback, diamondback rattlesnake, Crotalus adamanteus", "sidewinder, horned rattlesnake, Crotalus cerastes", "trilobite", "harvestman, daddy longlegs, Phalangium opilio", "scorpion", "black and gold garden spider, Argiope aurantia", "barn spider, Araneus cavaticus", "garden spider, Aranea diademata", "black widow, Latrodectus mactans", "tarantula", "wolf spider, hunting spider", "tick", "centipede", "black grouse", "ptarmigan", "ruffed grouse, partridge, Bonasa umbellus", "prairie chicken, prairie grouse, prairie fowl", "peacock", "quail", "partridge", "African grey, African gray, Psittacus erithacus", "macaw", "sulphur-crested cockatoo, Kakatoe galerita, Cacatua galerita", "lorikeet", "coucal", "bee eater", "hornbill", "hummingbird", "jacamar", "toucan", "drake", "red-breasted merganser, Mergus serrator", "goose", "black swan, Cygnus atratus", "tusker", "echidna, spiny anteater, anteater", "platypus, duckbill, duckbilled platypus, duck-billed platypus, Ornithorhynchus anatinus", "wallaby, brush kangaroo", "koala, koala bear, kangaroo bear, native bear, Phascolarctos cinereus", "wombat", "jellyfish", "sea anemone, anemone", "brain coral", "flatworm, platyhelminth", "nematode, nematode worm, roundworm", "conch", "snail", "slug", "sea slug, nudibranch", "chiton, coat-of-mail shell, sea cradle, polyplacophore", "chambered nautilus, pearly nautilus, nautilus", "Dungeness crab, Cancer magister", "rock crab, Cancer irroratus", "fiddler crab", "king crab, Alaska crab, Alaskan king crab, Alaska king crab, Paralithodes camtschatica", "American lobster, Northern lobster, Maine lobster, Homarus americanus", "spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish", "crayfish, crawfish, crawdad, crawdaddy", "hermit crab", "isopod", "white stork, Ciconia ciconia", "black stork, Ciconia nigra", "spoonbill", "flamingo", "little blue heron, Egretta caerulea", "American egret, great white heron, Egretta albus", "bittern", "crane", "limpkin, Aramus pictus", "European gallinule, Porphyrio porphyrio", "American coot, marsh hen, mud hen, water hen, Fulica americana", "bustard", "ruddy turnstone, Arenaria interpres", "red-backed sandpiper, dunlin, Erolia alpina", "redshank, Tringa totanus", "dowitcher", "oystercatcher, oyster catcher", "pelican", "king penguin, Aptenodytes patagonica", "albatross, mollymawk", "grey whale, gray whale, devilfish, Eschrichtius gibbosus, Eschrichtius robustus", "killer whale, killer, orca, grampus, sea wolf, Orcinus orca", "dugong, Dugong dugon", "sea lion", "Chihuahua", "Japanese spaniel", "Maltese dog, Maltese terrier, Maltese", "Pekinese, Pekingese, Peke", "Shih-Tzu", "Blenheim spaniel", "papillon", "toy terrier", "Rhodesian ridgeback", "Afghan hound, Afghan", "basset, basset hound", "beagle", "bloodhound, sleuthhound", "bluetick", "black-and-tan coonhound", "Walker hound, Walker foxhound", "English foxhound", "redbone", "borzoi, Russian wolfhound", "Irish wolfhound", "Italian greyhound", "whippet", "Ibizan hound, Ibizan Podenco", "Norwegian elkhound, elkhound", "otterhound, otter hound", "Saluki, gazelle hound", "Scottish deerhound, deerhound", "Weimaraner", "Staffordshire bullterrier, Staffordshire bull terrier", "American Staffordshire terrier, Staffordshire terrier, American pit bull terrier, pit bull terrier", "Bedlington terrier", "Border terrier", "Kerry blue terrier", "Irish terrier", "Norfolk terrier", "Norwich terrier", "Yorkshire terrier", "wire-haired fox terrier", "Lakeland terrier", "Sealyham terrier, Sealyham", "Airedale, Airedale terrier", "cairn, cairn terrier", "Australian terrier", "Dandie Dinmont, Dandie Dinmont terrier", "Boston bull, Boston terrier", "miniature schnauzer", "giant schnauzer", "standard schnauzer", "Scotch terrier, Scottish terrier, Scottie", "Tibetan terrier, chrysanthemum dog", "silky terrier, Sydney silky", "soft-coated wheaten terrier", "West Highland white terrier", "Lhasa, Lhasa apso", "flat-coated retriever", "curly-coated retriever", "golden retriever", "Labrador retriever", "Chesapeake Bay retriever", "German short-haired pointer", "vizsla, Hungarian pointer", "English setter", "Irish setter, red setter", "Gordon setter", "Brittany spaniel", "clumber, clumber spaniel", "English springer, English springer spaniel", "Welsh springer spaniel", "cocker spaniel, English cocker spaniel, cocker", "Sussex spaniel", "Irish water spaniel", "kuvasz", "schipperke", "groenendael", "malinois", "briard", "kelpie", "komondor", "Old English sheepdog, bobtail", "Shetland sheepdog, Shetland sheep dog, Shetland", "collie", "Border collie", "Bouvier des Flandres, Bouviers des Flandres", "Rottweiler", "German shepherd, German shepherd dog, German police dog, alsatian", "Doberman, Doberman pinscher", "miniature pinscher", "Greater Swiss Mountain dog", "Bernese mountain dog", "Appenzeller", "EntleBucher", "boxer", "bull mastiff", "Tibetan mastiff", "French bulldog", "Great Dane", "Saint Bernard, St Bernard", "Eskimo dog, husky", "malamute, malemute, Alaskan malamute", "Siberian husky", "dalmatian, coach dog, carriage dog", "affenpinscher, monkey pinscher, monkey dog", "basenji", "pug, pug-dog", "Leonberg", "Newfoundland, Newfoundland dog", "Great Pyrenees", "Samoyed, Samoyede", "Pomeranian", "chow, chow chow", "keeshond", "Brabancon griffon", "Pembroke, Pembroke Welsh corgi", "Cardigan, Cardigan Welsh corgi", "toy poodle", "miniature poodle", "standard poodle", "Mexican hairless", "timber wolf, grey wolf, gray wolf, Canis lupus", "white wolf, Arctic wolf, Canis lupus tundrarum", "red wolf, maned wolf, Canis rufus, Canis niger", "coyote, prairie wolf, brush wolf, Canis latrans", "dingo, warrigal, warragal, Canis dingo", "dhole, Cuon alpinus", "African hunting dog, hyena dog, Cape hunting dog, Lycaon pictus", "hyena, hyaena", "red fox, Vulpes vulpes", "kit fox, Vulpes macrotis", "Arctic fox, white fox, Alopex lagopus", "grey fox, gray fox, Urocyon cinereoargenteus", "tabby, tabby cat", "tiger cat", "Persian cat", "Siamese cat, Siamese", "Egyptian cat", "cougar, puma, catamount, mountain lion, painter, panther, Felis concolor", "lynx, catamount", "leopard, Panthera pardus", "snow leopard, ounce, Panthera uncia", "jaguar, panther, Panthera onca, Felis onca", "lion, king of beasts, Panthera leo", "tiger, Panthera tigris", "cheetah, chetah, Acinonyx jubatus", "brown bear, bruin, Ursus arctos", "American black bear, black bear, Ursus americanus, Euarctos americanus", "ice bear, polar bear, Ursus Maritimus, Thalarctos maritimus", "sloth bear, Melursus ursinus, Ursus ursinus", "mongoose", "meerkat, mierkat", "tiger beetle", "ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle", "ground beetle, carabid beetle", "long-horned beetle, longicorn, longicorn beetle", "leaf beetle, chrysomelid", "dung beetle", "rhinoceros beetle", "weevil", "fly", "bee", "ant, emmet, pismire", "grasshopper, hopper", "cricket", "walking stick, walkingstick, stick insect", "cockroach, roach", "mantis, mantid", "cicada, cicala", "leafhopper", "lacewing, lacewing fly", "dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk", "damselfly", "admiral", "ringlet, ringlet butterfly", "monarch, monarch butterfly, milkweed butterfly, Danaus plexippus", "cabbage butterfly", "sulphur butterfly, sulfur butterfly", "lycaenid, lycaenid butterfly", "starfish, sea star", "sea urchin", "sea cucumber, holothurian", "wood rabbit, cottontail, cottontail rabbit", "hare", "Angora, Angora rabbit", "hamster", "porcupine, hedgehog", "fox squirrel, eastern fox squirrel, Sciurus niger", "marmot", "beaver", "guinea pig, Cavia cobaya", "sorrel", "zebra", "hog, pig, grunter, squealer, Sus scrofa", "wild boar, boar, Sus scrofa", "warthog", "hippopotamus, hippo, river horse, Hippopotamus amphibius", "ox", "water buffalo, water ox, Asiatic buffalo, Bubalus bubalis", "bison", "ram, tup", "bighorn, bighorn sheep, cimarron, Rocky Mountain bighorn, Rocky Mountain sheep, Ovis canadensis", "ibex, Capra ibex", "hartebeest", "impala, Aepyceros melampus", "gazelle", "Arabian camel, dromedary, Camelus dromedarius", "llama", "weasel", "mink", "polecat, fitch, foulmart, foumart, Mustela putorius", "black-footed ferret, ferret, Mustela nigripes", "otter", "skunk, polecat, wood pussy", "badger", "armadillo", "three-toed sloth, ai, Bradypus tridactylus", "orangutan, orang, orangutang, Pongo pygmaeus", "gorilla, Gorilla gorilla", "chimpanzee, chimp, Pan troglodytes", "gibbon, Hylobates lar", "siamang, Hylobates syndactylus, Symphalangus syndactylus", "guenon, guenon monkey", "patas, hussar monkey, Erythrocebus patas", "baboon", "macaque", "langur", "colobus, colobus monkey", "proboscis monkey, Nasalis larvatus", "marmoset", "capuchin, ringtail, Cebus capucinus", "howler monkey, howler", "titi, titi monkey", "spider monkey, Ateles geoffroyi", "squirrel monkey, Saimiri sciureus", "Madagascar cat, ring-tailed lemur, Lemur catta", "indri, indris, Indri indri, Indri brevicaudatus", "Indian elephant, Elephas maximus", "African elephant, Loxodonta africana", "lesser panda, red panda, panda, bear cat, cat bear, Ailurus fulgens", "giant panda, panda, panda bear, coon bear, Ailuropoda melanoleuca", "barracouta, snoek", "eel", "coho, cohoe, coho salmon, blue jack, silver salmon, Oncorhynchus kisutch", "rock beauty, Holocanthus tricolor", "anemone fish", "sturgeon", "gar, garfish, garpike, billfish, Lepisosteus osseus", "lionfish", "puffer, pufferfish, blowfish, globefish", "abacus", "abaya", "academic gown, academic robe, judge's robe", "accordion, piano accordion, squeeze box", "acoustic guitar", "aircraft carrier, carrier, flattop, attack aircraft carrier", "airliner", "airship, dirigible", "altar", "ambulance", "amphibian, amphibious vehicle", "analog clock", "apiary, bee house", "apron", "ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin", "assault rifle, assault gun", "backpack, back pack, knapsack, packsack, rucksack, haversack", "bakery, bakeshop, bakehouse", "balance beam, beam", "balloon", "ballpoint, ballpoint pen, ballpen, Biro", "Band Aid", "banjo", "bannister, banister, balustrade, balusters, handrail", "barbell", "barber chair", "barbershop", "barn", "barometer", "barrel, cask", "barrow, garden cart, lawn cart, wheelbarrow", "baseball", "basketball", "bassinet", "bassoon", "bathing cap, swimming cap", "bath towel", "bathtub, bathing tub, bath, tub", "beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon", "beacon, lighthouse, beacon light, pharos", "beaker", "bearskin, busby, shako", "beer bottle", "beer glass", "bell cote, bell cot", "bib", "bicycle-built-for-two, tandem bicycle, tandem", "bikini, two-piece", "binder, ring-binder", "binoculars, field glasses, opera glasses", "birdhouse", "boathouse", "bobsled, bobsleigh, bob", "bolo tie, bolo, bola tie, bola", "bonnet, poke bonnet", "bookcase", "bookshop, bookstore, bookstall", "bottlecap", "bow", "bow tie, bow-tie, bowtie", "brass, memorial tablet, plaque", "brassiere, bra, bandeau", "breakwater, groin, groyne, mole, bulwark, seawall, jetty", "breastplate, aegis, egis", "broom", "bucket, pail", "buckle", "bulletproof vest", "bullet train, bullet", "butcher shop, meat market", "cab, hack, taxi, taxicab", "caldron, cauldron", "candle, taper, wax light", "cannon", "canoe", "can opener, tin opener", "cardigan", "car mirror", "carousel, carrousel, merry-go-round, roundabout, whirligig", "carpenter's kit, tool kit", "carton", "car wheel", "cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, ATM", "cassette", "cassette player", "castle", "catamaran", "CD player", "cello, violoncello", "cellular telephone, cellular phone, cellphone, cell, mobile phone", "chain", "chainlink fence", "chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour", "chain saw, chainsaw", "chest", "chiffonier, commode", "chime, bell, gong", "china cabinet, china closet", "Christmas stocking", "church, church building", "cinema, movie theater, movie theatre, movie house, picture palace", "cleaver, meat cleaver, chopper", "cliff dwelling", "cloak", "clog, geta, patten, sabot", "cocktail shaker", "coffee mug", "coffeepot", "coil, spiral, volute, whorl, helix", "combination lock", "computer keyboard, keypad", "confectionery, confectionary, candy store", "container ship, containership, container vessel", "convertible", "corkscrew, bottle screw", "cornet, horn, trumpet, trump", "cowboy boot", "cowboy hat, ten-gallon hat", "cradle", "crane", "crash helmet", "crate", "crib, cot", "Crock Pot", "croquet ball", "crutch", "cuirass", "dam, dike, dyke", "desk", "desktop computer", "dial telephone, dial phone", "diaper, nappy, napkin", "digital clock", "digital watch", "dining table, board", "dishrag, dishcloth", "dishwasher, dish washer, dishwashing machine", "disk brake, disc brake", "dock, dockage, docking facility", "dogsled, dog sled, dog sleigh", "dome", "doormat, welcome mat", "drilling platform, offshore rig", "drum, membranophone, tympan", "drumstick", "dumbbell", "Dutch oven", "electric fan, blower", "electric guitar", "electric locomotive", "entertainment center", "envelope", "espresso maker", "face powder", "feather boa, boa", "file, file cabinet, filing cabinet", "fireboat", "fire engine, fire truck", "fire screen, fireguard", "flagpole, flagstaff", "flute, transverse flute", "folding chair", "football helmet", "forklift", "fountain", "fountain pen", "four-poster", "freight car", "French horn, horn", "frying pan, frypan, skillet", "fur coat", "garbage truck, dustcart", "gasmask, respirator, gas helmet", "gas pump, gasoline pump, petrol pump, island dispenser", "goblet", "go-kart", "golf ball", "golfcart, golf cart", "gondola", "gong, tam-tam", "gown", "grand piano, grand", "greenhouse, nursery, glasshouse", "grille, radiator grille", "grocery store, grocery, food market, market", "guillotine", "hair slide", "hair spray", "half track", "hammer", "hamper", "hand blower, blow dryer, blow drier, hair dryer, hair drier", "hand-held computer, hand-held microcomputer", "handkerchief, hankie, hanky, hankey", "hard disc, hard disk, fixed disk", "harmonica, mouth organ, harp, mouth harp", "harp", "harvester, reaper", "hatchet", "holster", "home theater, home theatre", "honeycomb", "hook, claw", "hoopskirt, crinoline", "horizontal bar, high bar", "horse cart, horse-cart", "hourglass", "iPod", "iron, smoothing iron", "jack-o'-lantern", "jean, blue jean, denim", "jeep, landrover", "jersey, T-shirt, tee shirt", "jigsaw puzzle", "jinrikisha, ricksha, rickshaw", "joystick", "kimono", "knee pad", "knot", "lab coat, laboratory coat", "ladle", "lampshade, lamp shade", "laptop, laptop computer", "lawn mower, mower", "lens cap, lens cover", "letter opener, paper knife, paperknife", "library", "lifeboat", "lighter, light, igniter, ignitor", "limousine, limo", "liner, ocean liner", "lipstick, lip rouge", "Loafer", "lotion", "loudspeaker, speaker, speaker unit, loudspeaker system, speaker system", "loupe, jeweler's loupe", "lumbermill, sawmill", "magnetic compass", "mailbag, postbag", "mailbox, letter box", "maillot", "maillot, tank suit", "manhole cover", "maraca", "marimba, xylophone", "mask", "matchstick", "maypole", "maze, labyrinth", "measuring cup", "medicine chest, medicine cabinet", "megalith, megalithic structure", "microphone, mike", "microwave, microwave oven", "military uniform", "milk can", "minibus", "miniskirt, mini", "minivan", "missile", "mitten", "mixing bowl", "mobile home, manufactured home", "Model T", "modem", "monastery", "monitor", "moped", "mortar", "mortarboard", "mosque", "mosquito net", "motor scooter, scooter", "mountain bike, all-terrain bike, off-roader", "mountain tent", "mouse, computer mouse", "mousetrap", "moving van", "muzzle", "nail", "neck brace", "necklace", "nipple", "notebook, notebook computer", "obelisk", "oboe, hautboy, hautbois", "ocarina, sweet potato", "odometer, hodometer, mileometer, milometer", "oil filter", "organ, pipe organ", "oscilloscope, scope, cathode-ray oscilloscope, CRO", "overskirt", "oxcart", "oxygen mask", "packet", "paddle, boat paddle", "paddlewheel, paddle wheel", "padlock", "paintbrush", "pajama, pyjama, pj's, jammies", "palace", "panpipe, pandean pipe, syrinx", "paper towel", "parachute, chute", "parallel bars, bars", "park bench", "parking meter", "passenger car, coach, carriage", "patio, terrace", "pay-phone, pay-station", "pedestal, plinth, footstall", "pencil box, pencil case", "pencil sharpener", "perfume, essence", "Petri dish", "photocopier", "pick, plectrum, plectron", "pickelhaube", "picket fence, paling", "pickup, pickup truck", "pier", "piggy bank, penny bank", "pill bottle", "pillow", "ping-pong ball", "pinwheel", "pirate, pirate ship", "pitcher, ewer", "plane, carpenter's plane, woodworking plane", "planetarium", "plastic bag", "plate rack", "plow, plough", "plunger, plumber's helper", "Polaroid camera, Polaroid Land camera", "pole", "police van, police wagon, paddy wagon, patrol wagon, wagon, black Maria", "poncho", "pool table, billiard table, snooker table", "pop bottle, soda bottle", "pot, flowerpot", "potter's wheel", "power drill", "prayer rug, prayer mat", "printer", "prison, prison house", "projectile, missile", "projector", "puck, hockey puck", "punching bag, punch bag, punching ball, punchball", "purse", "quill, quill pen", "quilt, comforter, comfort, puff", "racer, race car, racing car", "racket, racquet", "radiator", "radio, wireless", "radio telescope, radio reflector", "rain barrel", "recreational vehicle, RV, R.V.", "reel", "reflex camera", "refrigerator, icebox", "remote control, remote", "restaurant, eating house, eating place, eatery", "revolver, six-gun, six-shooter", "rifle", "rocking chair, rocker", "rotisserie", "rubber eraser, rubber, pencil eraser", "rugby ball", "rule, ruler", "running shoe", "safe", "safety pin", "saltshaker, salt shaker", "sandal", "sarong", "sax, saxophone", "scabbard", "scale, weighing machine", "school bus", "schooner", "scoreboard", "screen, CRT screen", "screw", "screwdriver", "seat belt, seatbelt", "sewing machine", "shield, buckler", "shoe shop, shoe-shop, shoe store", "shoji", "shopping basket", "shopping cart", "shovel", "shower cap", "shower curtain", "ski", "ski mask", "sleeping bag", "slide rule, slipstick", "sliding door", "slot, one-armed bandit", "snorkel", "snowmobile", "snowplow, snowplough", "soap dispenser", "soccer ball", "sock", "solar dish, solar collector, solar furnace", "sombrero", "soup bowl", "space bar", "space heater", "space shuttle", "spatula", "speedboat", "spider web, spider's web", "spindle", "sports car, sport car", "spotlight, spot", "stage", "steam locomotive", "steel arch bridge", "steel drum", "stethoscope", "stole", "stone wall", "stopwatch, stop watch", "stove", "strainer", "streetcar, tram, tramcar, trolley, trolley car", "stretcher", "studio couch, day bed", "stupa, tope", "submarine, pigboat, sub, U-boat", "suit, suit of clothes", "sundial", "sunglass", "sunglasses, dark glasses, shades", "sunscreen, sunblock, sun blocker", "suspension bridge", "swab, swob, mop", "sweatshirt", "swimming trunks, bathing trunks", "swing", "switch, electric switch, electrical switch", "syringe", "table lamp", "tank, army tank, armored combat vehicle, armoured combat vehicle", "tape player", "teapot", "teddy, teddy bear", "television, television system", "tennis ball", "thatch, thatched roof", "theater curtain, theatre curtain", "thimble", "thresher, thrasher, threshing machine", "throne", "tile roof", "toaster", "tobacco shop, tobacconist shop, tobacconist", "toilet seat", "torch", "totem pole", "tow truck, tow car, wrecker", "toyshop", "tractor", "trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi", "tray", "trench coat", "tricycle, trike, velocipede", "trimaran", "tripod", "triumphal arch", "trolleybus, trolley coach, trackless trolley", "trombone", "tub, vat", "turnstile", "typewriter keyboard", "umbrella", "unicycle, monocycle", "upright, upright piano", "vacuum, vacuum cleaner", "vase", "vault", "velvet", "vending machine", "vestment", "viaduct", "violin, fiddle", "volleyball", "waffle iron", "wall clock", "wallet, billfold, notecase, pocketbook", "wardrobe, closet, press", "warplane, military plane", "washbasin, handbasin, washbowl, lavabo, wash-hand basin", "washer, automatic washer, washing machine", "water bottle", "water jug", "water tower", "whiskey jug", "whistle", "wig", "window screen", "window shade", "Windsor tie", "wine bottle", "wing", "wok", "wooden spoon", "wool, woolen, woollen", "worm fence, snake fence, snake-rail fence, Virginia fence", "wreck", "yawl", "yurt", "web site, website, internet site, site", "comic book", "crossword puzzle, crossword", "street sign", "traffic light, traffic signal, stoplight", "book jacket, dust cover, dust jacket, dust wrapper", "menu", "plate", "guacamole", "consomme", "hot pot, hotpot", "trifle", "ice cream, icecream", "ice lolly, lolly, lollipop, popsicle", "French loaf", "bagel, beigel", "pretzel", "cheeseburger", "hotdog, hot dog, red hot", "mashed potato", "head cabbage", "broccoli", "cauliflower", "zucchini, courgette", "spaghetti squash", "acorn squash", "butternut squash", "cucumber, cuke", "artichoke, globe artichoke", "bell pepper", "cardoon", "mushroom", "Granny Smith", "strawberry", "orange", "lemon", "fig", "pineapple, ananas", "banana", "jackfruit, jak, jack", "custard apple", "pomegranate", "hay", "carbonara", "chocolate sauce, chocolate syrup", "dough", "meat loaf, meatloaf", "pizza, pizza pie", "potpie", "burrito", "red wine", "espresso", "cup", "eggnog", "alp", "bubble", "cliff, drop, drop-off", "coral reef", "geyser", "lakeside, lakeshore", "promontory, headland, head, foreland", "sandbar, sand bar", "seashore, coast, seacoast, sea-coast", "valley, vale", "volcano", "ballplayer, baseball player", "groom, bridegroom", "scuba diver", "rapeseed", "daisy", "yellow lady's slipper, yellow lady-slipper, Cypripedium calceolus, Cypripedium parviflorum", "corn", "acorn", "hip, rose hip, rosehip", "buckeye, horse chestnut, conker", "coral fungus", "agaric", "gyromitra", "stinkhorn, carrion fungus", "earthstar", "hen-of-the-woods, hen of the woods, Polyporus frondosus, Grifola frondosa", "bolete", "ear, spike, capitulum", "toilet tissue, toilet paper, bathroom tissue"]
PyTorch/Forecasting/TFT/triton/scripts/docker
docker
build
#!/usr/bin/env bash # Copyright (c) 2021-2022 NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. docker build -t tft . -f Dockerfile-triton
TensorFlow/Detection/SSD/models/research/object_detection/core
core
target_assigner
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Base target assigner module. The job of a TargetAssigner is, for a given set of anchors (bounding boxes) and groundtruth detections (bounding boxes), to assign classification and regression targets to each anchor as well as weights to each anchor (specifying, e.g., which anchors should not contribute to training loss). It assigns classification/regression targets by performing the following steps: 1) Computing pairwise similarity between anchors and groundtruth boxes using a provided RegionSimilarity Calculator 2) Computing a matching based on the similarity matrix using a provided Matcher 3) Assigning regression targets based on the matching and a provided BoxCoder 4) Assigning classification targets based on the matching and groundtruth labels Note that TargetAssigners only operate on detections from a single image at a time, so any logic for applying a TargetAssigner to multiple images must be handled externally. """ import tensorflow as tf from object_detection.box_coders import faster_rcnn_box_coder from object_detection.box_coders import mean_stddev_box_coder from object_detection.core import box_coder as bcoder from object_detection.core import box_list from object_detection.core import matcher as mat from object_detection.core import region_similarity_calculator as sim_calc from object_detection.core import standard_fields as fields from object_detection.matchers import argmax_matcher from object_detection.matchers import bipartite_matcher from object_detection.utils import shape_utils class TargetAssigner(object): """Target assigner to compute classification and regression targets.""" def __init__(self, similarity_calc, matcher, box_coder, negative_class_weight=1.0): """Construct Object Detection Target Assigner. Args: similarity_calc: a RegionSimilarityCalculator matcher: an object_detection.core.Matcher used to match groundtruth to anchors. box_coder: an object_detection.core.BoxCoder used to encode matching groundtruth boxes with respect to anchors. negative_class_weight: classification weight to be associated to negative anchors (default: 1.0). The weight must be in [0., 1.]. Raises: ValueError: if similarity_calc is not a RegionSimilarityCalculator or if matcher is not a Matcher or if box_coder is not a BoxCoder """ if not isinstance(similarity_calc, sim_calc.RegionSimilarityCalculator): raise ValueError('similarity_calc must be a RegionSimilarityCalculator') if not isinstance(matcher, mat.Matcher): raise ValueError('matcher must be a Matcher') if not isinstance(box_coder, bcoder.BoxCoder): raise ValueError('box_coder must be a BoxCoder') self._similarity_calc = similarity_calc self._matcher = matcher self._box_coder = box_coder self._negative_class_weight = negative_class_weight @property def box_coder(self): return self._box_coder # TODO(rathodv): move labels, scores, and weights to groundtruth_boxes fields. def assign(self, anchors, groundtruth_boxes, groundtruth_labels=None, unmatched_class_label=None, groundtruth_weights=None): """Assign classification and regression targets to each anchor. For a given set of anchors and groundtruth detections, match anchors to groundtruth_boxes and assign classification and regression targets to each anchor as well as weights based on the resulting match (specifying, e.g., which anchors should not contribute to training loss). Anchors that are not matched to anything are given a classification target of self._unmatched_cls_target which can be specified via the constructor. Args: anchors: a BoxList representing N anchors groundtruth_boxes: a BoxList representing M groundtruth boxes groundtruth_labels: a tensor of shape [M, d_1, ... d_k] with labels for each of the ground_truth boxes. The subshape [d_1, ... d_k] can be empty (corresponding to scalar inputs). When set to None, groundtruth_labels assumes a binary problem where all ground_truth boxes get a positive label (of 1). unmatched_class_label: a float32 tensor with shape [d_1, d_2, ..., d_k] which is consistent with the classification target for each anchor (and can be empty for scalar targets). This shape must thus be compatible with the groundtruth labels that are passed to the "assign" function (which have shape [num_gt_boxes, d_1, d_2, ..., d_k]). If set to None, unmatched_cls_target is set to be [0] for each anchor. groundtruth_weights: a float tensor of shape [M] indicating the weight to assign to all anchors match to a particular groundtruth box. The weights must be in [0., 1.]. If None, all weights are set to 1. Generally no groundtruth boxes with zero weight match to any anchors as matchers are aware of groundtruth weights. Additionally, `cls_weights` and `reg_weights` are calculated using groundtruth weights as an added safety. Returns: cls_targets: a float32 tensor with shape [num_anchors, d_1, d_2 ... d_k], where the subshape [d_1, ..., d_k] is compatible with groundtruth_labels which has shape [num_gt_boxes, d_1, d_2, ... d_k]. cls_weights: a float32 tensor with shape [num_anchors, d_1, d_2 ... d_k], representing weights for each element in cls_targets. reg_targets: a float32 tensor with shape [num_anchors, box_code_dimension] reg_weights: a float32 tensor with shape [num_anchors] match: a matcher.Match object encoding the match between anchors and groundtruth boxes, with rows corresponding to groundtruth boxes and columns corresponding to anchors. Raises: ValueError: if anchors or groundtruth_boxes are not of type box_list.BoxList """ if not isinstance(anchors, box_list.BoxList): raise ValueError('anchors must be an BoxList') if not isinstance(groundtruth_boxes, box_list.BoxList): raise ValueError('groundtruth_boxes must be an BoxList') if unmatched_class_label is None: unmatched_class_label = tf.constant([0], tf.float32) if groundtruth_labels is None: groundtruth_labels = tf.ones(tf.expand_dims(groundtruth_boxes.num_boxes(), 0)) groundtruth_labels = tf.expand_dims(groundtruth_labels, -1) unmatched_shape_assert = shape_utils.assert_shape_equal( shape_utils.combined_static_and_dynamic_shape(groundtruth_labels)[1:], shape_utils.combined_static_and_dynamic_shape(unmatched_class_label)) labels_and_box_shapes_assert = shape_utils.assert_shape_equal( shape_utils.combined_static_and_dynamic_shape( groundtruth_labels)[:1], shape_utils.combined_static_and_dynamic_shape( groundtruth_boxes.get())[:1]) if groundtruth_weights is None: num_gt_boxes = groundtruth_boxes.num_boxes_static() if not num_gt_boxes: num_gt_boxes = groundtruth_boxes.num_boxes() groundtruth_weights = tf.ones([num_gt_boxes], dtype=tf.float32) with tf.control_dependencies( [unmatched_shape_assert, labels_and_box_shapes_assert]): match_quality_matrix = self._similarity_calc.compare(groundtruth_boxes, anchors) match = self._matcher.match(match_quality_matrix, valid_rows=tf.greater(groundtruth_weights, 0)) reg_targets = self._create_regression_targets(anchors, groundtruth_boxes, match) cls_targets = self._create_classification_targets(groundtruth_labels, unmatched_class_label, match) reg_weights = self._create_regression_weights(match, groundtruth_weights) cls_weights = self._create_classification_weights(match, groundtruth_weights) # convert cls_weights from per-anchor to per-class. class_label_shape = tf.shape(cls_targets)[1:] weights_shape = tf.shape(cls_weights) weights_multiple = tf.concat( [tf.ones_like(weights_shape), class_label_shape], axis=0) for _ in range(len(cls_targets.get_shape()[1:])): cls_weights = tf.expand_dims(cls_weights, -1) cls_weights = tf.tile(cls_weights, weights_multiple) num_anchors = anchors.num_boxes_static() if num_anchors is not None: reg_targets = self._reset_target_shape(reg_targets, num_anchors) cls_targets = self._reset_target_shape(cls_targets, num_anchors) reg_weights = self._reset_target_shape(reg_weights, num_anchors) cls_weights = self._reset_target_shape(cls_weights, num_anchors) return cls_targets, cls_weights, reg_targets, reg_weights, match def _reset_target_shape(self, target, num_anchors): """Sets the static shape of the target. Args: target: the target tensor. Its first dimension will be overwritten. num_anchors: the number of anchors, which is used to override the target's first dimension. Returns: A tensor with the shape info filled in. """ target_shape = target.get_shape().as_list() target_shape[0] = num_anchors target.set_shape(target_shape) return target def _create_regression_targets(self, anchors, groundtruth_boxes, match): """Returns a regression target for each anchor. Args: anchors: a BoxList representing N anchors groundtruth_boxes: a BoxList representing M groundtruth_boxes match: a matcher.Match object Returns: reg_targets: a float32 tensor with shape [N, box_code_dimension] """ matched_gt_boxes = match.gather_based_on_match( groundtruth_boxes.get(), unmatched_value=tf.zeros(4), ignored_value=tf.zeros(4)) matched_gt_boxlist = box_list.BoxList(matched_gt_boxes) if groundtruth_boxes.has_field(fields.BoxListFields.keypoints): groundtruth_keypoints = groundtruth_boxes.get_field( fields.BoxListFields.keypoints) matched_keypoints = match.gather_based_on_match( groundtruth_keypoints, unmatched_value=tf.zeros(groundtruth_keypoints.get_shape()[1:]), ignored_value=tf.zeros(groundtruth_keypoints.get_shape()[1:])) matched_gt_boxlist.add_field(fields.BoxListFields.keypoints, matched_keypoints) matched_reg_targets = self._box_coder.encode(matched_gt_boxlist, anchors) match_results_shape = shape_utils.combined_static_and_dynamic_shape( match.match_results) # Zero out the unmatched and ignored regression targets. unmatched_ignored_reg_targets = tf.tile( self._default_regression_target(), [match_results_shape[0], 1]) matched_anchors_mask = match.matched_column_indicator() reg_targets = tf.where(matched_anchors_mask, matched_reg_targets, unmatched_ignored_reg_targets) return reg_targets def _default_regression_target(self): """Returns the default target for anchors to regress to. Default regression targets are set to zero (though in this implementation what these targets are set to should not matter as the regression weight of any box set to regress to the default target is zero). Returns: default_target: a float32 tensor with shape [1, box_code_dimension] """ return tf.constant([self._box_coder.code_size*[0]], tf.float32) def _create_classification_targets(self, groundtruth_labels, unmatched_class_label, match): """Create classification targets for each anchor. Assign a classification target of for each anchor to the matching groundtruth label that is provided by match. Anchors that are not matched to anything are given the target self._unmatched_cls_target Args: groundtruth_labels: a tensor of shape [num_gt_boxes, d_1, ... d_k] with labels for each of the ground_truth boxes. The subshape [d_1, ... d_k] can be empty (corresponding to scalar labels). unmatched_class_label: a float32 tensor with shape [d_1, d_2, ..., d_k] which is consistent with the classification target for each anchor (and can be empty for scalar targets). This shape must thus be compatible with the groundtruth labels that are passed to the "assign" function (which have shape [num_gt_boxes, d_1, d_2, ..., d_k]). match: a matcher.Match object that provides a matching between anchors and groundtruth boxes. Returns: a float32 tensor with shape [num_anchors, d_1, d_2 ... d_k], where the subshape [d_1, ..., d_k] is compatible with groundtruth_labels which has shape [num_gt_boxes, d_1, d_2, ... d_k]. """ return match.gather_based_on_match( groundtruth_labels, unmatched_value=unmatched_class_label, ignored_value=unmatched_class_label) def _create_regression_weights(self, match, groundtruth_weights): """Set regression weight for each anchor. Only positive anchors are set to contribute to the regression loss, so this method returns a weight of 1 for every positive anchor and 0 for every negative anchor. Args: match: a matcher.Match object that provides a matching between anchors and groundtruth boxes. groundtruth_weights: a float tensor of shape [M] indicating the weight to assign to all anchors match to a particular groundtruth box. Returns: a float32 tensor with shape [num_anchors] representing regression weights. """ return match.gather_based_on_match( groundtruth_weights, ignored_value=0., unmatched_value=0.) def _create_classification_weights(self, match, groundtruth_weights): """Create classification weights for each anchor. Positive (matched) anchors are associated with a weight of positive_class_weight and negative (unmatched) anchors are associated with a weight of negative_class_weight. When anchors are ignored, weights are set to zero. By default, both positive/negative weights are set to 1.0, but they can be adjusted to handle class imbalance (which is almost always the case in object detection). Args: match: a matcher.Match object that provides a matching between anchors and groundtruth boxes. groundtruth_weights: a float tensor of shape [M] indicating the weight to assign to all anchors match to a particular groundtruth box. Returns: a float32 tensor with shape [num_anchors] representing classification weights. """ return match.gather_based_on_match( groundtruth_weights, ignored_value=0., unmatched_value=self._negative_class_weight) def get_box_coder(self): """Get BoxCoder of this TargetAssigner. Returns: BoxCoder object. """ return self._box_coder # TODO(rathodv): This method pulls in all the implementation dependencies into # core. Therefore its best to have this factory method outside of core. def create_target_assigner(reference, stage=None, negative_class_weight=1.0, use_matmul_gather=False): """Factory function for creating standard target assigners. Args: reference: string referencing the type of TargetAssigner. stage: string denoting stage: {proposal, detection}. negative_class_weight: classification weight to be associated to negative anchors (default: 1.0) use_matmul_gather: whether to use matrix multiplication based gather which are better suited for TPUs. Returns: TargetAssigner: desired target assigner. Raises: ValueError: if combination reference+stage is invalid. """ if reference == 'Multibox' and stage == 'proposal': similarity_calc = sim_calc.NegSqDistSimilarity() matcher = bipartite_matcher.GreedyBipartiteMatcher() box_coder = mean_stddev_box_coder.MeanStddevBoxCoder() elif reference == 'FasterRCNN' and stage == 'proposal': similarity_calc = sim_calc.IouSimilarity() matcher = argmax_matcher.ArgMaxMatcher(matched_threshold=0.7, unmatched_threshold=0.3, force_match_for_each_row=True, use_matmul_gather=use_matmul_gather) box_coder = faster_rcnn_box_coder.FasterRcnnBoxCoder( scale_factors=[10.0, 10.0, 5.0, 5.0]) elif reference == 'FasterRCNN' and stage == 'detection': similarity_calc = sim_calc.IouSimilarity() # Uses all proposals with IOU < 0.5 as candidate negatives. matcher = argmax_matcher.ArgMaxMatcher(matched_threshold=0.5, negatives_lower_than_unmatched=True, use_matmul_gather=use_matmul_gather) box_coder = faster_rcnn_box_coder.FasterRcnnBoxCoder( scale_factors=[10.0, 10.0, 5.0, 5.0]) elif reference == 'FastRCNN': similarity_calc = sim_calc.IouSimilarity() matcher = argmax_matcher.ArgMaxMatcher(matched_threshold=0.5, unmatched_threshold=0.1, force_match_for_each_row=False, negatives_lower_than_unmatched=False, use_matmul_gather=use_matmul_gather) box_coder = faster_rcnn_box_coder.FasterRcnnBoxCoder() else: raise ValueError('No valid combination of reference and stage.') return TargetAssigner(similarity_calc, matcher, box_coder, negative_class_weight=negative_class_weight) def batch_assign_targets(target_assigner, anchors_batch, gt_box_batch, gt_class_targets_batch, unmatched_class_label=None, gt_weights_batch=None): """Batched assignment of classification and regression targets. Args: target_assigner: a target assigner. anchors_batch: BoxList representing N box anchors or list of BoxList objects with length batch_size representing anchor sets. gt_box_batch: a list of BoxList objects with length batch_size representing groundtruth boxes for each image in the batch gt_class_targets_batch: a list of tensors with length batch_size, where each tensor has shape [num_gt_boxes_i, classification_target_size] and num_gt_boxes_i is the number of boxes in the ith boxlist of gt_box_batch. unmatched_class_label: a float32 tensor with shape [d_1, d_2, ..., d_k] which is consistent with the classification target for each anchor (and can be empty for scalar targets). This shape must thus be compatible with the groundtruth labels that are passed to the "assign" function (which have shape [num_gt_boxes, d_1, d_2, ..., d_k]). gt_weights_batch: A list of 1-D tf.float32 tensors of shape [num_boxes] containing weights for groundtruth boxes. Returns: batch_cls_targets: a tensor with shape [batch_size, num_anchors, num_classes], batch_cls_weights: a tensor with shape [batch_size, num_anchors, num_classes], batch_reg_targets: a tensor with shape [batch_size, num_anchors, box_code_dimension] batch_reg_weights: a tensor with shape [batch_size, num_anchors], match_list: a list of matcher.Match objects encoding the match between anchors and groundtruth boxes for each image of the batch, with rows of the Match objects corresponding to groundtruth boxes and columns corresponding to anchors. Raises: ValueError: if input list lengths are inconsistent, i.e., batch_size == len(gt_box_batch) == len(gt_class_targets_batch) and batch_size == len(anchors_batch) unless anchors_batch is a single BoxList. """ if not isinstance(anchors_batch, list): anchors_batch = len(gt_box_batch) * [anchors_batch] if not all( isinstance(anchors, box_list.BoxList) for anchors in anchors_batch): raise ValueError('anchors_batch must be a BoxList or list of BoxLists.') if not (len(anchors_batch) == len(gt_box_batch) == len(gt_class_targets_batch)): raise ValueError('batch size incompatible with lengths of anchors_batch, ' 'gt_box_batch and gt_class_targets_batch.') cls_targets_list = [] cls_weights_list = [] reg_targets_list = [] reg_weights_list = [] match_list = [] if gt_weights_batch is None: gt_weights_batch = [None] * len(gt_class_targets_batch) for anchors, gt_boxes, gt_class_targets, gt_weights in zip( anchors_batch, gt_box_batch, gt_class_targets_batch, gt_weights_batch): (cls_targets, cls_weights, reg_targets, reg_weights, match) = target_assigner.assign( anchors, gt_boxes, gt_class_targets, unmatched_class_label, gt_weights) cls_targets_list.append(cls_targets) cls_weights_list.append(cls_weights) reg_targets_list.append(reg_targets) reg_weights_list.append(reg_weights) match_list.append(match) batch_cls_targets = tf.stack(cls_targets_list) batch_cls_weights = tf.stack(cls_weights_list) batch_reg_targets = tf.stack(reg_targets_list) batch_reg_weights = tf.stack(reg_weights_list) return (batch_cls_targets, batch_cls_weights, batch_reg_targets, batch_reg_weights, match_list) def batch_assign_confidences(target_assigner, anchors_batch, gt_box_batch, gt_class_confidences_batch, gt_weights_batch=None, unmatched_class_label=None, include_background_class=True, implicit_class_weight=1.0): """Batched assignment of classification and regression targets. This differences between batch_assign_confidences and batch_assign_targets: - 'batch_assign_targets' supports scalar (agnostic), vector (multiclass) and tensor (high-dimensional) targets. 'batch_assign_confidences' only support scalar (agnostic) and vector (multiclass) targets. - 'batch_assign_targets' assumes the input class tensor using the binary one/K-hot encoding. 'batch_assign_confidences' takes the class confidence scores as the input, where 1 means positive classes, 0 means implicit negative classes, and -1 means explicit negative classes. - 'batch_assign_confidences' assigns the targets in the similar way as 'batch_assign_targets' except that it gives different weights for implicit and explicit classes. This allows user to control the negative gradients pushed differently for implicit and explicit examples during the training. Args: target_assigner: a target assigner. anchors_batch: BoxList representing N box anchors or list of BoxList objects with length batch_size representing anchor sets. gt_box_batch: a list of BoxList objects with length batch_size representing groundtruth boxes for each image in the batch gt_class_confidences_batch: a list of tensors with length batch_size, where each tensor has shape [num_gt_boxes_i, classification_target_size] and num_gt_boxes_i is the number of boxes in the ith boxlist of gt_box_batch. Note that in this tensor, 1 means explicit positive class, -1 means explicit negative class, and 0 means implicit negative class. gt_weights_batch: A list of 1-D tf.float32 tensors of shape [num_gt_boxes_i] containing weights for groundtruth boxes. unmatched_class_label: a float32 tensor with shape [d_1, d_2, ..., d_k] which is consistent with the classification target for each anchor (and can be empty for scalar targets). This shape must thus be compatible with the groundtruth labels that are passed to the "assign" function (which have shape [num_gt_boxes, d_1, d_2, ..., d_k]). include_background_class: whether or not gt_class_confidences_batch includes the background class. implicit_class_weight: the weight assigned to implicit examples. Returns: batch_cls_targets: a tensor with shape [batch_size, num_anchors, num_classes], batch_cls_weights: a tensor with shape [batch_size, num_anchors, num_classes], batch_reg_targets: a tensor with shape [batch_size, num_anchors, box_code_dimension] batch_reg_weights: a tensor with shape [batch_size, num_anchors], match_list: a list of matcher.Match objects encoding the match between anchors and groundtruth boxes for each image of the batch, with rows of the Match objects corresponding to groundtruth boxes and columns corresponding to anchors. Raises: ValueError: if input list lengths are inconsistent, i.e., batch_size == len(gt_box_batch) == len(gt_class_targets_batch) and batch_size == len(anchors_batch) unless anchors_batch is a single BoxList, or if any element in gt_class_confidences_batch has rank > 2. """ if not isinstance(anchors_batch, list): anchors_batch = len(gt_box_batch) * [anchors_batch] if not all( isinstance(anchors, box_list.BoxList) for anchors in anchors_batch): raise ValueError('anchors_batch must be a BoxList or list of BoxLists.') if not (len(anchors_batch) == len(gt_box_batch) == len(gt_class_confidences_batch)): raise ValueError('batch size incompatible with lengths of anchors_batch, ' 'gt_box_batch and gt_class_confidences_batch.') cls_targets_list = [] cls_weights_list = [] reg_targets_list = [] reg_weights_list = [] match_list = [] if gt_weights_batch is None: gt_weights_batch = [None] * len(gt_class_confidences_batch) for anchors, gt_boxes, gt_class_confidences, gt_weights in zip( anchors_batch, gt_box_batch, gt_class_confidences_batch, gt_weights_batch): if (gt_class_confidences is not None and len(gt_class_confidences.get_shape().as_list()) > 2): raise ValueError('The shape of the class target is not supported. ', gt_class_confidences.get_shape()) cls_targets, _, reg_targets, _, match = target_assigner.assign( anchors, gt_boxes, gt_class_confidences, unmatched_class_label, groundtruth_weights=gt_weights) if include_background_class: cls_targets_without_background = tf.slice( cls_targets, [0, 1], [-1, -1]) else: cls_targets_without_background = cls_targets positive_mask = tf.greater(cls_targets_without_background, 0.0) negative_mask = tf.less(cls_targets_without_background, 0.0) explicit_example_mask = tf.logical_or(positive_mask, negative_mask) positive_anchors = tf.reduce_any(positive_mask, axis=-1) regression_weights = tf.to_float(positive_anchors) regression_targets = ( reg_targets * tf.expand_dims(regression_weights, axis=-1)) regression_weights_expanded = tf.expand_dims(regression_weights, axis=-1) cls_targets_without_background = ( cls_targets_without_background * (1 - tf.to_float(negative_mask))) cls_weights_without_background = ( (1 - implicit_class_weight) * tf.to_float(explicit_example_mask) + implicit_class_weight) if include_background_class: cls_weights_background = ( (1 - implicit_class_weight) * regression_weights_expanded + implicit_class_weight) classification_weights = tf.concat( [cls_weights_background, cls_weights_without_background], axis=-1) cls_targets_background = 1 - regression_weights_expanded classification_targets = tf.concat( [cls_targets_background, cls_targets_without_background], axis=-1) else: classification_targets = cls_targets_without_background classification_weights = cls_weights_without_background cls_targets_list.append(classification_targets) cls_weights_list.append(classification_weights) reg_targets_list.append(regression_targets) reg_weights_list.append(regression_weights) match_list.append(match) batch_cls_targets = tf.stack(cls_targets_list) batch_cls_weights = tf.stack(cls_weights_list) batch_reg_targets = tf.stack(reg_targets_list) batch_reg_weights = tf.stack(reg_weights_list) return (batch_cls_targets, batch_cls_weights, batch_reg_targets, batch_reg_weights, match_list)
PyTorch/Classification/ConvNets/triton/scripts/docker
docker
triton_inference_server
#!/usr/bin/env bash # Copyright (c) 2021 NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. NVIDIA_VISIBLE_DEVICES=${NVIDIA_VISIBLE_DEVICES:=all} docker run --rm -d \ -p 8000:8000 \ -p 8001:8001 \ -p 8002:8002 \ --runtime=nvidia \ -e NVIDIA_VISIBLE_DEVICES=${NVIDIA_VISIBLE_DEVICES} \ -e ORT_TENSORRT_FP16_ENABLE=1 \ -v ${MODEL_REPOSITORY_PATH}:${MODEL_REPOSITORY_PATH} \ --shm-size=1g \ --ulimit memlock=-1 \ --ulimit stack=67108864 \ nvcr.io/nvidia/tritonserver:21.02-py3 tritonserver \ --model-store=${MODEL_REPOSITORY_PATH} \ --strict-model-config=false \ --exit-on-error=true \ --model-control-mode=explicit
PyTorch/SpeechSynthesis/Tacotron2/trtis_cpp/src/trt/plugins/taco2LSTMCellPlugin
taco2LSTMCellPlugin
taco2LSTMCellLayerPlugin
/* * Copyright (c) 2019-2020, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the NVIDIA CORPORATION nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "taco2LSTMCellLayerPlugin.h" #include "taco2LSTMCellKernel.h" #include "taco2Utils.h" #include <cuda_runtime.h> // cudaError_t #include <cassert> #include <cstdlib> #include <cstring> #include <iostream> #include <sstream> #include <stdexcept> #include <string> using namespace nvinfer1; namespace nvinfer1 { namespace plugin { using value_type = Taco2LSTMCellLayerPlugin::value_type; /****************************************************************************** * CONSTANTS ****************************************************************** *****************************************************************************/ namespace { constexpr const char* const PLUGIN_NAME = "Taco2LSTMCell"; constexpr const char* const PLUGIN_VERSION = "0.1.0"; } // namespace /****************************************************************************** * HELPER FUNCTIONS *********************************************************** *****************************************************************************/ namespace { std::vector<value_type> toVector(const Weights& weights) { if (weights.type != DataType::kFLOAT) { throw std::runtime_error( "Invalid data type for Taco2LSTMCell weights: " + std::to_string(static_cast<int>(weights.type))); } const value_type* const valuesBegin = static_cast<const value_type*>(weights.values); const value_type* const valuesEnd = valuesBegin + weights.count; return std::vector<value_type>(valuesBegin, valuesEnd); } const void* offset(const void* ptr, const size_t offset) { return reinterpret_cast<const void*>(static_cast<const uint8_t*>(ptr) + offset); } } // namespace /****************************************************************************** * STATIC METHODS ************************************************************* *****************************************************************************/ const char* Taco2LSTMCellLayerPlugin::getName() { return PLUGIN_NAME; } const char* Taco2LSTMCellLayerPlugin::getVersion() { return PLUGIN_VERSION; } Taco2LSTMCellLayerPlugin Taco2LSTMCellLayerPlugin::deserialize(const void* const data, const size_t length) { if (length < 5 * sizeof(int32_t)) { throw std::runtime_error("Invalid serialized size: " + std::to_string(length)); } const int inputLength = static_cast<const int32_t*>(data)[0]; const int inputLengthFirst = static_cast<const int32_t*>(data)[1]; const int inputLengthSecond = static_cast<const int32_t*>(data)[2]; const int numDimension = static_cast<const int32_t*>(data)[3]; const bool useFP16 = static_cast<const int32_t*>(data)[4]; const size_t reqSize = 5 * sizeof(int32_t) + sizeof(value_type) * (4 * inputLength * numDimension + 4 * numDimension * numDimension + 2 * 4 * numDimension); if (reqSize != length) { throw std::runtime_error( "Invalid serialized size: " + std::to_string(length) + " / " + std::to_string(reqSize)); } const Weights inputWeights{DataType::kFLOAT, offset(data, sizeof(int32_t) * 5), inputLength * numDimension * 4}; const Weights hiddenWeights{DataType::kFLOAT, offset(inputWeights.values, sizeof(value_type) * inputWeights.count), numDimension * numDimension * 4}; const Weights inputBias{ DataType::kFLOAT, offset(hiddenWeights.values, sizeof(value_type) * hiddenWeights.count), numDimension * 4}; const Weights hiddenBias{ DataType::kFLOAT, offset(inputBias.values, sizeof(value_type) * inputBias.count), numDimension * 4}; Taco2LSTMCellLayerPlugin layer( inputWeights, hiddenWeights, inputBias, hiddenBias, inputLength, numDimension, useFP16); layer.mInputLengthFirst = inputLengthFirst; layer.mInputLengthSecond = inputLengthSecond; return layer; } /****************************************************************************** * CONSTRUCTORS / DESTRUCTOR ************************************************** *****************************************************************************/ Taco2LSTMCellLayerPlugin::Taco2LSTMCellLayerPlugin(const Weights& inputWeights, const Weights& hiddenWeights, const Weights& inputBias, const Weights& hiddenBias, const int inputLength, const int numDimension, const bool useFP16) : mInputLength(inputLength) , mInputLengthFirst(0) , mInputLengthSecond(0) , mNumDimension(numDimension) , mInputWeightsHost(toVector(inputWeights)) , mHiddenWeightsHost(toVector(hiddenWeights)) , mInputBiasHost(toVector(inputBias)) , mHiddenBiasHost(toVector(hiddenBias)) , mNamespace() , mCell(nullptr) , mUseFP16(useFP16) { // do nothing if (mInputLength <= 0) { throw std::runtime_error("Invalid Taco2LSTMCell length: " + std::to_string(mInputLength)); } if (mNumDimension <= 0) { throw std::runtime_error("Invalid Taco2LSTMCell dimension: " + std::to_string(mNumDimension)); } const size_t expectedInputWeights = mInputLength * mNumDimension * 4U; const size_t expectedHiddenWeights = mNumDimension * mNumDimension * 4U; const size_t expectedBias = mNumDimension * 4U; if (mInputWeightsHost.size() != expectedInputWeights) { throw std::runtime_error("Taco2LSTMCell expected " + std::to_string(expectedInputWeights) + " input weights but given " + std::to_string(mInputWeightsHost.size())); } if (mHiddenWeightsHost.size() != expectedHiddenWeights) { throw std::runtime_error("Taco2LSTMCell expected " + std::to_string(expectedHiddenWeights) + " hidden weights but given " + std::to_string(mHiddenWeightsHost.size())); } if (mInputBiasHost.size() != expectedBias) { throw std::runtime_error("Taco2LSTMCell expected " + std::to_string(expectedBias) + " input bias but given " + std::to_string(mInputBiasHost.size())); } if (mHiddenBiasHost.size() != expectedBias) { throw std::runtime_error("Taco2LSTMCell expected " + std::to_string(expectedBias) + " hidden bias but given " + std::to_string(mHiddenBiasHost.size())); } } Taco2LSTMCellLayerPlugin::Taco2LSTMCellLayerPlugin(Taco2LSTMCellLayerPlugin&& other) : mInputLength(other.mInputLength) , mInputLengthFirst(other.mInputLengthFirst) , mInputLengthSecond(other.mInputLengthSecond) , mNumDimension(other.mNumDimension) , mInputWeightsHost(std::move(other.mInputWeightsHost)) , mHiddenWeightsHost(std::move(other.mHiddenWeightsHost)) , mInputBiasHost(std::move(other.mInputBiasHost)) , mHiddenBiasHost(std::move(other.mHiddenBiasHost)) , mNamespace(std::move(other.mNamespace)) , mCell(std::move(other.mCell)) , mUseFP16(other.mUseFP16) { other.mInputLength = 0; other.mInputLengthFirst = 0; other.mInputLengthSecond = 0; other.mNumDimension = 0; other.mUseFP16 = false; } Taco2LSTMCellLayerPlugin::~Taco2LSTMCellLayerPlugin() { destroy(); } /****************************************************************************** * PUBLIC METHODS ************************************************************* *****************************************************************************/ Taco2LSTMCellLayerPlugin& Taco2LSTMCellLayerPlugin::operator=(Taco2LSTMCellLayerPlugin&& other) { // defere to constructor *this = Taco2LSTMCellLayerPlugin(std::move(other)); return *this; } DataType Taco2LSTMCellLayerPlugin::getOutputDataType( const int /* index */, const DataType* const /* inputTypes */, const int /* nbInputs */) const { return DataType::kFLOAT; } const char* Taco2LSTMCellLayerPlugin::getPluginType() const { return getName(); } const char* Taco2LSTMCellLayerPlugin::getPluginVersion() const { return getVersion(); } int Taco2LSTMCellLayerPlugin::getNbOutputs() const { return 2; } DimsExprs Taco2LSTMCellLayerPlugin::getOutputDimensions( const int outputIndex, const DimsExprs* inputs, const int nbInputs, IExprBuilder& exprBuilder) { if (nbInputs != NUM_INPUTS) { throw std::runtime_error("Can only handle three input tensors: " + std::to_string(nbInputs)); } if (outputIndex == 0) { // hidden return DimsExprs{3, {inputs[INPUT_FIRST_INDEX].d[0], exprBuilder.constant(1), exprBuilder.constant(mNumDimension)}}; } else if (outputIndex == 1) { // cell return DimsExprs{3, {inputs[INPUT_FIRST_INDEX].d[0], exprBuilder.constant(1), exprBuilder.constant(mNumDimension)}}; } else { throw std::runtime_error("Invalid output index: " + std::to_string(outputIndex)); } } bool Taco2LSTMCellLayerPlugin::supportsFormatCombination( const int pos, const PluginTensorDesc* const inOut, const int /* nbInputs */, const int /* nbOutputs */) { return inOut[pos].format == TensorFormat::kLINEAR && inOut[pos].type == DataType::kFLOAT; } void Taco2LSTMCellLayerPlugin::configurePlugin(const DynamicPluginTensorDesc* const in, const int nbInputs, const DynamicPluginTensorDesc* const out, const int nbOutputs) { if (nbInputs != NUM_INPUTS) { throw std::runtime_error("Only three inputs is implemented: " + std::to_string(nbInputs)); } for (int i = 0; i < nbInputs; ++i) { if (in[i].desc.type != DataType::kFLOAT) { throw std::runtime_error("Only FLOAT supported as input " + std::to_string(i) + " : " + std::to_string(static_cast<int>(in[i].desc.type))); } } if (nbOutputs != 2) { throw std::runtime_error("Only two outputs is implemented: " + std::to_string(nbOutputs)); } for (int i = 0; i < nbOutputs; ++i) { if (out[i].desc.type != DataType::kFLOAT) { throw std::runtime_error("Only FLOAT supported as output: " + std::to_string(i) + " : " + std::to_string(static_cast<int>(out[i].desc.type))); } } { const Dims dims = in[INPUT_FIRST_INDEX].desc.dims; bool dimsFound = false; for (int d = 1; d < dims.nbDims; ++d) { if (dims.d[d] != 1) { if (dimsFound) { throw std::runtime_error("Invalid first input dimension: " + taco2::Taco2Utils::dimsToString(dims)); } mInputLengthFirst = dims.d[d]; dimsFound = true; } } if (!dimsFound) { throw std::runtime_error("Invalid first input dimension: " + taco2::Taco2Utils::dimsToString(dims)); } } { const Dims dims = in[INPUT_SECOND_INDEX].desc.dims; bool dimsFound = false; for (int d = 1; d < dims.nbDims; ++d) { if (dims.d[d] != 1) { if (dimsFound) { throw std::runtime_error( "Invalid second input dimension: " + taco2::Taco2Utils::dimsToString(dims)); } mInputLengthSecond = dims.d[d]; dimsFound = true; } } if (!dimsFound) { throw std::runtime_error("Invalid second input dimension: " + taco2::Taco2Utils::dimsToString(dims)); } } if (mInputLengthFirst + mInputLengthSecond != mInputLength) { throw std::runtime_error("Invalid input lenghts: " + std::to_string(mInputLengthFirst) + " " + std::to_string(mInputLengthSecond) + " != " + std::to_string(mInputLength)); } } int Taco2LSTMCellLayerPlugin::initialize() { try { mCell.reset(new Taco2LSTMCellKernel(mInputWeightsHost.data(), mHiddenWeightsHost.data(), mInputBiasHost.data(), mHiddenBiasHost.data(), mInputLength, mNumDimension, mUseFP16)); } catch (const std::exception& e) { std::cerr << "Taco2LSTMCellLayerPlugin initialization failed: " << e.what() << std::endl; return 1; } return 0; } void Taco2LSTMCellLayerPlugin::terminate() { mCell.reset(); } size_t Taco2LSTMCellLayerPlugin::getWorkspaceSize(const PluginTensorDesc* const /* in */, const int /* nbInputs */, const PluginTensorDesc* const /* out */, const int /* nbOutputs */) const { return 0; } int Taco2LSTMCellLayerPlugin::enqueue(const PluginTensorDesc* const inputDesc, const PluginTensorDesc* const /* outputDesc */, const void* const* const inputs, void* const* const outputs, void* const /*workspace*/, cudaStream_t stream) { const int batchSize = inputDesc[INPUT_FIRST_INDEX].dims.d[0]; if (batchSize != 1) { // we only support batch size of 1 right now std::cerr << "Taco2LSTMCellLayerPlugin plugin does not support batch size other than 1: got " << batchSize << std::endl; std::cerr << "Recompile without plugins to use a larger batch size." << std::endl; return 1; } else if (!mCell) { std::cerr << "Taco2LSTMCellLayerPlugin is not initialized properly." << std::endl; return 1; } // name inputs and outputs const value_type* const inputFirstDevice = static_cast<const value_type*>(inputs[INPUT_FIRST_INDEX]); const value_type* const inputSecondDevice = static_cast<const value_type*>(inputs[INPUT_SECOND_INDEX]); const value_type* const inputHiddenDevice = static_cast<const value_type*>(inputs[HIDDEN_INDEX]); const value_type* const inputCellDevice = static_cast<const value_type*>(inputs[CELL_INDEX]); value_type* const outputHiddenDevice = static_cast<value_type*>(outputs[0]); value_type* const outputCellDevice = static_cast<value_type*>(outputs[1]); // launch kernel to perform lstm on `(Wi+Wh)+(bi+bh)` mCell->execute(inputFirstDevice, inputSecondDevice, inputHiddenDevice, inputCellDevice, outputHiddenDevice, outputCellDevice, mInputLengthFirst, mInputLengthSecond, stream); return 0; } size_t Taco2LSTMCellLayerPlugin::getSerializationSize() const { return 5 * sizeof(int32_t) + numInputWeightBytes() + numHiddenWeightBytes() + 2 * numBiasBytes(); } void Taco2LSTMCellLayerPlugin::serialize(void* const buffer) const { static_cast<int32_t*>(buffer)[0] = mInputLength; static_cast<int32_t*>(buffer)[1] = mInputLengthFirst; static_cast<int32_t*>(buffer)[2] = mInputLengthSecond; static_cast<int32_t*>(buffer)[3] = mNumDimension; static_cast<int32_t*>(buffer)[4] = mUseFP16; float* const inputWeights = reinterpret_cast<float*>(static_cast<int32_t*>(buffer) + 5); float* const hiddenWeights = inputWeights + numInputWeights(); float* const inputBias = hiddenWeights + numHiddenWeights(); float* const hiddenBias = inputBias + numBiases(); memcpy(inputWeights, mInputWeightsHost.data(), numInputWeightBytes()); memcpy(hiddenWeights, mHiddenWeightsHost.data(), numHiddenWeightBytes()); memcpy(inputBias, mInputBiasHost.data(), numBiasBytes()); memcpy(hiddenBias, mHiddenBiasHost.data(), numBiasBytes()); } void Taco2LSTMCellLayerPlugin::destroy() { terminate(); } IPluginV2DynamicExt* Taco2LSTMCellLayerPlugin::clone() const { // call constructor which copy's data Taco2LSTMCellLayerPlugin clone( Weights{DataType::kFLOAT, mInputWeightsHost.data(), static_cast<int64_t>(mInputWeightsHost.size())}, Weights{DataType::kFLOAT, mHiddenWeightsHost.data(), static_cast<int64_t>(mHiddenWeightsHost.size())}, Weights{DataType::kFLOAT, mInputBiasHost.data(), static_cast<int64_t>(mInputBiasHost.size())}, Weights{DataType::kFLOAT, mHiddenBiasHost.data(), static_cast<int64_t>(mHiddenBiasHost.size())}, mInputLength, mNumDimension, mUseFP16); clone.mInputLengthFirst = mInputLengthFirst; clone.mInputLengthSecond = mInputLengthSecond; if (mCell) { // initialize the clone too clone.initialize(); } // move it to the heap last to avoid exceptions causing memory leaks return new Taco2LSTMCellLayerPlugin(std::move(clone)); } void Taco2LSTMCellLayerPlugin::setPluginNamespace(const char* pluginNamespace) { mNamespace = pluginNamespace; } const char* Taco2LSTMCellLayerPlugin::getPluginNamespace() const { return mNamespace.c_str(); } /****************************************************************************** * PRIVATE METHODS ************************************************************ *****************************************************************************/ int Taco2LSTMCellLayerPlugin::numInputWeights() const { return mNumDimension * mInputLength * 4; } int Taco2LSTMCellLayerPlugin::numHiddenWeights() const { return mNumDimension * mNumDimension * 4; } int Taco2LSTMCellLayerPlugin::numBiases() const { return mNumDimension * 4; } size_t Taco2LSTMCellLayerPlugin::numInputWeightBytes() const { return numInputWeights() * sizeof(value_type); } size_t Taco2LSTMCellLayerPlugin::numHiddenWeightBytes() const { return numHiddenWeights() * sizeof(value_type); } size_t Taco2LSTMCellLayerPlugin::numBiasBytes() const { return numBiases() * sizeof(value_type); } } // namespace plugin } // namespace nvinfer1
PyTorch/SpeechSynthesis/Tacotron2/filelists
filelists
ljs_audio_text_train_subset_64_filelist
LJSpeech-1.1/wavs/LJ040-0100.wav|she would sometimes take Lee with her, apparently leaving him alone in the car while she transacted her business. LJSpeech-1.1/wavs/LJ011-0248.wav|Howard, strange to say, making no attempt to detain him; probably because Mullay promised to return a few days later, and to bring more money. LJSpeech-1.1/wavs/LJ016-0442.wav|made a determined effort to burn himself to death by throwing himself bodily on to the fire in the condemned ward. LJSpeech-1.1/wavs/LJ026-0036.wav|and then a balance must be struck and the doubtful form placed in the kingdom with which it has, on the whole, most points in common. LJSpeech-1.1/wavs/LJ042-0176.wav|One offers oppression, the other poverty. Both offer imperialistic injustice, tinted with two brands of slavery, end quote. LJSpeech-1.1/wavs/LJ003-0323.wav|Drunkenness, if it ever occurred, should be visited with severe punishment; LJSpeech-1.1/wavs/LJ045-0161.wav|He was upset over the fact that I would not answer him. LJSpeech-1.1/wavs/LJ028-0187.wav|Cyrus decided that Babylon must be taken. LJSpeech-1.1/wavs/LJ037-0178.wav|or one used Remington-Peters cartridge case, which may have been in the revolver before the shooting, LJSpeech-1.1/wavs/LJ010-0164.wav|Oxford, who was only nineteen at the time his offense was committed, had been born at Birmingham, LJSpeech-1.1/wavs/LJ019-0178.wav|and abandoned because of the expense. As to the entire reconstruction of Newgate, nothing had been done as yet. LJSpeech-1.1/wavs/LJ050-0117.wav|particularly those arising from organized groups, within their special jurisdiction. LJSpeech-1.1/wavs/LJ033-0128.wav|that the bag Oswald carried contained the assassination weapon and has concluded that Frazier and Randle are mistaken as to the length of the bag. LJSpeech-1.1/wavs/LJ007-0179.wav|defeats the ends of justice, and disgraces the profession of a Christian country. LJSpeech-1.1/wavs/LJ033-0067.wav|She pointed to the blanket which was on the floor very close to where Ruth Paine was standing. LJSpeech-1.1/wavs/LJ004-0139.wav|"In the morning the stench and heat were so oppressive that he and every one else on waking rushed unclothed into the yard;" LJSpeech-1.1/wavs/LJ009-0208.wav|erected on the cart, about four feet high at the head, and gradually sloping towards the horse, giving a full view of the body, LJSpeech-1.1/wavs/LJ012-0144.wav|and passed it on to Solomons by his daughter, a widow named Abrahams. LJSpeech-1.1/wavs/LJ001-0020.wav|the "lower-case" being in fact invented in the early Middle Ages. LJSpeech-1.1/wavs/LJ014-0227.wav|One of these was Mobbs, who lived in the Minories, LJSpeech-1.1/wavs/LJ040-0146.wav|He noted that Lee liked to give the impression that he did not care for other people but preferred to keep to himself, LJSpeech-1.1/wavs/LJ001-0149.wav|From the time when books first took their present shape till the end of the sixteenth century, or indeed later, LJSpeech-1.1/wavs/LJ002-0143.wav|The commissioners who presided were, quote, little otherwise than self-elected LJSpeech-1.1/wavs/LJ014-0217.wav|Dwyer managed to overpower his assailant, and got to his feet; but Cannon butted at him with his head, and again threw him to the ground, LJSpeech-1.1/wavs/LJ005-0250.wav|The prisoners were crowded together in the jail, contrary to the requirements of the four George the fourth LJSpeech-1.1/wavs/LJ042-0049.wav|I never believed I would find more material advantages at this stage of development in the Soviet Union than I might of had in the U.S. LJSpeech-1.1/wavs/LJ014-0198.wav|Marley at his trial was undefended, and the sheriffs offered him counsel; but he declined. The witnesses against him all spoke the truth, he said; LJSpeech-1.1/wavs/LJ034-0093.wav|Brennan also testified that Lee Harvey Oswald, LJSpeech-1.1/wavs/LJ016-0237.wav|With Calcraft's method there were undoubtedly many failures, and it was a common custom for him to go below the gallows LJSpeech-1.1/wavs/LJ015-0156.wav|Down at Weybridge, where he had a country place, his name was long remembered with gratitude by the poor. LJSpeech-1.1/wavs/LJ018-0047.wav|He adhered to this almost to the very last. His case had been warmly espoused by the Society for the Protection of Germans in this country, LJSpeech-1.1/wavs/LJ013-0020.wav|he acted in a manner which excited the suspicions of the crew. LJSpeech-1.1/wavs/LJ002-0041.wav|Two other wards were appropriated to the master's side debtors; they were each twenty-three feet by fourteen and a half, LJSpeech-1.1/wavs/LJ008-0227.wav|slipshod and slovenly, in crushed bonnet and dirty shawl, the gown fastened by a single hook, LJSpeech-1.1/wavs/LJ007-0029.wav|The condition of the capitally-convicted prisoners after sentence was still very disgraceful. The side they occupied, still known as the press-yard, LJSpeech-1.1/wavs/LJ018-0358.wav|Christina Edmunds had resort to strychnia, the same lethal drug that Palmer used; LJSpeech-1.1/wavs/LJ007-0198.wav|The windows were to be glazed and painted to prevent prisoners from looking out; LJSpeech-1.1/wavs/LJ043-0032.wav|After about a two-week separation, Marina Oswald returned to her husband. LJSpeech-1.1/wavs/LJ035-0071.wav|At a given signal, they reenacted the event. Baker's movements were timed with a stopwatch. LJSpeech-1.1/wavs/LJ009-0092.wav|his legs give way, he utters a faint groan, and sinks on the floor. LJSpeech-1.1/wavs/LJ019-0310.wav|which had long been admitted as indispensable, and had never as yet been properly obtained. LJSpeech-1.1/wavs/LJ038-0071.wav|When he entered the homicide and robbery bureau office, he saw two detectives standing there with Sgt. Gerald L. Hill, LJSpeech-1.1/wavs/LJ014-0291.wav|he showed symptoms of delirium tremens, and admitted that he had been addicted to the excessive use of stimulants. LJSpeech-1.1/wavs/LJ014-0283.wav|The jury found him guilty of the latter only, with a point of law reserved. This was fully argued before three judges, LJSpeech-1.1/wavs/LJ021-0096.wav|under the able and energetic leadership of General Johnson. LJSpeech-1.1/wavs/LJ045-0075.wav|She was, quote, sorry that I had not married him (the Russian boyfriend) instead, that it would have been much easier for me, end quote. LJSpeech-1.1/wavs/LJ022-0203.wav|For that we can be thankful to the God who watches over America. LJSpeech-1.1/wavs/LJ029-0073.wav|that the President would arrive and depart from Dallas' Love Field; that a motorcade through the downtown area of Dallas to the luncheon site should be arranged; LJSpeech-1.1/wavs/LJ040-0187.wav|According to Sokolow, this indicated a, quote, present intellectual functioning in the upper range of bright normal intelligence, end quote. LJSpeech-1.1/wavs/LJ016-0101.wav|One of the three, shamming ill, remained all day in his ward, where he employed himself unraveling the rope from the sleeping-mats. LJSpeech-1.1/wavs/LJ015-0086.wav|He kept open house at Kilburn Priory; LJSpeech-1.1/wavs/LJ028-0427.wav|The enormous amount of debris which buried the palaces and temples and walls of Nebuchadnezzar's city, in places to the depth of a hundred feet, LJSpeech-1.1/wavs/LJ048-0248.wav|President Kennedy was scheduled to speak across the street from his hotel in Fort Worth at eight:thirty a.m. LJSpeech-1.1/wavs/LJ021-0095.wav|We are now prepared to move into this second phase, on the basis of our experience in the first phase LJSpeech-1.1/wavs/LJ030-0081.wav|They were instructed to watch particularly for thrown objects, sudden actions in the crowd, and any movements toward the Presidential car. LJSpeech-1.1/wavs/LJ032-0176.wav|Moreover, the bus transfer which he obtained as he left the bus was still in the pocket when he was arrested. LJSpeech-1.1/wavs/LJ044-0129.wav|and often it is advisable for some people to remain in the background, not underground, end quote. LJSpeech-1.1/wavs/LJ018-0177.wav|But as there was no independent corroboration of the informer's evidence, according to the custom of the British law, LJSpeech-1.1/wavs/LJ049-0113.wav|This point was ably made in the nineteen oh two debate by Senator George F. Hoar, the sponsor of the Senate bill, quote, LJSpeech-1.1/wavs/LJ050-0141.wav|As a beginning step to improve liaison with local law enforcement officials, the Secret Service on August twenty-six, nineteen sixty-four, LJSpeech-1.1/wavs/LJ013-0156.wav|a scion of the ducal house of Bedford, by his confidential valet and personal attendant. LJSpeech-1.1/wavs/LJ032-0222.wav|Moreover, Shaneyfelt testified that in his opinion the photographs were not composites of two different photographs LJSpeech-1.1/wavs/LJ004-0052.wav|which Howard had eulogized some forty years before. LJSpeech-1.1/wavs/LJ006-0017.wav|with those who made the selection of the first inspectors, and the two gentlemen appointed were probably the most fitted in England to be so employed.
Tools/DGLPyTorch/SyntheticGraphGeneration/syngen/generator/graph
graph
rmat
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from typing import List, Optional, Set, Tuple import numpy as np from syngen.generator.graph.fitter import RMATFitter from syngen.generator.graph.base_graph_generator import BaseGraphGenerator from syngen.generator.graph.utils import ( effective_nonsquare_rmat_exact, generate_gpu_rmat, generate_gpu_chunked_rmat, ) class RMATGenerator(BaseGraphGenerator): """ Graph generator based on RMAT that generate non-partite graphs Args: seed (int): Seed to reproduce the results. If None then random seed will be used. logdir (str): Directory to store the logging results. fitter (RMATFitter): RMATFitter to be used. """ def __init__( self, seed: Optional[int] = None, logdir: str = "./logs", gpu: bool = True, fitter: Optional[RMATFitter] = None, **kwargs, ): super().__init__(seed, logdir, gpu) self.fitter = fitter or RMATFitter() def fit(self, *args, **kwargs): """ Fits generator on the graph Args: """ self._fit_results = self.fitter.fit(*args, **kwargs) self.logger.log(f"Fit results: {self._fit_results}") def _generate_part( self, fit_results: Tuple[float, float, float, float], part_shape: Tuple[int, int], num_edges: int, has_self_loop: bool, is_directed: bool, noise: float, batch_size: int, return_node_ids: bool, save_path: Optional[str], ): if self.gpu: return self._generate_part_gpu( fit_results=fit_results, part_shape=part_shape, num_edges=num_edges, has_self_loop=has_self_loop, is_directed=is_directed, noise=noise, return_node_ids=return_node_ids, save_path=save_path, ) else: return self._generate_part_cpu( fit_results=fit_results, part_shape=part_shape, num_edges=num_edges, has_self_loop=has_self_loop, is_directed=is_directed, noise=noise, batch_size=batch_size, return_node_ids=return_node_ids, ) def _generate_part_cpu( self, fit_results: Tuple[float, float, float, float], part_shape: Tuple[int, int], num_edges: int, has_self_loop: bool, is_directed: bool, noise: float, batch_size: int, return_node_ids: bool, ): a, b, c, d = fit_results theta = np.array([[a, b], [c, d]]) theta /= a + b + c + d res = effective_nonsquare_rmat_exact( theta, num_edges, part_shape, noise_scaling=noise, batch_size=batch_size, dtype=np.int64, custom_samplers=None, generate_back_edges=not is_directed, remove_selfloops=not has_self_loop, return_node_ids=return_node_ids, verbose=self.verbose, ) if return_node_ids: return res[0], res[1] return res[0] def _generate_part_gpu( self, fit_results: Tuple[float, float, float, float], part_shape: Tuple[int, int], num_edges: int, has_self_loop: bool, is_directed: bool, noise: float, return_node_ids: bool, save_path: Optional[str], _chunked: bool = True, ): a, b, c, d = fit_results theta = np.array([a, b, c, d]) theta /= a + b + c + d a, b, c, d = theta r_scale, c_scale = part_shape if _chunked: res = generate_gpu_chunked_rmat( a, b, c, d, r_scale=r_scale, c_scale=c_scale, n_edges=num_edges, noise=noise, is_directed=is_directed, has_self_loop=has_self_loop, return_node_ids=1 if return_node_ids else 0, save_path=save_path, verbose=self.verbose, ) else: res = generate_gpu_rmat( a, b, c, d, r_scale=r_scale, c_scale=c_scale, n_edges=num_edges, noise=noise, is_directed=is_directed, has_self_loop=has_self_loop, return_node_ids=1 if return_node_ids else 0, ) if return_node_ids: return res[0], res[1] return res def generate( self, num_nodes: int, num_edges: int, is_directed: bool, has_self_loop: bool, noise: float = 0.5, batch_size: int = 1_000_000, return_node_ids: bool = False, save_path: Optional[str] = None, *args, **kwargs, ): """ Generates graph with approximately `num_nodes` nodes and exactly `num_edges` edges from generator Args: num_nodes (int): approximate number of nodes to be generated num_edges(int): exact number of edges to be generated is_directed (bool): flag indicating whether the generated graph has to be directed has_self_loop (bool): flag indicating whether to generate self loops noise (float): noise for RMAT generation to get better degree distribution batch_size (int): size of the edge chunk that will be generated in one generation step (cpu parameter) return_node_ids (bool): flag indicating whether the generator has to return nodes_ids as the second output save_path (bool): path to store the graph. if specified the method return the number of edges in the graph Returns: new_graph (np.array[int, int]): generated graph """ assert num_nodes > 0, "Wrong number of nodes" assert num_edges > 0, "Wrong number of edges" max_edges = ( num_nodes * num_nodes if has_self_loop else num_nodes * (num_nodes - 1) ) if is_directed: max_edges = max_edges / 2 assert ( num_edges < max_edges ), "Configuration of nodes and edges cannot form any graph" assert ( self._fit_results ), "There are no fit results, call fit method first or load the seeding matrix from the file" log2_nodes = math.ceil(math.log2(num_nodes)) part_shape = (log2_nodes, log2_nodes) res = self._generate_part( fit_results=self._fit_results, part_shape=part_shape, num_edges=num_edges, has_self_loop=has_self_loop, is_directed=is_directed, noise=noise, batch_size=batch_size, return_node_ids=return_node_ids, save_path=save_path, ) if return_node_ids: return res[0], res[1] return res
PyTorch/LanguageModeling/BART/bart/tokenization
tokenization
tokenization_utils_base
# coding=utf-8 # Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Base classes common to both the slow and the fast tokenization classes: PreTrainedTokenizerBase (host all the user fronting encoding methodes) Special token mixing (host the special tokens logic) and BatchEncoding (wrap the dictionnary of output with special method for the Fast tokenizers) """ import copy import json import logging import os import warnings from collections import OrderedDict, UserDict from enum import Enum from typing import Any, Dict, List, NamedTuple, Optional, Sequence, Tuple, Union import numpy as np from tokenizers import AddedToken from tokenizers import Encoding as EncodingFast from utils.file_utils import ( add_end_docstrings, cached_path, hf_bucket_url, is_remote_url, is_tf_available, is_torch_available, torch_required, ) if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch logger = logging.getLogger(__name__) VERY_LARGE_INTEGER = int(1e30) # This is used to set the max input length for a model with infinite size input LARGE_INTEGER = int(1e20) # This is used when we need something big but slightly smaller than VERY_LARGE_INTEGER # Define type aliases and NamedTuples TextInput = str PreTokenizedInput = List[str] EncodedInput = List[int] TextInputPair = Tuple[str, str] PreTokenizedInputPair = Tuple[List[str], List[str]] EncodedInputPair = Tuple[List[int], List[int]] # Slow tokenizers used to be saved in three separated files SPECIAL_TOKENS_MAP_FILE = "special_tokens_map.json" ADDED_TOKENS_FILE = "added_tokens.json" TOKENIZER_CONFIG_FILE = "tokenizer_config.json" # Fast tokenizers (provided by HuggingFace tokenizer's library) can be saved in a single file FULL_TOKENIZER_FILE = "tokenizer.json" class ExplicitEnum(Enum): """ Enum with more explicit error message for missing values. """ @classmethod def _missing_(cls, value): raise ValueError( "%r is not a valid %s, please select one of %s" % (value, cls.__name__, str(list(cls._value2member_map_.keys()))) ) class TruncationStrategy(ExplicitEnum): """ Possible values for the ``truncation`` argument in :meth:`PreTrainedTokenizerBase.__call__`. Useful for tab-completion in an IDE. """ ONLY_FIRST = "only_first" ONLY_SECOND = "only_second" LONGEST_FIRST = "longest_first" DO_NOT_TRUNCATE = "do_not_truncate" class PaddingStrategy(ExplicitEnum): """ Possible values for the ``padding`` argument in :meth:`PreTrainedTokenizerBase.__call__`. Useful for tab-completion in an IDE. """ LONGEST = "longest" MAX_LENGTH = "max_length" DO_NOT_PAD = "do_not_pad" class TensorType(ExplicitEnum): """ Possible values for the ``return_tensors`` argument in :meth:`PreTrainedTokenizerBase.__call__`. Useful for tab-completion in an IDE. """ PYTORCH = "pt" TENSORFLOW = "tf" NUMPY = "np" class CharSpan(NamedTuple): """ Character span in the original string. Args: start (:obj:`int`): Index of the first character in the original string. end (:obj:`int`): Index of the character following the last character in the original string. """ start: int end: int class TokenSpan(NamedTuple): """ Token span in an encoded string (list of tokens). Args: start (:obj:`int`): Index of the first token in the span. end (:obj:`int`): Index of the token following the last token in the span. """ start: int end: int class BatchEncoding(UserDict): """ Holds the output of the :meth:`~transformers.tokenization_utils_base.PreTrainedTokenizerBase.encode_plus` and :meth:`~transformers.tokenization_utils_base.PreTrainedTokenizerBase.batch_encode` methods (tokens, attention_masks, etc). This class is derived from a python dictionary and can be used as a dictionary. In addition, this class exposes utility methods to map from word/character space to token space. Args: data (:obj:`dict`): Dictionary of lists/arrays/tensors returned by the encode/batch_encode methods ('input_ids', 'attention_mask', etc.). encoding (:obj:`tokenizers.Encoding` or :obj:`Sequence[tokenizers.Encoding]`, `optional`): If the tokenizer is a fast tokenizer which outputs additional informations like mapping from word/character space to token space the :obj:`tokenizers.Encoding` instance or list of instance (for batches) hold these informations. tensor_type (:obj:`Union[None, str, TensorType]`, `optional`): You can give a tensor_type here to convert the lists of integers in PyTorch/TensorFlow/Numpy Tensors at initialization. prepend_batch_axis (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to add a batch axis when converting to tensors (see :obj:`tensor_type` above). """ def __init__( self, data: Optional[Dict[str, Any]] = None, encoding: Optional[Union[EncodingFast, Sequence[EncodingFast]]] = None, tensor_type: Union[None, str, TensorType] = None, prepend_batch_axis: bool = False, ): super().__init__(data) if isinstance(encoding, EncodingFast): encoding = [encoding] self._encodings = encoding self.convert_to_tensors(tensor_type=tensor_type, prepend_batch_axis=prepend_batch_axis) @property def is_fast(self) -> bool: """ :obj:`bool`: Indicate whether this :class:`~transformers.BatchEncoding` was generated from the result of a :class:`~transformers.PreTrainedTokenizerFast` or not. """ return self._encodings is not None def __getitem__(self, item: Union[int, str]) -> Union[Any, EncodingFast]: """ If the key is a string, returns the value of the dict associated to :obj:`key` ('input_ids', 'attention_mask', etc.). If the key is an integer, get the :obj:`tokenizers.Encoding` for batch item with index :obj:`key`. """ if isinstance(item, str): return self.data[item] elif self._encodings is not None: return self._encodings[item] else: raise KeyError( "Indexing with integers (to access backend Encoding for a given batch index) " "is not available when using Python based tokenizers" ) def __getattr__(self, item: str): try: return self.data[item] except KeyError: raise AttributeError def __getstate__(self): return {"data": self.data, "encodings": self._encodings} def __setstate__(self, state): if "data" in state: self.data = state["data"] if "encodings" in state: self._encodings = state["encodings"] def keys(self): return self.data.keys() def values(self): return self.data.values() def items(self): return self.data.items() # After this point: # Extended properties and methods only available for fast (Rust-based) tokenizers # provided by HuggingFace tokenizers library. @property def encodings(self) -> Optional[List[EncodingFast]]: """ :obj:`Optional[List[tokenizers.Encoding]]`: The list all encodings from the tokenization process. Returns :obj:`None` if the input was tokenized through Python (i.e., not a fast) tokenizer. """ return self._encodings def tokens(self, batch_index: int = 0) -> List[str]: """ Return the list of tokens (sub-parts of the input strings after word/subword splitting and before converstion to integer indices) at a given batch index (only works for the output of a fast tokenizer). Args: batch_index (:obj:`int`, `optional`, defaults to 0): The index to access in the batch. Returns: :obj:`List[str]`: The list of tokens at that index. """ if not self._encodings: raise ValueError("tokens() is not available when using Python-based tokenizers") return self._encodings[batch_index].tokens def words(self, batch_index: int = 0) -> List[Optional[int]]: """ Return a list mapping the tokens to their actual word in the initial sentence for a fast tokenizer. Args: batch_index (:obj:`int`, `optional`, defaults to 0): The index to access in the batch. Returns: :obj:`List[Optional[int]]`: A list indicating the word corresponding to each token. Special tokens added by the tokenizer are mapped to :obj:`None` and other tokens are mapped to the index of their corresponding word (several tokens will be mapped to the same word index if they are parts of that word). """ if not self._encodings: raise ValueError("words() is not available when using Python-based tokenizers") return self._encodings[batch_index].words def token_to_word(self, batch_or_token_index: int, token_index: Optional[int] = None) -> int: """ Get the index of the word corresponding (i.e. comprising) to an encoded token in a sequence of the batch. Can be called as: - ``self.token_to_word(token_index)`` if batch size is 1 - ``self.token_to_word(batch_index, token_index)`` if batch size is greater than 1 This method is particularly suited when the input sequences are provided as pre-tokenized sequences (i.e., words are defined by the user). In this case it allows to easily associate encoded tokens with provided tokenized words. Args: batch_or_token_index (:obj:`int`): Index of the sequence in the batch. If the batch only comprise one sequence, this can be the index of the token in the sequence. token_index (:obj:`int`, `optional`): If a batch index is provided in `batch_or_token_index`, this can be the index of the token in the sequence. Returns: :obj:`int`: Index of the word in the input sequence. """ if not self._encodings: raise ValueError("token_to_word() is not available when using Python based tokenizers") if token_index is not None: batch_index = batch_or_token_index else: batch_index = 0 token_index = batch_or_token_index if batch_index < 0: batch_index = self._batch_size + batch_index if token_index < 0: token_index = self._seq_len + token_index return self._encodings[batch_index].token_to_word(token_index) def word_to_tokens(self, batch_or_word_index: int, word_index: Optional[int] = None) -> TokenSpan: """ Get the encoded token span corresponding to a word in the sequence of the batch. Token spans are returned as a :class:`~transformers.tokenization_utils_base.TokenSpan` with: - **start** -- Index of the first token. - **end** -- Index of the token following the last token. Can be called as: - ``self.word_to_tokens(word_index)`` if batch size is 1 - ``self.word_to_tokens(batch_index, word_index)`` if batch size is greater or equal to 1 This method is particularly suited when the input sequences are provided as pre-tokenized sequences (i.e. words are defined by the user). In this case it allows to easily associate encoded tokens with provided tokenized words. Args: batch_or_word_index (:obj:`int`): Index of the sequence in the batch. If the batch only comprises one sequence, this can be the index of the word in the sequence. word_index (:obj:`int`, `optional`): If a batch index is provided in `batch_or_token_index`, this can be the index of the word in the sequence. Returns: :class:`~transformers.tokenization_utils_base.TokenSpan` Span of tokens in the encoded sequence. """ if not self._encodings: raise ValueError("word_to_tokens() is not available when using Python based tokenizers") if word_index is not None: batch_index = batch_or_word_index else: batch_index = 0 word_index = batch_or_word_index if batch_index < 0: batch_index = self._batch_size + batch_index if word_index < 0: word_index = self._seq_len + word_index return TokenSpan(*(self._encodings[batch_index].word_to_tokens(word_index))) def token_to_chars(self, batch_or_token_index: int, token_index: Optional[int] = None) -> CharSpan: """ Get the character span corresponding to an encoded token in a sequence of the batch. Character spans are returned as a :class:`~transformers.tokenization_utils_base.CharSpan` with: - **start** -- Index of the first character in the original string associated to the token. - **end** -- Index of the character following the last character in the original string associated to the token. Can be called as: - ``self.token_to_chars(token_index)`` if batch size is 1 - ``self.token_to_chars(batch_index, token_index)`` if batch size is greater or equal to 1 Args: batch_or_token_index (:obj:`int`): Index of the sequence in the batch. If the batch only comprise one sequence, this can be the index of the token in the sequence. token_index (:obj:`int`, `optional`): If a batch index is provided in `batch_or_token_index`, this can be the index of the token or tokens in the sequence. Returns: :class:`~transformers.tokenization_utils_base.CharSpan`: Span of characters in the original string. """ if not self._encodings: raise ValueError("token_to_chars() is not available when using Python based tokenizers") if token_index is not None: batch_index = batch_or_token_index else: batch_index = 0 token_index = batch_or_token_index return CharSpan(*(self._encodings[batch_index].token_to_chars(token_index))) def char_to_token(self, batch_or_char_index: int, char_index: Optional[int] = None) -> int: """ Get the index of the token in the encoded output comprising a character in the original string for a sequence of the batch. Can be called as: - ``self.char_to_token(char_index)`` if batch size is 1 - ``self.char_to_token(batch_index, char_index)`` if batch size is greater or equal to 1 This method is particularly suited when the input sequences are provided as pre-tokenized sequences (i.e. words are defined by the user). In this case it allows to easily associate encoded tokens with provided tokenized words. Args: batch_or_char_index (:obj:`int`): Index of the sequence in the batch. If the batch only comprise one sequence, this can be the index of the word in the sequence char_index (:obj:`int`, `optional`): If a batch index is provided in `batch_or_token_index`, this can be the index of the word in the sequence. Returns: :obj:`int`: Index of the token. """ if not self._encodings: raise ValueError("char_to_token() is not available when using Python based tokenizers") if char_index is not None: batch_index = batch_or_char_index else: batch_index = 0 char_index = batch_or_char_index return self._encodings[batch_index].char_to_token(char_index) def word_to_chars(self, batch_or_word_index: int, word_index: Optional[int] = None) -> CharSpan: """ Get the character span in the original string corresponding to given word in a sequence of the batch. Character spans are returned as a CharSpan NamedTuple with: - start: index of the first character in the original string - end: index of the character following the last character in the original string Can be called as: - ``self.word_to_chars(word_index)`` if batch size is 1 - ``self.word_to_chars(batch_index, word_index)`` if batch size is greater or equal to 1 Args: batch_or_word_index (:obj:`int`): Index of the sequence in the batch. If the batch only comprise one sequence, this can be the index of the word in the sequence word_index (:obj:`int`, `optional`): If a batch index is provided in `batch_or_token_index`, this can be the index of the word in the sequence. Returns: :obj:`CharSpan` or :obj:`List[CharSpan]`: Span(s) of the associated character or characters in the string. CharSpan are NamedTuple with: - start: index of the first character associated to the token in the original string - end: index of the character following the last character associated to the token in the original string """ if not self._encodings: raise ValueError("word_to_chars() is not available when using Python based tokenizers") if word_index is not None: batch_index = batch_or_word_index else: batch_index = 0 word_index = batch_or_word_index return CharSpan(*(self._encodings[batch_index].word_to_chars(word_index))) def char_to_word(self, batch_or_char_index: int, char_index: Optional[int] = None) -> int: """ Get the word in the original string corresponding to a character in the original string of a sequence of the batch. Can be called as: - ``self.char_to_word(char_index)`` if batch size is 1 - ``self.char_to_word(batch_index, char_index)`` if batch size is greater than 1 This method is particularly suited when the input sequences are provided as pre-tokenized sequences (i.e. words are defined by the user). In this case it allows to easily associate encoded tokens with provided tokenized words. Args: batch_or_char_index (:obj:`int`): Index of the sequence in the batch. If the batch only comprise one sequence, this can be the index of the character in the orginal string. char_index (:obj:`int`, `optional`): If a batch index is provided in `batch_or_token_index`, this can be the index of the character in the orginal string. Returns: :obj:`int` or :obj:`List[int]`: Index or indices of the associated encoded token(s). """ if not self._encodings: raise ValueError("char_to_word() is not available when using Python based tokenizers") if char_index is not None: batch_index = batch_or_char_index else: batch_index = 0 char_index = batch_or_char_index return self._encodings[batch_index].char_to_word(char_index) def convert_to_tensors( self, tensor_type: Optional[Union[str, TensorType]] = None, prepend_batch_axis: bool = False ): """ Convert the inner content to tensors. Args: tensor_type (:obj:`str` or :class:`~transformers.tokenization_utils_base.TensorType`, `optional`): The type of tensors to use. If :obj:`str`, should be one of the values of the enum :class:`~transformers.tokenization_utils_base.TensorType`. If :obj:`None`, no modification is done. prepend_batch_axis (:obj:`int`, `optional`, defaults to :obj:`False`): Whether or not to add the batch dimension during the conversion. """ if tensor_type is None: return self # Convert to TensorType if not isinstance(tensor_type, TensorType): tensor_type = TensorType(tensor_type) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW and is_tf_available(): as_tensor = tf.constant elif tensor_type == TensorType.PYTORCH and is_torch_available(): as_tensor = torch.tensor elif tensor_type == TensorType.NUMPY: as_tensor = np.asarray else: raise ImportError( "Unable to convert output to tensors format {}, PyTorch or TensorFlow is not available.".format( tensor_type ) ) # Do the tensor conversion in batch for key, value in self.items(): try: if prepend_batch_axis: value = [value] tensor = as_tensor(value) # Removing this for now in favor of controling the shape with `prepend_batch_axis` # # at-least2d # if tensor.ndim > 2: # tensor = tensor.squeeze(0) # elif tensor.ndim < 2: # tensor = tensor[None, :] self[key] = tensor except: # noqa E722 if key == "overflowing_tokens": raise ValueError( "Unable to create tensor returning overflowing tokens of different lengths. " "Please see if a fast version of this tokenizer is available to have this feature available." ) raise ValueError( "Unable to create tensor, you should probably activate truncation and/or padding " "with 'padding=True' 'truncation=True' to have batched tensors with the same length." ) return self @torch_required def to(self, device: str) -> "BatchEncoding": """ Send all values to device by calling :obj:`v.to(device)` (PyTorch only). Args: device (:obj:`str` or :obj:`torch.device`): The device to put the tensors on. Returns: :class:`~transformers.BatchEncoding`: The same instance of :class:`~transformers.BatchEncoding` after modification. """ self.data = {k: v.to(device) for k, v in self.data.items()} return self class SpecialTokensMixin: """ A mixin derived by :class:`~transformers.PreTrainedTokenizer` and :class:`~transformers.PreTrainedTokenizerFast` to handle specific behaviors related to special tokens. In particular, this class hold the attributes which can be used to directly access these special tokens in a model-independant manner and allow to set and update the special tokens. Args: bos_token (:obj:`str` or :obj:`tokenizers.AddedToken`, `optional`): A special token representing the beginning of a sentence. eos_token (:obj:`str` or :obj:`tokenizers.AddedToken`, `optional`): A special token representing the end of a sentence. unk_token (:obj:`str` or :obj:`tokenizers.AddedToken`, `optional`): A special token representing an out-of-vocabulary token. sep_token (:obj:`str` or :obj:`tokenizers.AddedToken`, `optional`): A special token separating two different sentences in the same input (used by BERT for instance). pad_token (:obj:`str` or :obj:`tokenizers.AddedToken`, `optional`): A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by attention mechanisms or loss computation. cls_token (:obj:`str` or :obj:`tokenizers.AddedToken`, `optional`): A special token representing the class of the input (used by BERT for instance). mask_token (:obj:`str` or :obj:`tokenizers.AddedToken`, `optional`): A special token representing a masked token (used by masked-language modeling pretraining objectives, like BERT). additional_special_tokens (tuple or list of :obj:`str` or :obj:`tokenizers.AddedToken`, `optional`): A tuple or a list of additional special tokens. """ SPECIAL_TOKENS_ATTRIBUTES = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", "additional_special_tokens", ] def __init__(self, verbose=True, **kwargs): self._bos_token = None self._eos_token = None self._unk_token = None self._sep_token = None self._pad_token = None self._cls_token = None self._mask_token = None self._pad_token_type_id = 0 self._additional_special_tokens = [] self.verbose = verbose # We directly set the hidden value to allow initialization with special tokens # which are not yet in the vocabulary. Necesssary for serialization/de-serialization # TODO clean this up at some point (probably by sitching to fast tokenizers) for key, value in kwargs.items(): if key in self.SPECIAL_TOKENS_ATTRIBUTES: if key == "additional_special_tokens": assert isinstance(value, (list, tuple)), f"Value {value} is not a list or tuple" assert all(isinstance(t, str) for t in value), "One of the tokens is not a string" setattr(self, key, value) elif isinstance(value, (str, AddedToken)): setattr(self, key, value) else: raise TypeError( "special token {} has to be either str or AddedToken but got: {}".format(key, type(value)) ) def sanitize_special_tokens(self) -> int: """ Make sure that all the special tokens attributes of the tokenizer (:obj:`tokenizer.mask_token`, :obj:`tokenizer.cls_token`, etc.) are in the vocabulary. Add the missing ones to the vocabulary if needed. Return: :obj:`int`: The number of tokens added in the vocaulary during the operation. """ return self.add_tokens(self.all_special_tokens_extended, special_tokens=True) def add_special_tokens(self, special_tokens_dict: Dict[str, Union[str, AddedToken]]) -> int: """ Add a dictionary of special tokens (eos, pad, cls, etc.) to the encoder and link them to class attributes. If special tokens are NOT in the vocabulary, they are added to it (indexed starting from the last index of the current vocabulary). Using : obj:`add_special_tokens` will ensure your special tokens can be used in several ways: - Special tokens are carefully handled by the tokenizer (they are never split). - You can easily refer to special tokens using tokenizer class attributes like :obj:`tokenizer.cls_token`. This makes it easy to develop model-agnostic training and fine-tuning scripts. When possible, special tokens are already registered for provided pretrained models (for instance :class:`~transformers.BertTokenizer` :obj:`cls_token` is already registered to be :obj`'[CLS]'` and XLM's one is also registered to be :obj:`'</s>'`). Args: special_tokens_dict (dictionary `str` to `str` or :obj:`tokenizers.AddedToken`): Keys should be in the list of predefined special attributes: [``bos_token``, ``eos_token``, ``unk_token``, ``sep_token``, ``pad_token``, ``cls_token``, ``mask_token``, ``additional_special_tokens``]. Tokens are only added if they are not already in the vocabulary (tested by checking if the tokenizer assign the index of the ``unk_token`` to them). Returns: :obj:`int`: Number of tokens added to the vocabulary. Examples:: # Let's see how to add a new classification token to GPT-2 tokenizer = GPT2Tokenizer.from_pretrained('gpt2') model = GPT2Model.from_pretrained('gpt2') special_tokens_dict = {'cls_token': '<CLS>'} num_added_toks = tokenizer.add_special_tokens(special_tokens_dict) print('We have added', num_added_toks, 'tokens') # Notice: resize_token_embeddings expect to receive the full size of the new vocabulary, i.e., the length of the tokenizer. model.resize_token_embeddings(len(tokenizer)) assert tokenizer.cls_token == '<CLS>' """ if not special_tokens_dict: return 0 added_tokens = 0 for key, value in special_tokens_dict.items(): assert key in self.SPECIAL_TOKENS_ATTRIBUTES, f"Key {key} is not a special token" if self.verbose: logger.info("Assigning %s to the %s key of the tokenizer", value, key) setattr(self, key, value) if key == "additional_special_tokens": assert isinstance(value, (list, tuple)) and all( isinstance(t, (str, AddedToken)) for t in value ), f"Tokens {value} for key {key} should all be str or AddedToken instances" added_tokens += self.add_tokens(value, special_tokens=True) else: assert isinstance( value, (str, AddedToken) ), f"Token {value} for key {key} should be a str or an AddedToken instance" added_tokens += self.add_tokens([value], special_tokens=True) return added_tokens def add_tokens( self, new_tokens: Union[str, AddedToken, List[Union[str, AddedToken]]], special_tokens: bool = False ) -> int: """ Add a list of new tokens to the tokenizer class. If the new tokens are not in the vocabulary, they are added to it with indices starting from length of the current vocabulary. Args: new_tokens (:obj:`str`, :obj:`tokenizers.AddedToken` or a list of `str` or :obj:`tokenizers.AddedToken`): Tokens are only added if they are not already in the vocabulary. :obj:`tokenizers.AddedToken` wraps a string token to let you personalize its behavior: whether this token should only match against a single word, whether this token should strip all potential whitespaces on the left side, whether this token should strip all potential whitespaces on the right side, etc. special_token (:obj:`bool`, `optional`, defaults to :obj:`False`): Can be used to specify if the token is a special token. This mostly change the normalization behavior (special tokens like CLS or [MASK] are usually not lower-cased for instance). See details for :obj:`tokenizers.AddedToken` in HuggingFace tokenizers library. Returns: :obj:`int`: Number of tokens added to the vocabulary. Examples:: # Let's see how to increase the vocabulary of Bert model and tokenizer tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased') model = BertModel.from_pretrained('bert-base-uncased') num_added_toks = tokenizer.add_tokens(['new_tok1', 'my_new-tok2']) print('We have added', num_added_toks, 'tokens') # Notice: resize_token_embeddings expect to receive the full size of the new vocabulary, i.e., the length of the tokenizer. model.resize_token_embeddings(len(tokenizer)) """ if not new_tokens: return 0 if not isinstance(new_tokens, (list, tuple)): new_tokens = [new_tokens] return self._add_tokens(new_tokens, special_tokens=special_tokens) @property def bos_token(self) -> str: """ :obj:`str`: Beginning of sentence token. Log an error if used while not having been set. """ if self._bos_token is None and self.verbose: logger.error("Using bos_token, but it is not set yet.") return None return str(self._bos_token) @property def eos_token(self) -> str: """ :obj:`str`: End of sentence token. Log an error if used while not having been set. """ if self._eos_token is None and self.verbose: logger.error("Using eos_token, but it is not set yet.") return None return str(self._eos_token) @property def unk_token(self) -> str: """ :obj:`str`: Unknown token. Log an error if used while not having been set. """ if self._unk_token is None and self.verbose: logger.error("Using unk_token, but it is not set yet.") return None return str(self._unk_token) @property def sep_token(self) -> str: """ :obj:`str`: Separation token, to separate context and query in an input sequence. Log an error if used while not having been set. """ if self._sep_token is None and self.verbose: logger.error("Using sep_token, but it is not set yet.") return None return str(self._sep_token) @property def pad_token(self) -> str: """ :obj:`str`: Padding token. Log an error if used while not having been set. """ if self._pad_token is None and self.verbose: logger.error("Using pad_token, but it is not set yet.") return None return str(self._pad_token) @property def cls_token(self) -> str: """ :obj:`str`: Classification token, to extract a summary of an input sequence leveraging self-attention along the full depth of the model. Log an error if used while not having been set. """ if self._cls_token is None and self.verbose: logger.error("Using cls_token, but it is not set yet.") return None return str(self._cls_token) @property def mask_token(self) -> str: """ :obj:`str`: Mask token, to use when training a model with masked-language modeling. Log an error if used while not having been set. """ if self._mask_token is None and self.verbose: logger.error("Using mask_token, but it is not set yet.") return None return str(self._mask_token) @property def additional_special_tokens(self) -> List[str]: """ :obj:`List[str]`: All the additional special tokens you may want to use. Log an error if used while not having been set. """ if self._additional_special_tokens is None and self.verbose: logger.error("Using additional_special_tokens, but it is not set yet.") return None return [str(tok) for tok in self._additional_special_tokens] @bos_token.setter def bos_token(self, value): self._bos_token = value @eos_token.setter def eos_token(self, value): self._eos_token = value @unk_token.setter def unk_token(self, value): self._unk_token = value @sep_token.setter def sep_token(self, value): self._sep_token = value @pad_token.setter def pad_token(self, value): self._pad_token = value @cls_token.setter def cls_token(self, value): self._cls_token = value @mask_token.setter def mask_token(self, value): self._mask_token = value @additional_special_tokens.setter def additional_special_tokens(self, value): self._additional_special_tokens = value @property def bos_token_id(self) -> Optional[int]: """ :obj:`Optional[int]`: Id of the beginning of sentence token in the vocabulary. Returns :obj:`None` if the token has not been set. """ if self._bos_token is None: return None return self.convert_tokens_to_ids(self.bos_token) @property def eos_token_id(self) -> Optional[int]: """ :obj:`Optional[int]`: Id of the end of sentence token in the vocabulary. Returns :obj:`None` if the token has not been set. """ if self._eos_token is None: return None return self.convert_tokens_to_ids(self.eos_token) @property def unk_token_id(self) -> Optional[int]: """ :obj:`Optional[int]`: Id of the unknown token in the vocabulary. Returns :obj:`None` if the token has not been set. """ if self._unk_token is None: return None return self.convert_tokens_to_ids(self.unk_token) @property def sep_token_id(self) -> Optional[int]: """ :obj:`Optional[int]`: Id of the separation token in the vocabulary, to separate context and query in an input sequence. Returns :obj:`None` if the token has not been set. """ if self._sep_token is None: return None return self.convert_tokens_to_ids(self.sep_token) @property def pad_token_id(self) -> Optional[int]: """ :obj:`Optional[int]`: Id of the padding token in the vocabulary. Returns :obj:`None` if the token has not been set. """ if self._pad_token is None: return None return self.convert_tokens_to_ids(self.pad_token) @property def pad_token_type_id(self) -> int: """ :obj:`int`: Id of the padding token type in the vocabulary. """ return self._pad_token_type_id @property def cls_token_id(self) -> Optional[int]: """ :obj:`Optional[int]`: Id of the classification token in the vocabulary, to extract a summary of an input sequence leveraging self-attention along the full depth of the model. Returns :obj:`None` if the token has not been set. """ if self._cls_token is None: return None return self.convert_tokens_to_ids(self.cls_token) @property def mask_token_id(self) -> Optional[int]: """ :obj:`Optional[int]`: Id of the mask token in the vocabulary, used when training a model with masked-language modeling. Returns :obj:`None` if the token has not been set. """ if self._mask_token is None: return None return self.convert_tokens_to_ids(self.mask_token) @property def additional_special_tokens_ids(self) -> List[int]: """ :obj:`List[int]`: Ids of all the additional special tokens in the vocabulary. Log an error if used while not having been set. """ return self.convert_tokens_to_ids(self.additional_special_tokens) @property def special_tokens_map(self) -> Dict[str, Union[str, List[str]]]: """ :obj:`Dict[str, Union[str, List[str]]]`: A dictionary mapping special token class attributes (:obj:`cls_token`, :obj:`unk_token`, etc.) to their values (:obj:`'<unk>'`, :obj:`'<cls>'`, etc.). Convert potential tokens of :obj:`tokenizers.AddedToken` type to string. """ set_attr = {} for attr in self.SPECIAL_TOKENS_ATTRIBUTES: attr_value = getattr(self, "_" + attr) if attr_value: set_attr[attr] = str(attr_value) return set_attr @property def special_tokens_map_extended(self) -> Dict[str, Union[str, AddedToken, List[Union[str, AddedToken]]]]: """ :obj:`Dict[str, Union[str, tokenizers.AddedToken, List[Union[str, tokenizers.AddedToken]]]]`: A dictionary mapping special token class attributes (:obj:`cls_token`, :obj:`unk_token`, etc.) to their values (:obj:`'<unk>'`, :obj:`'<cls>'`, etc.). Don't convert tokens of :obj:`tokenizers.AddedToken` type to string so they can be used to control more finely how special tokens are tokenized. """ set_attr = {} for attr in self.SPECIAL_TOKENS_ATTRIBUTES: attr_value = getattr(self, "_" + attr) if attr_value: set_attr[attr] = attr_value return set_attr @property def all_special_tokens(self) -> List[str]: """ :obj:`List[str]`: All the special tokens (:obj:`'<unk>'`, :obj:`'<cls>'`, etc.) mapped to class attributes. Convert tokens of :obj:`tokenizers.AddedToken` type to string. """ all_toks = [str(s) for s in self.all_special_tokens_extended] return all_toks @property def all_special_tokens_extended(self) -> List[Union[str, AddedToken]]: """ :obj:`List[Union[str, tokenizers.AddedToken]]`: All the special tokens (:obj:`'<unk>'`, :obj:`'<cls>'`, etc.) mapped to class attributes. Don't convert tokens of :obj:`tokenizers.AddedToken` type to string so they can be used to control more finely how special tokens are tokenized. """ all_toks = [] set_attr = self.special_tokens_map_extended for attr_value in set_attr.values(): all_toks = all_toks + (list(attr_value) if isinstance(attr_value, (list, tuple)) else [attr_value]) all_toks = list(OrderedDict.fromkeys(all_toks)) return all_toks @property def all_special_ids(self) -> List[int]: """ :obj:`List[int]`: List the ids of the special tokens(:obj:`'<unk>'`, :obj:`'<cls>'`, etc.) mapped to class attributes. """ all_toks = self.all_special_tokens all_ids = self.convert_tokens_to_ids(all_toks) return all_ids ENCODE_KWARGS_DOCSTRING = r""" add_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether or not to encode the sequences with the special tokens relative to their model. padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`False`): Activates and controls padding. Accepts the following values: * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the maximum acceptable input length for the model if that argument is not provided. * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.TruncationStrategy`, `optional`, defaults to :obj:`False`): Activates and controls truncation. Accepts the following values: * :obj:`True` or :obj:`'longest_first'`: Truncate to a maximum length specified with the argument :obj:`max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. * :obj:`'only_first'`: Truncate to a maximum length specified with the argument :obj:`max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. * :obj:`'only_second'`: Truncate to a maximum length specified with the argument :obj:`max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. * :obj:`False` or :obj:`'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (:obj:`int`, `optional`): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to :obj:`None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. stride (:obj:`int`, `optional`, defaults to 0): If set to a number along with :obj:`max_length`, the overflowing tokens returned when :obj:`return_overflowing_tokens=True` will contain some tokens from the end of the truncated sequence returned to provide some overlap between truncated and overflowing sequences. The value of this argument defines the number of overlapping tokens. is_pretokenized (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not the input is already pre-tokenized (e.g., split into words), in which case the tokenizer will skip the pre-tokenization step. This is useful for NER or token classification. pad_to_multiple_of (:obj:`int`, `optional`): If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta). return_tensors (:obj:`str` or :class:`~transformers.tokenization_utils_base.TensorType`, `optional`): If set, will return tensors instead of list of python integers. Acceptable values are: * :obj:`'tf'`: Return TensorFlow :obj:`tf.constant` objects. * :obj:`'pt'`: Return PyTorch :obj:`torch.Tensor` objects. * :obj:`'np'`: Return Numpy :obj:`np.ndarray` objects. """ ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING = r""" return_token_type_ids (:obj:`bool`, `optional`): Whether to return token type IDs. If left to the default, will return the token type IDs according to the specific tokenizer's default, defined by the :obj:`return_outputs` attribute. `What are token type IDs? <../glossary.html#token-type-ids>`__ return_attention_mask (:obj:`bool`, `optional`): Whether to return the attention mask. If left to the default, will return the attention mask according to the specific tokenizer's default, defined by the :obj:`return_outputs` attribute. `What are attention masks? <../glossary.html#attention-mask>`__ return_overflowing_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to return overflowing token sequences. return_special_tokens_mask (:obj:`bool`, `optional`, defaults to :obj:`False`): Wheter or not to return special tokens mask information. return_offsets_mapping (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to return :obj:`(char_start, char_end)` for each token. This is only available on fast tokenizers inheriting from :class:`~transformers.PreTrainedTokenizerFast`, if using Python's tokenizer, this method will raise :obj:`NotImplementedError`. return_length (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to return the lengths of the encoded inputs. verbose (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether or not to print informations and warnings. **kwargs: passed to the :obj:`self.tokenize()` method Return: :class:`~transformers.BatchEncoding`: A :class:`~transformers.BatchEncoding` with the following fields: - **input_ids** -- List of token ids to be fed to a model. `What are input IDs? <../glossary.html#input-ids>`__ - **token_type_ids** -- List of token type ids to be fed to a model (when :obj:`return_token_type_ids=True` or if `"token_type_ids"` is in :obj:`self.model_input_names`). `What are token type IDs? <../glossary.html#token-type-ids>`__ - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when :obj:`return_attention_mask=True` or if `"attention_mask"` is in :obj:`self.model_input_names`). `What are attention masks? <../glossary.html#attention-mask>`__ - **overflowing_tokens** -- List of overflowing tokens sequences (when a :obj:`max_length` is specified and :obj:`return_overflowing_tokens=True`). - **num_truncated_tokens** -- Number of tokens truncated (when a :obj:`max_length` is specified and :obj:`return_overflowing_tokens=True`). - **special_tokens_mask** -- List of 0s and 1s, with 0 specifying added special tokens and 1 specifying regual sequence tokens (when :obj:`add_special_tokens=True` and :obj:`return_special_tokens_mask=True`). - **length** -- The length of the inputs (when :obj:`return_length=True`) """ INIT_TOKENIZER_DOCSTRING = r""" Class attributes (overridden by derived classes) - **vocab_files_names** (:obj:`Dict[str, str]`) -- A ditionary with, as keys, the ``__init__`` keyword name of each vocabulary file required by the model, and as associated values, the filename for saving the associated file (string). - **pretrained_vocab_files_map** (:obj:`Dict[str, Dict[str, str]]`) -- A dictionary of dictionaries, with the high-level keys being the ``__init__`` keyword name of each vocabulary file required by the model, the low-level being the :obj:`short-cut-names` of the pretrained models with, as associated values, the :obj:`url` to the associated pretrained vocabulary file. - **max_model_input_sizes** (:obj:`Dict[str, Optinal[int]]`) -- A dictionary with, as keys, the :obj:`short-cut-names` of the pretrained models, and as associated values, the maximum length of the sequence inputs of this model, or :obj:`None` if the model has no maximum input size. - **pretrained_init_configuration** (:obj:`Dict[str, Dict[str, Any]]`) -- A dictionary with, as keys, the :obj:`short-cut-names` of the pretrained models, and as associated values, a dictionnary of specific arguments to pass to the ``__init__`` method of the tokenizer class for this pretrained model when loading the tokenizer with the :meth:`~transformers.tokenization_utils_base.PreTrainedTokenizerBase.from_pretrained` method. - **model_input_names** (:obj:`List[str]`) -- A list of inputs expected in the forward pass of the model. - **padding_side** (:obj:`str`) -- The default value for the side on which the model should have padding applied. Should be :obj:`'right'` or :obj:`'left'`. Args: model_max_length (:obj:`int`, `optional`): The maximum length (in number of tokens) for the inputs to the transformer model. When the tokenizer is loaded with :meth:`~transformers.tokenization_utils_base.PreTrainedTokenizerBase.from_pretrained`, this will be set to the value stored for the associated model in ``max_model_input_sizes`` (see above). If no value is provided, will default to VERY_LARGE_INTEGER (:obj:`int(1e30)`). padding_side: (:obj:`str`, `optional`): The side on which the model should have padding applied. Should be selected between ['right', 'left']. Default value is picked from the class attribute of the same name. model_input_names (:obj:`List[string]`, `optional`): The list of inputs accepted by the forward pass of the model (like :obj:`"token_type_ids"` or :obj:`"attention_mask"`). Default value is picked from the class attribute of the same name. bos_token (:obj:`str` or :obj:`tokenizers.AddedToken`, `optional`): A special token representing the beginning of a sentence. Will be associated to ``self.bos_token`` and ``self.bos_token_id``. eos_token (:obj:`str` or :obj:`tokenizers.AddedToken`, `optional`): A special token representing the end of a sentence. Will be associated to ``self.eos_token`` and ``self.eos_token_id``. unk_token (:obj:`str` or :obj:`tokenizers.AddedToken`, `optional`): A special token representing an out-of-vocabulary token. Will be associated to ``self.unk_token`` and ``self.unk_token_id``. sep_token (:obj:`str` or :obj:`tokenizers.AddedToken`, `optional`): A special token separating two different sentences in the same input (used by BERT for instance). Will be associated to ``self.sep_token`` and ``self.sep_token_id``. pad_token (:obj:`str` or :obj:`tokenizers.AddedToken`, `optional`): A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by attention mechanisms or loss computation. Will be associated to ``self.pad_token`` and ``self.pad_token_id``. cls_token (:obj:`str` or :obj:`tokenizers.AddedToken`, `optional`): A special token representing the class of the input (used by BERT for instance). Will be associated to ``self.cls_token`` and ``self.cls_token_id``. mask_token (:obj:`str` or :obj:`tokenizers.AddedToken`, `optional`): A special token representing a masked token (used by masked-language modeling pretraining objectives, like BERT). Will be associated to ``self.mask_token`` and ``self.mask_token_id``. additional_special_tokens (tuple or list of :obj:`str` or :obj:`tokenizers.AddedToken`, `optional`): A tuple or a list of additional special tokens. Add them here to ensure they won't be split by the tokenization process. Will be associated to ``self.additional_special_tokens`` and ``self.additional_special_tokens_ids``. """ PREPARE_SEQ2SEQ_BATCH_DOCSTRING = """ Arguments: src_texts: (:obj:`list`): list of documents to summarize or source language texts tgt_texts: (:obj:`list`, `optional`): list of tgt language texts or summaries. max_length (:obj:`int`, `optional`): Controls the maximum length for encoder inputs (documents to summarize or source language texts) If left unset or set to :obj:`None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. max_target_length (:obj:`int`, `optional`): Controls the maximum length of decoder inputs (target language texts or summaries) If left unset or set to :obj:`None`, this will use the max_length value. padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`False`): Activates and controls padding. Accepts the following values: * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the maximum acceptable input length for the model if that argument is not provided. * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). return_tensors (:obj:`str` or :class:`~transformers.tokenization_utils_base.TensorType`, `optional`, defaults to "pt"): If set, will return tensors instead of list of python integers. Acceptable values are: * :obj:`'tf'`: Return TensorFlow :obj:`tf.constant` objects. * :obj:`'pt'`: Return PyTorch :obj:`torch.Tensor` objects. * :obj:`'np'`: Return Numpy :obj:`np.ndarray` objects. truncation (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.TruncationStrategy`, `optional`, defaults to :obj:`True`): Activates and controls truncation. Accepts the following values: * :obj:`True` or :obj:`'longest_first'`: Truncate to a maximum length specified with the argument :obj:`max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. * :obj:`'only_first'`: Truncate to a maximum length specified with the argument :obj:`max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. * :obj:`'only_second'`: Truncate to a maximum length specified with the argument :obj:`max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. * :obj:`False` or :obj:`'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). Return: :class:`~transformers.BatchEncoding`: A :class:`~transformers.BatchEncoding` with the following fields: - **input_ids** -- List of token ids to be fed to the encoder. - **attention_mask** -- List of indices specifying which tokens should be attended to by the model. - **decoder_input_ids** -- List of token ids to be fed to the decoder. - **decoder_attention_mask** -- List of indices specifying which tokens should be attended to by the decoder. This does not include causal mask, which is built by the model. The full set of keys ``[input_ids, attention_mask, decoder_input_ids, decoder_attention_mask]``, will only be returned if tgt_texts is passed. Otherwise, input_ids, attention_mask will be the only keys. """ @add_end_docstrings(INIT_TOKENIZER_DOCSTRING) class PreTrainedTokenizerBase(SpecialTokensMixin): """ Base class for :class:`~transformers.PreTrainedTokenizer` and :class:`~transformers.PreTrainedTokenizerFast`. Handles shared (mostly boiler plate) methods for those two classes. """ vocab_files_names: Dict[str, str] = {} pretrained_vocab_files_map: Dict[str, Dict[str, str]] = {} pretrained_init_configuration: Dict[str, Dict[str, Any]] = {} max_model_input_sizes: Dict[str, Optional[int]] = {} model_input_names: List[str] = ["token_type_ids", "attention_mask"] padding_side: str = "right" def __init__(self, **kwargs): # inputs and kwargs for saving and re-loading (see ``from_pretrained`` and ``save_pretrained``) self.init_inputs = () self.init_kwargs = kwargs # For backward compatibility we fallback to set model_max_length from max_len if provided model_max_length = kwargs.pop("model_max_length", kwargs.pop("max_len", None)) self.model_max_length = model_max_length if model_max_length is not None else VERY_LARGE_INTEGER # Padding side is right by default and overridden in subclasses. If specified in the kwargs, it is changed. self.padding_side = kwargs.pop("padding_side", self.padding_side) assert self.padding_side in [ "right", "left", ], f"Padding side should be selected between 'right' and 'left', current value: {self.padding_side}" self.model_input_names = kwargs.pop("model_input_names", self.model_input_names) super().__init__(**kwargs) @property def max_len(self) -> int: """ :obj:`int`: **Deprecated** Kept here for backward compatibility. Now renamed to :obj:`model_max_length` to avoid ambiguity. """ warnings.warn( "The `max_len` attribute has been deprecated and will be removed in a future version, use `model_max_length` instead.", FutureWarning, ) return self.model_max_length @property def max_len_single_sentence(self) -> int: """ :obj:`int`: The maximum length of a sentence that can be fed to the model. """ return self.model_max_length - self.num_special_tokens_to_add(pair=False) @property def max_len_sentences_pair(self) -> int: """ :obj:`int`: The maximum combined length of a pair of sentences that can be fed to the model. """ return self.model_max_length - self.num_special_tokens_to_add(pair=True) @max_len_single_sentence.setter def max_len_single_sentence(self, value) -> int: # For backward compatibility, allow to try to setup 'max_len_single_sentence'. if value == self.model_max_length - self.num_special_tokens_to_add(pair=False) and self.verbose: logger.warning( "Setting 'max_len_single_sentence' is now deprecated. " "This value is automatically set up." ) else: raise ValueError( "Setting 'max_len_single_sentence' is now deprecated. " "This value is automatically set up." ) @max_len_sentences_pair.setter def max_len_sentences_pair(self, value) -> int: # For backward compatibility, allow to try to setup 'max_len_sentences_pair'. if value == self.model_max_length - self.num_special_tokens_to_add(pair=True) and self.verbose: logger.warning( "Setting 'max_len_sentences_pair' is now deprecated. " "This value is automatically set up." ) else: raise ValueError( "Setting 'max_len_sentences_pair' is now deprecated. " "This value is automatically set up." ) @classmethod def from_pretrained(cls, *inputs, **kwargs): r""" Instantiate a :class:`~transformers.tokenization_utils_base.PreTrainedTokenizerBase` (or a derived class) from a predefined tokenizer. Args: pretrained_model_name_or_path (:obj:`str`): Can be either: - A string with the `shortcut name` of a predefined tokenizer to load from cache or download, e.g., ``bert-base-uncased``. - A string with the `identifier name` of a predefined tokenizer that was user-uploaded to our S3, e.g., ``dbmdz/bert-base-german-cased``. - A path to a `directory` containing vocabulary files required by the tokenizer, for instance saved using the :meth:`~transformers.tokenization_utils_base.PreTrainedTokenizerBase.save_pretrained` method, e.g., ``./my_model_directory/``. - (**Deprecated**, not applicable to all derived classes) A path or url to a single saved vocabulary file (if and only if the tokenizer only requires a single vocabulary file like Bert or XLNet), e.g., ``./my_model_directory/vocab.txt``. cache_dir (:obj:`str`, `optional`): Path to a directory in which a downloaded predefined tokenizer vocabulary files should be cached if the standard cache should not be used. force_download (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to force the (re-)download the vocabulary files and override the cached versions if they exist. resume_download (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to delete incompletely received files. Attempt to resume the download if such a file exists. proxies (:obj:`Dict[str, str], `optional`): A dictionary of proxy servers to use by protocol or endpoint, e.g., :obj:`{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. inputs (additional positional arguments, `optional`): Will be passed along to the Tokenizer ``__init__`` method. kwargs (additional keyword arguments, `optional`): Will be passed to the Tokenizer ``__init__`` method. Can be used to set special tokens like ``bos_token``, ``eos_token``, ``unk_token``, ``sep_token``, ``pad_token``, ``cls_token``, ``mask_token``, ``additional_special_tokens``. See parameters in the ``__init__`` for more details. Examples:: # We can't instantiate directly the base class `PreTrainedTokenizerBase` so let's show our examples on a derived class: BertTokenizer # Download vocabulary from S3 and cache. tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') # Download vocabulary from S3 (user-uploaded) and cache. tokenizer = BertTokenizer.from_pretrained('dbmdz/bert-base-german-cased') # If vocabulary files are in a directory (e.g. tokenizer was saved using `save_pretrained('./test/saved_model/')`) tokenizer = BertTokenizer.from_pretrained('./test/saved_model/') # If the tokenizer uses a single vocabulary file, you can point directly to this file tokenizer = BertTokenizer.from_pretrained('./test/saved_model/my_vocab.txt') # You can link tokens to special vocabulary when instantiating tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', unk_token='<unk>') # You should be sure '<unk>' is in the vocabulary when doing that. # Otherwise use tokenizer.add_special_tokens({'unk_token': '<unk>'}) instead) assert tokenizer.unk_token == '<unk>' """ return cls._from_pretrained(*inputs, **kwargs) @classmethod def _from_pretrained(cls, pretrained_model_name_or_path, *init_inputs, **kwargs): cache_dir = kwargs.pop("cache_dir", None) force_download = kwargs.pop("force_download", False) resume_download = kwargs.pop("resume_download", False) proxies = kwargs.pop("proxies", None) local_files_only = kwargs.pop("local_files_only", False) s3_models = list(cls.max_model_input_sizes.keys()) vocab_files = {} init_configuration = {} if pretrained_model_name_or_path in s3_models: # Get the vocabulary from AWS S3 bucket for file_id, map_list in cls.pretrained_vocab_files_map.items(): vocab_files[file_id] = map_list[pretrained_model_name_or_path] if ( cls.pretrained_init_configuration and pretrained_model_name_or_path in cls.pretrained_init_configuration ): init_configuration = cls.pretrained_init_configuration[pretrained_model_name_or_path].copy() else: # Get the vocabulary from local files logger.info( "Model name '{}' not found in model shortcut name list ({}). " "Assuming '{}' is a path, a model identifier, or url to a directory containing tokenizer files.".format( pretrained_model_name_or_path, ", ".join(s3_models), pretrained_model_name_or_path ) ) if os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path): if len(cls.vocab_files_names) > 1: raise ValueError( "Calling {}.from_pretrained() with the path to a single file or url is not supported." "Use a model identifier or the path to a directory instead.".format(cls.__name__) ) logger.warning( "Calling {}.from_pretrained() with the path to a single file or url is deprecated".format( cls.__name__ ) ) file_id = list(cls.vocab_files_names.keys())[0] vocab_files[file_id] = pretrained_model_name_or_path else: # At this point pretrained_model_name_or_path is either a directory or a model identifier name additional_files_names = { "added_tokens_file": ADDED_TOKENS_FILE, "special_tokens_map_file": SPECIAL_TOKENS_MAP_FILE, "tokenizer_config_file": TOKENIZER_CONFIG_FILE, "full_tokenizer_file": FULL_TOKENIZER_FILE, } # Look for the tokenizer files for file_id, file_name in {**cls.vocab_files_names, **additional_files_names}.items(): if os.path.isdir(pretrained_model_name_or_path): full_file_name = os.path.join(pretrained_model_name_or_path, file_name) if not os.path.exists(full_file_name): logger.info("Didn't find file {}. We won't load it.".format(full_file_name)) full_file_name = None else: full_file_name = hf_bucket_url( pretrained_model_name_or_path, filename=file_name, use_cdn=False, mirror=None ) vocab_files[file_id] = full_file_name # Get files from url, cache, or disk depending on the case try: resolved_vocab_files = {} for file_id, file_path in vocab_files.items(): if file_path is None: resolved_vocab_files[file_id] = None else: resolved_vocab_files[file_id] = cached_path( file_path, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, local_files_only=local_files_only, ) except EnvironmentError: if pretrained_model_name_or_path in s3_models: msg = "Couldn't reach server at '{}' to download vocabulary files." else: msg = ( "Model name '{}' was not found in tokenizers model name list ({}). " "We assumed '{}' was a path or url to a directory containing vocabulary files " "named {}, but couldn't find such vocabulary files at this path or url.".format( pretrained_model_name_or_path, ", ".join(s3_models), pretrained_model_name_or_path, list(cls.vocab_files_names.values()), ) ) raise EnvironmentError(msg) if all(full_file_name is None for full_file_name in resolved_vocab_files.values()): raise EnvironmentError( "Model name '{}' was not found in tokenizers model name list ({}). " "We assumed '{}' was a path, a model identifier, or url to a directory containing vocabulary files " "named {} but couldn't find such vocabulary files at this path or url.".format( pretrained_model_name_or_path, ", ".join(s3_models), pretrained_model_name_or_path, list(cls.vocab_files_names.values()), ) ) for file_id, file_path in vocab_files.items(): if file_path == resolved_vocab_files[file_id]: logger.info("loading file {}".format(file_path)) else: logger.info("loading file {} from cache at {}".format(file_path, resolved_vocab_files[file_id])) # Prepare tokenizer initialization kwargs # Did we saved some inputs and kwargs to reload ? tokenizer_config_file = resolved_vocab_files.pop("tokenizer_config_file", None) if tokenizer_config_file is not None: with open(tokenizer_config_file, encoding="utf-8") as tokenizer_config_handle: init_kwargs = json.load(tokenizer_config_handle) saved_init_inputs = init_kwargs.pop("init_inputs", ()) if not init_inputs: init_inputs = saved_init_inputs else: init_kwargs = init_configuration # Update with newly provided kwargs init_kwargs.update(kwargs) # Set max length if needed if pretrained_model_name_or_path in cls.max_model_input_sizes: # if we're using a pretrained model, ensure the tokenizer # wont index sequences longer than the number of positional embeddings model_max_length = cls.max_model_input_sizes[pretrained_model_name_or_path] if model_max_length is not None and isinstance(model_max_length, (int, float)): init_kwargs["model_max_length"] = min(init_kwargs.get("model_max_length", int(1e30)), model_max_length) # Merge resolved_vocab_files arguments in init_kwargs. added_tokens_file = resolved_vocab_files.pop("added_tokens_file", None) for args_name, file_path in resolved_vocab_files.items(): if args_name not in init_kwargs: init_kwargs[args_name] = file_path # Instantiate tokenizer. try: tokenizer = cls(*init_inputs, **init_kwargs) except OSError: raise OSError( "Unable to load vocabulary from file. " "Please check that the provided vocabulary is accessible and not corrupted." ) # Save inputs and kwargs for saving and re-loading with ``save_pretrained`` tokenizer.init_inputs = init_inputs tokenizer.init_kwargs = init_kwargs # If there is a complementary special token map, load it special_tokens_map_file = resolved_vocab_files.pop("special_tokens_map_file", None) if special_tokens_map_file is not None: with open(special_tokens_map_file, encoding="utf-8") as special_tokens_map_handle: special_tokens_map = json.load(special_tokens_map_handle) for key, value in special_tokens_map.items(): if isinstance(value, dict): value = AddedToken(**value) elif isinstance(value, list): value = [AddedToken(**token) if isinstance(token, dict) else token for token in value] setattr(tokenizer, key, value) # Add supplementary tokens. special_tokens = tokenizer.all_special_tokens if added_tokens_file is not None: with open(added_tokens_file, encoding="utf-8") as added_tokens_handle: added_tok_encoder = json.load(added_tokens_handle) # Sort added tokens by index added_tok_encoder_sorted = list(sorted(added_tok_encoder.items(), key=lambda x: x[1])) for token, index in added_tok_encoder_sorted: assert index == len(tokenizer), ( f"Non-consecutive added token '{token}' found. " f"Should have index {len(tokenizer)} but has index {index} in saved vocabulary." ) tokenizer.add_tokens(token, special_tokens=bool(token in special_tokens)) # Check all our special tokens are registrered as "no split" token (we don't cut them) and are in the vocab added_tokens = tokenizer.sanitize_special_tokens() if added_tokens: logger.warning( "Special tokens have been added in the vocabulary, make sure the associated word emebedding are fine-tuned or trained." ) return tokenizer def save_pretrained(self, save_directory: str) -> Tuple[str]: """ Save the tokenizer vocabulary files together with: - added tokens, - special tokens to class attributes mapping, - tokenizer instantiation positional and keywords inputs (e.g. do_lower_case for Bert). This method make sure the full tokenizer can then be re-loaded using the :meth:`~transformers.tokenization_utils_base.PreTrainedTokenizerBase.from_pretrained` class method. .. Warning:: This won't save modifications you may have applied to the tokenizer after the instantiation (for instance, modifying :obj:`tokenizer.do_lower_case` after creation). Args: save_directory (:obj:`str`): The path to adirectory where the tokenizer will be saved. Returns: A tuple of :obj:`str`: The files saved. """ if os.path.isfile(save_directory): logger.error("Provided path ({}) should be a directory, not a file".format(save_directory)) return os.makedirs(save_directory, exist_ok=True) special_tokens_map_file = os.path.join(save_directory, SPECIAL_TOKENS_MAP_FILE) added_tokens_file = os.path.join(save_directory, ADDED_TOKENS_FILE) tokenizer_config_file = os.path.join(save_directory, TOKENIZER_CONFIG_FILE) tokenizer_config = copy.deepcopy(self.init_kwargs) if len(self.init_inputs) > 0: tokenizer_config["init_inputs"] = copy.deepcopy(self.init_inputs) for file_id in self.vocab_files_names.keys(): tokenizer_config.pop(file_id, None) with open(tokenizer_config_file, "w", encoding="utf-8") as f: f.write(json.dumps(tokenizer_config, ensure_ascii=False)) with open(special_tokens_map_file, "w", encoding="utf-8") as f: write_dict = {} for key, value in self.special_tokens_map_extended.items(): if isinstance(value, AddedToken): write_dict[key] = value.__getstate__() elif isinstance(value, list): write_dict[key] = [ token.__getstate__() if isinstance(token, AddedToken) else token for token in value ] else: write_dict[key] = value f.write(json.dumps(write_dict, ensure_ascii=False)) added_vocab = self.get_added_vocab() if added_vocab: with open(added_tokens_file, "w", encoding="utf-8") as f: out_str = json.dumps(added_vocab, ensure_ascii=False) f.write(out_str) vocab_files = self.save_vocabulary(save_directory) return vocab_files + (special_tokens_map_file, added_tokens_file) @add_end_docstrings( ENCODE_KWARGS_DOCSTRING, """ **kwargs: Passed along to the `.tokenize()` method. """, """ Returns: :obj:`List[int]`, :obj:`torch.Tensor`, :obj:`tf.Tensor` or :obj:`np.ndarray`: The tokenized ids of the text. """, ) def encode( self, text: Union[TextInput, PreTokenizedInput, EncodedInput], text_pair: Optional[Union[TextInput, PreTokenizedInput, EncodedInput]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = False, max_length: Optional[int] = None, stride: int = 0, return_tensors: Optional[Union[str, TensorType]] = None, **kwargs ) -> List[int]: """ Converts a string to a sequence of ids (integer), using the tokenizer and vocabulary. Same as doing ``self.convert_tokens_to_ids(self.tokenize(text))``. Args: text (:obj:`str`, :obj:`List[str]` or :obj:`List[int]`): The first sequence to be encoded. This can be a string, a list of strings (tokenized string using the ``tokenize`` method) or a list of integers (tokenized string ids using the ``convert_tokens_to_ids`` method). text_pair (:obj:`str`, :obj:`List[str]` or :obj:`List[int]`, `optional`): Optional second sequence to be encoded. This can be a string, a list of strings (tokenized string using the ``tokenize`` method) or a list of integers (tokenized string ids using the ``convert_tokens_to_ids`` method). """ encoded_inputs = self.encode_plus( text, text_pair=text_pair, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, stride=stride, return_tensors=return_tensors, **kwargs, ) return encoded_inputs["input_ids"] def num_special_tokens_to_add(self, pair: bool = False) -> int: raise NotImplementedError def _get_padding_truncation_strategies( self, padding=False, truncation=False, max_length=None, pad_to_multiple_of=None, verbose=True, **kwargs ): """ Find the correct padding/truncation strategy with backward compatibility for old arguments (truncation_strategy and pad_to_max_length) and behaviors. """ old_truncation_strategy = kwargs.pop("truncation_strategy", "do_not_truncate") old_pad_to_max_length = kwargs.pop("pad_to_max_length", False) # Backward compatibility for previous behavior, maybe we should deprecate it: # If you only set max_length, it activates truncation for max_length if max_length is not None and padding is False and truncation is False: if verbose: logger.warning( "Truncation was not explicitely activated but `max_length` is provided a specific value, " "please use `truncation=True` to explicitely truncate examples to max length. " "Defaulting to 'longest_first' truncation strategy. " "If you encode pairs of sequences (GLUE-style) with the tokenizer you can select this strategy " "more precisely by providing a specific strategy to `truncation`." ) truncation = "longest_first" # Get padding strategy if padding is False and old_pad_to_max_length: if verbose: warnings.warn( "The `pad_to_max_length` argument is deprecated and will be removed in a future version, " "use `padding=True` or `padding='longest'` to pad to the longest sequence in the batch, or " "use `padding='max_length'` to pad to a max length. In this case, you can give a specific " "length with `max_length` (e.g. `max_length=45`) or leave max_length to None to pad to the " "maximal input size of the model (e.g. 512 for Bert).", FutureWarning, ) if max_length is None: padding_strategy = PaddingStrategy.LONGEST else: padding_strategy = PaddingStrategy.MAX_LENGTH elif padding is not False: if padding is True: padding_strategy = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(padding, PaddingStrategy): padding_strategy = PaddingStrategy(padding) else: padding_strategy = PaddingStrategy.DO_NOT_PAD # Get truncation strategy if truncation is False and old_truncation_strategy != "do_not_truncate": if verbose: warnings.warn( "The `truncation_strategy` argument is deprecated and will be removed in a future version, " "use `truncation=True` to truncate examples to a max length. You can give a specific " "length with `max_length` (e.g. `max_length=45`) or leave max_length to None to truncate to the " "maximal input size of the model (e.g. 512 for Bert). " " If you have pairs of inputs, you can give a specific truncation strategy selected among " "`truncation='only_first'` (will only truncate the first sentence in the pairs) " "`truncation='only_second'` (will only truncate the second sentence in the pairs) " "or `truncation='longest_first'` (will iteratively remove tokens from the longest sentence in the pairs).", FutureWarning, ) truncation_strategy = TruncationStrategy(old_truncation_strategy) elif truncation is not False: if truncation is True: truncation_strategy = ( TruncationStrategy.LONGEST_FIRST ) # Default to truncate the longest sequences in pairs of inputs elif not isinstance(truncation, TruncationStrategy): truncation_strategy = TruncationStrategy(truncation) else: truncation_strategy = TruncationStrategy.DO_NOT_TRUNCATE # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: if self.model_max_length > LARGE_INTEGER: if verbose: logger.warning( "Asking to pad to max_length but no maximum length is provided and the model has no predefined maximum length. " "Default to no padding." ) padding_strategy = PaddingStrategy.DO_NOT_PAD else: max_length = self.model_max_length if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE: if self.model_max_length > LARGE_INTEGER: if verbose: logger.warning( "Asking to truncate to max_length but no maximum length is provided and the model has no predefined maximum length. " "Default to no truncation." ) truncation_strategy = TruncationStrategy.DO_NOT_TRUNCATE else: max_length = self.model_max_length # Test if we have a padding token if padding_strategy != PaddingStrategy.DO_NOT_PAD and (not self.pad_token or self.pad_token_id < 0): raise ValueError( "Asking to pad but the tokenizer does not have a padding token. " "Please select a token to use as `pad_token` `(tokenizer.pad_token = tokenizer.eos_token e.g.)` " "or add a new pad token via `tokenizer.add_special_tokens({'pad_token': '[PAD]'})`." ) # Check that we will truncate to a multiple of pad_to_multiple_of if both are provided if ( truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE and padding_strategy != PaddingStrategy.DO_NOT_PAD and pad_to_multiple_of is not None and max_length is not None and (max_length % pad_to_multiple_of != 0) ): raise ValueError( f"Truncation and padding are both activated but " f"truncation length ({max_length}) is not a multiple of pad_to_multiple_of ({pad_to_multiple_of})." ) return padding_strategy, truncation_strategy, max_length, kwargs @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def __call__( self, text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]], text_pair: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = False, max_length: Optional[int] = None, stride: int = 0, is_pretokenized: bool = False, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs ) -> BatchEncoding: """ Main method to tokenize and prepare for the model one or several sequence(s) or one or several pair(s) of sequences. Args: text (:obj:`str`, :obj:`List[str]`, :obj:`List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set :obj:`is_pretokenized=True` (to lift the ambiguity with a batch of sequences). text_pair (:obj:`str`, :obj:`List[str]`, :obj:`List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set :obj:`is_pretokenized=True` (to lift the ambiguity with a batch of sequences). """ # Input type checking for clearer error assert isinstance(text, str) or ( isinstance(text, (list, tuple)) and ( len(text) == 0 or ( isinstance(text[0], str) or (isinstance(text[0], (list, tuple)) and (len(text[0]) == 0 or isinstance(text[0][0], str))) ) ) ), ( "text input must of type `str` (single example), `List[str]` (batch or single pretokenized example) " "or `List[List[str]]` (batch of pretokenized examples)." ) assert ( text_pair is None or isinstance(text_pair, str) or ( isinstance(text_pair, (list, tuple)) and ( len(text_pair) == 0 or ( isinstance(text_pair[0], str) or ( isinstance(text_pair[0], (list, tuple)) and (len(text_pair[0]) == 0 or isinstance(text_pair[0][0], str)) ) ) ) ) ), ( "text_pair input must of type `str` (single example), `List[str]` (batch or single pretokenized example) " "or `List[List[str]]` (batch of pretokenized examples)." ) is_batched = bool( (not is_pretokenized and isinstance(text, (list, tuple))) or (is_pretokenized and isinstance(text, (list, tuple)) and text and isinstance(text[0], (list, tuple))) ) if is_batched: batch_text_or_text_pairs = list(zip(text, text_pair)) if text_pair is not None else text return self.batch_encode_plus( batch_text_or_text_pairs=batch_text_or_text_pairs, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, stride=stride, is_pretokenized=is_pretokenized, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) else: return self.encode_plus( text=text, text_pair=text_pair, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, stride=stride, is_pretokenized=is_pretokenized, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def encode_plus( self, text: Union[TextInput, PreTokenizedInput, EncodedInput], text_pair: Optional[Union[TextInput, PreTokenizedInput, EncodedInput]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = False, max_length: Optional[int] = None, stride: int = 0, is_pretokenized: bool = False, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs ) -> BatchEncoding: """ Tokenize and prepare for the model a sequence or a pair of sequences. .. warning:: This method is deprecated, ``__call__`` should be used instead. Args: text (:obj:`str`, :obj:`List[str]` or :obj:`List[int]` (the latter only for not-fast tokenizers)): The first sequence to be encoded. This can be a string, a list of strings (tokenized string using the ``tokenize`` method) or a list of integers (tokenized string ids using the ``convert_tokens_to_ids`` method). text_pair (:obj:`str`, :obj:`List[str]` or :obj:`List[int]`, `optional`): Optional second sequence to be encoded. This can be a string, a list of strings (tokenized string using the ``tokenize`` method) or a list of integers (tokenized string ids using the ``convert_tokens_to_ids`` method). """ # Backward compatibility for 'truncation_strategy', 'pad_to_max_length' padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, verbose=verbose, **kwargs, ) return self._encode_plus( text=text, text_pair=text_pair, add_special_tokens=add_special_tokens, padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, stride=stride, is_pretokenized=is_pretokenized, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) def _encode_plus( self, text: Union[TextInput, PreTokenizedInput, EncodedInput], text_pair: Optional[Union[TextInput, PreTokenizedInput, EncodedInput]] = None, add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, stride: int = 0, is_pretokenized: bool = False, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs ) -> BatchEncoding: raise NotImplementedError @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def batch_encode_plus( self, batch_text_or_text_pairs: Union[ List[TextInput], List[TextInputPair], List[PreTokenizedInput], List[PreTokenizedInputPair], List[EncodedInput], List[EncodedInputPair], ], add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = False, max_length: Optional[int] = None, stride: int = 0, is_pretokenized: bool = False, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs ) -> BatchEncoding: """ Tokenize and prepare for the model a list of sequences or a list of pairs of sequences. .. warning:: This method is deprecated, ``__call__`` should be used instead. Args: batch_text_or_text_pairs (:obj:`List[str]`, :obj:`List[Tuple[str, str]]`, :obj:`List[List[str]]`, :obj:`List[Tuple[List[str], List[str]]]`, and for not-fast tokenizers, also :obj:`List[List[int]]`, :obj:`List[Tuple[List[int], List[int]]]`): Batch of sequences or pair of sequences to be encoded. This can be a list of string/string-sequences/int-sequences or a list of pair of string/string-sequences/int-sequence (see details in ``encode_plus``). """ # Backward compatibility for 'truncation_strategy', 'pad_to_max_length' padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, verbose=verbose, **kwargs, ) return self._batch_encode_plus( batch_text_or_text_pairs=batch_text_or_text_pairs, add_special_tokens=add_special_tokens, padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, stride=stride, is_pretokenized=is_pretokenized, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) def _batch_encode_plus( self, batch_text_or_text_pairs: Union[ List[TextInput], List[TextInputPair], List[PreTokenizedInput], List[PreTokenizedInputPair], List[EncodedInput], List[EncodedInputPair], ], add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, stride: int = 0, is_pretokenized: bool = False, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs ) -> BatchEncoding: raise NotImplementedError def pad( self, encoded_inputs: Union[ BatchEncoding, List[BatchEncoding], Dict[str, EncodedInput], Dict[str, List[EncodedInput]], List[Dict[str, EncodedInput]], ], padding: Union[bool, str, PaddingStrategy] = True, max_length: Optional[int] = None, pad_to_multiple_of: Optional[int] = None, return_attention_mask: Optional[bool] = None, return_tensors: Optional[Union[str, TensorType]] = None, verbose: bool = True, ) -> BatchEncoding: """ Pad a single encoded input or a batch of encoded inputs up to predefined length or to the max sequence length in the batch. Padding side (left/right) padding token ids are defined at the tokenizer level (with ``self.padding_side``, ``self.pad_token_id`` and ``self.pad_token_type_id``) .. note:: If the ``encoded_inputs`` passed are dictionary of numpy arrays, PyTorch tensors or TensorFlow tensors, the result will use the same type unless you provide a different tensor type with ``return_tensors``. In the case of PyTorch tensors, you will lose the specific device of your tensors however. Args: encoded_inputs (:class:`~transformers.BatchEncoding`, list of :class:`~transformers.BatchEncoding`, :obj:`Dict[str, List[int]]`, :obj:`Dict[str, List[List[int]]` or :obj:`List[Dict[str, List[int]]]`): Tokenized inputs. Can represent one input (:class:`~transformers.BatchEncoding` or :obj:`Dict[str, List[int]]`) or a batch of tokenized inputs (list of :class:`~transformers.BatchEncoding`, `Dict[str, List[List[int]]]` or `List[Dict[str, List[int]]]`) so you can use this method during preprocessing as well as in a PyTorch Dataloader collate function. Instead of :obj:`List[int]` you can have tensors (numpy arrays, PyTorch tensors or TensorFlow tensors), see the note above for the return type. padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`False`): Select a strategy to pad the returned sequences (according to the model's padding side and padding index) among: * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the maximum acceptable input length for the model if that argument is not provided. * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). max_length (:obj:`int`, `optional`): Maximum length of the returned list and optionally padding length (see above). pad_to_multiple_of (:obj:`int`, `optional`): If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta). return_attention_mask (:obj:`bool`, `optional`): Whether to return the attention mask. If left to the default, will return the attention mask according to the specific tokenizer's default, defined by the :obj:`return_outputs` attribute. `What are attention masks? <../glossary.html#attention-mask>`__ return_tensors (:obj:`str` or :class:`~transformers.tokenization_utils_base.TensorType`, `optional`): If set, will return tensors instead of list of python integers. Acceptable values are: * :obj:`'tf'`: Return TensorFlow :obj:`tf.constant` objects. * :obj:`'pt'`: Return PyTorch :obj:`torch.Tensor` objects. * :obj:`'np'`: Return Numpy :obj:`np.ndarray` objects. verbose (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether or not to print informations and warnings. """ # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(encoded_inputs, (list, tuple)) and isinstance(encoded_inputs[0], (dict, BatchEncoding)): encoded_inputs = {key: [example[key] for example in encoded_inputs] for key in encoded_inputs[0].keys()} assert "input_ids" in encoded_inputs, ( "You should supply an encoding or a list of encodings to this method. " "An encoding is the output of one the encoding methods of the tokenizer, i.e. " "__call__/encode_plus/batch_encode_plus. " ) if not encoded_inputs["input_ids"]: if return_attention_mask: encoded_inputs["attention_mask"] = [] return encoded_inputs # If we have PyTorch/TF/NumPy tensors/arrays as inputs, we cast them as python objects # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch first_element = encoded_inputs["input_ids"][0] if isinstance(first_element, (list, tuple)) and first_element: first_element = first_element[0] if not isinstance(first_element, int): if is_tf_available() and isinstance(first_element, tf.Tensor): return_tensors = "tf" if return_tensors is None else return_tensors elif is_torch_available() and isinstance(first_element, torch.Tensor): return_tensors = "pt" if return_tensors is None else return_tensors elif isinstance(first_element, np.ndarray): return_tensors = "np" if return_tensors is None else return_tensors else: raise ValueError( f"type of {first_element} unknown: {type(first_element)}. " f"Should be one of a python, numpy, pytorch or tensorflow object." ) def to_py_obj(obj): if isinstance(obj, (list, tuple)): return [to_py_obj(o) for o in obj] elif is_tf_available() and isinstance(obj, tf.Tensor): return obj.numpy().tolist() elif is_torch_available() and isinstance(obj, torch.Tensor): return obj.cpu().tolist() elif isinstance(obj, np.ndarray): return obj.tolist() else: return obj for key, value in encoded_inputs.items(): encoded_inputs[key] = to_py_obj(value) # Convert padding_strategy in PaddingStrategy padding_strategy, _, max_length, _ = self._get_padding_truncation_strategies( padding=padding, max_length=max_length, verbose=verbose ) if encoded_inputs["input_ids"] and not isinstance(encoded_inputs["input_ids"][0], (list, tuple)): encoded_inputs = self._pad( encoded_inputs, max_length=max_length, padding_strategy=padding_strategy, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask, ) return BatchEncoding(encoded_inputs, tensor_type=return_tensors) batch_size = len(encoded_inputs["input_ids"]) assert all( len(v) == batch_size for v in encoded_inputs.values() ), "Some items in the output dictionnary have a different batch size than others." if padding_strategy == PaddingStrategy.LONGEST: max_length = max(len(inputs) for inputs in encoded_inputs["input_ids"]) padding_strategy = PaddingStrategy.MAX_LENGTH batch_outputs = {} for i in range(batch_size): inputs = dict((k, v[i]) for k, v in encoded_inputs.items()) outputs = self._pad( inputs, max_length=max_length, padding_strategy=padding_strategy, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask, ) for key, value in outputs.items(): if key not in batch_outputs: batch_outputs[key] = [] batch_outputs[key].append(value) return BatchEncoding(batch_outputs, tensor_type=return_tensors) def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create the token type IDs corresponding to the sequences passed. `What are token type IDs? <../glossary.html#token-type-ids>`__ Should be overriden in a subclass if the model has a special way of building those. Args: token_ids_0 (:obj:`List[int]`): The first tokenized sequence. token_ids_1 (:obj:`List[int]`, `optional`): The second tokenized sequence. Returns: :obj:`List[int]`: The token type ids. """ if token_ids_1 is None: return len(token_ids_0) * [0] return [0] * len(token_ids_0) + [1] * len(token_ids_1) def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. This implementation does not add special tokens and this method should be overriden in a subclass. Args: token_ids_0 (:obj:`List[int]`): The first tokenized sequence. token_ids_1 (:obj:`List[int]`, `optional`): The second tokenized sequence. Returns: :obj:`List[int]`: The model input with special tokens. """ if token_ids_1 is None: return token_ids_0 return token_ids_0 + token_ids_1 @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def prepare_for_model( self, ids: List[int], pair_ids: Optional[List[int]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = False, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, prepend_batch_axis: bool = False, **kwargs ) -> BatchEncoding: """ Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model. It adds special tokens, truncates sequences if overflowing while taking into account the special tokens and manages a moving window (with user defined stride) for overflowing tokens Args: ids (:obj:`List[int]`): Tokenized input ids of the first sequence. Can be obtained from a string by chaining the ``tokenize`` and ``convert_tokens_to_ids`` methods. pair_ids (:obj:`List[int]`, `optional`): Tokenized input ids of the second sequence. Can be obtained from a string by chaining the ``tokenize`` and ``convert_tokens_to_ids`` methods. """ if "return_lengths" in kwargs: if verbose: warnings.warn( "The PreTrainedTokenizerBase.prepare_for_model `return_lengths` parameter is deprecated. " "Please use `return_length` instead.", FutureWarning, ) return_length = kwargs["return_lengths"] # Backward compatibility for 'truncation_strategy', 'pad_to_max_length' padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, verbose=verbose, **kwargs, ) pair = bool(pair_ids is not None) len_ids = len(ids) len_pair_ids = len(pair_ids) if pair else 0 # Load from model defaults if return_token_type_ids is None: return_token_type_ids = "token_type_ids" in self.model_input_names if return_attention_mask is None: return_attention_mask = "attention_mask" in self.model_input_names encoded_inputs = {} # Compute the total size of the returned encodings total_len = len_ids + len_pair_ids + (self.num_special_tokens_to_add(pair=pair) if add_special_tokens else 0) # Truncation: Handle max sequence length if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE and max_length and total_len > max_length: ids, pair_ids, overflowing_tokens = self.truncate_sequences( ids, pair_ids=pair_ids, num_tokens_to_remove=total_len - max_length, truncation_strategy=truncation_strategy, stride=stride, ) if return_overflowing_tokens: encoded_inputs["overflowing_tokens"] = overflowing_tokens encoded_inputs["num_truncated_tokens"] = total_len - max_length # Add special tokens if add_special_tokens: sequence = self.build_inputs_with_special_tokens(ids, pair_ids) token_type_ids = self.create_token_type_ids_from_sequences(ids, pair_ids) else: sequence = ids + pair_ids if pair else ids token_type_ids = [0] * len(ids) + ([1] * len(pair_ids) if pair else []) # Build output dictionnary encoded_inputs["input_ids"] = sequence if return_token_type_ids: encoded_inputs["token_type_ids"] = token_type_ids if return_special_tokens_mask: if add_special_tokens: encoded_inputs["special_tokens_mask"] = self.get_special_tokens_mask(ids, pair_ids) else: encoded_inputs["special_tokens_mask"] = [0] * len(sequence) # Check lengths if max_length is None and len(encoded_inputs["input_ids"]) > self.model_max_length and verbose: logger.warning( "Token indices sequence length is longer than the specified maximum sequence length " "for this model ({} > {}). Running this sequence through the model will result in " "indexing errors".format(len(ids), self.model_max_length) ) # Padding if padding_strategy != PaddingStrategy.DO_NOT_PAD or return_attention_mask: encoded_inputs = self.pad( encoded_inputs, max_length=max_length, padding=padding_strategy.value, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask, ) if return_length: encoded_inputs["length"] = len(encoded_inputs["input_ids"]) batch_outputs = BatchEncoding( encoded_inputs, tensor_type=return_tensors, prepend_batch_axis=prepend_batch_axis ) return batch_outputs def truncate_sequences( self, ids: List[int], pair_ids: Optional[List[int]] = None, num_tokens_to_remove: int = 0, truncation_strategy: Union[str, TruncationStrategy] = "longest_first", stride: int = 0, ) -> Tuple[List[int], List[int], List[int]]: """ Truncates a sequence pair in-place following the strategy. Args: ids (:obj:`List[int]`): Tokenized input ids of the first sequence. Can be obtained from a string by chaining the ``tokenize`` and ``convert_tokens_to_ids`` methods. pair_ids (:obj:`List[int]`, `optional`): Tokenized input ids of the second sequence. Can be obtained from a string by chaining the ``tokenize`` and ``convert_tokens_to_ids`` methods. num_tokens_to_remove (:obj:`int`, `optional`, defaults to 0): Number of tokens to remove using the truncation strategy. truncation (:obj:`str` or :class:`~transformers.tokenization_utils_base.TruncationStrategy`, `optional`, defaults to :obj:`False`): The strategy to follow for truncation. Can be: * :obj:`'longest_first'`: Truncate to a maximum length specified with the argument :obj:`max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. * :obj:`'only_first'`: Truncate to a maximum length specified with the argument :obj:`max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. * :obj:`'only_second'`: Truncate to a maximum length specified with the argument :obj:`max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. * :obj:`'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (:obj:`int`, `optional`): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to :obj:`None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. stride (:obj:`int`, `optional`, defaults to 0): If set to a positive number, the overflowing tokens returned will contain some tokens from the main sequence returned. The value of this argument defines the number of additional tokens. Returns: :obj:`Tuple[List[int], List[int], List[int]]`: The truncated ``ids``, the truncated ``pair_ids`` and the list of overflowing tokens. """ if num_tokens_to_remove <= 0: return ids, pair_ids, [] if not isinstance(truncation_strategy, TruncationStrategy): truncation_strategy = TruncationStrategy(truncation_strategy) overflowing_tokens = [] if truncation_strategy == TruncationStrategy.LONGEST_FIRST: for _ in range(num_tokens_to_remove): if pair_ids is None or len(ids) > len(pair_ids): if not overflowing_tokens: window_len = min(len(ids), stride + 1) else: window_len = 1 overflowing_tokens.extend(ids[-window_len:]) ids = ids[:-1] else: if not overflowing_tokens: window_len = min(len(pair_ids), stride + 1) else: window_len = 1 overflowing_tokens.extend(pair_ids[-window_len:]) pair_ids = pair_ids[:-1] elif truncation_strategy == TruncationStrategy.ONLY_FIRST: if len(ids) > num_tokens_to_remove: window_len = min(len(ids), stride + num_tokens_to_remove) overflowing_tokens = ids[-window_len:] ids = ids[:-num_tokens_to_remove] else: logger.error( f"We need to remove {num_tokens_to_remove} to truncate the input" f"but the first sequence has a length {len(ids)}. " f"Please select another truncation strategy than {truncation_strategy}, " f"for instance 'longest_first' or 'only_second'." ) elif truncation_strategy == TruncationStrategy.ONLY_SECOND and pair_ids is not None: if len(pair_ids) > num_tokens_to_remove: window_len = min(len(pair_ids), stride + num_tokens_to_remove) overflowing_tokens = pair_ids[-window_len:] pair_ids = pair_ids[:-num_tokens_to_remove] else: logger.error( f"We need to remove {num_tokens_to_remove} to truncate the input" f"but the second sequence has a length {len(pair_ids)}. " f"Please select another truncation strategy than {truncation_strategy}, " f"for instance 'longest_first' or 'only_first'." ) return (ids, pair_ids, overflowing_tokens) def _pad( self, encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding], max_length: Optional[int] = None, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, pad_to_multiple_of: Optional[int] = None, return_attention_mask: Optional[bool] = None, ) -> dict: """ Pad encoded inputs (on left/right and up to predefined legnth or max length in the batch) Args: encoded_inputs: Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`). max_length: maximum length of the returned list and optionally padding length (see below). Will truncate by taking into account the special tokens. padding_strategy: PaddingStrategy to use for padding. - PaddingStrategy.LONGEST Pad to the longest sequence in the batch - PaddingStrategy.MAX_LENGTH: Pad to the max length (default) - PaddingStrategy.DO_NOT_PAD: Do not pad The tokenizer padding sides are defined in self.padding_side: - 'left': pads on the left of the sequences - 'right': pads on the right of the sequences pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability >= 7.5 (Volta). return_attention_mask: (optional) Set to False to avoid returning attention mask (default: set to model specifics) """ # Load from model defaults if return_attention_mask is None: return_attention_mask = "attention_mask" in self.model_input_names if padding_strategy == PaddingStrategy.LONGEST: max_length = len(encoded_inputs["input_ids"]) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of needs_to_be_padded = ( padding_strategy != PaddingStrategy.DO_NOT_PAD and len(encoded_inputs["input_ids"]) != max_length ) if needs_to_be_padded: difference = max_length - len(encoded_inputs["input_ids"]) if self.padding_side == "right": if return_attention_mask: encoded_inputs["attention_mask"] = [1] * len(encoded_inputs["input_ids"]) + [0] * difference if "token_type_ids" in encoded_inputs: encoded_inputs["token_type_ids"] = ( encoded_inputs["token_type_ids"] + [self.pad_token_type_id] * difference ) if "special_tokens_mask" in encoded_inputs: encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference encoded_inputs["input_ids"] = encoded_inputs["input_ids"] + [self.pad_token_id] * difference elif self.padding_side == "left": if return_attention_mask: encoded_inputs["attention_mask"] = [0] * difference + [1] * len(encoded_inputs["input_ids"]) if "token_type_ids" in encoded_inputs: encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[ "token_type_ids" ] if "special_tokens_mask" in encoded_inputs: encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"] encoded_inputs["input_ids"] = [self.pad_token_id] * difference + encoded_inputs["input_ids"] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side)) else: if return_attention_mask: encoded_inputs["attention_mask"] = [1] * len(encoded_inputs["input_ids"]) return encoded_inputs def batch_decode( self, sequences: List[List[int]], skip_special_tokens: bool = False, clean_up_tokenization_spaces: bool = True ) -> List[str]: """ Convert a list of lists of token ids into a list of strings by calling decode. Args: sequences (:obj:`List[List[int]]`): List of tokenized input ids. Can be obtained using the ``__call__`` method. skip_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to remove special tokens in the decoding. clean_up_tokenization_spaces (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether or not to clean up the tokenization spaces. Returns: :obj:`List[str]`: The list of decoded sentences. """ return [ self.decode( seq, skip_special_tokens=skip_special_tokens, clean_up_tokenization_spaces=clean_up_tokenization_spaces ) for seq in sequences ] def decode( self, token_ids: List[int], skip_special_tokens: bool = False, clean_up_tokenization_spaces: bool = True ) -> str: """ Converts a sequence of ids in a string, using the tokenizer and vocabulary with options to remove special tokens and clean up tokenization spaces. Similar to doing ``self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))``. Args: token_ids (:obj:`List[int]`): List of tokenized input ids. Can be obtained using the ``__call__`` method. skip_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to remove special tokens in the decoding. clean_up_tokenization_spaces (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether or not to clean up the tokenization spaces. Returns: :obj:`str`: The decoded sentence. """ raise NotImplementedError def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer ``prepare_for_model`` or ``encode_plus`` methods. Args: token_ids_0 (:obj:`List[int]`): List of ids of the first sequence. token_ids_1 (:obj:`List[int]`, `optional`): List of ids of the second sequence. already_has_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`): Wheter or not the token list is already formated with special tokens for the model. Returns: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ assert already_has_special_tokens and token_ids_1 is None, ( "You cannot use ``already_has_special_tokens=False`` with this tokenizer. " "Please use a slow (full python) tokenizer to activate this argument." "Or set `return_special_token_mask=True` when calling the encoding method " "to get the special tokens mask in any tokenizer. " ) all_special_ids = self.all_special_ids # cache the property special_tokens_mask = [1 if token in all_special_ids else 0 for token in token_ids_0] return special_tokens_mask @staticmethod def clean_up_tokenization(out_string: str) -> str: """ Clean up a list of simple English tokenization artifacts like spaces before punctuations and abreviated forms. Args: out_string (:obj:`str`): The text to clean up. Returns: :obj:`str`: The cleaned-up string. """ out_string = ( out_string.replace(" .", ".") .replace(" ?", "?") .replace(" !", "!") .replace(" ,", ",") .replace(" ' ", "'") .replace(" n't", "n't") .replace(" 'm", "'m") .replace(" 's", "'s") .replace(" 've", "'ve") .replace(" 're", "'re") ) return out_string
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/triton/runner/maintainer
maintainer
container
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import abc from typing import Any class Container(abc.ABC): def __init__(self, name: str): self.name = name self._container = None @abc.abstractmethod def start(self): """ Start container """ pass @abc.abstractmethod def stop(self): """ Stop container """ @abc.abstractmethod def run(self, command: str) -> Any: """ Run command inside container Args: command: command to execute Returns: Any """ pass
PyTorch/SpeechSynthesis/Tacotron2/trtis_cpp/src/trt/plugins/taco2ProjectionPlugin
taco2ProjectionPlugin
taco2ProjectionKernel
/* * Copyright (c) 2019-2020, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the NVIDIA CORPORATION nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef TT2I_PROJECTIONKERNEL_H #define TT2I_PROJECTIONKERNEL_H #include "cudaMemory.h" #include <vector> namespace nvinfer1 { namespace plugin { class Taco2ProjectionKernel { public: /** * @brief Create a new Taco2ProjectionKernel. * * @param fc1WeightsHost The weights of the first fully connected layer. * @param fc2WeightsHost The weights of the second fully connected layer. * @param inputLength The length of the input. * @param numDimension The number of dimensions of the FC layers. */ Taco2ProjectionKernel(const std::vector<float>& fcWeightsHost, const std::vector<float>& fcBiasHost, int inputLength1, int inputLength2, int numDimension); /** * @brief Execute this kernel. * * @param input1Device The first input on the device. * @param input2Device The second input on the device. * @param outputDevice THe output on the device. * @param scratchDevice The scratch space on the device. * @param stream The stream to operate on. */ void execute(const float* input1Device, const float* input2Device, float* outputDevice, cudaStream_t stream); private: int mInput1Length; int mInput2Length; int mInputLength; int mNumDimension; tts::CudaMemory<float> mWeightsDevice; tts::CudaMemory<float> mBiasDevice; }; } // namespace plugin } // namespace nvinfer1 #endif
PyTorch/SpeechSynthesis/FastPitch/filelists
filelists
ljs_audio_text_test
wavs/LJ045-0096.wav|Mrs. De Mohrenschildt thought that Oswald, wavs/LJ049-0022.wav|The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent. wavs/LJ033-0042.wav|Between the hours of eight and nine p.m. they were occupied with the children in the bedrooms located at the extreme east end of the house. wavs/LJ016-0117.wav|The prisoner had nothing to deal with but wooden panels, and by dint of cutting and chopping he got both the lower panels out. wavs/LJ025-0157.wav|Under these circumstances, unnatural as they are, with proper management, the bean will thrust forth its radicle and its plumule; wavs/LJ042-0219.wav|Oswald demonstrated his thinking in connection with his return to the United States by preparing two sets of identical questions of the type which he might have thought wavs/LJ032-0164.wav|it is not possible to state with scientific certainty that a particular small group of fibers come from a certain piece of clothing wavs/LJ046-0092.wav|has confidence in the dedicated Secret Service men who are ready to lay down their lives for him wavs/LJ050-0118.wav|Since these agencies are already obliged constantly to evaluate the activities of such groups, wavs/LJ043-0016.wav|Jeanne De Mohrenschildt said, quote, wavs/LJ021-0078.wav|no economic panacea, which could simply revive over-night the heavy industries and the trades dependent upon them. wavs/LJ039-0148.wav|Examination of the cartridge cases found on the sixth floor of the Depository Building wavs/LJ047-0202.wav|testified that the information available to the Federal Government about Oswald before the assassination would, if known to PRS, wavs/LJ023-0056.wav|It is an easy document to understand when you remember that it was called into being wavs/LJ021-0025.wav|And in many directions, the intervention of that organized control which we call government wavs/LJ030-0105.wav|Communications in the motorcade. wavs/LJ021-0012.wav|with respect to industry and business, but nearly all are agreed that private enterprise in times such as these wavs/LJ019-0169.wav|and one or two men were allowed to mend clothes and make shoes. The rules made by the Secretary of State were hung up in conspicuous parts of the prison; wavs/LJ039-0088.wav|It just is an aid in seeing in the fact that you only have the one element, the crosshair, wavs/LJ016-0192.wav|"I think I could do that sort of job," said Calcraft, on the spur of the moment. wavs/LJ014-0142.wav|was strewn in front of the dock, and sprinkled it towards the bench with a contemptuous gesture. wavs/LJ012-0015.wav|Weedon and Lecasser to twelve and six months respectively in Coldbath Fields. wavs/LJ048-0033.wav|Prior to November twenty-two, nineteen sixty-three wavs/LJ028-0349.wav|who were each required to send so large a number to Babylon, that in all there were collected no fewer than fifty thousand. wavs/LJ030-0197.wav|At first Mrs. Connally thought that her husband had been killed, wavs/LJ017-0133.wav|Palmer speedily found imitators. wavs/LJ034-0123.wav|Although Brennan testified that the man in the window was standing when he fired the shots, most probably he was either sitting or kneeling. wavs/LJ003-0282.wav|Many years were to elapse before these objections should be fairly met and universally overcome. wavs/LJ032-0204.wav|Special Agent Lyndal L. Shaneyfelt, a photography expert with the FBI, wavs/LJ016-0241.wav|Calcraft served the city of London till eighteen seventy-four, when he was pensioned at the rate of twenty-five shillings per week. wavs/LJ023-0033.wav|we will not allow ourselves to run around in new circles of futile discussion and debate, always postponing the day of decision. wavs/LJ009-0286.wav|There has never been much science in the system of carrying out the extreme penalty in this country; the "finisher of the law" wavs/LJ008-0181.wav|he had his pockets filled with bread and cheese, and it was generally supposed that he had come a long distance to see the fatal show. wavs/LJ015-0052.wav|to the value of twenty thousand pounds. wavs/LJ016-0314.wav|Sir George Grey thought there was a growing feeling in favor of executions within the prison precincts. wavs/LJ047-0056.wav|From August nineteen sixty-two wavs/LJ010-0027.wav|Nor did the methods by which they were perpetrated greatly vary from those in times past. wavs/LJ010-0065.wav|At the former the "Provisional Government" was to be established, wavs/LJ046-0113.wav|The Commission has concluded that at the time of the assassination wavs/LJ028-0410.wav|There among the ruins they still live in the same kind of houses, wavs/LJ044-0137.wav|More seriously, the facts of his defection had become known, leaving him open to almost unanswerable attack by those who opposed his views. wavs/LJ008-0215.wav|One by one the huge uprights of black timber were fitted together, wavs/LJ030-0084.wav|or when the press of the crowd made it impossible for the escort motorcycles to stay in position on the car's rear flanks. wavs/LJ020-0092.wav|Have yourself called on biscuit mornings an hour earlier than usual. wavs/LJ029-0096.wav|On November fourteen, Lawson and Sorrels attended a meeting at Love Field wavs/LJ015-0308.wav|and others who swore to the meetings of the conspirators and their movements. Saward was found guilty, wavs/LJ012-0067.wav|But Mrs. Solomons could not resist the temptation to dabble in stolen goods, and she was found shipping watches of the wrong category to New York. wavs/LJ018-0231.wav|namely, to suppress it and substitute another. wavs/LJ014-0265.wav|and later he became manager of the newly rebuilt Olympic at Wych Street. wavs/LJ024-0102.wav|would be the first to exclaim as soon as an amendment was proposed wavs/LJ007-0233.wav|it consists of several circular perforations, about two inches in diameter, wavs/LJ013-0213.wav|This seems to have decided Courvoisier, wavs/LJ032-0045.wav|This price included nineteen dollars, ninety-five cents for the rifle and the scope, and one dollar, fifty cents for postage and handling. wavs/LJ011-0048.wav|Wherefore let him that thinketh he standeth take heed lest he fall," and was full of the most pointed allusions to the culprit. wavs/LJ005-0294.wav|It was frequently stated in evidence that the jail of the borough was in so unfit a state for the reception of prisoners, wavs/LJ016-0007.wav|There were others less successful. wavs/LJ028-0138.wav|perhaps the tales that travelers told him were exaggerated as travelers' tales are likely to be, wavs/LJ050-0029.wav|that is reflected in definite and comprehensive operating procedures. wavs/LJ014-0121.wav|The prisoners were in due course transferred to Newgate, to be put upon their trial at the Central Criminal Court. wavs/LJ014-0146.wav|They had to handcuff her by force against the most violent resistance, and still she raged and stormed, wavs/LJ046-0111.wav|The Secret Service has attempted to perform this function through the activities of its Protective Research Section wavs/LJ012-0257.wav|But the affair still remained a profound mystery. No light was thrown upon it till, towards the end of March, wavs/LJ002-0260.wav|Yet the public opinion of the whole body seems to have checked dissipation. wavs/LJ031-0014.wav|the Presidential limousine arrived at the emergency entrance of the Parkland Hospital at about twelve:thirty-five p.m. wavs/LJ047-0093.wav|Oswald was arrested and jailed by the New Orleans Police Department for disturbing the peace, in connection with a street fight which broke out when he was accosted wavs/LJ003-0324.wav|gaming of all sorts should be peremptorily forbidden under heavy pains and penalties. wavs/LJ021-0115.wav|we have reached into the heart of the problem which is to provide such annual earnings for the lowest paid worker as will meet his minimum needs. wavs/LJ046-0191.wav|it had established periodic regular review of the status of four hundred individuals; wavs/LJ034-0197.wav|who was one of the first witnesses to alert the police to the Depository as the source of the shots, as has been discussed in chapter three. wavs/LJ002-0253.wav|were governed by rules which they themselves had framed, and under which subscriptions were levied wavs/LJ048-0288.wav|might have been more alert in the Dallas motorcade if they had retired promptly in Fort Worth. wavs/LJ007-0112.wav|Many of the old customs once prevalent in the State Side, so properly condemned and abolished, wavs/LJ017-0189.wav|who was presently attacked in the same way as the others, but, but, thanks to the prompt administration of remedies, he recovered. wavs/LJ042-0230.wav|basically, although I hate the USSR and socialist system I still think marxism can work under different circumstances, end quote. wavs/LJ050-0161.wav|The Secret Service should not and does not plan to develop its own intelligence gathering facilities to duplicate the existing facilities of other Federal agencies. wavs/LJ003-0011.wav|that not more than one bottle of wine or one quart of beer could be issued at one time. No account was taken of the amount of liquors admitted in one day, wavs/LJ008-0206.wav|and caused a number of stout additional barriers to be erected in front of the scaffold, wavs/LJ002-0261.wav|The poorer prisoners were not in abject want, as in other prisons, wavs/LJ012-0189.wav|Hunt, in consideration of the information he had given, escaped death, and was sentenced to transportation for life. wavs/LJ019-0317.wav|The former, which consisted principally of the tread-wheel, cranks, capstans, shot-drill, wavs/LJ011-0041.wav|Visited Mr. Fauntleroy. My application for books for him not having been attended, I had no prayer-book to give him. wavs/LJ023-0089.wav|That is not only my accusation. wavs/LJ044-0224.wav|would not agree with that particular wording, end quote. wavs/LJ013-0104.wav|He found them at length residing at the latter place, one as a landed proprietor, the other as a publican. wavs/LJ013-0055.wav|The jury did not believe him, and the verdict was for the defendants. wavs/LJ014-0306.wav|These had been attributed to political action; some thought that the large purchases in foreign grains, effected at losing prices, wavs/LJ029-0052.wav|To supplement the PRS files, the Secret Service depends largely on local police departments and local offices of other Federal agencies wavs/LJ028-0459.wav|Its bricks, measuring about thirteen inches square and three inches in thickness, were burned and stamped with the usual short inscription: wavs/LJ017-0183.wav|Soon afterwards Dixon died, showing all the symptoms already described. wavs/LJ009-0084.wav|At length the ordinary pauses, and then, in a deep tone, which, though hardly above a whisper, is audible to all, says, wavs/LJ007-0170.wav|That in this vast metropolis, the center of wealth, civilization, and information; wavs/LJ016-0277.wav|This is proved by contemporary accounts, especially one graphic and realistic article which appeared in the 'Times,' wavs/LJ009-0061.wav|He staggers towards the pew, reels into it, stumbles forward, flings himself on the ground, and, by a curious twist of the spine, wavs/LJ019-0201.wav|to select a sufficiently spacious piece of ground, and erect a prison which from foundations to roofs should be in conformity with the newest ideas. wavs/LJ030-0063.wav|He had repeated this wish only a few days before, during his visit to Tampa, Florida. wavs/LJ010-0257.wav|a third miscreant made a similar but far less serious attempt in the month of July following. wavs/LJ009-0106.wav|The keeper tries to appear unmoved, but his eye wanders anxiously over the combustible assembly. wavs/LJ008-0121.wav|After the construction and action of the machine had been explained, the doctor asked the governor what kind of men he had commanded at Goree, wavs/LJ050-0069.wav|the Secret Service had received from the FBI some nine thousand reports on members of the Communist Party. wavs/LJ006-0202.wav|The news-vendor was also a tobacconist, wavs/LJ012-0230.wav|Shortly before the day fixed for execution, Bishop made a full confession, the bulk of which bore the impress of truth, wavs/LJ005-0248.wav|and stated that in his opinion Newgate, as the common jail of Middlesex, was wholly inadequate to the proper confinement of its prisoners. wavs/LJ037-0053.wav|who had been greatly upset by her experience, was able to view a lineup of four men handcuffed together at the police station. wavs/LJ045-0177.wav|For the first time wavs/LJ004-0036.wav|it was hoped that their rulers would hire accommodation in the county prisons, and that the inferior establishments would in course of time disappear. wavs/LJ026-0054.wav|carbohydrates (starch, cellulose) and fats. wavs/LJ020-0085.wav|Break apart from one another and pile on a plate, throwing a clean doily or a small napkin over them. Break open at table. wavs/LJ046-0226.wav|The several military intelligence agencies reported crank mail and similar threats involving the President. wavs/LJ014-0233.wav|he shot an old soldier who had attempted to detain him. He was convicted and executed. wavs/LJ033-0152.wav|The portion of the palm which was identified was the heel of the right palm, i.e., the area near the wrist, on the little finger side. wavs/LJ004-0009.wav|as indefatigable and self-sacrificing, found by personal visitation that the condition of jails throughout the kingdom was, wavs/LJ017-0134.wav|Within a few weeks occurred the Leeds poisoning case, in which the murderer undoubtedly was inspired by the facts made public at Palmer's trial. wavs/LJ019-0318.wav|was to be the rule for all convicted prisoners throughout the early stages of their detention; wavs/LJ020-0093.wav|Rise, wash face and hands, rinse the mouth out and brush back the hair. wavs/LJ012-0188.wav|Probert was then admitted as a witness, and the case was fully proved against Thurtell, who was hanged in front of Hertford Jail. wavs/LJ019-0202.wav|The preference given to the Pentonville system destroyed all hopes of a complete reformation of Newgate. wavs/LJ039-0027.wav|Oswald's revolver wavs/LJ040-0176.wav|He admitted to fantasies about being powerful and sometimes hurting and killing people, but refused to elaborate on them. wavs/LJ018-0354.wav|Doubts were long entertained whether Thomas Wainwright, wavs/LJ031-0185.wav|From the Presidential airplane, the Vice President telephoned Attorney General Robert F. Kennedy, wavs/LJ006-0137.wav|They were not obliged to attend chapel, and seldom if ever went; "prisoners," said one of them under examination, "did not like the trouble of going to chapel." wavs/LJ032-0085.wav|The Hidell signature on the notice of classification was in the handwriting of Oswald. wavs/LJ009-0037.wav|the schoolmaster and the juvenile prisoners being seated round the communion-table, opposite the pulpit. wavs/LJ006-0021.wav|Later on he had devoted himself to the personal investigation of the prisons of the United States. wavs/LJ006-0082.wav|and this particular official took excellent care to select as residents for his own ward those most suitable from his own point of view. wavs/LJ016-0380.wav|with hope to the last. There is always the chance of a flaw in the indictment, of a missing witness, or extenuating circumstances. wavs/LJ019-0344.wav|monitor, or schoolmaster, nor to be engaged in the service of any officer of the prison. wavs/LJ019-0161.wav|These disciplinary improvements were, however, only slowly and gradually introduced. wavs/LJ028-0145.wav|And here I may not omit to tell the use to which the mould dug out of the great moat was turned, nor the manner wherein the wall was wrought. wavs/LJ018-0349.wav|His disclaimer, distinct and detailed on every point, was intended simply for effect. wavs/LJ043-0010.wav|Some of the members of that group saw a good deal of the Oswalds through the fall of nineteen sixty-three, wavs/LJ027-0178.wav|These were undoubtedly perennibranchs. In the Permian and Triassic higher forms appeared, which were certainly caducibranch. wavs/LJ041-0070.wav|He did not rise above the rank of private first class, even though he had passed a qualifying examination for the rank of corporal. wavs/LJ008-0266.wav|Thus in the years between May first, eighteen twenty-seven, and thirtieth April, eighteen thirty-one, wavs/LJ021-0091.wav|In this recent reorganization we have recognized three distinct functions: wavs/LJ019-0129.wav|which marked the growth of public interest in prison affairs, and which was the germ of the new system wavs/LJ018-0215.wav|William Roupell was the eldest but illegitimate son of a wealthy man who subsequently married Roupell's mother, and had further legitimate issue. wavs/LJ015-0194.wav|and behaved so as to justify a belief that he had been a jail-bird all his life. wavs/LJ016-0137.wav|that numbers of men, "lifers," and others with ten, fourteen, or twenty years to do, can be trusted to work out of doors without bolts and bars wavs/LJ002-0289.wav|the latter raised eighteen pence among them to pay for a truss of straw for the poor woman to lie on. wavs/LJ023-0016.wav|In nineteen thirty-three you and I knew that we must never let our economic system get completely out of joint again wavs/LJ011-0141.wav|There were at the moment in Newgate six convicts sentenced to death for forging wills. wavs/LJ016-0283.wav|to do them mere justice, there was at least till then a half-drunken ribald gaiety among the crowd that made them all akin." wavs/LJ035-0082.wav|The only interval was the time necessary to ride in the elevator from the second to the sixth floor and walk back to the southeast corner. wavs/LJ045-0194.wav|Anyone who was familiar with that area of Dallas would have known that the motorcade would probably pass the Texas School Book Depository to get from Main Street wavs/LJ009-0124.wav|occupied when they saw it last, but a few hours ago, by their comrades who are now dead; wavs/LJ030-0162.wav|In the Presidential Limousine wavs/LJ050-0223.wav|The plan provides for an additional two hundred five agents for the Secret Service. Seventeen of this number are proposed for the Protective Research Section; wavs/LJ008-0228.wav|their harsh and half-cracked voices full of maudlin, besotted sympathy for those about to die. wavs/LJ002-0096.wav|The eight courts above enumerated were well supplied with water; wavs/LJ018-0288.wav|After this the other conspirators traveled to obtain genuine bills and master the system of the leading houses at home and abroad. wavs/LJ002-0106.wav|in which latterly a copper had been fixed for the cooking of provisions sent in by charitable persons. wavs/LJ025-0129.wav|On each lobe of the bi-lobed leaf of Venus flytrap are three delicate filaments which stand out at right angles from the surface of the leaf. wavs/LJ044-0013.wav|Hands Off Cuba, end quote, an application form for, and a membership card in, wavs/LJ049-0115.wav|of the person who is actually in the exercise of the executive power, or wavs/LJ019-0145.wav|But reformation was only skin deep. Below the surface many of the old evils still rankled. wavs/LJ019-0355.wav|came up in all respects to modern requirements. wavs/LJ019-0289.wav|There was unrestrained association of untried and convicted, juvenile with adult prisoners, vagrants, misdemeanants, felons. wavs/LJ048-0222.wav|in Fort Worth, there occurred a breach of discipline by some members of the Secret Service who were officially traveling with the President. wavs/LJ016-0367.wav|Under the new system the whole of the arrangements from first to last fell upon the officers. wavs/LJ047-0097.wav|Agent Quigley did not know of Oswald's prior FBI record when he interviewed him, wavs/LJ007-0075.wav|as effectually to rebuke and abash the profane spirit of the more insolent and daring of the criminals. wavs/LJ047-0022.wav|provided by other agencies. wavs/LJ007-0085.wav|at Newgate and York Castle as long as five years; "at Ilchester and Morpeth for seven years; at Warwick for eight years, wavs/LJ047-0075.wav|Hosty had inquired earlier and found no evidence that it was functioning in the Dallas area. wavs/LJ008-0098.wav|One was the "yeoman of the halter," a Newgate official, the executioner's assistant, whom Mr. J. T. Smith, who was present at the execution, wavs/LJ017-0102.wav|The second attack was fatal, and ended in Cook's death from tetanus. wavs/LJ046-0105.wav|Second, the adequacy of other advance preparations for the security of the President, during his visit to Dallas, wavs/LJ018-0206.wav|He was a tall, slender man, with a long face and iron-gray hair. wavs/LJ012-0271.wav|Whether it was greed or a quarrel that drove Greenacre to the desperate deed remains obscure. wavs/LJ005-0086.wav|with such further separation as the justices should deem conducive to good order and discipline. wavs/LJ042-0097.wav|and considerably better living quarters than those accorded to Soviet citizens of equal age and station. wavs/LJ047-0126.wav|we would handle it in due course, in accord with the whole context of the investigation. End quote. wavs/LJ041-0022.wav|Oswald first wrote, quote, Edward Vogel, end quote, an obvious misspelling of Voebel's name, wavs/LJ015-0025.wav|The bank enjoyed an excellent reputation, it had a good connection, and was supposed to be perfectly sound. wavs/LJ012-0194.wav|But Burke and Hare had their imitators further south, wavs/LJ028-0416.wav|(if man may speak so confidently of His great impenetrable counsels), for an eternal Testimony of His great work in the confusion of Man's pride, wavs/LJ007-0130.wav|are all huddled together without discrimination, oversight, or control." wavs/LJ015-0005.wav|About this time Davidson and Gordon, the people above-mentioned, wavs/LJ016-0125.wav|with this, placed against the wall near the chevaux-de-frise, he made an escalade. wavs/LJ014-0224.wav|As Dwyer survived, Cannon escaped the death sentence, which was commuted to penal servitude for life. wavs/LJ005-0019.wav|refuted by abundant evidence, and having no foundation whatever in truth. wavs/LJ042-0221.wav|With either great ambivalence, or cold calculation he prepared completely different answers to the same questions. wavs/LJ001-0063.wav|which was generally more formally Gothic than the printing of the German workmen, wavs/LJ030-0006.wav|They took off in the Presidential plane, Air Force One, at eleven a.m., arriving at San Antonio at one:thirty p.m., Eastern Standard Time. wavs/LJ024-0054.wav|democracy will have failed far beyond the importance to it of any king of precedent concerning the judiciary. wavs/LJ006-0044.wav|the same callous indifference to the moral well-being of the prisoners, the same want of employment and of all disciplinary control. wavs/LJ039-0154.wav|four point eight to five point six seconds if the second shot missed, wavs/LJ050-0090.wav|they seem unduly restrictive in continuing to require some manifestation of animus against a Government official. wavs/LJ028-0421.wav|it was the beginning of the great collections of Babylonian antiquities in the museums of the Western world. wavs/LJ033-0205.wav|then I would say the possibility exists, these fibers could have come from this blanket, end quote. wavs/LJ019-0335.wav|The books and journals he was to keep were minutely specified, and his constant presence in or near the jail was insisted upon. wavs/LJ013-0045.wav|Wallace's relations warned him against his Liverpool friend, wavs/LJ037-0002.wav|Chapter four. The Assassin: Part six. wavs/LJ018-0159.wav|This was all the police wanted to know. wavs/LJ026-0140.wav|In the plant as in the animal metabolism must consist of anabolic and catabolic processes. wavs/LJ014-0171.wav|I will briefly describe one or two of the more remarkable murders in the years immediately following, then pass on to another branch of crime. wavs/LJ037-0007.wav|Three others subsequently identified Oswald from a photograph. wavs/LJ033-0174.wav|microscopic and UV (ultra violet) characteristics, end quote. wavs/LJ040-0110.wav|he apparently adjusted well enough there to have had an average, although gradually deteriorating, school record wavs/LJ039-0192.wav|he had a total of between four point eight and five point six seconds between the two shots which hit wavs/LJ032-0261.wav|When he appeared before the Commission, Michael Paine lifted the blanket wavs/LJ040-0097.wav|Lee was brought up in this atmosphere of constant money problems, and I am sure it had quite an effect on him, and also Robert, end quote. wavs/LJ037-0249.wav|Mrs. Earlene Roberts, the housekeeper at Oswald's roominghouse and the last person known to have seen him before he reached tenth Street and Patton Avenue, wavs/LJ016-0248.wav|Marwood was proud of his calling, and when questioned as to whether his process was satisfactory, replied that he heard "no complaints." wavs/LJ004-0083.wav|As Mr. Buxton pointed out, many old acts of parliament designed to protect the prisoner were still in full force. wavs/LJ014-0029.wav|This was Delarue's watch, fully identified as such, which Hocker told his brother Delarue had given him the morning of the murder. wavs/LJ021-0110.wav|have been best calculated to promote industrial recovery and a permanent improvement of business and labor conditions. wavs/LJ003-0107.wav|he slept in the same bed with a highwayman on one side, and a man charged with murder on the other. wavs/LJ039-0076.wav|Ronald Simmons, chief of the U.S. Army Infantry Weapons Evaluation Branch of the Ballistics Research Laboratory, said, quote, wavs/LJ016-0347.wav|had undoubtedly a solemn, impressive effect upon those outside. wavs/LJ001-0072.wav|After the end of the fifteenth century the degradation of printing, especially in Germany and Italy, wavs/LJ024-0018.wav|Consequently, although there never can be more than fifteen, there may be only fourteen, or thirteen, or twelve. wavs/LJ032-0180.wav|that the fibers were caught in the crevice of the rifle's butt plate, quote, in the recent past, end quote, wavs/LJ010-0083.wav|and measures taken to arrest them when their plans were so far developed that no doubt could remain as to their guilt. wavs/LJ002-0299.wav|and gave the garnish for the common side at that sum, which is five shillings more than Mr. Neild says was extorted on the common side. wavs/LJ048-0143.wav|the Secret Service did not at the time of the assassination have any established procedure governing its relationships with them. wavs/LJ012-0054.wav|Solomons, while waiting to appear in court, persuaded the turnkeys to take him to a public-house, where all might "refresh." wavs/LJ019-0270.wav|Vegetables, especially the potato, that most valuable anti-scorbutic, was too often omitted. wavs/LJ035-0164.wav|three minutes after the shooting. wavs/LJ014-0326.wav|Maltby and Co. would issue warrants on them deliverable to the importer, and the goods were then passed to be stored in neighboring warehouses. wavs/LJ001-0173.wav|The essential point to be remembered is that the ornament, whatever it is, whether picture or pattern-work, should form part of the page, wavs/LJ050-0056.wav|On December twenty-six, nineteen sixty-three, the FBI circulated additional instructions to all its agents, wavs/LJ003-0319.wav|provided only that their security was not jeopardized, and dependent upon the enforcement of another new rule, wavs/LJ006-0040.wav|The fact was that the years as they passed, nearly twenty in all, had worked but little permanent improvement in this detestable prison. wavs/LJ017-0231.wav|His body was found lying in a pool of blood in a night-dress, stabbed over and over again in the left side. wavs/LJ017-0226.wav|One half of the mutineers fell upon him unawares with handspikes and capstan-bars. wavs/LJ004-0239.wav|He had been committed for an offense for which he was acquitted. wavs/LJ048-0112.wav|The Commission also regards the security arrangements worked out by Lawson and Sorrels at Love Field as entirely adequate. wavs/LJ039-0125.wav|that Oswald was a good shot, somewhat better than or equal to -- better than the average let us say. wavs/LJ030-0196.wav|He cried out, quote, Oh, no, no, no. My God, they are going to kill us all, end quote, wavs/LJ010-0228.wav|He was released from Broadmoor in eighteen seventy-eight, and went abroad. wavs/LJ045-0228.wav|On the other hand, he could have traveled some distance with the money he did have and he did return to his room where he obtained his revolver. wavs/LJ028-0168.wav|in the other was the sacred precinct of Jupiter Belus, wavs/LJ021-0140.wav|and in such an effort we should be able to secure for employers and employees and consumers wavs/LJ009-0280.wav|Again the wretched creature succeeded in obtaining foothold, but this time on the left side of the drop. wavs/LJ003-0159.wav|To constitute this the aristocratic quarter, unwarrantable demands were made upon the space properly allotted to the female felons, wavs/LJ016-0274.wav|and the windows of the opposite houses, which commanded a good view, as usual fetched high prices. wavs/LJ035-0014.wav|it sounded high and I immediately kind of looked up, wavs/LJ033-0120.wav|which he believed was where the bag reached when it was laid on the seat with one edge against the door. wavs/LJ045-0015.wav|which Johnson said he did not receive until after the assassination. The letter said in part, quote, wavs/LJ003-0299.wav|the latter end of the nineteenth century, several of which still fall far short of our English ideal, wavs/LJ032-0206.wav|After comparing the rifle in the simulated photograph with the rifle in Exhibit Number one thirty-three A, Shaneyfelt testified, quote, wavs/LJ028-0494.wav|Between the several sections were wide spaces where foot soldiers and charioteers might fight. wavs/LJ005-0099.wav|and report at length upon the condition of the prisons of the country. wavs/LJ015-0144.wav|developed to a colossal extent the frauds he had already practiced as a subordinate. wavs/LJ019-0221.wav|It was intended as far as possible that, except awaiting trial, no prisoner should find himself relegated to Newgate. wavs/LJ003-0088.wav|in one, for seven years -- that of a man sentenced to death, for whom great interest had been made, but whom it was not thought right to pardon. wavs/LJ045-0216.wav|nineteen sixty-three, merely to disarm her and to provide a justification of sorts, wavs/LJ042-0135.wav|that he was not yet twenty years old when he went to the Soviet Union with such high hopes and not quite twenty-three when he returned bitterly disappointed. wavs/LJ049-0196.wav|On the other hand, it is urged that all features of the protection of the President and his family should be committed to an elite and independent corps. wavs/LJ018-0278.wav|This was the well and astutely devised plot of the brothers Bidwell, wavs/LJ030-0238.wav|and then looked around again and saw more of this movement, and so I proceeded to go to the back seat and get on top of him. wavs/LJ018-0309.wav|where probably the money still remains. wavs/LJ041-0199.wav|is shown most clearly by his employment relations after his return from the Soviet Union. Of course, he made his real problems worse to the extent wavs/LJ007-0076.wav|The lax discipline maintained in Newgate was still further deteriorated by the presence of two other classes of prisoners who ought never to have been inmates of such a jail. wavs/LJ039-0118.wav|He had high motivation. He had presumably a good to excellent rifle and good ammunition. wavs/LJ024-0019.wav|And there may be only nine. wavs/LJ008-0085.wav|The fire had not quite burnt out at twelve, in nearly four hours, that is to say. wavs/LJ018-0031.wav|This fixed the crime pretty certainly upon Müller, who had already left the country, thus increasing suspicion under which he lay. wavs/LJ030-0032.wav|Dallas police stood at intervals along the fence and Dallas plain clothes men mixed in the crowd. wavs/LJ050-0004.wav|General Supervision of the Secret Service wavs/LJ039-0096.wav|This is a definite advantage to the shooter, the vehicle moving directly away from him and the downgrade of the street, and he being in an elevated position wavs/LJ041-0195.wav|Oswald's interest in Marxism led some people to avoid him, wavs/LJ047-0158.wav|After a moment's hesitation, she told me that he worked at the Texas School Book Depository near the downtown area of Dallas. wavs/LJ050-0162.wav|In planning its data processing techniques, wavs/LJ001-0051.wav|and paying great attention to the "press work" or actual process of printing, wavs/LJ028-0136.wav|Of all the ancient descriptions of the famous walls and the city they protected, that of Herodotus is the fullest. wavs/LJ034-0134.wav|Shortly after the assassination Brennan noticed wavs/LJ019-0348.wav|Every facility was promised. The sanction of the Secretary of State would not be withheld if plans and estimates were duly submitted, wavs/LJ010-0219.wav|While one stood over the fire with the papers, another stood with lighted torch to fire the house. wavs/LJ011-0245.wav|Mr. Mullay called again, taking with him five hundred pounds in cash. Howard discovered this, and his manner was very suspicious; wavs/LJ030-0035.wav|Organization of the Motorcade wavs/LJ044-0135.wav|While he had drawn some attention to himself and had actually appeared on two radio programs, he had been attacked by Cuban exiles and arrested, wavs/LJ045-0090.wav|He was very much interested in autobiographical works of outstanding statesmen of the United States, to whom his wife thought he compared himself. wavs/LJ026-0034.wav|When any given "protist" has to be classified the case must be decided on its individual merits; wavs/LJ045-0092.wav|as to the fact that he was an outstanding man, end quote. wavs/LJ017-0050.wav|Palmer, who was only thirty-one at the time of his trial, was in appearance short and stout, with a round head wavs/LJ036-0104.wav|Whaley picked Oswald. wavs/LJ019-0055.wav|High authorities were in favor of continuous separation. wavs/LJ010-0030.wav|The brutal ferocity of the wild beast once aroused, the same means, the same weapons were employed to do the dreadful deed, wavs/LJ038-0047.wav|Some of the officers saw Oswald strike McDonald with his fist. Most of them heard a click which they assumed to be a click of the hammer of the revolver. wavs/LJ009-0074.wav|Let us pass on. wavs/LJ048-0069.wav|Efforts made by the Bureau since the assassination, on the other hand, wavs/LJ003-0211.wav|They were never left quite alone for fear of suicide, and for the same reason they were searched for weapons or poisons. wavs/LJ048-0053.wav|It is the conclusion of the Commission that, even in the absence of Secret Service criteria wavs/LJ033-0093.wav|Frazier estimated that the bag was two feet long, quote, give and take a few inches, end quote, and about five or six inches wide. wavs/LJ006-0149.wav|The turnkeys left the prisoners very much to themselves, never entering the wards after locking-up time, at dusk, till unlocking next morning, wavs/LJ018-0211.wav|The false coin was bought by an agent from an agent, and dealings were carried on secretly at the "Clock House" in Seven Dials. wavs/LJ008-0054.wav|This contrivance appears to have been copied with improvements from that which had been used in Dublin at a still earlier date, wavs/LJ040-0052.wav|that his commitment to Marxism was an important factor influencing his conduct during his adult years. wavs/LJ028-0023.wav|Two weeks pass, and at last you stand on the eastern edge of the plateau wavs/LJ009-0184.wav|Lord Ferrers' body was brought to Surgeons' Hall after execution in his own carriage and six; wavs/LJ005-0252.wav|A committee was appointed, under the presidency of the Duke of Richmond wavs/LJ015-0266.wav|has probably no parallel in the annals of crime. Saward himself is a striking and in some respects an unique figure in criminal history. wavs/LJ017-0059.wav|even after sentence, and until within a few hours of execution, he was buoyed up with the hope of reprieve. wavs/LJ024-0034.wav|What do they mean by the words "packing the Court"? wavs/LJ016-0089.wav|He was engaged in whitewashing and cleaning; the officer who had him in charge left him on the stairs leading to the gallery. wavs/LJ039-0227.wav|with two hits, within four point eight and five point six seconds. wavs/LJ001-0096.wav|have now come into general use and are obviously a great improvement on the ordinary "modern style" in use in England, which is in fact the Bodoni type wavs/LJ018-0129.wav|who threatened to betray the theft. But Brewer, either before or after this, succumbed to temptation, wavs/LJ010-0157.wav|and that, as he was starving, he had resolved on this desperate deed, wavs/LJ038-0264.wav|He concluded that, quote, the general rifling characteristics of the rifle are of the same type as those found on the bullet wavs/LJ031-0165.wav|When security arrangements at the airport were complete, the Secret Service made the necessary arrangements for the Vice President to leave the hospital. wavs/LJ018-0244.wav|The effect of establishing the forgeries would be to restore to the Roupell family lands for which a price had already been paid wavs/LJ007-0071.wav|in the face of impediments confessedly discouraging wavs/LJ028-0340.wav|Such of the Babylonians as witnessed the treachery took refuge in the temple of Jupiter Belus; wavs/LJ017-0164.wav|with the idea of subjecting her to the irritant poison slowly but surely until the desired effect, death, was achieved. wavs/LJ048-0197.wav|I then told the officers that their primary duty was traffic and crowd control and that they should be alert for any persons who might attempt to throw anything wavs/LJ013-0098.wav|Mr. Oxenford having denied that he had made any transfer of stock, the matter was at once put into the hands of the police. wavs/LJ012-0049.wav|led him to think seriously of trying his fortunes in another land. wavs/LJ030-0014.wav|quote, that the crowd was about the same as the one which came to see him before but there were one hundred thousand extra people on hand who came to see Mrs. Kennedy. wavs/LJ014-0186.wav|A milliner's porter, wavs/LJ015-0027.wav|Yet even so early as the death of the first Sir John Paul, wavs/LJ047-0049.wav|Marina Oswald, however, recalled that her husband was upset by this interview. wavs/LJ012-0021.wav|at fourteen he was a pickpocket and a "duffer," or a seller of sham goods. wavs/LJ003-0140.wav|otherwise he would have been stripped of his clothes. End quote. wavs/LJ042-0130.wav|Shortly thereafter, less than eighteen months after his defection, about six weeks before he met Marina Prusakova, wavs/LJ019-0180.wav|His letter to the Corporation, under date fourth June, wavs/LJ017-0108.wav|He was struck with the appearance of the corpse, which was not emaciated, as after a long disease ending in death; wavs/LJ006-0268.wav|Women saw men if they merely pretended to be wives; even boys were visited by their sweethearts. wavs/LJ044-0125.wav|of residence in the U.S.S.R. against any cause which I join, by association, wavs/LJ015-0231.wav|It was Tester's business, who had access to the railway company's books, to watch for this. wavs/LJ002-0225.wav|The rentals of rooms and fees went to the warden, whose income was two thousand three hundred seventy-two pounds. wavs/LJ034-0072.wav|The employees raced the elevators to the first floor. Givens saw Oswald standing at the gate on the fifth floor as the elevator went by. wavs/LJ045-0033.wav|He began to treat me better. He helped me more -- although he always did help. But he was more attentive, end quote. wavs/LJ031-0058.wav|to infuse blood and fluids into the circulatory system. wavs/LJ029-0197.wav|During November the Dallas papers reported frequently on the plans for protecting the President, stressing the thoroughness of the preparations. wavs/LJ043-0047.wav|Oswald and his family lived for a brief period with his mother at her urging, but Oswald soon decided to move out. wavs/LJ021-0026.wav|seems necessary to produce the same result of justice and right conduct wavs/LJ003-0230.wav|The prison allowances were eked out by the broken victuals generously given by several eating-house keepers in the city, wavs/LJ037-0252.wav|Ted Callaway, who saw the gunman moments after the shooting, testified that Commission Exhibit Number one sixty-two wavs/LJ031-0008.wav|Meanwhile, Chief Curry ordered the police base station to notify Parkland Hospital that the wounded President was en route. wavs/LJ030-0021.wav|all one had to do was get a high building someday with a telescopic rifle, and there was nothing anybody could do to defend against such an attempt. wavs/LJ046-0179.wav|being reviewed regularly. wavs/LJ025-0118.wav|and that, however diverse may be the fabrics or tissues of which their bodies are composed, all these varied structures result wavs/LJ028-0278.wav|Zopyrus, when they told him, not thinking that it could be true, went and saw the colt with his own eyes; wavs/LJ007-0090.wav|Not only did their presence tend greatly to interfere with the discipline of the prison, but their condition was deplorable in the extreme. wavs/LJ045-0045.wav|that she would be able to leave the Soviet Union. Marina Oswald has denied this. wavs/LJ028-0289.wav|For he cut off his own nose and ears, and then, clipping his hair close and flogging himself with a scourge, wavs/LJ009-0276.wav|Calcraft, the moment he had adjusted the cap and rope, ran down the steps, drew the bolt, and disappeared. wavs/LJ031-0122.wav|treated the gunshot wound in the left thigh. wavs/LJ016-0205.wav|he received a retaining fee of five pounds, five shillings, with the usual guinea for each job; wavs/LJ019-0248.wav|leading to an inequality, uncertainty, and inefficiency of punishment productive of the most prejudicial results. wavs/LJ033-0183.wav|it was not surprising that the replica sack made on December one, nineteen sixty-three, wavs/LJ037-0001.wav|Report of the President's Commission on the Assassination of President Kennedy. The Warren Commission Report. By The President's Commission on the Assassination of President Kennedy. wavs/LJ018-0218.wav|In eighteen fifty-five wavs/LJ001-0102.wav|Here and there a book is printed in France or Germany with some pretension to good taste, wavs/LJ007-0125.wav|It was diverted from its proper uses, and, as the "place of the greatest comfort," was allotted to persons who should not have been sent to Newgate at all. wavs/LJ050-0022.wav|A formal and thorough description of the responsibilities of the advance agent is now in preparation by the Service. wavs/LJ028-0212.wav|On the night of the eleventh day Gobrias killed the son of the King. wavs/LJ028-0357.wav|yet we may be sure that Babylon was taken by Darius only by use of stratagem. Its walls were impregnable. wavs/LJ014-0199.wav|there was no case to make out; why waste money on lawyers for the defense? His demeanor was cool and collected throughout; wavs/LJ016-0077.wav|A man named Lears, under sentence of transportation for an attempt at murder on board ship, got up part of the way, wavs/LJ009-0194.wav|and that executors or persons having lawful possession of the bodies wavs/LJ014-0094.wav|Discovery of the murder came in this wise. O'Connor, a punctual and well-conducted official, was at once missed at the London Docks. wavs/LJ001-0079.wav|Caslon's type is clear and neat, and fairly well designed; wavs/LJ026-0052.wav|In the nutrition of the animal the most essential and characteristic part of the food supply is derived from vegetable wavs/LJ013-0005.wav|One of the earliest of the big operators in fraudulent finance was Edward Beaumont Smith, wavs/LJ033-0072.wav|I then stepped off of it and the officer picked it up in the middle and it bent so. wavs/LJ036-0067.wav|According to McWatters, the Beckley bus was behind the Marsalis bus, but he did not actually see it. wavs/LJ025-0098.wav|and it is probable that amyloid substances are universally present in the animal organism, though not in the precise form of starch. wavs/LJ005-0257.wav|during which time a host of witnesses were examined, and the committee presented three separate reports, wavs/LJ004-0024.wav|Thus in eighteen thirteen the exaction of jail fees had been forbidden by law, wavs/LJ049-0154.wav|In eighteen ninety-four, wavs/LJ039-0059.wav|(three) his experience and practice after leaving the Marine Corps, and (four) the accuracy of the weapon and the quality of the ammunition. wavs/LJ007-0150.wav|He is allowed intercourse with prostitutes who, in nine cases out of ten, have originally conduced to his ruin; wavs/LJ015-0001.wav|Chronicles of Newgate, Volume two. By Arthur Griffiths. Section eighteen: Newgate notorieties continued, part three. wavs/LJ010-0158.wav|feeling, as he said, that he might as well be shot or hanged as remain in such a state. wavs/LJ010-0281.wav|who had borne the Queen's commission, first as cornet, and then lieutenant, in the tenth Hussars. wavs/LJ033-0055.wav|and he could disassemble it more rapidly. wavs/LJ015-0218.wav|A new accomplice was now needed within the company's establishment, and Pierce looked about long before he found the right person. wavs/LJ027-0006.wav|In all these lines the facts are drawn together by a strong thread of unity. wavs/LJ016-0049.wav|He had here completed his ascent. wavs/LJ006-0088.wav|It was not likely that a system which left innocent men -- for the great bulk of new arrivals were still untried wavs/LJ042-0133.wav|a great change must have occurred in Oswald's thinking to induce him to return to the United States. wavs/LJ045-0234.wav|While he did become enraged at at least one point in his interrogation, wavs/LJ046-0033.wav|The adequacy of existing procedures can fairly be assessed only after full consideration of the difficulty of the protective assignment, wavs/LJ037-0061.wav|and having, quote, somewhat bushy, end quote, hair. wavs/LJ032-0025.wav|the officers of Klein's discovered that a rifle bearing serial number C two seven six six had been shipped to one A. Hidell, wavs/LJ047-0197.wav|in view of all the information concerning Oswald in its files, should have alerted the Secret Service to Oswald's presence in Dallas wavs/LJ018-0130.wav|and stole paper on a much larger scale than Brown. wavs/LJ005-0265.wav|It was recommended that the dietaries should be submitted and approved like the rules; that convicted prisoners should not receive any food but the jail allowance; wavs/LJ044-0105.wav|He presented Arnold Johnson, Gus Hall, wavs/LJ015-0043.wav|This went on for some time, and might never have been discovered had some good stroke of luck provided any of the partners wavs/LJ030-0125.wav|On several occasions when the Vice President's car was slowed down by the throng, Special Agent Youngblood stepped out to hold the crowd back. wavs/LJ043-0140.wav|He also studied Dallas bus schedules to prepare for his later use of buses to travel to and from General Walker's house. wavs/LJ002-0220.wav|In consequence of these disclosures, both Bambridge and Huggin, his predecessor in the office, were committed to Newgate, wavs/LJ034-0117.wav|At one:twenty-nine p.m. the police radio reported wavs/LJ018-0276.wav|The first plot was against Mr. Harry Emmanuel, but he escaped, and the attempt was made upon Loudon and Ryder. wavs/LJ004-0077.wav|nor has he a right to poison or starve his fellow-creatures." wavs/LJ042-0194.wav|they should not be confused with slowness, indecision or fear. Only the intellectually fearless could even be remotely attracted to our doctrine, wavs/LJ029-0114.wav|The route chosen from the airport to Main Street was the normal one, except where Harwood Street was selected as the means of access to Main Street wavs/LJ014-0194.wav|The policemen were now in possession; wavs/LJ032-0027.wav|According to its microfilm records, Klein's received an order for a rifle on March thirteen, nineteen sixty-three, wavs/LJ048-0289.wav|However, there is no evidence that these men failed to take any action in Dallas within their power that would have averted the tragedy. wavs/LJ043-0188.wav|that he was the leader of a fascist organization, and when I said that even though all of that might be true, just the same he had no right to take his life, wavs/LJ011-0118.wav|In eighteen twenty-nine the gallows claimed two more victims for this offense. wavs/LJ040-0201.wav|After her interview with Mrs. Oswald, wavs/LJ033-0056.wav|While the rifle may have already been disassembled when Oswald arrived home on Thursday, he had ample time that evening to disassemble the rifle wavs/LJ047-0073.wav|Hosty considered the information to be, quote, stale, unquote, by that time, and did not attempt to verify Oswald's reported statement. wavs/LJ001-0153.wav|only nominally so, however, in many cases, since when he uses a headline he counts that in, wavs/LJ007-0158.wav|or any kind of moral improvement was impossible; the prisoner's career was inevitably downward, till he struck the lowest depths. wavs/LJ028-0502.wav|The Ishtar gateway leading to the palace was encased with beautiful blue glazed bricks, wavs/LJ028-0226.wav|Though Herodotus wrote nearly a hundred years after Babylon fell, his story seems to bear the stamp of truth. wavs/LJ010-0038.wav|as there had been before; as in the year eighteen forty-nine, a year memorable for the Rush murders at Norwich, wavs/LJ019-0241.wav|But in the interval very comprehensive and, I think it must be admitted, salutary changes were successively introduced into the management of prisons. wavs/LJ001-0094.wav|were induced to cut punches for a series of "old style" letters. wavs/LJ001-0015.wav|the forms of printed letters should be beautiful, and that their arrangement on the page should be reasonable and a help to the shapeliness of the letters themselves. wavs/LJ047-0015.wav|From defection to return to Fort Worth. wavs/LJ044-0139.wav|since there was no background to the New Orleans FPCC, quote, organization, end quote, which consisted solely of Oswald. wavs/LJ050-0031.wav|that the Secret Service consciously set about the task of inculcating and maintaining the highest standard of excellence and esprit, for all of its personnel. wavs/LJ050-0235.wav|It has also used other Federal law enforcement agents during Presidential visits to cities in which such agents are stationed. wavs/LJ050-0137.wav|FBI, and the Secret Service. wavs/LJ031-0109.wav|At one:thirty-five p.m., after Governor Connally had been moved to the operating room, Dr. Shaw started the first operation wavs/LJ031-0041.wav|He noted that the President was blue-white or ashen in color; had slow, spasmodic, agonal respiration without any coordination; wavs/LJ021-0139.wav|There should be at least a full and fair trial given to these means of ending industrial warfare; wavs/LJ029-0004.wav|The narrative of these events is based largely on the recollections of the participants, wavs/LJ023-0122.wav|It was said in last year's Democratic platform, wavs/LJ005-0264.wav|inspectors of prisons should be appointed, who should visit all the prisons from time to time and report to the Secretary of State. wavs/LJ002-0105.wav|and beyond it was a room called the "wine room," because formerly used for the sale of wine, but wavs/LJ017-0035.wav|in the interests and for the due protection of the public, that the fullest and fairest inquiry should be made, wavs/LJ048-0252.wav|Three of these agents occupied positions on the running boards of the car, and the fourth was seated in the car. wavs/LJ013-0109.wav|The proceeds of the robbery were lodged in a Boston bank, wavs/LJ039-0139.wav|Oswald obtained a hunting license, joined a hunting club and went hunting about six times, as discussed more fully in chapter six. wavs/LJ044-0047.wav|that anyone ever attacked any street demonstration in which Oswald was involved, except for the Bringuier incident mentioned above, wavs/LJ016-0417.wav|Catherine Wilson, the poisoner, was reserved and reticent to the last, expressing no contrition, but also no fear -- wavs/LJ045-0178.wav|he left his wedding ring in a cup on the dresser in his room. He also left one hundred seventy dollars in a wallet in one of the dresser drawers. wavs/LJ009-0172.wav|While in London, for instance, in eighteen twenty-nine, twenty-four persons had been executed for crimes other than murder, wavs/LJ049-0202.wav|incident to its responsibilities. wavs/LJ032-0103.wav|The name "Hidell" was stamped on some of the "Chapter's" printed literature and on the membership application blanks. wavs/LJ013-0091.wav|and Elder had to be assisted by two bank porters, who carried it for him to a carriage waiting near the Mansion House. wavs/LJ037-0208.wav|nineteen dollars, ninety-five cents, plus one dollar, twenty-seven cents shipping charge, had been collected from the consignee, Hidell. wavs/LJ014-0128.wav|her hair was dressed in long crepe bands. She had lace ruffles at her wrist, and wore primrose-colored kid gloves. wavs/LJ015-0007.wav|This affected Cole's credit, and ugly reports were in circulation charging him with the issue of simulated warrants. wavs/LJ036-0169.wav|he would have reached his destination at approximately twelve:fifty-four p.m. wavs/LJ021-0040.wav|The second step we have taken in the restoration of normal business enterprise wavs/LJ015-0036.wav|The bank was already insolvent, wavs/LJ034-0041.wav|Although Bureau experiments had shown that twenty-four hours was a likely maximum time, Latona stated wavs/LJ009-0192.wav|The dissection of executed criminals was abolished soon after the discovery of the crime of burking, wavs/LJ037-0248.wav|The eyewitnesses vary in their identification of the jacket. wavs/LJ015-0289.wav|As each transaction was carried out from a different address, and a different messenger always employed, wavs/LJ005-0072.wav|After a few years of active exertion the Society was rewarded by fresh legislation. wavs/LJ023-0047.wav|The three horses are, of course, the three branches of government -- the Congress, the Executive and the courts. wavs/LJ009-0126.wav|Hardly any one. wavs/LJ034-0097.wav|The window was approximately one hundred twenty feet away. wavs/LJ028-0462.wav|They were laid in bitumen. wavs/LJ046-0055.wav|It is now possible for Presidents to travel the length and breadth of a land far larger than the United States wavs/LJ019-0371.wav|Yet the law was seldom if ever enforced. wavs/LJ039-0207.wav|Although all of the shots were a few inches high and to the right of the target, wavs/LJ002-0174.wav|Mr. Buxton's friends at once paid the forty shillings, and the boy was released. wavs/LJ016-0233.wav|In his own profession wavs/LJ026-0108.wav|It is clear that there are upward and downward currents of water containing food (comparable to blood of an animal), wavs/LJ038-0035.wav|Oswald rose from his seat, bringing up both hands. wavs/LJ026-0148.wav|water which is lost by evaporation, especially from the leaf surface through the stomata; wavs/LJ001-0186.wav|the position of our Society that a work of utility might be also a work of art, if we cared to make it so. wavs/LJ016-0264.wav|The upturned faces of the eager spectators resembled those of the 'gods' at Drury Lane on Boxing Night; wavs/LJ009-0041.wav|The occupants of this terrible black pew were the last always to enter the chapel. wavs/LJ010-0297.wav|But there were other notorious cases of forgery. wavs/LJ040-0018.wav|the Commission is not able to reach any definite conclusions as to whether or not he was, quote, sane, unquote, under prevailing legal standards. wavs/LJ005-0253.wav|"to inquire into and report upon the several jails and houses of correction in the counties, cities, and corporate towns within England and Wales wavs/LJ027-0176.wav|Fishes first appeared in the Devonian and Upper Silurian in very reptilian or rather amphibian forms. wavs/LJ034-0035.wav|The position of this palmprint on the carton was parallel with the long axis of the box, and at right angles with the short axis; wavs/LJ016-0054.wav|But he did not like the risk of entering a room by the fireplace, and the chances of detection it offered. wavs/LJ018-0262.wav|Roupell received the announcement with a cheerful countenance, wavs/LJ044-0237.wav|with thirteen dollars, eighty-seven cents when considerably greater resources were available to him. wavs/LJ034-0166.wav|Two other witnesses were able to offer partial descriptions of a man they saw in the southeast corner window wavs/LJ016-0238.wav|"just to steady their legs a little;" in other words, to add his weight to that of the hanging bodies. wavs/LJ042-0198.wav|The discussion above has already set forth examples of his expression of hatred for the United States. wavs/LJ031-0189.wav|At two:thirty-eight p.m., Eastern Standard Time, Lyndon Baines Johnson took the oath of office as the thirty-sixth President of the United States. wavs/LJ050-0084.wav|or, quote, other high government officials in the nature of a complaint coupled with an expressed or implied determination to use a means, wavs/LJ044-0158.wav|As for my return entrance visa please consider it separately. End quote. wavs/LJ045-0082.wav|it appears that Marina Oswald also complained that her husband was not able to provide more material things for her. wavs/LJ045-0190.wav|appeared in The Dallas Times Herald on November fifteen, nineteen sixty-three. wavs/LJ035-0155.wav|The only exit from the office in the direction Oswald was moving was through the door to the front stairway. wavs/LJ044-0004.wav|Political Activities wavs/LJ046-0016.wav|The Commission has not undertaken a comprehensive examination of all facets of this subject; wavs/LJ019-0368.wav|The latter too was to be laid before the House of Commons. wavs/LJ010-0062.wav|But they proceeded in all seriousness, and would have shrunk from no outrage or atrocity in furtherance of their foolhardy enterprise. wavs/LJ033-0159.wav|It was from Oswald's right hand, in which he carried the long package as he walked from Frazier's car to the building. wavs/LJ002-0171.wav|The boy declared he saw no one, and accordingly passed through without paying the toll of a penny. wavs/LJ002-0298.wav|in his evidence in eighteen fourteen, said it was more, wavs/LJ012-0219.wav|and in one corner, at some depth, a bundle of clothes were unearthed, which, with a hairy cap, wavs/LJ017-0190.wav|After this came the charge of administering oil of vitriol, which failed, as has been described. wavs/LJ019-0179.wav|This, with a scheme for limiting the jail to untried prisoners, had been urgently recommended by Lord John Russell in eighteen thirty. wavs/LJ050-0188.wav|each patrolman might be given a prepared booklet of instructions explaining what is expected of him. The Secret Service has expressed concern wavs/LJ006-0043.wav|The disgraceful overcrowding had been partially ended, but the same evils of indiscriminate association were still present; there was the old neglect of decency, wavs/LJ029-0060.wav|A number of people who resembled some of those in the photographs were placed under surveillance at the Trade Mart. wavs/LJ019-0052.wav|Both systems came to us from the United States. The difference was really more in degree than in principle, wavs/LJ037-0081.wav|Later in the day each woman found an empty shell on the ground near the house. These two shells were delivered to the police. wavs/LJ048-0200.wav|paying particular attention to the crowd for any unusual activity. wavs/LJ016-0426.wav|come along, gallows. wavs/LJ008-0182.wav|A tremendous crowd assembled when Bellingham was executed in eighteen twelve for the murder of Spencer Percival, at that time prime minister; wavs/LJ043-0107.wav|Upon moving to New Orleans on April twenty-four, nineteen sixty-three, wavs/LJ006-0084.wav|and so numerous were his opportunities of showing favoritism, that all the prisoners may be said to be in his power. wavs/LJ025-0081.wav|has no permanent digestive cavity or mouth, but takes in its food anywhere and digests, so to speak, all over its body. wavs/LJ019-0042.wav|These were either satisfied with a makeshift, and modified existing buildings, without close regard to their suitability, or for a long time did nothing at all. wavs/LJ047-0240.wav|They agree that Hosty told Revill wavs/LJ032-0012.wav|the resistance to arrest and the attempted shooting of another police officer by the man (Lee Harvey Oswald) subsequently accused of assassinating President Kennedy wavs/LJ050-0209.wav|The assistant to the Director of the FBI testified that
PyTorch/Classification/GPUNet/configs/batch1/GV100
GV100
0.65ms
[ { "layer_type": "data", "img_resolution": 320, "distill": false }, { "layer_type": "head", "num_in_channels": 3, "num_out_channels": 32 }, { "layer_type": "conv", "num_in_channels": 32, "num_out_channels": 32, "stride": 1, "kernel_size": 3, "act": "relu", "stage": 1 }, { "layer_type": "conv", "num_in_channels": 32, "num_out_channels": 32, "stride": 1, "kernel_size": 3, "act": "relu", "stage": 1 }, { "layer_type": "fused_irb", "num_in_channels": 32, "num_out_channels": 32, "stride": 2, "expansion": 5, "kernel_size": 3, "act": "relu", "use_se": false, "stage": 2 }, { "layer_type": "fused_irb", "num_in_channels": 32, "num_out_channels": 32, "stride": 1, "expansion": 5, "kernel_size": 3, "act": "relu", "use_se": false, "stage": 2 }, { "layer_type": "fused_irb", "num_in_channels": 32, "num_out_channels": 64, "stride": 2, "expansion": 5, "kernel_size": 3, "act": "relu", "use_se": false, "stage": 3 }, { "layer_type": "fused_irb", "num_in_channels": 64, "num_out_channels": 64, "stride": 1, "expansion": 5, "kernel_size": 3, "act": "relu", "use_se": false, "stage": 3 }, { "layer_type": "fused_irb", "num_in_channels": 64, "num_out_channels": 64, "stride": 1, "expansion": 5, "kernel_size": 3, "act": "relu", "use_se": false, "stage": 3 }, { "layer_type": "irb", "num_in_channels": 64, "num_out_channels": 256, "stride": 2, "expansion": 5, "kernel_size": 3, "act": "swish", "use_se": false, "stage": 4 }, { "layer_type": "irb", "num_in_channels": 256, "num_out_channels": 256, "stride": 1, "expansion": 5, "kernel_size": 3, "act": "swish", "use_se": false, "stage": 4 }, { "layer_type": "irb", "num_in_channels": 256, "num_out_channels": 256, "stride": 1, "expansion": 5, "kernel_size": 3, "act": "swish", "use_se": false, "stage": 4 }, { "layer_type": "irb", "num_in_channels": 256, "num_out_channels": 704, "stride": 2, "expansion": 5, "kernel_size": 3, "act": "relu", "use_se": true, "stage": 6 }, { "layer_type": "irb", "num_in_channels": 704, "num_out_channels": 704, "stride": 1, "expansion": 5, "kernel_size": 3, "act": "relu", "use_se": true, "stage": 6 }, { "layer_type": "tail", "num_in_channels": 704, "num_out_channels": 1280, "num_classes": 1000 } ]
Tools/PyTorch/TimeSeriesPredictionPlatform/models
models
lstm
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, List, Optional, Tuple import torch import torch.nn as nn import torch.nn.functional as F from apex.normalization.fused_layer_norm import FusedLayerNorm from torch import Tensor from models.tft_pyt.modeling import * class LSTM(nn.Module): """ Implementation from LSTM portion of https://arxiv.org/abs/1912.09363 """ def __init__(self, config): super().__init__() self.encoder_steps = config.encoder_length # this determines from how distant past we want to use data from self.mask_nans = config.missing_data_strategy == "mask" self.embedding = TFTEmbedding(config) self.static_encoder = StaticCovariateEncoder(config) self.history_vsn = VariableSelectionNetwork(config, config.num_historic_vars) self.history_encoder = nn.LSTM(config.hidden_size, config.hidden_size, batch_first=True) self.future_vsn = VariableSelectionNetwork(config, config.num_future_vars) self.future_encoder = nn.LSTM(config.hidden_size, config.hidden_size, batch_first=True) self.output_proj = nn.Linear(config.hidden_size, 1) def forward(self, x: Tensor) -> Tensor: s_inp, t_known_inp, t_observed_inp, t_observed_tgt = self.embedding(x) # Static context cs, ce, ch, cc = self.static_encoder(s_inp) ch, cc = ch.unsqueeze(0), cc.unsqueeze(0) # lstm initial states # Temporal input _historical_inputs = [t_known_inp[:, : self.encoder_steps, :], t_observed_tgt[:, : self.encoder_steps, :]] if t_observed_inp is not None: _historical_inputs.insert(0, t_observed_inp[:, : self.encoder_steps, :]) historical_inputs = torch.cat(_historical_inputs, dim=-2) future_inputs = t_known_inp[:, self.encoder_steps :] # Encoders historical_features, _ = self.history_vsn(historical_inputs, cs) history, state = self.history_encoder(historical_features, (ch, cc)) future_features, _ = self.future_vsn(future_inputs, cs) future, _ = self.future_encoder(future_features, state) output = self.output_proj(future) return output
CUDA-Optimized/FastSpeech/fastspeech/hparams
hparams
__init__
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
PyTorch/SpeechSynthesis/HiFiGAN/common/text
text
abbreviations
import re _no_period_re = re.compile(r'(No[.])(?=[ ]?[0-9])') _percent_re = re.compile(r'([ ]?[%])') _half_re = re.compile('([0-9]½)|(½)') _url_re = re.compile(r'([a-zA-Z])\.(com|gov|org)') # List of (regular expression, replacement) pairs for abbreviations: _abbreviations = [(re.compile('\\b%s\\.' % x[0], re.IGNORECASE), x[1]) for x in [ ('mrs', 'misess'), ('ms', 'miss'), ('mr', 'mister'), ('dr', 'doctor'), ('st', 'saint'), ('co', 'company'), ('jr', 'junior'), ('maj', 'major'), ('gen', 'general'), ('drs', 'doctors'), ('rev', 'reverend'), ('lt', 'lieutenant'), ('hon', 'honorable'), ('sgt', 'sergeant'), ('capt', 'captain'), ('esq', 'esquire'), ('ltd', 'limited'), ('col', 'colonel'), ('ft', 'fort'), ('sen', 'senator'), ('etc', 'et cetera'), ]] def _expand_no_period(m): word = m.group(0) if word[0] == 'N': return 'Number' return 'number' def _expand_percent(m): return ' percent' def _expand_half(m): word = m.group(1) if word is None: return 'half' return word[0] + ' and a half' def _expand_urls(m): return f'{m.group(1)} dot {m.group(2)}' def normalize_abbreviations(text): text = re.sub(_no_period_re, _expand_no_period, text) text = re.sub(_percent_re, _expand_percent, text) text = re.sub(_half_re, _expand_half, text) text = re.sub('&', ' and ', text) text = re.sub('@', ' at ', text) text = re.sub(_url_re, _expand_urls, text) for regex, replacement in _abbreviations: text = re.sub(regex, replacement, text) return text
PyTorch/SpeechSynthesis/Tacotron2/phrases
phrases
phrase_1_256
The forms of printed letters should be beautiful, and that their arrangement on the page should be reasonable and a help to the shapeliness of the letters themselves and the form of printed letters should be beautiful, and that their arrangement on pages.
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/triton/deployment_toolkit
deployment_toolkit
extensions
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import importlib import logging import os import re from pathlib import Path from typing import List LOGGER = logging.getLogger(__name__) class ExtensionManager: def __init__(self, name: str): self._name = name self._registry = {} def register_extension(self, extension: str, clazz): already_registered_class = self._registry.get(extension, None) if already_registered_class and already_registered_class.__module__ != clazz.__module__: raise RuntimeError( f"Conflicting extension {self._name}/{extension}; " f"{already_registered_class.__module__}.{already_registered_class.__name} " f"and " f"{clazz.__module__}.{clazz.__name__}" ) elif already_registered_class is None: clazz_full_name = f"{clazz.__module__}.{clazz.__name__}" if clazz is not None else "None" LOGGER.debug(f"Registering extension {self._name}/{extension}: {clazz_full_name}") self._registry[extension] = clazz def get(self, extension): if extension not in self._registry: raise RuntimeError(f"Missing extension {self._name}/{extension}") return self._registry[extension] @property def supported_extensions(self): return list(self._registry) @staticmethod def scan_for_extensions(extension_dirs: List[Path]): register_pattern = r".*\.register_extension\(.*" for extension_dir in extension_dirs: for python_path in extension_dir.rglob("*.py"): if not python_path.is_file(): continue payload = python_path.read_text() if re.findall(register_pattern, payload): import_path = python_path.relative_to(toolkit_root_dir.parent) package = import_path.parent.as_posix().replace(os.sep, ".") package_with_module = f"{package}.{import_path.stem}" spec = importlib.util.spec_from_file_location(name=package_with_module, location=python_path) my_module = importlib.util.module_from_spec(spec) my_module.__package__ = package try: spec.loader.exec_module(my_module) # pytype: disable=attribute-error except ModuleNotFoundError as e: LOGGER.error( f"Could not load extensions from {import_path} due to missing python packages; {e}" ) runners = ExtensionManager("runners") loaders = ExtensionManager("loaders") savers = ExtensionManager("savers") converters = ExtensionManager("converters") toolkit_root_dir = (Path(__file__).parent / "..").resolve() ExtensionManager.scan_for_extensions([toolkit_root_dir])
TensorFlow/Detection/SSD/models/research/object_detection/g3doc
g3doc
running_on_mobile_tensorflowlite
# Running on mobile with TensorFlow Lite In this section, we will show you how to use [TensorFlow Lite](https://www.tensorflow.org/mobile/tflite/) to get a smaller model and allow you take advantage of ops that have been optimized for mobile devices. TensorFlow Lite is TensorFlow’s lightweight solution for mobile and embedded devices. It enables on-device machine learning inference with low latency and a small binary size. TensorFlow Lite uses many techniques for this such as quantized kernels that allow smaller and faster (fixed-point math) models. For this section, you will need to build [TensorFlow from source](https://www.tensorflow.org/install/install_sources) to get the TensorFlow Lite support for the SSD model. At this time only SSD models are supported. Models like faster_rcnn are not supported at this time. You will also need to install the [bazel build tool](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/android#bazel). To make these commands easier to run, let’s set up some environment variables: ```shell export CONFIG_FILE=PATH_TO_BE_CONFIGURED/pipeline.config export CHECKPOINT_PATH=PATH_TO_BE_CONFIGURED/model.ckpt export OUTPUT_DIR=/tmp/tflite ``` We start with a checkpoint and get a TensorFlow frozen graph with compatible ops that we can use with TensorFlow Lite. First, you’ll need to install these [python libraries](https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/installation.md). Then to get the frozen graph, run the export_tflite_ssd_graph.py script from the `models/research` directory with this command: ```shell object_detection/export_tflite_ssd_graph.py \ --pipeline_config_path=$CONFIG_FILE \ --trained_checkpoint_prefix=$CHECKPOINT_PATH \ --output_directory=$OUTPUT_DIR \ --add_postprocessing_op=true ``` In the /tmp/tflite directory, you should now see two files: tflite_graph.pb and tflite_graph.pbtxt. Note that the add_postprocessing flag enables the model to take advantage of a custom optimized detection post-processing operation which can be thought of as a replacement for [tf.image.non_max_suppression](https://www.tensorflow.org/api_docs/python/tf/image/non_max_suppression). Make sure not to confuse export_tflite_ssd_graph with export_inference_graph in the same directory. Both scripts output frozen graphs: export_tflite_ssd_graph will output the frozen graph that we can input to TensorFlow Lite directly and is the one we’ll be using. Next we’ll use TensorFlow Lite to get the optimized model by using [TOCO](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/toco), the TensorFlow Lite Optimizing Converter. This will convert the resulting frozen graph (tflite_graph.pb) to the TensorFlow Lite flatbuffer format (detect.tflite) via the following command. For a quantized model, run this from the tensorflow/ directory: ```shell bazel run --config=opt tensorflow/lite/toco:toco -- \ --input_file=$OUTPUT_DIR/tflite_graph.pb \ --output_file=$OUTPUT_DIR/detect.tflite \ --input_shapes=1,300,300,3 \ --input_arrays=normalized_input_image_tensor \ --output_arrays='TFLite_Detection_PostProcess','TFLite_Detection_PostProcess:1','TFLite_Detection_PostProcess:2','TFLite_Detection_PostProcess:3' \ --inference_type=QUANTIZED_UINT8 \ --mean_values=128 \ --std_values=128 \ --change_concat_input_ranges=false \ --allow_custom_ops ``` This command takes the input tensor normalized_input_image_tensor after resizing each camera image frame to 300x300 pixels. The outputs of the quantized model are named 'TFLite_Detection_PostProcess', 'TFLite_Detection_PostProcess:1', 'TFLite_Detection_PostProcess:2', and 'TFLite_Detection_PostProcess:3' and represent four arrays: detection_boxes, detection_classes, detection_scores, and num_detections. The documentation for other flags used in this command is [here](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/g3doc/convert/cmdline_reference.md). If things ran successfully, you should now see a third file in the /tmp/tflite directory called detect.tflite. This file contains the graph and all model parameters and can be run via the TensorFlow Lite interpreter on the Android device. For a floating point model, run this from the tensorflow/ directory: ```shell bazel run --config=opt tensorflow/lite/toco:toco -- \ --input_file=$OUTPUT_DIR/tflite_graph.pb \ --output_file=$OUTPUT_DIR/detect.tflite \ --input_shapes=1,300,300,3 \ --input_arrays=normalized_input_image_tensor \ --output_arrays='TFLite_Detection_PostProcess','TFLite_Detection_PostProcess:1','TFLite_Detection_PostProcess:2','TFLite_Detection_PostProcess:3' \ --inference_type=FLOAT \ --allow_custom_ops ``` # Running our model on Android To run our TensorFlow Lite model on device, we will need to install the Android NDK and SDK. The current recommended Android NDK version is 14b and can be found on the [NDK Archives](https://developer.android.com/ndk/downloads/older_releases.html#ndk-14b-downloads) page. Android SDK and build tools can be [downloaded separately](https://developer.android.com/tools/revisions/build-tools.html) or used as part of [Android Studio](https://developer.android.com/studio/index.html). To build the TensorFlow Lite Android demo, build tools require API >= 23 (but it will run on devices with API >= 21). Additional details are available on the [TensorFlow Lite Android App page](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/java/demo/README.md). Next we need to point the app to our new detect.tflite file and give it the names of our new labels. Specifically, we will copy our TensorFlow Lite flatbuffer to the app assets directory with the following command: ```shell cp /tmp/tflite/detect.tflite \ //tensorflow/lite/examples/android/app/src/main/assets ``` You will also need to copy your new labelmap labels_list.txt to the assets directory. We will now edit the BUILD file to point to this new model. First, open the BUILD file tensorflow/lite/examples/android/BUILD. Then find the assets section, and replace the line “@tflite_mobilenet_ssd_quant//:detect.tflite” (which by default points to a COCO pretrained model) with the path to your new TFLite model “//tensorflow/lite/examples/android/app/src/main/assets:detect.tflite”. Finally, change the last line in assets section to use the new label map as well. We will also need to tell our app to use the new label map. In order to do this, open up the tensorflow/lite/examples/android/app/src/main/java/org/tensorflow/demo/DetectorActivity.java file in a text editor and find the definition of TF_OD_API_LABELS_FILE. Update this path to point to your new label map file: "file:///android_asset/labels_list.txt". Note that if your model is quantized, the flag TF_OD_API_IS_QUANTIZED is set to true, and if your model is floating point, the flag TF_OD_API_IS_QUANTIZED is set to false. This new section of DetectorActivity.java should now look as follows for a quantized model: ```shell private static final boolean TF_OD_API_IS_QUANTIZED = true; private static final String TF_OD_API_MODEL_FILE = "detect.tflite"; private static final String TF_OD_API_LABELS_FILE = "file:///android_asset/labels_list.txt"; ``` Once you’ve copied the TensorFlow Lite file and edited your BUILD and DetectorActivity.java files, you can build the demo app, run this bazel command from the tensorflow directory: ```shell bazel build -c opt --config=android_arm{,64} --cxxopt='--std=c++11' "//tensorflow/lite/examples/android:tflite_demo" ``` Now install the demo on a [debug-enabled](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/android#install) Android phone via [Android Debug Bridge](https://developer.android.com/studio/command-line/adb) (adb): ```shell adb install bazel-bin/tensorflow/lite/examples/android/tflite_demo.apk ```
CUDA-Optimized/FastSpeech/tacotron2
tacotron2
multiproc
# BSD 3-Clause License # Copyright (c) 2018-2020, NVIDIA Corporation # All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """https://github.com/NVIDIA/tacotron2""" import time import torch import sys import subprocess argslist = list(sys.argv)[1:] num_gpus = torch.cuda.device_count() argslist.append('--n_gpus={}'.format(num_gpus)) workers = [] job_id = time.strftime("%Y_%m_%d-%H%M%S") argslist.append("--group_name=group_{}".format(job_id)) for i in range(num_gpus): argslist.append('--rank={}'.format(i)) stdout = None if i == 0 else open("logs/{}_GPU_{}.log".format(job_id, i), "w") print(argslist) p = subprocess.Popen([str(sys.executable)]+argslist, stdout=stdout) workers.append(p) argslist = argslist[:-1] for p in workers: p.wait()
PyTorch/SpeechSynthesis/FastPitch
FastPitch
train
# ***************************************************************************** # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** import argparse import copy import os import time from collections import defaultdict, OrderedDict from itertools import cycle import numpy as np import torch import torch.distributed as dist import amp_C from apex.optimizers import FusedAdam, FusedLAMB from torch.nn.parallel import DistributedDataParallel from torch.utils.data import DataLoader from torch.utils.data.distributed import DistributedSampler import common.tb_dllogger as logger import models from common.tb_dllogger import log from common.repeated_dataloader import (RepeatedDataLoader, RepeatedDistributedSampler) from common.text import cmudict from common.utils import (BenchmarkStats, Checkpointer, load_pretrained_weights, prepare_tmp) from fastpitch.attn_loss_function import AttentionBinarizationLoss from fastpitch.data_function import batch_to_gpu, ensure_disjoint, TTSCollate, TTSDataset from fastpitch.loss_function import FastPitchLoss def parse_args(parser): parser.add_argument('-o', '--output', type=str, required=True, help='Directory to save checkpoints') parser.add_argument('-d', '--dataset-path', type=str, default='./', help='Path to dataset') parser.add_argument('--log-file', type=str, default=None, help='Path to a DLLogger log file') train = parser.add_argument_group('training setup') train.add_argument('--epochs', type=int, required=True, help='Number of total epochs to run') train.add_argument('--epochs-per-checkpoint', type=int, default=50, help='Number of epochs per checkpoint') train.add_argument('--checkpoint-path', type=str, default=None, help='Checkpoint path to resume training') train.add_argument('--keep-milestones', default=list(range(100, 1000, 100)), type=int, nargs='+', help='Milestone checkpoints to keep from removing') train.add_argument('--resume', action='store_true', help='Resume training from the last checkpoint') train.add_argument('--seed', type=int, default=1234, help='Seed for PyTorch random number generators') train.add_argument('--amp', action='store_true', help='Enable AMP') train.add_argument('--cuda', action='store_true', help='Run on GPU using CUDA') train.add_argument('--cudnn-benchmark', action='store_true', help='Enable cudnn benchmark mode') train.add_argument('--ema-decay', type=float, default=0, help='Discounting factor for training weights EMA') train.add_argument('--grad-accumulation', type=int, default=1, help='Training steps to accumulate gradients for') train.add_argument('--kl-loss-start-epoch', type=int, default=250, help='Start adding the hard attention loss term') train.add_argument('--kl-loss-warmup-epochs', type=int, default=100, help='Gradually increase the hard attention loss term') train.add_argument('--kl-loss-weight', type=float, default=1.0, help='Gradually increase the hard attention loss term') train.add_argument('--benchmark-epochs-num', type=int, default=20, help='Number of epochs for calculating final stats') train.add_argument('--validation-freq', type=int, default=1, help='Validate every N epochs to use less compute') train.add_argument('--init-from-checkpoint', type=str, default=None, help='Initialize model weights with a pre-trained ckpt') opt = parser.add_argument_group('optimization setup') opt.add_argument('--optimizer', type=str, default='lamb', help='Optimization algorithm') opt.add_argument('-lr', '--learning-rate', type=float, required=True, help='Learing rate') opt.add_argument('--weight-decay', default=1e-6, type=float, help='Weight decay') opt.add_argument('--grad-clip-thresh', default=1000.0, type=float, help='Clip threshold for gradients') opt.add_argument('-bs', '--batch-size', type=int, required=True, help='Batch size per GPU') opt.add_argument('--warmup-steps', type=int, default=1000, help='Number of steps for lr warmup') opt.add_argument('--dur-predictor-loss-scale', type=float, default=1.0, help='Rescale duration predictor loss') opt.add_argument('--pitch-predictor-loss-scale', type=float, default=1.0, help='Rescale pitch predictor loss') opt.add_argument('--attn-loss-scale', type=float, default=1.0, help='Rescale alignment loss') data = parser.add_argument_group('dataset parameters') data.add_argument('--training-files', type=str, nargs='*', required=True, help='Paths to training filelists.') data.add_argument('--validation-files', type=str, nargs='*', required=True, help='Paths to validation filelists') data.add_argument('--text-cleaners', nargs='*', default=['english_cleaners'], type=str, help='Type of text cleaners for input text') data.add_argument('--symbol-set', type=str, default='english_basic', help='Define symbol set for input text') data.add_argument('--p-arpabet', type=float, default=0.0, help='Probability of using arpabets instead of graphemes ' 'for each word; set 0 for pure grapheme training') data.add_argument('--heteronyms-path', type=str, default='cmudict/heteronyms', help='Path to the list of heteronyms') data.add_argument('--cmudict-path', type=str, default='cmudict/cmudict-0.7b', help='Path to the pronouncing dictionary') data.add_argument('--prepend-space-to-text', action='store_true', help='Capture leading silence with a space token') data.add_argument('--append-space-to-text', action='store_true', help='Capture trailing silence with a space token') data.add_argument('--num-workers', type=int, default=6, help='Subprocesses for train and val DataLoaders') data.add_argument('--trainloader-repeats', type=int, default=100, help='Repeats the dataset to prolong epochs') cond = parser.add_argument_group('data for conditioning') cond.add_argument('--n-speakers', type=int, default=1, help='Number of speakers in the dataset. ' 'n_speakers > 1 enables speaker embeddings') cond.add_argument('--load-pitch-from-disk', action='store_true', help='Use pitch cached on disk with prepare_dataset.py') cond.add_argument('--pitch-online-method', default='pyin', choices=['pyin'], help='Calculate pitch on the fly during trainig') cond.add_argument('--pitch-online-dir', type=str, default=None, help='A directory for storing pitch calculated on-line') cond.add_argument('--pitch-mean', type=float, default=214.72203, help='Normalization value for pitch') cond.add_argument('--pitch-std', type=float, default=65.72038, help='Normalization value for pitch') cond.add_argument('--load-mel-from-disk', action='store_true', help='Use mel-spectrograms cache on the disk') # XXX audio = parser.add_argument_group('audio parameters') audio.add_argument('--max-wav-value', default=32768.0, type=float, help='Maximum audiowave value') audio.add_argument('--sampling-rate', default=22050, type=int, help='Sampling rate') audio.add_argument('--filter-length', default=1024, type=int, help='Filter length') audio.add_argument('--hop-length', default=256, type=int, help='Hop (stride) length') audio.add_argument('--win-length', default=1024, type=int, help='Window length') audio.add_argument('--mel-fmin', default=0.0, type=float, help='Minimum mel frequency') audio.add_argument('--mel-fmax', default=8000.0, type=float, help='Maximum mel frequency') dist = parser.add_argument_group('distributed setup') dist.add_argument('--local_rank', type=int, default=os.getenv('LOCAL_RANK', 0), help='Rank of the process for multiproc; do not set manually') dist.add_argument('--world_size', type=int, default=os.getenv('WORLD_SIZE', 1), help='Number of processes for multiproc; do not set manually') return parser def reduce_tensor(tensor, num_gpus): rt = tensor.clone() dist.all_reduce(rt, op=dist.ReduceOp.SUM) return rt.true_divide(num_gpus) def init_distributed(args, world_size, rank): assert torch.cuda.is_available(), "Distributed mode requires CUDA." print("Initializing distributed training") # Set cuda device so everything is done on the right GPU. torch.cuda.set_device(rank % torch.cuda.device_count()) # Initialize distributed communication dist.init_process_group(backend=('nccl' if args.cuda else 'gloo'), init_method='env://') print("Done initializing distributed training") def validate(model, epoch, total_iter, criterion, val_loader, distributed_run, batch_to_gpu, ema=False): was_training = model.training model.eval() tik = time.perf_counter() with torch.no_grad(): val_meta = defaultdict(float) val_num_frames = 0 for i, batch in enumerate(val_loader): x, y, num_frames = batch_to_gpu(batch) y_pred = model(x) loss, meta = criterion(y_pred, y, is_training=False, meta_agg='sum') if distributed_run: for k, v in meta.items(): val_meta[k] += reduce_tensor(v, 1) val_num_frames += reduce_tensor(num_frames.data, 1).item() else: for k, v in meta.items(): val_meta[k] += v val_num_frames += num_frames.item() val_meta = {k: v / len(val_loader.dataset) for k, v in val_meta.items()} val_meta['took'] = time.perf_counter() - tik log((epoch,) if epoch is not None else (), tb_total_steps=total_iter, subset='val_ema' if ema else 'val', data=OrderedDict([ ('loss', val_meta['loss'].item()), ('mel_loss', val_meta['mel_loss'].item()), ('frames/s', val_num_frames / val_meta['took']), ('took', val_meta['took'])]), ) if was_training: model.train() return val_meta def adjust_learning_rate(total_iter, opt, learning_rate, warmup_iters=None): if warmup_iters == 0: scale = 1.0 elif total_iter > warmup_iters: scale = 1. / (total_iter ** 0.5) else: scale = total_iter / (warmup_iters ** 1.5) for param_group in opt.param_groups: param_group['lr'] = learning_rate * scale def apply_ema_decay(model, ema_model, decay): if not decay: return st = model.state_dict() add_module = hasattr(model, 'module') and not hasattr(ema_model, 'module') for k, v in ema_model.state_dict().items(): if add_module and not k.startswith('module.'): k = 'module.' + k v.copy_(decay * v + (1 - decay) * st[k]) def init_multi_tensor_ema(model, ema_model): model_weights = list(model.state_dict().values()) ema_model_weights = list(ema_model.state_dict().values()) ema_overflow_buf = torch.cuda.IntTensor([0]) return model_weights, ema_model_weights, ema_overflow_buf def apply_multi_tensor_ema(decay, model_weights, ema_weights, overflow_buf): amp_C.multi_tensor_axpby( 65536, overflow_buf, [ema_weights, model_weights, ema_weights], decay, 1-decay, -1) def main(): parser = argparse.ArgumentParser(description='PyTorch FastPitch Training', allow_abbrev=False) parser = parse_args(parser) args, _ = parser.parse_known_args() if args.p_arpabet > 0.0: cmudict.initialize(args.cmudict_path, args.heteronyms_path) distributed_run = args.world_size > 1 torch.manual_seed(args.seed + args.local_rank) np.random.seed(args.seed + args.local_rank) if args.local_rank == 0: if not os.path.exists(args.output): os.makedirs(args.output) log_fpath = args.log_file or os.path.join(args.output, 'nvlog.json') tb_subsets = ['train', 'val'] if args.ema_decay > 0.0: tb_subsets.append('val_ema') logger.init(log_fpath, args.output, enabled=(args.local_rank == 0), tb_subsets=tb_subsets) logger.parameters(vars(args), tb_subset='train') parser = models.parse_model_args('FastPitch', parser) args, unk_args = parser.parse_known_args() if len(unk_args) > 0: raise ValueError(f'Invalid options {unk_args}') torch.backends.cudnn.benchmark = args.cudnn_benchmark if distributed_run: init_distributed(args, args.world_size, args.local_rank) else: if args.trainloader_repeats > 1: print('WARNING: Disabled --trainloader-repeats, supported only for' ' multi-GPU data loading.') args.trainloader_repeats = 1 device = torch.device('cuda' if args.cuda else 'cpu') model_config = models.get_model_config('FastPitch', args) model = models.get_model('FastPitch', model_config, device) if args.init_from_checkpoint is not None: load_pretrained_weights(model, args.init_from_checkpoint) attention_kl_loss = AttentionBinarizationLoss() # Store pitch mean/std as params to translate from Hz during inference model.pitch_mean[0] = args.pitch_mean model.pitch_std[0] = args.pitch_std kw = dict(lr=args.learning_rate, betas=(0.9, 0.98), eps=1e-9, weight_decay=args.weight_decay) if args.optimizer == 'adam': optimizer = FusedAdam(model.parameters(), **kw) elif args.optimizer == 'lamb': optimizer = FusedLAMB(model.parameters(), **kw) else: raise ValueError scaler = torch.cuda.amp.GradScaler(enabled=args.amp) if args.ema_decay > 0: ema_model = copy.deepcopy(model) else: ema_model = None if distributed_run: model = DistributedDataParallel( model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True) train_state = {'epoch': 1, 'total_iter': 1} checkpointer = Checkpointer(args.output, args.keep_milestones) checkpointer.maybe_load(model, optimizer, scaler, train_state, args, ema_model) start_epoch = train_state['epoch'] total_iter = train_state['total_iter'] criterion = FastPitchLoss( dur_predictor_loss_scale=args.dur_predictor_loss_scale, pitch_predictor_loss_scale=args.pitch_predictor_loss_scale, attn_loss_scale=args.attn_loss_scale) collate_fn = TTSCollate() if args.local_rank == 0: prepare_tmp(args.pitch_online_dir) trainset = TTSDataset(audiopaths_and_text=args.training_files, **vars(args)) valset = TTSDataset(audiopaths_and_text=args.validation_files, **vars(args)) ensure_disjoint(trainset, valset) if distributed_run: train_sampler = RepeatedDistributedSampler(args.trainloader_repeats, trainset, drop_last=True) val_sampler = DistributedSampler(valset) shuffle = False else: train_sampler, val_sampler, shuffle = None, None, True # 4 workers are optimal on DGX-1 (from epoch 2 onwards) kw = {'num_workers': args.num_workers, 'batch_size': args.batch_size, 'collate_fn': collate_fn} train_loader = RepeatedDataLoader(args.trainloader_repeats, trainset, shuffle=shuffle, drop_last=True, sampler=train_sampler, pin_memory=True, persistent_workers=True, **kw) val_loader = DataLoader(valset, shuffle=False, sampler=val_sampler, pin_memory=False, **kw) if args.ema_decay: mt_ema_params = init_multi_tensor_ema(model, ema_model) model.train() bmark_stats = BenchmarkStats() torch.cuda.synchronize() for epoch in range(start_epoch, args.epochs + 1): epoch_start_time = time.perf_counter() epoch_loss = 0.0 epoch_mel_loss = 0.0 epoch_num_frames = 0 epoch_frames_per_sec = 0.0 if distributed_run: train_loader.sampler.set_epoch(epoch) iter_loss = 0 iter_num_frames = 0 iter_meta = {} iter_start_time = time.perf_counter() epoch_iter = 1 for batch, accum_step in zip(train_loader, cycle(range(1, args.grad_accumulation + 1))): if accum_step == 1: adjust_learning_rate(total_iter, optimizer, args.learning_rate, args.warmup_steps) model.zero_grad(set_to_none=True) x, y, num_frames = batch_to_gpu(batch) with torch.cuda.amp.autocast(enabled=args.amp): y_pred = model(x) loss, meta = criterion(y_pred, y) if (args.kl_loss_start_epoch is not None and epoch >= args.kl_loss_start_epoch): if args.kl_loss_start_epoch == epoch and epoch_iter == 1: print('Begin hard_attn loss') _, _, _, _, _, _, _, _, attn_soft, attn_hard, _, _ = y_pred binarization_loss = attention_kl_loss(attn_hard, attn_soft) kl_weight = min((epoch - args.kl_loss_start_epoch) / args.kl_loss_warmup_epochs, 1.0) * args.kl_loss_weight meta['kl_loss'] = binarization_loss.clone().detach() * kl_weight loss += kl_weight * binarization_loss else: meta['kl_loss'] = torch.zeros_like(loss) kl_weight = 0 binarization_loss = 0 loss /= args.grad_accumulation meta = {k: v / args.grad_accumulation for k, v in meta.items()} if args.amp: scaler.scale(loss).backward() else: loss.backward() if distributed_run: reduced_loss = reduce_tensor(loss.data, args.world_size).item() reduced_num_frames = reduce_tensor(num_frames.data, 1).item() meta = {k: reduce_tensor(v, args.world_size) for k, v in meta.items()} else: reduced_loss = loss.item() reduced_num_frames = num_frames.item() if np.isnan(reduced_loss): raise Exception("loss is NaN") iter_loss += reduced_loss iter_num_frames += reduced_num_frames iter_meta = {k: iter_meta.get(k, 0) + meta.get(k, 0) for k in meta} if accum_step % args.grad_accumulation == 0: logger.log_grads_tb(total_iter, model) if args.amp: scaler.unscale_(optimizer) torch.nn.utils.clip_grad_norm_( model.parameters(), args.grad_clip_thresh) scaler.step(optimizer) scaler.update() else: torch.nn.utils.clip_grad_norm_( model.parameters(), args.grad_clip_thresh) optimizer.step() if args.ema_decay > 0.0: apply_multi_tensor_ema(args.ema_decay, *mt_ema_params) iter_mel_loss = iter_meta['mel_loss'].item() iter_kl_loss = iter_meta['kl_loss'].item() iter_time = time.perf_counter() - iter_start_time epoch_frames_per_sec += iter_num_frames / iter_time epoch_loss += iter_loss epoch_num_frames += iter_num_frames epoch_mel_loss += iter_mel_loss num_iters = len(train_loader) // args.grad_accumulation log((epoch, epoch_iter, num_iters), tb_total_steps=total_iter, subset='train', data=OrderedDict([ ('loss', iter_loss), ('mel_loss', iter_mel_loss), ('kl_loss', iter_kl_loss), ('kl_weight', kl_weight), ('frames/s', iter_num_frames / iter_time), ('took', iter_time), ('lrate', optimizer.param_groups[0]['lr'])]), ) iter_loss = 0 iter_num_frames = 0 iter_meta = {} iter_start_time = time.perf_counter() if epoch_iter == num_iters: break epoch_iter += 1 total_iter += 1 # Finished epoch epoch_loss /= epoch_iter epoch_mel_loss /= epoch_iter epoch_time = time.perf_counter() - epoch_start_time log((epoch,), tb_total_steps=None, subset='train_avg', data=OrderedDict([ ('loss', epoch_loss), ('mel_loss', epoch_mel_loss), ('frames/s', epoch_num_frames / epoch_time), ('took', epoch_time)]), ) bmark_stats.update(epoch_num_frames, epoch_loss, epoch_mel_loss, epoch_time) if epoch % args.validation_freq == 0: validate(model, epoch, total_iter, criterion, val_loader, distributed_run, batch_to_gpu) if args.ema_decay > 0: validate(ema_model, epoch, total_iter, criterion, val_loader, distributed_run, batch_to_gpu, ema=True) # save before making sched.step() for proper loading of LR checkpointer.maybe_save(args, model, ema_model, optimizer, scaler, epoch, total_iter, model_config) logger.flush() # Finished training if len(bmark_stats) > 0: log((), tb_total_steps=None, subset='train_avg', data=bmark_stats.get(args.benchmark_epochs_num)) validate(model, None, total_iter, criterion, val_loader, distributed_run, batch_to_gpu) if __name__ == '__main__': main()
TensorFlow/Recommendation/WideAndDeep/scripts
scripts
DGXA100_benchmark_training_tf32_8gpu
#!/bin/bash # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. set -x set -e mpiexec --allow-run-as-root --bind-to socket -np 8 \ python -m trainer.task \ --hvd \ --benchmark_warmup_steps 500 \ --benchmark_steps 1000 \ --gpu \ --benchmark
PyTorch/Classification/GPUNet/triton/runner/maintainer
maintainer
__init__
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .container import Container # noqa: F401 from .docker.maintainer import DockerMaintainer # noqa: F401 from .maintainer import Maintainer # noqa: F401
TensorFlow/Detection/SSD/models/research/object_detection/models
models
ssd_resnet_v1_ppn_feature_extractor_test
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for ssd resnet v1 feature extractors.""" import tensorflow as tf from object_detection.models import ssd_resnet_v1_ppn_feature_extractor from object_detection.models import ssd_resnet_v1_ppn_feature_extractor_testbase class SSDResnet50V1PpnFeatureExtractorTest( ssd_resnet_v1_ppn_feature_extractor_testbase. SSDResnetPpnFeatureExtractorTestBase): """SSDResnet50v1 feature extractor test.""" def _create_feature_extractor(self, depth_multiplier, pad_to_multiple, use_explicit_padding=False): min_depth = 32 is_training = True return ssd_resnet_v1_ppn_feature_extractor.SSDResnet50V1PpnFeatureExtractor( is_training, depth_multiplier, min_depth, pad_to_multiple, self.conv_hyperparams_fn, use_explicit_padding=use_explicit_padding) def _scope_name(self): return 'resnet_v1_50' class SSDResnet101V1PpnFeatureExtractorTest( ssd_resnet_v1_ppn_feature_extractor_testbase. SSDResnetPpnFeatureExtractorTestBase): """SSDResnet101v1 feature extractor test.""" def _create_feature_extractor(self, depth_multiplier, pad_to_multiple, use_explicit_padding=False): min_depth = 32 is_training = True return ( ssd_resnet_v1_ppn_feature_extractor.SSDResnet101V1PpnFeatureExtractor( is_training, depth_multiplier, min_depth, pad_to_multiple, self.conv_hyperparams_fn, use_explicit_padding=use_explicit_padding)) def _scope_name(self): return 'resnet_v1_101' class SSDResnet152V1PpnFeatureExtractorTest( ssd_resnet_v1_ppn_feature_extractor_testbase. SSDResnetPpnFeatureExtractorTestBase): """SSDResnet152v1 feature extractor test.""" def _create_feature_extractor(self, depth_multiplier, pad_to_multiple, use_explicit_padding=False): min_depth = 32 is_training = True return ( ssd_resnet_v1_ppn_feature_extractor.SSDResnet152V1PpnFeatureExtractor( is_training, depth_multiplier, min_depth, pad_to_multiple, self.conv_hyperparams_fn, use_explicit_padding=use_explicit_padding)) def _scope_name(self): return 'resnet_v1_152' if __name__ == '__main__': tf.test.main()
Kaldi/SpeechRecognition/scripts/docker
docker
launch_download
#!/bin/bash # Copyright (c) 2019-2021 NVIDIA CORPORATION. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Start Triton server container for download - need some kaldi tools docker run --rm \ --shm-size=1g \ --ulimit memlock=-1 \ --ulimit stack=67108864 \ -v $PWD/data:/mnt/data \ triton_kaldi_server /workspace/scripts/docker/dataset_setup.sh $(id -u) $(id -g) # --user $(id -u):$(id -g) \
PyTorch/Classification/ConvNets/triton
triton
run_online_performance_test_on_triton
#!/usr/bin/env python3 # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r""" For models with variable-sized inputs you must provide the --input-shape argument so that perf_analyzer knows what shape tensors to use. For example, for a model that has an input called IMAGE that has shape [ 3, N, M ], where N and M are variable-size dimensions, to tell perf_analyzer to send batch-size 4 requests of shape [ 3, 224, 224 ] `--shape IMAGE:3,224,224`. """ import argparse import csv import os import sys from pathlib import Path from typing import List, Optional # method from PEP-366 to support relative import in executed modules if __package__ is None: __package__ = Path(__file__).parent.name from .deployment_toolkit.report import save_results, show_results, sort_results from .deployment_toolkit.warmup import warmup def calculate_average_latency(r): avg_sum_fields = [ "Client Send", "Network+Server Send/Recv", "Server Queue", "Server Compute", "Server Compute Input", "Server Compute Infer", "Server Compute Output", "Client Recv", ] avg_latency = sum([int(r.get(f, 0)) for f in avg_sum_fields]) return avg_latency def update_performance_data(results: List, performance_file: str): with open(performance_file, "r") as csvfile: reader = csv.DictReader(csvfile) for row in reader: row["avg latency"] = calculate_average_latency(row) results.append(row) def _parse_batch_sizes(batch_sizes: str): batches = batch_sizes.split(sep=",") return list(map(lambda x: int(x.strip()), batches)) def online_performance( model_name: str, batch_sizes: List[int], result_path: str, input_shapes: Optional[List[str]] = None, profiling_data: str = "random", triton_instances: int = 1, triton_gpu_engine_count: int = 1, server_url: str = "localhost", measurement_window: int = 10000, shared_memory: bool = False ): print("\n") print(f"==== Dynamic batching analysis start ====") print("\n") input_shapes = " ".join(map(lambda shape: f" --shape {shape}", input_shapes)) if input_shapes else "" print(f"Running performance tests for dynamic batching") performance_file = f"triton_performance_dynamic_partial.csv" max_batch_size = max(batch_sizes) max_total_requests = 2 * max_batch_size * triton_instances * triton_gpu_engine_count max_concurrency = min(256, max_total_requests) batch_size = max(1, max_total_requests // 256) step = max(1, max_concurrency // 32) min_concurrency = step exec_args = f"""-m {model_name} \ -x 1 \ -p {measurement_window} \ -v \ -i http \ -u {server_url}:8000 \ -b {batch_size} \ -f {performance_file} \ --concurrency-range {min_concurrency}:{max_concurrency}:{step} \ --input-data {profiling_data} {input_shapes}""" if shared_memory: exec_args += " --shared-memory=cuda" result = os.system(f"perf_client {exec_args}") if result != 0: print(f"Failed running performance tests. Perf client failed with exit code {result}") sys.exit(1) results = list() update_performance_data(results=results, performance_file=performance_file) results = sort_results(results=results) save_results(filename=result_path, data=results) show_results(results=results) os.remove(performance_file) print("Performance results for dynamic batching stored in: {0}".format(result_path)) print("\n") print(f"==== Analysis done ====") print("\n") def main(): parser = argparse.ArgumentParser() parser.add_argument("--model-name", type=str, required=True, help="Name of the model to test") parser.add_argument( "--input-data", type=str, required=False, default="random", help="Input data to perform profiling." ) parser.add_argument( "--input-shape", action="append", required=False, help="Input data shape in form INPUT_NAME:<full_shape_without_batch_axis>.", ) parser.add_argument("--batch-sizes", type=str, required=True, help="List of batch sizes to tests. Comma separated.") parser.add_argument("--triton-instances", type=int, default=1, help="Number of Triton Server instances") parser.add_argument( "--number-of-model-instances", type=int, default=1, help="Number of models instances on Triton Server" ) parser.add_argument("--result-path", type=str, required=True, help="Path where result file is going to be stored.") parser.add_argument("--server-url", type=str, required=False, default="localhost", help="Url to Triton server") parser.add_argument( "--measurement-window", required=False, help="Time which perf_analyzer will wait for results", default=10000 ) parser.add_argument("--shared-memory", help="Use shared memory for communication with Triton", action="store_true", default=False) args = parser.parse_args() warmup( server_url=args.server_url, model_name=args.model_name, batch_sizes=_parse_batch_sizes(args.batch_sizes), triton_instances=args.triton_instances, triton_gpu_engine_count=args.number_of_model_instances, profiling_data=args.input_data, input_shapes=args.input_shape, measurement_window=args.measurement_window, shared_memory=args.shared_memory ) online_performance( server_url=args.server_url, model_name=args.model_name, batch_sizes=_parse_batch_sizes(args.batch_sizes), triton_instances=args.triton_instances, triton_gpu_engine_count=args.number_of_model_instances, profiling_data=args.input_data, input_shapes=args.input_shape, result_path=args.result_path, measurement_window=args.measurement_window, shared_memory=args.shared_memory ) if __name__ == "__main__": main()
PyTorch/LanguageModeling/BERT/distillation/BERT_4L_312D
BERT_4L_312D
config
{ "attention_probs_dropout_prob": 0.1, "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "hidden_size": 312, "initializer_range": 0.02, "intermediate_size": 1200, "max_position_embeddings": 512, "num_attention_heads": 12, "num_hidden_layers": 4, "type_vocab_size": 2, "vocab_size": 30528 }
PyTorch/Recommendation/DLRM/tests
tests
test_custom_dot
#!/bin/bash NAMES=${1:-'*.yaml'} COMMON_OPTS="--embedding_type=joint_sparse" bash test_with_opts.sh "${NAMES}" "${COMMON_OPTS}" # # usage: # docker build . -t nvidia_dlrm_pyt # docker run --security-opt seccomp=unconfined --runtime=nvidia -it --rm --ipc=host -v ${PWD}/data:/data nvidia_dlrm_pyt bash # cd tests # bash test_custom_dot.sh
PyTorch/LanguageModeling/BERT/triton/deployment_toolkit
deployment_toolkit
report
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import csv import re from typing import Dict, List from natsort import natsorted from tabulate import tabulate def sort_results(results: List): results = natsorted(results, key=lambda item: [item[key] for key in item.keys()]) return results def save_results(filename: str, data: List, formatted: bool = False): data = format_data(data=data) if formatted else data with open(filename, "a") as csvfile: fieldnames = data[0].keys() writer = csv.DictWriter(csvfile, fieldnames=fieldnames) writer.writeheader() for row in data: writer.writerow(row) def format_data(data: List[Dict]) -> List[Dict]: formatted_data = list() for item in data: formatted_item = format_keys(data=item) formatted_data.append(formatted_item) return formatted_data def format_keys(data: Dict) -> Dict: keys = {format_key(key=key): value for key, value in data.items()} return keys def format_key(key: str) -> str: key = " ".join([k.capitalize() for k in re.split("_| ", key)]) return key def show_results(results: List[Dict]): headers = list(results[0].keys()) summary = map(lambda x: list(map(lambda item: item[1], x.items())), results) print(tabulate(summary, headers=headers))
Tools/PyTorch/TimeSeriesPredictionPlatform/conf/dataset
dataset
electricity
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. _target_: data.datasets.create_datasets config: graph: False source_path: /workspace/datasets/electricity/electricity.csv dest_path: /workspace/datasets/electricity/ time_ids: 'days_from_start' train_range: - 0 - 1315 valid_range: - 1308 - 1339 test_range: - 1332 - 10000 dataset_stride: 1 scale_per_id: True encoder_length: 168 example_length: 192 MultiID: False features: - name: 'categorical_id' feature_type: 'ID' feature_embed_type: 'CATEGORICAL' cardinality: 371 - name: 'hours_from_start' feature_type: 'TIME' feature_embed_type: 'CONTINUOUS' - name: 'power_usage_weight' feature_type: 'WEIGHT' feature_embed_type: 'CONTINUOUS' - name: 'power_usage' feature_type: 'TARGET' feature_embed_type: 'CONTINUOUS' scaler: _target_: sklearn.preprocessing.StandardScaler - name: 'hour' feature_type: 'KNOWN' feature_embed_type: 'CATEGORICAL' cardinality: 25 - name: 'day_of_week' feature_type: 'KNOWN' feature_embed_type: 'CATEGORICAL' cardinality: 8 - name: 'hours_from_start' feature_type: 'KNOWN' feature_embed_type: 'CONTINUOUS' scaler: _target_: sklearn.preprocessing.StandardScaler - name: 'categorical_id' feature_type: 'STATIC' feature_embed_type: 'CATEGORICAL' cardinality: 371 train_samples: 450000 valid_samples: 50000 binarized: True time_series_count: 369
TensorFlow/Detection/SSD/models/research/object_detection/models
models
feature_map_generators_test
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for feature map generators.""" from absl.testing import parameterized import tensorflow as tf from google.protobuf import text_format from object_detection.builders import hyperparams_builder from object_detection.models import feature_map_generators from object_detection.protos import hyperparams_pb2 INCEPTION_V2_LAYOUT = { 'from_layer': ['Mixed_3c', 'Mixed_4c', 'Mixed_5c', '', '', ''], 'layer_depth': [-1, -1, -1, 512, 256, 256], 'anchor_strides': [16, 32, 64, -1, -1, -1], 'layer_target_norm': [20.0, -1, -1, -1, -1, -1], } INCEPTION_V3_LAYOUT = { 'from_layer': ['Mixed_5d', 'Mixed_6e', 'Mixed_7c', '', '', ''], 'layer_depth': [-1, -1, -1, 512, 256, 128], 'anchor_strides': [16, 32, 64, -1, -1, -1], 'aspect_ratios': [1.0, 2.0, 1.0/2, 3.0, 1.0/3] } EMBEDDED_SSD_MOBILENET_V1_LAYOUT = { 'from_layer': ['Conv2d_11_pointwise', 'Conv2d_13_pointwise', '', '', ''], 'layer_depth': [-1, -1, 512, 256, 256], 'conv_kernel_size': [-1, -1, 3, 3, 2], } SSD_MOBILENET_V1_WEIGHT_SHARED_LAYOUT = { 'from_layer': ['Conv2d_13_pointwise', '', '', ''], 'layer_depth': [-1, 256, 256, 256], } @parameterized.parameters( {'use_keras': False}, {'use_keras': True}, ) class MultiResolutionFeatureMapGeneratorTest(tf.test.TestCase): def _build_conv_hyperparams(self): conv_hyperparams = hyperparams_pb2.Hyperparams() conv_hyperparams_text_proto = """ regularizer { l2_regularizer { } } initializer { truncated_normal_initializer { } } """ text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams) return hyperparams_builder.KerasLayerHyperparams(conv_hyperparams) def _build_feature_map_generator(self, feature_map_layout, use_keras, pool_residual=False): if use_keras: return feature_map_generators.KerasMultiResolutionFeatureMaps( feature_map_layout=feature_map_layout, depth_multiplier=1, min_depth=32, insert_1x1_conv=True, freeze_batchnorm=False, is_training=True, conv_hyperparams=self._build_conv_hyperparams(), name='FeatureMaps' ) else: def feature_map_generator(image_features): return feature_map_generators.multi_resolution_feature_maps( feature_map_layout=feature_map_layout, depth_multiplier=1, min_depth=32, insert_1x1_conv=True, image_features=image_features, pool_residual=pool_residual) return feature_map_generator def test_get_expected_feature_map_shapes_with_inception_v2(self, use_keras): image_features = { 'Mixed_3c': tf.random_uniform([4, 28, 28, 256], dtype=tf.float32), 'Mixed_4c': tf.random_uniform([4, 14, 14, 576], dtype=tf.float32), 'Mixed_5c': tf.random_uniform([4, 7, 7, 1024], dtype=tf.float32) } feature_map_generator = self._build_feature_map_generator( feature_map_layout=INCEPTION_V2_LAYOUT, use_keras=use_keras ) feature_maps = feature_map_generator(image_features) expected_feature_map_shapes = { 'Mixed_3c': (4, 28, 28, 256), 'Mixed_4c': (4, 14, 14, 576), 'Mixed_5c': (4, 7, 7, 1024), 'Mixed_5c_2_Conv2d_3_3x3_s2_512': (4, 4, 4, 512), 'Mixed_5c_2_Conv2d_4_3x3_s2_256': (4, 2, 2, 256), 'Mixed_5c_2_Conv2d_5_3x3_s2_256': (4, 1, 1, 256)} init_op = tf.global_variables_initializer() with self.test_session() as sess: sess.run(init_op) out_feature_maps = sess.run(feature_maps) out_feature_map_shapes = dict( (key, value.shape) for key, value in out_feature_maps.items()) self.assertDictEqual(expected_feature_map_shapes, out_feature_map_shapes) # TODO(kaftan): Remove conditional after CMLE moves to TF 1.10 def test_get_expected_feature_map_shapes_use_explicit_padding( self, use_keras): image_features = { 'Mixed_3c': tf.random_uniform([4, 28, 28, 256], dtype=tf.float32), 'Mixed_4c': tf.random_uniform([4, 14, 14, 576], dtype=tf.float32), 'Mixed_5c': tf.random_uniform([4, 7, 7, 1024], dtype=tf.float32) } layout_copy = INCEPTION_V2_LAYOUT.copy() layout_copy['use_explicit_padding'] = True feature_map_generator = self._build_feature_map_generator( feature_map_layout=layout_copy, use_keras=use_keras ) feature_maps = feature_map_generator(image_features) expected_feature_map_shapes = { 'Mixed_3c': (4, 28, 28, 256), 'Mixed_4c': (4, 14, 14, 576), 'Mixed_5c': (4, 7, 7, 1024), 'Mixed_5c_2_Conv2d_3_3x3_s2_512': (4, 4, 4, 512), 'Mixed_5c_2_Conv2d_4_3x3_s2_256': (4, 2, 2, 256), 'Mixed_5c_2_Conv2d_5_3x3_s2_256': (4, 1, 1, 256)} init_op = tf.global_variables_initializer() with self.test_session() as sess: sess.run(init_op) out_feature_maps = sess.run(feature_maps) out_feature_map_shapes = dict( (key, value.shape) for key, value in out_feature_maps.items()) self.assertDictEqual(expected_feature_map_shapes, out_feature_map_shapes) def test_get_expected_feature_map_shapes_with_inception_v3(self, use_keras): image_features = { 'Mixed_5d': tf.random_uniform([4, 35, 35, 256], dtype=tf.float32), 'Mixed_6e': tf.random_uniform([4, 17, 17, 576], dtype=tf.float32), 'Mixed_7c': tf.random_uniform([4, 8, 8, 1024], dtype=tf.float32) } feature_map_generator = self._build_feature_map_generator( feature_map_layout=INCEPTION_V3_LAYOUT, use_keras=use_keras ) feature_maps = feature_map_generator(image_features) expected_feature_map_shapes = { 'Mixed_5d': (4, 35, 35, 256), 'Mixed_6e': (4, 17, 17, 576), 'Mixed_7c': (4, 8, 8, 1024), 'Mixed_7c_2_Conv2d_3_3x3_s2_512': (4, 4, 4, 512), 'Mixed_7c_2_Conv2d_4_3x3_s2_256': (4, 2, 2, 256), 'Mixed_7c_2_Conv2d_5_3x3_s2_128': (4, 1, 1, 128)} init_op = tf.global_variables_initializer() with self.test_session() as sess: sess.run(init_op) out_feature_maps = sess.run(feature_maps) out_feature_map_shapes = dict( (key, value.shape) for key, value in out_feature_maps.items()) self.assertDictEqual(expected_feature_map_shapes, out_feature_map_shapes) def test_get_expected_feature_map_shapes_with_embedded_ssd_mobilenet_v1( self, use_keras): image_features = { 'Conv2d_11_pointwise': tf.random_uniform([4, 16, 16, 512], dtype=tf.float32), 'Conv2d_13_pointwise': tf.random_uniform([4, 8, 8, 1024], dtype=tf.float32), } feature_map_generator = self._build_feature_map_generator( feature_map_layout=EMBEDDED_SSD_MOBILENET_V1_LAYOUT, use_keras=use_keras ) feature_maps = feature_map_generator(image_features) expected_feature_map_shapes = { 'Conv2d_11_pointwise': (4, 16, 16, 512), 'Conv2d_13_pointwise': (4, 8, 8, 1024), 'Conv2d_13_pointwise_2_Conv2d_2_3x3_s2_512': (4, 4, 4, 512), 'Conv2d_13_pointwise_2_Conv2d_3_3x3_s2_256': (4, 2, 2, 256), 'Conv2d_13_pointwise_2_Conv2d_4_2x2_s2_256': (4, 1, 1, 256)} init_op = tf.global_variables_initializer() with self.test_session() as sess: sess.run(init_op) out_feature_maps = sess.run(feature_maps) out_feature_map_shapes = dict( (key, value.shape) for key, value in out_feature_maps.items()) self.assertDictEqual(expected_feature_map_shapes, out_feature_map_shapes) def test_feature_map_shapes_with_pool_residual_ssd_mobilenet_v1( self, use_keras): image_features = { 'Conv2d_13_pointwise': tf.random_uniform([4, 8, 8, 1024], dtype=tf.float32), } feature_map_generator = self._build_feature_map_generator( feature_map_layout=SSD_MOBILENET_V1_WEIGHT_SHARED_LAYOUT, use_keras=use_keras, pool_residual=True ) feature_maps = feature_map_generator(image_features) expected_feature_map_shapes = { 'Conv2d_13_pointwise': (4, 8, 8, 1024), 'Conv2d_13_pointwise_2_Conv2d_1_3x3_s2_256': (4, 4, 4, 256), 'Conv2d_13_pointwise_2_Conv2d_2_3x3_s2_256': (4, 2, 2, 256), 'Conv2d_13_pointwise_2_Conv2d_3_3x3_s2_256': (4, 1, 1, 256)} init_op = tf.global_variables_initializer() with self.test_session() as sess: sess.run(init_op) out_feature_maps = sess.run(feature_maps) out_feature_map_shapes = dict( (key, value.shape) for key, value in out_feature_maps.items()) self.assertDictEqual(expected_feature_map_shapes, out_feature_map_shapes) def test_get_expected_variable_names_with_inception_v2(self, use_keras): image_features = { 'Mixed_3c': tf.random_uniform([4, 28, 28, 256], dtype=tf.float32), 'Mixed_4c': tf.random_uniform([4, 14, 14, 576], dtype=tf.float32), 'Mixed_5c': tf.random_uniform([4, 7, 7, 1024], dtype=tf.float32) } feature_map_generator = self._build_feature_map_generator( feature_map_layout=INCEPTION_V2_LAYOUT, use_keras=use_keras ) feature_maps = feature_map_generator(image_features) expected_slim_variables = set([ 'Mixed_5c_1_Conv2d_3_1x1_256/weights', 'Mixed_5c_1_Conv2d_3_1x1_256/biases', 'Mixed_5c_2_Conv2d_3_3x3_s2_512/weights', 'Mixed_5c_2_Conv2d_3_3x3_s2_512/biases', 'Mixed_5c_1_Conv2d_4_1x1_128/weights', 'Mixed_5c_1_Conv2d_4_1x1_128/biases', 'Mixed_5c_2_Conv2d_4_3x3_s2_256/weights', 'Mixed_5c_2_Conv2d_4_3x3_s2_256/biases', 'Mixed_5c_1_Conv2d_5_1x1_128/weights', 'Mixed_5c_1_Conv2d_5_1x1_128/biases', 'Mixed_5c_2_Conv2d_5_3x3_s2_256/weights', 'Mixed_5c_2_Conv2d_5_3x3_s2_256/biases', ]) expected_keras_variables = set([ 'FeatureMaps/Mixed_5c_1_Conv2d_3_1x1_256_conv/kernel', 'FeatureMaps/Mixed_5c_1_Conv2d_3_1x1_256_conv/bias', 'FeatureMaps/Mixed_5c_2_Conv2d_3_3x3_s2_512_conv/kernel', 'FeatureMaps/Mixed_5c_2_Conv2d_3_3x3_s2_512_conv/bias', 'FeatureMaps/Mixed_5c_1_Conv2d_4_1x1_128_conv/kernel', 'FeatureMaps/Mixed_5c_1_Conv2d_4_1x1_128_conv/bias', 'FeatureMaps/Mixed_5c_2_Conv2d_4_3x3_s2_256_conv/kernel', 'FeatureMaps/Mixed_5c_2_Conv2d_4_3x3_s2_256_conv/bias', 'FeatureMaps/Mixed_5c_1_Conv2d_5_1x1_128_conv/kernel', 'FeatureMaps/Mixed_5c_1_Conv2d_5_1x1_128_conv/bias', 'FeatureMaps/Mixed_5c_2_Conv2d_5_3x3_s2_256_conv/kernel', 'FeatureMaps/Mixed_5c_2_Conv2d_5_3x3_s2_256_conv/bias', ]) init_op = tf.global_variables_initializer() with self.test_session() as sess: sess.run(init_op) sess.run(feature_maps) actual_variable_set = set( [var.op.name for var in tf.trainable_variables()]) if use_keras: self.assertSetEqual(expected_keras_variables, actual_variable_set) else: self.assertSetEqual(expected_slim_variables, actual_variable_set) # TODO(kaftan): Remove conditional after CMLE moves to TF 1.10 class FPNFeatureMapGeneratorTest(tf.test.TestCase): def test_get_expected_feature_map_shapes(self): image_features = [ ('block2', tf.random_uniform([4, 8, 8, 256], dtype=tf.float32)), ('block3', tf.random_uniform([4, 4, 4, 256], dtype=tf.float32)), ('block4', tf.random_uniform([4, 2, 2, 256], dtype=tf.float32)), ('block5', tf.random_uniform([4, 1, 1, 256], dtype=tf.float32)) ] feature_maps = feature_map_generators.fpn_top_down_feature_maps( image_features=image_features, depth=128) expected_feature_map_shapes = { 'top_down_block2': (4, 8, 8, 128), 'top_down_block3': (4, 4, 4, 128), 'top_down_block4': (4, 2, 2, 128), 'top_down_block5': (4, 1, 1, 128) } init_op = tf.global_variables_initializer() with self.test_session() as sess: sess.run(init_op) out_feature_maps = sess.run(feature_maps) out_feature_map_shapes = {key: value.shape for key, value in out_feature_maps.items()} self.assertDictEqual(out_feature_map_shapes, expected_feature_map_shapes) def test_get_expected_feature_map_shapes_with_depthwise(self): image_features = [ ('block2', tf.random_uniform([4, 8, 8, 256], dtype=tf.float32)), ('block3', tf.random_uniform([4, 4, 4, 256], dtype=tf.float32)), ('block4', tf.random_uniform([4, 2, 2, 256], dtype=tf.float32)), ('block5', tf.random_uniform([4, 1, 1, 256], dtype=tf.float32)) ] feature_maps = feature_map_generators.fpn_top_down_feature_maps( image_features=image_features, depth=128, use_depthwise=True) expected_feature_map_shapes = { 'top_down_block2': (4, 8, 8, 128), 'top_down_block3': (4, 4, 4, 128), 'top_down_block4': (4, 2, 2, 128), 'top_down_block5': (4, 1, 1, 128) } init_op = tf.global_variables_initializer() with self.test_session() as sess: sess.run(init_op) out_feature_maps = sess.run(feature_maps) out_feature_map_shapes = {key: value.shape for key, value in out_feature_maps.items()} self.assertDictEqual(out_feature_map_shapes, expected_feature_map_shapes) class GetDepthFunctionTest(tf.test.TestCase): def test_return_min_depth_when_multiplier_is_small(self): depth_fn = feature_map_generators.get_depth_fn(depth_multiplier=0.5, min_depth=16) self.assertEqual(depth_fn(16), 16) def test_return_correct_depth_with_multiplier(self): depth_fn = feature_map_generators.get_depth_fn(depth_multiplier=0.5, min_depth=16) self.assertEqual(depth_fn(64), 32) @parameterized.parameters( {'replace_pool_with_conv': False}, {'replace_pool_with_conv': True}, ) class PoolingPyramidFeatureMapGeneratorTest(tf.test.TestCase): def test_get_expected_feature_map_shapes(self, replace_pool_with_conv): image_features = { 'image_features': tf.random_uniform([4, 19, 19, 1024]) } feature_maps = feature_map_generators.pooling_pyramid_feature_maps( base_feature_map_depth=1024, num_layers=6, image_features=image_features, replace_pool_with_conv=replace_pool_with_conv) expected_pool_feature_map_shapes = { 'Base_Conv2d_1x1_1024': (4, 19, 19, 1024), 'MaxPool2d_0_2x2': (4, 10, 10, 1024), 'MaxPool2d_1_2x2': (4, 5, 5, 1024), 'MaxPool2d_2_2x2': (4, 3, 3, 1024), 'MaxPool2d_3_2x2': (4, 2, 2, 1024), 'MaxPool2d_4_2x2': (4, 1, 1, 1024), } expected_conv_feature_map_shapes = { 'Base_Conv2d_1x1_1024': (4, 19, 19, 1024), 'Conv2d_0_3x3_s2_1024': (4, 10, 10, 1024), 'Conv2d_1_3x3_s2_1024': (4, 5, 5, 1024), 'Conv2d_2_3x3_s2_1024': (4, 3, 3, 1024), 'Conv2d_3_3x3_s2_1024': (4, 2, 2, 1024), 'Conv2d_4_3x3_s2_1024': (4, 1, 1, 1024), } init_op = tf.global_variables_initializer() with self.test_session() as sess: sess.run(init_op) out_feature_maps = sess.run(feature_maps) out_feature_map_shapes = {key: value.shape for key, value in out_feature_maps.items()} if replace_pool_with_conv: self.assertDictEqual(expected_conv_feature_map_shapes, out_feature_map_shapes) else: self.assertDictEqual(expected_pool_feature_map_shapes, out_feature_map_shapes) def test_get_expected_variable_names(self, replace_pool_with_conv): image_features = { 'image_features': tf.random_uniform([4, 19, 19, 1024]) } feature_maps = feature_map_generators.pooling_pyramid_feature_maps( base_feature_map_depth=1024, num_layers=6, image_features=image_features, replace_pool_with_conv=replace_pool_with_conv) expected_pool_variables = set([ 'Base_Conv2d_1x1_1024/weights', 'Base_Conv2d_1x1_1024/biases', ]) expected_conv_variables = set([ 'Base_Conv2d_1x1_1024/weights', 'Base_Conv2d_1x1_1024/biases', 'Conv2d_0_3x3_s2_1024/weights', 'Conv2d_0_3x3_s2_1024/biases', 'Conv2d_1_3x3_s2_1024/weights', 'Conv2d_1_3x3_s2_1024/biases', 'Conv2d_2_3x3_s2_1024/weights', 'Conv2d_2_3x3_s2_1024/biases', 'Conv2d_3_3x3_s2_1024/weights', 'Conv2d_3_3x3_s2_1024/biases', 'Conv2d_4_3x3_s2_1024/weights', 'Conv2d_4_3x3_s2_1024/biases', ]) init_op = tf.global_variables_initializer() with self.test_session() as sess: sess.run(init_op) sess.run(feature_maps) actual_variable_set = set( [var.op.name for var in tf.trainable_variables()]) if replace_pool_with_conv: self.assertSetEqual(expected_conv_variables, actual_variable_set) else: self.assertSetEqual(expected_pool_variables, actual_variable_set) if __name__ == '__main__': tf.test.main()
TensorFlow2/Segmentation/MaskRCNN/mrcnn_tf2/dataset
dataset
__init__
from .dataset import Dataset
PyTorch/SpeechSynthesis/Tacotron2
Tacotron2
test_infer
#!/bin/bash BATCH_SIZE=1 INPUT_LENGTH=128 NUM_ITERS=1003 # extra 3 iterations for warmup TACOTRON2_CKPT="tacotron2_1032590_6000_amp" WAVEGLOW_CKPT="waveglow_1076430_14000_amp" RUN_MODE="" # = fp32 LOG_RUN_MODE="gpu_fp32" TEST_PROGRAM="test_infer.py" WN_CHANNELS=512 LOG_SUFFIX_ADD="" #additional info, e.g., GPU type while [ -n "$1" ] do case "$1" in -bs|--batch-size) BATCH_SIZE="$2" shift ;; -il|--input-length) INPUT_LENGTH="$2" shift ;; --num-iters) NUM_ITERS="$2" shift ;; --test) TEST_PROGRAM="$2" shift ;; --tacotron2) TACOTRON2_CKPT="$2" shift ;; --encoder) ENCODER_CKPT="$2" shift ;; --decoder) DECODER_CKPT="$2" shift ;; --postnet) POSTNET_CKPT="$2" shift ;; --waveglow) WAVEGLOW_CKPT="$2" shift ;; --wn-channels) WN_CHANNELS="$2" shift ;; --cpu) RUN_MODE="--cpu" LOG_RUN_MODE="cpu_fp32" ;; --fp16) RUN_MODE="--fp16" LOG_RUN_MODE="gpu_fp16" ;; --log-suffix) LOG_SUFFIX_ADD="$2" shift ;; *) echo "Option $1 not recognized" esac shift done LOG_SUFFIX=bs${BATCH_SIZE}_il${INPUT_LENGTH}_${LOG_RUN_MODE}_wn${WN_CHANNELS}_${LOG_SUFFIX_ADD} NVLOG_FILE=nvlog_${LOG_SUFFIX}.json TMP_LOGFILE=tmp_log_${LOG_SUFFIX}.log LOGFILE=log_${LOG_SUFFIX}.log if [ "$TEST_PROGRAM" = "tensorrt/test_infer_trt.py" ] then TACOTRON2_PARAMS="--encoder $ENCODER_CKPT --decoder $DECODER_CKPT --postnet $POSTNET_CKPT" else TACOTRON2_PARAMS="--tacotron2 $TACOTRON2_CKPT" fi set -x python $TEST_PROGRAM \ $TACOTRON2_PARAMS \ --waveglow $WAVEGLOW_CKPT \ --batch-size $BATCH_SIZE \ --input-length $INPUT_LENGTH \ --log-file $NVLOG_FILE \ --num-iters $NUM_ITERS \ --wn-channels $WN_CHANNELS \ $RUN_MODE \ |& tee $TMP_LOGFILE set +x PERF=$(cat $TMP_LOGFILE | grep -F 'Throughput average (samples/sec)' | awk -F'= ' '{print $2}') NUM_MELS=$(cat $TMP_LOGFILE | grep -F 'Number of mels per audio average' | awk -F'= ' '{print $2}') LATENCY=$(cat $TMP_LOGFILE | grep -F 'Latency average (seconds)' | awk -F'= ' '{print $2}') LATENCYSTD=$(cat $TMP_LOGFILE | grep -F 'Latency std (seconds)' | awk -F'= ' '{print $2}') LATENCY50=$(cat $TMP_LOGFILE | grep -F 'Latency cl 50 (seconds)' | awk -F'= ' '{print $2}') LATENCY90=$(cat $TMP_LOGFILE | grep -F 'Latency cl 90 (seconds)' | awk -F'= ' '{print $2}') LATENCY95=$(cat $TMP_LOGFILE | grep -F 'Latency cl 95 (seconds)' | awk -F'= ' '{print $2}') LATENCY99=$(cat $TMP_LOGFILE | grep -F 'Latency cl 99 (seconds)' | awk -F'= ' '{print $2}') echo "$BATCH_SIZE,$INPUT_LENGTH,$LOG_RUN_MODE,$NUM_ITERS,$LATENCY,$LATENCYSTD,$LATENCY50,$LATENCY90,$LATENCY95,$LATENCY99,$PERF,$NUM_MELS" | tee $LOGFILE
PyTorch/SpeechSynthesis/Tacotron2/trtis_cpp/src/trt/plugins/taco2ModulationRemovalPlugin
taco2ModulationRemovalPlugin
taco2ModulationRemovalLayerPluginCreator
/* * Copyright (c) 2019-2020, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the NVIDIA CORPORATION nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef TT2I_MODULATIONREMOVALLAYERPLUGINCREATOR_H #define TT2I_MODULATIONREMOVALLAYERPLUGINCREATOR_H #include "NvInfer.h" #include <string> #ifdef DEVEL // The destructor of nvinfer1::IPluginCreator is non-virtual and public, so // we need to supress the warning. #pragma GCC diagnostic ignored "-Wnon-virtual-dtor" #endif namespace nvinfer1 { namespace plugin { class Taco2ModulationRemovalLayerPluginCreator : public nvinfer1::IPluginCreator { public: /** * @brief Get the collection of fields for this plugin, with their names only. * * @return The collection of fields. */ static nvinfer1::PluginFieldCollection* getFields(); /** * @brief Create a new Taco2ModulationRemovalLayerPluginCreator. */ Taco2ModulationRemovalLayerPluginCreator(); /** * @brief Get the name of the plugin. * * @return The name of the plugin. */ const char* getPluginName() const override; /** * @brief Get the plugin version. * * @return The plugin version. */ const char* getPluginVersion() const override; /** * @brief Get the collection of fields for this plugin. * * @return The collection of fields. */ const nvinfer1::PluginFieldCollection* getFieldNames() override; /** * @brief Create a new Taco2ModulationRemovalLayerPlugin. * * @param name The name (unused currently). * @param fc The collection of fields to initialize with. * * @return The created plugin. */ nvinfer1::IPluginV2* createPlugin(const char* name, const nvinfer1::PluginFieldCollection* fc) override; /** * @brief Create a custom layer by name from a data stream. * * @param layerName The name of the layer. * @param serialData The serialized data for the layer. * @param serialLength The length of the serialized data. * * @return The plugin. Clients must destroy the plugin once all consumers of * it have been destroyed. */ nvinfer1::IPluginV2* deserializePlugin(const char* name, const void* serialData, size_t serialLength) override; /** * @brief Set the namespace for created plugins. * * @param pluginNamespace The namespace. */ void setPluginNamespace(const char* pluginNamespace) override; /** * @brief Get the namespace for created plugins. * * @return The namespace. */ const char* getPluginNamespace() const override; private: std::string mNamespace; }; } // namespace plugin } // namespace nvinfer1 #ifdef DEVEL #pragma GCC diagnostic pop #endif #endif
PyTorch/SpeechSynthesis/Tacotron2/trtis_cpp/src/trt/tacotron2
tacotron2
decoderInstancePlain
/* * Copyright (c) 2019-2020, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the NVIDIA CORPORATION nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "decoderInstancePlain.h" #include "cudaUtils.h" #include "trtUtils.h" #include <algorithm> #include <cuda_runtime.h> #include <numeric> #include <stdexcept> using namespace nvinfer1; namespace tts { /****************************************************************************** * CONSTRUCTORS / DESTRUCTOR ************************************************** *****************************************************************************/ DecoderInstancePlain::DecoderInstancePlain( TRTPtr<ICudaEngine> engine, const int maxChunkSize) : DecoderInstance(std::move(engine), maxChunkSize), mBinding(), mInputWeightsDevice( getMaxBatchSize() * TRTUtils::getBindingSize(getEngine(), INPUT_WEIGHTS_NAME)), mOutputWeightsDevice( getMaxBatchSize() * TRTUtils::getBindingSize(getEngine(), INPUT_WEIGHTS_NAME)), mInAttentionHiddenStatesDevice( getMaxBatchSize() * TRTUtils::getBindingSize(getEngine(), INPUT_ATTENTIONHIDDEN_NAME)), mInAttentionCellStatesDevice( getMaxBatchSize() * TRTUtils::getBindingSize(getEngine(), INPUT_ATTENTIONCELL_NAME)), mOutAttentionHiddenStatesDevice( getMaxBatchSize() * TRTUtils::getBindingSize(getEngine(), OUTPUT_ATTENTIONHIDDEN_NAME)), mOutAttentionCellStatesDevice( getMaxBatchSize() * TRTUtils::getBindingSize(getEngine(), OUTPUT_ATTENTIONCELL_NAME)), mInputAttentionContextDevice( getMaxBatchSize() * TRTUtils::getBindingSize(getEngine(), INPUT_CONTEXT_NAME)), mOutputAttentionContextDevice( getMaxBatchSize() * TRTUtils::getBindingSize(getEngine(), OUTPUT_CONTEXT_NAME)), mInDecoderHiddenStatesDevice( getMaxBatchSize() * TRTUtils::getBindingSize(getEngine(), INPUT_DECODERHIDDEN_NAME)), mInDecoderCellStatesDevice( getMaxBatchSize() * TRTUtils::getBindingSize(getEngine(), INPUT_DECODERCELL_NAME)), mOutDecoderHiddenStatesDevice( getMaxBatchSize() * TRTUtils::getBindingSize(getEngine(), OUTPUT_DECODERHIDDEN_NAME)), mOutDecoderCellStatesDevice( getMaxBatchSize() * TRTUtils::getBindingSize(getEngine(), OUTPUT_DECODERCELL_NAME)) { // do nothing } /****************************************************************************** * PUBLIC METHODS ************************************************************* *****************************************************************************/ void DecoderInstancePlain::reset(cudaStream_t stream) { DecoderInstance::reset(stream); mInputWeightsDevice.zeroAsync(stream); mInAttentionHiddenStatesDevice.zeroAsync(stream); mInAttentionCellStatesDevice.zeroAsync(stream); mInputAttentionContextDevice.zeroAsync(stream); mOutputAttentionContextDevice.zeroAsync(stream); mInDecoderHiddenStatesDevice.zeroAsync(stream); mInDecoderCellStatesDevice.zeroAsync(stream); } /****************************************************************************** * PROTECTED METHODS ********************************************************** *****************************************************************************/ void DecoderInstancePlain::decode(cudaStream_t stream, IExecutionContext& context, const int batchSize, const float* const inputLastFrameDevice, const float* const inputMemoryDevice, const float* const inputProcessedMemoryDevice, const float* const inputMaskDevice, const int32_t* const /* inputLengthHost */, const int32_t* const inputLengthDevice, const float* const inputDropoutDevice, float* const outputChannelsDevice) { const ICudaEngine& engine = context.getEngine(); mBinding.setBinding(engine, INPUT_MASK_NAME, inputMaskDevice); mBinding.setBinding(engine, INPUT_LENGTH_NAME, inputLengthDevice); mBinding.setBinding(engine, INPUT_DROPOUT_NAME, inputDropoutDevice); mBinding.setBinding(engine, INPUT_MEMORY_NAME, inputMemoryDevice); mBinding.setBinding(engine, INPUT_PROCESSED_NAME, inputProcessedMemoryDevice); mBinding.setBinding(engine, INPUT_WEIGHTS_NAME, mInputWeightsDevice.data()); mBinding.setBinding(engine, INPUT_LASTFRAME_NAME, inputLastFrameDevice); mBinding.setBinding(engine, INPUT_CONTEXT_NAME, mInputAttentionContextDevice.data()); mBinding.setBinding(engine, INPUT_ATTENTIONHIDDEN_NAME, mInAttentionHiddenStatesDevice.data()); mBinding.setBinding(engine, INPUT_ATTENTIONCELL_NAME, mInAttentionCellStatesDevice.data()); mBinding.setBinding(engine, INPUT_DECODERHIDDEN_NAME, mInDecoderHiddenStatesDevice.data()); mBinding.setBinding(engine, INPUT_DECODERCELL_NAME, mInDecoderCellStatesDevice.data()); mBinding.setBinding(engine, OUTPUT_CONTEXT_NAME, mOutputAttentionContextDevice.data()); mBinding.setBinding(engine, OUTPUT_WEIGHTS_NAME, mOutputWeightsDevice.data()); mBinding.setBinding(engine, OUTPUT_ATTENTIONHIDDEN_NAME, mOutAttentionHiddenStatesDevice.data()); mBinding.setBinding(engine, OUTPUT_ATTENTIONCELL_NAME, mOutAttentionCellStatesDevice.data()); mBinding.setBinding(engine, OUTPUT_DECODERHIDDEN_NAME, mOutDecoderHiddenStatesDevice.data()); mBinding.setBinding(engine, OUTPUT_DECODERCELL_NAME, mOutDecoderCellStatesDevice.data()); mBinding.setBinding(engine, OUTPUT_CHANNELS_NAME, outputChannelsDevice); if (!context.enqueue(batchSize, mBinding.getBindings(), stream, nullptr)) { throw std::runtime_error("Failed to run decoder."); } // swap pointers std::swap(mInputWeightsDevice, mOutputWeightsDevice); std::swap(mInputAttentionContextDevice, mOutputAttentionContextDevice); std::swap(mInAttentionHiddenStatesDevice, mOutAttentionHiddenStatesDevice); std::swap(mInAttentionCellStatesDevice, mOutAttentionCellStatesDevice); std::swap(mInDecoderHiddenStatesDevice, mOutDecoderHiddenStatesDevice); std::swap(mInDecoderCellStatesDevice, mOutDecoderCellStatesDevice); // required because of LSTM cells CudaUtils::sync(stream); } } // namespace tts
Tools/DGLPyTorch/SyntheticGraphGeneration
SyntheticGraphGeneration
README
# Synthetic Graph Generation This repository implements a tool for generating graphs with an arbitrary size, including node and edge tabular features. ## Table Of Contents - [Solution overview](#solution-overview) * [Synthetic Graph Generation architecture](#synthetic-graph-generation-architecture) * [Default configuration](#default-configuration) * [Feature support matrix](#feature-support-matrix) * [Features](#features) * [Models](#models) - [Setup](#setup) * [Requirements](#requirements) - [Quick Start Guide](#quick-start-guide) - [Advanced](#advanced) * [Repository structure](#repository-structure) * [Important scripts and files](#important-scripts-and-files) * [Parameters](#parameters) * [Command-line options](#command-line-options) * [Define the synthesizer pipeline](#define-the-synthesizer-pipeline) * [Getting the data](#getting-the-data) + [List of datasets](#list-of-datasets) - [Performance](#Performance) * [Results](#results) - [Release notes](#release-notes) * [Changelog](#changelog) * [Known issues](#known-issues) - [Reference](#reference) * [Cite](#cite) ## Solution overview Synthetic data generation has become pervasive with imploding amounts of data and demand to deploy machine learning models leveraging such data. There has been an increasing interest in leveraging graph-based neural network model on graph datasets, though many public datasets are of a much smaller scale than that used in real-world applications. Synthetic Graph Generation is a common problem in multiple domains for various applications, including the generation of big graphs with similar properties to original or anonymizing data that cannot be shared. The Synthetic Graph Generation tool enables users to generate arbitrary graphs based on provided real data. ### Synthetic Graph Generation architecture The tool has the following architecture. ![Synthetic Graph Generation architecture](img/syngen_architecture.png) The module is composed of three parts: a structural generator, which fits the graph structure, feature generator, which fits the feature distribution contained in the graph; and finally, an aligner, which aligns the generated features with the generated graph structure #### Graph structural generator The graph structural generator fits graph structure and generate a corresponding graph containing the nodes and edges. #### Feature generator The feature generator fits the feature distribution contained in the graph and generates the corresponding features. There is the option to allow users to generate features associated with nodes, edges, or both. #### Aligner The aligner aligns the generated features taken from the feature generator with the graph structure generated by a graph structural generator. ### Feature support matrix This tool supports the following features: | Feature | Synthetic Graph Generation | |------------------------------|----------------------------| | Non-partite graph generation | Yes | | N-partite graph generation | Yes | | Undirected graph generation | Yes | | Directed graph generation | Yes | | Self-loops generation | Yes | | Edge features generation | Yes | | Node features generation | Yes | #### Features * Non-partite graph generation is a task to generate a graph that doesn't contain any explicit partites (disjoint and independent sets of nodes). * N-partite graph generation is a task to generate a graph that consists of an arbitrary number of partites. * Undirected graph generation is a task to generate a graph made up of a set of vertices connected by not ordered edges. * Directed graph generation is a task to generate a graph made up of a set of vertices connected by directed edges. * Self-loops generation is a task to generate edges that connect a vertex to itself. * Edge features generation is a task to generate features associated with an edge. * Node features generation is a task to generate features associated with a node. ### Models Structural graph generation ``` - RMAT - Random (Erdos-Renyi) ``` Tabular features ``` - KDE - Gaussian - Uniform - Random - CTGAN (Conditional GAN) ``` Aligner ``` - XGBoost ``` ## Setup The following section lists the requirements you need to run the Synthetic Graph Generation tool. ### Requirements This repository contains a Dockerfile that extends the PyTorch NGC container and encapsulates some dependencies. Aside from these dependencies, ensure you have the following components: - [NVIDIA Ampere Architecture](https://www.nvidia.com/en-us/data-center/nvidia-ampere-gpu-architecture/), [NVIDIA Volta](https://www.nvidia.com/en-us/data-center/volta-gpu-architecture/) or [NVIDIA Turing](https://www.nvidia.com/en-us/geforce/turing/) based GPU - [NVIDIA Docker](https://github.com/NVIDIA/nvidia-docker) - Custom Docker containers built for this tool. Refer to the steps in the [Quick Start Guide](#quick-start-guide). For more information about how to get started with NGC containers, refer to the following sections from the NVIDIA GPU Cloud Documentation and the Deep Learning Documentation: - [Getting Started Using NVIDIA GPU Cloud](https://docs.nvidia.com/ngc/ngc-getting-started-guide/index.html) - [Accessing And Pulling From The NGC Container Registry](https://docs.nvidia.com/deeplearning/frameworks/user-guide/index.html#accessing_registry) For those unable to set up the required environment or create your own container, refer to the versioned [NVIDIA Container Support Matrix](https://docs.nvidia.com/deeplearning/frameworks/support-matrix/index.html). ## Quick Start Guide ### Getting Started To use the tool, perform the following steps. For the specifics concerning generation and training, refer to the [Advanced section](#advanced). 1. Clone the repository. ``` git clone https://github.com/NVIDIA/DeepLearningExamples ``` 2. Go to the `SyntheticGraphGeneration` tool directory within the `DeepLearningExamples` repository: ``` cd DeepLearningExamples/Tools/DGLPyTorch/SyntheticGraphGeneration ``` 3. Build the SyntheticGraphGeneration container. ``` bash docker_scripts/build_docker.sh ``` 4. Download the datasets. (It is advisable to run this command inside docker interactive container to ensure environment setup, see 6.1) ``` bash scripts/get_datasets.sh ``` **Note**: This script requires a manual download of 4 datasets (tabformer, ieee, paysim, credit) and putting them into `./data` directory with the correct naming. The instruction for the manual download will be printed during the preprocessing. If the raw data is not present or the dataset is already preprocessed, the preprocessing will be skipped. 5. Run the SyntheticGraphGeneration Jupyter notebook. 5.1. Run the Docker notebook container. ``` bash docker_scripts/run_docker_notebook.sh ``` 5.2 Open Jupyter notebook. ``` http://localhost:9916/tree/demos ``` 6. Run the SyntheticGraphGeneration CLI. 6.1. Run the Docker interactive container. ``` bash docker_scripts/run_docker_interactive.sh ``` 6.2. Run Command Line Interface (CLI) command. The tool contains 3 run commands: `preprocess`, ``synthesize` and `pretrain` For example, to synthesize a graph similar to the [IEEE](https://www.kaggle.com/c/ieee-fraud-detection) dataset, run the following commands: 1. Convert IEEE into the SynGen format: ``` syngen preprocess \ --dataset ieee \ --source-path /workspace/data/ieee-fraud/ \ --destination-path /workspace/data/ieee-preprocessed ``` **Note**: `--source-path` points to the location where the IEEE dataset is extracted, and `destination-path` points to the location where the IEEE dataset in SynGen format is saved. 2. Prepare SynGen configuration manually or using: ``` syngen mimic-dataset \ --dataset-path /workspace/data/ieee-preprocessed \ --output-file /workspace/configurations/my_ieee_config.json \ --tab-gen kde \ --edge-scale 1 \ --node-scale 1 ``` **Note**: In the above commands, the `kde` tabular generator will be used to generate all tabular features. 3. Generate synthetic IEEE ``` syngen synthesize \ --config-path /workspace/configurations/my_ieee_config.json \ --save-path /workspace/data/ieee-generated ``` **Note**: `--save-path` points to the location where the generated data in SynGen format is saved. Following the above command, the `pretrain` command can be used to pre-train or fine-tune the given generated sample. ``` syngen pretrain \ --model gat_ec \ --hidden-dim 64 \ --out-dim 32 \ --n-layers 1 \ --n-heads 2 \ --weight-decay 0.0 \ --learning-rate 0.0005 \ --batch-size 256 \ --pretrain-epochs 5 \ --finetune-epochs 5 \ --data-path /workspace/data/ieee-preprocessed \ --edge-name user-product \ --pretraining-data-path /workspace/data/ieee-generated \ --pretraining-edge-name user-product \ --task ec \ --target-col isFraud \ --num-classes 2 \ --log-interval 1 ``` **Note**: The current set of tasks and models are solely provided as use case examples on how to use the generated synthetic data to pretrain/fine-tune on a downstream task, and generally would need extension/modifications to accomodate very large graphs or arbitrary models. For the complete CLI usage of the `synthesize` command run: ``` syngen synthesize --help ``` Similarly for the `pretrain`, `mimic-dataset`, and `preprocess` run: ``` syngen <COMMAND> --help ``` ## Advanced ### Repository structure ``` . ├── demos # Directory with all the Jupyter examples ├── docker_scripts # Directory with Docker scripts ├── scripts # Directory with datasets scripts ├── syngen # Directory with Synthetic Graph Generation source code │ ├── analyzer # Directory with tools for getting graph visualisation and statistics │ │ ├── graph # Directory with graph structure analyzer │ │ └── tabular # Directory with tabular features analyzer │ ├── benchmark # Directory with pretraining tools │ │ ├── data_loader # Directory with pre-defined node and edge classification datasets │ │ ├── models # Directory with GNN model definitions │ │ └── tasks # Directory with set of tasks that are supported for training │ ├── cli # Directory with all cli commands │ ├── configuration # Directory with SynGen formats │ ├── generator # Directory with all the generators │ │ ├── graph # Directory with graph generators and graph │ │ └── tabular # Directory with tabular generators │ │ ├── data_transformer # Directory with tabular data transformations used by generators │ │ └── transforms # Directory with tabular column transforms │ ├── graph_aligner # Directory with all the aligners │ ├── preprocessing # Directory with the preprocessings for the supported datasets │ │ └── datasets # Directory with example dataset preprocessing scripts used to generate data │ ├── synthesizer # Directory with all the synthesizers │ └── utils # Directory with the utilities │ └── types # Directory with common data types used in the tool ``` ### Important scripts and files * `scripts/get_datasets.sh` - Bash script downloading and preprocessing supported datastes * `docker_scripts/build_docker.sh` - Bash script that builds the Docker image * `docker_scripts/run_docker_notebook.sh` - Bash script that runs Jupyter notebook in the Docker container * `docker_scripts/run_docker_interactive.sh` - Bash script that runs the Docker container in interactive mode * `syngen/synthesizer/configuration_graph_synthesizer.py` - Python file with graph synthesizer ### Parameters For the synthesis process, refer to the parameters in the following table. | Scope | parameter | Comment | Default Value | |---------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------| | preprocess | --dataset DATASET_NAME | Dataset to preprocess into SynGen format. Available datasets : [cora, epinions, ogbn_mag, ogbn_mag240m, ieee, tabformer] | Required | | preprocess | -sp &#124; --source-path SOURCE_PATH | Path to downloaded raw dataset | Required | | preprocess | -dp &#124; --destination-path DESTINATION_PATH | Path to store the preprocessed dataset in SynGen format. | SOURCE_PATH/syngen_preprocessed | | preprocess | --cpu | Runs all operations on CPU | | | preprocess | --use-cache | Does nothing if the target preprocessed dataset exists | | | preprocess | --download | Downloads the dataset to the specified SOURCE_PATH | | | mimic-dataset | -dp &#124; --dataset-path DATASET_PATH | Path to the dataset in SynGen format | | | mimic-dataset | -of &#124; --output-file OUTPUT_FILE | Path to the generated SynGen Configuration | | | mimic-dataset | -tg &#124; --tab-gen TABULAR_GENERATOR | Tabular Generator to use to generate all tabular features (You always can modify OUTPUT_FILE). Available options: [kde, random, gaussian, uniform, ctgan] | kde | | mimic-dataset | -rsg &#124; --random-struct-gen | Generates random structure based on Erdos-Renyi model instead of mimicking | | | mimic-dataset | -es &#124; --edge-scale EDGE_SCALE | Multiples the number of edges to generate by the provided number | | | mimic-dataset | -en &#124; --node-scale NODE_SCALE | Multiples the number of nodes to generate by the provided number | | | synthesize | -cp &#124; --config-path CONFIG_PATH | Path to SynGen Configuration file that describes how to generate a graph | Required | | synthesize | -sp &#124; --save-path SAVE_PATH | Save path to dump generated files | Current directory | | synthesize | --verbose | Displays generation process progress | | | synthesize | --cpu | Runs all operations on CPU. [Attention] Alignment is not available on CPU | | | synthesize | --timer-path FILE_PATH | Saves generation process timings to the specified file | Required | For the pretraining refer to the to [Command-line options](#command-line-options), as the parameters depend on the model choice. ### Define the synthesizer pipeline In this example, we show how to define the synthesizer pipeline for [IEEE](https://www.kaggle.com/c/ieee-fraud-detection) dataset. A full example can be found in [ieee_notebook](./demos/advanced_examples/e2e_ieee_demo.ipynb). #### Prepare data - Preprocessing class is used to convert the IEEE dataset into SynGen format. ``` preprocessing = IEEEPreprocessing(source_path='/workspace/data/ieee-fraud', destination_path='/workspace/data/ieee_preprocessed') feature_spec = preprocessing.transform() ``` #### Prepare SynGen Configuration - SynGen Configuration is used to specify all generation details. We use the original dataset feature spec as a base for the configuration ``` feature_spec_for_config = feature_spec.copy() ``` - Tabular generator is used to generate tabular features. ``` feature_spec_for_config[MetaData.EDGES][0][MetaData.TABULAR_GENERATORS] = [ { MetaData.TYPE: "kde", MetaData.FEATURES_LIST: -1, # copies all tabular features from the original dataset MetaData.DATA_SOURCE: { MetaData.TYPE: "configuration", MetaData.PATH: preprocessed_path, MetaData.NAME: "user-product", }, MetaData.PARAMS: {} } ] ``` - Structure generator is used to generate graph structure. ``` feature_spec_for_config[MetaData.EDGES][0][MetaData.STRUCTURE_GENERATOR] = { MetaData.TYPE: "RMAT", MetaData.DATA_SOURCE: { MetaData.TYPE: "cfg", # the equivalent of 'configuration' MetaData.PATH: preprocessed_path, MetaData.NAME: "user-product", }, MetaData.PARAMS: { "seed": 42, } } ``` - After providing all related information, we create a `SynGenConfiguration` object. It fills out missing fields and validates provided data. ``` config = SynGenConfiguration(feature_spec_for_config) ``` #### Prepare synthesizer - Synthesizer is a class that combines all the generators and allows the user to run end-to-end fitting and generation. ``` synthesizer = ConfigurationGraphSynthesizer(configuration=config, save_path='/workspace/data/ieee_generated') ``` - To start fitting process, we use `fit` method provided by the synthesizer. It will automatically load all required data from the disk based on the information provided in config. ``` synthesizer.fit() ``` #### Generate graph - To run generation, we call the `generate` method provided by the synthesizer. We use `return_data=False` because we want only to store the generated in `/workspace/data/ieee_generated` folder. In other case it will download tabular data under the `MetaData.FEATURES_DATA` key for each node and edge type and structural data under the `MetaData.STRUCTURE_DATA` key for edges. ``` out_feature_spec = synthesizer.generate(return_data=False) ``` ### Getting the data To download the datasets used as an example , use `get_datasets.sh` script ``` bash scripts/get_datasets.sh ``` **Note**: Certain datasets require a Kaggle API key, hence may require manual download. Refer to the links below. **Note**: Each user is responsible for checking the content of datasets and the applicable licenses and determining if they are suitable for the intended use #### List of datasets Supported datasets: * [Twitch](https://snap.stanford.edu/data/twitch_gamers.html) * [LastFM](https://snap.stanford.edu/data/feather-lastfm-social.html) * [Orkut](https://snap.stanford.edu/data/com-Orkut.html) * [Tabformer](https://github.com/IBM/TabFormer) * [IEEE](https://www.kaggle.com/c/ieee-fraud-detection) * [Paysim](https://www.kaggle.com/datasets/ealaxi/paysim1) * [Credit](https://www.kaggle.com/datasets/kartik2112/fraud-detection) * [CORA](https://relational.fit.cvut.cz/dataset/CORA) * [Rating](http://www.trustlet.org/downloaded_epinions.html) * [OGBN-MAG](https://ogb.stanford.edu/docs/nodeprop/#ogbn-mag) * [OGBN-MAG](https://ogb.stanford.edu/docs/lsc/mag240m/) ## Performance Our results were obtained by running the demo notebooks [directory](./demos) in the PyTorch NGC container on NVIDIA DGX1 V100 with 8x V100 32GB GPUs. All the notebooks are presented in the table below. | | scope | notebook | description | |-----|-------------------|---------------------------------------|---------------------------------------------------------------------------------------------| | 1. | basic_examples | e2e_cora_demo.ipynb | a complete process of generating a non-bipartite graph dataset with node features | | 2. | basic_examples | e2e_ieee_demo.ipynb | a complete process of generating a bipartite graph dataset with edge features | | 3. | basic_examples | e2e_epinions_demo.ipynb | a complete process of generating a heterogeneous bipartite graph dataset with edge features | | | 4. | advanced_examples | big_graph_generation.ipynb | a complete process of mimicking and scaling the MAG240m dataset | | 5. | performance | struct_generator.ipynb | comparison of SynGen graph structure generators | | 6. | performance | tabular_generator.ipynb | comparison of SynGen tabular data generators | Scope refers to the directories in which the notebooks are stored and the functionalities particular notebooks cover . There are * Basic - [basic_examples](./demos/basic_examples) - notebooks with the examples of basics functionalities * Advanced - [advanced_examples](./demos/advanced_examples) - notebooks with the examples of advanced functionalities * Performance - [performance](./demos/performance) - notebooks with the performance experiments To achieve the same results, follow the steps in the [Quick Start Guide](#quick-start-guide). #### Results ##### 1. Quality of the content of generated dataset vs. original dataset: The quality of the content comparison was conducted on the IEEE dataset (refer to [List of datasets](#list-of-datasets) for more details) with corresponding notebook [e2e_ieee_demo.ipynb](./demos/advanced_examples/e2e_ieee_demo.ipynb) We compared three modalities, that is, quality of generated graph structure, quality of generated tabular data and quality of aligning tabular data to the graph structure. * Graph structure quality * Comparison of degree distribution for an original graph, properly generated and random (Erdős–Rényi) ![degree_distribution_quality](img/degree_distribution_quality.png) * Comparison of basic graph statistics for an original graph, properly generated and random (Erdős–Rényi) ![graph_structure statistics](img/graph_structure statistics.png) * Tabular data quality * Comparison of two first components of a PCA of real and generated data ![pca_components](img/pca_components.png) * Comparison of basic statistics between real and generated data | Generator | kl divergence | correlation correlation | |------------|---------------|-------------------------| | GAN | 0.912 | 0.018 | | Gaussian | 0.065 | -0.030 | | Random | 0.617 | 0.026 | * Structure to tabular alignment quality * Degree centrality for feature distribution ![degree_centrality_feature_distribution](img/degree_centrality_feature_distribution.png) ##### 2. Performance (speed) of the synthetic dataset generation: * Performance of graph structure generation (edges/s) ![edge_perf](img/edge_perf.png) * Performance of categorical tabular data generation (samples/s) | Dataset (CPU/GPU) | KDE | Uniform | Gaussian | Random | |-------------------|--------|---------|----------|---------| | ieee (CPU) | 371296 | 897421 | 530683 | 440086 | | ieee (GPU) | 592132 | 3621726 | 983408 | 6438646 | ##### 3. Synthetic dataset use-case specific quality factors: * Performance (batches/s) comparison between original vs. synthetic datasets | Dataset | Model | Synthetic | Original | |---------|-------|-----------|----------| | ieee | gat | 0.07173 | 0.07249 | ## Release notes ### Changelog August 2023 - Heterogeneous graph generation - Multi-GPU generation January 2023 - Initial release ### Known issues There are no known issues with this model. ## Reference ### Cite Cite the following paper if you find this code useful or use it in your own work: ``` @article{darabi2022framework, title={A Framework for Large Scale Synthetic Graph Dataset Generation}, author={Darabi, Sajad and Bigaj, Piotr and Majchrowski, Dawid and Morkisz, Pawel and Fit-Florea, Alex}, journal={arXiv preprint arXiv:2210.01944}, year={2022} } ```
TensorFlow2/Recommendation/DLRM_and_DCNv2/utils
utils
logging
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # author: Tomasz Grel ([email protected]) import time import dllogger import json def init_logging(log_path, params_dict, enabled=True): if not enabled: return json_backend = dllogger.JSONStreamBackend(verbosity=dllogger.Verbosity.VERBOSE, filename=log_path) stdout_backend = dllogger.StdOutBackend(verbosity=dllogger.Verbosity.VERBOSE) stdout_backend._metadata['auc'].update({'format': '0:.6f'}) stdout_backend._metadata['validation_loss'].update({'format': '0:.6f'}) stdout_backend._metadata['throughput'].update({'format': ':.3e'}) stdout_backend._metadata['mean_step_time_ms'].update({'format': '0:.3f'}) stdout_backend._metadata['mean_inference_throughput'].update({'format': ':.3e'}) stdout_backend._metadata['mean_inference_latency'].update({'format': '0:.5f'}) for percentile in [90, 95, 99]: stdout_backend._metadata[f'p{percentile}_inference_latency'].update({'format': '0:.5f'}) dllogger.init(backends=[json_backend, stdout_backend]) dllogger.log(data=params_dict, step='PARAMETER') print("Command line flags:") print(json.dumps(params_dict, indent=4)) class IterTimer: def __init__(self, train_batch_size, test_batch_size, optimizer, print_freq=50, enabled=True, benchmark_warmup_steps=None): self.previous_tick = None self.train_idx = 0 self.test_idx = 0 self.train_batch_size = train_batch_size self.test_batch_size = test_batch_size self.print_freq = print_freq self.optimizer = optimizer self.enabled = enabled self.training_steps_time = 0 self.steps_measured = 0 if benchmark_warmup_steps is None: self.benchmark_warmup_steps = print_freq * 2 else: self.benchmark_warmup_steps = benchmark_warmup_steps def step_train(self, loss=None): if not self.enabled: return if self.train_idx < self.benchmark_warmup_steps: self.train_idx += 1 return if self.train_idx % self.print_freq == 0 and self.train_idx > 0: if self.previous_tick is None: self.previous_tick = time.time() self.train_idx += 1 return current_time = time.time() elapsed = current_time - self.previous_tick throughput = (self.train_batch_size * self.print_freq) / elapsed throughput_in_millions = throughput / 1e6 step_time_ms = elapsed / self.print_freq * 1000 lr = f'{self.optimizer.lr.numpy().item():.4f}' print(f'step={self.train_idx}, throughput={throughput_in_millions:.3f}M, step_time={step_time_ms:.3f} ms, learning_rate={lr}, loss={loss:.8f},') self.previous_tick = current_time self.training_steps_time += elapsed self.steps_measured += self.print_freq self.train_idx += 1 def mean_train_time(self): if self.steps_measured == 0: print("Run too short to measure mean training time") return float('nan') return self.training_steps_time / self.steps_measured def step_test(self): if not self.enabled: return if self.previous_tick is None: self.previous_tick = time.time() self.test_idx += 1 return if self.test_idx % self.print_freq == self.print_freq - 1: current_time = time.time() elapsed = current_time - self.previous_tick throughput = (self.test_batch_size * self.print_freq) / elapsed throughput_in_millions = throughput / 1e6 step_time_ms = elapsed / self.print_freq * 1000 print(f'validation_step={self.test_idx}, validation_throughput={throughput_in_millions:.3f}M, step_time={step_time_ms:.3f} ms') self.previous_tick = current_time self.test_idx += 1
TensorFlow2/Recommendation/WideAndDeep/triton/deployment_toolkit/triton_performance_runner/perf_analyzer
perf_analyzer
exceptions
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. class PerfAnalyzerException(Exception): def __init__(self, message: str): self._message = message def __str__(self): """ Get the exception string representation. Returns ------- str The message associated with this exception, or None if no message. """ return self._message @property def message(self): """ Get the exception message. Returns ------- str The message associated with this exception, or None if no message. """ return self._message
TensorFlow2/Recommendation/DLRM_and_DCNv2/preproc
preproc
dgx2_config
#!/bin/bash # Copyright (c) 2020 NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # the environment variables to run spark job # should modify below environment variables # below numbers should be adjusted according to the resource of your running environment # set the total number of CPU cores, spark can use export TOTAL_CORES=80 # set the number of executors export NUM_EXECUTORS=16 # the cores for each executor, it'll be calculated export NUM_EXECUTOR_CORES=$((${TOTAL_CORES}/${NUM_EXECUTORS})) # unit: GB, set the max memory you want to use export TOTAL_MEMORY=800 # unit: GB, set the memory for driver export DRIVER_MEMORY=32 # the memory per executor export EXECUTOR_MEMORY=$(((${TOTAL_MEMORY}-${DRIVER_MEMORY})/${NUM_EXECUTORS}-16))
DGLPyTorch/DrugDiscovery/SE3Transformer/scripts
scripts
predict
#!/usr/bin/env bash # CLI args with defaults BATCH_SIZE=${1:-240} AMP=${2:-true} # choices: 'mu', 'alpha', 'homo', 'lumo', 'gap', 'r2', 'zpve', 'U0', 'U', 'H', 'G', 'Cv', # 'U0_atom', 'U_atom', 'H_atom', 'G_atom', 'A', 'B', 'C' TASK=homo python -m torch.distributed.run --nnodes=1 --nproc_per_node=gpu --max_restarts 0 --module \ se3_transformer.runtime.inference \ --amp "$AMP" \ --batch_size "$BATCH_SIZE" \ --use_layer_norm \ --norm \ --load_ckpt_path model_qm9.pth \ --task "$TASK"
PyTorch/SpeechRecognition/wav2vec2/scripts
scripts
finetune_vox_960h_cv
#!/usr/bin/env bash # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. set -a # The model `Wav2Vec 2.0 Large (LV-60 + CV + SWBD + FSH)` fine-tuned on LS960 # has these changes wrt `wav2vec2_large_librivox.yaml` : ${MAX_UPDATE:=80000} : ${FREEZE_FINETUNE_UPDATES:=0} : ${LEARNING_RATE:=0.00002} : ${MASK_PROB:=0.25} : ${MASK_CHANNEL_PROB:=0.5} # Other changes (minor) # --clip_norm=0 # =25 # --required_seq_len_multiple=1 # =2 bash scripts/finetune_vox_960h.sh
TensorFlow/Detection/SSD/models/research/object_detection/metrics
metrics
oid_od_challenge_evaluation_utils_test
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for oid_od_challenge_evaluation_util.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import pandas as pd import tensorflow as tf from object_detection.core import standard_fields from object_detection.metrics import oid_od_challenge_evaluation_utils as utils class OidOdChallengeEvaluationUtilTest(tf.test.TestCase): def testBuildGroundtruthDictionary(self): np_data = pd.DataFrame( [['fe58ec1b06db2bb7', '/m/04bcr3', 0.0, 0.3, 0.5, 0.6, 1, None], [ 'fe58ec1b06db2bb7', '/m/02gy9n', 0.1, 0.2, 0.3, 0.4, 0, None ], ['fe58ec1b06db2bb7', '/m/04bcr3', None, None, None, None, None, 1], [ 'fe58ec1b06db2bb7', '/m/083vt', None, None, None, None, None, 0 ], ['fe58ec1b06db2bb7', '/m/02gy9n', None, None, None, None, None, 1]], columns=[ 'ImageID', 'LabelName', 'XMin', 'XMax', 'YMin', 'YMax', 'IsGroupOf', 'ConfidenceImageLabel' ]) class_label_map = {'/m/04bcr3': 1, '/m/083vt': 2, '/m/02gy9n': 3} groundtruth_dictionary = utils.build_groundtruth_boxes_dictionary( np_data, class_label_map) self.assertTrue(standard_fields.InputDataFields.groundtruth_boxes in groundtruth_dictionary) self.assertTrue(standard_fields.InputDataFields.groundtruth_classes in groundtruth_dictionary) self.assertTrue(standard_fields.InputDataFields.groundtruth_group_of in groundtruth_dictionary) self.assertTrue(standard_fields.InputDataFields.groundtruth_image_classes in groundtruth_dictionary) self.assertAllEqual( np.array([1, 3]), groundtruth_dictionary[ standard_fields.InputDataFields.groundtruth_classes]) self.assertAllEqual( np.array([1, 0]), groundtruth_dictionary[ standard_fields.InputDataFields.groundtruth_group_of]) expected_boxes_data = np.array([[0.5, 0.0, 0.6, 0.3], [0.3, 0.1, 0.4, 0.2]]) self.assertNDArrayNear( expected_boxes_data, groundtruth_dictionary[ standard_fields.InputDataFields.groundtruth_boxes], 1e-5) self.assertAllEqual( np.array([1, 2, 3]), groundtruth_dictionary[ standard_fields.InputDataFields.groundtruth_image_classes]) def testBuildPredictionDictionary(self): np_data = pd.DataFrame( [['fe58ec1b06db2bb7', '/m/04bcr3', 0.0, 0.3, 0.5, 0.6, 0.1], [ 'fe58ec1b06db2bb7', '/m/02gy9n', 0.1, 0.2, 0.3, 0.4, 0.2 ], ['fe58ec1b06db2bb7', '/m/04bcr3', 0.0, 0.1, 0.2, 0.3, 0.3]], columns=[ 'ImageID', 'LabelName', 'XMin', 'XMax', 'YMin', 'YMax', 'Score' ]) class_label_map = {'/m/04bcr3': 1, '/m/083vt': 2, '/m/02gy9n': 3} prediction_dictionary = utils.build_predictions_dictionary( np_data, class_label_map) self.assertTrue(standard_fields.DetectionResultFields.detection_boxes in prediction_dictionary) self.assertTrue(standard_fields.DetectionResultFields.detection_classes in prediction_dictionary) self.assertTrue(standard_fields.DetectionResultFields.detection_scores in prediction_dictionary) self.assertAllEqual( np.array([1, 3, 1]), prediction_dictionary[ standard_fields.DetectionResultFields.detection_classes]) expected_boxes_data = np.array([[0.5, 0.0, 0.6, 0.3], [0.3, 0.1, 0.4, 0.2], [0.2, 0.0, 0.3, 0.1]]) self.assertNDArrayNear( expected_boxes_data, prediction_dictionary[ standard_fields.DetectionResultFields.detection_boxes], 1e-5) self.assertNDArrayNear( np.array([0.1, 0.2, 0.3]), prediction_dictionary[ standard_fields.DetectionResultFields.detection_scores], 1e-5) if __name__ == '__main__': tf.test.main()
PyTorch/SpeechSynthesis/Tacotron2
Tacotron2
run_latency_tests_cpu
export CUDA_VISIBLE_DEVICES= export OMP_NUM_THREADS=6 export KMP_BLOCKTIME=0 export KMP_AFFINITY=granularity=fine,compact,1,0 bash test_infer.sh -bs 1 -il 128 -p fp32 --num-iters 1003 --tacotron2 tacotron2_1032590_6000_amp --waveglow waveglow_1076430_14000_amp --wn-channels 256 --cpu-run bash test_infer.sh -bs 4 -il 128 -p fp32 --num-iters 1003 --tacotron2 tacotron2_1032590_6000_amp --waveglow waveglow_1076430_14000_amp --wn-channels 256 --cpu-run
PyTorch/Segmentation/MaskRCNN/pytorch
pytorch
test_fp32
#!/bin/bash # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. #Script for PyT CI #CONFIG: 1x8x12 RESULTS_DIR='maskrcnn_coco2017_test' REPO_DIR='/opt/pytorch/examples/Detectron_PyT/pytorch' CONFIG='configs/e2e_mask_rcnn_R_50_FPN_1x.yaml' LOGFILE=$REPO_DIR/results/$RESULTS_DIR/log_gpu_0_fp16.log mkdir -p $REPO_DIR/results/$RESULTS_DIR GPU=8 BBOX_THRESHOLD=0.375 MASK_THRESHOLD=0.341 THROUGHPUT=1.9 THRESHOLD=0.9 cd $REPO_DIR python -m torch.distributed.launch --nproc_per_node=$GPU tools/train_net.py \ --config-file $CONFIG \ SOLVER.BASE_LR 0.12 \ SOLVER.MAX_ITER 16667 \ SOLVER.STEPS "(12000, 16000)" \ SOLVER.IMS_PER_BATCH 96 \ TEST.IMS_PER_BATCH 8 \ DTYPE "float32" \ OUTPUT_DIR results/$RESULTS_DIR \ PATHS_CATALOG maskrcnn_benchmark/config/paths_catalog_ci.py \ 2>&1 | tee $LOGFILE map=`cat $LOGFILE | grep -F 'Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ]' | tail -n 2 | awk -F' = ' '{print $2}' | egrep -o [0-9.]+` bbox_map=`echo $map | awk -F' ' '{print $1}' | egrep -o [0-9.]+` mask_map=`echo $map | awk -F' ' '{print $2}' | egrep -o [0-9.]+` time=`cat $LOGFILE | grep -F 'maskrcnn_benchmark.trainer INFO: Total training time' | tail -n 1 | awk -F'(' '{print $2}' | awk -F' s ' '{print $1}' | egrep -o [0-9.]+` throughput=$(echo $time 1.0 | awk '{ printf "%f", $2 / $1 }') echo 'THRESHOLD:' $BBOX_THRESHOLD $MASK_THRESHOLD $THROUGHPUT echo 'RESULT:' $map $throughput ACCURACY_TEST_RESULT_BBOX=$(awk 'BEGIN {print ('${bbox_map}' >= '${BBOX_THRESHOLD}')}') ACCURACY_TEST_RESULT_MASK=$(awk 'BEGIN {print ('${mask_map}' >= '${MASK_THRESHOLD}')}') if [ $ACCURACY_TEST_RESULT_BBOX == 1 -a $ACCURACY_TEST_RESULT_MASK == 1 ]; then echo "&&&& ACCURACY TEST PASSED" else echo "&&&& ACCURACY TEST FAILED" fi PERFORMANCE_TEST_RESULT=$(awk 'BEGIN {print ('${throughput}' >= \ ('${THROUGHPUT}' * '${THRESHOLD}'))}') if [ $PERFORMANCE_TEST_RESULT == 1 ]; then echo "&&&& PERFORMANCE TEST PASSED" else echo "&&&& PERFORMANCE TEST FAILED" fi if [ $ACCURACY_TEST_RESULT_BBOX == 1 -a $ACCURACY_TEST_RESULT_MASK == 1 -a $PERFORMANCE_TEST_RESULT == 1 ]; then echo "&&&& PASSED" exit 0 else echo "&&&& FAILED" exit 1 fi
Tools/DGLPyTorch/SyntheticGraphGeneration
SyntheticGraphGeneration
requirements
snap-stanford==6.0.0 similaritymeasures==0.6.0 seaborn==0.12.2 ipywidgets==8.0.4 ipython_autotime==0.3.1 scikit-plot>=0.3.7
TensorFlow/Detection/SSD/models/research/object_detection/data
data
fgvc_2854_classes_label_map
item { name: "147457" id: 1 display_name: "Nicrophorus tomentosus" } item { name: "81923" id: 2 display_name: "Halyomorpha halys" } item { name: "7" id: 3 display_name: "Aramus guarauna" } item { name: "201041" id: 4 display_name: "Rupornis magnirostris" } item { name: "65551" id: 5 display_name: "Hyla eximia" } item { name: "106516" id: 6 display_name: "Nannothemis bella" } item { name: "154287" id: 7 display_name: "Acalymma vittatum" } item { name: "32798" id: 8 display_name: "Ramphotyphlops braminus" } item { name: "8229" id: 9 display_name: "Cyanocitta cristata" } item { name: "73766" id: 10 display_name: "Drymarchon melanurus" } item { name: "409639" id: 11 display_name: "Aenetus virescens" } item { name: "8234" id: 12 display_name: "Cyanocitta stelleri" } item { name: "228593" id: 13 display_name: "Polygrammate hebraeicum" } item { name: "53" id: 14 display_name: "Balearica regulorum" } item { name: "57399" id: 15 display_name: "Fistularia commersonii" } item { name: "81979" id: 16 display_name: "Syritta pipiens" } item { name: "73788" id: 17 display_name: "Plestiodon fasciatus" } item { name: "73790" id: 18 display_name: "Plestiodon inexpectatus" } item { name: "16447" id: 19 display_name: "Pyrocephalus rubinus" } item { name: "73792" id: 20 display_name: "Plestiodon laticeps" } item { name: "49219" id: 21 display_name: "Anguilla rostrata" } item { name: "73797" id: 22 display_name: "Plestiodon obsoletus" } item { name: "73803" id: 23 display_name: "Plestiodon tetragrammus" } item { name: "122956" id: 24 display_name: "Syntomoides imaon" } item { name: "82003" id: 25 display_name: "Arion ater" } item { name: "32854" id: 26 display_name: "Chamaeleo dilepis" } item { name: "42341" id: 27 display_name: "Tragelaphus scriptus" } item { name: "82018" id: 28 display_name: "Taeniopoda eques" } item { name: "57443" id: 29 display_name: "Libellula quadrimaculata" } item { name: "4885" id: 30 display_name: "Recurvirostra americana" } item { name: "178403" id: 31 display_name: "Phalaenophana pyramusalis" } item { name: "135027" id: 32 display_name: "Agalychnis dacnicolor" } item { name: "49262" id: 33 display_name: "Haemulon sciurus" } item { name: "98417" id: 34 display_name: "Cordulegaster diastatops" } item { name: "57458" id: 35 display_name: "Ladona julia" } item { name: "115" id: 36 display_name: "Ardeotis kori" } item { name: "49269" id: 37 display_name: "Diodon holocanthus" } item { name: "57463" id: 38 display_name: "Papilio canadensis" } item { name: "82043" id: 39 display_name: "Monochamus scutellatus" } item { name: "147580" id: 40 display_name: "Ceratotherium simum simum" } item { name: "98430" id: 41 display_name: "Cordulia shurtleffii" } item { name: "8319" id: 42 display_name: "Pica nuttalli" } item { name: "43712" id: 43 display_name: "Dasyprocta punctata" } item { name: "8335" id: 44 display_name: "Perisoreus canadensis" } item { name: "508048" id: 45 display_name: "Antigone canadensis" } item { name: "49297" id: 46 display_name: "Aetobatus narinari" } item { name: "82069" id: 47 display_name: "Phyciodes pulchella" } item { name: "73149" id: 48 display_name: "Parkesia noveboracensis" } item { name: "180379" id: 49 display_name: "Ardea herodias occidentalis" } item { name: "73884" id: 50 display_name: "Pantherophis emoryi" } item { name: "106653" id: 51 display_name: "Nehalennia irene" } item { name: "73887" id: 52 display_name: "Pantherophis guttatus" } item { name: "73888" id: 53 display_name: "Pantherophis obsoletus" } item { name: "162" id: 54 display_name: "Porzana carolina" } item { name: "245925" id: 55 display_name: "Siproeta stelenes biplagiata" } item { name: "117302" id: 56 display_name: "Physalia physalis" } item { name: "57516" id: 57 display_name: "Bombus terrestris" } item { name: "204995" id: 58 display_name: "Anas platyrhynchos diazi" } item { name: "49348" id: 59 display_name: "Hyles lineata" } item { name: "82117" id: 60 display_name: "Dolomedes tenebrosus" } item { name: "114891" id: 61 display_name: "Varanus salvator" } item { name: "319695" id: 62 display_name: "Epilachna mexicana" } item { name: "41168" id: 63 display_name: "Desmodus rotundus" } item { name: "13688" id: 64 display_name: "Motacilla cinerea" } item { name: "57556" id: 65 display_name: "Papio ursinus" } item { name: "16598" id: 66 display_name: "Empidonax difficilis" } item { name: "16602" id: 67 display_name: "Empidonax minimus" } item { name: "16604" id: 68 display_name: "Empidonax fulvifrons" } item { name: "409181" id: 69 display_name: "Trite planiceps" } item { name: "82144" id: 70 display_name: "Hemileuca eglanterina" } item { name: "16611" id: 71 display_name: "Empidonax traillii" } item { name: "82153" id: 72 display_name: "Ceratomia undulosa" } item { name: "82155" id: 73 display_name: "Bittacomorpha clavipes" } item { name: "205036" id: 74 display_name: "Xanthorhoe lacustrata" } item { name: "16624" id: 75 display_name: "Empidonax hammondii" } item { name: "16625" id: 76 display_name: "Empidonax occidentalis" } item { name: "243" id: 77 display_name: "Rallus limicola" } item { name: "41" id: 78 display_name: "Grus grus" } item { name: "49402" id: 79 display_name: "Abudefduf saxatilis" } item { name: "58550" id: 80 display_name: "Callophrys niphon" } item { name: "205055" id: 81 display_name: "Zopherus nodulosus haldemani" } item { name: "82177" id: 82 display_name: "Hermetia illucens" } item { name: "9601" id: 83 display_name: "Quiscalus major" } item { name: "7101" id: 84 display_name: "Branta leucopsis" } item { name: "8470" id: 85 display_name: "Cyanocorax yucatanicus" } item { name: "74009" id: 86 display_name: "Zamenis longissimus" } item { name: "8474" id: 87 display_name: "Cyanocorax yncas" } item { name: "82204" id: 88 display_name: "Nadata gibbosa" } item { name: "123168" id: 89 display_name: "Ensatina eschscholtzii xanthoptica" } item { name: "82210" id: 90 display_name: "Heterocampa biundata" } item { name: "48284" id: 91 display_name: "Oniscus asellus" } item { name: "4146" id: 92 display_name: "Oceanites oceanicus" } item { name: "82225" id: 93 display_name: "Lophocampa caryae" } item { name: "9609" id: 94 display_name: "Quiscalus niger" } item { name: "65849" id: 95 display_name: "Incilius nebulifer" } item { name: "207583" id: 96 display_name: "Miomantis caffra" } item { name: "491839" id: 97 display_name: "Pyrausta insequalis" } item { name: "74048" id: 98 display_name: "Alces americanus" } item { name: "57665" id: 99 display_name: "Cotinis mutabilis" } item { name: "65860" id: 100 display_name: "Incilius valliceps" } item { name: "52911" id: 101 display_name: "Dolichovespula maculata" } item { name: "8524" id: 102 display_name: "Psilorhinus morio" } item { name: "49491" id: 103 display_name: "Thalassoma bifasciatum" } item { name: "41301" id: 104 display_name: "Tadarida brasiliensis" } item { name: "57687" id: 105 display_name: "Xylocopa varipuncta" } item { name: "57689" id: 106 display_name: "Bombus vosnesenskii" } item { name: "57690" id: 107 display_name: "Bombus sonorus" } item { name: "33118" id: 108 display_name: "Basiliscus vittatus" } item { name: "205151" id: 109 display_name: "Phlogophora meticulosa" } item { name: "49504" id: 110 display_name: "Callinectes sapidus" } item { name: "16737" id: 111 display_name: "Megarynchus pitangua" } item { name: "357" id: 112 display_name: "Gallinula tenebrosa" } item { name: "82278" id: 113 display_name: "Ameiurus melas" } item { name: "82279" id: 114 display_name: "Automeris io" } item { name: "505478" id: 115 display_name: "Gallus gallus domesticus" } item { name: "33135" id: 116 display_name: "Crotaphytus collaris" } item { name: "41328" id: 117 display_name: "Lavia frons" } item { name: "196979" id: 118 display_name: "Anaxyrus boreas halophilus" } item { name: "44902" id: 119 display_name: "Sigmodon hispidus" } item { name: "1428" id: 120 display_name: "Numida meleagris" } item { name: "119153" id: 121 display_name: "Junco hyemalis caniceps" } item { name: "49539" id: 122 display_name: "Pisaster brevispinus" } item { name: "328068" id: 123 display_name: "Belocaulus angustipes" } item { name: "120214" id: 124 display_name: "Clostera albosigma" } item { name: "16779" id: 125 display_name: "Tyrannus vociferans" } item { name: "16782" id: 126 display_name: "Tyrannus tyrannus" } item { name: "16783" id: 127 display_name: "Tyrannus forficatus" } item { name: "16784" id: 128 display_name: "Tyrannus crassirostris" } item { name: "57745" id: 129 display_name: "Linckia laevigata" } item { name: "205202" id: 130 display_name: "Ecliptopera silaceata" } item { name: "205203" id: 131 display_name: "Dyspteris abortivaria" } item { name: "16791" id: 132 display_name: "Tyrannus verticalis" } item { name: "16793" id: 133 display_name: "Tyrannus savana" } item { name: "205213" id: 134 display_name: "Caripeta divisata" } item { name: "49566" id: 135 display_name: "Cicindela sexguttata" } item { name: "491935" id: 136 display_name: "Thylacodes squamigerus" } item { name: "205216" id: 137 display_name: "Cerma cerintha" } item { name: "39665" id: 138 display_name: "Caretta caretta" } item { name: "147881" id: 139 display_name: "Trichechus manatus latirostris" } item { name: "28743" id: 140 display_name: "Salvadora hexalepis" } item { name: "205231" id: 141 display_name: "Idaea dimidiata" } item { name: "205233" id: 142 display_name: "Iridopsis larvaria" } item { name: "205235" id: 143 display_name: "Leuconycta diphteroides" } item { name: "436" id: 144 display_name: "Gallirallus australis" } item { name: "205238" id: 145 display_name: "Metanema inatomaria" } item { name: "49591" id: 146 display_name: "Lepomis macrochirus" } item { name: "229817" id: 147 display_name: "Raphia frater" } item { name: "49594" id: 148 display_name: "Pomoxis nigromaculatus" } item { name: "65979" id: 149 display_name: "Lithobates catesbeianus" } item { name: "49596" id: 150 display_name: "Salvelinus fontinalis" } item { name: "65982" id: 151 display_name: "Lithobates clamitans" } item { name: "8649" id: 152 display_name: "Calocitta formosa" } item { name: "8650" id: 153 display_name: "Calocitta colliei" } item { name: "82379" id: 154 display_name: "Hemaris thysbe" } item { name: "49614" id: 155 display_name: "Lepomis gibbosus" } item { name: "63028" id: 156 display_name: "Hypercompe scribonia" } item { name: "39672" id: 157 display_name: "Eretmochelys imbricata" } item { name: "66003" id: 158 display_name: "Lithobates pipiens" } item { name: "197077" id: 159 display_name: "Vanessa kershawi" } item { name: "473" id: 160 display_name: "Fulica americana" } item { name: "147930" id: 161 display_name: "Rabidosa rabida" } item { name: "147931" id: 162 display_name: "Panoquina ocola" } item { name: "66012" id: 163 display_name: "Lithobates sylvaticus" } item { name: "8671" id: 164 display_name: "Pachyramphus aglaiae" } item { name: "41440" id: 165 display_name: "Phocoena phocoena" } item { name: "27388" id: 166 display_name: "Carphophis amoenus" } item { name: "82418" id: 167 display_name: "Cicindela punctulata" } item { name: "25078" id: 168 display_name: "Gastrophryne carolinensis" } item { name: "82425" id: 169 display_name: "Cicindela repanda" } item { name: "143446" id: 170 display_name: "Paonias myops" } item { name: "41478" id: 171 display_name: "Eschrichtius robustus" } item { name: "5200" id: 172 display_name: "Buteo lagopus" } item { name: "148908" id: 173 display_name: "Chrysodeixis includens" } item { name: "41482" id: 174 display_name: "Tursiops truncatus" } item { name: "6914" id: 175 display_name: "Cygnus atratus" } item { name: "464301" id: 176 display_name: "Philesturnus rufusater" } item { name: "129226" id: 177 display_name: "Chytolita morbidalis" } item { name: "180759" id: 178 display_name: "Aphonopelma iodius" } item { name: "135318" id: 179 display_name: "Apantesis phalerata" } item { name: "49699" id: 180 display_name: "Pisaster ochraceus" } item { name: "49700" id: 181 display_name: "Coluber lateralis lateralis" } item { name: "61532" id: 182 display_name: "Propylea quatuordecimpunctata" } item { name: "4368" id: 183 display_name: "Larus marinus" } item { name: "41521" id: 184 display_name: "Orcinus orca" } item { name: "49716" id: 185 display_name: "Paonias excaecata" } item { name: "41526" id: 186 display_name: "Delphinus delphis" } item { name: "49723" id: 187 display_name: "Pugettia producta" } item { name: "16956" id: 188 display_name: "Pitangus sulphuratus" } item { name: "210607" id: 189 display_name: "Diastictis fracturalis" } item { name: "148030" id: 190 display_name: "Equus asinus" } item { name: "6924" id: 191 display_name: "Anas rubripes" } item { name: "30844" id: 192 display_name: "Bothriechis schlegelii" } item { name: "123628" id: 193 display_name: "Argynnis paphia" } item { name: "131676" id: 194 display_name: "Anthus novaeseelandiae novaeseelandiae" } item { name: "41566" id: 195 display_name: "Megaptera novaeangliae" } item { name: "49759" id: 196 display_name: "Pyrgus oileus" } item { name: "49761" id: 197 display_name: "Anartia jatrophae" } item { name: "49766" id: 198 display_name: "Heliconius charithonia" } item { name: "33383" id: 199 display_name: "Coleonyx brevis" } item { name: "33384" id: 200 display_name: "Coleonyx elegans" } item { name: "312764" id: 201 display_name: "Euptoieta hegesia meridiania" } item { name: "82538" id: 202 display_name: "Vanessa gonerilla" } item { name: "33387" id: 203 display_name: "Coleonyx variegatus" } item { name: "56082" id: 204 display_name: "Aeshna canadensis" } item { name: "17008" id: 205 display_name: "Sayornis phoebe" } item { name: "200808" id: 206 display_name: "Sceloporus graciosus vandenburgianus" } item { name: "17013" id: 207 display_name: "Sayornis nigricans" } item { name: "122381" id: 208 display_name: "Cupido comyntas" } item { name: "123516" id: 209 display_name: "Mydas clavatus" } item { name: "8834" id: 210 display_name: "Tityra semifasciata" } item { name: "146199" id: 211 display_name: "Lampropeltis californiae" } item { name: "17858" id: 212 display_name: "Dryocopus lineatus" } item { name: "334616" id: 213 display_name: "Battus philenor hirsuta" } item { name: "82582" id: 214 display_name: "Labidomera clivicollis" } item { name: "204699" id: 215 display_name: "Pseudothyatira cymatophoroides" } item { name: "41638" id: 216 display_name: "Ursus americanus" } item { name: "27420" id: 217 display_name: "Desmognathus fuscus" } item { name: "81584" id: 218 display_name: "Anisota virginiensis" } item { name: "49848" id: 219 display_name: "Navanax inermis" } item { name: "143476" id: 220 display_name: "Calledapteryx dryopterata" } item { name: "41663" id: 221 display_name: "Procyon lotor" } item { name: "49857" id: 222 display_name: "Aplysia vaccaria" } item { name: "41673" id: 223 display_name: "Nasua narica" } item { name: "41676" id: 224 display_name: "Bassariscus astutus" } item { name: "27427" id: 225 display_name: "Aneides lugubris" } item { name: "418530" id: 226 display_name: "Porphyrio melanotus" } item { name: "311419" id: 227 display_name: "Neobernaya spadicea" } item { name: "113502" id: 228 display_name: "Sympetrum costiferum" } item { name: "66278" id: 229 display_name: "Oophaga pumilio" } item { name: "6951" id: 230 display_name: "Anas bahamensis" } item { name: "213740" id: 231 display_name: "Antaeotricha schlaegeri" } item { name: "143485" id: 232 display_name: "Xanthorhoe ferrugata" } item { name: "120275" id: 233 display_name: "Euphyia intermediata" } item { name: "48035" id: 234 display_name: "Strongylocentrotus purpuratus" } item { name: "41728" id: 235 display_name: "Mirounga angustirostris" } item { name: "41733" id: 236 display_name: "Halichoerus grypus" } item { name: "41740" id: 237 display_name: "Zalophus californianus" } item { name: "118914" id: 238 display_name: "Echinargus isola" } item { name: "4936" id: 239 display_name: "Egretta novaehollandiae" } item { name: "131862" id: 240 display_name: "Typocerus velutinus" } item { name: "55401" id: 241 display_name: "Pieris brassicae" } item { name: "41752" id: 242 display_name: "Arctocephalus forsteri" } item { name: "41755" id: 243 display_name: "Eumetopias jubatus" } item { name: "123676" id: 244 display_name: "Anas crecca carolinensis" } item { name: "41763" id: 245 display_name: "Phocarctos hookeri" } item { name: "181034" id: 246 display_name: "Cervus elaphus canadensis" } item { name: "49964" id: 247 display_name: "Ginglymostoma cirratum" } item { name: "213809" id: 248 display_name: "Anticarsia gemmatalis" } item { name: "49972" id: 249 display_name: "Battus philenor" } item { name: "205623" id: 250 display_name: "Microstylum morosum" } item { name: "336697" id: 251 display_name: "Arctia villica" } item { name: "41789" id: 252 display_name: "Taxidea taxus" } item { name: "48724" id: 253 display_name: "Phidiana hiltoni" } item { name: "123713" id: 254 display_name: "Neoscona oaxacensis" } item { name: "33602" id: 255 display_name: "Tarentola mauritanica" } item { name: "846" id: 256 display_name: "Alectoris chukar" } item { name: "41808" id: 257 display_name: "Mustela erminea" } item { name: "50001" id: 258 display_name: "Terrapene carolina carolina" } item { name: "41810" id: 259 display_name: "Mustela frenata" } item { name: "82774" id: 260 display_name: "Oryctes nasicornis" } item { name: "41815" id: 261 display_name: "Mustela nivalis" } item { name: "4239" id: 262 display_name: "Tachybaptus dominicus" } item { name: "344926" id: 263 display_name: "Artemisiospiza belli" } item { name: "82792" id: 264 display_name: "Celastrina neglecta" } item { name: "41841" id: 265 display_name: "Meles meles" } item { name: "882" id: 266 display_name: "Gallus gallus" } item { name: "125758" id: 267 display_name: "Mercenaria mercenaria" } item { name: "9081" id: 268 display_name: "Cardinalis sinuatus" } item { name: "9083" id: 269 display_name: "Cardinalis cardinalis" } item { name: "9092" id: 270 display_name: "Melospiza lincolnii" } item { name: "4246" id: 271 display_name: "Podilymbus podiceps" } item { name: "9096" id: 272 display_name: "Melospiza georgiana" } item { name: "906" id: 273 display_name: "Meleagris gallopavo" } item { name: "50059" id: 274 display_name: "Limacia cockerelli" } item { name: "394124" id: 275 display_name: "Orthodera novaezealandiae" } item { name: "82832" id: 276 display_name: "Cosmopepla lintneriana" } item { name: "913" id: 277 display_name: "Meleagris ocellata" } item { name: "41877" id: 278 display_name: "Conepatus leuconotus" } item { name: "196419" id: 279 display_name: "Euborellia annulipes" } item { name: "50071" id: 280 display_name: "Erynnis horatius" } item { name: "41880" id: 281 display_name: "Mephitis mephitis" } item { name: "50073" id: 282 display_name: "Dryas iulia" } item { name: "173793" id: 283 display_name: "Diphthera festiva" } item { name: "41886" id: 284 display_name: "Crocuta crocuta" } item { name: "30683" id: 285 display_name: "Agkistrodon contortrix contortrix" } item { name: "931" id: 286 display_name: "Lagopus lagopus" } item { name: "41901" id: 287 display_name: "Herpestes javanicus" } item { name: "143517" id: 288 display_name: "Biston betularia" } item { name: "9139" id: 289 display_name: "Spizella atrogularis" } item { name: "8350" id: 290 display_name: "Pyrrhocorax graculus" } item { name: "9144" id: 291 display_name: "Spizella breweri" } item { name: "12936" id: 292 display_name: "Sialia currucoides" } item { name: "9152" id: 293 display_name: "Spizella pusilla" } item { name: "68229" id: 294 display_name: "Tramea carolina" } item { name: "6987" id: 295 display_name: "Anas superciliosa" } item { name: "9156" id: 296 display_name: "Passerella iliaca" } item { name: "202315" id: 297 display_name: "Romaleon antennarium" } item { name: "4257" id: 298 display_name: "Phoenicopterus ruber" } item { name: "25545" id: 299 display_name: "Rana aurora" } item { name: "15282" id: 300 display_name: "Sylvia atricapilla" } item { name: "103927" id: 301 display_name: "Ladona deplanata" } item { name: "17356" id: 302 display_name: "Vireo bellii" } item { name: "26765" id: 303 display_name: "Ambystoma mavortium" } item { name: "205777" id: 304 display_name: "Plectrodera scalator" } item { name: "17362" id: 305 display_name: "Vireo plumbeus" } item { name: "99283" id: 306 display_name: "Didymops transversa" } item { name: "17364" id: 307 display_name: "Vireo philadelphicus" } item { name: "17365" id: 308 display_name: "Vireo flavifrons" } item { name: "17366" id: 309 display_name: "Vireo olivaceus" } item { name: "9182" id: 310 display_name: "Zonotrichia querula" } item { name: "17375" id: 311 display_name: "Vireo huttoni" } item { name: "9184" id: 312 display_name: "Zonotrichia albicollis" } item { name: "9185" id: 313 display_name: "Zonotrichia atricapilla" } item { name: "50147" id: 314 display_name: "Celithemis eponina" } item { name: "47585" id: 315 display_name: "Crassostrea virginica" } item { name: "9195" id: 316 display_name: "Emberiza citrinella" } item { name: "41964" id: 317 display_name: "Panthera leo" } item { name: "6994" id: 318 display_name: "Bucephala islandica" } item { name: "52506" id: 319 display_name: "Adalia bipunctata" } item { name: "9201" id: 320 display_name: "Emberiza schoeniclus" } item { name: "17394" id: 321 display_name: "Vireo gilvus" } item { name: "25591" id: 322 display_name: "Rana temporaria" } item { name: "41976" id: 323 display_name: "Lynx rufus" } item { name: "214015" id: 324 display_name: "Apoda y-inversum" } item { name: "50176" id: 325 display_name: "Enallagma vesperum" } item { name: "99331" id: 326 display_name: "Diplacodes trivialis" } item { name: "50181" id: 327 display_name: "Loxosceles reclusa" } item { name: "74758" id: 328 display_name: "Neovison vison" } item { name: "123912" id: 329 display_name: "Charaxes jasius" } item { name: "41997" id: 330 display_name: "Leopardus pardalis" } item { name: "123920" id: 331 display_name: "Dorcus parallelipipedus" } item { name: "132334" id: 332 display_name: "Urbanus procne" } item { name: "123922" id: 333 display_name: "Abudefduf sordidus" } item { name: "9236" id: 334 display_name: "Serinus serinus" } item { name: "42007" id: 335 display_name: "Puma concolor" } item { name: "9240" id: 336 display_name: "Serinus mozambicus" } item { name: "148506" id: 337 display_name: "Melanis pixe" } item { name: "58399" id: 338 display_name: "Urosalpinx cinerea" } item { name: "312353" id: 339 display_name: "Leptophobia aripa elodia" } item { name: "148517" id: 340 display_name: "Heliopetes laviana" } item { name: "73905" id: 341 display_name: "Phrynosoma cornutum" } item { name: "39772" id: 342 display_name: "Chrysemys picta marginata" } item { name: "25646" id: 343 display_name: "Rana boylii" } item { name: "62984" id: 344 display_name: "Aedes albopictus" } item { name: "123959" id: 345 display_name: "Ensatina eschscholtzii oregonensis" } item { name: "1081" id: 346 display_name: "Lophura leucomelanos" } item { name: "39775" id: 347 display_name: "Chrysemys picta picta" } item { name: "42046" id: 348 display_name: "Canis mesomelas" } item { name: "42048" id: 349 display_name: "Canis lupus" } item { name: "42051" id: 350 display_name: "Canis latrans" } item { name: "9284" id: 351 display_name: "Euphonia elegantissima" } item { name: "25669" id: 352 display_name: "Rana dalmatina" } item { name: "9287" id: 353 display_name: "Euphonia hirundinacea" } item { name: "9291" id: 354 display_name: "Euphonia affinis" } item { name: "222284" id: 355 display_name: "Iridopsis defectaria" } item { name: "74832" id: 356 display_name: "Papio anubis" } item { name: "148563" id: 357 display_name: "Myscelia ethusa" } item { name: "42069" id: 358 display_name: "Vulpes vulpes" } item { name: "9743" id: 359 display_name: "Agelaius tricolor" } item { name: "42076" id: 360 display_name: "Urocyon cinereoargenteus" } item { name: "509025" id: 361 display_name: "Momotus lessonii" } item { name: "17506" id: 362 display_name: "Zosterops japonicus" } item { name: "4283" id: 363 display_name: "Phalacrocorax pelagicus" } item { name: "58469" id: 364 display_name: "Thorybes pylades" } item { name: "9319" id: 365 display_name: "Icterus cucullatus" } item { name: "58473" id: 366 display_name: "Erynnis icelus" } item { name: "58475" id: 367 display_name: "Erynnis juvenalis" } item { name: "42093" id: 368 display_name: "Lycaon pictus" } item { name: "58478" id: 369 display_name: "Erynnis baptisiae" } item { name: "9328" id: 370 display_name: "Icterus graduacauda" } item { name: "58481" id: 371 display_name: "Ancyloxypha numitor" } item { name: "132210" id: 372 display_name: "Deloyala guttata" } item { name: "58484" id: 373 display_name: "Thymelicus lineola" } item { name: "13701" id: 374 display_name: "Motacilla aguimp" } item { name: "410743" id: 375 display_name: "Anas superciliosa \303\227 platyrhynchos" } item { name: "9336" id: 376 display_name: "Icterus pustulatus" } item { name: "9339" id: 377 display_name: "Icterus gularis" } item { name: "124031" id: 378 display_name: "Agrius convolvuli" } item { name: "42113" id: 379 display_name: "Pecari tajacu" } item { name: "132227" id: 380 display_name: "Lethe appalachia" } item { name: "113516" id: 381 display_name: "Sympetrum madidum" } item { name: "58509" id: 382 display_name: "Anatrytone logan" } item { name: "83086" id: 383 display_name: "Eurytides marcellus" } item { name: "58511" id: 384 display_name: "Poanes viator" } item { name: "83090" id: 385 display_name: "Epimecis hortaria" } item { name: "115859" id: 386 display_name: "Micrurus tener tener" } item { name: "129902" id: 387 display_name: "Camponotus pennsylvanicus" } item { name: "42134" id: 388 display_name: "Sus scrofa" } item { name: "58519" id: 389 display_name: "Pompeius verna" } item { name: "205977" id: 390 display_name: "Coccinella undecimpunctata" } item { name: "58523" id: 391 display_name: "Papilio polyxenes" } item { name: "58525" id: 392 display_name: "Papilio troilus" } item { name: "410783" id: 393 display_name: "Hypoblemum albovittatum" } item { name: "9376" id: 394 display_name: "Carduelis cannabina" } item { name: "58531" id: 395 display_name: "Colias philodice" } item { name: "50340" id: 396 display_name: "Hylephila phyleus" } item { name: "42149" id: 397 display_name: "Hippopotamus amphibius" } item { name: "50342" id: 398 display_name: "Erythrodiplax umbrata" } item { name: "12883" id: 399 display_name: "Catharus minimus" } item { name: "28557" id: 400 display_name: "Storeria occipitomaculata" } item { name: "199" id: 401 display_name: "Amaurornis phoenicurus" } item { name: "58541" id: 402 display_name: "Satyrium liparops" } item { name: "58543" id: 403 display_name: "Callophrys augustinus" } item { name: "42161" id: 404 display_name: "Dama dama" } item { name: "61508" id: 405 display_name: "Ischnura elegans" } item { name: "1204" id: 406 display_name: "Pavo cristatus" } item { name: "42166" id: 407 display_name: "Axis axis" } item { name: "146797" id: 408 display_name: "Platynota idaeusalis" } item { name: "58556" id: 409 display_name: "Celastrina ladon" } item { name: "367477" id: 410 display_name: "Rallus crepitans" } item { name: "58561" id: 411 display_name: "Libytheana carinenta" } item { name: "58563" id: 412 display_name: "Speyeria aphrodite" } item { name: "58564" id: 413 display_name: "Boloria bellona" } item { name: "413489" id: 414 display_name: "Nestor meridionalis septentrionalis" } item { name: "42184" id: 415 display_name: "Capreolus capreolus" } item { name: "9419" id: 416 display_name: "Pipilo chlorurus" } item { name: "9420" id: 417 display_name: "Pipilo maculatus" } item { name: "9424" id: 418 display_name: "Pipilo erythrophthalmus" } item { name: "99539" id: 419 display_name: "Dorocordulia libera" } item { name: "58580" id: 420 display_name: "Polygonia progne" } item { name: "58581" id: 421 display_name: "Nymphalis vaualbum" } item { name: "42199" id: 422 display_name: "Rangifer tarandus" } item { name: "58586" id: 423 display_name: "Limenitis archippus" } item { name: "58587" id: 424 display_name: "Asterocampa clyton" } item { name: "42206" id: 425 display_name: "Cervus elaphus" } item { name: "312543" id: 426 display_name: "Anartia jatrophae luteipicta" } item { name: "204094" id: 427 display_name: "Cairina moschata domestica" } item { name: "4304" id: 428 display_name: "Phalacrocorax varius" } item { name: "42210" id: 429 display_name: "Cervus nippon" } item { name: "17638" id: 430 display_name: "Picoides dorsalis" } item { name: "132330" id: 431 display_name: "Chlosyne janais" } item { name: "58603" id: 432 display_name: "Megisto cymela" } item { name: "42220" id: 433 display_name: "Odocoileus hemionus" } item { name: "17645" id: 434 display_name: "Picoides nuttallii" } item { name: "58606" id: 435 display_name: "Cercyonis pegala" } item { name: "42223" id: 436 display_name: "Odocoileus virginianus" } item { name: "58609" id: 437 display_name: "Lepisosteus osseus" } item { name: "17650" id: 438 display_name: "Picoides scalaris" } item { name: "132339" id: 439 display_name: "Anthanassa texana" } item { name: "58612" id: 440 display_name: "Carassius auratus" } item { name: "1406" id: 441 display_name: "Callipepla gambelii" } item { name: "9462" id: 442 display_name: "Pyrrhula pyrrhula" } item { name: "4308" id: 443 display_name: "Phalacrocorax brasilianus" } item { name: "17660" id: 444 display_name: "Picoides pubescens" } item { name: "1280" id: 445 display_name: "Colinus virginianus" } item { name: "129920" id: 446 display_name: "Calliostoma ligatum" } item { name: "58627" id: 447 display_name: "Perca flavescens" } item { name: "148742" id: 448 display_name: "Hamadryas februa" } item { name: "39809" id: 449 display_name: "Terrapene ornata ornata" } item { name: "115979" id: 450 display_name: "Plestiodon skiltonianus skiltonianus" } item { name: "9484" id: 451 display_name: "Sporophila torqueola" } item { name: "17678" id: 452 display_name: "Picoides villosus" } item { name: "3862" id: 453 display_name: "Calidris pusilla" } item { name: "70421" id: 454 display_name: "Acris blanchardi" } item { name: "124183" id: 455 display_name: "Phlogophora periculosa" } item { name: "124184" id: 456 display_name: "Plodia interpunctella" } item { name: "99609" id: 457 display_name: "Dromogomphus spinosus" } item { name: "99610" id: 458 display_name: "Dromogomphus spoliatus" } item { name: "17694" id: 459 display_name: "Picoides arcticus" } item { name: "113521" id: 460 display_name: "Sympetrum pallipes" } item { name: "320801" id: 461 display_name: "Aspidoscelis tesselata" } item { name: "7047" id: 462 display_name: "Aythya marila" } item { name: "4317" id: 463 display_name: "Phaethon aethereus" } item { name: "81606" id: 464 display_name: "Littorina littorea" } item { name: "99891" id: 465 display_name: "Enallagma aspersum" } item { name: "9528" id: 466 display_name: "Sturnella magna" } item { name: "99641" id: 467 display_name: "Dythemis fugax" } item { name: "99644" id: 468 display_name: "Dythemis nigrescens" } item { name: "39818" id: 469 display_name: "Terrapene carolina triunguis" } item { name: "99647" id: 470 display_name: "Dythemis velox" } item { name: "148800" id: 471 display_name: "Chioides albofasciatus" } item { name: "19339" id: 472 display_name: "Melopsittacus undulatus" } item { name: "47509" id: 473 display_name: "Diaulula sandiegensis" } item { name: "148810" id: 474 display_name: "Anaea aidea" } item { name: "123070" id: 475 display_name: "Capra hircus" } item { name: "7054" id: 476 display_name: "Aythya affinis" } item { name: "99897" id: 477 display_name: "Enallagma civile" } item { name: "42328" id: 478 display_name: "Kobus ellipsiprymnus" } item { name: "48328" id: 479 display_name: "Aurelia aurita" } item { name: "132445" id: 480 display_name: "Conchylodes ovulalis" } item { name: "215271" id: 481 display_name: "Bleptina caradrinalis" } item { name: "83297" id: 482 display_name: "Scarus rubroviolaceus" } item { name: "42347" id: 483 display_name: "Rupicapra rupicapra" } item { name: "7058" id: 484 display_name: "Aythya novaeseelandiae" } item { name: "52457" id: 485 display_name: "Chaetodon auriga" } item { name: "1392" id: 486 display_name: "Cyrtonyx montezumae" } item { name: "4328" id: 487 display_name: "Pelecanus occidentalis" } item { name: "7647" id: 488 display_name: "Cinclus cinclus" } item { name: "148856" id: 489 display_name: "Anteos clorinde" } item { name: "7060" id: 490 display_name: "Chen rossii" } item { name: "58750" id: 491 display_name: "Nomophila nearctica" } item { name: "1409" id: 492 display_name: "Callipepla californica" } item { name: "9602" id: 493 display_name: "Quiscalus quiscula" } item { name: "296326" id: 494 display_name: "Oncopeltus sexmaculatus" } item { name: "9607" id: 495 display_name: "Quiscalus mexicanus" } item { name: "319724" id: 496 display_name: "Euphoria kernii" } item { name: "1419" id: 497 display_name: "Callipepla squamata" } item { name: "148883" id: 498 display_name: "Eantis tamenund" } item { name: "42391" id: 499 display_name: "Ovis canadensis" } item { name: "107937" id: 500 display_name: "Orthemis discolor" } item { name: "42405" id: 501 display_name: "Syncerus caffer" } item { name: "42408" id: 502 display_name: "Bison bison" } item { name: "116137" id: 503 display_name: "Sceloporus cowlesi" } item { name: "326296" id: 504 display_name: "Bufo bufo" } item { name: "148907" id: 505 display_name: "Cydia latiferreana" } item { name: "42414" id: 506 display_name: "Oreamnos americanus" } item { name: "116143" id: 507 display_name: "Sceloporus tristichus" } item { name: "99912" id: 508 display_name: "Enallagma geminatum" } item { name: "226889" id: 509 display_name: "Pangrapta decoralis" } item { name: "42429" id: 510 display_name: "Antilocapra americana" } item { name: "17855" id: 511 display_name: "Dryocopus pileatus" } item { name: "107974" id: 512 display_name: "Orthetrum sabina" } item { name: "56225" id: 513 display_name: "Polygonia c-album" } item { name: "67016" id: 514 display_name: "Rana draytonii" } item { name: "132553" id: 515 display_name: "Strymon istapa" } item { name: "73155" id: 516 display_name: "Passerina caerulea" } item { name: "26074" id: 517 display_name: "Crocodylus moreletii" } item { name: "171903" id: 518 display_name: "Oligyra orbiculata" } item { name: "26085" id: 519 display_name: "Crocodylus acutus" } item { name: "143613" id: 520 display_name: "Homophoberia apicosa" } item { name: "5715" id: 521 display_name: "Amazilia beryllina" } item { name: "9721" id: 522 display_name: "Geothlypis trichas" } item { name: "154446" id: 523 display_name: "Lambdina fiscellaria" } item { name: "236841" id: 524 display_name: "Lichanura orcutti" } item { name: "20737" id: 525 display_name: "Trogon melanocephalus" } item { name: "124431" id: 526 display_name: "Cycloneda sanguinea" } item { name: "124432" id: 527 display_name: "Deroceras reticulatum" } item { name: "39566" id: 528 display_name: "Apalone ferox" } item { name: "149017" id: 529 display_name: "Chlorochlamys chloroleucaria" } item { name: "15281" id: 530 display_name: "Sylvia communis" } item { name: "312873" id: 531 display_name: "Anartia fatima fatima" } item { name: "9771" id: 532 display_name: "Pinicola enucleator" } item { name: "39858" id: 533 display_name: "Graptemys geographica" } item { name: "26159" id: 534 display_name: "Alligator mississippiensis" } item { name: "304690" id: 535 display_name: "Naupactus cervinus" } item { name: "124467" id: 536 display_name: "Pseudosphinx tetrio" } item { name: "99892" id: 537 display_name: "Enallagma basidens" } item { name: "99895" id: 538 display_name: "Enallagma carunculatum" } item { name: "67129" id: 539 display_name: "Rhinella marina" } item { name: "83515" id: 540 display_name: "Oxybelis aeneus" } item { name: "81681" id: 541 display_name: "Campaea perlata" } item { name: "99901" id: 542 display_name: "Enallagma cyathigerum" } item { name: "99911" id: 543 display_name: "Enallagma exsulans" } item { name: "9800" id: 544 display_name: "Coccothraustes vespertinus" } item { name: "9801" id: 545 display_name: "Coccothraustes coccothraustes" } item { name: "154551" id: 546 display_name: "Leptoglossus zonatus" } item { name: "9807" id: 547 display_name: "Vermivora chrysoptera" } item { name: "61157" id: 548 display_name: "Trichodes ornatus" } item { name: "99924" id: 549 display_name: "Enallagma signatum" } item { name: "1626" id: 550 display_name: "Opisthocomus hoazin" } item { name: "132704" id: 551 display_name: "Setophaga coronata coronata" } item { name: "119056" id: 552 display_name: "Centruroides vittatus" } item { name: "50786" id: 553 display_name: "Vanessa annabella" } item { name: "60347" id: 554 display_name: "Pituophis catenifer sayi" } item { name: "9833" id: 555 display_name: "Diglossa baritula" } item { name: "132718" id: 556 display_name: "Scathophaga stercoraria" } item { name: "132719" id: 557 display_name: "Calopteron reticulatum" } item { name: "116340" id: 558 display_name: "Dreissena polymorpha" } item { name: "134078" id: 559 display_name: "Scoliopteryx libatrix" } item { name: "9850" id: 560 display_name: "Saltator coerulescens" } item { name: "117695" id: 561 display_name: "Cucumaria miniata" } item { name: "9854" id: 562 display_name: "Saltator atriceps" } item { name: "132736" id: 563 display_name: "Urola nivalis" } item { name: "34435" id: 564 display_name: "Hemidactylus turcicus" } item { name: "9864" id: 565 display_name: "Sicalis flaveola" } item { name: "7106" id: 566 display_name: "Aix galericulata" } item { name: "485010" id: 567 display_name: "Chinavia hilaris" } item { name: "132764" id: 568 display_name: "Junco hyemalis hyemalis" } item { name: "367558" id: 569 display_name: "Eupsittula canicularis" } item { name: "370351" id: 570 display_name: "Microcarbo melanoleucos" } item { name: "50867" id: 571 display_name: "Argiope bruennichi" } item { name: "67252" id: 572 display_name: "Trachycephalus typhonius" } item { name: "132789" id: 573 display_name: "Clepsis peritana" } item { name: "9915" id: 574 display_name: "Piranga rubra" } item { name: "50880" id: 575 display_name: "Limenitis lorquini" } item { name: "9921" id: 576 display_name: "Piranga olivacea" } item { name: "100034" id: 577 display_name: "Epiaeschna heros" } item { name: "9924" id: 578 display_name: "Piranga flava" } item { name: "42339" id: 579 display_name: "Tragelaphus strepsiceros" } item { name: "50892" id: 580 display_name: "Euphydryas chalcedona" } item { name: "130348" id: 581 display_name: "Dione moneta" } item { name: "394966" id: 582 display_name: "Phaulacridium marginale" } item { name: "9943" id: 583 display_name: "Amphispiza bilineata" } item { name: "4388" id: 584 display_name: "Larus dominicanus" } item { name: "1758" id: 585 display_name: "Piaya cayana" } item { name: "50913" id: 586 display_name: "Hyalophora euryalus" } item { name: "9958" id: 587 display_name: "Aimophila ruficeps" } item { name: "59115" id: 588 display_name: "Gambusia affinis" } item { name: "64346" id: 589 display_name: "Natrix tessellata" } item { name: "59119" id: 590 display_name: "Pontia protodice" } item { name: "18160" id: 591 display_name: "Melanerpes lewis" } item { name: "18161" id: 592 display_name: "Melanerpes uropygialis" } item { name: "50931" id: 593 display_name: "Strymon melinus" } item { name: "59124" id: 594 display_name: "Anthocharis sara" } item { name: "59127" id: 595 display_name: "Lycaena helloides" } item { name: "59128" id: 596 display_name: "Atlides halesus" } item { name: "67324" id: 597 display_name: "Eurema daira" } item { name: "9981" id: 598 display_name: "Passerculus sandwichensis" } item { name: "59134" id: 599 display_name: "Satyrium sylvinus" } item { name: "67327" id: 600 display_name: "Schistocerca obscura" } item { name: "67328" id: 601 display_name: "Pholcus phalangioides" } item { name: "59138" id: 602 display_name: "Satyrium saepium" } item { name: "132867" id: 603 display_name: "Microtia elva" } item { name: "18181" id: 604 display_name: "Melanerpes pucherani" } item { name: "7486" id: 605 display_name: "Salpinctes obsoletus" } item { name: "108303" id: 606 display_name: "Paltothemis lineatipes" } item { name: "59152" id: 607 display_name: "Leptotes marina" } item { name: "132881" id: 608 display_name: "Catocala ultronia" } item { name: "143662" id: 609 display_name: "Orthosoma brunneum" } item { name: "59164" id: 610 display_name: "Plebejus icarioides" } item { name: "18205" id: 611 display_name: "Melanerpes carolinus" } item { name: "18206" id: 612 display_name: "Melanerpes chrysogenys" } item { name: "83744" id: 613 display_name: "Amblyomma americanum" } item { name: "18209" id: 614 display_name: "Melanerpes formicivorus" } item { name: "116517" id: 615 display_name: "Caiman crocodilus" } item { name: "59176" id: 616 display_name: "Phyciodes mylitta" } item { name: "59182" id: 617 display_name: "Euphydryas editha" } item { name: "43997" id: 618 display_name: "Myocastor coypus" } item { name: "59185" id: 619 display_name: "Coenonympha tullia" } item { name: "59187" id: 620 display_name: "Erynnis propertius" } item { name: "59188" id: 621 display_name: "Erynnis funeralis" } item { name: "59189" id: 622 display_name: "Erynnis tristis" } item { name: "59190" id: 623 display_name: "Heliopetes ericetorum" } item { name: "34615" id: 624 display_name: "Gekko gecko" } item { name: "42808" id: 625 display_name: "Trichosurus vulpecula" } item { name: "59194" id: 626 display_name: "Ochlodes sylvanoides" } item { name: "59195" id: 627 display_name: "Lerodea eufala" } item { name: "18236" id: 628 display_name: "Colaptes auratus" } item { name: "10045" id: 629 display_name: "Basileuterus rufifrons" } item { name: "59202" id: 630 display_name: "Larus michahellis" } item { name: "10053" id: 631 display_name: "Ramphocelus passerinii" } item { name: "19975" id: 632 display_name: "Athene cunicularia" } item { name: "82231" id: 633 display_name: "Periplaneta americana" } item { name: "67409" id: 634 display_name: "Gobiesox maeandricus" } item { name: "83795" id: 635 display_name: "Cipangopaludina chinensis" } item { name: "59220" id: 636 display_name: "Branta hutchinsii" } item { name: "10069" id: 637 display_name: "Fringilla montifringilla" } item { name: "10070" id: 638 display_name: "Fringilla coelebs" } item { name: "83802" id: 639 display_name: "Megacyllene robiniae" } item { name: "83804" id: 640 display_name: "Dynastes tityus" } item { name: "51039" id: 641 display_name: "Cepaea hortensis" } item { name: "68062" id: 642 display_name: "Menemerus bivittatus" } item { name: "47527" id: 643 display_name: "Ostracion meleagris" } item { name: "67435" id: 644 display_name: "Urbanus proteus" } item { name: "10094" id: 645 display_name: "Junco hyemalis" } item { name: "67440" id: 646 display_name: "Utetheisa ornatrix" } item { name: "100210" id: 647 display_name: "Epitheca canis" } item { name: "1907" id: 648 display_name: "Cuculus canorus" } item { name: "100215" id: 649 display_name: "Epitheca princeps" } item { name: "27826" id: 650 display_name: "Taricha granulosa" } item { name: "129147" id: 651 display_name: "Ammophila procera" } item { name: "10111" id: 652 display_name: "Junco phaeonotus" } item { name: "83844" id: 653 display_name: "Oxyopes salticus" } item { name: "144107" id: 654 display_name: "Tetracis crocallata" } item { name: "51097" id: 655 display_name: "Papilio zelicaon" } item { name: "10138" id: 656 display_name: "Ammodramus nelsoni" } item { name: "10139" id: 657 display_name: "Ammodramus savannarum" } item { name: "10147" id: 658 display_name: "Ammodramus maritimus" } item { name: "59300" id: 659 display_name: "Anagrapha falcifera" } item { name: "51110" id: 660 display_name: "Xylocopa virginica" } item { name: "1960" id: 661 display_name: "Coccyzus erythropthalmus" } item { name: "42652" id: 662 display_name: "Didelphis virginiana" } item { name: "428606" id: 663 display_name: "Heraclides rumiko" } item { name: "127303" id: 664 display_name: "Callophrys henrici" } item { name: "1964" id: 665 display_name: "Coccyzus minor" } item { name: "1965" id: 666 display_name: "Coccyzus americanus" } item { name: "8520" id: 667 display_name: "Nucifraga columbiana" } item { name: "116658" id: 668 display_name: "Siphanta acuta" } item { name: "1972" id: 669 display_name: "Crotophaga sulcirostris" } item { name: "10168" id: 670 display_name: "Pooecetes gramineus" } item { name: "53893" id: 671 display_name: "Chlosyne palla" } item { name: "10173" id: 672 display_name: "Arremonops rufivirgatus" } item { name: "1986" id: 673 display_name: "Geococcyx californianus" } item { name: "1987" id: 674 display_name: "Geococcyx velox" } item { name: "116680" id: 675 display_name: "Tabanus atratus" } item { name: "116681" id: 676 display_name: "Atteva aurea" } item { name: "124875" id: 677 display_name: "Spodoptera litura" } item { name: "26575" id: 678 display_name: "Diadophis punctatus" } item { name: "10199" id: 679 display_name: "Coereba flaveola" } item { name: "26591" id: 680 display_name: "Diadophis punctatus edwardsii" } item { name: "59360" id: 681 display_name: "Neverita duplicata" } item { name: "68263" id: 682 display_name: "Papilio multicaudata" } item { name: "26598" id: 683 display_name: "Diadophis punctatus amabilis" } item { name: "42983" id: 684 display_name: "Phascolarctos cinereus" } item { name: "67560" id: 685 display_name: "Adelpha californica" } item { name: "10224" id: 686 display_name: "Passerina ciris" } item { name: "2038" id: 687 display_name: "Alectura lathami" } item { name: "10232" id: 688 display_name: "Passerina leclancherii" } item { name: "10234" id: 689 display_name: "Passerina amoena" } item { name: "10243" id: 690 display_name: "Icteria virens" } item { name: "2052" id: 691 display_name: "Crax rubra" } item { name: "94551" id: 692 display_name: "Argia immunda" } item { name: "2062" id: 693 display_name: "Penelope purpurascens" } item { name: "204490" id: 694 display_name: "Copsychus malabaricus" } item { name: "10257" id: 695 display_name: "Paroaria capitata" } item { name: "51221" id: 696 display_name: "Procambarus clarkii" } item { name: "10262" id: 697 display_name: "Cyanerpes cyaneus" } item { name: "508249" id: 698 display_name: "Microcarbo melanoleucos brevirostris" } item { name: "18460" id: 699 display_name: "Sphyrapicus thyroideus" } item { name: "10271" id: 700 display_name: "Pheucticus ludovicianus" } item { name: "18464" id: 701 display_name: "Sphyrapicus ruber" } item { name: "10274" id: 702 display_name: "Pheucticus melanocephalus" } item { name: "18467" id: 703 display_name: "Sphyrapicus nuchalis" } item { name: "100391" id: 704 display_name: "Erythrodiplax berenice" } item { name: "2089" id: 705 display_name: "Ortalis poliocephala" } item { name: "2090" id: 706 display_name: "Ortalis vetula" } item { name: "8038" id: 707 display_name: "Corvus albus" } item { name: "67629" id: 708 display_name: "Oligocottus maculosus" } item { name: "10286" id: 709 display_name: "Mniotilta varia" } item { name: "10288" id: 710 display_name: "Volatinia jacarina" } item { name: "100403" id: 711 display_name: "Erythrodiplax minuscula" } item { name: "84023" id: 712 display_name: "Amorpha juglandis" } item { name: "84024" id: 713 display_name: "Galasa nigrinodis" } item { name: "10297" id: 714 display_name: "Thraupis palmarum" } item { name: "67642" id: 715 display_name: "Pantherophis spiloides" } item { name: "67653" id: 716 display_name: "Phoebis agarithe" } item { name: "84038" id: 717 display_name: "Haploa lecontei" } item { name: "26695" id: 718 display_name: "Scaphiopus holbrookii" } item { name: "84040" id: 719 display_name: "Chauliognathus marginatus" } item { name: "51275" id: 720 display_name: "Pentatoma rufipes" } item { name: "2124" id: 721 display_name: "Momotus mexicanus" } item { name: "26702" id: 722 display_name: "Spea hammondii" } item { name: "10325" id: 723 display_name: "Euphagus cyanocephalus" } item { name: "43102" id: 724 display_name: "Sylvilagus palustris" } item { name: "49509" id: 725 display_name: "Lutjanus griseus" } item { name: "116834" id: 726 display_name: "Cacatua galerita" } item { name: "127188" id: 727 display_name: "Junco hyemalis oreganus" } item { name: "26725" id: 728 display_name: "Ambystoma jeffersonianum" } item { name: "43111" id: 729 display_name: "Sylvilagus floridanus" } item { name: "43112" id: 730 display_name: "Sylvilagus bachmani" } item { name: "67691" id: 731 display_name: "Lophocampa maculata" } item { name: "51311" id: 732 display_name: "Urbanus dorantes" } item { name: "67700" id: 733 display_name: "Caracolus caracolla" } item { name: "43128" id: 734 display_name: "Lepus europaeus" } item { name: "26745" id: 735 display_name: "Ambystoma texanum" } item { name: "67706" id: 736 display_name: "Argiope argentata" } item { name: "26747" id: 737 display_name: "Ambystoma gracile" } item { name: "67708" id: 738 display_name: "Argiope trifasciata" } item { name: "26749" id: 739 display_name: "Ambystoma tigrinum" } item { name: "4896" id: 740 display_name: "Pluvialis fulva" } item { name: "10369" id: 741 display_name: "Molothrus aeneus" } item { name: "26754" id: 742 display_name: "Ambystoma macrodactylum" } item { name: "10373" id: 743 display_name: "Molothrus ater" } item { name: "2185" id: 744 display_name: "Merops pusillus" } item { name: "84109" id: 745 display_name: "Pisaurina mira" } item { name: "67726" id: 746 display_name: "Aeshna palmata" } item { name: "2191" id: 747 display_name: "Merops apiaster" } item { name: "67731" id: 748 display_name: "Anax junius" } item { name: "198804" id: 749 display_name: "Satyrium titus" } item { name: "51349" id: 750 display_name: "Pyrgus communis" } item { name: "18584" id: 751 display_name: "Pteroglossus torquatus" } item { name: "67737" id: 752 display_name: "Rhionaeschna multicolor" } item { name: "198812" id: 753 display_name: "Lethe anthedon" } item { name: "321697" id: 754 display_name: "Melanchroia chephise" } item { name: "198821" id: 755 display_name: "Pieris oleracea" } item { name: "26790" id: 756 display_name: "Ambystoma maculatum" } item { name: "10411" id: 757 display_name: "Loxia curvirostra" } item { name: "133295" id: 758 display_name: "Melitaea didyma" } item { name: "67760" id: 759 display_name: "Popillia japonica" } item { name: "43188" id: 760 display_name: "Ochotona princeps" } item { name: "2229" id: 761 display_name: "Merops orientalis" } item { name: "10423" id: 762 display_name: "Loxia leucoptera" } item { name: "67771" id: 763 display_name: "Leptoglossus occidentalis" } item { name: "84162" id: 764 display_name: "Chrysochus auratus" } item { name: "26822" id: 765 display_name: "Dicamptodon tenebrosus" } item { name: "26823" id: 766 display_name: "Dicamptodon ensatus" } item { name: "51402" id: 767 display_name: "Megalops atlanticus" } item { name: "67725" id: 768 display_name: "Aeshna interrupta" } item { name: "411858" id: 769 display_name: "Vanessa gonerilla gonerilla" } item { name: "26835" id: 770 display_name: "Drymobius margaritiferus" } item { name: "84185" id: 771 display_name: "Megalopyge opercularis" } item { name: "2266" id: 772 display_name: "Coracias garrulus" } item { name: "141531" id: 773 display_name: "Lethe eurydice" } item { name: "2269" id: 774 display_name: "Coracias caudatus" } item { name: "133346" id: 775 display_name: "Melittia cucurbitae" } item { name: "2275" id: 776 display_name: "Coracias benghalensis" } item { name: "84196" id: 777 display_name: "Pontania californica" } item { name: "10470" id: 778 display_name: "Xanthocephalus xanthocephalus" } item { name: "10479" id: 779 display_name: "Chondestes grammacus" } item { name: "51440" id: 780 display_name: "Pituophis catenifer catenifer" } item { name: "54087" id: 781 display_name: "Pieris napi" } item { name: "59635" id: 782 display_name: "Phragmatopoma californica" } item { name: "10487" id: 783 display_name: "Dolichonyx oryzivorus" } item { name: "67835" id: 784 display_name: "Danaus chrysippus" } item { name: "59644" id: 785 display_name: "Pantherophis alleghaniensis" } item { name: "59646" id: 786 display_name: "Pantherophis bairdi" } item { name: "116999" id: 787 display_name: "Pandion haliaetus" } item { name: "117002" id: 788 display_name: "Phainopepla nitens" } item { name: "16770" id: 789 display_name: "Tyrannus couchii" } item { name: "84239" id: 790 display_name: "Callophrys gryneus" } item { name: "104553" id: 791 display_name: "Leucorrhinia proxima" } item { name: "117016" id: 792 display_name: "Phylloscopus collybita" } item { name: "49540" id: 793 display_name: "Gasteracantha cancriformis" } item { name: "59675" id: 794 display_name: "Pyrrharctia isabella" } item { name: "469277" id: 795 display_name: "Neotibicen superbus" } item { name: "236973" id: 796 display_name: "Circus cyaneus hudsonius" } item { name: "59683" id: 797 display_name: "Porpita porpita" } item { name: "26916" id: 798 display_name: "Contia tenuis" } item { name: "51493" id: 799 display_name: "Trimerotropis pallidipennis" } item { name: "51495" id: 800 display_name: "Anthocharis cardamines" } item { name: "133416" id: 801 display_name: "Phoebis philea" } item { name: "8583" id: 802 display_name: "Grallina cyanoleuca" } item { name: "395569" id: 803 display_name: "Prionoplus reticularis" } item { name: "59698" id: 804 display_name: "Velella velella" } item { name: "141626" id: 805 display_name: "Lygaeus turcicus" } item { name: "84286" id: 806 display_name: "Diapheromera femorata" } item { name: "117059" id: 807 display_name: "Plectrophenax nivalis" } item { name: "133447" id: 808 display_name: "Crambus agitatellus" } item { name: "133448" id: 809 display_name: "Climaciella brunnea" } item { name: "51534" id: 810 display_name: "Leptotes cassius" } item { name: "205197" id: 811 display_name: "Eutrapela clemataria" } item { name: "51536" id: 812 display_name: "Ascia monuste" } item { name: "10585" id: 813 display_name: "Calamospiza melanocorys" } item { name: "49552" id: 814 display_name: "Scutigera coleoptrata" } item { name: "51555" id: 815 display_name: "Sympetrum illotum" } item { name: "51557" id: 816 display_name: "Bombylius major" } item { name: "117095" id: 817 display_name: "Regulus calendula" } item { name: "117097" id: 818 display_name: "Regulus ignicapilla" } item { name: "117099" id: 819 display_name: "Regulus regulus" } item { name: "117100" id: 820 display_name: "Regulus satrapa" } item { name: "84333" id: 821 display_name: "Eudryas grata" } item { name: "215409" id: 822 display_name: "Bradybaena similaris" } item { name: "16787" id: 823 display_name: "Tyrannus melancholicus" } item { name: "46225" id: 824 display_name: "Tamias dorsalis" } item { name: "59774" id: 825 display_name: "Pachydiplax longipennis" } item { name: "59776" id: 826 display_name: "Perithemis tenera" } item { name: "119014" id: 827 display_name: "Argia fumipennis violacea" } item { name: "4326" id: 828 display_name: "Pelecanus conspicillatus" } item { name: "18833" id: 829 display_name: "Aulacorhynchus prasinus" } item { name: "43411" id: 830 display_name: "Ateles geoffroyi" } item { name: "141725" id: 831 display_name: "Nezara viridula" } item { name: "51614" id: 832 display_name: "Eurema hecabe" } item { name: "125343" id: 833 display_name: "Crepidula fornicata" } item { name: "2464" id: 834 display_name: "Todiramphus sanctus" } item { name: "43432" id: 835 display_name: "Cebus capucinus" } item { name: "43436" id: 836 display_name: "Alouatta palliata" } item { name: "43439" id: 837 display_name: "Alouatta pigra" } item { name: "9357" id: 838 display_name: "Icterus bullockii" } item { name: "84403" id: 839 display_name: "Phyllopalpus pulchellus" } item { name: "10676" id: 840 display_name: "Spiza americana" } item { name: "16798" id: 841 display_name: "Tyrannus dominicensis" } item { name: "141752" id: 842 display_name: "Biblis hyperia" } item { name: "4512" id: 843 display_name: "Chlidonias niger" } item { name: "43460" id: 844 display_name: "Macaca mulatta" } item { name: "51654" id: 845 display_name: "Junonia almana" } item { name: "51659" id: 846 display_name: "Anthopleura xanthogrammica" } item { name: "84428" id: 847 display_name: "Drepana arcuata" } item { name: "10702" id: 848 display_name: "Oriturus superciliosus" } item { name: "68047" id: 849 display_name: "Psarocolius montezuma" } item { name: "12707" id: 850 display_name: "Turdus pilaris" } item { name: "84437" id: 851 display_name: "Nicrophorus orbicollis" } item { name: "84438" id: 852 display_name: "Platyprepia virginalis" } item { name: "117209" id: 853 display_name: "Notiomystis cincta" } item { name: "343393" id: 854 display_name: "Hypsopygia olinalis" } item { name: "27101" id: 855 display_name: "Eurycea longicauda" } item { name: "117214" id: 856 display_name: "Sagittarius serpentarius" } item { name: "18911" id: 857 display_name: "Psittacula krameri" } item { name: "117218" id: 858 display_name: "Verrucosa arenata" } item { name: "117221" id: 859 display_name: "Dasymutilla occidentalis" } item { name: "35303" id: 860 display_name: "Ctenosaura similis" } item { name: "18920" id: 861 display_name: "Platycercus eximius" } item { name: "10729" id: 862 display_name: "Protonotaria citrea" } item { name: "35306" id: 863 display_name: "Ctenosaura pectinata" } item { name: "109650" id: 864 display_name: "Platycnemis pennipes" } item { name: "27120" id: 865 display_name: "Eurycea bislineata" } item { name: "27123" id: 866 display_name: "Eurycea lucifuga" } item { name: "51702" id: 867 display_name: "Coccinella septempunctata" } item { name: "2552" id: 868 display_name: "Megaceryle torquata" } item { name: "133625" id: 869 display_name: "Zanclognatha jacchusalis" } item { name: "18943" id: 870 display_name: "Nestor meridionalis" } item { name: "84481" id: 871 display_name: "Calopteryx maculata" } item { name: "35330" id: 872 display_name: "Sauromalus ater" } item { name: "27140" id: 873 display_name: "Coluber constrictor priapus" } item { name: "199179" id: 874 display_name: "Polistes chinensis" } item { name: "51724" id: 875 display_name: "Mopalia lignosa" } item { name: "27149" id: 876 display_name: "Coluber constrictor constrictor" } item { name: "35342" id: 877 display_name: "Iguana iguana" } item { name: "27153" id: 878 display_name: "Coluber constrictor flaviventris" } item { name: "35347" id: 879 display_name: "Amblyrhynchus cristatus" } item { name: "125461" id: 880 display_name: "Ursus arctos horribilis" } item { name: "84507" id: 881 display_name: "Lygus lineolaris" } item { name: "35356" id: 882 display_name: "Dipsosaurus dorsalis" } item { name: "51743" id: 883 display_name: "Danaus gilippus" } item { name: "18976" id: 884 display_name: "Amazona viridigenalis" } item { name: "125475" id: 885 display_name: "Plusiodonta compressipalpis" } item { name: "51748" id: 886 display_name: "Danaus gilippus thersippus" } item { name: "68137" id: 887 display_name: "Chlorocebus pygerythrus" } item { name: "133675" id: 888 display_name: "Coenobita clypeatus" } item { name: "215596" id: 889 display_name: "Buprestis aurulenta" } item { name: "117293" id: 890 display_name: "Oecophylla smaragdina" } item { name: "68142" id: 891 display_name: "Prenolepis imparis" } item { name: "27184" id: 892 display_name: "Plethodon glutinosus" } item { name: "27186" id: 893 display_name: "Plethodon cinereus" } item { name: "18995" id: 894 display_name: "Amazona albifrons" } item { name: "51765" id: 895 display_name: "Poanes melane" } item { name: "18998" id: 896 display_name: "Amazona oratrix" } item { name: "41396" id: 897 display_name: "Rhynchonycteris naso" } item { name: "27194" id: 898 display_name: "Plethodon vehiculum" } item { name: "51773" id: 899 display_name: "Nathalis iole" } item { name: "12908" id: 900 display_name: "Saxicola rubetra" } item { name: "68165" id: 901 display_name: "Linepithema humile" } item { name: "154721" id: 902 display_name: "Brachygastra mellifica" } item { name: "338504" id: 903 display_name: "Xanthocnemis zealandica" } item { name: "338505" id: 904 display_name: "Melangyna novaezelandiae" } item { name: "27093" id: 905 display_name: "Eurycea cirrigera" } item { name: "65975" id: 906 display_name: "Lithobates berlandieri" } item { name: "19020" id: 907 display_name: "Ara militaris" } item { name: "474210" id: 908 display_name: "Spizelloides arborea" } item { name: "205240" id: 909 display_name: "Pantographa limata" } item { name: "27226" id: 910 display_name: "Plethodon albagula" } item { name: "318545" id: 911 display_name: "Coreus marginatus" } item { name: "2662" id: 912 display_name: "Ceryle rudis" } item { name: "109161" id: 913 display_name: "Perithemis intensa" } item { name: "51824" id: 914 display_name: "Calopteryx splendens" } item { name: "27250" id: 915 display_name: "Ensatina eschscholtzii" } item { name: "2676" id: 916 display_name: "Chloroceryle aenea" } item { name: "2679" id: 917 display_name: "Chloroceryle amazona" } item { name: "84602" id: 918 display_name: "Zale lunata" } item { name: "133756" id: 919 display_name: "Leptoglossus oppositus" } item { name: "35453" id: 920 display_name: "Zootoca vivipara" } item { name: "84612" id: 921 display_name: "Polyphylla decemlineata" } item { name: "133765" id: 922 display_name: "Eumenes fraternus" } item { name: "68230" id: 923 display_name: "Brachymesia gravida" } item { name: "49601" id: 924 display_name: "Mola mola" } item { name: "68232" id: 925 display_name: "Papilio palamedes" } item { name: "68233" id: 926 display_name: "Orthemis ferruginea" } item { name: "68239" id: 927 display_name: "Parnassius clodius" } item { name: "68240" id: 928 display_name: "Chlosyne lacinia" } item { name: "68244" id: 929 display_name: "Euptoieta claudia" } item { name: "68249" id: 930 display_name: "Dymasia dymas" } item { name: "68251" id: 931 display_name: "Limenitis weidemeyerii" } item { name: "133790" id: 932 display_name: "Chalybion californicum" } item { name: "84644" id: 933 display_name: "Phalangium opilio" } item { name: "68262" id: 934 display_name: "Polygonia faunus" } item { name: "133799" id: 935 display_name: "Xenox tigrinus" } item { name: "68264" id: 936 display_name: "Asterocampa celtis" } item { name: "132892" id: 937 display_name: "Anacridium aegyptium" } item { name: "68268" id: 938 display_name: "Euptoieta hegesia" } item { name: "68269" id: 939 display_name: "Aglais milberti" } item { name: "43694" id: 940 display_name: "Loxodonta africana" } item { name: "59165" id: 941 display_name: "Apodemia mormo" } item { name: "68274" id: 942 display_name: "Phyciodes phaon" } item { name: "68275" id: 943 display_name: "Battus polydamas" } item { name: "84662" id: 944 display_name: "Celastrina lucia" } item { name: "16842" id: 945 display_name: "Myiozetetes similis" } item { name: "133826" id: 946 display_name: "Zelus longipes" } item { name: "14912" id: 947 display_name: "Toxostoma curvirostre" } item { name: "53708" id: 948 display_name: "Pacifastacus leniusculus" } item { name: "117452" id: 949 display_name: "Sphinx kalmiae" } item { name: "182997" id: 950 display_name: "Megisto rubricata" } item { name: "223965" id: 951 display_name: "Lithacodia musta" } item { name: "125663" id: 952 display_name: "Kelletia kelletii" } item { name: "125669" id: 953 display_name: "Rumina decollata" } item { name: "68328" id: 954 display_name: "Oxythyrea funesta" } item { name: "179324" id: 955 display_name: "Dactylotum bicolor" } item { name: "68330" id: 956 display_name: "Arctia caja" } item { name: "2548" id: 957 display_name: "Megaceryle alcyon" } item { name: "207600" id: 958 display_name: "Thasus neocalifornicus" } item { name: "207601" id: 959 display_name: "Palpita quadristigmalis" } item { name: "51954" id: 960 display_name: "Sphecius speciosus" } item { name: "207603" id: 961 display_name: "Prolimacodes badia" } item { name: "7294" id: 962 display_name: "Eremophila alpestris" } item { name: "19196" id: 963 display_name: "Alisterus scapularis" } item { name: "145194" id: 964 display_name: "Cinnyris jugularis" } item { name: "27390" id: 965 display_name: "Desmognathus ochrophaeus" } item { name: "207615" id: 966 display_name: "Polistes apachus" } item { name: "63275" id: 967 display_name: "Tremex columba" } item { name: "61910" id: 968 display_name: "Orgyia antiqua" } item { name: "199438" id: 969 display_name: "Orgyia postica" } item { name: "43794" id: 970 display_name: "Castor canadensis" } item { name: "84755" id: 971 display_name: "Arion rufus" } item { name: "51996" id: 972 display_name: "Daphnis nerii" } item { name: "194075" id: 973 display_name: "Drymarchon melanurus erebennus" } item { name: "133923" id: 974 display_name: "Mermiria bivittata" } item { name: "84778" id: 975 display_name: "Leptinotarsa decemlineata" } item { name: "11051" id: 976 display_name: "Xiphorhynchus flavigaster" } item { name: "121992" id: 977 display_name: "Cervus elaphus roosevelti" } item { name: "27459" id: 978 display_name: "Batrachoseps attenuatus" } item { name: "84806" id: 979 display_name: "Acanalonia conica" } item { name: "52043" id: 980 display_name: "Spoladea recurvalis" } item { name: "27468" id: 981 display_name: "Batrachoseps major" } item { name: "133966" id: 982 display_name: "Lomographa vestaliata" } item { name: "27474" id: 983 display_name: "Batrachoseps nigriventris" } item { name: "101204" id: 984 display_name: "Gambusia holbrooki" } item { name: "52055" id: 985 display_name: "Crocothemis servilia" } item { name: "4580" id: 986 display_name: "Jacana jacana" } item { name: "346970" id: 987 display_name: "Callophrys dumetorum" } item { name: "27486" id: 988 display_name: "Pseudotriton ruber" } item { name: "52075" id: 989 display_name: "Atalopedes campestris" } item { name: "27500" id: 990 display_name: "Gyrinophilus porphyriticus" } item { name: "73203" id: 991 display_name: "Phalaropus fulicarius" } item { name: "322417" id: 992 display_name: "Limacus flavus" } item { name: "40083" id: 993 display_name: "Gopherus berlandieri" } item { name: "68469" id: 994 display_name: "Papilio demodocus" } item { name: "2938" id: 995 display_name: "Streptopelia turtur" } item { name: "117633" id: 996 display_name: "Mopalia muscosa" } item { name: "117641" id: 997 display_name: "Nucella lamellosa" } item { name: "322443" id: 998 display_name: "Thasus gigas" } item { name: "68492" id: 999 display_name: "Hemidactylus mabouia" } item { name: "143853" id: 1000 display_name: "Pica hudsonia" } item { name: "144757" id: 1001 display_name: "Corvus cornix" } item { name: "117650" id: 1002 display_name: "Mytilus edulis" } item { name: "19349" id: 1003 display_name: "Myiopsitta monachus" } item { name: "2969" id: 1004 display_name: "Streptopelia decaocto" } item { name: "9919" id: 1005 display_name: "Piranga ludoviciana" } item { name: "5009" id: 1006 display_name: "Ixobrychus exilis" } item { name: "117666" id: 1007 display_name: "Pleuroncodes planipes" } item { name: "7603" id: 1008 display_name: "Auriparus flaviceps" } item { name: "117674" id: 1009 display_name: "Ligia occidentalis" } item { name: "145223" id: 1010 display_name: "Geothlypis tolmiei" } item { name: "60341" id: 1011 display_name: "Lithobates sphenocephalus" } item { name: "60342" id: 1012 display_name: "Thamnophis proximus" } item { name: "52155" id: 1013 display_name: "Dermacentor variabilis" } item { name: "60349" id: 1014 display_name: "Scincella lateralis" } item { name: "52158" id: 1015 display_name: "Schistocerca nitens" } item { name: "117696" id: 1016 display_name: "Dendraster excentricus" } item { name: "232391" id: 1017 display_name: "Tetracha carolina" } item { name: "3017" id: 1018 display_name: "Columba livia" } item { name: "145229" id: 1019 display_name: "Setophaga citrina" } item { name: "84950" id: 1020 display_name: "Alypia octomaculata" } item { name: "52188" id: 1021 display_name: "Rhincodon typus" } item { name: "494559" id: 1022 display_name: "Polydrusus formosus" } item { name: "145232" id: 1023 display_name: "Setophaga cerulea" } item { name: "3048" id: 1024 display_name: "Columba palumbus" } item { name: "9922" id: 1025 display_name: "Piranga bidentata" } item { name: "44026" id: 1026 display_name: "Erethizon dorsatum" } item { name: "61505" id: 1027 display_name: "Manduca sexta" } item { name: "84994" id: 1028 display_name: "Acanthocephala declivis" } item { name: "27652" id: 1029 display_name: "Hemidactylium scutatum" } item { name: "117767" id: 1030 display_name: "Cervus elaphus nannodes" } item { name: "494603" id: 1031 display_name: "Hermissenda opalescens" } item { name: "39819" id: 1032 display_name: "Terrapene carolina bauri" } item { name: "3093" id: 1033 display_name: "Patagioenas leucocephala" } item { name: "205316" id: 1034 display_name: "Aidemona azteca" } item { name: "216093" id: 1035 display_name: "Caracolus marginella" } item { name: "44062" id: 1036 display_name: "Thomomys bottae" } item { name: "85024" id: 1037 display_name: "Heraclides cresphontes" } item { name: "3108" id: 1038 display_name: "Patagioenas fasciata" } item { name: "213510" id: 1039 display_name: "Anageshna primordialis" } item { name: "85030" id: 1040 display_name: "Crocothemis erythraea" } item { name: "85034" id: 1041 display_name: "Neoscona crucifera" } item { name: "3117" id: 1042 display_name: "Patagioenas flavirostris" } item { name: "207924" id: 1043 display_name: "Synchlora frondaria" } item { name: "35900" id: 1044 display_name: "Lacerta bilineata" } item { name: "24382" id: 1045 display_name: "Osteopilus septentrionalis" } item { name: "145249" id: 1046 display_name: "Setophaga discolor" } item { name: "52297" id: 1047 display_name: "Triakis semifasciata" } item { name: "27726" id: 1048 display_name: "Salamandra salamandra" } item { name: "27727" id: 1049 display_name: "Bogertophis subocularis" } item { name: "143043" id: 1050 display_name: "Cycnia tenera" } item { name: "52313" id: 1051 display_name: "Diodon hystrix" } item { name: "143316" id: 1052 display_name: "Schinia florida" } item { name: "61968" id: 1053 display_name: "Graphosoma lineatum" } item { name: "502885" id: 1054 display_name: "Lissachatina fulica" } item { name: "71029" id: 1055 display_name: "Crotalus cerastes cerastes" } item { name: "207977" id: 1056 display_name: "Aglais io" } item { name: "19577" id: 1057 display_name: "Chordeiles minor" } item { name: "93312" id: 1058 display_name: "Acropora palmata" } item { name: "52354" id: 1059 display_name: "Ambystoma laterale" } item { name: "19587" id: 1060 display_name: "Chordeiles acutipennis" } item { name: "58585" id: 1061 display_name: "Limenitis arthemis astyanax" } item { name: "134277" id: 1062 display_name: "Gastrophryne olivacea" } item { name: "60551" id: 1063 display_name: "Papilio glaucus" } item { name: "3731" id: 1064 display_name: "Platalea leucorodia" } item { name: "232593" id: 1065 display_name: "Thyris sepulchralis" } item { name: "19609" id: 1066 display_name: "Phalaenoptilus nuttallii" } item { name: "126106" id: 1067 display_name: "Haploa clymene" } item { name: "27805" id: 1068 display_name: "Notophthalmus viridescens" } item { name: "199840" id: 1069 display_name: "Haemorhous mexicanus" } item { name: "199841" id: 1070 display_name: "Haemorhous purpureus" } item { name: "219719" id: 1071 display_name: "Eudryas unio" } item { name: "27818" id: 1072 display_name: "Taricha torosa" } item { name: "19627" id: 1073 display_name: "Nyctidromus albicollis" } item { name: "28750" id: 1074 display_name: "Salvadora grahamiae lineata" } item { name: "27824" id: 1075 display_name: "Taricha rivularis" } item { name: "146632" id: 1076 display_name: "Toxomerus politus" } item { name: "52402" id: 1077 display_name: "Cetonia aurata" } item { name: "18291" id: 1078 display_name: "Campephilus guatemalensis" } item { name: "60598" id: 1079 display_name: "Ixodes scapularis" } item { name: "199870" id: 1080 display_name: "Pyralis farinalis" } item { name: "60607" id: 1081 display_name: "Limenitis arthemis" } item { name: "205241" id: 1082 display_name: "Plagodis phlogosaria" } item { name: "14898" id: 1083 display_name: "Toxostoma rufum" } item { name: "126153" id: 1084 display_name: "Amphion floridensis" } item { name: "126155" id: 1085 display_name: "Vespula germanica" } item { name: "51392" id: 1086 display_name: "Morone saxatilis" } item { name: "3280" id: 1087 display_name: "Leptotila verreauxi" } item { name: "19670" id: 1088 display_name: "Nyctibius jamaicensis" } item { name: "6929" id: 1089 display_name: "Anas penelope" } item { name: "97738" id: 1090 display_name: "Chromagrion conditum" } item { name: "52449" id: 1091 display_name: "Rhinecanthus rectangulus" } item { name: "52451" id: 1092 display_name: "Naso lituratus" } item { name: "56529" id: 1093 display_name: "Papilio machaon" } item { name: "199913" id: 1094 display_name: "Buteo plagiatus" } item { name: "199914" id: 1095 display_name: "Selasphorus calliope" } item { name: "85227" id: 1096 display_name: "Hemideina crassidens" } item { name: "36076" id: 1097 display_name: "Cophosaurus texanus" } item { name: "36077" id: 1098 display_name: "Cophosaurus texanus texanus" } item { name: "208112" id: 1099 display_name: "Palpita magniferalis" } item { name: "85235" id: 1100 display_name: "Deinacrida rugosa" } item { name: "93429" id: 1101 display_name: "Aeshna constricta" } item { name: "36086" id: 1102 display_name: "Callisaurus draconoides rhodostictus" } item { name: "126204" id: 1103 display_name: "Synchlora aerata" } item { name: "93437" id: 1104 display_name: "Aeshna mixta" } item { name: "126207" id: 1105 display_name: "Schizura unicornis" } item { name: "126209" id: 1106 display_name: "Metcalfa pruinosa" } item { name: "126211" id: 1107 display_name: "Poecilocapsus lineatus" } item { name: "36100" id: 1108 display_name: "Uta stansburiana elegans" } item { name: "48342" id: 1109 display_name: "Hemigrapsus nudus" } item { name: "199942" id: 1110 display_name: "Strategus aloeus" } item { name: "126215" id: 1111 display_name: "Monobia quadridens" } item { name: "101640" id: 1112 display_name: "Gomphaeschna furcillata" } item { name: "126217" id: 1113 display_name: "Pyrausta orphisalis" } item { name: "36107" id: 1114 display_name: "Urosaurus ornatus" } item { name: "51940" id: 1115 display_name: "Hemidactylus frenatus" } item { name: "36121" id: 1116 display_name: "Urosaurus graciosus" } item { name: "19743" id: 1117 display_name: "Megascops kennicottii" } item { name: "68901" id: 1118 display_name: "Salticus scenicus" } item { name: "44326" id: 1119 display_name: "Microtus californicus" } item { name: "82481" id: 1120 display_name: "Pieris marginalis" } item { name: "474332" id: 1121 display_name: "Porphyrio poliocephalus" } item { name: "81674" id: 1122 display_name: "Rivula propinqualis" } item { name: "126252" id: 1123 display_name: "Mastigoproctus giganteus" } item { name: "36142" id: 1124 display_name: "Sceloporus undulatus" } item { name: "68911" id: 1125 display_name: "Libellula needhami" } item { name: "68912" id: 1126 display_name: "Dysdera crocata" } item { name: "42888" id: 1127 display_name: "Macropus giganteus" } item { name: "19765" id: 1128 display_name: "Megascops asio" } item { name: "68918" id: 1129 display_name: "Poecilanthrax lucifer" } item { name: "333705" id: 1130 display_name: "Pantherophis obsoletus lindheimeri" } item { name: "126267" id: 1131 display_name: "Coleomegilla maculata" } item { name: "101693" id: 1132 display_name: "Gomphus vastus" } item { name: "85221" id: 1133 display_name: "Hemideina thoracica" } item { name: "126276" id: 1134 display_name: "Agrotis ipsilon" } item { name: "85317" id: 1135 display_name: "Eurosta solidaginis" } item { name: "36169" id: 1136 display_name: "Sceloporus spinosus" } item { name: "60752" id: 1137 display_name: "Hermeuptychia sosybius" } item { name: "60754" id: 1138 display_name: "Pyromorpha dimidiata" } item { name: "126291" id: 1139 display_name: "Prosapia bicincta" } item { name: "52564" id: 1140 display_name: "Anthopleura elegantissima" } item { name: "126293" id: 1141 display_name: "Prionoxystus robiniae" } item { name: "120719" id: 1142 display_name: "Pseudacris hypochondriaca" } item { name: "36189" id: 1143 display_name: "Sceloporus poinsettii" } item { name: "52576" id: 1144 display_name: "Uroctonus mordax" } item { name: "36198" id: 1145 display_name: "Sceloporus orcutti" } item { name: "52584" id: 1146 display_name: "Pantala hymenaea" } item { name: "44395" id: 1147 display_name: "Peromyscus leucopus" } item { name: "36204" id: 1148 display_name: "Sceloporus occidentalis" } item { name: "52589" id: 1149 display_name: "Coenonympha pamphilus" } item { name: "3439" id: 1150 display_name: "Zenaida auriculata" } item { name: "36208" id: 1151 display_name: "Sceloporus occidentalis bocourtii" } item { name: "72936" id: 1152 display_name: "Hymenolaimus malacorhynchos" } item { name: "85362" id: 1153 display_name: "Sphex ichneumoneus" } item { name: "36217" id: 1154 display_name: "Sceloporus merriami" } item { name: "68993" id: 1155 display_name: "Liometopum occidentale" } item { name: "199916" id: 1156 display_name: "Setophaga caerulescens" } item { name: "52620" id: 1157 display_name: "Cicindela oregona" } item { name: "36243" id: 1158 display_name: "Sceloporus jarrovii" } item { name: "52628" id: 1159 display_name: "Araneus diadematus" } item { name: "180007" id: 1160 display_name: "Otospermophilus beecheyi" } item { name: "85408" id: 1161 display_name: "Erythemis collocata" } item { name: "36262" id: 1162 display_name: "Sceloporus grammicus" } item { name: "60839" id: 1163 display_name: "Spilosoma virginica" } item { name: "16968" id: 1164 display_name: "Camptostoma imberbe" } item { name: "4715" id: 1165 display_name: "Caracara plancus" } item { name: "313246" id: 1166 display_name: "Olla v-nigrum" } item { name: "126393" id: 1167 display_name: "Stomolophus meleagris" } item { name: "126397" id: 1168 display_name: "Halysidota harrisii" } item { name: "64221" id: 1169 display_name: "Bipalium kewense" } item { name: "28102" id: 1170 display_name: "Virginia striatula" } item { name: "150985" id: 1171 display_name: "Planorbella trivolvis" } item { name: "36306" id: 1172 display_name: "Phrynosoma modestum" } item { name: "36307" id: 1173 display_name: "Phrynosoma orbiculare" } item { name: "199929" id: 1174 display_name: "Plagiometriona clavata" } item { name: "3545" id: 1175 display_name: "Columbina passerina" } item { name: "36315" id: 1176 display_name: "Phrynosoma hernandesi" } item { name: "367556" id: 1177 display_name: "Eupsittula nana" } item { name: "371963" id: 1178 display_name: "Lampropeltis multifasciata" } item { name: "36339" id: 1179 display_name: "Holbrookia propinqua" } item { name: "36094" id: 1180 display_name: "Uta stansburiana" } item { name: "36343" id: 1181 display_name: "Holbrookia maculata" } item { name: "52766" id: 1182 display_name: "Megaphasma denticrus" } item { name: "18941" id: 1183 display_name: "Nestor notabilis" } item { name: "3580" id: 1184 display_name: "Columbina talpacoti" } item { name: "123690" id: 1185 display_name: "Caranx melampygus" } item { name: "52482" id: 1186 display_name: "Episyrphus balteatus" } item { name: "28762" id: 1187 display_name: "Rhinocheilus lecontei" } item { name: "3607" id: 1188 display_name: "Geopelia striata" } item { name: "52484" id: 1189 display_name: "Celastrina echo" } item { name: "61293" id: 1190 display_name: "Thaumetopoea pityocampa" } item { name: "19998" id: 1191 display_name: "Athene noctua" } item { name: "44575" id: 1192 display_name: "Rattus rattus" } item { name: "44576" id: 1193 display_name: "Rattus norvegicus" } item { name: "133250" id: 1194 display_name: "Tettigonia viridissima" } item { name: "52774" id: 1195 display_name: "Bombus fervidus" } item { name: "49756" id: 1196 display_name: "Nephila clavipes" } item { name: "52779" id: 1197 display_name: "Bombus bimaculatus" } item { name: "52782" id: 1198 display_name: "Melissodes bimaculata" } item { name: "126513" id: 1199 display_name: "Larinioides cornutus" } item { name: "69170" id: 1200 display_name: "Hemigrapsus oregonensis" } item { name: "1971" id: 1201 display_name: "Crotophaga ani" } item { name: "12942" id: 1202 display_name: "Sialia sialis" } item { name: "126532" id: 1203 display_name: "Toxomerus geminatus" } item { name: "216649" id: 1204 display_name: "Chauliognathus pensylvanicus" } item { name: "3734" id: 1205 display_name: "Platalea alba" } item { name: "216651" id: 1206 display_name: "Chelinidea vittiger" } item { name: "20044" id: 1207 display_name: "Bubo virginianus" } item { name: "11855" id: 1208 display_name: "Petrochelidon fulva" } item { name: "28246" id: 1209 display_name: "Arizona elegans" } item { name: "224855" id: 1210 display_name: "Melipotis indomita" } item { name: "11867" id: 1211 display_name: "Progne subis" } item { name: "126562" id: 1212 display_name: "Setophaga coronata auduboni" } item { name: "126568" id: 1213 display_name: "Manduca rustica" } item { name: "11882" id: 1214 display_name: "Hirundo neoxena" } item { name: "11901" id: 1215 display_name: "Hirundo rustica" } item { name: "52865" id: 1216 display_name: "Tramea lacerata" } item { name: "142978" id: 1217 display_name: "Simyra insularis" } item { name: "123499" id: 1218 display_name: "Notophthalmus viridescens viridescens" } item { name: "339592" id: 1219 display_name: "Calidris virgata" } item { name: "339593" id: 1220 display_name: "Calidris pugnax" } item { name: "44311" id: 1221 display_name: "Microtus pennsylvanicus" } item { name: "142988" id: 1222 display_name: "Lerema accius" } item { name: "142990" id: 1223 display_name: "Autographa precationis" } item { name: "142995" id: 1224 display_name: "Hymenia perspectalis" } item { name: "129423" id: 1225 display_name: "Zelus luridus" } item { name: "3733" id: 1226 display_name: "Platalea regia" } item { name: "470678" id: 1227 display_name: "Cerithideopsis californica" } item { name: "146713" id: 1228 display_name: "Elaphria grata" } item { name: "143002" id: 1229 display_name: "Orthonama obstipata" } item { name: "11931" id: 1230 display_name: "Tachycineta thalassina" } item { name: "143005" id: 1231 display_name: "Costaconvexa centrostrigaria" } item { name: "3743" id: 1232 display_name: "Bostrychia hagedash" } item { name: "143009" id: 1233 display_name: "Ectropis crepuscularia" } item { name: "36514" id: 1234 display_name: "Anolis carolinensis" } item { name: "143012" id: 1235 display_name: "Zanclognatha pedipilalis" } item { name: "11941" id: 1236 display_name: "Riparia riparia" } item { name: "52902" id: 1237 display_name: "Palthis asopialis" } item { name: "3751" id: 1238 display_name: "Eudocimus albus" } item { name: "52906" id: 1239 display_name: "Chytonix palliatricula" } item { name: "3756" id: 1240 display_name: "Plegadis falcinellus" } item { name: "3759" id: 1241 display_name: "Plegadis chihi" } item { name: "143024" id: 1242 display_name: "Eusarca confusaria" } item { name: "62067" id: 1243 display_name: "Orthetrum cancellatum" } item { name: "28340" id: 1244 display_name: "Thamnophis sauritus" } item { name: "28345" id: 1245 display_name: "Thamnophis cyrtopsis" } item { name: "143034" id: 1246 display_name: "Hippodamia variegata" } item { name: "28347" id: 1247 display_name: "Thamnophis cyrtopsis ocellatus" } item { name: "52925" id: 1248 display_name: "Phyciodes tharos" } item { name: "8010" id: 1249 display_name: "Corvus corax" } item { name: "11970" id: 1250 display_name: "Stelgidopteryx serripennis" } item { name: "28362" id: 1251 display_name: "Thamnophis sirtalis" } item { name: "3788" id: 1252 display_name: "Sula dactylatra" } item { name: "44749" id: 1253 display_name: "Neotoma fuscipes" } item { name: "52943" id: 1254 display_name: "Trichodezia albovittata" } item { name: "3793" id: 1255 display_name: "Sula sula" } item { name: "101667" id: 1256 display_name: "Gomphus exilis" } item { name: "3797" id: 1257 display_name: "Sula leucogaster" } item { name: "118486" id: 1258 display_name: "Macaria aemulataria" } item { name: "3801" id: 1259 display_name: "Morus serrator" } item { name: "28378" id: 1260 display_name: "Thamnophis radix" } item { name: "118492" id: 1261 display_name: "Helicoverpa zea" } item { name: "148793" id: 1262 display_name: "Asterocampa leilia" } item { name: "28384" id: 1263 display_name: "Thamnophis proximus rubrilineatus" } item { name: "257761" id: 1264 display_name: "Phocides polybius" } item { name: "28387" id: 1265 display_name: "Thamnophis proximus orarius" } item { name: "28390" id: 1266 display_name: "Thamnophis marcianus" } item { name: "118503" id: 1267 display_name: "Darapsa myron" } item { name: "3817" id: 1268 display_name: "Eudyptula minor" } item { name: "36135" id: 1269 display_name: "Uma scoparia" } item { name: "28396" id: 1270 display_name: "Thamnophis hammondii" } item { name: "28400" id: 1271 display_name: "Thamnophis elegans elegans" } item { name: "118513" id: 1272 display_name: "Hypena scabra" } item { name: "28403" id: 1273 display_name: "Thamnophis elegans vagrans" } item { name: "201342" id: 1274 display_name: "Chalcoela iphitalis" } item { name: "3831" id: 1275 display_name: "Megadyptes antipodes" } item { name: "126712" id: 1276 display_name: "Corydalus cornutus" } item { name: "30676" id: 1277 display_name: "Agkistrodon piscivorus leucostoma" } item { name: "3834" id: 1278 display_name: "Scopus umbretta" } item { name: "213631" id: 1279 display_name: "Anicla infecta" } item { name: "143105" id: 1280 display_name: "Pleuroprucha insulsaria" } item { name: "28418" id: 1281 display_name: "Thamnophis atratus" } item { name: "118531" id: 1282 display_name: "Parallelia bistriaris" } item { name: "145363" id: 1283 display_name: "Troglodytes troglodytes" } item { name: "3845" id: 1284 display_name: "Calidris canutus" } item { name: "12038" id: 1285 display_name: "Lanius collurio" } item { name: "143114" id: 1286 display_name: "Phragmatobia fuliginosa" } item { name: "3851" id: 1287 display_name: "Calidris bairdii" } item { name: "324226" id: 1288 display_name: "Meleagris gallopavo intermedia" } item { name: "143118" id: 1289 display_name: "Pseudeustrotia carneola" } item { name: "3855" id: 1290 display_name: "Calidris mauri" } item { name: "3856" id: 1291 display_name: "Calidris maritima" } item { name: "3857" id: 1292 display_name: "Calidris alpina" } item { name: "143124" id: 1293 display_name: "Parapediasia teterrella" } item { name: "143125" id: 1294 display_name: "Hypena madefactalis" } item { name: "3863" id: 1295 display_name: "Calidris ferruginea" } item { name: "118552" id: 1296 display_name: "Felis catus" } item { name: "3865" id: 1297 display_name: "Calidris melanotos" } item { name: "3869" id: 1298 display_name: "Limnodromus griseus" } item { name: "118558" id: 1299 display_name: "Manduca quinquemaculata" } item { name: "118559" id: 1300 display_name: "Tetraopes tetrophthalmus" } item { name: "12065" id: 1301 display_name: "Malurus cyaneus" } item { name: "3878" id: 1302 display_name: "Tringa nebularia" } item { name: "101681" id: 1303 display_name: "Gomphus militaris" } item { name: "413483" id: 1304 display_name: "Todiramphus sanctus vagans" } item { name: "3885" id: 1305 display_name: "Tringa ochropus" } item { name: "3888" id: 1306 display_name: "Tringa glareola" } item { name: "126770" id: 1307 display_name: "Vulpes vulpes fulvus" } item { name: "3892" id: 1308 display_name: "Tringa melanoleuca" } item { name: "3893" id: 1309 display_name: "Tringa flavipes" } item { name: "126775" id: 1310 display_name: "Cervus elaphus nelsoni" } item { name: "3896" id: 1311 display_name: "Numenius arquata" } item { name: "126777" id: 1312 display_name: "Peucetia viridans" } item { name: "3901" id: 1313 display_name: "Numenius phaeopus" } item { name: "32058" id: 1314 display_name: "Elgaria multicarinata webbii" } item { name: "413506" id: 1315 display_name: "Phalacrocorax carbo novaehollandiae" } item { name: "413508" id: 1316 display_name: "Petroica macrocephala macrocephala" } item { name: "413512" id: 1317 display_name: "Petroica australis longipes" } item { name: "61258" id: 1318 display_name: "Junonia evarete" } item { name: "28493" id: 1319 display_name: "Tantilla nigriceps" } item { name: "413522" id: 1320 display_name: "Prosthemadera novaeseelandiae novaeseelandiae" } item { name: "58506" id: 1321 display_name: "Polites themistocles" } item { name: "28505" id: 1322 display_name: "Tantilla gracilis" } item { name: "20315" id: 1323 display_name: "Asio flammeus" } item { name: "143196" id: 1324 display_name: "Schinia arcigera" } item { name: "413533" id: 1325 display_name: "Rhipidura fuliginosa fuliginosa" } item { name: "3936" id: 1326 display_name: "Scolopax minor" } item { name: "3938" id: 1327 display_name: "Arenaria interpres" } item { name: "3941" id: 1328 display_name: "Arenaria melanocephala" } item { name: "413543" id: 1329 display_name: "Rhipidura fuliginosa placabilis" } item { name: "3947" id: 1330 display_name: "Limosa limosa" } item { name: "3950" id: 1331 display_name: "Limosa haemastica" } item { name: "126269" id: 1332 display_name: "Austrolestes colensonis" } item { name: "3954" id: 1333 display_name: "Limosa fedoa" } item { name: "199998" id: 1334 display_name: "Pedicia albivitta" } item { name: "3959" id: 1335 display_name: "Phalaropus lobatus" } item { name: "3962" id: 1336 display_name: "Bartramia longicauda" } item { name: "199999" id: 1337 display_name: "Callopistria mollissima" } item { name: "104426" id: 1338 display_name: "Lestes disjunctus" } item { name: "126848" id: 1339 display_name: "Delphinia picta" } item { name: "3951" id: 1340 display_name: "Limosa lapponica" } item { name: "20356" id: 1341 display_name: "Aegolius acadicus" } item { name: "121792" id: 1342 display_name: "Polistes carolina" } item { name: "3978" id: 1343 display_name: "Actitis hypoleucos" } item { name: "53911" id: 1344 display_name: "Cyprinus carpio" } item { name: "135055" id: 1345 display_name: "Bufotes balearicus" } item { name: "19121" id: 1346 display_name: "Trichoglossus haematodus" } item { name: "28562" id: 1347 display_name: "Storeria dekayi" } item { name: "28563" id: 1348 display_name: "Storeria dekayi texana" } item { name: "20372" id: 1349 display_name: "Surnia ulula" } item { name: "135064" id: 1350 display_name: "Bufotes viridis" } item { name: "28570" id: 1351 display_name: "Storeria dekayi dekayi" } item { name: "61341" id: 1352 display_name: "Narceus americanus" } item { name: "7493" id: 1353 display_name: "Polioptila caerulea" } item { name: "29339" id: 1354 display_name: "Natrix natrix" } item { name: "9135" id: 1355 display_name: "Spizella passerina" } item { name: "126889" id: 1356 display_name: "Toxomerus marginatus" } item { name: "143274" id: 1357 display_name: "Gluphisia septentrionis" } item { name: "343021" id: 1358 display_name: "Anguis fragilis" } item { name: "14591" id: 1359 display_name: "Pycnonotus jocosus" } item { name: "10227" id: 1360 display_name: "Passerina cyanea" } item { name: "10228" id: 1361 display_name: "Passerina versicolor" } item { name: "61371" id: 1362 display_name: "Panulirus interruptus" } item { name: "143294" id: 1363 display_name: "Colias croceus" } item { name: "135104" id: 1364 display_name: "Ichthyosaura alpestris" } item { name: "83958" id: 1365 display_name: "Phryganidia californica" } item { name: "143302" id: 1366 display_name: "Megapallifera mutabilis" } item { name: "12231" id: 1367 display_name: "Manorina melanocephala" } item { name: "200661" id: 1368 display_name: "Coluber constrictor mormon" } item { name: "3681" id: 1369 display_name: "Ocyphaps lophotes" } item { name: "4773" id: 1370 display_name: "Jabiru mycteria" } item { name: "135140" id: 1371 display_name: "Taricha sierrae" } item { name: "28649" id: 1372 display_name: "Sonora semiannulata" } item { name: "53226" id: 1373 display_name: "Boisea rubrolineata" } item { name: "53227" id: 1374 display_name: "Boisea trivittata" } item { name: "14593" id: 1375 display_name: "Pycnonotus cafer" } item { name: "61428" id: 1376 display_name: "Arion subfuscus" } item { name: "333822" id: 1377 display_name: "Anser cygnoides domesticus" } item { name: "41641" id: 1378 display_name: "Ursus arctos" } item { name: "56602" id: 1379 display_name: "Plebejus lupini" } item { name: "55295" id: 1380 display_name: "Grapsus grapsus" } item { name: "36181" id: 1381 display_name: "Sceloporus cyanogenys" } item { name: "41708" id: 1382 display_name: "Phoca vitulina" } item { name: "118788" id: 1383 display_name: "Desmia funeralis" } item { name: "61445" id: 1384 display_name: "Acanthocephala terminalis" } item { name: "30721" id: 1385 display_name: "Crotalus triseriatus" } item { name: "180010" id: 1386 display_name: "Callospermophilus lateralis" } item { name: "53875" id: 1387 display_name: "Ocypode quadrata" } item { name: "18358" id: 1388 display_name: "Picus viridis" } item { name: "143390" id: 1389 display_name: "Oxidus gracilis" } item { name: "55785" id: 1390 display_name: "Ochlodes agricola" } item { name: "4141" id: 1391 display_name: "Phoebastria nigripes" } item { name: "20526" id: 1392 display_name: "Struthio camelus" } item { name: "32093" id: 1393 display_name: "Boa constrictor" } item { name: "4144" id: 1394 display_name: "Phoebastria immutabilis" } item { name: "74442" id: 1395 display_name: "Hydrochoerus hydrochaeris" } item { name: "61492" id: 1396 display_name: "Chrysopilus thoracicus" } item { name: "61495" id: 1397 display_name: "Erythemis simplicicollis" } item { name: "389177" id: 1398 display_name: "Eriophora pustulosa" } item { name: "61503" id: 1399 display_name: "Ascalapha odorata" } item { name: "118855" id: 1400 display_name: "Calosoma scrutator" } item { name: "61513" id: 1401 display_name: "Adelges tsugae" } item { name: "28749" id: 1402 display_name: "Salvadora grahamiae" } item { name: "143440" id: 1403 display_name: "Ceratomia catalpae" } item { name: "61523" id: 1404 display_name: "Helix pomatia" } item { name: "4180" id: 1405 display_name: "Fulmarus glacialis" } item { name: "143445" id: 1406 display_name: "Pachysphinx modesta" } item { name: "233560" id: 1407 display_name: "Vespula squamosa" } item { name: "126308" id: 1408 display_name: "Marpesia chiron" } item { name: "61536" id: 1409 display_name: "Calopteryx virgo" } item { name: "685" id: 1410 display_name: "Francolinus pondicerianus" } item { name: "60774" id: 1411 display_name: "Psychomorpha epimenis" } item { name: "135271" id: 1412 display_name: "Amphibolips confluenta" } item { name: "69736" id: 1413 display_name: "Schistocerca americana" } item { name: "69737" id: 1414 display_name: "Xylophanes tersa" } item { name: "6141" id: 1415 display_name: "Cynanthus latirostris" } item { name: "4205" id: 1416 display_name: "Podiceps nigricollis" } item { name: "69743" id: 1417 display_name: "Wallengrenia otho" } item { name: "4208" id: 1418 display_name: "Podiceps cristatus" } item { name: "4209" id: 1419 display_name: "Podiceps auritus" } item { name: "118901" id: 1420 display_name: "Hyles gallii" } item { name: "17871" id: 1421 display_name: "Dendrocopos major" } item { name: "143484" id: 1422 display_name: "Blepharomastix ranalis" } item { name: "4224" id: 1423 display_name: "Podiceps grisegena" } item { name: "200834" id: 1424 display_name: "Sphenodon punctatus" } item { name: "179995" id: 1425 display_name: "Urocitellus beldingi" } item { name: "322024" id: 1426 display_name: "Apatura ilia" } item { name: "44396" id: 1427 display_name: "Peromyscus maniculatus" } item { name: "4237" id: 1428 display_name: "Tachybaptus ruficollis" } item { name: "118930" id: 1429 display_name: "Spodoptera ornithogalli" } item { name: "118936" id: 1430 display_name: "Euplagia quadripunctaria" } item { name: "4804" id: 1431 display_name: "Charadrius montanus" } item { name: "127133" id: 1432 display_name: "Hyphantria cunea" } item { name: "143518" id: 1433 display_name: "Prochoerodes lineola" } item { name: "52592" id: 1434 display_name: "Pararge aegeria" } item { name: "36149" id: 1435 display_name: "Sceloporus torquatus" } item { name: "118951" id: 1436 display_name: "Pterophylla camellifolia" } item { name: "4265" id: 1437 display_name: "Phalacrocorax auritus" } item { name: "4270" id: 1438 display_name: "Phalacrocorax carbo" } item { name: "446640" id: 1439 display_name: "Neomonachus schauinslandi" } item { name: "118961" id: 1440 display_name: "Conocephalus brevipennis" } item { name: "28850" id: 1441 display_name: "Regina septemvittata" } item { name: "4277" id: 1442 display_name: "Phalacrocorax penicillatus" } item { name: "4234" id: 1443 display_name: "Aechmophorus clarkii" } item { name: "118967" id: 1444 display_name: "Psyllobora vigintimaculata" } item { name: "118968" id: 1445 display_name: "Allograpta obliqua" } item { name: "118970" id: 1446 display_name: "Bombus impatiens" } item { name: "123594" id: 1447 display_name: "Anaxyrus americanus americanus" } item { name: "69838" id: 1448 display_name: "Cyanea capillata" } item { name: "69844" id: 1449 display_name: "Anthocharis midea" } item { name: "48505" id: 1450 display_name: "Junonia coenia" } item { name: "151769" id: 1451 display_name: "Diaphania hyalinata" } item { name: "151770" id: 1452 display_name: "Peridea angulosa" } item { name: "53467" id: 1453 display_name: "Leucauge venusta" } item { name: "119013" id: 1454 display_name: "Ctenucha virginica" } item { name: "4327" id: 1455 display_name: "Pelecanus onocrotalus" } item { name: "143592" id: 1456 display_name: "Spragueia leo" } item { name: "200938" id: 1457 display_name: "Diaethria anna" } item { name: "4334" id: 1458 display_name: "Pelecanus erythrorhynchos" } item { name: "151794" id: 1459 display_name: "Atta texana" } item { name: "3454" id: 1460 display_name: "Zenaida macroura" } item { name: "4872" id: 1461 display_name: "Vanellus miles" } item { name: "4345" id: 1462 display_name: "Larus occidentalis" } item { name: "143610" id: 1463 display_name: "Besma quercivoraria" } item { name: "20733" id: 1464 display_name: "Trogon massena" } item { name: "143615" id: 1465 display_name: "Udea rubigalis" } item { name: "4352" id: 1466 display_name: "Larus thayeri" } item { name: "4353" id: 1467 display_name: "Larus heermanni" } item { name: "4354" id: 1468 display_name: "Larus livens" } item { name: "4356" id: 1469 display_name: "Larus canus" } item { name: "220826" id: 1470 display_name: "Habrosyne scripta" } item { name: "4361" id: 1471 display_name: "Larus glaucoides" } item { name: "4364" id: 1472 display_name: "Larus delawarensis" } item { name: "102672" id: 1473 display_name: "Hetaerina titia" } item { name: "20754" id: 1474 display_name: "Trogon collaris" } item { name: "479512" id: 1475 display_name: "Acronicta fallax" } item { name: "3460" id: 1476 display_name: "Zenaida asiatica" } item { name: "119066" id: 1477 display_name: "Idia lubricalis" } item { name: "119068" id: 1478 display_name: "Apodemia virgulti" } item { name: "4381" id: 1479 display_name: "Larus fuscus" } item { name: "4385" id: 1480 display_name: "Larus californicus" } item { name: "69922" id: 1481 display_name: "Oncorhynchus nerka" } item { name: "12580" id: 1482 display_name: "Prosthemadera novaeseelandiae" } item { name: "69925" id: 1483 display_name: "Clinocardium nuttallii" } item { name: "20781" id: 1484 display_name: "Trogon elegans" } item { name: "4399" id: 1485 display_name: "Larus glaucescens" } item { name: "94513" id: 1486 display_name: "Archilestes grandis" } item { name: "119090" id: 1487 display_name: "Eremnophila aureonotata" } item { name: "20787" id: 1488 display_name: "Trogon citreolus" } item { name: "69940" id: 1489 display_name: "Hemiargus ceraunus" } item { name: "61749" id: 1490 display_name: "Lucanus cervus" } item { name: "4415" id: 1491 display_name: "Cepphus columba" } item { name: "4832" id: 1492 display_name: "Himantopus leucocephalus" } item { name: "4418" id: 1493 display_name: "Cepphus grylle" } item { name: "12612" id: 1494 display_name: "Anthornis melanura" } item { name: "125627" id: 1495 display_name: "Ellychnia corrusca" } item { name: "201031" id: 1496 display_name: "Leptoptilos crumenifer" } item { name: "201032" id: 1497 display_name: "Threskiornis moluccus" } item { name: "60812" id: 1498 display_name: "Lucanus capreolus" } item { name: "10295" id: 1499 display_name: "Thraupis episcopus" } item { name: "209233" id: 1500 display_name: "Equus caballus" } item { name: "119122" id: 1501 display_name: "Araneus trifolium" } item { name: "201043" id: 1502 display_name: "Geranoaetus albicaudatus" } item { name: "61781" id: 1503 display_name: "Ochlodes sylvanus" } item { name: "49133" id: 1504 display_name: "Vanessa atalanta" } item { name: "94556" id: 1505 display_name: "Argia lugens" } item { name: "94557" id: 1506 display_name: "Argia moesta" } item { name: "61524" id: 1507 display_name: "Forficula auricularia" } item { name: "4449" id: 1508 display_name: "Sterna paradisaea" } item { name: "4450" id: 1509 display_name: "Sterna hirundo" } item { name: "348515" id: 1510 display_name: "Nyctemera annulata" } item { name: "110625" id: 1511 display_name: "Progomphus obscurus" } item { name: "94566" id: 1512 display_name: "Argia plana" } item { name: "4457" id: 1513 display_name: "Sterna forsteri" } item { name: "94571" id: 1514 display_name: "Argia sedula" } item { name: "61804" id: 1515 display_name: "Olivella biplicata" } item { name: "204532" id: 1516 display_name: "Lanius excubitor" } item { name: "29038" id: 1517 display_name: "Pituophis deppei" } item { name: "143728" id: 1518 display_name: "Choristoneura rosaceana" } item { name: "94577" id: 1519 display_name: "Argia translata" } item { name: "130451" id: 1520 display_name: "Dione juno" } item { name: "29044" id: 1521 display_name: "Pituophis catenifer" } item { name: "70005" id: 1522 display_name: "Ilyanassa obsoleta" } item { name: "143734" id: 1523 display_name: "Eupithecia miserulata" } item { name: "20856" id: 1524 display_name: "Pharomachrus mocinno" } item { name: "29049" id: 1525 display_name: "Pituophis catenifer deserticola" } item { name: "29052" id: 1526 display_name: "Pituophis catenifer affinis" } item { name: "29053" id: 1527 display_name: "Pituophis catenifer annectens" } item { name: "4478" id: 1528 display_name: "Sterna striata" } item { name: "407459" id: 1529 display_name: "Dolomedes minor" } item { name: "4489" id: 1530 display_name: "Stercorarius parasiticus" } item { name: "4491" id: 1531 display_name: "Stercorarius pomarinus" } item { name: "6969" id: 1532 display_name: "Anas gracilis" } item { name: "4494" id: 1533 display_name: "Rissa tridactyla" } item { name: "4496" id: 1534 display_name: "Rynchops niger" } item { name: "4501" id: 1535 display_name: "Alca torda" } item { name: "4504" id: 1536 display_name: "Fratercula arctica" } item { name: "4509" id: 1537 display_name: "Fratercula cirrhata" } item { name: "26693" id: 1538 display_name: "Scaphiopus hurterii" } item { name: "94624" id: 1539 display_name: "Arigomphus submedianus" } item { name: "94625" id: 1540 display_name: "Arigomphus villosipes" } item { name: "120720" id: 1541 display_name: "Pseudacris sierra" } item { name: "70057" id: 1542 display_name: "Agrilus planipennis" } item { name: "127402" id: 1543 display_name: "Grammia virgo" } item { name: "51271" id: 1544 display_name: "Trachemys scripta elegans" } item { name: "12716" id: 1545 display_name: "Turdus merula" } item { name: "12718" id: 1546 display_name: "Turdus plumbeus" } item { name: "12720" id: 1547 display_name: "Turdus grayi" } item { name: "63697" id: 1548 display_name: "Metacarcinus magister" } item { name: "12727" id: 1549 display_name: "Turdus migratorius" } item { name: "26698" id: 1550 display_name: "Spea multiplicata" } item { name: "12735" id: 1551 display_name: "Turdus viscivorus" } item { name: "26699" id: 1552 display_name: "Spea bombifrons" } item { name: "127431" id: 1553 display_name: "Emmelina monodactyla" } item { name: "4553" id: 1554 display_name: "Cerorhinca monocerata" } item { name: "12748" id: 1555 display_name: "Turdus philomelos" } item { name: "233933" id: 1556 display_name: "Zale horrida" } item { name: "1468" id: 1557 display_name: "Galbula ruficauda" } item { name: "111055" id: 1558 display_name: "Pseudoleon superbus" } item { name: "61908" id: 1559 display_name: "Orgyia vetusta" } item { name: "43086" id: 1560 display_name: "Procavia capensis" } item { name: "143830" id: 1561 display_name: "Eumorpha vitis" } item { name: "67663" id: 1562 display_name: "Leptysma marginicollis" } item { name: "127457" id: 1563 display_name: "Idia americalis" } item { name: "4578" id: 1564 display_name: "Jacana spinosa" } item { name: "127460" id: 1565 display_name: "Idia aemula" } item { name: "201192" id: 1566 display_name: "Saxicola rubicola" } item { name: "20969" id: 1567 display_name: "Upupa epops" } item { name: "94699" id: 1568 display_name: "Aspidoscelis marmorata" } item { name: "10322" id: 1569 display_name: "Euphagus carolinus" } item { name: "53743" id: 1570 display_name: "Uca pugilator" } item { name: "61256" id: 1571 display_name: "Leptoglossus phyllopus" } item { name: "29438" id: 1572 display_name: "Coluber flagellum piceus" } item { name: "53750" id: 1573 display_name: "Lottia gigantea" } item { name: "143865" id: 1574 display_name: "Odocoileus hemionus hemionus" } item { name: "143867" id: 1575 display_name: "Protoboarmia porcelaria" } item { name: "209405" id: 1576 display_name: "Cenopis reticulatana" } item { name: "49920" id: 1577 display_name: "Nymphalis californica" } item { name: "53762" id: 1578 display_name: "Scolopendra polymorpha" } item { name: "127492" id: 1579 display_name: "Megalographa biloba" } item { name: "62470" id: 1580 display_name: "Limax maximus" } item { name: "4621" id: 1581 display_name: "Gavia pacifica" } item { name: "14884" id: 1582 display_name: "Mimus gilvus" } item { name: "29200" id: 1583 display_name: "Opheodrys aestivus" } item { name: "201233" id: 1584 display_name: "Passer italiae" } item { name: "4626" id: 1585 display_name: "Gavia immer" } item { name: "4627" id: 1586 display_name: "Gavia stellata" } item { name: "12822" id: 1587 display_name: "Oenanthe oenanthe" } item { name: "4631" id: 1588 display_name: "Fregata magnificens" } item { name: "4636" id: 1589 display_name: "Fregata minor" } item { name: "70174" id: 1590 display_name: "Hypolimnas bolina" } item { name: "4643" id: 1591 display_name: "Falco subbuteo" } item { name: "4644" id: 1592 display_name: "Falco mexicanus" } item { name: "4645" id: 1593 display_name: "Falco femoralis" } item { name: "4647" id: 1594 display_name: "Falco peregrinus" } item { name: "119340" id: 1595 display_name: "Amphipyra pyramidoides" } item { name: "61997" id: 1596 display_name: "Steatoda grossa" } item { name: "70191" id: 1597 display_name: "Ischnura ramburii" } item { name: "53809" id: 1598 display_name: "Phidippus audax" } item { name: "143213" id: 1599 display_name: "Frontinella communis" } item { name: "4664" id: 1600 display_name: "Falco rufigularis" } item { name: "4665" id: 1601 display_name: "Falco sparverius" } item { name: "19893" id: 1602 display_name: "Strix varia" } item { name: "4672" id: 1603 display_name: "Falco columbarius" } item { name: "201281" id: 1604 display_name: "Phyllodesma americana" } item { name: "201282" id: 1605 display_name: "Gallinula chloropus" } item { name: "152131" id: 1606 display_name: "Bagrada hilaris" } item { name: "145276" id: 1607 display_name: "Cardellina pusilla" } item { name: "12878" id: 1608 display_name: "Catharus ustulatus" } item { name: "4690" id: 1609 display_name: "Falco novaeseelandiae" } item { name: "53843" id: 1610 display_name: "Brephidium exilis" } item { name: "36281" id: 1611 display_name: "Sceloporus clarkii" } item { name: "12890" id: 1612 display_name: "Catharus guttatus" } item { name: "62045" id: 1613 display_name: "Lygaeus kalmii" } item { name: "47075" id: 1614 display_name: "Dasypus novemcinctus" } item { name: "12901" id: 1615 display_name: "Catharus fuscescens" } item { name: "4714" id: 1616 display_name: "Caracara cheriway" } item { name: "53867" id: 1617 display_name: "Erythemis plebeja" } item { name: "62060" id: 1618 display_name: "Palomena prasina" } item { name: "53869" id: 1619 display_name: "Ocypus olens" } item { name: "4719" id: 1620 display_name: "Herpetotheres cachinnans" } item { name: "116840" id: 1621 display_name: "Calcarius lapponicus" } item { name: "4726" id: 1622 display_name: "Milvago chimachima" } item { name: "29304" id: 1623 display_name: "Nerodia taxispilota" } item { name: "29305" id: 1624 display_name: "Nerodia sipedon" } item { name: "29306" id: 1625 display_name: "Nerodia sipedon sipedon" } item { name: "142783" id: 1626 display_name: "Myodocha serripes" } item { name: "4733" id: 1627 display_name: "Ciconia ciconia" } item { name: "29310" id: 1628 display_name: "Nerodia rhombifer" } item { name: "201343" id: 1629 display_name: "Lithacodes fasciola" } item { name: "21121" id: 1630 display_name: "Dendrobates auratus" } item { name: "127618" id: 1631 display_name: "Epirrhoe alternata" } item { name: "43115" id: 1632 display_name: "Sylvilagus audubonii" } item { name: "29317" id: 1633 display_name: "Nerodia fasciata" } item { name: "4742" id: 1634 display_name: "Mycteria americana" } item { name: "53895" id: 1635 display_name: "Stenopelmatus fuscus" } item { name: "4744" id: 1636 display_name: "Mycteria ibis" } item { name: "12937" id: 1637 display_name: "Sialia mexicana" } item { name: "29322" id: 1638 display_name: "Nerodia fasciata confluens" } item { name: "29324" id: 1639 display_name: "Nerodia clarkii clarkii" } item { name: "29327" id: 1640 display_name: "Nerodia cyclopion" } item { name: "29328" id: 1641 display_name: "Nerodia erythrogaster" } item { name: "53905" id: 1642 display_name: "Mantis religiosa" } item { name: "4754" id: 1643 display_name: "Ephippiorhynchus senegalensis" } item { name: "127635" id: 1644 display_name: "Plecia nearctica" } item { name: "4756" id: 1645 display_name: "Cathartes aura" } item { name: "29334" id: 1646 display_name: "Nerodia erythrogaster flavigaster" } item { name: "12951" id: 1647 display_name: "Myadestes townsendi" } item { name: "4761" id: 1648 display_name: "Cathartes burrovianus" } item { name: "4763" id: 1649 display_name: "Sarcoramphus papa" } item { name: "4765" id: 1650 display_name: "Coragyps atratus" } item { name: "19890" id: 1651 display_name: "Strix nebulosa" } item { name: "26736" id: 1652 display_name: "Ambystoma opacum" } item { name: "66331" id: 1653 display_name: "Pelophylax perezi" } item { name: "4776" id: 1654 display_name: "Anastomus lamelligerus" } item { name: "4892" id: 1655 display_name: "Pluvialis squatarola" } item { name: "4778" id: 1656 display_name: "Gymnogyps californianus" } item { name: "12971" id: 1657 display_name: "Muscicapa striata" } item { name: "56776" id: 1658 display_name: "Glaucopsyche lygdamus" } item { name: "127669" id: 1659 display_name: "Jadera haematoloma" } item { name: "4793" id: 1660 display_name: "Charadrius vociferus" } item { name: "209594" id: 1661 display_name: "Scantius aegyptius" } item { name: "4795" id: 1662 display_name: "Charadrius wilsonia" } item { name: "48586" id: 1663 display_name: "Cepaea nemoralis" } item { name: "4798" id: 1664 display_name: "Charadrius melodus" } item { name: "12992" id: 1665 display_name: "Phoenicurus phoenicurus" } item { name: "45763" id: 1666 display_name: "Ondatra zibethicus" } item { name: "119492" id: 1667 display_name: "Smerinthus cerisyi" } item { name: "13000" id: 1668 display_name: "Phoenicurus ochruros" } item { name: "4811" id: 1669 display_name: "Charadrius dubius" } item { name: "64973" id: 1670 display_name: "Anaxyrus cognatus" } item { name: "2168" id: 1671 display_name: "Eumomota superciliosa" } item { name: "6980" id: 1672 display_name: "Anas querquedula" } item { name: "64975" id: 1673 display_name: "Anaxyrus debilis" } item { name: "43130" id: 1674 display_name: "Lepus californicus" } item { name: "67707" id: 1675 display_name: "Argiope aurantia" } item { name: "4836" id: 1676 display_name: "Himantopus mexicanus" } item { name: "4838" id: 1677 display_name: "Haematopus bachmani" } item { name: "43132" id: 1678 display_name: "Lepus americanus" } item { name: "144106" id: 1679 display_name: "Pica pica" } item { name: "4843" id: 1680 display_name: "Haematopus ostralegus" } item { name: "67709" id: 1681 display_name: "Antrodiaetus riversi" } item { name: "4848" id: 1682 display_name: "Haematopus unicolor" } item { name: "4857" id: 1683 display_name: "Vanellus vanellus" } item { name: "29435" id: 1684 display_name: "Coluber flagellum testaceus" } item { name: "119550" id: 1685 display_name: "Feltia jaculifera" } item { name: "4866" id: 1686 display_name: "Vanellus spinosus" } item { name: "4870" id: 1687 display_name: "Vanellus armatus" } item { name: "54024" id: 1688 display_name: "Satyrium californica" } item { name: "13071" id: 1689 display_name: "Luscinia svecica" } item { name: "3544" id: 1690 display_name: "Columbina inca" } item { name: "4883" id: 1691 display_name: "Recurvirostra avosetta" } item { name: "204701" id: 1692 display_name: "Melanchra adjuncta" } item { name: "56083" id: 1693 display_name: "Armadillidium vulgare" } item { name: "981" id: 1694 display_name: "Phasianus colchicus" } item { name: "4893" id: 1695 display_name: "Pluvialis dominica" } item { name: "103200" id: 1696 display_name: "Hypsiglena jani" } item { name: "127777" id: 1697 display_name: "Vespula vulgaris" } item { name: "7643" id: 1698 display_name: "Cinclus mexicanus" } item { name: "13094" id: 1699 display_name: "Erithacus rubecula" } item { name: "41777" id: 1700 display_name: "Lontra canadensis" } item { name: "64988" id: 1701 display_name: "Anaxyrus terrestris" } item { name: "18167" id: 1702 display_name: "Melanerpes aurifrons" } item { name: "54064" id: 1703 display_name: "Polygonia comma" } item { name: "209713" id: 1704 display_name: "Phigalia titea" } item { name: "54068" id: 1705 display_name: "Boloria selene" } item { name: "104585" id: 1706 display_name: "Libellula semifasciata" } item { name: "119608" id: 1707 display_name: "Theba pisana" } item { name: "4801" id: 1708 display_name: "Charadrius hiaticula" } item { name: "104586" id: 1709 display_name: "Libellula vibrans" } item { name: "4935" id: 1710 display_name: "Egretta gularis" } item { name: "4937" id: 1711 display_name: "Egretta caerulea" } item { name: "4938" id: 1712 display_name: "Egretta tricolor" } item { name: "4940" id: 1713 display_name: "Egretta thula" } item { name: "340813" id: 1714 display_name: "Hyalymenus tarsatus" } item { name: "4943" id: 1715 display_name: "Egretta garzetta" } item { name: "4947" id: 1716 display_name: "Egretta sacra" } item { name: "13141" id: 1717 display_name: "Monticola solitarius" } item { name: "4952" id: 1718 display_name: "Ardea cocoi" } item { name: "4954" id: 1719 display_name: "Ardea cinerea" } item { name: "67727" id: 1720 display_name: "Aeshna umbrosa" } item { name: "4956" id: 1721 display_name: "Ardea herodias" } item { name: "144223" id: 1722 display_name: "Chlosyne theona" } item { name: "201568" id: 1723 display_name: "Diabrotica undecimpunctata undecimpunctata" } item { name: "47383" id: 1724 display_name: "Latrodectus geometricus" } item { name: "119664" id: 1725 display_name: "Cacyreus marshalli" } item { name: "62321" id: 1726 display_name: "Rutpela maculata" } item { name: "217970" id: 1727 display_name: "Cyclophora pendulinaria" } item { name: "4981" id: 1728 display_name: "Nycticorax nycticorax" } item { name: "12714" id: 1729 display_name: "Turdus rufopalliatus" } item { name: "4994" id: 1730 display_name: "Ardeola ralloides" } item { name: "4999" id: 1731 display_name: "Nyctanassa violacea" } item { name: "37769" id: 1732 display_name: "Plestiodon skiltonianus" } item { name: "213826" id: 1733 display_name: "Apamea amputatrix" } item { name: "67736" id: 1734 display_name: "Rhionaeschna californica" } item { name: "155380" id: 1735 display_name: "Andricus crystallinus" } item { name: "144280" id: 1736 display_name: "Aramides cajaneus" } item { name: "5017" id: 1737 display_name: "Bubulcus ibis" } item { name: "5020" id: 1738 display_name: "Butorides virescens" } item { name: "144285" id: 1739 display_name: "Porphyrio martinicus" } item { name: "81729" id: 1740 display_name: "Feniseca tarquinius" } item { name: "127905" id: 1741 display_name: "Bombus ternarius" } item { name: "5034" id: 1742 display_name: "Botaurus lentiginosus" } item { name: "29330" id: 1743 display_name: "Nerodia erythrogaster transversa" } item { name: "5036" id: 1744 display_name: "Cochlearius cochlearius" } item { name: "46001" id: 1745 display_name: "Sciurus vulgaris" } item { name: "46005" id: 1746 display_name: "Sciurus variegatoides" } item { name: "127928" id: 1747 display_name: "Autochton cellus" } item { name: "340923" id: 1748 display_name: "Scolypopa australis" } item { name: "46017" id: 1749 display_name: "Sciurus carolinensis" } item { name: "46018" id: 1750 display_name: "Sciurus aberti" } item { name: "447427" id: 1751 display_name: "Neverita lewisii" } item { name: "46020" id: 1752 display_name: "Sciurus niger" } item { name: "5061" id: 1753 display_name: "Anhinga novaehollandiae" } item { name: "46023" id: 1754 display_name: "Sciurus griseus" } item { name: "122375" id: 1755 display_name: "Carterocephalus palaemon" } item { name: "5066" id: 1756 display_name: "Anhinga rufa" } item { name: "145289" id: 1757 display_name: "Melozone fusca" } item { name: "5074" id: 1758 display_name: "Aquila chrysaetos" } item { name: "49998" id: 1759 display_name: "Thamnophis sirtalis infernalis" } item { name: "13270" id: 1760 display_name: "Hylocichla mustelina" } item { name: "62423" id: 1761 display_name: "Cimbex americana" } item { name: "62424" id: 1762 display_name: "Sitochroa palealis" } item { name: "111578" id: 1763 display_name: "Regina grahamii" } item { name: "144207" id: 1764 display_name: "Aphelocoma wollweberi" } item { name: "62429" id: 1765 display_name: "Pyronia tithonus" } item { name: "47934" id: 1766 display_name: "Libellula luctuosa" } item { name: "50000" id: 1767 display_name: "Clemmys guttata" } item { name: "5097" id: 1768 display_name: "Accipiter striatus" } item { name: "119789" id: 1769 display_name: "Cisseps fulvicollis" } item { name: "5106" id: 1770 display_name: "Accipiter nisus" } item { name: "5108" id: 1771 display_name: "Accipiter gentilis" } item { name: "62456" id: 1772 display_name: "Rhagonycha fulva" } item { name: "4948" id: 1773 display_name: "Egretta rufescens" } item { name: "46082" id: 1774 display_name: "Marmota marmota" } item { name: "6990" id: 1775 display_name: "Bucephala clangula" } item { name: "4535" id: 1776 display_name: "Anous stolidus" } item { name: "46087" id: 1777 display_name: "Marmota caligata" } item { name: "72458" id: 1778 display_name: "Actitis macularius" } item { name: "4951" id: 1779 display_name: "Ardea purpurea" } item { name: "128012" id: 1780 display_name: "Eumorpha fasciatus" } item { name: "472078" id: 1781 display_name: "Todiramphus chloris" } item { name: "46095" id: 1782 display_name: "Marmota monax" } item { name: "34" id: 1783 display_name: "Grus americana" } item { name: "4835" id: 1784 display_name: "Himantopus himantopus" } item { name: "122374" id: 1785 display_name: "Eurema mexicana" } item { name: "19812" id: 1786 display_name: "Glaucidium gnoma" } item { name: "73823" id: 1787 display_name: "Hierophis viridiflavus" } item { name: "5168" id: 1788 display_name: "Circus approximans" } item { name: "143110" id: 1789 display_name: "Hypagyrtis unipunctata" } item { name: "65976" id: 1790 display_name: "Lithobates blairi" } item { name: "5173" id: 1791 display_name: "Circus aeruginosus" } item { name: "54327" id: 1792 display_name: "Vespa crabro" } item { name: "4273" id: 1793 display_name: "Phalacrocorax sulcirostris" } item { name: "5180" id: 1794 display_name: "Buteo albonotatus" } item { name: "103485" id: 1795 display_name: "Ischnura denticollis" } item { name: "62528" id: 1796 display_name: "Butorides striata" } item { name: "62529" id: 1797 display_name: "Platalea ajaja" } item { name: "5186" id: 1798 display_name: "Buteo brachyurus" } item { name: "103494" id: 1799 display_name: "Ischnura hastata" } item { name: "144455" id: 1800 display_name: "Ardea alba" } item { name: "103497" id: 1801 display_name: "Ischnura perparva" } item { name: "103498" id: 1802 display_name: "Ischnura posita" } item { name: "5196" id: 1803 display_name: "Buteo swainsoni" } item { name: "128079" id: 1804 display_name: "Grammia ornata" } item { name: "29777" id: 1805 display_name: "Lampropeltis triangulum" } item { name: "867" id: 1806 display_name: "Alectoris rufa" } item { name: "5206" id: 1807 display_name: "Buteo lineatus" } item { name: "29783" id: 1808 display_name: "Lampropeltis triangulum triangulum" } item { name: "122383" id: 1809 display_name: "Plebejus melissa" } item { name: "5212" id: 1810 display_name: "Buteo jamaicensis" } item { name: "81495" id: 1811 display_name: "Libellula pulchella" } item { name: "35003" id: 1812 display_name: "Heloderma suspectum" } item { name: "46180" id: 1813 display_name: "Cynomys gunnisoni" } item { name: "144485" id: 1814 display_name: "Charadrius nivosus" } item { name: "144490" id: 1815 display_name: "Tringa incana" } item { name: "144491" id: 1816 display_name: "Tringa semipalmata" } item { name: "25185" id: 1817 display_name: "Hypopachus variolosus" } item { name: "5231" id: 1818 display_name: "Terathopius ecaudatus" } item { name: "144496" id: 1819 display_name: "Gallinago delicata" } item { name: "5233" id: 1820 display_name: "Buteogallus anthracinus" } item { name: "211035" id: 1821 display_name: "Speranza pustularia" } item { name: "29813" id: 1822 display_name: "Lampropeltis getula" } item { name: "144502" id: 1823 display_name: "Chroicocephalus philadelphia" } item { name: "5242" id: 1824 display_name: "Circaetus gallicus" } item { name: "144507" id: 1825 display_name: "Chroicocephalus novaehollandiae" } item { name: "144510" id: 1826 display_name: "Chroicocephalus ridibundus" } item { name: "52757" id: 1827 display_name: "Polistes fuscatus" } item { name: "144514" id: 1828 display_name: "Leucophaeus atricilla" } item { name: "144515" id: 1829 display_name: "Leucophaeus pipixcan" } item { name: "46217" id: 1830 display_name: "Tamias striatus" } item { name: "144525" id: 1831 display_name: "Onychoprion fuscatus" } item { name: "46222" id: 1832 display_name: "Tamias minimus" } item { name: "144530" id: 1833 display_name: "Sternula antillarum" } item { name: "46230" id: 1834 display_name: "Tamias merriami" } item { name: "144537" id: 1835 display_name: "Hydroprogne caspia" } item { name: "144539" id: 1836 display_name: "Thalasseus maximus" } item { name: "144540" id: 1837 display_name: "Thalasseus bergii" } item { name: "5277" id: 1838 display_name: "Elanus leucurus" } item { name: "324766" id: 1839 display_name: "Epicallima argenticinctella" } item { name: "72486" id: 1840 display_name: "Alopochen aegyptiaca" } item { name: "62229" id: 1841 display_name: "Ischnura cervula" } item { name: "144550" id: 1842 display_name: "Streptopelia senegalensis" } item { name: "46256" id: 1843 display_name: "Ammospermophilus harrisii" } item { name: "94559" id: 1844 display_name: "Argia nahuana" } item { name: "46259" id: 1845 display_name: "Tamiasciurus douglasii" } item { name: "46260" id: 1846 display_name: "Tamiasciurus hudsonicus" } item { name: "119989" id: 1847 display_name: "Stagmomantis carolina" } item { name: "13494" id: 1848 display_name: "Gerygone igata" } item { name: "5305" id: 1849 display_name: "Haliaeetus leucocephalus" } item { name: "7596" id: 1850 display_name: "Cistothorus platensis" } item { name: "5308" id: 1851 display_name: "Haliaeetus vocifer" } item { name: "218301" id: 1852 display_name: "Diacme elealis" } item { name: "95422" id: 1853 display_name: "Basiaeschna janata" } item { name: "46272" id: 1854 display_name: "Glaucomys volans" } item { name: "120010" id: 1855 display_name: "Polistes metricus" } item { name: "144594" id: 1856 display_name: "Bubo scandiacus" } item { name: "52771" id: 1857 display_name: "Gonepteryx rhamni" } item { name: "144597" id: 1858 display_name: "Ciccaba virgata" } item { name: "890" id: 1859 display_name: "Bonasa umbellus" } item { name: "52773" id: 1860 display_name: "Poanes zabulon" } item { name: "120033" id: 1861 display_name: "Lapara bombycoides" } item { name: "5346" id: 1862 display_name: "Busarellus nigricollis" } item { name: "5349" id: 1863 display_name: "Rostrhamus sociabilis" } item { name: "36391" id: 1864 display_name: "Anolis equestris" } item { name: "46316" id: 1865 display_name: "Trichechus manatus" } item { name: "5267" id: 1866 display_name: "Milvus milvus" } item { name: "128241" id: 1867 display_name: "Darapsa choerilus" } item { name: "128242" id: 1868 display_name: "Palthis angulalis" } item { name: "5366" id: 1869 display_name: "Gyps fulvus" } item { name: "204512" id: 1870 display_name: "Ficedula hypoleuca" } item { name: "54526" id: 1871 display_name: "Crassadoma gigantea" } item { name: "144642" id: 1872 display_name: "Momotus coeruliceps" } item { name: "120070" id: 1873 display_name: "Strongylocentrotus droebachiensis" } item { name: "54538" id: 1874 display_name: "Syngnathus leptorhynchus" } item { name: "81746" id: 1875 display_name: "Necrophila americana" } item { name: "300301" id: 1876 display_name: "Pseudomyrmex gracilis" } item { name: "202003" id: 1877 display_name: "Apiomerus spissipes" } item { name: "41860" id: 1878 display_name: "Enhydra lutris" } item { name: "4817" id: 1879 display_name: "Charadrius semipalmatus" } item { name: "36145" id: 1880 display_name: "Sceloporus variabilis" } item { name: "202012" id: 1881 display_name: "Steatoda capensis" } item { name: "62749" id: 1882 display_name: "Iphiclides podalirius" } item { name: "5406" id: 1883 display_name: "Haliastur indus" } item { name: "62751" id: 1884 display_name: "Andricus kingi" } item { name: "5363" id: 1885 display_name: "Gyps africanus" } item { name: "5416" id: 1886 display_name: "Ictinia mississippiensis" } item { name: "62766" id: 1887 display_name: "Issoria lathonia" } item { name: "62768" id: 1888 display_name: "Scolia dubia" } item { name: "126206" id: 1889 display_name: "Dissosteira carolina" } item { name: "269875" id: 1890 display_name: "Mallodon dasystomus" } item { name: "155030" id: 1891 display_name: "Limenitis reducta" } item { name: "62345" id: 1892 display_name: "Duttaphrynus melanostictus" } item { name: "52519" id: 1893 display_name: "Aeshna cyanea" } item { name: "10001" id: 1894 display_name: "Dives dives" } item { name: "460365" id: 1895 display_name: "Tegula funebralis" } item { name: "13631" id: 1896 display_name: "Baeolophus atricristatus" } item { name: "13632" id: 1897 display_name: "Baeolophus bicolor" } item { name: "13633" id: 1898 display_name: "Baeolophus inornatus" } item { name: "9100" id: 1899 display_name: "Melospiza melodia" } item { name: "62796" id: 1900 display_name: "Crotaphytus bicinctores" } item { name: "62797" id: 1901 display_name: "Gambelia wislizenii" } item { name: "46009" id: 1902 display_name: "Sciurus aureogaster" } item { name: "112867" id: 1903 display_name: "Sparisoma viride" } item { name: "70997" id: 1904 display_name: "Pelecinus polyturator" } item { name: "62806" id: 1905 display_name: "Mytilus californianus" } item { name: "120156" id: 1906 display_name: "Musca domestica" } item { name: "136548" id: 1907 display_name: "Euclea delphinii" } item { name: "50065" id: 1908 display_name: "Danaus eresimus" } item { name: "43239" id: 1909 display_name: "Tachyglossus aculeatus" } item { name: "145303" id: 1910 display_name: "Spinus spinus" } item { name: "120183" id: 1911 display_name: "Araneus marmoreus" } item { name: "71032" id: 1912 display_name: "Crotalus scutulatus scutulatus" } item { name: "71034" id: 1913 display_name: "Tenodera sinensis" } item { name: "143121" id: 1914 display_name: "Ochropleura implecta" } item { name: "13695" id: 1915 display_name: "Motacilla alba" } item { name: "7458" id: 1916 display_name: "Certhia americana" } item { name: "38293" id: 1917 display_name: "Lampropholis delicata" } item { name: "144281" id: 1918 display_name: "Bucorvus leadbeateri" } item { name: "120217" id: 1919 display_name: "Halysidota tessellaris" } item { name: "226718" id: 1920 display_name: "Otiorhynchus sulcatus" } item { name: "464287" id: 1921 display_name: "Anteaeolidiella oliviae" } item { name: "226720" id: 1922 display_name: "Oxychilus draparnaudi" } item { name: "13729" id: 1923 display_name: "Anthus pratensis" } item { name: "13732" id: 1924 display_name: "Anthus rubescens" } item { name: "11930" id: 1925 display_name: "Tachycineta albilinea" } item { name: "71085" id: 1926 display_name: "Varanus niloticus" } item { name: "144814" id: 1927 display_name: "Poecile carolinensis" } item { name: "144815" id: 1928 display_name: "Poecile atricapillus" } item { name: "144816" id: 1929 display_name: "Poecile gambeli" } item { name: "144820" id: 1930 display_name: "Poecile rufescens" } item { name: "144823" id: 1931 display_name: "Periparus ater" } item { name: "10485" id: 1932 display_name: "Chlorophanes spiza" } item { name: "40523" id: 1933 display_name: "Lasiurus cinereus" } item { name: "47719" id: 1934 display_name: "Datana ministra" } item { name: "13770" id: 1935 display_name: "Estrilda astrild" } item { name: "144849" id: 1936 display_name: "Cyanistes caeruleus" } item { name: "218587" id: 1937 display_name: "Discus rotundatus" } item { name: "47105" id: 1938 display_name: "Tamandua mexicana" } item { name: "18463" id: 1939 display_name: "Sphyrapicus varius" } item { name: "11858" id: 1940 display_name: "Petrochelidon pyrrhonota" } item { name: "144882" id: 1941 display_name: "Troglodytes pacificus" } item { name: "144883" id: 1942 display_name: "Troglodytes hiemalis" } item { name: "153076" id: 1943 display_name: "Nephelodes minians" } item { name: "62978" id: 1944 display_name: "Chlosyne nycteis" } item { name: "128517" id: 1945 display_name: "Catocala ilia" } item { name: "153102" id: 1946 display_name: "Dysphania militaris" } item { name: "59651" id: 1947 display_name: "Aquarius remigis" } item { name: "13851" id: 1948 display_name: "Passer montanus" } item { name: "13858" id: 1949 display_name: "Passer domesticus" } item { name: "39742" id: 1950 display_name: "Kinosternon flavescens" } item { name: "506118" id: 1951 display_name: "Aphelocoma californica" } item { name: "5672" id: 1952 display_name: "Amazilia yucatanensis" } item { name: "5676" id: 1953 display_name: "Amazilia tzacatl" } item { name: "204503" id: 1954 display_name: "Dicrurus adsimilis" } item { name: "52785" id: 1955 display_name: "Megachile sculpturalis" } item { name: "126905" id: 1956 display_name: "Harrisina americana" } item { name: "55773" id: 1957 display_name: "Promachus hinei" } item { name: "84752" id: 1958 display_name: "Microcentrum rhombifolium" } item { name: "5698" id: 1959 display_name: "Amazilia violiceps" } item { name: "145539" id: 1960 display_name: "Ovis canadensis nelsoni" } item { name: "104004" id: 1961 display_name: "Lampropeltis splendida" } item { name: "13893" id: 1962 display_name: "Lonchura punctulata" } item { name: "63048" id: 1963 display_name: "Nuttallina californica" } item { name: "226901" id: 1964 display_name: "Panopoda rufimargo" } item { name: "194134" id: 1965 display_name: "Anthanassa tulcis" } item { name: "5049" id: 1966 display_name: "Tigrisoma mexicanum" } item { name: "407130" id: 1967 display_name: "Porphyrio melanotus melanotus" } item { name: "226910" id: 1968 display_name: "Panthea furcilla" } item { name: "130661" id: 1969 display_name: "Catasticta nimbice" } item { name: "120215" id: 1970 display_name: "Bombus griseocollis" } item { name: "144220" id: 1971 display_name: "Melanitta americana" } item { name: "9148" id: 1972 display_name: "Spizella pallida" } item { name: "320610" id: 1973 display_name: "Sceloporus magister" } item { name: "54900" id: 1974 display_name: "Papilio polyxenes asterius" } item { name: "36080" id: 1975 display_name: "Callisaurus draconoides" } item { name: "5758" id: 1976 display_name: "Amazilia rutila" } item { name: "3465" id: 1977 display_name: "Zenaida aurita" } item { name: "116461" id: 1978 display_name: "Anolis sagrei" } item { name: "61295" id: 1979 display_name: "Aporia crataegi" } item { name: "131673" id: 1980 display_name: "Tetracis cachexiata" } item { name: "63113" id: 1981 display_name: "Blarina brevicauda" } item { name: "26904" id: 1982 display_name: "Coronella austriaca" } item { name: "94575" id: 1983 display_name: "Argia tibialis" } item { name: "237166" id: 1984 display_name: "Lycaena phlaeas hypophlaeas" } item { name: "129305" id: 1985 display_name: "Melanoplus bivittatus" } item { name: "63128" id: 1986 display_name: "Speyeria atlantis" } item { name: "113514" id: 1987 display_name: "Sympetrum internum" } item { name: "48757" id: 1988 display_name: "Echinothrix calamaris" } item { name: "128670" id: 1989 display_name: "Bombus vagans" } item { name: "13988" id: 1990 display_name: "Prunella modularis" } item { name: "54951" id: 1991 display_name: "Anartia fatima" } item { name: "54952" id: 1992 display_name: "Cardisoma guanhumi" } item { name: "325295" id: 1993 display_name: "Cydalima perspectalis" } item { name: "63160" id: 1994 display_name: "Celithemis elisa" } item { name: "210615" id: 1995 display_name: "Pyrausta volupialis" } item { name: "472766" id: 1996 display_name: "Falco tinnunculus" } item { name: "29927" id: 1997 display_name: "Heterodon nasicus" } item { name: "145088" id: 1998 display_name: "Ixoreus naevius" } item { name: "6432" id: 1999 display_name: "Archilochus colubris" } item { name: "5827" id: 2000 display_name: "Lampornis clemenciae" } item { name: "15990" id: 2001 display_name: "Myiarchus tuberculifer" } item { name: "128712" id: 2002 display_name: "Coccinella californica" } item { name: "67559" id: 2003 display_name: "Adelpha eulalia" } item { name: "128719" id: 2004 display_name: "Echinometra mathaei" } item { name: "10247" id: 2005 display_name: "Setophaga ruticilla" } item { name: "202451" id: 2006 display_name: "Copaeodes minima" } item { name: "95958" id: 2007 display_name: "Boyeria vinosa" } item { name: "16016" id: 2008 display_name: "Myiarchus tyrannulus" } item { name: "36202" id: 2009 display_name: "Sceloporus olivaceus" } item { name: "95982" id: 2010 display_name: "Brachymesia furcata" } item { name: "126589" id: 2011 display_name: "Calycopis isobeon" } item { name: "120578" id: 2012 display_name: "Micrathena sagittata" } item { name: "194690" id: 2013 display_name: "Pogonomyrmex barbatus" } item { name: "120583" id: 2014 display_name: "Parasteatoda tepidariorum" } item { name: "202505" id: 2015 display_name: "Zosterops lateralis" } item { name: "38671" id: 2016 display_name: "Aspidoscelis tigris" } item { name: "38672" id: 2017 display_name: "Aspidoscelis tigris stejnegeri" } item { name: "9176" id: 2018 display_name: "Zonotrichia leucophrys" } item { name: "120596" id: 2019 display_name: "Aphonopelma hentzi" } item { name: "9744" id: 2020 display_name: "Agelaius phoeniceus" } item { name: "38684" id: 2021 display_name: "Aspidoscelis tigris mundus" } item { name: "62426" id: 2022 display_name: "Aphantopus hyperantus" } item { name: "30494" id: 2023 display_name: "Micrurus tener" } item { name: "58578" id: 2024 display_name: "Euphydryas phaeton" } item { name: "96036" id: 2025 display_name: "Brechmorhoga mendax" } item { name: "333608" id: 2026 display_name: "Leukoma staminea" } item { name: "38703" id: 2027 display_name: "Aspidoscelis sexlineata sexlineata" } item { name: "126600" id: 2028 display_name: "Chortophaga viridifasciata" } item { name: "63287" id: 2029 display_name: "Megalorchestia californiana" } item { name: "128824" id: 2030 display_name: "Lucilia sericata" } item { name: "104249" id: 2031 display_name: "Lepisosteus oculatus" } item { name: "203153" id: 2032 display_name: "Parus major" } item { name: "9183" id: 2033 display_name: "Zonotrichia capensis" } item { name: "82201" id: 2034 display_name: "Hypena baltimoralis" } item { name: "145217" id: 2035 display_name: "Oreothlypis peregrina" } item { name: "145218" id: 2036 display_name: "Oreothlypis celata" } item { name: "145221" id: 2037 display_name: "Oreothlypis ruficapilla" } item { name: "145224" id: 2038 display_name: "Geothlypis philadelphia" } item { name: "145225" id: 2039 display_name: "Geothlypis formosa" } item { name: "448331" id: 2040 display_name: "Ambigolimax valentianus" } item { name: "128845" id: 2041 display_name: "Copestylum mexicanum" } item { name: "145231" id: 2042 display_name: "Setophaga tigrina" } item { name: "145233" id: 2043 display_name: "Setophaga americana" } item { name: "145235" id: 2044 display_name: "Setophaga magnolia" } item { name: "145236" id: 2045 display_name: "Setophaga castanea" } item { name: "145237" id: 2046 display_name: "Setophaga fusca" } item { name: "145238" id: 2047 display_name: "Setophaga petechia" } item { name: "145240" id: 2048 display_name: "Setophaga striata" } item { name: "145242" id: 2049 display_name: "Setophaga palmarum" } item { name: "179855" id: 2050 display_name: "Polites vibex" } item { name: "145244" id: 2051 display_name: "Setophaga pinus" } item { name: "145245" id: 2052 display_name: "Setophaga coronata" } item { name: "145246" id: 2053 display_name: "Setophaga dominica" } item { name: "5987" id: 2054 display_name: "Campylopterus hemileucurus" } item { name: "17382" id: 2055 display_name: "Vireo cassinii" } item { name: "145254" id: 2056 display_name: "Setophaga nigrescens" } item { name: "145255" id: 2057 display_name: "Setophaga townsendi" } item { name: "145256" id: 2058 display_name: "Setophaga occidentalis" } item { name: "145257" id: 2059 display_name: "Setophaga chrysoparia" } item { name: "145258" id: 2060 display_name: "Setophaga virens" } item { name: "48786" id: 2061 display_name: "Pollicipes polymerus" } item { name: "36207" id: 2062 display_name: "Sceloporus occidentalis longipes" } item { name: "22392" id: 2063 display_name: "Eleutherodactylus marnockii" } item { name: "22393" id: 2064 display_name: "Eleutherodactylus cystignathoides" } item { name: "145275" id: 2065 display_name: "Cardellina canadensis" } item { name: "145277" id: 2066 display_name: "Cardellina rubra" } item { name: "7829" id: 2067 display_name: "Aphelocoma coerulescens" } item { name: "41963" id: 2068 display_name: "Panthera pardus" } item { name: "142998" id: 2069 display_name: "Pyrausta acrionalis" } item { name: "18204" id: 2070 display_name: "Melanerpes erythrocephalus" } item { name: "47425" id: 2071 display_name: "Tonicella lineata" } item { name: "148460" id: 2072 display_name: "Charadra deridens" } item { name: "145291" id: 2073 display_name: "Emberiza calandra" } item { name: "52523" id: 2074 display_name: "Carcinus maenas" } item { name: "46994" id: 2075 display_name: "Scapanus latimanus" } item { name: "114314" id: 2076 display_name: "Tramea onusta" } item { name: "145300" id: 2077 display_name: "Acanthis flammea" } item { name: "63382" id: 2078 display_name: "Dermasterias imbricata" } item { name: "126772" id: 2079 display_name: "Ursus americanus californiensis" } item { name: "145304" id: 2080 display_name: "Spinus pinus" } item { name: "10294" id: 2081 display_name: "Thraupis abbas" } item { name: "145308" id: 2082 display_name: "Spinus psaltria" } item { name: "145309" id: 2083 display_name: "Spinus lawrencei" } item { name: "145310" id: 2084 display_name: "Spinus tristis" } item { name: "3739" id: 2085 display_name: "Threskiornis aethiopicus" } item { name: "47014" id: 2086 display_name: "Scalopus aquaticus" } item { name: "4566" id: 2087 display_name: "Gygis alba" } item { name: "43335" id: 2088 display_name: "Equus quagga" } item { name: "41970" id: 2089 display_name: "Panthera onca" } item { name: "128950" id: 2090 display_name: "Lycomorpha pholus" } item { name: "11935" id: 2091 display_name: "Tachycineta bicolor" } item { name: "333759" id: 2092 display_name: "Larus dominicanus dominicanus" } item { name: "143008" id: 2093 display_name: "Herpetogramma pertextalis" } item { name: "235341" id: 2094 display_name: "Coenonympha tullia california" } item { name: "44705" id: 2095 display_name: "Mus musculus" } item { name: "145352" id: 2096 display_name: "Lonchura oryzivora" } item { name: "4840" id: 2097 display_name: "Haematopus palliatus" } item { name: "244845" id: 2098 display_name: "Apiomerus californicus" } item { name: "145360" id: 2099 display_name: "Chloris chloris" } item { name: "5112" id: 2100 display_name: "Accipiter cooperii" } item { name: "30675" id: 2101 display_name: "Agkistrodon piscivorus" } item { name: "341972" id: 2102 display_name: "Crocodylus niloticus" } item { name: "30677" id: 2103 display_name: "Agkistrodon piscivorus conanti" } item { name: "30678" id: 2104 display_name: "Agkistrodon contortrix" } item { name: "52900" id: 2105 display_name: "Caenurgina crassiuscula" } item { name: "30682" id: 2106 display_name: "Agkistrodon contortrix laticinctus" } item { name: "47067" id: 2107 display_name: "Bradypus variegatus" } item { name: "55260" id: 2108 display_name: "Erythemis vesiculosa" } item { name: "17402" id: 2109 display_name: "Vireo solitarius" } item { name: "6369" id: 2110 display_name: "Selasphorus platycercus" } item { name: "104416" id: 2111 display_name: "Lestes alacer" } item { name: "128993" id: 2112 display_name: "Narceus annularus" } item { name: "104422" id: 2113 display_name: "Lestes congener" } item { name: "227307" id: 2114 display_name: "Patalene olyzonaria" } item { name: "104429" id: 2115 display_name: "Lestes dryas" } item { name: "194542" id: 2116 display_name: "Phyciodes graphica" } item { name: "52904" id: 2117 display_name: "Microcrambus elegans" } item { name: "129363" id: 2118 display_name: "Calephelis nemesis" } item { name: "144506" id: 2119 display_name: "Chroicocephalus scopulinus" } item { name: "30713" id: 2120 display_name: "Crotalus oreganus helleri" } item { name: "47101" id: 2121 display_name: "Choloepus hoffmanni" } item { name: "210942" id: 2122 display_name: "Caedicia simplex" } item { name: "30719" id: 2123 display_name: "Crotalus scutulatus" } item { name: "30724" id: 2124 display_name: "Crotalus ruber" } item { name: "47110" id: 2125 display_name: "Triopha maculata" } item { name: "4235" id: 2126 display_name: "Aechmophorus occidentalis" } item { name: "30731" id: 2127 display_name: "Crotalus molossus" } item { name: "30733" id: 2128 display_name: "Crotalus molossus nigrescens" } item { name: "30735" id: 2129 display_name: "Crotalus mitchellii" } item { name: "30740" id: 2130 display_name: "Crotalus lepidus" } item { name: "30746" id: 2131 display_name: "Crotalus horridus" } item { name: "63518" id: 2132 display_name: "Melanoplus differentialis" } item { name: "30751" id: 2133 display_name: "Crotalus cerastes" } item { name: "126640" id: 2134 display_name: "Caenurgina erechtea" } item { name: "46086" id: 2135 display_name: "Marmota flaviventris" } item { name: "194599" id: 2136 display_name: "Heliomata cycladata" } item { name: "30764" id: 2137 display_name: "Crotalus atrox" } item { name: "204520" id: 2138 display_name: "Hemiphaga novaeseelandiae" } item { name: "128141" id: 2139 display_name: "Crepidula adunca" } item { name: "121183" id: 2140 display_name: "Mythimna unipuncta" } item { name: "40827" id: 2141 display_name: "Eidolon helvum" } item { name: "4571" id: 2142 display_name: "Xema sabini" } item { name: "211007" id: 2143 display_name: "Nepytia canosaria" } item { name: "47171" id: 2144 display_name: "Flabellina iodinea" } item { name: "211012" id: 2145 display_name: "Maliattha synochitis" } item { name: "30798" id: 2146 display_name: "Bothrops asper" } item { name: "47188" id: 2147 display_name: "Pachygrapsus crassipes" } item { name: "55387" id: 2148 display_name: "Esox lucius" } item { name: "58583" id: 2149 display_name: "Limenitis arthemis arthemis" } item { name: "104548" id: 2150 display_name: "Leucorrhinia frigida" } item { name: "104550" id: 2151 display_name: "Leucorrhinia hudsonica" } item { name: "104551" id: 2152 display_name: "Leucorrhinia intacta" } item { name: "47209" id: 2153 display_name: "Hermissenda crassicornis" } item { name: "55655" id: 2154 display_name: "Lycaena phlaeas" } item { name: "202861" id: 2155 display_name: "Otala lactea" } item { name: "143037" id: 2156 display_name: "Lineodes integra" } item { name: "47219" id: 2157 display_name: "Apis mellifera" } item { name: "24254" id: 2158 display_name: "Pseudacris cadaverina" } item { name: "47226" id: 2159 display_name: "Papilio rutulus" } item { name: "104572" id: 2160 display_name: "Libellula comanche" } item { name: "104574" id: 2161 display_name: "Libellula croceipennis" } item { name: "104575" id: 2162 display_name: "Libellula cyanea" } item { name: "145538" id: 2163 display_name: "Ovis canadensis canadensis" } item { name: "104580" id: 2164 display_name: "Libellula incesta" } item { name: "24257" id: 2165 display_name: "Pseudacris streckeri" } item { name: "53866" id: 2166 display_name: "Calpodes ethlius" } item { name: "18796" id: 2167 display_name: "Ramphastos sulfuratus" } item { name: "2413" id: 2168 display_name: "Dacelo novaeguineae" } item { name: "482" id: 2169 display_name: "Fulica atra" } item { name: "47251" id: 2170 display_name: "Sphyraena barracuda" } item { name: "358549" id: 2171 display_name: "Hemaris diffinis" } item { name: "81526" id: 2172 display_name: "Crotalus viridis" } item { name: "342169" id: 2173 display_name: "Hirundo rustica erythrogaster" } item { name: "39280" id: 2174 display_name: "Leiocephalus carinatus" } item { name: "47269" id: 2175 display_name: "Dasyatis americana" } item { name: "55467" id: 2176 display_name: "Sabulodes aegrotata" } item { name: "6316" id: 2177 display_name: "Calypte costae" } item { name: "6317" id: 2178 display_name: "Calypte anna" } item { name: "47280" id: 2179 display_name: "Pterois volitans" } item { name: "81608" id: 2180 display_name: "Geukensia demissa" } item { name: "121012" id: 2181 display_name: "Euglandina rosea" } item { name: "236980" id: 2182 display_name: "Colaptes auratus cafer" } item { name: "38673" id: 2183 display_name: "Aspidoscelis tigris tigris" } item { name: "3786" id: 2184 display_name: "Sula nebouxii" } item { name: "55487" id: 2185 display_name: "Diabrotica undecimpunctata" } item { name: "243904" id: 2186 display_name: "Phrynosoma platyrhinos" } item { name: "55489" id: 2187 display_name: "Cycloneda munda" } item { name: "204491" id: 2188 display_name: "Copsychus saularis" } item { name: "55492" id: 2189 display_name: "Cycloneda polita" } item { name: "129222" id: 2190 display_name: "Heterophleps triguttaria" } item { name: "129223" id: 2191 display_name: "Pasiphila rectangulata" } item { name: "28365" id: 2192 display_name: "Thamnophis sirtalis sirtalis" } item { name: "47316" id: 2193 display_name: "Chaetodon lunula" } item { name: "6359" id: 2194 display_name: "Selasphorus sasin" } item { name: "62500" id: 2195 display_name: "Leptophobia aripa" } item { name: "6363" id: 2196 display_name: "Selasphorus rufus" } item { name: "96480" id: 2197 display_name: "Calopteryx aequabilis" } item { name: "55521" id: 2198 display_name: "Papilio eurymedon" } item { name: "6371" id: 2199 display_name: "Calothorax lucifer" } item { name: "129263" id: 2200 display_name: "Syrbula admirabilis" } item { name: "28371" id: 2201 display_name: "Thamnophis sirtalis fitchi" } item { name: "243962" id: 2202 display_name: "Charina bottae" } item { name: "145659" id: 2203 display_name: "Acronicta americana" } item { name: "14588" id: 2204 display_name: "Pycnonotus barbatus" } item { name: "480298" id: 2205 display_name: "Cornu aspersum" } item { name: "51584" id: 2206 display_name: "Melanitis leda" } item { name: "243970" id: 2207 display_name: "Larus glaucescens \303\227 occidentalis" } item { name: "55556" id: 2208 display_name: "Oncopeltus fasciatus" } item { name: "506117" id: 2209 display_name: "Aphelocoma woodhouseii" } item { name: "63750" id: 2210 display_name: "Anavitrinella pampinaria" } item { name: "30983" id: 2211 display_name: "Sistrurus miliarius" } item { name: "211210" id: 2212 display_name: "Holocnemus pluchei" } item { name: "49587" id: 2213 display_name: "Micropterus salmoides" } item { name: "6417" id: 2214 display_name: "Florisuga mellivora" } item { name: "47381" id: 2215 display_name: "Latrodectus mactans" } item { name: "47382" id: 2216 display_name: "Latrodectus hesperus" } item { name: "4851" id: 2217 display_name: "Haematopus finschi" } item { name: "51588" id: 2218 display_name: "Papilio polytes" } item { name: "144431" id: 2219 display_name: "Falcipennis canadensis" } item { name: "118490" id: 2220 display_name: "Haematopis grataria" } item { name: "6433" id: 2221 display_name: "Archilochus alexandri" } item { name: "52956" id: 2222 display_name: "Chaetodon capistratus" } item { name: "203050" id: 2223 display_name: "Junonia genoveva" } item { name: "5170" id: 2224 display_name: "Circus cyaneus" } item { name: "84332" id: 2225 display_name: "Panorpa nuptialis" } item { name: "47414" id: 2226 display_name: "Emerita analoga" } item { name: "129335" id: 2227 display_name: "Gibbifer californicus" } item { name: "55610" id: 2228 display_name: "Pyrrhocoris apterus" } item { name: "58421" id: 2229 display_name: "Phidippus johnsoni" } item { name: "208608" id: 2230 display_name: "Trachymela sloanei" } item { name: "68138" id: 2231 display_name: "Sympetrum corruptum" } item { name: "129350" id: 2232 display_name: "Photinus pyralis" } item { name: "55625" id: 2233 display_name: "Sympetrum striolatum" } item { name: "55626" id: 2234 display_name: "Pieris rapae" } item { name: "203084" id: 2235 display_name: "Ardea alba modesta" } item { name: "129362" id: 2236 display_name: "Zerene cesonia" } item { name: "55638" id: 2237 display_name: "Anania hortulata" } item { name: "148537" id: 2238 display_name: "Astraptes fulgerator" } item { name: "55640" id: 2239 display_name: "Celastrina argiolus" } item { name: "55641" id: 2240 display_name: "Polyommatus icarus" } item { name: "16028" id: 2241 display_name: "Myiarchus crinitus" } item { name: "55643" id: 2242 display_name: "Araschnia levana" } item { name: "121180" id: 2243 display_name: "Megastraea undosa" } item { name: "47454" id: 2244 display_name: "Triopha catalinae" } item { name: "28389" id: 2245 display_name: "Thamnophis ordinoides" } item { name: "68139" id: 2246 display_name: "Sympetrum vicinum" } item { name: "55651" id: 2247 display_name: "Autographa gamma" } item { name: "55653" id: 2248 display_name: "Maniola jurtina" } item { name: "84369" id: 2249 display_name: "Libellula forensis" } item { name: "47135" id: 2250 display_name: "Badumna longinqua" } item { name: "48213" id: 2251 display_name: "Ariolimax californicus" } item { name: "121196" id: 2252 display_name: "Acanthurus coeruleus" } item { name: "47469" id: 2253 display_name: "Doris montereyensis" } item { name: "5181" id: 2254 display_name: "Buteo regalis" } item { name: "47472" id: 2255 display_name: "Acanthodoris lutea" } item { name: "129415" id: 2256 display_name: "Copaeodes aurantiaca" } item { name: "47505" id: 2257 display_name: "Geitodoris heathi" } item { name: "28398" id: 2258 display_name: "Thamnophis elegans" } item { name: "6553" id: 2259 display_name: "Aeronautes saxatalis" } item { name: "47516" id: 2260 display_name: "Oncorhynchus mykiss" } item { name: "6557" id: 2261 display_name: "Chaetura vauxi" } item { name: "47518" id: 2262 display_name: "Salmo trutta" } item { name: "55711" id: 2263 display_name: "Ladona depressa" } item { name: "55719" id: 2264 display_name: "Eristalis tenax" } item { name: "6571" id: 2265 display_name: "Chaetura pelagica" } item { name: "119881" id: 2266 display_name: "Chrysochus cobaltinus" } item { name: "145239" id: 2267 display_name: "Setophaga pensylvanica" } item { name: "154043" id: 2268 display_name: "Bombus huntii" } item { name: "41955" id: 2269 display_name: "Acinonyx jubatus" } item { name: "55746" id: 2270 display_name: "Misumena vatia" } item { name: "12024" id: 2271 display_name: "Lanius ludovicianus" } item { name: "5063" id: 2272 display_name: "Anhinga anhinga" } item { name: "59892" id: 2273 display_name: "Prionus californicus" } item { name: "52986" id: 2274 display_name: "Largus californicus" } item { name: "204454" id: 2275 display_name: "Acridotheres tristis" } item { name: "14816" id: 2276 display_name: "Sitta pygmaea" } item { name: "148560" id: 2277 display_name: "Mestra amymone" } item { name: "4585" id: 2278 display_name: "Actophilornis africanus" } item { name: "47590" id: 2279 display_name: "Phloeodes diabolicus" } item { name: "14823" id: 2280 display_name: "Sitta canadensis" } item { name: "14824" id: 2281 display_name: "Sitta europaea" } item { name: "14825" id: 2282 display_name: "Sitta pusilla" } item { name: "67598" id: 2283 display_name: "Solenopsis invicta" } item { name: "6638" id: 2284 display_name: "Apus apus" } item { name: "301557" id: 2285 display_name: "Euphoria basalis" } item { name: "132070" id: 2286 display_name: "Phaneroptera nana" } item { name: "14850" id: 2287 display_name: "Sturnus vulgaris" } item { name: "62550" id: 2288 display_name: "Seiurus aurocapilla" } item { name: "64006" id: 2289 display_name: "Corbicula fluminea" } item { name: "204545" id: 2290 display_name: "Motacilla flava" } item { name: "47632" id: 2291 display_name: "Katharina tunicata" } item { name: "325309" id: 2292 display_name: "Chortophaga viridifasciata viridifasciata" } item { name: "104993" id: 2293 display_name: "Macrodiplax balteata" } item { name: "17408" id: 2294 display_name: "Vireo griseus" } item { name: "14895" id: 2295 display_name: "Toxostoma longirostre" } item { name: "47664" id: 2296 display_name: "Henricia leviuscula" } item { name: "31281" id: 2297 display_name: "Calotes versicolor" } item { name: "119086" id: 2298 display_name: "Agrius cingulata" } item { name: "3849" id: 2299 display_name: "Calidris alba" } item { name: "14906" id: 2300 display_name: "Toxostoma redivivum" } item { name: "144479" id: 2301 display_name: "Gallinula galeata" } item { name: "3850" id: 2302 display_name: "Calidris himantopus" } item { name: "117520" id: 2303 display_name: "Enhydra lutris nereis" } item { name: "51491" id: 2304 display_name: "Myliobatis californica" } item { name: "121612" id: 2305 display_name: "Estigmene acrea" } item { name: "105034" id: 2306 display_name: "Macromia illinoiensis" } item { name: "6498" id: 2307 display_name: "Eugenes fulgens" } item { name: "46179" id: 2308 display_name: "Cynomys ludovicianus" } item { name: "105049" id: 2309 display_name: "Macromia taeniolata" } item { name: "94045" id: 2310 display_name: "Anax longipes" } item { name: "143119" id: 2311 display_name: "Galgula partita" } item { name: "9317" id: 2312 display_name: "Icterus wagleri" } item { name: "122704" id: 2313 display_name: "Nucella ostrina" } item { name: "146709" id: 2314 display_name: "Grylloprociphilus imbricator" } item { name: "9318" id: 2315 display_name: "Icterus parisorum" } item { name: "85333" id: 2316 display_name: "Micrathena gracilis" } item { name: "126737" id: 2317 display_name: "Anania funebris" } item { name: "49053" id: 2318 display_name: "Cryptochiton stelleri" } item { name: "47721" id: 2319 display_name: "Parastichopus californicus" } item { name: "34050" id: 2320 display_name: "Phelsuma laticauda" } item { name: "154219" id: 2321 display_name: "Notarctia proxima" } item { name: "51781" id: 2322 display_name: "Tyria jacobaeae" } item { name: "24230" id: 2323 display_name: "Acris crepitans" } item { name: "146032" id: 2324 display_name: "Coluber flagellum" } item { name: "146033" id: 2325 display_name: "Coluber flagellum flagellum" } item { name: "244340" id: 2326 display_name: "Hordnia atropunctata" } item { name: "146037" id: 2327 display_name: "Coluber taeniatus" } item { name: "244344" id: 2328 display_name: "Scopula rubraria" } item { name: "47737" id: 2329 display_name: "Harpaphe haydeniana" } item { name: "5227" id: 2330 display_name: "Buteo platypterus" } item { name: "39556" id: 2331 display_name: "Apalone spinifera" } item { name: "39560" id: 2332 display_name: "Apalone spinifera emoryi" } item { name: "318836" id: 2333 display_name: "Gallinago gallinago" } item { name: "105098" id: 2334 display_name: "Magicicada septendecim" } item { name: "96907" id: 2335 display_name: "Celithemis fasciata" } item { name: "9325" id: 2336 display_name: "Icterus spurius" } item { name: "3864" id: 2337 display_name: "Calidris minutilla" } item { name: "14995" id: 2338 display_name: "Dumetella carolinensis" } item { name: "424597" id: 2339 display_name: "Porphyrio hochstetteri" } item { name: "47768" id: 2340 display_name: "Doriopsilla albopunctata" } item { name: "498116" id: 2341 display_name: "Aeolidia papillosa" } item { name: "244378" id: 2342 display_name: "Mallophora fautrix" } item { name: "3866" id: 2343 display_name: "Calidris fuscicollis" } item { name: "47776" id: 2344 display_name: "Ariolimax columbianus" } item { name: "144497" id: 2345 display_name: "Phalaropus tricolor" } item { name: "39824" id: 2346 display_name: "Pseudemys nelsoni" } item { name: "236979" id: 2347 display_name: "Colaptes auratus auratus" } item { name: "55990" id: 2348 display_name: "Podarcis muralis" } item { name: "244407" id: 2349 display_name: "Zelus renardii" } item { name: "47802" id: 2350 display_name: "Lymantria dispar" } item { name: "15035" id: 2351 display_name: "Melanotis caerulescens" } item { name: "51658" id: 2352 display_name: "Anthopleura artemisia" } item { name: "121534" id: 2353 display_name: "Oreta rosea" } item { name: "73504" id: 2354 display_name: "Tiaris olivaceus" } item { name: "15045" id: 2355 display_name: "Oreoscoptes montanus" } item { name: "3873" id: 2356 display_name: "Limnodromus scolopaceus" } item { name: "47673" id: 2357 display_name: "Pycnopodia helianthoides" } item { name: "47817" id: 2358 display_name: "Libellula saturata" } item { name: "56644" id: 2359 display_name: "Polygonia satyrus" } item { name: "47826" id: 2360 display_name: "Cancer productus" } item { name: "3875" id: 2361 display_name: "Tringa solitaria" } item { name: "39782" id: 2362 display_name: "Trachemys scripta" } item { name: "143140" id: 2363 display_name: "Cyllopsis gemma" } item { name: "29818" id: 2364 display_name: "Lampropeltis holbrooki" } item { name: "56293" id: 2365 display_name: "Macroglossum stellatarum" } item { name: "154340" id: 2366 display_name: "Gryllodes sigillatus" } item { name: "14801" id: 2367 display_name: "Sitta carolinensis" } item { name: "121578" id: 2368 display_name: "Ovis aries" } item { name: "3879" id: 2369 display_name: "Tringa totanus" } item { name: "6893" id: 2370 display_name: "Dendrocygna autumnalis" } item { name: "154353" id: 2371 display_name: "Sunira bicolorago" } item { name: "6898" id: 2372 display_name: "Dendrocygna viduata" } item { name: "6899" id: 2373 display_name: "Dendrocygna bicolor" } item { name: "9342" id: 2374 display_name: "Icterus abeillei" } item { name: "39670" id: 2375 display_name: "Lepidochelys olivacea" } item { name: "4867" id: 2376 display_name: "Vanellus chilensis" } item { name: "39677" id: 2377 display_name: "Dermochelys coriacea" } item { name: "113407" id: 2378 display_name: "Stylurus plagiatus" } item { name: "39682" id: 2379 display_name: "Chelydra serpentina" } item { name: "6915" id: 2380 display_name: "Cygnus buccinator" } item { name: "6916" id: 2381 display_name: "Cygnus cygnus" } item { name: "6917" id: 2382 display_name: "Cygnus columbianus" } item { name: "29825" id: 2383 display_name: "Lampropeltis calligaster calligaster" } item { name: "6921" id: 2384 display_name: "Cygnus olor" } item { name: "146186" id: 2385 display_name: "Intellagama lesueurii" } item { name: "9346" id: 2386 display_name: "Icterus galbula" } item { name: "126765" id: 2387 display_name: "Plutella xylostella" } item { name: "71154" id: 2388 display_name: "Aphis nerii" } item { name: "6930" id: 2389 display_name: "Anas platyrhynchos" } item { name: "6933" id: 2390 display_name: "Anas acuta" } item { name: "39703" id: 2391 display_name: "Sternotherus odoratus" } item { name: "6937" id: 2392 display_name: "Anas crecca" } item { name: "64287" id: 2393 display_name: "Lottia digitalis" } item { name: "6944" id: 2394 display_name: "Anas cyanoptera" } item { name: "39713" id: 2395 display_name: "Kinosternon subrubrum" } item { name: "26691" id: 2396 display_name: "Scaphiopus couchii" } item { name: "6948" id: 2397 display_name: "Anas fulvigula" } item { name: "6953" id: 2398 display_name: "Anas discors" } item { name: "47914" id: 2399 display_name: "Eumorpha pandorus" } item { name: "47916" id: 2400 display_name: "Actias luna" } item { name: "6957" id: 2401 display_name: "Anas strepera" } item { name: "47919" id: 2402 display_name: "Antheraea polyphemus" } item { name: "119953" id: 2403 display_name: "Hypoprepia fucosa" } item { name: "6961" id: 2404 display_name: "Anas clypeata" } item { name: "134119" id: 2405 display_name: "Anisomorpha buprestoides" } item { name: "51678" id: 2406 display_name: "Coenagrion puella" } item { name: "72502" id: 2407 display_name: "Anas chlorotis" } item { name: "49060" id: 2408 display_name: "Epiactis prolifera" } item { name: "42122" id: 2409 display_name: "Phacochoerus africanus" } item { name: "58507" id: 2410 display_name: "Poanes hobomok" } item { name: "121669" id: 2411 display_name: "Stenopus hispidus" } item { name: "8143" id: 2412 display_name: "Rhipidura leucophrys" } item { name: "6985" id: 2413 display_name: "Anas americana" } item { name: "6993" id: 2414 display_name: "Bucephala albeola" } item { name: "121682" id: 2415 display_name: "Tetraclita rubescens" } item { name: "6996" id: 2416 display_name: "Mergus serrator" } item { name: "113498" id: 2417 display_name: "Sympetrum ambiguum" } item { name: "39771" id: 2418 display_name: "Chrysemys picta" } item { name: "7004" id: 2419 display_name: "Mergus merganser" } item { name: "39773" id: 2420 display_name: "Chrysemys picta bellii" } item { name: "113503" id: 2421 display_name: "Sympetrum danae" } item { name: "113507" id: 2422 display_name: "Sympetrum fonscolombii" } item { name: "154469" id: 2423 display_name: "Isa textula" } item { name: "47975" id: 2424 display_name: "Argia apicalis" } item { name: "7018" id: 2425 display_name: "Anser anser" } item { name: "7019" id: 2426 display_name: "Anser albifrons" } item { name: "47980" id: 2427 display_name: "Speyeria cybele" } item { name: "58514" id: 2428 display_name: "Euphyes vestris" } item { name: "113519" id: 2429 display_name: "Sympetrum obtrusum" } item { name: "7024" id: 2430 display_name: "Somateria mollissima" } item { name: "39793" id: 2431 display_name: "Trachemys scripta scripta" } item { name: "367475" id: 2432 display_name: "Rallus obsoletus" } item { name: "121716" id: 2433 display_name: "Uresiphita reversalis" } item { name: "113525" id: 2434 display_name: "Sympetrum sanguineum" } item { name: "113526" id: 2435 display_name: "Sympetrum semicinctum" } item { name: "18921" id: 2436 display_name: "Platycercus elegans" } item { name: "7032" id: 2437 display_name: "Melanitta fusca" } item { name: "5268" id: 2438 display_name: "Milvus migrans" } item { name: "144536" id: 2439 display_name: "Gelochelidon nilotica" } item { name: "413503" id: 2440 display_name: "Ninox novaeseelandiae novaeseelandiae" } item { name: "7036" id: 2441 display_name: "Melanitta perspicillata" } item { name: "64382" id: 2442 display_name: "Lissotriton vulgaris" } item { name: "39807" id: 2443 display_name: "Terrapene ornata" } item { name: "39808" id: 2444 display_name: "Terrapene ornata luteola" } item { name: "7044" id: 2445 display_name: "Aythya collaris" } item { name: "7045" id: 2446 display_name: "Aythya ferina" } item { name: "7046" id: 2447 display_name: "Aythya fuligula" } item { name: "146314" id: 2448 display_name: "Opheodrys vernalis" } item { name: "3906" id: 2449 display_name: "Numenius americanus" } item { name: "39823" id: 2450 display_name: "Pseudemys gorzugi" } item { name: "178991" id: 2451 display_name: "Sypharochiton pelliserpentis" } item { name: "7061" id: 2452 display_name: "Chen caerulescens" } item { name: "39830" id: 2453 display_name: "Pseudemys concinna" } item { name: "127490" id: 2454 display_name: "Parrhasius m-album" } item { name: "15256" id: 2455 display_name: "Chamaea fasciata" } item { name: "39836" id: 2456 display_name: "Malaclemys terrapin" } item { name: "133764" id: 2457 display_name: "Trichopoda pennipes" } item { name: "334753" id: 2458 display_name: "Hypselonotus punctiventris" } item { name: "58611" id: 2459 display_name: "Amia calva" } item { name: "56240" id: 2460 display_name: "Argia vivida" } item { name: "7089" id: 2461 display_name: "Branta canadensis" } item { name: "146354" id: 2462 display_name: "Phrynosoma blainvillii" } item { name: "56243" id: 2463 display_name: "Plebejus acmon" } item { name: "144542" id: 2464 display_name: "Thalasseus elegans" } item { name: "121783" id: 2465 display_name: "Lithobates clamitans melanota" } item { name: "39865" id: 2466 display_name: "Glyptemys insculpta" } item { name: "39867" id: 2467 display_name: "Emys orbicularis" } item { name: "7104" id: 2468 display_name: "Branta sandvicensis" } item { name: "50336" id: 2469 display_name: "Siproeta stelenes" } item { name: "7056" id: 2470 display_name: "Aythya americana" } item { name: "7107" id: 2471 display_name: "Aix sponsa" } item { name: "7109" id: 2472 display_name: "Lophodytes cucullatus" } item { name: "7111" id: 2473 display_name: "Histrionicus histrionicus" } item { name: "367562" id: 2474 display_name: "Aratinga nenday" } item { name: "39885" id: 2475 display_name: "Emydoidea blandingii" } item { name: "367566" id: 2476 display_name: "Psittacara holochlorus" } item { name: "143181" id: 2477 display_name: "Marimatha nigrofimbria" } item { name: "7120" id: 2478 display_name: "Cairina moschata" } item { name: "7122" id: 2479 display_name: "Netta rufina" } item { name: "130003" id: 2480 display_name: "Phaeoura quernaria" } item { name: "367572" id: 2481 display_name: "Psittacara erythrogenys" } item { name: "17009" id: 2482 display_name: "Sayornis saya" } item { name: "154582" id: 2483 display_name: "Ennomos magnaria" } item { name: "58532" id: 2484 display_name: "Colias eurytheme" } item { name: "121821" id: 2485 display_name: "Sceliphron caementarium" } item { name: "48094" id: 2486 display_name: "Dryocampa rubicunda" } item { name: "7057" id: 2487 display_name: "Aythya valisineria" } item { name: "17646" id: 2488 display_name: "Picoides albolarvatus" } item { name: "201551" id: 2489 display_name: "Procyon lotor lotor" } item { name: "58534" id: 2490 display_name: "Lycaena hyllus" } item { name: "73553" id: 2491 display_name: "Vermivora cyanoptera" } item { name: "359401" id: 2492 display_name: "Exomala orientalis" } item { name: "8018" id: 2493 display_name: "Corvus caurinus" } item { name: "490478" id: 2494 display_name: "Tegula brunnea" } item { name: "20307" id: 2495 display_name: "Asio otus" } item { name: "227466" id: 2496 display_name: "Peridea ferruginea" } item { name: "122172" id: 2497 display_name: "Pyrisitia lisa" } item { name: "133631" id: 2498 display_name: "Polites peckius" } item { name: "8021" id: 2499 display_name: "Corvus brachyrhynchos" } item { name: "7170" id: 2500 display_name: "Clangula hyemalis" } item { name: "58539" id: 2501 display_name: "Satyrium calanus" } item { name: "27137" id: 2502 display_name: "Coluber constrictor" } item { name: "7176" id: 2503 display_name: "Chenonetta jubata" } item { name: "42157" id: 2504 display_name: "Giraffa camelopardalis" } item { name: "144541" id: 2505 display_name: "Thalasseus sandvicensis" } item { name: "23572" id: 2506 display_name: "Litoria aurea" } item { name: "354820" id: 2507 display_name: "Patiriella regularis" } item { name: "55887" id: 2508 display_name: "Andricus quercuscalifornicus" } item { name: "46255" id: 2509 display_name: "Ammospermophilus leucurus" } item { name: "334341" id: 2510 display_name: "Oryctolagus cuniculus domesticus" } item { name: "144560" id: 2511 display_name: "Eolophus roseicapilla" } item { name: "94043" id: 2512 display_name: "Anax imperator" } item { name: "425004" id: 2513 display_name: "Dryas iulia moderata" } item { name: "269359" id: 2514 display_name: "Cactophagus spinolae" } item { name: "72755" id: 2515 display_name: "Colaptes rubiginosus" } item { name: "319123" id: 2516 display_name: "Meleagris gallopavo silvestris" } item { name: "130846" id: 2517 display_name: "Lyssa zampa" } item { name: "203831" id: 2518 display_name: "Nemoria bistriaria" } item { name: "367678" id: 2519 display_name: "Ptiliogonys cinereus" } item { name: "5301" id: 2520 display_name: "Elanoides forficatus" } item { name: "9398" id: 2521 display_name: "Carduelis carduelis" } item { name: "143201" id: 2522 display_name: "Coryphista meadii" } item { name: "104419" id: 2523 display_name: "Lestes australis" } item { name: "367693" id: 2524 display_name: "Cassiculus melanicterus" } item { name: "143452" id: 2525 display_name: "Deidamia inscriptum" } item { name: "466003" id: 2526 display_name: "Romalea microptera" } item { name: "84494" id: 2527 display_name: "Paraphidippus aurantius" } item { name: "203866" id: 2528 display_name: "Rabdophaga strobiloides" } item { name: "72797" id: 2529 display_name: "Dendragapus fuliginosus" } item { name: "7266" id: 2530 display_name: "Psaltriparus minimus" } item { name: "120920" id: 2531 display_name: "Odocoileus virginianus clavium" } item { name: "7278" id: 2532 display_name: "Aegithalos caudatus" } item { name: "30681" id: 2533 display_name: "Agkistrodon contortrix mokasen" } item { name: "413547" id: 2534 display_name: "Zosterops lateralis lateralis" } item { name: "48262" id: 2535 display_name: "Apatelodes torrefacta" } item { name: "121993" id: 2536 display_name: "Lampides boeticus" } item { name: "48267" id: 2537 display_name: "Crotalus oreganus oreganus" } item { name: "48268" id: 2538 display_name: "Crotalus oreganus" } item { name: "147309" id: 2539 display_name: "Feltia herilis" } item { name: "146413" id: 2540 display_name: "Sceloporus consobrinus" } item { name: "326764" id: 2541 display_name: "Cyprinus carpio haematopterus" } item { name: "5315" id: 2542 display_name: "Haliaeetus leucogaster" } item { name: "4519" id: 2543 display_name: "Uria aalge" } item { name: "40085" id: 2544 display_name: "Gopherus polyphemus" } item { name: "23702" id: 2545 display_name: "Agalychnis callidryas" } item { name: "210116" id: 2546 display_name: "Tringa semipalmata inornatus" } item { name: "40092" id: 2547 display_name: "Stigmochelys pardalis" } item { name: "59931" id: 2548 display_name: "Acanthurus triostegus" } item { name: "48292" id: 2549 display_name: "Philoscia muscorum" } item { name: "146601" id: 2550 display_name: "Scolopendra heros" } item { name: "244906" id: 2551 display_name: "Panchlora nivea" } item { name: "48302" id: 2552 display_name: "Limulus polyphemus" } item { name: "180008" id: 2553 display_name: "Otospermophilus variegatus" } item { name: "7347" id: 2554 display_name: "Alauda arvensis" } item { name: "43459" id: 2555 display_name: "Macaca fascicularis" } item { name: "113846" id: 2556 display_name: "Telebasis salva" } item { name: "7356" id: 2557 display_name: "Galerida cristata" } item { name: "64705" id: 2558 display_name: "Delichon urbicum" } item { name: "145932" id: 2559 display_name: "Aspidoscelis hyperythra beldingi" } item { name: "72912" id: 2560 display_name: "Helmitheros vermivorum" } item { name: "69805" id: 2561 display_name: "Octogomphus specularis" } item { name: "129572" id: 2562 display_name: "Aphomia sociella" } item { name: "31964" id: 2563 display_name: "Barisia imbricata" } item { name: "244625" id: 2564 display_name: "Halmus chalybeus" } item { name: "58576" id: 2565 display_name: "Phyciodes cocyta" } item { name: "72931" id: 2566 display_name: "Hylocharis leucotis" } item { name: "104449" id: 2567 display_name: "Lestes rectangularis" } item { name: "14886" id: 2568 display_name: "Mimus polyglottos" } item { name: "23783" id: 2569 display_name: "Hyla versicolor" } item { name: "23784" id: 2570 display_name: "Hyla plicata" } item { name: "8575" id: 2571 display_name: "Gymnorhina tibicen" } item { name: "2599" id: 2572 display_name: "Alcedo atthis" } item { name: "61152" id: 2573 display_name: "Pyrrhosoma nymphula" } item { name: "58579" id: 2574 display_name: "Polygonia interrogationis" } item { name: "31993" id: 2575 display_name: "Ophisaurus attenuatus attenuatus" } item { name: "53985" id: 2576 display_name: "Odocoileus hemionus californicus" } item { name: "144549" id: 2577 display_name: "Streptopelia chinensis" } item { name: "105730" id: 2578 display_name: "Micrathyria hagenii" } item { name: "7428" id: 2579 display_name: "Bombycilla cedrorum" } item { name: "7429" id: 2580 display_name: "Bombycilla garrulus" } item { name: "50391" id: 2581 display_name: "Polygonia gracilis" } item { name: "7067" id: 2582 display_name: "Tadorna tadorna" } item { name: "413513" id: 2583 display_name: "Petroica australis australis" } item { name: "39469" id: 2584 display_name: "Varanus varius" } item { name: "58479" id: 2585 display_name: "Pholisora catullus" } item { name: "127929" id: 2586 display_name: "Achalarus lyciades" } item { name: "48403" id: 2587 display_name: "Gasterosteus aculeatus" } item { name: "18990" id: 2588 display_name: "Amazona autumnalis" } item { name: "1241" id: 2589 display_name: "Dendragapus obscurus" } item { name: "228634" id: 2590 display_name: "Ponometia erastrioides" } item { name: "64806" id: 2591 display_name: "Pelophylax" } item { name: "51761" id: 2592 display_name: "Hetaerina americana" } item { name: "7464" id: 2593 display_name: "Catherpes mexicanus" } item { name: "318761" id: 2594 display_name: "Sceloporus uniformis" } item { name: "7068" id: 2595 display_name: "Tadorna ferruginea" } item { name: "204077" id: 2596 display_name: "Achyra rantalis" } item { name: "7470" id: 2597 display_name: "Campylorhynchus brunneicapillus" } item { name: "32048" id: 2598 display_name: "Gerrhonotus infernalis" } item { name: "204081" id: 2599 display_name: "Pyrausta laticlavia" } item { name: "7476" id: 2600 display_name: "Campylorhynchus rufinucha" } item { name: "32055" id: 2601 display_name: "Elgaria multicarinata" } item { name: "244276" id: 2602 display_name: "Rhipidura fuliginosa" } item { name: "144187" id: 2603 display_name: "Pyrisitia proterpia" } item { name: "32059" id: 2604 display_name: "Elgaria multicarinata multicarinata" } item { name: "32061" id: 2605 display_name: "Elgaria kingii" } item { name: "146750" id: 2606 display_name: "Lascoria ambigualis" } item { name: "32064" id: 2607 display_name: "Elgaria coerulea" } item { name: "23873" id: 2608 display_name: "Hyla squirella" } item { name: "48450" id: 2609 display_name: "Peltodoris nobilis" } item { name: "64146" id: 2610 display_name: "Fissurella volcano" } item { name: "48259" id: 2611 display_name: "Pelidnota punctata" } item { name: "122185" id: 2612 display_name: "Pantherophis alleghaniensis quadrivittata" } item { name: "7498" id: 2613 display_name: "Polioptila melanura" } item { name: "56652" id: 2614 display_name: "Haliotis rufescens" } item { name: "122191" id: 2615 display_name: "Pelecanus occidentalis carolinensis" } item { name: "73041" id: 2616 display_name: "Melozone aberti" } item { name: "199381" id: 2617 display_name: "Homalodisca vitripennis" } item { name: "73044" id: 2618 display_name: "Melozone crissalis" } item { name: "83290" id: 2619 display_name: "Zanclus cornutus" } item { name: "7513" id: 2620 display_name: "Thryothorus ludovicianus" } item { name: "28559" id: 2621 display_name: "Storeria occipitomaculata occipitomaculata" } item { name: "24255" id: 2622 display_name: "Pseudacris maculata" } item { name: "130398" id: 2623 display_name: "Melanargia galathea" } item { name: "29925" id: 2624 display_name: "Heterodon platirhinos" } item { name: "48484" id: 2625 display_name: "Harmonia axyridis" } item { name: "122214" id: 2626 display_name: "Odontotaenius disjunctus" } item { name: "39484" id: 2627 display_name: "Xantusia vigilis" } item { name: "73919" id: 2628 display_name: "Podarcis sicula" } item { name: "154553" id: 2629 display_name: "Leptoglossus clypealis" } item { name: "23922" id: 2630 display_name: "Hyla intermedia" } item { name: "122228" id: 2631 display_name: "Acharia stimulea" } item { name: "108344" id: 2632 display_name: "Pantala flavescens" } item { name: "118538" id: 2633 display_name: "Cotinis nitida" } item { name: "23930" id: 2634 display_name: "Hyla chrysoscelis" } item { name: "23933" id: 2635 display_name: "Hyla arenicolor" } item { name: "122238" id: 2636 display_name: "Porcellio scaber" } item { name: "479803" id: 2637 display_name: "Dioprosopa clavata" } item { name: "5355" id: 2638 display_name: "Parabuteo unicinctus" } item { name: "146822" id: 2639 display_name: "Texola elada" } item { name: "236935" id: 2640 display_name: "Anas platyrhynchos domesticus" } item { name: "7562" id: 2641 display_name: "Troglodytes aedon" } item { name: "339444" id: 2642 display_name: "Buteo lineatus elegans" } item { name: "42221" id: 2643 display_name: "Odocoileus hemionus columbianus" } item { name: "15764" id: 2644 display_name: "Thamnophilus doliatus" } item { name: "122261" id: 2645 display_name: "Cucullia convexipennis" } item { name: "122262" id: 2646 display_name: "Brachystola magna" } item { name: "7576" id: 2647 display_name: "Thryomanes bewickii" } item { name: "143015" id: 2648 display_name: "Eubaphe mendica" } item { name: "73592" id: 2649 display_name: "Actinemys marmorata" } item { name: "84549" id: 2650 display_name: "Plathemis lydia" } item { name: "23969" id: 2651 display_name: "Hyla cinerea" } item { name: "318882" id: 2652 display_name: "Ancistrocerus gazella" } item { name: "7072" id: 2653 display_name: "Tadorna variegata" } item { name: "48548" id: 2654 display_name: "Vanessa cardui" } item { name: "48549" id: 2655 display_name: "Vanessa virginiensis" } item { name: "122278" id: 2656 display_name: "Pomacea canaliculata" } item { name: "9457" id: 2657 display_name: "Myioborus miniatus" } item { name: "122280" id: 2658 display_name: "Pyrgus albescens" } item { name: "122281" id: 2659 display_name: "Calycopis cecrops" } item { name: "130474" id: 2660 display_name: "Achlyodes pallida" } item { name: "338503" id: 2661 display_name: "Phalacrocorax varius varius" } item { name: "9458" id: 2662 display_name: "Myioborus pictus" } item { name: "73629" id: 2663 display_name: "Anolis nebulosus" } item { name: "122291" id: 2664 display_name: "Larus argentatus smithsonianus" } item { name: "56756" id: 2665 display_name: "Murgantia histrionica" } item { name: "73148" id: 2666 display_name: "Parkesia motacilla" } item { name: "48575" id: 2667 display_name: "Okenia rosacea" } item { name: "56768" id: 2668 display_name: "Sula granti" } item { name: "48578" id: 2669 display_name: "Anteos maerula" } item { name: "64968" id: 2670 display_name: "Anaxyrus americanus" } item { name: "64970" id: 2671 display_name: "Anaxyrus boreas" } item { name: "115549" id: 2672 display_name: "Crotalus lepidus lepidus" } item { name: "64977" id: 2673 display_name: "Anaxyrus fowleri" } item { name: "19022" id: 2674 display_name: "Ara macao" } item { name: "24259" id: 2675 display_name: "Pseudacris regilla" } item { name: "64984" id: 2676 display_name: "Anaxyrus punctatus" } item { name: "64985" id: 2677 display_name: "Anaxyrus quercicus" } item { name: "73178" id: 2678 display_name: "Peucaea ruficauda" } item { name: "64987" id: 2679 display_name: "Anaxyrus speciosus" } item { name: "64989" id: 2680 display_name: "Anaxyrus woodhousii" } item { name: "339596" id: 2681 display_name: "Calidris subruficollis" } item { name: "56552" id: 2682 display_name: "Carabus nemoralis" } item { name: "84722" id: 2683 display_name: "Ischnura verticalis" } item { name: "122356" id: 2684 display_name: "Eumorpha achemon" } item { name: "318965" id: 2685 display_name: "Chrysolina bankii" } item { name: "228855" id: 2686 display_name: "Protodeltote muscosula" } item { name: "146940" id: 2687 display_name: "Agriphila vulgivagella" } item { name: "56832" id: 2688 display_name: "Nymphalis antiopa" } item { name: "61355" id: 2689 display_name: "Vespula pensylvanica" } item { name: "48645" id: 2690 display_name: "Megathura crenulata" } item { name: "73222" id: 2691 display_name: "Phoenicopterus roseus" } item { name: "363354" id: 2692 display_name: "Lobatus gigas" } item { name: "3802" id: 2693 display_name: "Morus bassanus" } item { name: "62722" id: 2694 display_name: "Apalone spinifera spinifera" } item { name: "48655" id: 2695 display_name: "Aplysia californica" } item { name: "54468" id: 2696 display_name: "Aglais urticae" } item { name: "48662" id: 2697 display_name: "Danaus plexippus" } item { name: "49071" id: 2698 display_name: "Metridium senile" } item { name: "228899" id: 2699 display_name: "Psamatodes abydata" } item { name: "133102" id: 2700 display_name: "Oncometopia orbona" } item { name: "39659" id: 2701 display_name: "Chelonia mydas" } item { name: "121437" id: 2702 display_name: "Dolomedes triton" } item { name: "94545" id: 2703 display_name: "Argia fumipennis" } item { name: "56887" id: 2704 display_name: "Bombus pensylvanicus" } item { name: "40509" id: 2705 display_name: "Eptesicus fuscus" } item { name: "58635" id: 2706 display_name: "Lepomis megalotis" } item { name: "100369" id: 2707 display_name: "Erpetogomphus designatus" } item { name: "58636" id: 2708 display_name: "Lepomis cyanellus" } item { name: "40522" id: 2709 display_name: "Lasiurus borealis" } item { name: "102006" id: 2710 display_name: "Hagenius brevistylus" } item { name: "50283" id: 2711 display_name: "Marpesia petreus" } item { name: "123829" id: 2712 display_name: "Pelecanus occidentalis californicus" } item { name: "62453" id: 2713 display_name: "Anthidium manicatum" } item { name: "56925" id: 2714 display_name: "Graphocephala coccinea" } item { name: "48738" id: 2715 display_name: "Sphex pensylvanicus" } item { name: "43151" id: 2716 display_name: "Oryctolagus cuniculus" } item { name: "19822" id: 2717 display_name: "Glaucidium brasilianum" } item { name: "48750" id: 2718 display_name: "Lottia scabra" } item { name: "335071" id: 2719 display_name: "Elophila obliteralis" } item { name: "81521" id: 2720 display_name: "Vipera berus" } item { name: "43697" id: 2721 display_name: "Elephas maximus" } item { name: "7079" id: 2722 display_name: "Oxyura jamaicensis" } item { name: "43042" id: 2723 display_name: "Erinaceus europaeus" } item { name: "40086" id: 2724 display_name: "Gopherus agassizii" } item { name: "81545" id: 2725 display_name: "Lumbricus terrestris" } item { name: "16010" id: 2726 display_name: "Myiarchus cinerascens" } item { name: "2669" id: 2727 display_name: "Chloroceryle americana" } item { name: "9535" id: 2728 display_name: "Sturnella neglecta" } item { name: "81554" id: 2729 display_name: "Ictalurus punctatus" } item { name: "339907" id: 2730 display_name: "Ramphastos ambiguus" } item { name: "39814" id: 2731 display_name: "Terrapene carolina" } item { name: "10254" id: 2732 display_name: "Paroaria coronata" } item { name: "40614" id: 2733 display_name: "Antrozous pallidus" } item { name: "502385" id: 2734 display_name: "Probole amicaria" } item { name: "24233" id: 2735 display_name: "Acris gryllus" } item { name: "81579" id: 2736 display_name: "Steatoda triangulosa" } item { name: "81580" id: 2737 display_name: "Callosamia promethea" } item { name: "146034" id: 2738 display_name: "Coluber lateralis" } item { name: "81582" id: 2739 display_name: "Hyalophora cecropia" } item { name: "81583" id: 2740 display_name: "Anisota senatoria" } item { name: "66002" id: 2741 display_name: "Lithobates palustris" } item { name: "81586" id: 2742 display_name: "Citheronia regalis" } item { name: "40629" id: 2743 display_name: "Lasionycteris noctivagans" } item { name: "81590" id: 2744 display_name: "Eacles imperialis" } item { name: "204472" id: 2745 display_name: "Buteo buteo" } item { name: "65212" id: 2746 display_name: "Craugastor augusti" } item { name: "48830" id: 2747 display_name: "Patiria miniata" } item { name: "48833" id: 2748 display_name: "Pisaster giganteus" } item { name: "16071" id: 2749 display_name: "Myiodynastes luteiventris" } item { name: "81610" id: 2750 display_name: "Balanus glandula" } item { name: "24268" id: 2751 display_name: "Pseudacris crucifer" } item { name: "16079" id: 2752 display_name: "Contopus sordidulus" } item { name: "204496" id: 2753 display_name: "Corvus corone" } item { name: "204498" id: 2754 display_name: "Cyanoramphus novaezelandiae" } item { name: "24277" id: 2755 display_name: "Smilisca baudinii" } item { name: "22631" id: 2756 display_name: "Eleutherodactylus planirostris" } item { name: "16100" id: 2757 display_name: "Contopus virens" } item { name: "42278" id: 2758 display_name: "Aepyceros melampus" } item { name: "16106" id: 2759 display_name: "Contopus pertinax" } item { name: "16110" id: 2760 display_name: "Contopus cooperi" } item { name: "42280" id: 2761 display_name: "Connochaetes taurinus" } item { name: "47455" id: 2762 display_name: "Octopus rubescens" } item { name: "204533" id: 2763 display_name: "Larus argentatus" } item { name: "81656" id: 2764 display_name: "Nematocampa resistaria" } item { name: "81657" id: 2765 display_name: "Lacinipolia renigera" } item { name: "204519" id: 2766 display_name: "Halcyon smyrnensis" } item { name: "62762" id: 2767 display_name: "Cordulegaster dorsalis" } item { name: "81663" id: 2768 display_name: "Malacosoma disstria" } item { name: "32512" id: 2769 display_name: "Rena dulcis" } item { name: "81665" id: 2770 display_name: "Orgyia leucostigma" } item { name: "130821" id: 2771 display_name: "Haploa confusa" } item { name: "81672" id: 2772 display_name: "Clemensia albata" } item { name: "204554" id: 2773 display_name: "Onychognathus morio" } item { name: "81677" id: 2774 display_name: "Euchaetes egle" } item { name: "81680" id: 2775 display_name: "Scopula limboundata" } item { name: "318497" id: 2776 display_name: "Hemipenthes sinuosa" } item { name: "179987" id: 2777 display_name: "Ictidomys parvidens" } item { name: "179988" id: 2778 display_name: "Ictidomys tridecemlineatus" } item { name: "81685" id: 2779 display_name: "Evergestis pallidata" } item { name: "81687" id: 2780 display_name: "Noctua pronuba" } item { name: "179992" id: 2781 display_name: "Xerospermophilus spilosoma" } item { name: "179994" id: 2782 display_name: "Urocitellus armatus" } item { name: "9519" id: 2783 display_name: "Cyanocompsa parellina" } item { name: "179998" id: 2784 display_name: "Urocitellus columbianus" } item { name: "114463" id: 2785 display_name: "Trithemis annulata" } item { name: "199169" id: 2786 display_name: "Catocala maestosa" } item { name: "143323" id: 2787 display_name: "Tolype velleda" } item { name: "120113" id: 2788 display_name: "Anthrenus verbasci" } item { name: "7601" id: 2789 display_name: "Cistothorus palustris" } item { name: "81706" id: 2790 display_name: "Alaus oculatus" } item { name: "220974" id: 2791 display_name: "Harrisimemna trisignata" } item { name: "20445" id: 2792 display_name: "Tyto alba" } item { name: "73523" id: 2793 display_name: "Trogon caligatus" } item { name: "49590" id: 2794 display_name: "Micropterus dolomieu" } item { name: "41729" id: 2795 display_name: "Mirounga leonina" } item { name: "48957" id: 2796 display_name: "Arilus cristatus" } item { name: "81727" id: 2797 display_name: "Abaeis nicippe" } item { name: "8000" id: 2798 display_name: "Corvus monedula" } item { name: "8001" id: 2799 display_name: "Corvus ossifragus" } item { name: "171843" id: 2800 display_name: "Rabdotus dealbatus" } item { name: "81734" id: 2801 display_name: "Neophasia menapia" } item { name: "258813" id: 2802 display_name: "Clogmia albipunctata" } item { name: "332243" id: 2803 display_name: "Lepturobosca chrysocoma" } item { name: "81744" id: 2804 display_name: "Heliconius erato" } item { name: "218424" id: 2805 display_name: "Dicymolomia julianalis" } item { name: "3813" id: 2806 display_name: "Spheniscus demersus" } item { name: "81749" id: 2807 display_name: "Malacosoma americanum" } item { name: "81752" id: 2808 display_name: "Pyrausta tyralis" } item { name: "48987" id: 2809 display_name: "Hippodamia convergens" } item { name: "8029" id: 2810 display_name: "Corvus frugilegus" } item { name: "8031" id: 2811 display_name: "Corvus splendens" } item { name: "147298" id: 2812 display_name: "Lasiommata megera" } item { name: "7087" id: 2813 display_name: "Branta bernicla" } item { name: "48550" id: 2814 display_name: "Phoebis sennae" } item { name: "4349" id: 2815 display_name: "Larus hyperboreus" } item { name: "84027" id: 2816 display_name: "Trigonopeltastes delta" } item { name: "194762" id: 2817 display_name: "Vanessa itea" } item { name: "311163" id: 2818 display_name: "Pseudomops septentrionalis" } item { name: "55957" id: 2819 display_name: "Scudderia furcata" } item { name: "39822" id: 2820 display_name: "Pseudemys texana" } item { name: "204685" id: 2821 display_name: "Chlosyne ehrenbergii" } item { name: "122767" id: 2822 display_name: "Columba livia domestica" } item { name: "55960" id: 2823 display_name: "Sceloporus graciosus" } item { name: "121823" id: 2824 display_name: "Autographa californica" } item { name: "8088" id: 2825 display_name: "Garrulus glandarius" } item { name: "65433" id: 2826 display_name: "Ecnomiohyla miotympanum" } item { name: "49051" id: 2827 display_name: "Anthopleura sola" } item { name: "125815" id: 2828 display_name: "Coenonympha arcania" } item { name: "55963" id: 2829 display_name: "Malacosoma californicum" } item { name: "120479" id: 2830 display_name: "Anser anser domesticus" } item { name: "133788" id: 2831 display_name: "Xylocopa micans" } item { name: "81559" id: 2832 display_name: "Epargyreus clarus" } item { name: "81839" id: 2833 display_name: "Platycryptus undatus" } item { name: "133791" id: 2834 display_name: "Polistes exclamans" } item { name: "84640" id: 2835 display_name: "Polistes dominula" } item { name: "73666" id: 2836 display_name: "Aspidoscelis exsanguis" } item { name: "73669" id: 2837 display_name: "Aspidoscelis gularis" } item { name: "16326" id: 2838 display_name: "Mitrephanes phaeocercus" } item { name: "49095" id: 2839 display_name: "Pagurus samuelis" } item { name: "73672" id: 2840 display_name: "Aspidoscelis hyperythra" } item { name: "59192" id: 2841 display_name: "Polites sabuleti" } item { name: "81561" id: 2842 display_name: "Anaea andria" } item { name: "81881" id: 2843 display_name: "Amphipsalta zelandica" } item { name: "73690" id: 2844 display_name: "Aspidoscelis sexlineata" } item { name: "73694" id: 2845 display_name: "Aspidoscelis velox" } item { name: "335840" id: 2846 display_name: "Pyrausta inornatalis" } item { name: "49126" id: 2847 display_name: "Strongylocentrotus franciscanus" } item { name: "204775" id: 2848 display_name: "Kricogonia lyside" } item { name: "475115" id: 2849 display_name: "Ardenna creatopus" } item { name: "475120" id: 2850 display_name: "Ardenna gravis" } item { name: "62803" id: 2851 display_name: "Monadenia fidelis" } item { name: "49150" id: 2852 display_name: "Agraulis vanillae" } item { name: "83929" id: 2853 display_name: "Phanaeus vindex" } item { name: "199839" id: 2854 display_name: "Haemorhous cassinii" }
TensorFlow2/Detection/Efficientdet
Efficientdet
README
# EfficientDet-D0 For TensorFlow 2 This repository provides scripts and recipes to train and infer EfficientDet-D0 to achieve state-of-the-art accuracy and is tested and maintained by NVIDIA. ## Table Of Contents * [Model overview](#model-overview) * [Model Architecture](#model-architecture) * [Feature support matrix](#feature-support-matrix) * [Features](#features) * [Mixed precision training](#mixed-precision-training) * [Enabling mixed precision](#enabling-mixed-precision) * [Enabling TF32](#enabling-tf32) * [Setup](#setup) * [Requirements](#requirements) * [Quick start guide](#quick-start-guide) * [Advanced](#advanced) * [Command-line arguments](#command-line-arguments) * [Getting the data](#getting-the-data) * [Dataset guidelines](#dataset-guidelines) * [Training process](#training-process) * [Performance](#performance) * [Benchmarking](#benchmarking) * [Training performance benchmark](#training-performance-benchmark) * [Inference performance benchmark](#inference-performance-benchmark) * [Results](#results) * [Training accuracy results](#training-accuracy-results) * [Training accuracy: NVIDIA DGX A100 (8x A100 80GB)](#training-accuracy-nvidia-dgx-a100-8x-a100-80gb) * [Training accuracy: NVIDIA DGX-1 (8x V100 32GB)](#training-accuracy-nvidia-dgx-1-8x-v100-32gb) * [Training accuracy: NVIDIA DGX-1 (32x V100 32GB)](#training-accuracy-nvidia-dgx-1-32x-v100-32gb) * [Training loss curves](#training-loss-curves) * [Training stability test](#training-stability-test) * [Training performance results](#training-performance-results) * [Training performance: NVIDIA DGX A100 (8x A100 80GB)](#training-performance-nvidia-dgx-a100-8x-a100-80gb) * [Training performance: NVIDIA DGX-1 (8x V100 32GB)](#training-performance-nvidia-dgx-1-8x-v100-32gb) * [Inference performance results](#inference-performance-results) * [Inference performance: NVIDIA DGX A100 (1x A100 80GB)](#inference-performance-nvidia-dgx-a100-1x-a100-80gb) * [Inference performance: NVIDIA DGX-1 (1x V100 32GB)](#inference-performance-nvidia-dgx-1-1x-v100-32gb) * [Release notes](#release-notes) * [Changelog](#changelog) * [Known issues](#known-issues) ## Model overview EfficientDet is a family of convolution-based neural networks for object detection. Specifically, this repository covers model D0. This model is based on [EfficientDet: Scalable and Efficient Object Detection](https://arxiv.org/abs/1911.09070). NVIDIA's implementation of EfficientDet-D0 is an optimized version of [TensorFlow Automl](https://github.com/google/automl/tree/master/efficientdet) implementation, leveraging mixed precision arithmetic on NVIDIA Volta, NVIDIA Turing, and the NVIDIA Ampere GPU architectures for faster training times while maintaining target accuracy. The EfficientDet model covered in this repository is tested against each NGC monthly released container to ensure consistent accuracy and performance over time. The major differences between the official implementation of the paper and our version of EfficientDet are as follows: - Automatic mixed precision (AMP) training support - Multi-node training support using [Horovod](https://github.com/horovod/horovod) - XLA enabled for better performance - Lightweight logging using [dllogger](https://github.com/NVIDIA/dllogger) - [EfficientNet backbone](https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow2/Classification/ConvNets/efficientnet) implemented by NVIDIA - Use [BatchNormalization](https://www.tensorflow.org/api_docs/python/tf/keras/layers/BatchNormalization) instead of [SyncBatchNormalization](https://www.tensorflow.org/api_docs/python/tf/keras/layers/experimental/SyncBatchNormalization) for better performance These techniques/optimizations improve model performance and reduce training time, allowing you to perform more efficient object detection with no additional effort. Other publicly available implementations of EfficientDet include: - [Google's automl](https://github.com/google/automl/tree/master/efficientdet) - [PyTorch version](https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Detection/Efficientdet) ### Model architecture EfficientDet is a one-stage detector with the following architecture components: - ImageNet-pretrained EfficientNet backbone - Weighted bi-directional feature pyramid network (BiFPN) - Bounding and classification box head - A compound scaling method that uniformly scales the resolution, depth, and width for all backbone, feature network, and box/class prediction networks at the same time ### Feature support matrix The model supports the following features. | **Feature** | **EfficientDet** | |:---------:|:----------:| |Horovod Multi-GPU training (NCCL)|Yes| |Multi-GPU training|Yes| |Multi-node training|Yes| |XLA|Yes| |AMP (Automatic Mixed Precision)|Yes| #### Features Horovod is used to implement efficient multi-GPU training with NCCL. It is also used for multi-node training. For details, refer to example sources in this repository or refer to the [TensorFlow tutorial](https://github.com/horovod/horovod/#usage). AMP or Automatic Mixed Precision modifies computation graphs during runtime to support mixed precision training. A detailed explanation of mixed precision can be found below. ### Automatic Mixed Precision Mixed precision is the combined use of different numerical precisions in a computational method. [Mixed precision](https://arxiv.org/abs/1710.03740) training offers significant computational speedup by performing operations in half-precision format while storing minimal information in single-precision to retain as much information as possible in critical parts of the network. Since the introduction of [Tensor Cores](https://developer.nvidia.com/tensor-cores) in NVIDIA Volta, and following with both the NVIDIA Turing and NVIDIA Ampere Architectures, significant training speedups are experienced by switching to mixed precision -- up to 3x overall speedup on the most arithmetically intense model architectures. Using [mixed precision training](https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.html) previously required two steps: 1. Porting the model to use the FP16 data type where appropriate. 2. Adding loss scaling to preserve small gradient values. This can now be achieved using Automatic Mixed Precision (AMP) for TensorFlow to enable the full [mixed precision methodology](https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html#tensorflow) in your existing TensorFlow model code. AMP enables mixed precision training on NVIDIA Volta, NVIDIA Turing, and NVIDIA Ampere GPU architectures automatically. The TensorFlow framework code makes all necessary model changes internally. In TF-AMP, the computational graph is optimized to use as few casts as necessary and maximize the use of FP16. The loss scaling is automatically applied inside of supported optimizers. AMP can be configured to work with the existing tf.contrib loss scaling manager by disabling the AMP scaling with a single environment variable to perform only the automatic mixed-precision optimization. It accomplishes this by automatically rewriting all computation graphs with the necessary operations to enable mixed precision training and automatic loss scaling. For information about: - How to train using mixed precision, refer to the [Mixed Precision Training](https://arxiv.org/abs/1710.03740) paper and [Training With Mixed Precision](https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.html) documentation. - Techniques used for mixed precision training, refer to the [Mixed-Precision Training of Deep Neural Networks](https://devblogs.nvidia.com/mixed-precision-training-deep-neural-networks/) blog. - How to access and enable AMP for TensorFlow, refer to [Using TF-AMP](https://docs.nvidia.com/deeplearning/dgx/tensorflow-user-guide/index.html#tfamp) from the TensorFlow User Guide. #### Enabling AMP Mixed precision is enabled in TensorFlow by using the Automatic Mixed Precision (TF-AMP) extension which casts variables to half-precision upon retrieval while storing variables in single-precision format. Furthermore, to preserve small gradient magnitudes in backpropagation, a [loss scaling](https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html#lossscaling) step must be included when applying gradients. In TensorFlow, loss scaling can be applied statically by using simple multiplication of loss by a constant value or automatically, by TF-AMP. Automatic mixed precision makes all the adjustments internally in TensorFlow, providing two benefits over manual operations. First, programmers need not modify network model code, reducing development and maintenance effort. Second, using AMP maintains forward and backward compatibility with all the APIs for defining and running TensorFlow models. To enable mixed precision, you can simply add `--amp=True` to the training command. This will enable the following code: ``` policy = tf.keras.mixed_precision.experimental.Policy('mixed_float16', loss_scale='dynamic') tf.keras.mixed_precision.experimental.set_policy(policy) ``` ### TensorFloat-32 (TF32) Compute Mode TensorFloat-32 (TF32) is the new math mode in [NVIDIA A100](https://www.nvidia.com/en-us/data-center/a100/) GPUs for handling the matrix math, also called tensor operations. TF32 running on Tensor Cores in A100 GPUs can provide up to 10x speedups compared to single-precision floating-point math (FP32) on Volta GPUs. TF32 Tensor Cores can speed up networks using FP32, typically with no loss of accuracy. It is more robust than FP16 for models which require a high dynamic range for weights or activations. For more information, refer to the [TensorFloat-32 in the A100 GPU Accelerates AI Training, HPC up to 20x](https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/) blog post. TF32 is supported in the NVIDIA Ampere GPU architecture and is enabled by default. ## Setup The following sections list the requirements in order to start training the EfficientDet model. ### Requirements This repository contains a `Dockerfile` that extends the TensorFlow NGC container and encapsulates some dependencies. Aside from these dependencies, ensure you have the following components: - [NVIDIA Docker](https://github.com/NVIDIA/nvidia-docker) - [TensorFlow 22.03-tf2-py3 NGC container or later](https://ngc.nvidia.com/catalog/containers/nvidia:tensorflow) - Supported GPUs: - [NVIDIA Volta architecture: 32GB](https://www.nvidia.com/en-us/data-center/volta-gpu-architecture/) - [NVIDIA Turing architecture](https://www.nvidia.com/en-us/geforce/turing/) - [NVIDIA Ampere architecture: 80GB](https://www.nvidia.com/en-us/data-center/nvidia-ampere-gpu-architecture/) For more information about how to get started with NGC containers, refer to the following sections from the NVIDIA GPU Cloud Documentation and the Deep Learning Documentation: - [Getting Started Using NVIDIA GPU Cloud](https://docs.nvidia.com/ngc/ngc-getting-started-guide/index.html) - [Accessing And Pulling From The NGC Container Registry](https://docs.nvidia.com/deeplearning/dgx/user-guide/index.html#accessing_registry) - [Running TensorFlow](https://docs.nvidia.com/deeplearning/frameworks/tensorflow-release-notes/running.html#running) For those unable to use the TensorFlow NGC container, to set up the required environment or create your own container, refer to the versioned [NVIDIA Container Support Matrix](https://docs.nvidia.com/deeplearning/frameworks/support-matrix/index.html). For multi-node, the sample provided in this repository requires [Enroot](https://github.com/NVIDIA/enroot) and [Pyxis](https://github.com/NVIDIA/pyxis) to be set up on a [SLURM](https://slurm.schedmd.com) cluster. ## Quick Start Guide To train your model using mixed or TF32 precision with Tensor Cores or using FP32, perform the following steps using the default parameters of the EfficientDet on the COCO 2017 dataset. For the specifics concerning training and inference, refer to the [Advanced](#advanced) section. ### 1. Clone the repository ``` git clone https://github.com/NVIDIA/DeepLearningExamples.git cd DeepLearningExamples/Tensorflow2/Detection/EfficientDet ``` ### 2. Download and preprocess the dataset To download COCO 2017 images and annotations and convert them to tfrecords, run the script as follows: ```bash bash dataset/get_coco.sh ``` By default, the data is organized into the following structure: ``` </workspace/coco/> train-*****-of-00256.tfrecord val-*****-of-00032.tfrecord ``` ### 3. Build the EfficientDet PyTorch NGC container ``` bash scripts/docker/build.sh ``` ### 4. Start an interactive session in the NGC container to run training/inference After you build the container image, you can start an interactive CLI session with ``` DATA=<path to coco tfrecords> BACKBONE_CKPT=<path to pretrained efficientnet checkpoint> bash scripts/docker/interactive.sh ``` Note: The `interactive.sh` script requires the location of the dataset and the pretrained checkpoint to be passed. ### 5. Start training ``` bash ./scripts/D0/convergence-{AMP, FP32, TF32}-{8, 32}x{V100-32G, A100-80G}.sh ``` The training scripts train EfficientDet-D0 and perform an evaluation on the COCO 2017 dataset. By default, the training script runs training on standard configuration (DGX A100/DGX-1 V100, AMP/FP32/TF32, 300 epochs). Run one of the scripts in `scripts/D0` directory using `bash scripts/D0/convergence-{AMP, FP32, TF32}-{8, 32}x{V100-32G, A100-80G}.sh`. Ensure COCO-2017 tfrecords are mounted to `/workspace/coco` and EfficientNet-B0 backbone weights are mounted to `/workspace/checkpoints`. The backbone checkpoint can be downloaded from [this](https://catalog.ngc.nvidia.com/orgs/nvidia/teams/dle/models/efficientnet_tf2_savedmodel_nohead_b0_amp_cosine) location. After training, the logs are present in the model directory where the data is organized in the following structure: ``` </tmp/convergence-{AMP, FP32, TF32}-{8, 32}x{V100-32G, A100-80G}> ema_weights *contains the ema checkpoints of the model, checkpointed after every 10 epochs of training* checkpoint emackpt-10.data-00000-of-00001 emackpt-10.index emackpt-20.data-00000-of-00001 emackpt-20.index ... emackpt-300.data-00000-of-00001 emackpt-300.index emackpt-final *final savedmodel with ema weights which can be used for inference* assets variables variables.data-00000-of-00001 variables.index keras_metadata.pb saved_model.pb train *tensorboard logs* events.out.tfevents.* checkpoint ckpt.data-00000-of-00001 ckpt.index ckpt-final.data-00000-of-00001 ckpt-final.index time_log.txt *dllogger logs* train-<time_stamp>.log *training log file* ``` ### 6. Start validation/evaluation To run validation/evaluation for a standard configuration (DGX A100/DGX-1 V100, AMP/TF32/FP32, EfficientDet-D0), run one of the evaluation scripts in `scripts/D0` directory using `bash scripts/D0/evaluate-{AMP, FP32, TF32}-{8, 32}x{A100-80G, V100-32G}.sh`. The script requires: - `CKPT` is the path to the checkpoint that needs to be evaluated. For example, `CKPT=/tmp/convergence-AMP-8xA100-80G/ema_weights/emackpt-300` Evaluation command: ```bash CKPT=<path to checkpoint> bash ./scripts/D0/evaluate-{AMP, FP32, TF32}-{8, 32}x{A100-80G, V100-32G}.sh ``` Ensure COCO-2017 is mounted in `/workspace/coco`. ### 7. Inference benchmark Inference loop can be benchmarked by running the `scripts/D0/inference-benchmark.sh` script. The script requires: - batch size to use for inference `BS`. For example, `BS=128` - Boolean to enable/disable `AMP` (Automatic Mixed Precision) Inference benchmark command: ```bash BS=<batch size> AMP=<True/False for Automatic Mixed Precision> bash scripts/D0/inference-benchmark.sh ``` ### 8. Inference/Prediction Model predictions can be obtained by running the `scripts/D0/inference.sh` script. This script reads a test image and annotates the image after object detection by drawing boxes on the objects in the image. The script requires: - `MODEL_DIR` in which the file `checkpoint` contains path to the latest checkpoint that needs to be used for inference. For example, `MODEL_DIR=/tmp/convergence-AMP-8xA100-80G/ema_weights` Inference command: ```bash MODEL_DIR=<path to trained model directory> bash scripts/D0/inference.sh ``` Note that the above script assumes that the test image is present in `testdata` and is named `img1.jpg`. ## Advanced The following sections provide greater details of the dataset, running training and inference, and the training results. ### Scripts and sample code Descriptions of the key scripts and folders are provided below. - `model` and `object_detection` - Contains code to build individual components of the model such as backbone, FPN, RPN, classification and bbox heads, and so on. - data - Contains code to convert raw data to tfrecords - dataset - Contains code to build the data pipeline such as dataloader, transforms, dataset builder. - scripts/ - Contains shell scripts to launch training and evaluation of the model and perform inference. - D0/convergence-{AMP, TF32, FP32}-{8, 32}x{V100-32G, A100-80G}.sh - Launches model training - D0/evaluate-{AMP, FP32, TF32}-{8, 32}x{A100-80G, V100-32G}.sh - Performs inference and computes mAP of predictions. - D0/inference.sh - Performs inference on an image - D0/training-benchmark-{AMP, TF32, FP32}-{V100-32G, A100-80G}.sh - Launches model training for 500 iterations to benchmark training - D0/inference-benchmark.sh - Benchmarks inference - docker/ - Scripts to build the docker image and to start an interactive session - utils/ - Contains utility components like default hyper parameters, checkpoint utils, training utils, and so on. - train.py - End to end to script to load data, build and train the model. - eval.py - End to end script to load data and checkpoint to perform inference and compute mAP scores. ### Parameters #### train.py script parameters Important parameters for training are listed below with defaults. ### Command-line options To display the full list of available options and their descriptions, use the --helpshort command-line option: ``` --amp: Enable mixed precision training --backbone_init: Initialize backbone weights from checkpoint in this directory --batch_size: training local batch size --benchmark: Train for a fixed number of steps for performance --benchmark_steps: Train for these many steps to benchmark training performance --checkpoint_period: Save ema model weights after every X epochs for eval --debug: Enable debug mode --enable_map_parallelization: Parallelize stateless map transformations in dataloader --eval_samples: The number of samples for evaluation. --hparams: Comma separated k=v pairs of hyperparameters or a module containing attributes to use as hyperparameters --log_filename: Filename for dllogger logs --log_steps: Interval of steps between logging of batch level stats --lr: Learning rate --lr_tb: Log learning rate at each step to TB --training_mode: Training mode (train/traineval/train300) --model_dir: Location of model_dir --model_name: Model name --num_epochs: Number of epochs for training --num_examples_per_epoch: Number of examples in one epoch (coco is 117266). Default is 120000. --pretrained_ckpt: Start training from this EfficientDet checkpoint. --seed: Random seed --set_num_threads: Set inter-op and intra-op parallelism threads --testdev_dir: COCO testdev dir. If not None, ignore val_json_file. --time_history: Get time history --training_file_pattern: Glob for training data files, e.g., coco/train-*.tfrecord. --use_fake_data: Use fake input --use_xla: Use XLA --val_file_pattern: Glob for eval tfrecords, e.g. coco/val-*.tfrecord. --val_json_file: COCO validation JSON containing golden bounding boxes. If None, use the ground truth from the dataloader. Ignored if testdev_dir is not None. --validate: Get validation loss after each epoch --warmup_epochs: Number of warmup epochs --warmup_value: Initial warmup value ``` The default `training_mode` (`traineval`) is training along with evaluation. Note that evaluation starts only after 200 epochs of training, and the frequency of evaluation can be set by setting `checkpoint_period=<every n epochs>` which is currently set to 10. Also, in the `traineval` `training_mode`, the model stops training at 300 epochs to avoid overfitting. To run only training without evaluation, set the `training_mode` to train. In this `training_mode`, the ema checkpoints are stored in path `model_dir/ema_weights/` every `checkpoint_period` (in epochs) . The training stops after training for 75% of the total number of epochs, and the last ema-weight checkpoint is evaluated. For benchmarking only the training time for 300 epochs, the `training_mode` can be set to `train300` where the model trains for exactly 300 epochs without any evaluation. ### Getting the data By default, the EfficientDet model is trained on the [COCO 2017](http://cocodataset.org/#download) dataset. This dataset comes with a training and validation set. Follow steps in the [Quick Start Guide](#quick-start-guide) to download and pre-process the dataset into tfrecord format. ### Training Process Training is performed using the `train.py` script. The default parameters can be overridden by command-line arguments. The training process can start from scratch or resume from a checkpoint. By default, bash script `scripts/D0/convergence-{AMP, FP32, TF32}-8x{A100-80G, V100-32G}.sh` will start the training process from scratch with the following settings. - Use 8 GPUs - Saves checkpoints after every 10 epochs to `model_dir` which is `/tmp/convergence-{AMP, FP32, TF32}-8x{A100-80G, V100-32G}` folder To resume from a checkpoint, just make sure that the `model_dir` stays the same and that the checkpoints saved are already present in it. #### Multi-node Multi-node runs can be launched on a Pyxis/enroot Slurm cluster (refer to [Requirements](#requirements)) with the `./scripts/D0/convergence-{AMP, FP32}-32xV100-32G.sub` script with the following command for a 4-node NVIDIA DGX V100 example: ``` checkpointdir=<path to efficientnet B0 pretrained checkpoint directory> datadir=<path to coco 2017 dataset in tfrecord format> sbatch N 4 --ntasks-per-node=8 --ntasks=32 ./scripts/D0/convergence-{AMP, FP32}-32xV100-32G.sub ``` Note that the `./scripts/D0/convergence-{AMP, FP32}-32xV100-32G.sub` script is a starting point that has to be adapted depending on the environment. In particular, variables such as `--container-image` handles the container image to train using, `datadir` handles the location of the COCO-2017 data, and `checkpointdir` has the path to the pre-trained backbone (EfficientNet) weights. Refer to the file's content to view the full list of variables to adjust for your system. ## Performance ### Benchmarking Benchmarking can be performed for both training and inference. Both the scripts run the EfficientDet model. You can specify whether benchmarking is performed in AMP, TF32, or FP32 by specifying it as an argument to the benchmarking scripts. #### Training performance benchmark Training benchmarking can be performed by running the script: ``` NGPU=<number of GPUs> bash scripts/D0/training-benchmark-{AMP, TF32, FP32}-{V100-32G, A100-80G}.sh ``` To train on 1 DGXA100-80G run script: ``` bash scripts/D0/training-benchmark-{AMP, TF32}-1xA100-80G.sh ``` #### Inference performance benchmark Inference benchmarking can be performed by running the script: ``` AMP=<enable mixed precision training? TRUE/FALSE> BS=<inference batchsize> bash scripts/D0/inference-benchmark.sh ``` ### Results The following sections provide details on how we achieved our performance and accuracy in training and inference. #### Training Accuracy Results ##### Training accuracy: NVIDIA DGX A100 (8x A100 80GB) Our results were obtained by running the `scripts/D0/convergence-{AMP, TF32}-8xA100-80G.sh` training script in the 22.03-tf2 NGC container on NVIDIA DGX A100 (8x A100 80GB) GPUs while evaluating every 10 epochs after 200 epochs of training until the 300th epoch is completed. | GPUs | Image size | Precision | Local Batch size | BBOX mAP | Time to train | Time to train - speedup (TF32 to mixed precision) | --| --| -- | -- | -- | -- | -- | 8 | 512 x 512 | TF32 | 104 | 34.53 | 8.5 hrs | - | 8 | 512 x 512 | FP16 | 200 | 34.27 | 4.6 hrs | 1.84x ##### Training accuracy: NVIDIA DGX-1 (8x V100 32GB) Our results were obtained by running the `scripts/D0/convergence-{AMP, FP32}-8xV100-32G.sh` training script in the 22.03-tf2 NGC container on NVIDIA DGX-1 with 8x V100 32GB GPUs with no intermediate evaluation. | GPUs | Image size | Precision | Local Batch size | BBOX mAP | Time to train | Time to train - speedup (FP32 to mixed precision) | --| --| -- | -- | -- | -- | -- | 8 | 512 x 512 | FP32 | 40 | 34.42 | 16.9 hrs | - | 8 | 512 x 512 | FP16 | 64 | 34.45 | 14.3 hrs | 1.18x ##### Training accuracy: NVIDIA DGX-1 (32x V100 32GB) Our results were obtained by running the `scripts/D0/convergence-{AMP, FP32}-32xV100-32G.sub` training script in the 22.03-tf2 NGC container on NVIDIA DGX-1 with 32x V100 32GB GPUs with no intermediate evaluation. | GPUs | Image size | Precision | Local Batch size | BBOX mAP | Time to train | Time to train - speedup (FP32 to mixed precision) | --| --| -- | -- | -- | -- | -- | 32 | 512 x 512 | FP32 | 40 | 34.14 | 5.6 hrs | - | 32 | 512 x 512 | FP16 | 64 | 34.02 | 4.19 hrs | 1.33x ##### Training loss curves ![Loss Curve](./testdata/loss.png) Here, the loss is simply the weighted sum of losses on the classification head and the bounding box head. ##### Training Stability Test The following tables compare mAP scores across five different training runs with different seeds. The runs showcase consistent convergence on all five seeds with very little deviation. | **Config** | **Seed 1** | **Seed 2** | **Seed 3** | **Seed 4** | **Seed 5** | **Mean** | **Standard Deviation** | | --- | --- | ----- | ----- | --- | --- | ----- | ----- | | 8 GPUs, final AP BBox | 34.38 | 34.56 | 34.3 | 34.34 | 34.4 | 34.39 | 0.1 | #### Training Performance Results ##### Training performance: NVIDIA DGX A100 (8x A100 80GB) Our results were obtained by running the `scripts/D0/training-benchmark-{AMP, TP32}-A100-80G.sh` training script in the 22.03-tf2 NGC container on NVIDIA DGX A100 (8x A100 80GB) GPUs. Performance numbers in images per second were averaged over an entire training epoch. The number of GPUs used to benchmark can be set as `NGPU=<4/8>`. For 1-gpu benchmarking run script `scripts/D0/training-benchmark-{AMP, TP32}-1xA100-80G.sh` | GPUs | Throughput - TF32 (BS=104) | Throughput - mixed precision (BS=200) | Throughput speedup (TF32 - mixed precision) | Weak scaling - TF32 | Weak scaling - mixed precision | --- | ----- | ----- | --- | --- | ----- | | 1 | 162 | 397 | 2.45 | 1 | 1 | | 8 | 1266 | 2711 | 2.14 | 7.81 | 6.82 | ##### Training performance: NVIDIA DGX-1 (8x V100 32GB) Our results were obtained by running the `scripts/D0/training-benchmark-{AMP, FP32}-V100-32G.sh` training script in the 22.03-tf2 NGC container on NVIDIA DGX-1 with (8x V100 32GB) GPUs. Performance numbers in images per second were averaged over an entire training epoch. The number of GPUs used to benchmark can be set as `NGPU=<1/4/8>`. | GPUs | Throughput - FP32 (BS=40) | Throughput - mixed precision (BS=64) | Throughput speedup (FP32 - mixed precision) | Weak scaling - FP32 | Weak scaling - mixed precision | | --- | ----- | ----- | --- | --- | ----- | | 1 | 113 | 232 | 2.05 | 1 | 1 | | 8 | 645 | 777 | 1.2 | 5.7 | 3.34 | To achieve similar results, follow the steps in the [Quick Start Guide](#quick-start-guide). Note: The dataloader is a performance bottleneck for this model. So the training throughputs could be higher if the bottleneck is optimized further. #### Inference performance results ##### Inference performance: NVIDIA DGX A100 (1x A100 80GB) Our results were obtained by running the `scripts/inference-benchmark.sh` training script in the 22.03-tf2 NGC container on NVIDIA DGX A100 (1x A100 80GB) GPU. The image resolution is 512 x 512. FP16 Inference Latency | Batch size | Throughput Avg | Latency Avg (ms) | Latency 90% (ms) | Latency 95% (ms) | Latency 99% (ms) | --- | ----- | ----- | ----- | ----- | ----- | | 1 | 38 | 26.31 | 26.27 | 26.29 | 26.31 | | 2 | 40 | 49.75 | 49.68 | 49.71 | 49.74 | | 4 | 80 | 50.12 | 50.06 | 50.08 | 50.11 | | 8 | 153 | 52.16 | 52.09 | 52.12 | 52.15 | | 16 | 276 | 57.83 | 57.77 | 57.79 | 57.81 | | 32 | 465 | 68.75 | 68.69 | 68.72 | 68.74 | | 64 | 706 | 90.63 | 90.56 | 90.59 | 90.62 | | 128 | 791 | 161.65 | 160.94 | 161.08 | 161.14 | | 256 | 858 | 298.33 | 296.1 | 296.62 | 297.76 | TF32 Inference Latency | Batch size | Throughput Avg | Latency Avg (ms) | Latency 90% (ms) | Latency 95% (ms) | Latency 99% (ms) | --- | ----- | ----- | ----- | ----- | ----- | | 1 | 38 | 26.09 | 26 | 26.03 | 26.07 | | 2 | 40 | 49.94 | 49.84 | 49.88 | 49.91 | | 4 | 78 | 50.98 | 50.91 | 50.94 | 50.96 | | 8 | 144 | 55.21 | 55.16 | 55.19 | 55.21 | | 16 | 250 | 63.76 | 63.69 | 63.72 | 63.75 | | 32 | 394 | 81.06 | 80.97 | 81 | 81.04 | | 64 | 563 | 113.54 | 113.44 | 113.47 | 113.51 | | 128 | 623 | 205.33 | 205.06 | 205.16 | 205.28 | To achieve similar results, follow the steps in the [Quick Start Guide](#quick-start-guide). ##### Inference performance: NVIDIA DGX-1 (1x V100 32GB) Our results were obtained by running the `scripts/inference-benchmark.sh` training script in the 22.03-tf2 NGC container on NVIDIA DGX-1 with 1x V100 32GB GPUs. The image resolution is 512 x 512. FP16 Inference Latency | Batch size | Throughput Avg | Latency Avg (ms) | Latency 90% (ms) | Latency 95% (ms) | Latency 99% (ms) | --- | ----- | ----- | ----- | ----- | ----- | | 1 | 35 | 27.84 | 27.67 | 27.74 | 27.82 | | 2 | 40 | 49.81 | 49.42 | 49.62 | 49.77 | | 4 | 81 | 49.35 | 49.3 | 49.32 | 49.34 | | 8 | 146 | 54.51 | 54.44 | 54.47 | 54.5 | | 16 | 245 | 65.07 | 65.01 | 65.04 | 65.06 | | 32 | 366 | 87.24 | 87.1 | 87.16 | 87.22 | | 64 | 477 | 134.09 | 133.98 | 134.02 | 134.07 | | 128 | 497 | 257.39 | 257.09 | 257.19 | 257.34 | FP32 Inference Latency | Batch size | Throughput Avg | Latency Avg (ms) | Latency 90% (ms) | Latency 95% (ms) | Latency 99% (ms) | --- | ----- | ----- | ----- | ----- | ----- | | 1 | 36 | 27.21 | 27.02 | 27.11 | 27.19 | | 2 | 39 | 51.04 | 50.81 | 50.91 | 51.01 | | 4 | 78 | 51.23 | 51.19 | 51.21 | 51.22 | | 8 | 135 | 59.06 | 58.98 | 59.02 | 59.06 | | 16 | 214 | 74.73 | 74.64 | 74.68 | 74.71 | | 32 | 305 | 104.76 | 104.67 | 104.72 | 104.76 | | 64 | 374 | 171.08 | 170.92 | 170.98 | 171.05 | | 128 | 385 | 332.11 | 331.81 | 331.92 | 332.06 | To achieve these same results, follow the steps in the [Quick Start Guide](#quick-start-guide). ## Release notes ### Changelog May 2022 - Initial Release ### Known Issues The dataloader is a bottleneck during training thus to gain any more performance boosts the dataloader needs to be improved.
PyTorch/SpeechSynthesis/Tacotron2/notebooks/conversationalai/client/speech_ai_demo/utils/jasper
jasper
speech_utils
#!/usr/bin/python # Copyright (c) 2018-2019, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of NVIDIA CORPORATION nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY # OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import librosa import soundfile as sf import math from os import system import numpy as np from tensorrtserver.api import * import tensorrtserver.api.model_config_pb2 as model_config import grpc from tensorrtserver.api import api_pb2 from tensorrtserver.api import grpc_service_pb2 from tensorrtserver.api import grpc_service_pb2_grpc WINDOWS_FNS = {"hanning": np.hanning, "hamming": np.hamming, "none": None} def model_dtype_to_np(model_dtype): if model_dtype == model_config.TYPE_BOOL: return np.bool elif model_dtype == model_config.TYPE_INT8: return np.int8 elif model_dtype == model_config.TYPE_INT16: return np.int16 elif model_dtype == model_config.TYPE_INT32: return np.int32 elif model_dtype == model_config.TYPE_INT64: return np.int64 elif model_dtype == model_config.TYPE_UINT8: return np.uint8 elif model_dtype == model_config.TYPE_UINT16: return np.uint16 elif model_dtype == model_config.TYPE_UINT32: return np.uint32 elif model_dtype == model_config.TYPE_FP16: return np.float16 elif model_dtype == model_config.TYPE_FP32: return np.float32 elif model_dtype == model_config.TYPE_FP64: return np.float64 elif model_dtype == model_config.TYPE_STRING: return np.dtype(object) return None def ctc_decoder_predictions_tensor(prediction_cpu_tensor, batch_size, labels): """ Takes output of greedy ctc decoder and performs ctc decoding algorithm to remove duplicates and special symbol. Returns prediction Args: tensor: model output tensor label: A list of labels Returns: prediction """ blank_id = len(labels) - 1 hypotheses = [] labels_map = dict([(i, labels[i]) for i in range(len(labels))]) # iterate over batch prediction_cpu_tensor = prediction_cpu_tensor.reshape((batch_size, int(prediction_cpu_tensor.size/batch_size))) for ind in range(batch_size): prediction = prediction_cpu_tensor[ind].tolist() # CTC decoding procedure decoded_prediction = [] previous = len(labels) - 1 # id of a blank symbol for p in prediction: if (p != previous or previous == blank_id) and p != blank_id: decoded_prediction.append(p) previous = p hypothesis = ''.join([labels_map[c] for c in decoded_prediction]) hypotheses.append(hypothesis) return hypotheses class SpeechClient(object): def __init__(self, url, protocol, model_name, model_version, batch_size, model_platform=None, verbose=False, mode="batch", from_features=True): self.model_name = model_name self.model_version = model_version self.verbose = verbose self.batch_size = batch_size self.transpose_audio_features = False self.grpc_stub = None self.ctx = None self.correlation_id = 0 self.first_run = True if mode == "streaming" or mode == "asynchronous": self.correlation_id = 1 self.buffer = [] self.ctx = InferContext(url, protocol, model_name, model_version, verbose, self.correlation_id, False) server_ctx = ServerStatusContext(url, protocol, model_name, verbose) server_status = server_ctx.get_server_status() self.audio_signals_name, self.num_samples_name, self.transcripts_name, \ self.audio_signals_type, self.num_samples_type, self.transcripts_type = self.parse_model(server_status, model_name, batch_size, model_platform, verbose) self.labels = [" ", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z", "'", "<BLANK>"] def postprocess(self, results, labels): if len(results) != 1: raise Exception("expected 1 result, got {}".format(len(results))) transcript_values = results['TRANSCRIPT'] for transcript, filename in zip(transcript_values, labels): hypotheses = ctc_decoder_predictions_tensor(transcript, self.batch_size, self.labels) print('---') print('File: ', filename) print("Final transcript: ", hypotheses) print('---') return hypotheses def check_num_samples(self, num_samples): if num_samples.data_type != model_config.TYPE_UINT32 and num_samples.data_type != model_config.TYPE_INT32: raise Exception( "expecting num_samples datatype to be TYPE_UINT32/TYPE_INT32, " "model '" + model_name + "' output type is " + model_config.DataType.Name(num_samples.data_type)) if len(num_samples.dims) != 1: raise Exception("Expecting num_samples to have 1 dimension, " "model '{}' num_samples has {}".format( model_name,len(num_samples.dims))) def parse_model(self, server_status, model_name, batch_size, model_platform=None, verbose=False): """ Check the configuration of the ensemble model """ if model_name not in server_status.model_status: raise Exception("unable to get status for '" + model_name + "'") status = server_status.model_status[model_name] config = status.config self.model_platform = model_platform # Inputs are: # 1) audio_signal: raw audio samples [num_samples] # 2) sample_rate: sample rate of audio # 3) num_samples: length of audio if len(config.input) < 2: raise Exception( "expecting 2-3 inputs, got {}".format(len(config.input))) # Outputs are: # 1) transcripts: candidate transcripts if len(config.output) != 1: raise Exception( "expecting 1 output, got {}".format(len(config.output))) audio_signal = config.input[0] if len(config.input) > 1: num_samples = config.input[1] self.check_num_samples(num_samples); transcripts = config.output[0] expected_audio_signal_dim = 1 expected_audio_signal_type = model_config.TYPE_FP32 if audio_signal.data_type != expected_audio_signal_type: raise Exception("expecting audio_signal datatype to be " + model_config.DataType.Name( expected_audio_signal_type) + "model '" + model_name + "' output type is " + model_config.DataType.Name(audio_signal.data_type)) # Model specifying maximum batch size of 0 indicates that batching # is not supported and so the input tensors do not expect an "N" # dimension (and 'batch_size' should be 1 so that only a single # image instance is inferred at a time). max_batch_size = config.max_batch_size if max_batch_size == 0: if batch_size != 1: raise Exception( "batching not supported for model '" + model_name + "'") else: # max_batch_size > 0 if batch_size > max_batch_size: raise Exception( "expecting batch size <= {} for model {}".format( max_batch_size, model_name)) if len(audio_signal.dims) != expected_audio_signal_dim: raise Exception("Expecting audio signal to have {} dimensions, " "model '{}' audio_signal has {}".format( expected_audio_signal_dim, model_name, len(audio_signal.dims))) return (audio_signal.name, num_samples.name, transcripts.name, model_dtype_to_np(audio_signal.data_type), model_dtype_to_np(num_samples.data_type), model_dtype_to_np(transcripts.data_type), ) def update_audio_request(self, request, audio_generator): for audio_signal, sample_rate, start, end in audio_generator: # Delete the current inputs input_batch = [audio_signal.astype(self.audio_signals_type)] num_samples_batch = audio_signal.shape[0] num_samples_batch = [np.asarray([num_samples_batch], dtype=self.num_samples_type)] flags = InferRequestHeader.FLAG_NONE input_batch[0] = np.expand_dims(input_batch[0], axis=0) audio_bytes = input_batch[0].tobytes() num_samples_bytes = num_samples_batch[0].tobytes() request.meta_data.input[0].dims[0] = audio_signal.shape[0] request.meta_data.input[0].batch_byte_size = len(audio_bytes) request.meta_data.input[1].dims[0] = 1 request.meta_data.input[1].batch_byte_size = len(num_samples_bytes) if start: request.meta_data.flags = flags | \ InferRequestHeader.FLAG_SEQUENCE_START else: request.meta_data.flags = flags; # Send request with audio signal del request.raw_input[:] request.raw_input.extend([audio_bytes]) request.raw_input.extend([num_samples_bytes]) yield request # If end, send empty request to flush out remaining audio if end: request.meta_data.flags = flags | \ InferRequestHeader.FLAG_SEQUENCE_END zero_bytes = np.zeros(shape=input_batch[0].shape, dtype=input_batch[0].dtype).tobytes() del request.raw_input[:] request.raw_input.extend([zero_bytes]) request.raw_input.extend([num_samples_bytes]) yield request def recognize(self, audio_signal, filenames): # Send requests of FLAGS.batch_size audio signals. If the number of # audios isn't an exact multiple of FLAGS.batch_size then just # start over with the first audio until the batch is filled. flags = InferRequestHeader.FLAG_NONE flags = flags | InferRequestHeader.FLAG_SEQUENCE_START input_batch = [] input_filenames = [] max_num_samples_batch = 0 for idx in range(self.batch_size): input_batch.append(audio_signal[idx].astype( self.audio_signals_type)) input_filenames.append(filenames[idx]) num_samples = audio_signal[idx].shape[0] if (num_samples > max_num_samples_batch): max_num_samples_batch = num_samples for idx in range(self.batch_size): num_samples = input_batch[idx].shape[0] print("num_samples : ", num_samples) # input_batch[idx] = np.pad(input_batch[idx], # ((0, # max_num_samples_batch - # num_samples)), # mode='constant') mean = np.mean(input_batch[idx]) std_var = np.std(input_batch[idx]) gauss_noise = np.random.normal( mean,std_var, max_num_samples_batch-num_samples) input_batch[idx]= np.concatenate( (input_batch[idx], gauss_noise.astype( self.audio_signals_type))) max_num_samples_batch = np.asarray([max_num_samples_batch], dtype=self.num_samples_type) num_samples_batch = [max_num_samples_batch] * self.batch_size #print(num_samples_batch) #print(input_batch) #print(input_sample_rates) # Send request print("Sending request to transcribe file(s):", ",".join( input_filenames)) if (self.model_platform == "obsolete_pyt"): result = self.ctx.run( {self.audio_signals_name: input_batch, self.num_samples_name: num_samples_batch}, {self.transcripts_name: InferContext.ResultFormat.RAW}, self.batch_size, flags) else: result = self.ctx.run( {self.audio_signals_name: input_batch, self.num_samples_name: num_samples_batch}, {self.transcripts_name: InferContext.ResultFormat.RAW}, self.batch_size, flags) hypotheses = self.postprocess(result, input_filenames) return hypotheses def preemphasis(signal, coeff=0.97): return np.append(signal[0], signal[1:] - coeff * signal[:-1]) def normalize_signal(signal, gain=None): """ Normalize float32 signal to [-1, 1] range """ if gain is None: gain = 1.0 / (np.max(np.abs(signal)) + 1e-5) return signal * gain class AudioSegment(object): """Monaural audio segment abstraction. :param samples: Audio samples [num_samples x num_channels]. :type samples: ndarray.float32 :param sample_rate: Audio sample rate. :type sample_rate: int :raises TypeError: If the sample data type is not float or int. """ def __init__(self, samples, sample_rate, target_sr=16000, trim=False, trim_db=60): """Create audio segment from samples. Samples are convert float32 internally, with int scaled to [-1, 1]. """ samples = self._convert_samples_to_float32(samples) if target_sr is not None and target_sr != sample_rate: samples = librosa.core.resample(samples, sample_rate, target_sr) sample_rate = target_sr if trim: samples, _ = librosa.effects.trim(samples, trim_db) self._samples = samples self._sample_rate = sample_rate if self._samples.ndim >= 2: self._samples = np.mean(self._samples, 1) @staticmethod def _convert_samples_to_float32(samples): """Convert sample type to float32. Audio sample type is usually integer or float-point. Integers will be scaled to [-1, 1] in float32. """ float32_samples = samples.astype('float32') if samples.dtype in np.sctypes['int']: bits = np.iinfo(samples.dtype).bits float32_samples *= (1. / 2 ** (bits - 1)) elif samples.dtype in np.sctypes['float']: pass else: raise TypeError("Unsupported sample type: %s." % samples.dtype) return float32_samples @classmethod def from_file(cls, filename, target_sr=16000, int_values=False, offset=0, duration=0, trim=False): """ Load a file supported by librosa and return as an AudioSegment. :param filename: path of file to load :param target_sr: the desired sample rate :param int_values: if true, load samples as 32-bit integers :param offset: offset in seconds when loading audio :param duration: duration in seconds when loading audio :return: numpy array of samples """ with sf.SoundFile(filename, 'r') as f: dtype = 'int32' if int_values else 'float32' sample_rate = f.samplerate if offset > 0: f.seek(int(offset * sample_rate)) if duration > 0: samples = f.read(int(duration * sample_rate), dtype=dtype) else: samples = f.read(dtype=dtype) samples = samples.transpose() return cls(samples, sample_rate, target_sr=target_sr, trim=trim) @property def samples(self): return self._samples.copy() @property def sample_rate(self): return self._sample_rate # define our clear function def clear_screen(): _ = system('clear')
PyTorch/Segmentation/MaskRCNN/pytorch/maskrcnn_benchmark/csrc/cuda
cuda
rpn_generate_proposals
/** * Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <torch/extension.h> #include <ATen/ATen.h> #include <ATen/cuda/CUDAContext.h> #include <THC/THC.h> namespace rpn { namespace { #define CUDA_1D_KERNEL_LOOP(i, n) \ for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); \ i += blockDim.x * gridDim.x) // The number of cuda threads to use. Since work is assigned to SMs at the // granularity of a block, 128 is chosen to allow utilizing more SMs for // smaller input sizes. // 1D grid constexpr int CUDA_NUM_THREADS = 128; constexpr int MAXIMUM_NUM_BLOCKS = 4096; inline int GetBlocks(const int N) { return std::max( std::min( (N + CUDA_NUM_THREADS - 1) / CUDA_NUM_THREADS, MAXIMUM_NUM_BLOCKS), // Use at least 1 block, since CUDA does not allow empty block 1); } /** * d_sorted_score_keys -- indexes into _original_ scores * nboxes_to_generate -- pre_nms_topn */ __global__ void GeneratePreNMSUprightBoxesKernel( const long *d_sorted_scores_keys, const int nboxes_to_generate, const float *d_bbox_deltas, // [N, A*4, H, W] const float4 *d_anchors, const int H, const int W, const int K, // K = H*W const int A, const int KA, // KA = K*A const float min_size, const float *d_img_info_vec, const int num_images, const float bbox_xform_clip, const bool correct_transform, float4 *d_out_boxes, const int prenms_nboxes, // leading dimension of out_boxes float *d_inout_scores, // [N, A, H, W] uint8_t *d_boxes_keep_flags, bool is_channels_last) { // Going to generate pre_nms_nboxes boxes per image for (int ibox = blockIdx.x * blockDim.x + threadIdx.x; ibox < nboxes_to_generate; ibox += blockDim.x * gridDim.x) { for (int image_index = blockIdx.y * blockDim.y + threadIdx.y; image_index < num_images; image_index += blockDim.y * gridDim.y) { // box_conv_index : # of the same box, but indexed in // the scores from the conv layer, of shape (A,H,W) // the num_images dimension was already removed // box_conv_index = a*K + h*W + w // Note: PyT code takes topK, so need to adjust the indexing for multi-image // box_conv_index is _local_ to the image_index, need to adjust into global arrays const int box_conv_index = d_sorted_scores_keys[image_index * prenms_nboxes + ibox]; // We want to decompose box_conv_index in (a,h,w) // such as box_conv_index = a*K + h*W + w // (avoiding modulos in the process) int remaining = box_conv_index; const int dA = K; // stride of A const int a = remaining / dA; remaining -= a * dA; const int dH = W; // stride of H const int h = remaining / dH; remaining -= h * dH; const int w = remaining; // dW = 1 int deltas_idx = (is_channels_last)? image_index * (KA * 4) + h * W * A * 4 + w * A * 4 + a * 4 : image_index * (KA * 4) + a * 4 * K + h * W + w; int a_idx = h * W * A + w * A + a; // Order of anchors is [N, H, W, A, 4] const float4 anchor = d_anchors[image_index * KA + a_idx]; // x1,y1,x2,y2 :coordinates of anchor a, shifted for position (h,w) float x1 = anchor.x; float x2 = anchor.z; float y1 = anchor.y; float y2 = anchor.w; // Deltas for that box // Deltas of shape (num_images,4*A,K) // We're going to compute 4 scattered reads // better than the alternative, ie transposing the complete deltas // array first const float dx = d_bbox_deltas[deltas_idx]; // Stride of K between each dimension int stride = (is_channels_last)? 1: K; deltas_idx += stride; const float dy = d_bbox_deltas[deltas_idx]; deltas_idx += stride; float dw = d_bbox_deltas[deltas_idx]; deltas_idx += stride; float dh = d_bbox_deltas[deltas_idx]; // Upper bound on dw,dh dw = fmin(dw, bbox_xform_clip); dh = fmin(dh, bbox_xform_clip); // Applying the deltas float width = x2 - x1 + 1.0f; const float ctr_x = x1 + 0.5f * width; const float pred_ctr_x = ctr_x + width * dx; const float pred_w = width * expf(dw); x1 = pred_ctr_x - 0.5f * pred_w; x2 = pred_ctr_x + 0.5f * pred_w; float height = y2 - y1 + 1.0f; const float ctr_y = y1 + 0.5f * height; const float pred_ctr_y = ctr_y + height * dy; const float pred_h = height * expf(dh); y1 = pred_ctr_y - 0.5f * pred_h; y2 = pred_ctr_y + 0.5f * pred_h; if (correct_transform) { x2 -= 1.0f; y2 -= 1.0f; } // End of box_coder.decode(..) part // Clipping box to image // p = _clip_box_to_image(proposal, height, width) const float img_height = d_img_info_vec[2 * image_index + 1]; const float img_width = d_img_info_vec[2 * image_index + 0]; const float min_size_scaled = min_size; x1 = fmax(fmin(x1, img_width - 1.0f), 0.0f); y1 = fmax(fmin(y1, img_height - 1.0f), 0.0f); x2 = fmax(fmin(x2, img_width - 1.0f), 0.0f); y2 = fmax(fmin(y2, img_height - 1.0f), 0.0f); // Filter boxes // Removing boxes with one dim < min_size // (center of box is in image, because of previous step) // keep = _filter_boxes(p, self.min_size, im_shape) width = x2 - x1 + 1.0f; height = y2 - y1 + 1.0f; bool keep_box = fmin(width, height) >= min_size_scaled; // We are not deleting the box right now even if !keep_box // we want to keep the relative order of the elements stable // we'll do it in such a way later // d_boxes_keep_flags size: (num_images,prenms_nboxes) // d_out_boxes size: (num_images,prenms_nboxes) const int out_index = image_index * prenms_nboxes + ibox; d_boxes_keep_flags[out_index] = keep_box; d_out_boxes[out_index] = {x1, y1, x2, y2}; } } } } // namespace /** * Generate boxes associated to topN pre-NMS scores */ std::vector<at::Tensor> GeneratePreNMSUprightBoxes( const int num_images, const int A, const int H, const int W, at::Tensor &sorted_indices, // topK sorted pre_nms_topn indices at::Tensor &sorted_scores, // topK sorted pre_nms_topn scores [N, A, H, W] at::Tensor &bbox_deltas, // [N, A*4, H, W] (full, unsorted / sliced) at::Tensor &anchors, // input (full, unsorted, unsliced) at::Tensor &image_shapes, // (h, w) of images const int pre_nms_nboxes, const int rpn_min_size, const float bbox_xform_clip_default, const bool correct_transform_coords, bool is_channels_last) { // constants constexpr int box_dim = 4; const int K = H * W; // temp Tensors at::Tensor boxes = at::zeros({num_images, box_dim * pre_nms_nboxes}, sorted_scores.options()).to(at::kFloat); at::Tensor boxes_keep_flags = at::empty({num_images, pre_nms_nboxes}, sorted_scores.options()).to(at::kByte); boxes_keep_flags.zero_(); auto stream = at::cuda::getCurrentCUDAStream().stream(); // Call kernel GeneratePreNMSUprightBoxesKernel<<< (GetBlocks(pre_nms_nboxes), num_images), CUDA_NUM_THREADS, // blockDim.y == 1 0, stream>>>( sorted_indices.data_ptr<long>(), pre_nms_nboxes, bbox_deltas.data_ptr<float>(), reinterpret_cast<float4 *>(anchors.data_ptr<float>()), H, W, K, A, K * A, rpn_min_size, image_shapes.data_ptr<float>(), // image size vec num_images, bbox_xform_clip_default, // utils::BBOX_XFORM_CLIP_DEFAULT correct_transform_coords, reinterpret_cast<float4 *>(boxes.data_ptr<float>()), pre_nms_nboxes, sorted_scores.data_ptr<float>(), boxes_keep_flags.data_ptr<uint8_t>(), is_channels_last); C10_CUDA_CHECK(cudaGetLastError()); return std::vector<at::Tensor>{boxes, sorted_scores, boxes_keep_flags}; } } // namespace rpn
TensorFlow2/Segmentation/MaskRCNN/mrcnn_tf2/model
model
mask_rcnn
import tensorflow as tf from mrcnn_tf2.model import anchors from mrcnn_tf2.model.losses import MaskRCNNLoss, FastRCNNLoss, RPNLoss from mrcnn_tf2.model.models.fpn import FPNNetwork from mrcnn_tf2.model.models.heads import RPNHead, BoxHead, MaskHead from mrcnn_tf2.model.models.resnet50 import ResNet50 from mrcnn_tf2.ops import roi_ops, spatial_transform_ops, postprocess_ops, training_ops class MaskRCNN(tf.keras.Model): def __init__(self, params, name='mrcnn', trainable=True, *args, **kwargs): super().__init__(name=name, trainable=trainable, *args, **kwargs) self._params = params self.backbone = ResNet50() self.fpn = FPNNetwork( min_level=self._params.min_level, max_level=self._params.max_level, trainable=trainable ) self.rpn_head = RPNHead( name="rpn_head", num_anchors=len(self._params.aspect_ratios * self._params.num_scales), trainable=trainable ) self.box_head = BoxHead( num_classes=self._params.num_classes, mlp_head_dim=self._params.fast_rcnn_mlp_head_dim, trainable=trainable ) self.mask_head = MaskHead( num_classes=self._params.num_classes, mrcnn_resolution=self._params.mrcnn_resolution, trainable=trainable, name="mask_head" ) self.mask_rcnn_loss = MaskRCNNLoss() self.fast_rcnn_loss = FastRCNNLoss( num_classes=self._params.num_classes ) self.rpn_loss = RPNLoss( batch_size=self._params.train_batch_size, rpn_batch_size_per_im=self._params.rpn_batch_size_per_im, min_level=self._params.min_level, max_level=self._params.max_level ) def call(self, inputs, training=None, mask=None): batch_size, image_height, image_width, _ = inputs['images'].get_shape().as_list() if 'source_ids' not in inputs: inputs['source_ids'] = -1 * tf.ones([batch_size], dtype=tf.float32) outputs = dict(inputs) all_anchors = anchors.Anchors(self._params.min_level, self._params.max_level, self._params.num_scales, self._params.aspect_ratios, self._params.anchor_scale, (image_height, image_width)) backbone_feats = self.backbone(inputs['images'], training=training) fpn_feats = self.fpn(backbone_feats, training=training) outputs.update({'fpn_features': fpn_feats}) def rpn_head_fn(features, min_level=2, max_level=6): """Region Proposal Network (RPN) for Mask-RCNN.""" scores_outputs = dict() box_outputs = dict() for level in range(min_level, max_level + 1): scores_outputs[level], box_outputs[level] = self.rpn_head(features[level], training=training) return scores_outputs, box_outputs rpn_score_outputs, rpn_box_outputs = rpn_head_fn( features=fpn_feats, min_level=self._params.min_level, max_level=self._params.max_level ) if training: rpn_pre_nms_topn = self._params.train_rpn_pre_nms_topn rpn_post_nms_topn = self._params.train_rpn_post_nms_topn rpn_nms_threshold = self._params.train_rpn_nms_threshold else: rpn_pre_nms_topn = self._params.test_rpn_pre_nms_topn rpn_post_nms_topn = self._params.test_rpn_post_nms_topn rpn_nms_threshold = self._params.test_rpn_nms_thresh rpn_box_scores, rpn_box_rois = roi_ops.multilevel_propose_rois( scores_outputs=rpn_score_outputs, box_outputs=rpn_box_outputs, all_anchors=all_anchors, image_info=inputs['image_info'], rpn_pre_nms_topn=rpn_pre_nms_topn, rpn_post_nms_topn=rpn_post_nms_topn, rpn_nms_threshold=rpn_nms_threshold, rpn_min_size=self._params.rpn_min_size, bbox_reg_weights=None ) rpn_box_rois = tf.cast(rpn_box_rois, dtype=tf.float32) if training: rpn_box_rois = tf.stop_gradient(rpn_box_rois) rpn_box_scores = tf.stop_gradient(rpn_box_scores) # TODO Jonathan: Unused => Shall keep ? # Sampling box_targets, class_targets, rpn_box_rois, proposal_to_label_map = training_ops.proposal_label_op( rpn_box_rois, inputs['gt_boxes'], inputs['gt_classes'], batch_size_per_im=self._params.batch_size_per_im, fg_fraction=self._params.fg_fraction, fg_thresh=self._params.fg_thresh, bg_thresh_hi=self._params.bg_thresh_hi, bg_thresh_lo=self._params.bg_thresh_lo ) # Performs multi-level RoIAlign. box_roi_features = spatial_transform_ops.multilevel_crop_and_resize( features=fpn_feats, boxes=rpn_box_rois, output_size=7, training=training ) class_outputs, box_outputs, _ = self.box_head(inputs=box_roi_features) if not training: detections = postprocess_ops.generate_detections_gpu( class_outputs=class_outputs, box_outputs=box_outputs, anchor_boxes=rpn_box_rois, image_info=inputs['image_info'], pre_nms_num_detections=self._params.test_rpn_post_nms_topn, post_nms_num_detections=self._params.test_detections_per_image, nms_threshold=self._params.test_nms, bbox_reg_weights=self._params.bbox_reg_weights ) outputs.update({ 'num_detections': detections[0], 'detection_boxes': detections[1], 'detection_classes': detections[2], 'detection_scores': detections[3], }) else: # is training encoded_box_targets = training_ops.encode_box_targets( boxes=rpn_box_rois, gt_boxes=box_targets, gt_labels=class_targets, bbox_reg_weights=self._params.bbox_reg_weights ) outputs.update({ 'rpn_score_outputs': rpn_score_outputs, 'rpn_box_outputs': rpn_box_outputs, 'class_outputs': class_outputs, 'box_outputs': box_outputs, 'class_targets': class_targets, 'box_targets': encoded_box_targets, 'box_rois': rpn_box_rois, }) # Faster-RCNN mode. if not self._params.include_mask: return outputs # Mask sampling if not training: selected_box_rois = outputs['detection_boxes'] class_indices = outputs['detection_classes'] else: selected_class_targets, selected_box_targets, \ selected_box_rois, proposal_to_label_map = training_ops.select_fg_for_masks( class_targets=class_targets, box_targets=box_targets, boxes=rpn_box_rois, proposal_to_label_map=proposal_to_label_map, max_num_fg=int(self._params.batch_size_per_im * self._params.fg_fraction) ) class_indices = tf.cast(selected_class_targets, dtype=tf.int32) mask_roi_features = spatial_transform_ops.multilevel_crop_and_resize( features=fpn_feats, boxes=selected_box_rois, output_size=14, training=training ) mask_outputs = self.mask_head( inputs=(mask_roi_features, class_indices), training=training ) if training: mask_targets = training_ops.get_mask_targets( fg_boxes=selected_box_rois, fg_proposal_to_label_map=proposal_to_label_map, fg_box_targets=selected_box_targets, mask_gt_labels=inputs['cropped_gt_masks'], output_size=self._params.mrcnn_resolution ) outputs.update({ 'mask_outputs': mask_outputs, 'mask_targets': mask_targets, 'selected_class_targets': selected_class_targets, }) else: outputs.update({ 'detection_masks': tf.nn.sigmoid(mask_outputs), }) if training: self._add_losses(outputs) # filter out only the needed outputs model_outputs = [ 'source_ids', 'image_info', 'num_detections', 'detection_boxes', 'detection_classes', 'detection_scores', 'detection_masks' ] return { name: tf.identity(tensor, name=name) for name, tensor in outputs.items() if name in model_outputs } def _add_losses(self, model_outputs): mask_rcnn_loss = self.mask_rcnn_loss(model_outputs) mask_rcnn_loss *= self._params.mrcnn_weight_loss_mask self.add_loss(mask_rcnn_loss) self.add_metric(mask_rcnn_loss, name='mask_rcnn_loss') fast_rcnn_class_loss, fast_rcnn_box_loss = self.fast_rcnn_loss(model_outputs) fast_rcnn_box_loss *= self._params.fast_rcnn_box_loss_weight self.add_loss(fast_rcnn_box_loss) self.add_metric(fast_rcnn_box_loss, name='fast_rcnn_box_loss') self.add_loss(fast_rcnn_class_loss) self.add_metric(fast_rcnn_class_loss, name='fast_rcnn_class_loss') rpn_score_loss, rpn_box_loss = self.rpn_loss(model_outputs) rpn_box_loss *= self._params.rpn_box_loss_weight self.add_loss(rpn_box_loss) self.add_metric(rpn_box_loss, name='rpn_box_loss') self.add_loss(rpn_score_loss) self.add_metric(rpn_score_loss, name='rpn_score_loss') l2_regularization_loss = tf.add_n([ tf.nn.l2_loss(tf.cast(v, dtype=tf.float32)) for v in self.trainable_variables if not any([pattern in v.name for pattern in ["batch_normalization", "bias", "beta"]]) ]) l2_regularization_loss *= self._params.l2_weight_decay self.add_loss(l2_regularization_loss) self.add_metric(l2_regularization_loss, name='l2_regularization_loss') def get_config(self): pass
TensorFlow/Detection/SSD/examples
examples
SSD320_FP32_8GPU
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. CKPT_DIR=${1:-"/results/SSD320_FP32_8GPU"} PIPELINE_CONFIG_PATH=${2:-"/workdir/models/research/configs"}"/ssd320_full_8gpus.config" GPUS=8 TENSOR_OPS=0 export TF_ENABLE_CUBLAS_TENSOR_OP_MATH_FP32=${TENSOR_OPS} export TF_ENABLE_CUDNN_TENSOR_OP_MATH_FP32=${TENSOR_OPS} export TF_ENABLE_CUDNN_RNN_TENSOR_OP_MATH_FP32=${TENSOR_OPS} mkdir -p $CKPT_DIR time mpirun --allow-run-as-root \ -np $GPUS \ -H localhost:$GPUS \ -bind-to none \ -map-by slot \ -x NCCL_DEBUG=INFO \ -x LD_LIBRARY_PATH \ -x PATH \ -mca pml ob1 \ -mca btl ^openib \ python -u ./object_detection/model_main.py \ --pipeline_config_path=${PIPELINE_CONFIG_PATH} \ --model_dir=${CKPT_DIR} \ --alsologtostder \ "${@:3}" 2>&1 | tee $CKPT_DIR/train_log
TensorFlow2/Detection/Efficientdet/efficientnet
efficientnet
efficientnet_model
# Lint as: python3 # Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Contains definitions for EfficientNet model. [1] Mingxing Tan, Quoc V. Le EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. ICML'19, https://arxiv.org/abs/1905.11946 """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import os from typing import Any, Dict, Optional, Text, Tuple import copy import tensorflow as tf from efficientnet.layers import simple_swish, hard_swish, identity, gelu, get_activation from efficientnet.blocks import conv2d_block, mb_conv_block from efficientnet.common_modules import round_filters, round_repeats, load_weights from model import dataloader def build_dict(name, args=None): if name == "ModelConfig": return_dict = copy.deepcopy(ModelConfig) elif name == "BlockConfig": return_dict = copy.deepcopy(BlockConfig) else: raise ValueError("Name of requested dictionary not found!") if args is None: return return_dict if isinstance(args, dict): return_dict.update(args) elif isinstance(args, tuple): return_dict.update( {a: p for a, p in zip(list(return_dict.keys()), args)} ) else: raise ValueError("Expected tuple or dict!") return return_dict # Config for a single MB Conv Block. BlockConfig = { 'input_filters': 0, 'output_filters': 0, 'kernel_size': 3, 'num_repeat': 1, 'expand_ratio': 1, 'strides': (1, 1), 'se_ratio': None, 'id_skip': True, 'fused_conv': False, 'conv_type': 'depthwise' } # Default Config for Efficientnet-B0. ModelConfig = { 'width_coefficient': 1.0, 'depth_coefficient': 1.0, 'resolution': 224, 'dropout_rate': 0.2, 'blocks': ( # (input_filters, output_filters, kernel_size, num_repeat, # expand_ratio, strides, se_ratio) # pylint: disable=bad-whitespace build_dict(name="BlockConfig", args=(32, 16, 3, 1, 1, (1, 1), 0.25)), build_dict(name="BlockConfig", args=(16, 24, 3, 2, 6, (2, 2), 0.25)), build_dict(name="BlockConfig", args=(24, 40, 5, 2, 6, (2, 2), 0.25)), build_dict(name="BlockConfig", args=(40, 80, 3, 3, 6, (2, 2), 0.25)), build_dict(name="BlockConfig", args=(80, 112, 5, 3, 6, (1, 1), 0.25)), build_dict(name="BlockConfig", args=(112, 192, 5, 4, 6, (2, 2), 0.25)), build_dict(name="BlockConfig", args=(192, 320, 3, 1, 6, (1, 1), 0.25)), # pylint: enable=bad-whitespace ), 'stem_base_filters': 32, 'top_base_filters': 1280, 'activation': 'swish', 'batch_norm': 'default', 'bn_momentum': 0.99, 'bn_epsilon': 1e-3, # While the original implementation used a weight decay of 1e-5, # tf.nn.l2_loss divides it by 2, so we halve this to compensate in Keras 'weight_decay': 5e-6, 'drop_connect_rate': 0.0, 'depth_divisor': 8, 'min_depth': None, 'use_se': True, 'input_channels': 3, 'num_classes': 1000, 'model_name': 'efficientnet', 'rescale_input': True, 'data_format': 'channels_last', 'dtype': 'float32', 'weight_init': 'fan_in', } MODEL_CONFIGS = { # (width, depth, resolution, dropout) 'efficientnet-b0': build_dict(name="ModelConfig", args=(1.0, 1.0, 224, 0.2)), 'efficientnet-b1': build_dict(name="ModelConfig", args=(1.0, 1.1, 240, 0.2)), 'efficientnet-b2': build_dict(name="ModelConfig", args=(1.1, 1.2, 260, 0.3)), 'efficientnet-b3': build_dict(name="ModelConfig", args=(1.2, 1.4, 300, 0.3)), 'efficientnet-b4': build_dict(name="ModelConfig", args=(1.4, 1.8, 380, 0.4)), 'efficientnet-b5': build_dict(name="ModelConfig", args=(1.6, 2.2, 456, 0.4)), 'efficientnet-b6': build_dict(name="ModelConfig", args=(1.8, 2.6, 528, 0.5)), 'efficientnet-b7': build_dict(name="ModelConfig", args=(2.0, 3.1, 600, 0.5)), 'efficientnet-b8': build_dict(name="ModelConfig", args=(2.2, 3.6, 672, 0.5)), 'efficientnet-l2': build_dict(name="ModelConfig", args=(4.3, 5.3, 800, 0.5)), } DENSE_KERNEL_INITIALIZER = { 'class_name': 'VarianceScaling', 'config': { 'scale': 1 / 3.0, 'mode': 'fan_in', 'distribution': 'uniform' } } def efficientnet(image_input: tf.keras.layers.Input, config: dict, features_only: bool): """Creates an EfficientNet graph given the model parameters. This function is wrapped by the `EfficientNet` class to make a tf.keras.Model. Args: image_input: the input batch of images config: the model config features_only: build only feature network Returns: the output of efficientnet """ depth_coefficient = config['depth_coefficient'] blocks = config['blocks'] stem_base_filters = config['stem_base_filters'] top_base_filters = config['top_base_filters'] activation = get_activation(config['activation']) dropout_rate = config['dropout_rate'] drop_connect_rate = config['drop_connect_rate'] num_classes = config['num_classes'] input_channels = config['input_channels'] rescale_input = config['rescale_input'] data_format = tf.keras.backend.image_data_format() dtype = config['dtype'] weight_decay = config['weight_decay'] weight_init = config['weight_init'] endpoints = {} reduction_idx = 0 x = image_input if data_format == 'channels_first': # Happens on GPU/TPU if available. x = tf.keras.layers.Permute((3, 1, 2))(x) if rescale_input: processor = dataloader.InputProcessor(image=x, output_size=x.shape) processor.normalize_image(dtype=dtype) x = processor.get_image() # Build stem x = conv2d_block(x, round_filters(stem_base_filters, config), config, kernel_size=[3, 3], strides=[2, 2], activation=activation, name='stem') # Build blocks num_blocks_total = sum( round_repeats(block['num_repeat'], depth_coefficient) for block in blocks) block_num = 0 for stack_idx, block in enumerate(blocks): assert block['num_repeat'] > 0 is_reduction = False # reduction flag for blocks after the stem layer # If the first block has super-pixel (space-to-depth) layer, then stem is # the first reduction point. if (block['strides'] == (2,2) and stack_idx == 0): reduction_idx += 1 endpoints['reduction_%s' % reduction_idx] = x elif ((stack_idx == len(blocks) - 1) or blocks[stack_idx + 1]['strides'][0] > 1): is_reduction = True reduction_idx += 1 # Update block input and output filters based on depth multiplier block.update({ 'input_filters':round_filters(block['input_filters'], config), 'output_filters':round_filters(block['output_filters'], config), 'num_repeat':round_repeats(block['num_repeat'], depth_coefficient)}) # The first block needs to take care of stride and filter size increase drop_rate = drop_connect_rate * float(block_num) / num_blocks_total config.update({'drop_connect_rate': drop_rate}) # TODO(Sugh) replace block_prefix = 'stack_{}/block_0/'.format(stack_idx) x = mb_conv_block(x, block, config, block_prefix) block_num += 1 if block['num_repeat'] > 1: block.update({ 'input_filters':block['output_filters'], 'strides':(1, 1) }) for block_idx in range(block['num_repeat'] - 1): drop_rate = drop_connect_rate * float(block_num) / num_blocks_total config.update({'drop_connect_rate': drop_rate}) block_prefix = 'stack_{}/block_{}/'.format(stack_idx, block_idx + 1) x = mb_conv_block(x, block, config, prefix=block_prefix) block_num += 1 if is_reduction: endpoints['reduction_%s' % reduction_idx] = x # Build top if not features_only: x = conv2d_block(x, round_filters(top_base_filters, config), config, activation=activation, name='top') # Build classifier DENSE_KERNEL_INITIALIZER['config']['mode'] = weight_init x = tf.keras.layers.GlobalAveragePooling2D(name='top_pool')(x) if dropout_rate and dropout_rate > 0: x = tf.keras.layers.Dropout(dropout_rate, name='top_dropout')(x) x = tf.keras.layers.Dense( num_classes, kernel_initializer=DENSE_KERNEL_INITIALIZER, kernel_regularizer=tf.keras.regularizers.l2(weight_decay), bias_regularizer=tf.keras.regularizers.l2(weight_decay), name='logits')(x) x = tf.keras.layers.Activation('softmax', name='probs', dtype=tf.float32)(x) return [x] + list( filter(lambda endpoint: endpoint is not None, [ endpoints.get('reduction_1'), endpoints.get('reduction_2'), endpoints.get('reduction_3'), endpoints.get('reduction_4'), endpoints.get('reduction_5'), ])) @tf.keras.utils.register_keras_serializable(package='Vision') class EfficientNet(tf.keras.Model): """Wrapper class for an EfficientNet Keras model. Contains helper methods to build, manage, and save metadata about the model. """ def __init__(self, config: Dict[Text, Any] = None, features_only: bool = None, overrides: Dict[Text, Any] = None): """Create an EfficientNet model. Args: config: (optional) the main model parameters to create the model features_only: (optional) build the base feature network only overrides: (optional) a dict containing keys that can override config """ overrides = overrides or {} config = config or build_dict(name="ModelConfig") self.config = config self.config.update(overrides) input_channels = self.config['input_channels'] model_name = self.config['model_name'] input_shape = (None, None, input_channels) # Should handle any size image image_input = tf.keras.layers.Input(shape=input_shape) output = efficientnet(image_input, self.config, features_only) # Cast to float32 in case we have a different model dtype # output = tf.cast(output, tf.float32) super(EfficientNet, self).__init__( inputs=image_input, outputs=output, name=model_name) @classmethod def from_name(cls, model_name: Text, features_only: bool = None, model_weights_path: Text = None, weights_format: Text = 'saved_model', overrides: Dict[Text, Any] = None): """Construct an EfficientNet model from a predefined model name. E.g., `EfficientNet.from_name('efficientnet-b0')`. Args: model_name: the predefined model name features_only: (optional) build the base feature network only model_weights_path: the path to the weights (h5 file or saved model dir) weights_format: the model weights format. One of 'saved_model', 'h5', or 'checkpoint'. overrides: (optional) a dict containing keys that can override config Returns: A constructed EfficientNet instance. """ model_configs = dict(MODEL_CONFIGS) overrides = dict(overrides) if overrides else {} # One can define their own custom models if necessary model_configs.update(overrides.pop('model_config', {})) if model_name not in model_configs: raise ValueError('Unknown model name {}'.format(model_name)) config = model_configs[model_name] model = cls(config=config, overrides=overrides, features_only=features_only) if model_weights_path: if weights_format == 'checkpoint' and tf.io.gfile.isdir(model_weights_path): model_weights_path = tf.train.latest_checkpoint(model_weights_path) load_weights(model, model_weights_path, weights_format=weights_format) return model
PyTorch/SpeechSynthesis/FastPitch/notebooks
notebooks
FastPitch_voice_modification_custom
#!/usr/bin/env python # coding: utf-8 # In[ ]: # Copyright 2020 NVIDIA Corporation. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # # FastPitch: Voice Modification with Custom Transformations # ## Model overview # The [FastPitch](https://arxiv.org/abs/2006.06873) model is based on the [FastSpeech](https://arxiv.org/abs/1905.09263) model. Similarly to [FastSpeech2](https://arxiv.org/abs/2006.04558), which has been developed concurrently, it learns to predict the pitch contour and conditions the generation on such contour. # # The simple mechanism of predicting the pitch on grapheme-level (rather than frame-level, as FastSpeech2 does) allows to easily alter the pitch during synthesis. FastPitch can thus change the perceived emotional state of the speaker, or slightly emphasise certain lexical units. # ## Requirements # Run the notebook inside the container. By default the container forwards port `8888`. # ``` # bash scripts/docker/interactive.sh # # # inside the container # cd notebooks # jupyter notebook --ip='*' --port=8888 # ``` # Please refer the Requirement section in `README.md` for more details and running outside the container. # In[ ]: import os assert os.getcwd().split('/')[-1] == 'notebooks' # ## Generate audio samples # Training a FastPitch model from scrath takes 3 to 27 hours depending on the type and number of GPUs, performance numbers can be found in Section "Training performance results" in `README.md`. Therefore, to save the time of running this notebook, we recommend to download the pretrained FastPitch checkpoints on NGC for inference. # # You can find FP32 checkpoint at [NGC](https://ngc.nvidia.com/catalog/models/nvidia:fastpitch_pyt_fp32_ckpt_v1/files) , and AMP (Automatic Mixed Precision) checkpoint at [NGC](https://ngc.nvidia.com/catalog/models/nvidia:fastpitch_pyt_amp_ckpt_v1/files). # # To synthesize audio, you will need a WaveGlow model, which generates waveforms based on mel-spectrograms generated by FastPitch.You can download a pre-trained WaveGlow AMP model at [NGC](https://ngc.nvidia.com/catalog/models/nvidia:waveglow256pyt_fp16). # In[ ]: get_ipython().system(' mkdir -p output') # Download grapheme-level model which will be easier to manipulate get_ipython().system(' MODEL_ZIP="nvidia_fastpitch_200518.zip" MODEL="nvidia_fastpitch_200518.pt" MODEL_URL="https://api.ngc.nvidia.com/v2/models/nvidia/fastpitch_pyt_amp_ckpt_v1/versions/20.02.0/zip" MODEL_DIR=\'../pretrained_models/fastpitch\' ../scripts/download_fastpitch.sh') get_ipython().system(" MODEL_DIR='../pretrained_models/waveglow' ../scripts/download_waveglow.sh") # You can perform inference using the respective checkpoints that are passed as `--fastpitch` and `--waveglow` arguments. Next, you will use FastPitch model to generate audio samples for input text, including the basic version and the variations i npace, fade out, and pitch transforms, etc. # In[ ]: import IPython # store paths in aux variables fastp = '../pretrained_models/fastpitch/nvidia_fastpitch_200518.pt' waveg = '../pretrained_models/waveglow/nvidia_waveglow256pyt_fp16.pt' flags = f'--cuda --fastpitch {fastp} --waveglow {waveg} --wn-channels 256 --p-arpabet 0.0' # ### 1. Basic speech synthesis # You need to create an input file with some text, or just input the text in the below cell: # In[ ]: get_ipython().run_cell_magic('writefile', 'text.txt', 'This is a sample sentence you can synthesize using this wonderful model!\n') # In[ ]: # Basic synthesis get_ipython().system('python ../inference.py {flags} -i text.txt -o output/original --pace 0.75 > /dev/null') IPython.display.Audio("output/original/audio_0.wav") # ### 2. 'Low - high, odd - even' speech transformation # In[ ]: get_ipython().run_cell_magic('writefile', '../fastpitch/pitch_transform.py', 'import torch\nimport numpy as np\n\ndef pitch_transform_custom(pitch, pitch_lens):\n """Apply a custom pitch transformation to predicted pitch values.\n\n Odd - even sentence transformation.\n This sample modification decreses the pitch for even words\n and increses the pitch for odd words in the sentence.\n\n PARAMS\n ------\n pitch: torch.Tensor (bs, max_len)\n Predicted pitch values for each lexical unit, padded to max_len (in Hz).\n pitch_lens: torch.Tensor (bs, max_len)\n Number of lexical units in each utterance.\n\n RETURNS\n -------\n pitch: torch.Tensor\n Modified pitch (in Hz).\n """\n \n sentence = \'This is a sample sentence you can synthesize using this wonderful model!\'\n sep_sums = np.cumsum(np.asarray([c == \' \' for c in sentence]))\n transform = np.where(sep_sums % 2 == 0, 0.6, 1.2)\n transform = torch.tensor(transform, dtype=torch.float32, device=pitch.device)\n\n return pitch * transform\n') # In[ ]: # Synthesis with pace 0.75 and odd-even sentence transformation get_ipython().system('python ../inference.py {flags} -i text.txt -o output/custom --pitch-transform-custom --pace 0.75 > /dev/null') IPython.display.Audio("output/custom/audio_0.wav") # ### 3. 'Really' speech transformation # In[ ]: get_ipython().run_cell_magic('writefile', 'text.txt', 'Really? It sounds nothing like that.\n') # In[ ]: # Basic synthesis get_ipython().system('python ../inference.py {flags} -i text.txt -o output/original_really > /dev/null') IPython.display.Audio("output/original_really/audio_0.wav") # In[ ]: get_ipython().run_cell_magic('writefile', '../fastpitch/pitch_transform.py', 'import torch\n\ndef pitch_transform_custom(pitch, pitch_lens):\n \n sentence = "Really? I wouldn\'t be so sure."\n \n # Put emphasis on `lly?` in \'Really?\'\n for i in range(len(\'Rea\'), len(\'Really?\')):\n pitch[0][0, i] = 280 + (i - 3) * 20\n\n return pitch\n') # In[ ]: # Synthesis with 'really' question transformation and pace 0.9 get_ipython().system('python ../inference.py {flags} -i text.txt -o output/custom_really_question --pitch-transform-custom --pace 0.9 > /dev/null') IPython.display.Audio("output/custom_really_question/audio_0.wav") # In[ ]: get_ipython().run_cell_magic('writefile', '../fastpitch/pitch_transform.py', "import torch\n\ndef pitch_transform_custom(pitch, pitch_lens):\n \n sentence = 'Really? It does not sound like that!'\n \n # Fixed 'really' word adjustment\n for i in range(len('Really?')):\n pitch[0][0, i] = 215 - i * 10\n\n return pitch * torch.tensor(0.8)\n") # In[ ]: # Synthesis with 'really' sceptical transformation and pace 0.9 get_ipython().system('python ../inference.py {flags} -i text.txt -o output/custom_really_sceptical --pitch-transform-custom --pace 0.9 > /dev/null') IPython.display.Audio("output/custom_really_sceptical/audio_0.wav") # ### 4. 'Right' speech transformation # In[ ]: get_ipython().run_cell_magic('writefile', 'text.txt', "It's obvious... right?\n") # In[ ]: # Basic synthesis get_ipython().system('python ../inference.py {flags} -i text.txt -o output/original_right > /dev/null') IPython.display.Audio("output/original_right/audio_0.wav") # In[ ]: get_ipython().run_cell_magic('writefile', '../fastpitch/pitch_transform.py', 'import torch\n\ndef pitch_transform_custom(pitch, pitch_lens):\n \n pitch[0][0, -6] = 180 # R\n pitch[0][0, -5] = 260 # i\n pitch[0][0, -4] = 360 # g\n pitch[0][0, -3] = 360 # h\n pitch[0][0, -2] = 380 # t\n pitch[0][0, -1] = 400 # ?\n\n return pitch * torch.tensor(0.9)\n') # In[ ]: # Synthesis with 'right' question transformation get_ipython().system('python ../inference.py {flags} -i text.txt -o output/custom_right_question --pitch-transform-custom > /dev/null') IPython.display.Audio("output/custom_right_question/audio_0.wav")
PyTorch/LanguageModeling/Transformer-XL/pytorch/utils
utils
log_uniform_sampler
import numpy as np import torch from torch import nn class LogUniformSampler(object): def __init__(self, range_max, n_sample): """ Reference : https://github.com/tensorflow/tensorflow/blob/r1.10/tensorflow/python/ops/candidate_sampling_ops.py `P(class) = (log(class + 2) - log(class + 1)) / log(range_max + 1)` expected count can be approximated by 1 - (1 - p)^n and we use a numerically stable version -expm1(num_tries * log1p(-p)) Our implementation fixes num_tries at 2 * n_sample, and the actual #samples will vary from run to run """ with torch.no_grad(): self.range_max = range_max log_indices = torch.arange(1., range_max+2., 1.).log_() self.dist = (log_indices[1:] - log_indices[:-1]) / log_indices[-1] # print('P', self.dist.numpy().tolist()[-30:]) self.log_q = (- (-self.dist.double().log1p_() * 2 * n_sample).expm1_()).log_().float() self.n_sample = n_sample def sample(self, labels): """ labels: [b1, b2] Return true_log_probs: [b1, b2] samp_log_probs: [n_sample] neg_samples: [n_sample] """ # neg_samples = torch.empty(0).long() n_sample = self.n_sample n_tries = 2 * n_sample with torch.no_grad(): neg_samples = torch.multinomial(self.dist, n_tries, replacement=True).unique() device = labels.device neg_samples = neg_samples.to(device) true_log_probs = self.log_q[labels].to(device) samp_log_probs = self.log_q[neg_samples].to(device) return true_log_probs, samp_log_probs, neg_samples def sample_logits(embedding, bias, labels, inputs, sampler): """ embedding: an nn.Embedding layer bias: [n_vocab] labels: [b1, b2] inputs: [b1, b2, n_emb] sampler: you may use a LogUniformSampler Return logits: [b1, b2, 1 + n_sample] """ true_log_probs, samp_log_probs, neg_samples = sampler.sample(labels) n_sample = neg_samples.size(0) b1, b2 = labels.size(0), labels.size(1) all_ids = torch.cat([labels.view(-1), neg_samples]) all_w = embedding(all_ids) true_w = all_w[: -n_sample].view(b1, b2, -1) sample_w = all_w[- n_sample:].view(n_sample, -1) all_b = bias[all_ids] true_b = all_b[: -n_sample].view(b1, b2) sample_b = all_b[- n_sample:] hit = (labels[:, :, None] == neg_samples).detach() true_logits = torch.einsum('ijk,ijk->ij', true_w, inputs) + true_b - true_log_probs sample_logits = torch.einsum('lk,ijk->ijl', sample_w, inputs) + sample_b - samp_log_probs sample_logits.masked_fill_(hit, -1e30) logits = torch.cat([true_logits[:, :, None], sample_logits], -1) return logits # class LogUniformSampler(object): # def __init__(self, range_max, unique=False): # """ # Reference : https://github.com/tensorflow/tensorflow/blob/r1.10/tensorflow/python/ops/candidate_sampling_ops.py # `P(class) = (log(class + 2) - log(class + 1)) / log(range_max + 1)` # """ # self.range_max = range_max # log_indices = torch.arange(1., range_max+2., 1.).log_() # self.dist = (log_indices[1:] - log_indices[:-1]) / log_indices[-1] # self.unique = unique # if self.unique: # self.exclude_mask = torch.ByteTensor(range_max).fill_(0) # def sample(self, n_sample, labels): # pos_sample, new_labels = labels.unique(return_inverse=True) # n_pos_sample = pos_sample.size(0) # n_neg_sample = n_sample - n_pos_sample # if self.unique: # self.exclude_mask.index_fill_(0, pos_sample, 1) # sample_dist = self.dist.clone().masked_fill_(self.exclude_mask, 0) # self.exclude_mask.index_fill_(0, pos_sample, 0) # else: # sample_dist = self.dist # neg_sample = torch.multinomial(sample_dist, n_neg_sample) # sample = torch.cat([pos_sample, neg_sample]) # sample_prob = self.dist[sample] # return new_labels, sample, sample_prob if __name__ == '__main__': S, B = 3, 4 n_vocab = 10000 n_sample = 5 H = 32 labels = torch.LongTensor(S, B).random_(0, n_vocab) # sampler = LogUniformSampler(n_vocab, unique=False) # new_labels, sample, sample_prob = sampler.sample(n_sample, labels) sampler = LogUniformSampler(n_vocab, unique=True) # true_probs, samp_probs, neg_samples = sampler.sample(n_sample, labels) # print('true_probs', true_probs.numpy().tolist()) # print('samp_probs', samp_probs.numpy().tolist()) # print('neg_samples', neg_samples.numpy().tolist()) # print('sum', torch.sum(sampler.dist).item()) # assert torch.all(torch.sort(sample.unique())[0].eq(torch.sort(sample)[0])).item() embedding = nn.Embedding(n_vocab, H) bias = torch.zeros(n_vocab) inputs = torch.Tensor(S, B, H).normal_() logits, out_labels = sample_logits(embedding, bias, labels, inputs, sampler, n_sample) print('logits', logits.detach().numpy().tolist()) print('logits shape', logits.size()) print('out_labels', out_labels.detach().numpy().tolist()) print('out_labels shape', out_labels.size())
PyTorch/Segmentation/MaskRCNN/pytorch/configs
configs
e2e_faster_rcnn_R_50_C4_1x
MODEL: META_ARCHITECTURE: "GeneralizedRCNN" WEIGHT: "catalog://ImageNetPretrained/MSRA/R-50" RPN: PRE_NMS_TOP_N_TEST: 6000 POST_NMS_TOP_N_TEST: 1000 DATASETS: TRAIN: ("coco_2014_train", "coco_2014_valminusminival") TEST: ("coco_2014_minival",) SOLVER: BASE_LR: 0.01 WEIGHT_DECAY: 0.0001 STEPS: (120000, 160000) MAX_ITER: 180000 IMS_PER_BATCH: 8
TensorFlow2/Segmentation/MaskRCNN/mrcnn_tf2/model/models/resnet50
resnet50
conv2d_block
import tensorflow as tf class Conv2DBlock(tf.keras.layers.Layer): def __init__(self, filters, kernel_size, strides, padding='SAME', use_batch_norm=True, use_relu=True, trainable=True, trainable_batch_norm=False, *args, **kwargs): super().__init__(trainable=trainable, *args, **kwargs) self.conv2d = None self.batch_norm = None self.relu = None self.conv2d = tf.keras.layers.Conv2D( filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, use_bias=not use_batch_norm, trainable=trainable ) if use_batch_norm: self.batch_norm = tf.keras.layers.BatchNormalization( momentum=0.9, scale=True, epsilon=1e-05, trainable=trainable and trainable_batch_norm, fused=True, center=True ) if use_relu: self.relu = tf.keras.layers.ReLU() def call(self, inputs, training=None, **kwargs): net = inputs net = self.conv2d(net) if self.batch_norm: net = self.batch_norm(net, training=training) if self.relu: net = self.relu(net) return net
TensorFlow2/Detection/Efficientdet/visualize
visualize
standard_fields
# Copyright 2020 Google Research. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Contains classes specifying naming conventions used for object detection. Specifies: InputDataFields: standard fields used by reader/preprocessor/batcher. DetectionResultFields: standard fields returned by object detector. BoxListFields: standard field used by BoxList TfExampleFields: standard fields for tf-example data format (go/tf-example). """ class InputDataFields(object): """Names for the input tensors. Holds the standard data field names to use for identifying input tensors. This should be used by the decoder to identify keys for the returned tensor_dict containing input tensors. And it should be used by the model to identify the tensors it needs. Attributes: image: image. image_additional_channels: additional channels. original_image: image in the original input size. original_image_spatial_shape: image in the original input size. key: unique key corresponding to image. source_id: source of the original image. filename: original filename of the dataset (without common path). groundtruth_image_classes: image-level class labels. groundtruth_image_confidences: image-level class confidences. groundtruth_boxes: coordinates of the ground truth boxes in the image. groundtruth_classes: box-level class labels. groundtruth_confidences: box-level class confidences. The shape should be the same as the shape of groundtruth_classes. groundtruth_label_types: box-level label types (e.g. explicit negative). groundtruth_is_crowd: [DEPRECATED, use groundtruth_group_of instead] is the groundtruth a single object or a crowd. groundtruth_area: area of a groundtruth segment. groundtruth_difficult: is a `difficult` object groundtruth_group_of: is a `group_of` objects, e.g. multiple objects of the same class, forming a connected group, where instances are heavily occluding each other. proposal_boxes: coordinates of object proposal boxes. proposal_objectness: objectness score of each proposal. groundtruth_instance_masks: ground truth instance masks. groundtruth_instance_boundaries: ground truth instance boundaries. groundtruth_instance_classes: instance mask-level class labels. groundtruth_keypoints: ground truth keypoints. groundtruth_keypoint_visibilities: ground truth keypoint visibilities. groundtruth_keypoint_weights: groundtruth weight factor for keypoints. groundtruth_label_weights: groundtruth label weights. groundtruth_weights: groundtruth weight factor for bounding boxes. num_groundtruth_boxes: number of groundtruth boxes. is_annotated: whether an image has been labeled or not. true_image_shapes: true shapes of images in the resized images, as resized images can be padded with zeros. multiclass_scores: the label score per class for each box. context_features: a flattened list of contextual features. context_feature_length: the fixed length of each feature in context_features, used for reshaping. valid_context_size: the valid context size, used in filtering the padded context features. """ image = 'image' image_additional_channels = 'image_additional_channels' original_image = 'original_image' original_image_spatial_shape = 'original_image_spatial_shape' key = 'key' source_id = 'source_id' filename = 'filename' groundtruth_image_classes = 'groundtruth_image_classes' groundtruth_image_confidences = 'groundtruth_image_confidences' groundtruth_boxes = 'groundtruth_boxes' groundtruth_classes = 'groundtruth_classes' groundtruth_confidences = 'groundtruth_confidences' groundtruth_label_types = 'groundtruth_label_types' groundtruth_is_crowd = 'groundtruth_is_crowd' groundtruth_area = 'groundtruth_area' groundtruth_difficult = 'groundtruth_difficult' groundtruth_group_of = 'groundtruth_group_of' proposal_boxes = 'proposal_boxes' proposal_objectness = 'proposal_objectness' groundtruth_instance_masks = 'groundtruth_instance_masks' groundtruth_instance_boundaries = 'groundtruth_instance_boundaries' groundtruth_instance_classes = 'groundtruth_instance_classes' groundtruth_keypoints = 'groundtruth_keypoints' groundtruth_keypoint_visibilities = 'groundtruth_keypoint_visibilities' groundtruth_keypoint_weights = 'groundtruth_keypoint_weights' groundtruth_label_weights = 'groundtruth_label_weights' groundtruth_weights = 'groundtruth_weights' num_groundtruth_boxes = 'num_groundtruth_boxes' is_annotated = 'is_annotated' true_image_shape = 'true_image_shape' multiclass_scores = 'multiclass_scores' context_features = 'context_features' context_feature_length = 'context_feature_length' valid_context_size = 'valid_context_size' class DetectionResultFields(object): """Naming conventions for storing the output of the detector. Attributes: source_id: source of the original image. key: unique key corresponding to image. detection_boxes: coordinates of the detection boxes in the image. detection_scores: detection scores for the detection boxes in the image. detection_multiclass_scores: class score distribution (including background) for detection boxes in the image including background class. detection_classes: detection-level class labels. detection_masks: contains a segmentation mask for each detection box. detection_boundaries: contains an object boundary for each detection box. detection_keypoints: contains detection keypoints for each detection box. detection_keypoint_scores: contains detection keypoint scores. num_detections: number of detections in the batch. raw_detection_boxes: contains decoded detection boxes without Non-Max suppression. raw_detection_scores: contains class score logits for raw detection boxes. detection_anchor_indices: The anchor indices of the detections after NMS. detection_features: contains extracted features for each detected box after NMS. """ source_id = 'source_id' key = 'key' detection_boxes = 'detection_boxes' detection_scores = 'detection_scores' detection_multiclass_scores = 'detection_multiclass_scores' detection_features = 'detection_features' detection_classes = 'detection_classes' detection_masks = 'detection_masks' detection_boundaries = 'detection_boundaries' detection_keypoints = 'detection_keypoints' detection_keypoint_scores = 'detection_keypoint_scores' num_detections = 'num_detections' raw_detection_boxes = 'raw_detection_boxes' raw_detection_scores = 'raw_detection_scores' detection_anchor_indices = 'detection_anchor_indices' class BoxListFields(object): """Naming conventions for BoxLists. Attributes: boxes: bounding box coordinates. classes: classes per bounding box. scores: scores per bounding box. weights: sample weights per bounding box. objectness: objectness score per bounding box. masks: masks per bounding box. boundaries: boundaries per bounding box. keypoints: keypoints per bounding box. keypoint_heatmaps: keypoint heatmaps per bounding box. is_crowd: is_crowd annotation per bounding box. """ boxes = 'boxes' classes = 'classes' scores = 'scores' weights = 'weights' confidences = 'confidences' objectness = 'objectness' masks = 'masks' boundaries = 'boundaries' keypoints = 'keypoints' keypoint_heatmaps = 'keypoint_heatmaps' is_crowd = 'is_crowd' class PredictionFields(object): """Naming conventions for standardized prediction outputs. Attributes: feature_maps: List of feature maps for prediction. anchors: Generated anchors. raw_detection_boxes: Decoded detection boxes without NMS. raw_detection_feature_map_indices: Feature map indices from which each raw detection box was produced. """ feature_maps = 'feature_maps' anchors = 'anchors' raw_detection_boxes = 'raw_detection_boxes' raw_detection_feature_map_indices = 'raw_detection_feature_map_indices' class TfExampleFields(object): """TF-example proto feature names for object detection. Holds the standard feature names to load from an Example proto for object detection. Attributes: image_encoded: JPEG encoded string image_format: image format, e.g. "JPEG" filename: filename channels: number of channels of image colorspace: colorspace, e.g. "RGB" height: height of image in pixels, e.g. 462 width: width of image in pixels, e.g. 581 source_id: original source of the image image_class_text: image-level label in text format image_class_label: image-level label in numerical format object_class_text: labels in text format, e.g. ["person", "cat"] object_class_label: labels in numbers, e.g. [16, 8] object_bbox_xmin: xmin coordinates of groundtruth box, e.g. 10, 30 object_bbox_xmax: xmax coordinates of groundtruth box, e.g. 50, 40 object_bbox_ymin: ymin coordinates of groundtruth box, e.g. 40, 50 object_bbox_ymax: ymax coordinates of groundtruth box, e.g. 80, 70 object_view: viewpoint of object, e.g. ["frontal", "left"] object_truncated: is object truncated, e.g. [true, false] object_occluded: is object occluded, e.g. [true, false] object_difficult: is object difficult, e.g. [true, false] object_group_of: is object a single object or a group of objects object_depiction: is object a depiction object_is_crowd: [DEPRECATED, use object_group_of instead] is the object a single object or a crowd object_segment_area: the area of the segment. object_weight: a weight factor for the object's bounding box. instance_masks: instance segmentation masks. instance_boundaries: instance boundaries. instance_classes: Classes for each instance segmentation mask. detection_class_label: class label in numbers. detection_bbox_ymin: ymin coordinates of a detection box. detection_bbox_xmin: xmin coordinates of a detection box. detection_bbox_ymax: ymax coordinates of a detection box. detection_bbox_xmax: xmax coordinates of a detection box. detection_score: detection score for the class label and box. """ image_encoded = 'image/encoded' image_format = 'image/format' # format is reserved keyword filename = 'image/filename' channels = 'image/channels' colorspace = 'image/colorspace' height = 'image/height' width = 'image/width' source_id = 'image/source_id' image_class_text = 'image/class/text' image_class_label = 'image/class/label' object_class_text = 'image/object/class/text' object_class_label = 'image/object/class/label' object_bbox_ymin = 'image/object/bbox/ymin' object_bbox_xmin = 'image/object/bbox/xmin' object_bbox_ymax = 'image/object/bbox/ymax' object_bbox_xmax = 'image/object/bbox/xmax' object_view = 'image/object/view' object_truncated = 'image/object/truncated' object_occluded = 'image/object/occluded' object_difficult = 'image/object/difficult' object_group_of = 'image/object/group_of' object_depiction = 'image/object/depiction' object_is_crowd = 'image/object/is_crowd' object_segment_area = 'image/object/segment/area' object_weight = 'image/object/weight' instance_masks = 'image/segmentation/object' instance_boundaries = 'image/boundaries/object' instance_classes = 'image/segmentation/object/class' detection_class_label = 'image/detection/label' detection_bbox_ymin = 'image/detection/bbox/ymin' detection_bbox_xmin = 'image/detection/bbox/xmin' detection_bbox_ymax = 'image/detection/bbox/ymax' detection_bbox_xmax = 'image/detection/bbox/xmax' detection_score = 'image/detection/score'
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/triton
triton
metrics
import os import pandas as pd import numpy as np import pickle import torch from criterions import QuantileLoss from triton.deployment_toolkit.core import BaseMetricsCalculator def update_argparser(parser): parser.add_argument("--dataset", type=str, help="Path to dataset to be used", required=True) parser.add_argument("--checkpoint", type=str, help="Path to checkpoint to be used", required=True) def _unscale_per_id(config, values, ids, scalers): # values = values.cpu().numpy() num_horizons = config.example_length - config.encoder_length + 1 flat_values = pd.DataFrame( values, columns=[f't{j}' for j in range(num_horizons - values.shape[1], num_horizons)] ) flat_values['id'] = ids df_list = [] for idx, group in flat_values.groupby('id'): scaler = scalers[idx] group_copy = group.copy() for col in group_copy.columns: if not 'id' in col: _col = np.expand_dims(group_copy[col].values, -1) _t_col = scaler.inverse_transform(_col)[:,-1] group_copy[col] = _t_col df_list.append(group_copy) flat_values = pd.concat(df_list, axis=0) flat_values = flat_values[[col for col in flat_values if not 'id' in col]] flat_tensor = torch.from_numpy(flat_values.values) return flat_tensor def _unscale(config, values, scaler): # values = values.cpu().numpy() num_horizons = config.example_length - config.encoder_length + 1 flat_values = pd.DataFrame( values, columns=[f't{j}' for j in range(num_horizons - values.shape[1], num_horizons)] ) for col in flat_values.columns: if not 'id' in col: _col = np.expand_dims(flat_values[col].values, -1) _t_col = scaler.inverse_transform(_col)[:,-1] flat_values[col] = _t_col flat_values = flat_values[[col for col in flat_values if not 'id' in col]] flat_tensor = torch.from_numpy(flat_values.values) return flat_tensor class MetricsCalculator(BaseMetricsCalculator): def __init__(self, dataset, checkpoint): state_dict = torch.load(os.path.join(checkpoint, "checkpoint.pt")) self.config = state_dict['config'] self.predictions = [] self.targets = [] self.ids = [] self.scalers = pickle.load(open(os.path.join(dataset, 'tgt_scalers.bin'), 'rb')) @property def metrics(self): targets = np.concatenate(self.targets, axis=0) # targets = torch.cat(self.targets, dim=0) predictions = np.concatenate(self.predictions, axis=0) # predictions = torch.cat(self.predictions, dim=0) ids = np.concatenate(self.ids, axis=0) if self.config.scale_per_id: unscaled_predictions = torch.stack( [_unscale_per_id(self.config, predictions[:,:,i], ids, self.scalers) for i in range(len(self.config.quantiles))], dim=-1) unscaled_targets = _unscale_per_id(self.config, targets[:,:,0], ids, self.scalers).unsqueeze(-1) else: ids = None unscaled_predictions = torch.stack( [_unscale(self.config, predictions[:,:,i], self.scalers['']) for i in range(len(self.config.quantiles))], dim=-1) unscaled_targets = _unscale(self.config, targets[:,:,0], self.scalers['']).unsqueeze(-1) losses = QuantileLoss(self.config)(unscaled_predictions, unscaled_targets) normalizer = unscaled_targets.abs().mean() q_risk = 2 * losses / normalizer return {'test_p10': q_risk[0].cpu().numpy(), 'test_p50': q_risk[1].cpu().numpy(), 'test_p90': q_risk[2].cpu().numpy()} def update( self, ids, y_pred, x, y_real, ): #can probably just pass all of this to the evaluator main class self.predictions.append(y_pred["target__0"]) self.targets.append(y_real['target__0'][:,:,0][:,:,np.newaxis]) self.ids.append(ids) # return self.metrics
TensorFlow2/Classification/ConvNets/efficientnet_v1/B4/training/TF32
TF32
convergence_8xA100-80G
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. horovodrun -np 8 bash ./scripts/bind.sh --cpu=exclusive --ib=single -- python3 main.py \ --cfg config/efficientnet_v1/b4_cfg.py \ --mode train_and_eval \ --use_xla \ --model_dir ./output \ --data_dir /data \ --log_steps 100 \ --max_epochs 500 \ --save_checkpoint_freq 5 \ --train_batch_size 80 \ --eval_batch_size 80 \ --train_img_size 380 \ --eval_img_size 380 \ --augmenter_name autoaugment \ --mixup_alpha 0.2 \ --lr_decay cosine \ --memory_limit 81000 \ --defer_img_mixing \ --moving_average_decay 0.9999 \ --lr_init 0.005
TensorFlow/Detection/SSD/models/research/slim/nets
nets
alexnet
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Contains a model definition for AlexNet. This work was first described in: ImageNet Classification with Deep Convolutional Neural Networks Alex Krizhevsky, Ilya Sutskever and Geoffrey E. Hinton and later refined in: One weird trick for parallelizing convolutional neural networks Alex Krizhevsky, 2014 Here we provide the implementation proposed in "One weird trick" and not "ImageNet Classification", as per the paper, the LRN layers have been removed. Usage: with slim.arg_scope(alexnet.alexnet_v2_arg_scope()): outputs, end_points = alexnet.alexnet_v2(inputs) @@alexnet_v2 """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf slim = tf.contrib.slim trunc_normal = lambda stddev: tf.truncated_normal_initializer(0.0, stddev) def alexnet_v2_arg_scope(weight_decay=0.0005): with slim.arg_scope([slim.conv2d, slim.fully_connected], activation_fn=tf.nn.relu, biases_initializer=tf.constant_initializer(0.1), weights_regularizer=slim.l2_regularizer(weight_decay)): with slim.arg_scope([slim.conv2d], padding='SAME'): with slim.arg_scope([slim.max_pool2d], padding='VALID') as arg_sc: return arg_sc def alexnet_v2(inputs, num_classes=1000, is_training=True, dropout_keep_prob=0.5, spatial_squeeze=True, scope='alexnet_v2', global_pool=False): """AlexNet version 2. Described in: http://arxiv.org/pdf/1404.5997v2.pdf Parameters from: github.com/akrizhevsky/cuda-convnet2/blob/master/layers/ layers-imagenet-1gpu.cfg Note: All the fully_connected layers have been transformed to conv2d layers. To use in classification mode, resize input to 224x224 or set global_pool=True. To use in fully convolutional mode, set spatial_squeeze to false. The LRN layers have been removed and change the initializers from random_normal_initializer to xavier_initializer. Args: inputs: a tensor of size [batch_size, height, width, channels]. num_classes: the number of predicted classes. If 0 or None, the logits layer is omitted and the input features to the logits layer are returned instead. is_training: whether or not the model is being trained. dropout_keep_prob: the probability that activations are kept in the dropout layers during training. spatial_squeeze: whether or not should squeeze the spatial dimensions of the logits. Useful to remove unnecessary dimensions for classification. scope: Optional scope for the variables. global_pool: Optional boolean flag. If True, the input to the classification layer is avgpooled to size 1x1, for any input size. (This is not part of the original AlexNet.) Returns: net: the output of the logits layer (if num_classes is a non-zero integer), or the non-dropped-out input to the logits layer (if num_classes is 0 or None). end_points: a dict of tensors with intermediate activations. """ with tf.variable_scope(scope, 'alexnet_v2', [inputs]) as sc: end_points_collection = sc.original_name_scope + '_end_points' # Collect outputs for conv2d, fully_connected and max_pool2d. with slim.arg_scope([slim.conv2d, slim.fully_connected, slim.max_pool2d], outputs_collections=[end_points_collection]): net = slim.conv2d(inputs, 64, [11, 11], 4, padding='VALID', scope='conv1') net = slim.max_pool2d(net, [3, 3], 2, scope='pool1') net = slim.conv2d(net, 192, [5, 5], scope='conv2') net = slim.max_pool2d(net, [3, 3], 2, scope='pool2') net = slim.conv2d(net, 384, [3, 3], scope='conv3') net = slim.conv2d(net, 384, [3, 3], scope='conv4') net = slim.conv2d(net, 256, [3, 3], scope='conv5') net = slim.max_pool2d(net, [3, 3], 2, scope='pool5') # Use conv2d instead of fully_connected layers. with slim.arg_scope([slim.conv2d], weights_initializer=trunc_normal(0.005), biases_initializer=tf.constant_initializer(0.1)): net = slim.conv2d(net, 4096, [5, 5], padding='VALID', scope='fc6') net = slim.dropout(net, dropout_keep_prob, is_training=is_training, scope='dropout6') net = slim.conv2d(net, 4096, [1, 1], scope='fc7') # Convert end_points_collection into a end_point dict. end_points = slim.utils.convert_collection_to_dict( end_points_collection) if global_pool: net = tf.reduce_mean(net, [1, 2], keep_dims=True, name='global_pool') end_points['global_pool'] = net if num_classes: net = slim.dropout(net, dropout_keep_prob, is_training=is_training, scope='dropout7') net = slim.conv2d(net, num_classes, [1, 1], activation_fn=None, normalizer_fn=None, biases_initializer=tf.zeros_initializer(), scope='fc8') if spatial_squeeze: net = tf.squeeze(net, [1, 2], name='fc8/squeezed') end_points[sc.name + '/fc8'] = net return net, end_points alexnet_v2.default_image_size = 224
PyTorch/Classification/GPUNet/triton/125ms-D/runner
runner
start_NVIDIA-DGX-1-(1x-V100-32GB)
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #!/bin/bash # Evaluate Runner python3 -m "triton.125ms-D.runner.__main__" \ --config-path "triton/125ms-D/runner/config_NVIDIA-DGX-1-(1x-V100-32GB).yaml" \ --device 0
PyTorch/SpeechRecognition/Jasper/common
common
features
import math import random import librosa import torch import torch.nn as nn class BaseFeatures(nn.Module): """Base class for GPU accelerated audio preprocessing.""" __constants__ = ["pad_align", "pad_to_max_duration", "max_len"] def __init__(self, pad_align, pad_to_max_duration, max_duration, sample_rate, window_size, window_stride, spec_augment=None, cutout_augment=None): super(BaseFeatures, self).__init__() self.pad_align = pad_align self.pad_to_max_duration = pad_to_max_duration self.win_length = int(sample_rate * window_size) # frame size self.hop_length = int(sample_rate * window_stride) # Calculate maximum sequence length (# frames) if pad_to_max_duration: self.max_len = 1 + math.ceil( (max_duration * sample_rate - self.win_length) / self.hop_length ) if spec_augment is not None: self.spec_augment = SpecAugment(**spec_augment) else: self.spec_augment = None if cutout_augment is not None: self.cutout_augment = CutoutAugment(**cutout_augment) else: self.cutout_augment = None @torch.no_grad() def calculate_features(self, audio, audio_lens): return audio, audio_lens def __call__(self, audio, audio_lens): dtype = audio.dtype audio = audio.float() feat, feat_lens = self.calculate_features(audio, audio_lens) feat = self.apply_padding(feat) if self.cutout_augment is not None: feat = self.cutout_augment(feat) if self.spec_augment is not None: feat = self.spec_augment(feat) feat = feat.to(dtype) return feat, feat_lens def apply_padding(self, x): if self.pad_to_max_duration: x_size = max(x.size(-1), self.max_len) else: x_size = x.size(-1) if self.pad_align > 0: pad_amt = x_size % self.pad_align else: pad_amt = 0 padded_len = x_size + (self.pad_align - pad_amt if pad_amt > 0 else 0) return nn.functional.pad(x, (0, padded_len - x.size(-1))) class SpecAugment(nn.Module): """Spec augment. refer to https://arxiv.org/abs/1904.08779 """ def __init__(self, freq_masks=0, min_freq=0, max_freq=10, time_masks=0, min_time=0, max_time=10): super(SpecAugment, self).__init__() assert 0 <= min_freq <= max_freq assert 0 <= min_time <= max_time self.freq_masks = freq_masks self.min_freq = min_freq self.max_freq = max_freq self.time_masks = time_masks self.min_time = min_time self.max_time = max_time @torch.no_grad() def forward(self, x): sh = x.shape mask = torch.zeros(x.shape, dtype=torch.bool, device=x.device) for idx in range(sh[0]): for _ in range(self.freq_masks): w = torch.randint(self.min_freq, self.max_freq + 1, size=(1,)).item() f0 = torch.randint(0, max(1, sh[1] - w), size=(1,)) mask[idx, f0:f0+w] = 1 for _ in range(self.time_masks): w = torch.randint(self.min_time, self.max_time + 1, size=(1,)).item() t0 = torch.randint(0, max(1, sh[2] - w), size=(1,)) mask[idx, :, t0:t0+w] = 1 return x.masked_fill(mask, 0) class CutoutAugment(nn.Module): """Cutout. refer to https://arxiv.org/pdf/1708.04552.pdf """ def __init__(self, masks=0, min_freq=20, max_freq=20, min_time=5, max_time=5): super(CutoutAugment, self).__init__() assert 0 <= min_freq <= max_freq assert 0 <= min_time <= max_time self.masks = masks self.min_freq = min_freq self.max_freq = max_freq self.min_time = min_time self.max_time = max_time @torch.no_grad() def forward(self, x): sh = x.shape mask = torch.zeros(x.shape, dtype=torch.bool, device=x.device) for idx in range(sh[0]): for i in range(self.masks): w = torch.randint(self.min_freq, self.max_freq + 1, size=(1,)).item() h = torch.randint(self.min_time, self.max_time + 1, size=(1,)).item() f0 = int(random.uniform(0, sh[1] - w)) t0 = int(random.uniform(0, sh[2] - h)) mask[idx, f0:f0+w, t0:t0+h] = 1 return x.masked_fill(mask, 0) @torch.jit.script def normalize_batch(x, seq_len, normalize_type: str): # print ("normalize_batch: x, seq_len, shapes: ", x.shape, seq_len, seq_len.shape) if normalize_type == "per_feature": x_mean = torch.zeros((seq_len.shape[0], x.shape[1]), dtype=x.dtype, device=x.device) x_std = torch.zeros((seq_len.shape[0], x.shape[1]), dtype=x.dtype, device=x.device) for i in range(x.shape[0]): x_mean[i, :] = x[i, :, :seq_len[i]].mean(dim=1) x_std[i, :] = x[i, :, :seq_len[i]].std(dim=1) # make sure x_std is not zero x_std += 1e-5 return (x - x_mean.unsqueeze(2)) / x_std.unsqueeze(2) elif normalize_type == "all_features": x_mean = torch.zeros(seq_len.shape, dtype=x.dtype, device=x.device) x_std = torch.zeros(seq_len.shape, dtype=x.dtype, device=x.device) for i in range(x.shape[0]): x_mean[i] = x[i, :, :int(seq_len[i])].mean() x_std[i] = x[i, :, :int(seq_len[i])].std() # make sure x_std is not zero x_std += 1e-5 return (x - x_mean.view(-1, 1, 1)) / x_std.view(-1, 1, 1) else: return x @torch.jit.script def stack_subsample_frames(x, x_lens, stacking: int = 1, subsampling: int = 1): """ Stacks frames together across feature dim, and then subsamples input is batch_size, feature_dim, num_frames output is batch_size, feature_dim * stacking, num_frames / subsampling """ seq = [x] for n in range(1, stacking): tmp = torch.zeros_like(x) tmp[:, :, :-n] = x[:, :, n:] seq.append(tmp) x = torch.cat(seq, dim=1)[:, :, ::subsampling] if subsampling > 1: x_lens = torch.ceil(x_lens.float() / subsampling).int() if x.size(2) > x_lens.max().item(): assert abs(x.size(2) - x_lens.max().item()) <= 1 x = x[:,:,:x_lens.max().item()] return x, x_lens class FilterbankFeatures(BaseFeatures): # For JIT, https://pytorch.org/docs/stable/jit.html#python-defined-constants __constants__ = ["dither", "preemph", "n_fft", "hop_length", "win_length", "log", "frame_splicing", "normalize"] # torchscript: "center" removed due to a bug def __init__(self, spec_augment=None, cutout_augment=None, sample_rate=8000, window_size=0.02, window_stride=0.01, window="hamming", normalize="per_feature", n_fft=None, preemph=0.97, n_filt=64, lowfreq=0, highfreq=None, log=True, dither=1e-5, pad_align=8, pad_to_max_duration=False, max_duration=float('inf'), frame_splicing=1): super(FilterbankFeatures, self).__init__( pad_align=pad_align, pad_to_max_duration=pad_to_max_duration, max_duration=max_duration, sample_rate=sample_rate, window_size=window_size, window_stride=window_stride, spec_augment=spec_augment, cutout_augment=cutout_augment) torch_windows = { 'hann': torch.hann_window, 'hamming': torch.hamming_window, 'blackman': torch.blackman_window, 'bartlett': torch.bartlett_window, 'none': None, } self.n_fft = n_fft or 2 ** math.ceil(math.log2(self.win_length)) self.normalize = normalize self.log = log #TORCHSCRIPT: Check whether or not we need this self.dither = dither self.frame_splicing = frame_splicing self.n_filt = n_filt self.preemph = preemph highfreq = highfreq or sample_rate / 2 window_fn = torch_windows.get(window, None) window_tensor = window_fn(self.win_length, periodic=False) if window_fn else None filterbanks = torch.tensor( librosa.filters.mel(sr=sample_rate, n_fft=self.n_fft, n_mels=n_filt, fmin=lowfreq, fmax=highfreq), dtype=torch.float).unsqueeze(0) # torchscript self.register_buffer("fb", filterbanks) self.register_buffer("window", window_tensor) def get_seq_len(self, seq_len): return torch.ceil(seq_len.to(dtype=torch.float) / self.hop_length).to( dtype=torch.int) # TORCHSCRIPT: center removed due to bug def stft(self, x): spec = torch.stft(x, n_fft=self.n_fft, hop_length=self.hop_length, win_length=self.win_length, window=self.window.to(dtype=torch.float), return_complex=True) return torch.view_as_real(spec) @torch.no_grad() def calculate_features(self, x, seq_len): dtype = x.dtype seq_len = self.get_seq_len(seq_len) # dither if self.dither > 0: x += self.dither * torch.randn_like(x) # do preemphasis if self.preemph is not None: x = torch.cat( (x[:, 0].unsqueeze(1), x[:, 1:] - self.preemph * x[:, :-1]), dim=1) x = self.stft(x) # get power spectrum x = x.pow(2).sum(-1) # dot with filterbank energies x = torch.matmul(self.fb.to(x.dtype), x) # log features if required if self.log: x = torch.log(x + 1e-20) # frame splicing if required if self.frame_splicing > 1: raise ValueError('Frame splicing not supported') # normalize if required x = normalize_batch(x, seq_len, normalize_type=self.normalize) # mask to zero any values beyond seq_len in batch, # pad to multiple of `pad_align` (for efficiency) max_len = x.size(-1) mask = torch.arange(max_len, dtype=seq_len.dtype, device=x.device) mask = mask.expand(x.size(0), max_len) >= seq_len.unsqueeze(1) x = x.masked_fill(mask.unsqueeze(1), 0) # TORCHSCRIPT: Is this del important? It breaks scripting # del mask return x.to(dtype), seq_len
PyTorch/LanguageModeling/BART/configs
configs
config_hf
{ "_num_labels": 3, "activation_dropout": 0.0, "activation_function": "gelu", "add_final_layer_norm": false, "attention_dropout": 0.0, "bos_token_id": 0, "classif_dropout": 0.0, "d_model": 1024, "decoder_attention_heads": 16, "decoder_ffn_dim": 4096, "decoder_layerdrop": 0.0, "decoder_layers": 12, "decoder_start_token_id": 2, "dropout": 0.1, "early_stopping": true, "encoder_attention_heads": 16, "encoder_ffn_dim": 4096, "encoder_layerdrop": 0.0, "encoder_layers": 12, "eos_token_id": 2, "force_bos_token_to_be_generated": true, "id2label": { "0": "LABEL_0", "1": "LABEL_1", "2": "LABEL_2" }, "init_std": 0.02, "is_encoder_decoder": true, "label2id": { "LABEL_0": 0, "LABEL_1": 1, "LABEL_2": 2 }, "length_penalty": 2.0, "max_length": 142, "max_position_embeddings": 1024, "min_length": 56, "model_type": "bart", "no_repeat_ngram_size": 3, "normalize_before": false, "num_beams": 4, "num_hidden_layers": 12, "output_past": true, "pad_token_id": 1, "prefix": " ", "scale_embedding": false, "task_specific_params": { "summarization": { "early_stopping": true, "length_penalty": 2.0, "max_length": 142, "min_length": 56, "no_repeat_ngram_size": 3, "num_beams": 4 } }, "vocab_size": 50264 }