code
stringlengths
75
104k
docstring
stringlengths
1
46.9k
text
stringlengths
164
112k
def _cell_scalar(self, name=None): """ Returns the cell scalars of a vtk object Parameters ---------- name : str Name of cell scalars to retrive. Returns ------- scalars : np.ndarray Numpy array of scalars """ if name is None: # use active scalar array field, name = self.active_scalar_info if field != CELL_DATA_FIELD: raise RuntimeError('Must specify an array to fetch.') vtkarr = self.GetCellData().GetArray(name) if vtkarr is None: raise AssertionError('({}) is not a cell scalar'.format(name)) # numpy does not support bit array data types if isinstance(vtkarr, vtk.vtkBitArray): vtkarr = vtk_bit_array_to_char(vtkarr) if name not in self._cell_bool_array_names: self._cell_bool_array_names.append(name) array = vtk_to_numpy(vtkarr) if array.dtype == np.uint8 and name in self._cell_bool_array_names: array = array.view(np.bool) return array
Returns the cell scalars of a vtk object Parameters ---------- name : str Name of cell scalars to retrive. Returns ------- scalars : np.ndarray Numpy array of scalars
Below is the the instruction that describes the task: ### Input: Returns the cell scalars of a vtk object Parameters ---------- name : str Name of cell scalars to retrive. Returns ------- scalars : np.ndarray Numpy array of scalars ### Response: def _cell_scalar(self, name=None): """ Returns the cell scalars of a vtk object Parameters ---------- name : str Name of cell scalars to retrive. Returns ------- scalars : np.ndarray Numpy array of scalars """ if name is None: # use active scalar array field, name = self.active_scalar_info if field != CELL_DATA_FIELD: raise RuntimeError('Must specify an array to fetch.') vtkarr = self.GetCellData().GetArray(name) if vtkarr is None: raise AssertionError('({}) is not a cell scalar'.format(name)) # numpy does not support bit array data types if isinstance(vtkarr, vtk.vtkBitArray): vtkarr = vtk_bit_array_to_char(vtkarr) if name not in self._cell_bool_array_names: self._cell_bool_array_names.append(name) array = vtk_to_numpy(vtkarr) if array.dtype == np.uint8 and name in self._cell_bool_array_names: array = array.view(np.bool) return array
def _normalize_select_no_context(select, schema=None): """ SAME NORMALIZE, BUT NO SOURCE OF COLUMNS """ if not _Column: _late_import() if is_text(select): select = Data(value=select) else: select = wrap(select) output = select.copy() if not select.value: output.name = coalesce(select.name, select.aggregate) if output.name: output.value = jx_expression(".", schema=schema) else: return Null elif is_text(select.value): if select.value.endswith(".*"): name = select.value[:-2].lstrip(".") output.name = coalesce(select.name, name) output.value = LeavesOp(Variable(name), prefix=coalesce(select.prefix, name)) else: if select.value == ".": output.name = coalesce(select.name, select.aggregate, ".") output.value = jx_expression(select.value, schema=schema) elif select.value == "*": output.name = coalesce(select.name, select.aggregate, ".") output.value = LeavesOp(Variable(".")) else: output.name = coalesce(select.name, select.value.lstrip("."), select.aggregate) output.value = jx_expression(select.value, schema=schema) elif is_number(output.value): if not output.name: output.name = text_type(output.value) output.value = jx_expression(select.value, schema=schema) else: output.value = jx_expression(select.value, schema=schema) if not output.name: Log.error("expecting select to have a name: {{select}}", select= select) if output.name.endswith(".*"): Log.error("{{name|quote}} is invalid select", name=output.name) output.aggregate = coalesce(canonical_aggregates[select.aggregate].name, select.aggregate, "none") output.default = coalesce(select.default, canonical_aggregates[output.aggregate].default) return output
SAME NORMALIZE, BUT NO SOURCE OF COLUMNS
Below is the the instruction that describes the task: ### Input: SAME NORMALIZE, BUT NO SOURCE OF COLUMNS ### Response: def _normalize_select_no_context(select, schema=None): """ SAME NORMALIZE, BUT NO SOURCE OF COLUMNS """ if not _Column: _late_import() if is_text(select): select = Data(value=select) else: select = wrap(select) output = select.copy() if not select.value: output.name = coalesce(select.name, select.aggregate) if output.name: output.value = jx_expression(".", schema=schema) else: return Null elif is_text(select.value): if select.value.endswith(".*"): name = select.value[:-2].lstrip(".") output.name = coalesce(select.name, name) output.value = LeavesOp(Variable(name), prefix=coalesce(select.prefix, name)) else: if select.value == ".": output.name = coalesce(select.name, select.aggregate, ".") output.value = jx_expression(select.value, schema=schema) elif select.value == "*": output.name = coalesce(select.name, select.aggregate, ".") output.value = LeavesOp(Variable(".")) else: output.name = coalesce(select.name, select.value.lstrip("."), select.aggregate) output.value = jx_expression(select.value, schema=schema) elif is_number(output.value): if not output.name: output.name = text_type(output.value) output.value = jx_expression(select.value, schema=schema) else: output.value = jx_expression(select.value, schema=schema) if not output.name: Log.error("expecting select to have a name: {{select}}", select= select) if output.name.endswith(".*"): Log.error("{{name|quote}} is invalid select", name=output.name) output.aggregate = coalesce(canonical_aggregates[select.aggregate].name, select.aggregate, "none") output.default = coalesce(select.default, canonical_aggregates[output.aggregate].default) return output
def initialize(self, config, context): """We initialize the window duration and slide interval """ if SlidingWindowBolt.WINDOW_DURATION_SECS in config: self.window_duration = int(config[SlidingWindowBolt.WINDOW_DURATION_SECS]) else: self.logger.fatal("Window Duration has to be specified in the config") if SlidingWindowBolt.WINDOW_SLIDEINTERVAL_SECS in config: self.slide_interval = int(config[SlidingWindowBolt.WINDOW_SLIDEINTERVAL_SECS]) else: self.slide_interval = self.window_duration if self.slide_interval > self.window_duration: self.logger.fatal("Slide Interval should be <= Window Duration") # By modifying the config, we are able to setup the tick timer config[api_constants.TOPOLOGY_TICK_TUPLE_FREQ_SECS] = str(self.slide_interval) self.current_tuples = deque() if hasattr(self, 'saved_state'): if 'tuples' in self.saved_state: self.current_tuples = self.saved_state['tuples']
We initialize the window duration and slide interval
Below is the the instruction that describes the task: ### Input: We initialize the window duration and slide interval ### Response: def initialize(self, config, context): """We initialize the window duration and slide interval """ if SlidingWindowBolt.WINDOW_DURATION_SECS in config: self.window_duration = int(config[SlidingWindowBolt.WINDOW_DURATION_SECS]) else: self.logger.fatal("Window Duration has to be specified in the config") if SlidingWindowBolt.WINDOW_SLIDEINTERVAL_SECS in config: self.slide_interval = int(config[SlidingWindowBolt.WINDOW_SLIDEINTERVAL_SECS]) else: self.slide_interval = self.window_duration if self.slide_interval > self.window_duration: self.logger.fatal("Slide Interval should be <= Window Duration") # By modifying the config, we are able to setup the tick timer config[api_constants.TOPOLOGY_TICK_TUPLE_FREQ_SECS] = str(self.slide_interval) self.current_tuples = deque() if hasattr(self, 'saved_state'): if 'tuples' in self.saved_state: self.current_tuples = self.saved_state['tuples']
def _encrypt_xor(a, b, aes): """ Returns encrypt(a ^ b). """ a = unhexlify("%0.32x" % (int((a), 16) ^ int(hexlify(b), 16))) return aes.encrypt(a)
Returns encrypt(a ^ b).
Below is the the instruction that describes the task: ### Input: Returns encrypt(a ^ b). ### Response: def _encrypt_xor(a, b, aes): """ Returns encrypt(a ^ b). """ a = unhexlify("%0.32x" % (int((a), 16) ^ int(hexlify(b), 16))) return aes.encrypt(a)
def add_event(self, name, time, chan): """Action: add a single event.""" self.annot.add_event(name, time, chan=chan) self.update_annotations()
Action: add a single event.
Below is the the instruction that describes the task: ### Input: Action: add a single event. ### Response: def add_event(self, name, time, chan): """Action: add a single event.""" self.annot.add_event(name, time, chan=chan) self.update_annotations()
def push(self): """ Push the changes back to the remote(s) after fetching """ print('pushing...') push_kwargs = {} push_args = [] if self.settings['push.tags']: push_kwargs['push'] = True if self.settings['push.all']: push_kwargs['all'] = True else: if '.' in self.remotes: self.remotes.remove('.') if not self.remotes: # Only local target branches, # `git push` will fail return push_args.append(self.remotes) try: self.git.push(*push_args, **push_kwargs) self.pushed = True except GitError as error: error.message = "`git push` failed" raise error
Push the changes back to the remote(s) after fetching
Below is the the instruction that describes the task: ### Input: Push the changes back to the remote(s) after fetching ### Response: def push(self): """ Push the changes back to the remote(s) after fetching """ print('pushing...') push_kwargs = {} push_args = [] if self.settings['push.tags']: push_kwargs['push'] = True if self.settings['push.all']: push_kwargs['all'] = True else: if '.' in self.remotes: self.remotes.remove('.') if not self.remotes: # Only local target branches, # `git push` will fail return push_args.append(self.remotes) try: self.git.push(*push_args, **push_kwargs) self.pushed = True except GitError as error: error.message = "`git push` failed" raise error
def add_flow(self, flow): """ Add an :class:`Flow` flow to the scheduler. """ if hasattr(self, "_flow"): raise self.Error("Only one flow can be added to the scheduler.") # Check if we are already using a scheduler to run this flow flow.check_pid_file() flow.set_spectator_mode(False) # Build dirs and files (if not yet done) flow.build() with open(flow.pid_file, "wt") as fh: fh.write(str(self.pid)) self._pid_file = flow.pid_file self._flow = flow
Add an :class:`Flow` flow to the scheduler.
Below is the the instruction that describes the task: ### Input: Add an :class:`Flow` flow to the scheduler. ### Response: def add_flow(self, flow): """ Add an :class:`Flow` flow to the scheduler. """ if hasattr(self, "_flow"): raise self.Error("Only one flow can be added to the scheduler.") # Check if we are already using a scheduler to run this flow flow.check_pid_file() flow.set_spectator_mode(False) # Build dirs and files (if not yet done) flow.build() with open(flow.pid_file, "wt") as fh: fh.write(str(self.pid)) self._pid_file = flow.pid_file self._flow = flow
def share_project(project_id, usernames, read_only, share,**kwargs): """ Share an entire project with a list of users, identifed by their usernames. The read_only flag ('Y' or 'N') must be set to 'Y' to allow write access or sharing. The share flat ('Y' or 'N') must be set to 'Y' to allow the project to be shared with other users """ user_id = kwargs.get('user_id') proj_i = _get_project(project_id) #Is the sharing user allowed to share this project? proj_i.check_share_permission(int(user_id)) user_id = int(user_id) for owner in proj_i.owners: if user_id == owner.user_id: break else: raise HydraError("Permission Denied. Cannot share project.") if read_only == 'Y': write = 'N' share = 'N' else: write = 'Y' if proj_i.created_by != user_id and share == 'Y': raise HydraError("Cannot share the 'sharing' ability as user %s is not" " the owner of project %s"% (user_id, project_id)) for username in usernames: user_i = _get_user(username) proj_i.set_owner(user_i.id, write=write, share=share) for net_i in proj_i.networks: net_i.set_owner(user_i.id, write=write, share=share) db.DBSession.flush()
Share an entire project with a list of users, identifed by their usernames. The read_only flag ('Y' or 'N') must be set to 'Y' to allow write access or sharing. The share flat ('Y' or 'N') must be set to 'Y' to allow the project to be shared with other users
Below is the the instruction that describes the task: ### Input: Share an entire project with a list of users, identifed by their usernames. The read_only flag ('Y' or 'N') must be set to 'Y' to allow write access or sharing. The share flat ('Y' or 'N') must be set to 'Y' to allow the project to be shared with other users ### Response: def share_project(project_id, usernames, read_only, share,**kwargs): """ Share an entire project with a list of users, identifed by their usernames. The read_only flag ('Y' or 'N') must be set to 'Y' to allow write access or sharing. The share flat ('Y' or 'N') must be set to 'Y' to allow the project to be shared with other users """ user_id = kwargs.get('user_id') proj_i = _get_project(project_id) #Is the sharing user allowed to share this project? proj_i.check_share_permission(int(user_id)) user_id = int(user_id) for owner in proj_i.owners: if user_id == owner.user_id: break else: raise HydraError("Permission Denied. Cannot share project.") if read_only == 'Y': write = 'N' share = 'N' else: write = 'Y' if proj_i.created_by != user_id and share == 'Y': raise HydraError("Cannot share the 'sharing' ability as user %s is not" " the owner of project %s"% (user_id, project_id)) for username in usernames: user_i = _get_user(username) proj_i.set_owner(user_i.id, write=write, share=share) for net_i in proj_i.networks: net_i.set_owner(user_i.id, write=write, share=share) db.DBSession.flush()
def update_experiment(self, id, key, value): '''Update experiment''' if id not in self.experiments: return False self.experiments[id][key] = value self.write_file() return True
Update experiment
Below is the the instruction that describes the task: ### Input: Update experiment ### Response: def update_experiment(self, id, key, value): '''Update experiment''' if id not in self.experiments: return False self.experiments[id][key] = value self.write_file() return True
def _update_proxy(self, change): """ An observer which sends state change to the proxy. """ if change['name'] in ['row', 'column']: super(AbstractWidgetItem, self)._update_proxy(change) else: self.proxy.data_changed(change)
An observer which sends state change to the proxy.
Below is the the instruction that describes the task: ### Input: An observer which sends state change to the proxy. ### Response: def _update_proxy(self, change): """ An observer which sends state change to the proxy. """ if change['name'] in ['row', 'column']: super(AbstractWidgetItem, self)._update_proxy(change) else: self.proxy.data_changed(change)
def async_atomic(on_exception=None, raise_exception=True, **kwargs): ''' first argument will be a conn object :param func: :return: ''' if not raise_exception and not on_exception: async def default_on_exception(exc): resp_dict = {} resp_dict['status'] = type(exc) resp_dict['message'] = str(exc) return resp_dict on_exception = default_on_exception elif raise_exception and not on_exception: async def raise_exception(exp_args): raise exp_args on_exception = raise_exception _db_adapter = get_db_adapter() def decorator(func): @functools.wraps(func) async def wrapped(self, *args, **kwargs): conn = None for i in itertools.chain(args, kwargs.values()): if type(i) is Connection: conn = i break if not conn: pool = await _db_adapter.get_pool() async with pool.acquire() as conn: try: async with conn.transaction(): kwargs['conn'] = conn return await func(self, *args, **kwargs) except Exception as e: return await on_exception(e) else: try: async with conn.transaction(): kwargs['conn'] = conn return await func(self, *args, **kwargs) except Exception as e: return await on_exception(e) return wrapped return decorator
first argument will be a conn object :param func: :return:
Below is the the instruction that describes the task: ### Input: first argument will be a conn object :param func: :return: ### Response: def async_atomic(on_exception=None, raise_exception=True, **kwargs): ''' first argument will be a conn object :param func: :return: ''' if not raise_exception and not on_exception: async def default_on_exception(exc): resp_dict = {} resp_dict['status'] = type(exc) resp_dict['message'] = str(exc) return resp_dict on_exception = default_on_exception elif raise_exception and not on_exception: async def raise_exception(exp_args): raise exp_args on_exception = raise_exception _db_adapter = get_db_adapter() def decorator(func): @functools.wraps(func) async def wrapped(self, *args, **kwargs): conn = None for i in itertools.chain(args, kwargs.values()): if type(i) is Connection: conn = i break if not conn: pool = await _db_adapter.get_pool() async with pool.acquire() as conn: try: async with conn.transaction(): kwargs['conn'] = conn return await func(self, *args, **kwargs) except Exception as e: return await on_exception(e) else: try: async with conn.transaction(): kwargs['conn'] = conn return await func(self, *args, **kwargs) except Exception as e: return await on_exception(e) return wrapped return decorator
def mode(data): """Compute an intelligent value for the mode The most common value in experimental is not very useful if there are a lot of digits after the comma. This method approaches this issue by rounding to bin size that is determined by the Freedman–Diaconis rule. Parameters ---------- data: 1d ndarray The data for which the mode should be computed. Returns ------- mode: float The mode computed with the Freedman-Diaconis rule. """ # size n = data.shape[0] # interquartile range iqr = np.percentile(data, 75)-np.percentile(data, 25) # Freedman–Diaconis bin_size = 2 * iqr / n**(1/3) if bin_size == 0: return np.nan # Add bin_size/2, because we want the center of the bin and # not the left corner of the bin. databin = np.round(data/bin_size)*bin_size + bin_size/2 u, indices = np.unique(databin, return_inverse=True) mode = u[np.argmax(np.bincount(indices))] return mode
Compute an intelligent value for the mode The most common value in experimental is not very useful if there are a lot of digits after the comma. This method approaches this issue by rounding to bin size that is determined by the Freedman–Diaconis rule. Parameters ---------- data: 1d ndarray The data for which the mode should be computed. Returns ------- mode: float The mode computed with the Freedman-Diaconis rule.
Below is the the instruction that describes the task: ### Input: Compute an intelligent value for the mode The most common value in experimental is not very useful if there are a lot of digits after the comma. This method approaches this issue by rounding to bin size that is determined by the Freedman–Diaconis rule. Parameters ---------- data: 1d ndarray The data for which the mode should be computed. Returns ------- mode: float The mode computed with the Freedman-Diaconis rule. ### Response: def mode(data): """Compute an intelligent value for the mode The most common value in experimental is not very useful if there are a lot of digits after the comma. This method approaches this issue by rounding to bin size that is determined by the Freedman–Diaconis rule. Parameters ---------- data: 1d ndarray The data for which the mode should be computed. Returns ------- mode: float The mode computed with the Freedman-Diaconis rule. """ # size n = data.shape[0] # interquartile range iqr = np.percentile(data, 75)-np.percentile(data, 25) # Freedman–Diaconis bin_size = 2 * iqr / n**(1/3) if bin_size == 0: return np.nan # Add bin_size/2, because we want the center of the bin and # not the left corner of the bin. databin = np.round(data/bin_size)*bin_size + bin_size/2 u, indices = np.unique(databin, return_inverse=True) mode = u[np.argmax(np.bincount(indices))] return mode
def calculate_error(self): """Estimate the numerical error based on the fluxes calculated by the current and the last method. >>> from hydpy.models.test_v1 import * >>> parameterstep() >>> model.numvars.idx_method = 2 >>> results = numpy.asarray(fluxes.fastaccess._q_results) >>> results[:4] = 0., 3., 4., 0. >>> model.calculate_error() >>> from hydpy import round_ >>> round_(model.numvars.error) 1.0 """ self.numvars.error = 0. fluxes = self.sequences.fluxes for flux in fluxes.numerics: results = getattr(fluxes.fastaccess, '_%s_results' % flux.name) diff = (results[self.numvars.idx_method] - results[self.numvars.idx_method-1]) self.numvars.error = max(self.numvars.error, numpy.max(numpy.abs(diff)))
Estimate the numerical error based on the fluxes calculated by the current and the last method. >>> from hydpy.models.test_v1 import * >>> parameterstep() >>> model.numvars.idx_method = 2 >>> results = numpy.asarray(fluxes.fastaccess._q_results) >>> results[:4] = 0., 3., 4., 0. >>> model.calculate_error() >>> from hydpy import round_ >>> round_(model.numvars.error) 1.0
Below is the the instruction that describes the task: ### Input: Estimate the numerical error based on the fluxes calculated by the current and the last method. >>> from hydpy.models.test_v1 import * >>> parameterstep() >>> model.numvars.idx_method = 2 >>> results = numpy.asarray(fluxes.fastaccess._q_results) >>> results[:4] = 0., 3., 4., 0. >>> model.calculate_error() >>> from hydpy import round_ >>> round_(model.numvars.error) 1.0 ### Response: def calculate_error(self): """Estimate the numerical error based on the fluxes calculated by the current and the last method. >>> from hydpy.models.test_v1 import * >>> parameterstep() >>> model.numvars.idx_method = 2 >>> results = numpy.asarray(fluxes.fastaccess._q_results) >>> results[:4] = 0., 3., 4., 0. >>> model.calculate_error() >>> from hydpy import round_ >>> round_(model.numvars.error) 1.0 """ self.numvars.error = 0. fluxes = self.sequences.fluxes for flux in fluxes.numerics: results = getattr(fluxes.fastaccess, '_%s_results' % flux.name) diff = (results[self.numvars.idx_method] - results[self.numvars.idx_method-1]) self.numvars.error = max(self.numvars.error, numpy.max(numpy.abs(diff)))
def clean_already_reported(self, comments, file_name, position, message): """ message is potentially a list of messages to post. This is later converted into a string. """ for comment in comments: if ((comment['path'] == file_name and comment['position'] == position and comment['user']['login'] == self.requester.username)): return [m for m in message if m not in comment['body']] return message
message is potentially a list of messages to post. This is later converted into a string.
Below is the the instruction that describes the task: ### Input: message is potentially a list of messages to post. This is later converted into a string. ### Response: def clean_already_reported(self, comments, file_name, position, message): """ message is potentially a list of messages to post. This is later converted into a string. """ for comment in comments: if ((comment['path'] == file_name and comment['position'] == position and comment['user']['login'] == self.requester.username)): return [m for m in message if m not in comment['body']] return message
def __ssh_gateway_config_dict(gateway): ''' Return a dictionary with gateway options. The result is used to provide arguments to __ssh_gateway_arguments method. ''' extended_kwargs = {} if gateway: extended_kwargs['ssh_gateway'] = gateway['ssh_gateway'] extended_kwargs['ssh_gateway_key'] = gateway['ssh_gateway_key'] extended_kwargs['ssh_gateway_user'] = gateway['ssh_gateway_user'] extended_kwargs['ssh_gateway_command'] = gateway['ssh_gateway_command'] return extended_kwargs
Return a dictionary with gateway options. The result is used to provide arguments to __ssh_gateway_arguments method.
Below is the the instruction that describes the task: ### Input: Return a dictionary with gateway options. The result is used to provide arguments to __ssh_gateway_arguments method. ### Response: def __ssh_gateway_config_dict(gateway): ''' Return a dictionary with gateway options. The result is used to provide arguments to __ssh_gateway_arguments method. ''' extended_kwargs = {} if gateway: extended_kwargs['ssh_gateway'] = gateway['ssh_gateway'] extended_kwargs['ssh_gateway_key'] = gateway['ssh_gateway_key'] extended_kwargs['ssh_gateway_user'] = gateway['ssh_gateway_user'] extended_kwargs['ssh_gateway_command'] = gateway['ssh_gateway_command'] return extended_kwargs
def export_losses_by_event(ekey, dstore): """ :param ekey: export key, i.e. a pair (datastore key, fmt) :param dstore: datastore object """ oq = dstore['oqparam'] writer = writers.CsvWriter(fmt=writers.FIVEDIGITS) dest = dstore.build_fname('losses_by_event', '', 'csv') if oq.calculation_mode.startswith('scenario'): dtlist = [('eid', U64)] + oq.loss_dt_list() arr = dstore['losses_by_event'].value[['eid', 'loss']] writer.save(arr.copy().view(dtlist), dest) elif oq.calculation_mode == 'ebrisk': tagcol = dstore['assetcol/tagcol'] lbe = dstore['losses_by_event'].value lbe.sort(order='eid') dic = dict(tagnames=['event_id', 'loss_type'] + oq.aggregate_by) for tagname in oq.aggregate_by: dic[tagname] = getattr(tagcol, tagname) dic['event_id'] = ['?'] + list(lbe['eid']) dic['loss_type'] = ('?',) + oq.loss_dt().names aw = hdf5.ArrayWrapper(lbe['loss'], dic) # shape (E, L, T...) writer.save(aw.to_table(), dest) else: dtlist = [('event_id', U64), ('rup_id', U32), ('year', U32)] + \ oq.loss_dt_list() eids = dstore['losses_by_event']['eid'] year_of = year_dict(dstore['events']['eid'], oq.investigation_time, oq.ses_seed) arr = numpy.zeros(len(dstore['losses_by_event']), dtlist) arr['event_id'] = eids arr['rup_id'] = arr['event_id'] / TWO32 arr['year'] = [year_of[eid] for eid in eids] loss = dstore['losses_by_event']['loss'].T # shape (L, E) for losses, loss_type in zip(loss, oq.loss_dt().names): arr[loss_type] = losses writer.save(arr, dest) return writer.getsaved()
:param ekey: export key, i.e. a pair (datastore key, fmt) :param dstore: datastore object
Below is the the instruction that describes the task: ### Input: :param ekey: export key, i.e. a pair (datastore key, fmt) :param dstore: datastore object ### Response: def export_losses_by_event(ekey, dstore): """ :param ekey: export key, i.e. a pair (datastore key, fmt) :param dstore: datastore object """ oq = dstore['oqparam'] writer = writers.CsvWriter(fmt=writers.FIVEDIGITS) dest = dstore.build_fname('losses_by_event', '', 'csv') if oq.calculation_mode.startswith('scenario'): dtlist = [('eid', U64)] + oq.loss_dt_list() arr = dstore['losses_by_event'].value[['eid', 'loss']] writer.save(arr.copy().view(dtlist), dest) elif oq.calculation_mode == 'ebrisk': tagcol = dstore['assetcol/tagcol'] lbe = dstore['losses_by_event'].value lbe.sort(order='eid') dic = dict(tagnames=['event_id', 'loss_type'] + oq.aggregate_by) for tagname in oq.aggregate_by: dic[tagname] = getattr(tagcol, tagname) dic['event_id'] = ['?'] + list(lbe['eid']) dic['loss_type'] = ('?',) + oq.loss_dt().names aw = hdf5.ArrayWrapper(lbe['loss'], dic) # shape (E, L, T...) writer.save(aw.to_table(), dest) else: dtlist = [('event_id', U64), ('rup_id', U32), ('year', U32)] + \ oq.loss_dt_list() eids = dstore['losses_by_event']['eid'] year_of = year_dict(dstore['events']['eid'], oq.investigation_time, oq.ses_seed) arr = numpy.zeros(len(dstore['losses_by_event']), dtlist) arr['event_id'] = eids arr['rup_id'] = arr['event_id'] / TWO32 arr['year'] = [year_of[eid] for eid in eids] loss = dstore['losses_by_event']['loss'].T # shape (L, E) for losses, loss_type in zip(loss, oq.loss_dt().names): arr[loss_type] = losses writer.save(arr, dest) return writer.getsaved()
def delete_table(self, instance_id, table_id, project_id=None): """ Deletes the specified table in Cloud Bigtable. Raises google.api_core.exceptions.NotFound if the table does not exist. :type instance_id: str :param instance_id: The ID of the Cloud Bigtable instance. :type table_id: str :param table_id: The ID of the table in Cloud Bigtable. :type project_id: str :param project_id: Optional, Google Cloud Platform project ID where the BigTable exists. If set to None or missing, the default project_id from the GCP connection is used. """ table = self.get_instance(instance_id=instance_id, project_id=project_id).table(table_id=table_id) table.delete()
Deletes the specified table in Cloud Bigtable. Raises google.api_core.exceptions.NotFound if the table does not exist. :type instance_id: str :param instance_id: The ID of the Cloud Bigtable instance. :type table_id: str :param table_id: The ID of the table in Cloud Bigtable. :type project_id: str :param project_id: Optional, Google Cloud Platform project ID where the BigTable exists. If set to None or missing, the default project_id from the GCP connection is used.
Below is the the instruction that describes the task: ### Input: Deletes the specified table in Cloud Bigtable. Raises google.api_core.exceptions.NotFound if the table does not exist. :type instance_id: str :param instance_id: The ID of the Cloud Bigtable instance. :type table_id: str :param table_id: The ID of the table in Cloud Bigtable. :type project_id: str :param project_id: Optional, Google Cloud Platform project ID where the BigTable exists. If set to None or missing, the default project_id from the GCP connection is used. ### Response: def delete_table(self, instance_id, table_id, project_id=None): """ Deletes the specified table in Cloud Bigtable. Raises google.api_core.exceptions.NotFound if the table does not exist. :type instance_id: str :param instance_id: The ID of the Cloud Bigtable instance. :type table_id: str :param table_id: The ID of the table in Cloud Bigtable. :type project_id: str :param project_id: Optional, Google Cloud Platform project ID where the BigTable exists. If set to None or missing, the default project_id from the GCP connection is used. """ table = self.get_instance(instance_id=instance_id, project_id=project_id).table(table_id=table_id) table.delete()
def patch_priority_class(self, name, body, **kwargs): """ partially update the specified PriorityClass This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.patch_priority_class(name, body, async_req=True) >>> result = thread.get() :param async_req bool :param str name: name of the PriorityClass (required) :param object body: (required) :param str pretty: If 'true', then the output is pretty printed. :param str dry_run: When present, indicates that modifications should not be persisted. An invalid or unrecognized dryRun directive will result in an error response and no further processing of the request. Valid values are: - All: all dry run stages will be processed :param str field_manager: fieldManager is a name associated with the actor or entity that is making these changes. The value must be less than or 128 characters long, and only contain printable characters, as defined by https://golang.org/pkg/unicode/#IsPrint. This field is required for apply requests (application/apply-patch) but optional for non-apply patch types (JsonPatch, MergePatch, StrategicMergePatch). :param bool force: Force is going to \"force\" Apply requests. It means user will re-acquire conflicting fields owned by other people. Force flag must be unset for non-apply patch requests. :return: V1PriorityClass If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.patch_priority_class_with_http_info(name, body, **kwargs) else: (data) = self.patch_priority_class_with_http_info(name, body, **kwargs) return data
partially update the specified PriorityClass This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.patch_priority_class(name, body, async_req=True) >>> result = thread.get() :param async_req bool :param str name: name of the PriorityClass (required) :param object body: (required) :param str pretty: If 'true', then the output is pretty printed. :param str dry_run: When present, indicates that modifications should not be persisted. An invalid or unrecognized dryRun directive will result in an error response and no further processing of the request. Valid values are: - All: all dry run stages will be processed :param str field_manager: fieldManager is a name associated with the actor or entity that is making these changes. The value must be less than or 128 characters long, and only contain printable characters, as defined by https://golang.org/pkg/unicode/#IsPrint. This field is required for apply requests (application/apply-patch) but optional for non-apply patch types (JsonPatch, MergePatch, StrategicMergePatch). :param bool force: Force is going to \"force\" Apply requests. It means user will re-acquire conflicting fields owned by other people. Force flag must be unset for non-apply patch requests. :return: V1PriorityClass If the method is called asynchronously, returns the request thread.
Below is the the instruction that describes the task: ### Input: partially update the specified PriorityClass This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.patch_priority_class(name, body, async_req=True) >>> result = thread.get() :param async_req bool :param str name: name of the PriorityClass (required) :param object body: (required) :param str pretty: If 'true', then the output is pretty printed. :param str dry_run: When present, indicates that modifications should not be persisted. An invalid or unrecognized dryRun directive will result in an error response and no further processing of the request. Valid values are: - All: all dry run stages will be processed :param str field_manager: fieldManager is a name associated with the actor or entity that is making these changes. The value must be less than or 128 characters long, and only contain printable characters, as defined by https://golang.org/pkg/unicode/#IsPrint. This field is required for apply requests (application/apply-patch) but optional for non-apply patch types (JsonPatch, MergePatch, StrategicMergePatch). :param bool force: Force is going to \"force\" Apply requests. It means user will re-acquire conflicting fields owned by other people. Force flag must be unset for non-apply patch requests. :return: V1PriorityClass If the method is called asynchronously, returns the request thread. ### Response: def patch_priority_class(self, name, body, **kwargs): """ partially update the specified PriorityClass This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.patch_priority_class(name, body, async_req=True) >>> result = thread.get() :param async_req bool :param str name: name of the PriorityClass (required) :param object body: (required) :param str pretty: If 'true', then the output is pretty printed. :param str dry_run: When present, indicates that modifications should not be persisted. An invalid or unrecognized dryRun directive will result in an error response and no further processing of the request. Valid values are: - All: all dry run stages will be processed :param str field_manager: fieldManager is a name associated with the actor or entity that is making these changes. The value must be less than or 128 characters long, and only contain printable characters, as defined by https://golang.org/pkg/unicode/#IsPrint. This field is required for apply requests (application/apply-patch) but optional for non-apply patch types (JsonPatch, MergePatch, StrategicMergePatch). :param bool force: Force is going to \"force\" Apply requests. It means user will re-acquire conflicting fields owned by other people. Force flag must be unset for non-apply patch requests. :return: V1PriorityClass If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.patch_priority_class_with_http_info(name, body, **kwargs) else: (data) = self.patch_priority_class_with_http_info(name, body, **kwargs) return data
def create(self, to, channel, custom_message=values.unset): """ Create a new VerificationInstance :param unicode to: To phonenumber :param unicode channel: sms or call :param unicode custom_message: A custom message for this verification :returns: Newly created VerificationInstance :rtype: twilio.rest.preview.acc_security.service.verification.VerificationInstance """ data = values.of({'To': to, 'Channel': channel, 'CustomMessage': custom_message, }) payload = self._version.create( 'POST', self._uri, data=data, ) return VerificationInstance(self._version, payload, service_sid=self._solution['service_sid'], )
Create a new VerificationInstance :param unicode to: To phonenumber :param unicode channel: sms or call :param unicode custom_message: A custom message for this verification :returns: Newly created VerificationInstance :rtype: twilio.rest.preview.acc_security.service.verification.VerificationInstance
Below is the the instruction that describes the task: ### Input: Create a new VerificationInstance :param unicode to: To phonenumber :param unicode channel: sms or call :param unicode custom_message: A custom message for this verification :returns: Newly created VerificationInstance :rtype: twilio.rest.preview.acc_security.service.verification.VerificationInstance ### Response: def create(self, to, channel, custom_message=values.unset): """ Create a new VerificationInstance :param unicode to: To phonenumber :param unicode channel: sms or call :param unicode custom_message: A custom message for this verification :returns: Newly created VerificationInstance :rtype: twilio.rest.preview.acc_security.service.verification.VerificationInstance """ data = values.of({'To': to, 'Channel': channel, 'CustomMessage': custom_message, }) payload = self._version.create( 'POST', self._uri, data=data, ) return VerificationInstance(self._version, payload, service_sid=self._solution['service_sid'], )
def set_default_viewport(self): """ Calculates the viewport based on the configured aspect ratio. Will add black borders and center the viewport if the window do not match the configured viewport. If aspect ratio is None the viewport will be scaled to the entire window size regardless of size. """ if self.aspect_ratio: expected_width = int(self.buffer_height * self.aspect_ratio) expected_height = int(expected_width / self.aspect_ratio) if expected_width > self.buffer_width: expected_width = self.buffer_width expected_height = int(expected_width / self.aspect_ratio) blank_space_x = self.buffer_width - expected_width blank_space_y = self.buffer_height - expected_height self.ctx.viewport = ( blank_space_x // 2, blank_space_y // 2, expected_width, expected_height, ) else: self.ctx.viewport = (0, 0, self.buffer_width, self.buffer_height)
Calculates the viewport based on the configured aspect ratio. Will add black borders and center the viewport if the window do not match the configured viewport. If aspect ratio is None the viewport will be scaled to the entire window size regardless of size.
Below is the the instruction that describes the task: ### Input: Calculates the viewport based on the configured aspect ratio. Will add black borders and center the viewport if the window do not match the configured viewport. If aspect ratio is None the viewport will be scaled to the entire window size regardless of size. ### Response: def set_default_viewport(self): """ Calculates the viewport based on the configured aspect ratio. Will add black borders and center the viewport if the window do not match the configured viewport. If aspect ratio is None the viewport will be scaled to the entire window size regardless of size. """ if self.aspect_ratio: expected_width = int(self.buffer_height * self.aspect_ratio) expected_height = int(expected_width / self.aspect_ratio) if expected_width > self.buffer_width: expected_width = self.buffer_width expected_height = int(expected_width / self.aspect_ratio) blank_space_x = self.buffer_width - expected_width blank_space_y = self.buffer_height - expected_height self.ctx.viewport = ( blank_space_x // 2, blank_space_y // 2, expected_width, expected_height, ) else: self.ctx.viewport = (0, 0, self.buffer_width, self.buffer_height)
def get_measurements( self, measurement='Weight', lower_bound=None, upper_bound=None ): """ Returns measurements of a given name between two dates.""" if upper_bound is None: upper_bound = datetime.date.today() if lower_bound is None: lower_bound = upper_bound - datetime.timedelta(days=30) # If they entered the dates in the opposite order, let's # just flip them around for them as a convenience if lower_bound > upper_bound: lower_bound, upper_bound = upper_bound, lower_bound # get the URL for the main check in page document = self._get_document_for_url( self._get_url_for_measurements() ) # gather the IDs for all measurement types measurement_ids = self._get_measurement_ids(document) # select the measurement ID based on the input if measurement in measurement_ids.keys(): measurement_id = measurement_ids[measurement] else: raise ValueError( "Measurement '%s' does not exist." % measurement ) page = 1 measurements = OrderedDict() # retrieve entries until finished while True: # retrieve the HTML from MyFitnessPal document = self._get_document_for_url( self._get_url_for_measurements(page, measurement_id) ) # parse the HTML for measurement entries and add to dictionary results = self._get_measurements(document) measurements.update(results) # stop if there are no more entries if len(results) == 0: break # continue if the lower bound has not been reached elif list(results.keys())[-1] > lower_bound: page += 1 continue # otherwise stop else: break # remove entries that are not within the dates specified for date in list(measurements.keys()): if not upper_bound >= date >= lower_bound: del measurements[date] return measurements
Returns measurements of a given name between two dates.
Below is the the instruction that describes the task: ### Input: Returns measurements of a given name between two dates. ### Response: def get_measurements( self, measurement='Weight', lower_bound=None, upper_bound=None ): """ Returns measurements of a given name between two dates.""" if upper_bound is None: upper_bound = datetime.date.today() if lower_bound is None: lower_bound = upper_bound - datetime.timedelta(days=30) # If they entered the dates in the opposite order, let's # just flip them around for them as a convenience if lower_bound > upper_bound: lower_bound, upper_bound = upper_bound, lower_bound # get the URL for the main check in page document = self._get_document_for_url( self._get_url_for_measurements() ) # gather the IDs for all measurement types measurement_ids = self._get_measurement_ids(document) # select the measurement ID based on the input if measurement in measurement_ids.keys(): measurement_id = measurement_ids[measurement] else: raise ValueError( "Measurement '%s' does not exist." % measurement ) page = 1 measurements = OrderedDict() # retrieve entries until finished while True: # retrieve the HTML from MyFitnessPal document = self._get_document_for_url( self._get_url_for_measurements(page, measurement_id) ) # parse the HTML for measurement entries and add to dictionary results = self._get_measurements(document) measurements.update(results) # stop if there are no more entries if len(results) == 0: break # continue if the lower bound has not been reached elif list(results.keys())[-1] > lower_bound: page += 1 continue # otherwise stop else: break # remove entries that are not within the dates specified for date in list(measurements.keys()): if not upper_bound >= date >= lower_bound: del measurements[date] return measurements
async def delete_reply_markup(self): """ Use this method to delete reply markup of messages sent by the bot or via the bot (for inline bots). :return: On success, if edited message is sent by the bot, the edited Message is returned, otherwise True is returned. :rtype: :obj:`typing.Union[types.Message, base.Boolean]` """ return await self.bot.edit_message_reply_markup(chat_id=self.chat.id, message_id=self.message_id)
Use this method to delete reply markup of messages sent by the bot or via the bot (for inline bots). :return: On success, if edited message is sent by the bot, the edited Message is returned, otherwise True is returned. :rtype: :obj:`typing.Union[types.Message, base.Boolean]`
Below is the the instruction that describes the task: ### Input: Use this method to delete reply markup of messages sent by the bot or via the bot (for inline bots). :return: On success, if edited message is sent by the bot, the edited Message is returned, otherwise True is returned. :rtype: :obj:`typing.Union[types.Message, base.Boolean]` ### Response: async def delete_reply_markup(self): """ Use this method to delete reply markup of messages sent by the bot or via the bot (for inline bots). :return: On success, if edited message is sent by the bot, the edited Message is returned, otherwise True is returned. :rtype: :obj:`typing.Union[types.Message, base.Boolean]` """ return await self.bot.edit_message_reply_markup(chat_id=self.chat.id, message_id=self.message_id)
def isnumber(self, string, *args): """Is number args: string (str): match returns: bool """ try: n, u = utility.analyze_number(string) except SyntaxError: return False return True
Is number args: string (str): match returns: bool
Below is the the instruction that describes the task: ### Input: Is number args: string (str): match returns: bool ### Response: def isnumber(self, string, *args): """Is number args: string (str): match returns: bool """ try: n, u = utility.analyze_number(string) except SyntaxError: return False return True
def MatrixSolveLs(a, rhs, l2_reg): """ Matrix least-squares solve op. """ r = np.empty(rhs.shape).astype(a.dtype) for coord in np.ndindex(a.shape[:-2]): pos = coord + (Ellipsis,) r[pos] = np.linalg.lstsq(a[pos], rhs[pos])[0] return r,
Matrix least-squares solve op.
Below is the the instruction that describes the task: ### Input: Matrix least-squares solve op. ### Response: def MatrixSolveLs(a, rhs, l2_reg): """ Matrix least-squares solve op. """ r = np.empty(rhs.shape).astype(a.dtype) for coord in np.ndindex(a.shape[:-2]): pos = coord + (Ellipsis,) r[pos] = np.linalg.lstsq(a[pos], rhs[pos])[0] return r,
def load_shellcode(shellcode, arch, start_offset=0, load_address=0): """ Load a new project based on a string of raw bytecode. :param shellcode: The data to load :param arch: The name of the arch to use, or an archinfo class :param start_offset: The offset into the data to start analysis (default 0) :param load_address: The address to place the data in memory (default 0) """ return Project( BytesIO(shellcode), main_opts={ 'backend': 'blob', 'arch': arch, 'entry_point': start_offset, 'base_addr': load_address, } )
Load a new project based on a string of raw bytecode. :param shellcode: The data to load :param arch: The name of the arch to use, or an archinfo class :param start_offset: The offset into the data to start analysis (default 0) :param load_address: The address to place the data in memory (default 0)
Below is the the instruction that describes the task: ### Input: Load a new project based on a string of raw bytecode. :param shellcode: The data to load :param arch: The name of the arch to use, or an archinfo class :param start_offset: The offset into the data to start analysis (default 0) :param load_address: The address to place the data in memory (default 0) ### Response: def load_shellcode(shellcode, arch, start_offset=0, load_address=0): """ Load a new project based on a string of raw bytecode. :param shellcode: The data to load :param arch: The name of the arch to use, or an archinfo class :param start_offset: The offset into the data to start analysis (default 0) :param load_address: The address to place the data in memory (default 0) """ return Project( BytesIO(shellcode), main_opts={ 'backend': 'blob', 'arch': arch, 'entry_point': start_offset, 'base_addr': load_address, } )
def start(self): """ Creates a SSL connection to the iDigi Server and sends a ConnectionRequest message. """ self.log.info("Starting SSL Session for Monitor %s." % self.monitor_id) if self.socket is not None: raise Exception("Socket already established for %s." % self) try: # Create socket, wrap in SSL and connect. self.socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # Validate that certificate server uses matches what we expect. if self.ca_certs is not None: self.socket = ssl.wrap_socket(self.socket, cert_reqs=ssl.CERT_REQUIRED, ca_certs=self.ca_certs) else: self.socket = ssl.wrap_socket(self.socket) self.socket.connect((self.client.hostname, PUSH_SECURE_PORT)) self.socket.setblocking(0) except Exception as exception: self.socket.close() self.socket = None raise exception self.send_connection_request()
Creates a SSL connection to the iDigi Server and sends a ConnectionRequest message.
Below is the the instruction that describes the task: ### Input: Creates a SSL connection to the iDigi Server and sends a ConnectionRequest message. ### Response: def start(self): """ Creates a SSL connection to the iDigi Server and sends a ConnectionRequest message. """ self.log.info("Starting SSL Session for Monitor %s." % self.monitor_id) if self.socket is not None: raise Exception("Socket already established for %s." % self) try: # Create socket, wrap in SSL and connect. self.socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # Validate that certificate server uses matches what we expect. if self.ca_certs is not None: self.socket = ssl.wrap_socket(self.socket, cert_reqs=ssl.CERT_REQUIRED, ca_certs=self.ca_certs) else: self.socket = ssl.wrap_socket(self.socket) self.socket.connect((self.client.hostname, PUSH_SECURE_PORT)) self.socket.setblocking(0) except Exception as exception: self.socket.close() self.socket = None raise exception self.send_connection_request()
def filter_t(func): """ Transformation for Sequence.filter :param func: filter function :return: transformation """ return Transformation('filter({0})'.format(name(func)), partial(filter, func), {ExecutionStrategies.PARALLEL})
Transformation for Sequence.filter :param func: filter function :return: transformation
Below is the the instruction that describes the task: ### Input: Transformation for Sequence.filter :param func: filter function :return: transformation ### Response: def filter_t(func): """ Transformation for Sequence.filter :param func: filter function :return: transformation """ return Transformation('filter({0})'.format(name(func)), partial(filter, func), {ExecutionStrategies.PARALLEL})
def Client(api_version, *args, **kwargs): """Return an neutron client. @param api_version: only 2.0 is supported now """ neutron_client = utils.get_client_class( API_NAME, api_version, API_VERSIONS, ) return neutron_client(*args, **kwargs)
Return an neutron client. @param api_version: only 2.0 is supported now
Below is the the instruction that describes the task: ### Input: Return an neutron client. @param api_version: only 2.0 is supported now ### Response: def Client(api_version, *args, **kwargs): """Return an neutron client. @param api_version: only 2.0 is supported now """ neutron_client = utils.get_client_class( API_NAME, api_version, API_VERSIONS, ) return neutron_client(*args, **kwargs)
def get_colour(index): """ get color number index. """ colours = [ 'red', 'blue', 'green', 'pink', 'yellow', 'magenta', 'orange', 'cyan', ] default_colour = 'purple' if index < len(colours): return colours[index] else: return default_colour
get color number index.
Below is the the instruction that describes the task: ### Input: get color number index. ### Response: def get_colour(index): """ get color number index. """ colours = [ 'red', 'blue', 'green', 'pink', 'yellow', 'magenta', 'orange', 'cyan', ] default_colour = 'purple' if index < len(colours): return colours[index] else: return default_colour
def t_BOOL(self, t): r'true|false' t.value = True if t.value == 'true' else False return t
r'true|false
Below is the the instruction that describes the task: ### Input: r'true|false ### Response: def t_BOOL(self, t): r'true|false' t.value = True if t.value == 'true' else False return t
def listdir(p, match='*', exclude='', listtype='file', matchfun=None): """ list file(or folder) for this path (NOT recursive) :param p: :param match: :param exclude: :param listtype: ('file' | 'filepath' |'dir' | 'all') :param matchfun: match fun (default fnmatch.fnmatch) True/False = matchfun(name, pattern) :rtype: """ if listtype == 'file': gen = listfile(p) elif listtype == 'filepath': gen = listfilepath(p) elif listtype == 'dir': gen = listfolder(p) elif listtype == 'dirpath': gen = listfolderpath(p) else: # list file or folder gen = (entry.name for entry in scandir.scandir(p)) return filter_pattern(gen, match, exclude, matchfun)
list file(or folder) for this path (NOT recursive) :param p: :param match: :param exclude: :param listtype: ('file' | 'filepath' |'dir' | 'all') :param matchfun: match fun (default fnmatch.fnmatch) True/False = matchfun(name, pattern) :rtype:
Below is the the instruction that describes the task: ### Input: list file(or folder) for this path (NOT recursive) :param p: :param match: :param exclude: :param listtype: ('file' | 'filepath' |'dir' | 'all') :param matchfun: match fun (default fnmatch.fnmatch) True/False = matchfun(name, pattern) :rtype: ### Response: def listdir(p, match='*', exclude='', listtype='file', matchfun=None): """ list file(or folder) for this path (NOT recursive) :param p: :param match: :param exclude: :param listtype: ('file' | 'filepath' |'dir' | 'all') :param matchfun: match fun (default fnmatch.fnmatch) True/False = matchfun(name, pattern) :rtype: """ if listtype == 'file': gen = listfile(p) elif listtype == 'filepath': gen = listfilepath(p) elif listtype == 'dir': gen = listfolder(p) elif listtype == 'dirpath': gen = listfolderpath(p) else: # list file or folder gen = (entry.name for entry in scandir.scandir(p)) return filter_pattern(gen, match, exclude, matchfun)
def get_listing(self): ''' This function gets all of the information that we need to either render or validate the form. It is structured to avoid duplicate DB queries ''' if not hasattr(self,'listing'): allEvents = self.get_allEvents() openEvents = allEvents.filter(registrationOpen=True) closedEvents = allEvents.filter(registrationOpen=False) publicEvents = allEvents.instance_of(PublicEvent) allSeries = allEvents.instance_of(Series) self.listing = { 'allEvents': allEvents, 'openEvents': openEvents, 'closedEvents': closedEvents, 'publicEvents': publicEvents, 'allSeries': allSeries, 'regOpenEvents': publicEvents.filter(registrationOpen=True).filter( Q(publicevent__category__isnull=True) | Q(publicevent__category__separateOnRegistrationPage=False) ), 'regClosedEvents': publicEvents.filter(registrationOpen=False).filter( Q(publicevent__category__isnull=True) | Q(publicevent__category__separateOnRegistrationPage=False) ), 'categorySeparateEvents': publicEvents.filter( publicevent__category__separateOnRegistrationPage=True ).order_by('publicevent__category'), 'regOpenSeries': allSeries.filter(registrationOpen=True).filter( Q(series__category__isnull=True) | Q(series__category__separateOnRegistrationPage=False) ), 'regClosedSeries': allSeries.filter(registrationOpen=False).filter( Q(series__category__isnull=True) | Q(series__category__separateOnRegistrationPage=False) ), 'categorySeparateSeries': allSeries.filter( series__category__separateOnRegistrationPage=True ).order_by('series__category'), } return self.listing
This function gets all of the information that we need to either render or validate the form. It is structured to avoid duplicate DB queries
Below is the the instruction that describes the task: ### Input: This function gets all of the information that we need to either render or validate the form. It is structured to avoid duplicate DB queries ### Response: def get_listing(self): ''' This function gets all of the information that we need to either render or validate the form. It is structured to avoid duplicate DB queries ''' if not hasattr(self,'listing'): allEvents = self.get_allEvents() openEvents = allEvents.filter(registrationOpen=True) closedEvents = allEvents.filter(registrationOpen=False) publicEvents = allEvents.instance_of(PublicEvent) allSeries = allEvents.instance_of(Series) self.listing = { 'allEvents': allEvents, 'openEvents': openEvents, 'closedEvents': closedEvents, 'publicEvents': publicEvents, 'allSeries': allSeries, 'regOpenEvents': publicEvents.filter(registrationOpen=True).filter( Q(publicevent__category__isnull=True) | Q(publicevent__category__separateOnRegistrationPage=False) ), 'regClosedEvents': publicEvents.filter(registrationOpen=False).filter( Q(publicevent__category__isnull=True) | Q(publicevent__category__separateOnRegistrationPage=False) ), 'categorySeparateEvents': publicEvents.filter( publicevent__category__separateOnRegistrationPage=True ).order_by('publicevent__category'), 'regOpenSeries': allSeries.filter(registrationOpen=True).filter( Q(series__category__isnull=True) | Q(series__category__separateOnRegistrationPage=False) ), 'regClosedSeries': allSeries.filter(registrationOpen=False).filter( Q(series__category__isnull=True) | Q(series__category__separateOnRegistrationPage=False) ), 'categorySeparateSeries': allSeries.filter( series__category__separateOnRegistrationPage=True ).order_by('series__category'), } return self.listing
def nextCmd(snmpEngine, authData, transportTarget, contextData, *varBinds, **options): """Performs SNMP GETNEXT query. Based on passed parameters, prepares SNMP GETNEXT packet (:RFC:`1905#section-4.2.2`) and schedules its transmission by :mod:`twisted` I/O framework at a later point of time. Parameters ---------- snmpEngine : :class:`~pysnmp.hlapi.SnmpEngine` Class instance representing SNMP engine. authData : :class:`~pysnmp.hlapi.CommunityData` or :class:`~pysnmp.hlapi.UsmUserData` Class instance representing SNMP credentials. transportTarget : :class:`~pysnmp.hlapi.twisted.UdpTransportTarget` or :class:`~pysnmp.hlapi.twisted.Udp6TransportTarget` Class instance representing transport type along with SNMP peer address. contextData : :class:`~pysnmp.hlapi.ContextData` Class instance representing SNMP ContextEngineId and ContextName values. \*varBinds : :class:`~pysnmp.smi.rfc1902.ObjectType` One or more class instances representing MIB variables to place into SNMP request. Other Parameters ---------------- \*\*options : Request options: * `lookupMib` - load MIB and resolve response MIB variables at the cost of slightly reduced performance. Default is `True`. * `ignoreNonIncreasingOid` - continue iteration even if response MIB variables (OIDs) are not greater then request MIB variables. Be aware that setting it to `True` may cause infinite loop between SNMP management and agent applications. Default is `False`. Returns ------- deferred : :class:`~twisted.internet.defer.Deferred` Twisted Deferred object representing work-in-progress. User is expected to attach his own `success` and `error` callback functions to the Deferred object though :meth:`~twisted.internet.defer.Deferred.addCallbacks` method. Raises ------ PySnmpError Or its derivative indicating that an error occurred while performing SNMP operation. Notes ----- User `success` callback is called with the following tuple as its first argument: * errorStatus (str) : True value indicates SNMP PDU error. * errorIndex (int) : Non-zero value refers to `varBinds[errorIndex-1]` * varBinds (tuple) : A sequence of sequences (e.g. 2-D array) of :py:class:`~pysnmp.smi.rfc1902.ObjectType` class instances representing a table of MIB variables returned in SNMP response. Inner sequences represent table rows and ordered exactly the same as `varBinds` in request. Response to GETNEXT always contain a single row. User `error` callback is called with `errorIndication` object wrapped in :class:`~twisted.python.failure.Failure` object. Examples -------- >>> from twisted.internet.task import react >>> from pysnmp.hlapi.twisted import * >>> >>> def success(args): ... (errorStatus, errorIndex, varBindTable) = args ... print(errorStatus, errorIndex, varBindTable) ... >>> def failure(errorIndication): ... print(errorIndication) ... >>> def run(reactor): ... d = nextCmd(SnmpEngine(), ... CommunityData('public'), ... UdpTransportTarget(('demo.snmplabs.com', 161)), ... ContextData(), ... ObjectType(ObjectIdentity('SNMPv2-MIB', 'system')) ... d.addCallback(success).addErrback(failure) ... return d ... >>> react(run) (0, 0, [[ObjectType(ObjectIdentity(ObjectName('1.3.6.1.2.1.1.1.0')), DisplayString('SunOS zeus.snmplabs.com 4.1.3_U1 1 sun4m'))]]) """ def __cbFun(snmpEngine, sendRequestHandle, errorIndication, errorStatus, errorIndex, varBindTable, cbCtx): lookupMib, deferred = cbCtx if (options.get('ignoreNonIncreasingOid', False) and errorIndication and isinstance(errorIndication, errind.OidNotIncreasing)): errorIndication = None if errorIndication: deferred.errback(Failure(errorIndication)) else: try: varBindTable = [ VB_PROCESSOR.unmakeVarBinds(snmpEngine.cache, varBindTableRow, lookupMib) for varBindTableRow in varBindTable ] except Exception as e: deferred.errback(Failure(e)) else: deferred.callback((errorStatus, errorIndex, varBindTable)) addrName, paramsName = LCD.configure( snmpEngine, authData, transportTarget, contextData.contextName) varBinds = VB_PROCESSOR.makeVarBinds(snmpEngine.cache, varBinds) deferred = Deferred() cmdgen.NextCommandGenerator().sendVarBinds( snmpEngine, addrName, contextData.contextEngineId, contextData.contextName, varBinds, __cbFun, (options.get('lookupMib', True), deferred)) return deferred
Performs SNMP GETNEXT query. Based on passed parameters, prepares SNMP GETNEXT packet (:RFC:`1905#section-4.2.2`) and schedules its transmission by :mod:`twisted` I/O framework at a later point of time. Parameters ---------- snmpEngine : :class:`~pysnmp.hlapi.SnmpEngine` Class instance representing SNMP engine. authData : :class:`~pysnmp.hlapi.CommunityData` or :class:`~pysnmp.hlapi.UsmUserData` Class instance representing SNMP credentials. transportTarget : :class:`~pysnmp.hlapi.twisted.UdpTransportTarget` or :class:`~pysnmp.hlapi.twisted.Udp6TransportTarget` Class instance representing transport type along with SNMP peer address. contextData : :class:`~pysnmp.hlapi.ContextData` Class instance representing SNMP ContextEngineId and ContextName values. \*varBinds : :class:`~pysnmp.smi.rfc1902.ObjectType` One or more class instances representing MIB variables to place into SNMP request. Other Parameters ---------------- \*\*options : Request options: * `lookupMib` - load MIB and resolve response MIB variables at the cost of slightly reduced performance. Default is `True`. * `ignoreNonIncreasingOid` - continue iteration even if response MIB variables (OIDs) are not greater then request MIB variables. Be aware that setting it to `True` may cause infinite loop between SNMP management and agent applications. Default is `False`. Returns ------- deferred : :class:`~twisted.internet.defer.Deferred` Twisted Deferred object representing work-in-progress. User is expected to attach his own `success` and `error` callback functions to the Deferred object though :meth:`~twisted.internet.defer.Deferred.addCallbacks` method. Raises ------ PySnmpError Or its derivative indicating that an error occurred while performing SNMP operation. Notes ----- User `success` callback is called with the following tuple as its first argument: * errorStatus (str) : True value indicates SNMP PDU error. * errorIndex (int) : Non-zero value refers to `varBinds[errorIndex-1]` * varBinds (tuple) : A sequence of sequences (e.g. 2-D array) of :py:class:`~pysnmp.smi.rfc1902.ObjectType` class instances representing a table of MIB variables returned in SNMP response. Inner sequences represent table rows and ordered exactly the same as `varBinds` in request. Response to GETNEXT always contain a single row. User `error` callback is called with `errorIndication` object wrapped in :class:`~twisted.python.failure.Failure` object. Examples -------- >>> from twisted.internet.task import react >>> from pysnmp.hlapi.twisted import * >>> >>> def success(args): ... (errorStatus, errorIndex, varBindTable) = args ... print(errorStatus, errorIndex, varBindTable) ... >>> def failure(errorIndication): ... print(errorIndication) ... >>> def run(reactor): ... d = nextCmd(SnmpEngine(), ... CommunityData('public'), ... UdpTransportTarget(('demo.snmplabs.com', 161)), ... ContextData(), ... ObjectType(ObjectIdentity('SNMPv2-MIB', 'system')) ... d.addCallback(success).addErrback(failure) ... return d ... >>> react(run) (0, 0, [[ObjectType(ObjectIdentity(ObjectName('1.3.6.1.2.1.1.1.0')), DisplayString('SunOS zeus.snmplabs.com 4.1.3_U1 1 sun4m'))]])
Below is the the instruction that describes the task: ### Input: Performs SNMP GETNEXT query. Based on passed parameters, prepares SNMP GETNEXT packet (:RFC:`1905#section-4.2.2`) and schedules its transmission by :mod:`twisted` I/O framework at a later point of time. Parameters ---------- snmpEngine : :class:`~pysnmp.hlapi.SnmpEngine` Class instance representing SNMP engine. authData : :class:`~pysnmp.hlapi.CommunityData` or :class:`~pysnmp.hlapi.UsmUserData` Class instance representing SNMP credentials. transportTarget : :class:`~pysnmp.hlapi.twisted.UdpTransportTarget` or :class:`~pysnmp.hlapi.twisted.Udp6TransportTarget` Class instance representing transport type along with SNMP peer address. contextData : :class:`~pysnmp.hlapi.ContextData` Class instance representing SNMP ContextEngineId and ContextName values. \*varBinds : :class:`~pysnmp.smi.rfc1902.ObjectType` One or more class instances representing MIB variables to place into SNMP request. Other Parameters ---------------- \*\*options : Request options: * `lookupMib` - load MIB and resolve response MIB variables at the cost of slightly reduced performance. Default is `True`. * `ignoreNonIncreasingOid` - continue iteration even if response MIB variables (OIDs) are not greater then request MIB variables. Be aware that setting it to `True` may cause infinite loop between SNMP management and agent applications. Default is `False`. Returns ------- deferred : :class:`~twisted.internet.defer.Deferred` Twisted Deferred object representing work-in-progress. User is expected to attach his own `success` and `error` callback functions to the Deferred object though :meth:`~twisted.internet.defer.Deferred.addCallbacks` method. Raises ------ PySnmpError Or its derivative indicating that an error occurred while performing SNMP operation. Notes ----- User `success` callback is called with the following tuple as its first argument: * errorStatus (str) : True value indicates SNMP PDU error. * errorIndex (int) : Non-zero value refers to `varBinds[errorIndex-1]` * varBinds (tuple) : A sequence of sequences (e.g. 2-D array) of :py:class:`~pysnmp.smi.rfc1902.ObjectType` class instances representing a table of MIB variables returned in SNMP response. Inner sequences represent table rows and ordered exactly the same as `varBinds` in request. Response to GETNEXT always contain a single row. User `error` callback is called with `errorIndication` object wrapped in :class:`~twisted.python.failure.Failure` object. Examples -------- >>> from twisted.internet.task import react >>> from pysnmp.hlapi.twisted import * >>> >>> def success(args): ... (errorStatus, errorIndex, varBindTable) = args ... print(errorStatus, errorIndex, varBindTable) ... >>> def failure(errorIndication): ... print(errorIndication) ... >>> def run(reactor): ... d = nextCmd(SnmpEngine(), ... CommunityData('public'), ... UdpTransportTarget(('demo.snmplabs.com', 161)), ... ContextData(), ... ObjectType(ObjectIdentity('SNMPv2-MIB', 'system')) ... d.addCallback(success).addErrback(failure) ... return d ... >>> react(run) (0, 0, [[ObjectType(ObjectIdentity(ObjectName('1.3.6.1.2.1.1.1.0')), DisplayString('SunOS zeus.snmplabs.com 4.1.3_U1 1 sun4m'))]]) ### Response: def nextCmd(snmpEngine, authData, transportTarget, contextData, *varBinds, **options): """Performs SNMP GETNEXT query. Based on passed parameters, prepares SNMP GETNEXT packet (:RFC:`1905#section-4.2.2`) and schedules its transmission by :mod:`twisted` I/O framework at a later point of time. Parameters ---------- snmpEngine : :class:`~pysnmp.hlapi.SnmpEngine` Class instance representing SNMP engine. authData : :class:`~pysnmp.hlapi.CommunityData` or :class:`~pysnmp.hlapi.UsmUserData` Class instance representing SNMP credentials. transportTarget : :class:`~pysnmp.hlapi.twisted.UdpTransportTarget` or :class:`~pysnmp.hlapi.twisted.Udp6TransportTarget` Class instance representing transport type along with SNMP peer address. contextData : :class:`~pysnmp.hlapi.ContextData` Class instance representing SNMP ContextEngineId and ContextName values. \*varBinds : :class:`~pysnmp.smi.rfc1902.ObjectType` One or more class instances representing MIB variables to place into SNMP request. Other Parameters ---------------- \*\*options : Request options: * `lookupMib` - load MIB and resolve response MIB variables at the cost of slightly reduced performance. Default is `True`. * `ignoreNonIncreasingOid` - continue iteration even if response MIB variables (OIDs) are not greater then request MIB variables. Be aware that setting it to `True` may cause infinite loop between SNMP management and agent applications. Default is `False`. Returns ------- deferred : :class:`~twisted.internet.defer.Deferred` Twisted Deferred object representing work-in-progress. User is expected to attach his own `success` and `error` callback functions to the Deferred object though :meth:`~twisted.internet.defer.Deferred.addCallbacks` method. Raises ------ PySnmpError Or its derivative indicating that an error occurred while performing SNMP operation. Notes ----- User `success` callback is called with the following tuple as its first argument: * errorStatus (str) : True value indicates SNMP PDU error. * errorIndex (int) : Non-zero value refers to `varBinds[errorIndex-1]` * varBinds (tuple) : A sequence of sequences (e.g. 2-D array) of :py:class:`~pysnmp.smi.rfc1902.ObjectType` class instances representing a table of MIB variables returned in SNMP response. Inner sequences represent table rows and ordered exactly the same as `varBinds` in request. Response to GETNEXT always contain a single row. User `error` callback is called with `errorIndication` object wrapped in :class:`~twisted.python.failure.Failure` object. Examples -------- >>> from twisted.internet.task import react >>> from pysnmp.hlapi.twisted import * >>> >>> def success(args): ... (errorStatus, errorIndex, varBindTable) = args ... print(errorStatus, errorIndex, varBindTable) ... >>> def failure(errorIndication): ... print(errorIndication) ... >>> def run(reactor): ... d = nextCmd(SnmpEngine(), ... CommunityData('public'), ... UdpTransportTarget(('demo.snmplabs.com', 161)), ... ContextData(), ... ObjectType(ObjectIdentity('SNMPv2-MIB', 'system')) ... d.addCallback(success).addErrback(failure) ... return d ... >>> react(run) (0, 0, [[ObjectType(ObjectIdentity(ObjectName('1.3.6.1.2.1.1.1.0')), DisplayString('SunOS zeus.snmplabs.com 4.1.3_U1 1 sun4m'))]]) """ def __cbFun(snmpEngine, sendRequestHandle, errorIndication, errorStatus, errorIndex, varBindTable, cbCtx): lookupMib, deferred = cbCtx if (options.get('ignoreNonIncreasingOid', False) and errorIndication and isinstance(errorIndication, errind.OidNotIncreasing)): errorIndication = None if errorIndication: deferred.errback(Failure(errorIndication)) else: try: varBindTable = [ VB_PROCESSOR.unmakeVarBinds(snmpEngine.cache, varBindTableRow, lookupMib) for varBindTableRow in varBindTable ] except Exception as e: deferred.errback(Failure(e)) else: deferred.callback((errorStatus, errorIndex, varBindTable)) addrName, paramsName = LCD.configure( snmpEngine, authData, transportTarget, contextData.contextName) varBinds = VB_PROCESSOR.makeVarBinds(snmpEngine.cache, varBinds) deferred = Deferred() cmdgen.NextCommandGenerator().sendVarBinds( snmpEngine, addrName, contextData.contextEngineId, contextData.contextName, varBinds, __cbFun, (options.get('lookupMib', True), deferred)) return deferred
def lookup_comment_list(self): """Lookup list of comments for an issue. ~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~- :returns: The pair (ISSUE, COMMENTS) where ISSUE is a dict for the main issue and COMMENTS is a list of comments on the issue. ~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~- PURPOSE: Do the work of getting data from github, handling paging, and so on. """ if self.thread_id is None: return None, None # Just pulling a single issue here so pagination shouldn't be problem my_req = self.raw_pull(self.thread_id) if my_req.status_code != 200: raise GitHubAngry('Bad status code %s because %s' % ( my_req.status_code, my_req.reason)) issue_json = my_req.json() comments_url = issue_json['comments_url'] + self.url_extras kwargs = {} if not self.user else {'auth': (self.user, self.token)} comments_json = [] while comments_url: logging.debug('Pulling comments URL: %s', comments_url) c_req = requests.get(comments_url, **kwargs) my_json = c_req.json() assert isinstance(my_json, list) comments_json.extend(my_json) comments_url = None if 'link' in c_req.headers: # need to handle pagination. logging.debug('Paginating in lookup_comment_list') link = c_req.headers['link'].split(',') for thing in link: potential_url, part = thing.split('; ') if part == 'rel="next"': comments_url = potential_url.lstrip(' <').rstrip('> ') return issue_json, comments_json
Lookup list of comments for an issue. ~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~- :returns: The pair (ISSUE, COMMENTS) where ISSUE is a dict for the main issue and COMMENTS is a list of comments on the issue. ~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~- PURPOSE: Do the work of getting data from github, handling paging, and so on.
Below is the the instruction that describes the task: ### Input: Lookup list of comments for an issue. ~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~- :returns: The pair (ISSUE, COMMENTS) where ISSUE is a dict for the main issue and COMMENTS is a list of comments on the issue. ~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~- PURPOSE: Do the work of getting data from github, handling paging, and so on. ### Response: def lookup_comment_list(self): """Lookup list of comments for an issue. ~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~- :returns: The pair (ISSUE, COMMENTS) where ISSUE is a dict for the main issue and COMMENTS is a list of comments on the issue. ~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~- PURPOSE: Do the work of getting data from github, handling paging, and so on. """ if self.thread_id is None: return None, None # Just pulling a single issue here so pagination shouldn't be problem my_req = self.raw_pull(self.thread_id) if my_req.status_code != 200: raise GitHubAngry('Bad status code %s because %s' % ( my_req.status_code, my_req.reason)) issue_json = my_req.json() comments_url = issue_json['comments_url'] + self.url_extras kwargs = {} if not self.user else {'auth': (self.user, self.token)} comments_json = [] while comments_url: logging.debug('Pulling comments URL: %s', comments_url) c_req = requests.get(comments_url, **kwargs) my_json = c_req.json() assert isinstance(my_json, list) comments_json.extend(my_json) comments_url = None if 'link' in c_req.headers: # need to handle pagination. logging.debug('Paginating in lookup_comment_list') link = c_req.headers['link'].split(',') for thing in link: potential_url, part = thing.split('; ') if part == 'rel="next"': comments_url = potential_url.lstrip(' <').rstrip('> ') return issue_json, comments_json
def resample_nn_1d(a, centers): """Return one-dimensional nearest-neighbor indexes based on user-specified centers. Parameters ---------- a : array-like 1-dimensional array of numeric values from which to extract indexes of nearest-neighbors centers : array-like 1-dimensional array of numeric values representing a subset of values to approximate Returns ------- An array of indexes representing values closest to given array values """ ix = [] for center in centers: index = (np.abs(a - center)).argmin() if index not in ix: ix.append(index) return ix
Return one-dimensional nearest-neighbor indexes based on user-specified centers. Parameters ---------- a : array-like 1-dimensional array of numeric values from which to extract indexes of nearest-neighbors centers : array-like 1-dimensional array of numeric values representing a subset of values to approximate Returns ------- An array of indexes representing values closest to given array values
Below is the the instruction that describes the task: ### Input: Return one-dimensional nearest-neighbor indexes based on user-specified centers. Parameters ---------- a : array-like 1-dimensional array of numeric values from which to extract indexes of nearest-neighbors centers : array-like 1-dimensional array of numeric values representing a subset of values to approximate Returns ------- An array of indexes representing values closest to given array values ### Response: def resample_nn_1d(a, centers): """Return one-dimensional nearest-neighbor indexes based on user-specified centers. Parameters ---------- a : array-like 1-dimensional array of numeric values from which to extract indexes of nearest-neighbors centers : array-like 1-dimensional array of numeric values representing a subset of values to approximate Returns ------- An array of indexes representing values closest to given array values """ ix = [] for center in centers: index = (np.abs(a - center)).argmin() if index not in ix: ix.append(index) return ix
def now_playing(self, **kwargs): """ Get the list of movies playing in theatres. This list refreshes every day. The maximum number of items this list will include is 100. Args: page: (optional) Minimum value of 1. Expected value is an integer. language: (optional) ISO 639-1 code. Returns: A dict representation of the JSON returned from the API. """ path = self._get_path('now_playing') response = self._GET(path, kwargs) self._set_attrs_to_values(response) return response
Get the list of movies playing in theatres. This list refreshes every day. The maximum number of items this list will include is 100. Args: page: (optional) Minimum value of 1. Expected value is an integer. language: (optional) ISO 639-1 code. Returns: A dict representation of the JSON returned from the API.
Below is the the instruction that describes the task: ### Input: Get the list of movies playing in theatres. This list refreshes every day. The maximum number of items this list will include is 100. Args: page: (optional) Minimum value of 1. Expected value is an integer. language: (optional) ISO 639-1 code. Returns: A dict representation of the JSON returned from the API. ### Response: def now_playing(self, **kwargs): """ Get the list of movies playing in theatres. This list refreshes every day. The maximum number of items this list will include is 100. Args: page: (optional) Minimum value of 1. Expected value is an integer. language: (optional) ISO 639-1 code. Returns: A dict representation of the JSON returned from the API. """ path = self._get_path('now_playing') response = self._GET(path, kwargs) self._set_attrs_to_values(response) return response
def read_key(suppress=False): """ Blocks until a keyboard event happens, then returns that event's name or, if missing, its scan code. """ event = read_event(suppress) return event.name or event.scan_code
Blocks until a keyboard event happens, then returns that event's name or, if missing, its scan code.
Below is the the instruction that describes the task: ### Input: Blocks until a keyboard event happens, then returns that event's name or, if missing, its scan code. ### Response: def read_key(suppress=False): """ Blocks until a keyboard event happens, then returns that event's name or, if missing, its scan code. """ event = read_event(suppress) return event.name or event.scan_code
def backend_from_fname(name): """Determine backend module object from a file name.""" ext = splitext(name)[1] try: mime = EXTS_TO_MIMETYPES[ext] except KeyError: try: f = open(name, 'rb') except IOError as e: # The file may not exist, we are being asked to determine it's type # from it's name. Other errors are unexpected. if e.errno != errno.ENOENT: raise # We will have to fall back upon the default backend. msg = "No handler for %r, defaulting to %r" % (ext, DEFAULT_MIME) if 'FULLTEXT_TESTING' in os.environ: warn(msg) else: LOGGER.debug(msg) mod_name = MIMETYPE_TO_BACKENDS[DEFAULT_MIME] else: with f: return backend_from_fobj(f) else: mod_name = MIMETYPE_TO_BACKENDS[mime] mod = import_mod(mod_name) return mod
Determine backend module object from a file name.
Below is the the instruction that describes the task: ### Input: Determine backend module object from a file name. ### Response: def backend_from_fname(name): """Determine backend module object from a file name.""" ext = splitext(name)[1] try: mime = EXTS_TO_MIMETYPES[ext] except KeyError: try: f = open(name, 'rb') except IOError as e: # The file may not exist, we are being asked to determine it's type # from it's name. Other errors are unexpected. if e.errno != errno.ENOENT: raise # We will have to fall back upon the default backend. msg = "No handler for %r, defaulting to %r" % (ext, DEFAULT_MIME) if 'FULLTEXT_TESTING' in os.environ: warn(msg) else: LOGGER.debug(msg) mod_name = MIMETYPE_TO_BACKENDS[DEFAULT_MIME] else: with f: return backend_from_fobj(f) else: mod_name = MIMETYPE_TO_BACKENDS[mime] mod = import_mod(mod_name) return mod
def get_badge_image_url(pid, ext='svg'): """Return the badge for a DOI.""" return url_for('invenio_formatter_badges.badge', title=pid.pid_type, value=pid.pid_value, ext=ext)
Return the badge for a DOI.
Below is the the instruction that describes the task: ### Input: Return the badge for a DOI. ### Response: def get_badge_image_url(pid, ext='svg'): """Return the badge for a DOI.""" return url_for('invenio_formatter_badges.badge', title=pid.pid_type, value=pid.pid_value, ext=ext)
def design_z_filter_single_pole(filt_str, max_gain_freq): """ Finds the coefficients for a simple lowpass/highpass filter. This function just prints the coefficient values, besides the given filter equation and its power gain. There's 3 constraints used to find the coefficients: 1. The G value is defined by the max gain of 1 (0 dB) imposed at a specific frequency 2. The R value is defined by the 50% power cutoff frequency given in rad/sample. 3. Filter should be stable (-1 < R < 1) Parameters ---------- filt_str : Filter equation as a string using the G, R, w and z values. max_gain_freq : A value of zero (DC) or pi (Nyquist) to ensure the max gain as 1 (0 dB). Note ---- The R value is evaluated only at pi/4 rad/sample to find whether -1 < R < 1, and the max gain is assumed to be either 0 or pi, using other values might fail. """ print("H(z) = " + filt_str) # Avoids printing as "1/z" filt = sympify(filt_str, dict(G=G, R=R, w=w, z=z)) print() # Finds the power magnitude equation for the filter freq_resp = filt.subs(z, exp(I * w)) frr, fri = freq_resp.as_real_imag() power_resp = fcompose(expand_complex, cancel, trigsimp)(frr ** 2 + fri ** 2) pprint(Eq(Symbol("Power"), power_resp)) print() # Finds the G value given the max gain value of 1 at the DC or Nyquist # frequency. As exp(I*pi) is -1 and exp(I*0) is 1, we can use freq_resp # (without "abs") instead of power_resp. Gsolutions = factor(solve(Eq(freq_resp.subs(w, max_gain_freq), 1), G)) assert len(Gsolutions) == 1 pprint(Eq(G, Gsolutions[0])) print() # Finds the unconstrained R values for a given cutoff frequency power_resp_no_G = power_resp.subs(G, Gsolutions[0]) half_power_eq = Eq(power_resp_no_G, S.Half) Rsolutions = solve(half_power_eq, R) # Constraining -1 < R < 1 when w = pi/4 (although the constraint is general) Rsolutions_stable = [el for el in Rsolutions if -1 < el.subs(w, pi/4) < 1] assert len(Rsolutions_stable) == 1 # Constraining w to the [0;pi] range, so |sin(w)| = sin(w) Rsolution = Rsolutions_stable[0].subs(abs(sin(w)), sin(w)) pprint(Eq(R, Rsolution)) # More information about the pole (or -pole) print("\n ** Alternative way to write R **\n") if has_sqrt(Rsolution): x = Symbol("x") # A helper symbol xval = sum(el for el in Rsolution.args if not has_sqrt(el)) pprint(Eq(x, xval)) print() pprint(Eq(R, expand(Rsolution.subs(xval, x)))) else: # That's also what would be found in a bilinear transform with prewarping pprint(Eq(R, Rsolution.rewrite(tan).cancel())) # Not so nice numerically # See whether the R denominator can be zeroed for root in solve(fraction(Rsolution)[1], w): if 0 <= root <= pi: power_resp_r = fcompose(expand, cancel)(power_resp_no_G.subs(w, root)) Rsolutions_r = solve(Eq(power_resp_r, S.Half), R) assert len(Rsolutions_r) == 1 print("\nDenominator is zero for this value of " + pretty(w)) pprint(Eq(w, root)) pprint(Eq(R, Rsolutions_r[0]))
Finds the coefficients for a simple lowpass/highpass filter. This function just prints the coefficient values, besides the given filter equation and its power gain. There's 3 constraints used to find the coefficients: 1. The G value is defined by the max gain of 1 (0 dB) imposed at a specific frequency 2. The R value is defined by the 50% power cutoff frequency given in rad/sample. 3. Filter should be stable (-1 < R < 1) Parameters ---------- filt_str : Filter equation as a string using the G, R, w and z values. max_gain_freq : A value of zero (DC) or pi (Nyquist) to ensure the max gain as 1 (0 dB). Note ---- The R value is evaluated only at pi/4 rad/sample to find whether -1 < R < 1, and the max gain is assumed to be either 0 or pi, using other values might fail.
Below is the the instruction that describes the task: ### Input: Finds the coefficients for a simple lowpass/highpass filter. This function just prints the coefficient values, besides the given filter equation and its power gain. There's 3 constraints used to find the coefficients: 1. The G value is defined by the max gain of 1 (0 dB) imposed at a specific frequency 2. The R value is defined by the 50% power cutoff frequency given in rad/sample. 3. Filter should be stable (-1 < R < 1) Parameters ---------- filt_str : Filter equation as a string using the G, R, w and z values. max_gain_freq : A value of zero (DC) or pi (Nyquist) to ensure the max gain as 1 (0 dB). Note ---- The R value is evaluated only at pi/4 rad/sample to find whether -1 < R < 1, and the max gain is assumed to be either 0 or pi, using other values might fail. ### Response: def design_z_filter_single_pole(filt_str, max_gain_freq): """ Finds the coefficients for a simple lowpass/highpass filter. This function just prints the coefficient values, besides the given filter equation and its power gain. There's 3 constraints used to find the coefficients: 1. The G value is defined by the max gain of 1 (0 dB) imposed at a specific frequency 2. The R value is defined by the 50% power cutoff frequency given in rad/sample. 3. Filter should be stable (-1 < R < 1) Parameters ---------- filt_str : Filter equation as a string using the G, R, w and z values. max_gain_freq : A value of zero (DC) or pi (Nyquist) to ensure the max gain as 1 (0 dB). Note ---- The R value is evaluated only at pi/4 rad/sample to find whether -1 < R < 1, and the max gain is assumed to be either 0 or pi, using other values might fail. """ print("H(z) = " + filt_str) # Avoids printing as "1/z" filt = sympify(filt_str, dict(G=G, R=R, w=w, z=z)) print() # Finds the power magnitude equation for the filter freq_resp = filt.subs(z, exp(I * w)) frr, fri = freq_resp.as_real_imag() power_resp = fcompose(expand_complex, cancel, trigsimp)(frr ** 2 + fri ** 2) pprint(Eq(Symbol("Power"), power_resp)) print() # Finds the G value given the max gain value of 1 at the DC or Nyquist # frequency. As exp(I*pi) is -1 and exp(I*0) is 1, we can use freq_resp # (without "abs") instead of power_resp. Gsolutions = factor(solve(Eq(freq_resp.subs(w, max_gain_freq), 1), G)) assert len(Gsolutions) == 1 pprint(Eq(G, Gsolutions[0])) print() # Finds the unconstrained R values for a given cutoff frequency power_resp_no_G = power_resp.subs(G, Gsolutions[0]) half_power_eq = Eq(power_resp_no_G, S.Half) Rsolutions = solve(half_power_eq, R) # Constraining -1 < R < 1 when w = pi/4 (although the constraint is general) Rsolutions_stable = [el for el in Rsolutions if -1 < el.subs(w, pi/4) < 1] assert len(Rsolutions_stable) == 1 # Constraining w to the [0;pi] range, so |sin(w)| = sin(w) Rsolution = Rsolutions_stable[0].subs(abs(sin(w)), sin(w)) pprint(Eq(R, Rsolution)) # More information about the pole (or -pole) print("\n ** Alternative way to write R **\n") if has_sqrt(Rsolution): x = Symbol("x") # A helper symbol xval = sum(el for el in Rsolution.args if not has_sqrt(el)) pprint(Eq(x, xval)) print() pprint(Eq(R, expand(Rsolution.subs(xval, x)))) else: # That's also what would be found in a bilinear transform with prewarping pprint(Eq(R, Rsolution.rewrite(tan).cancel())) # Not so nice numerically # See whether the R denominator can be zeroed for root in solve(fraction(Rsolution)[1], w): if 0 <= root <= pi: power_resp_r = fcompose(expand, cancel)(power_resp_no_G.subs(w, root)) Rsolutions_r = solve(Eq(power_resp_r, S.Half), R) assert len(Rsolutions_r) == 1 print("\nDenominator is zero for this value of " + pretty(w)) pprint(Eq(w, root)) pprint(Eq(R, Rsolutions_r[0]))
def multipath_flush(device): ''' Device-Mapper Multipath flush CLI Example: .. code-block:: bash salt '*' devmap.multipath_flush mpath1 ''' if not os.path.exists(device): return '{0} does not exist'.format(device) cmd = 'multipath -f {0}'.format(device) return __salt__['cmd.run'](cmd).splitlines()
Device-Mapper Multipath flush CLI Example: .. code-block:: bash salt '*' devmap.multipath_flush mpath1
Below is the the instruction that describes the task: ### Input: Device-Mapper Multipath flush CLI Example: .. code-block:: bash salt '*' devmap.multipath_flush mpath1 ### Response: def multipath_flush(device): ''' Device-Mapper Multipath flush CLI Example: .. code-block:: bash salt '*' devmap.multipath_flush mpath1 ''' if not os.path.exists(device): return '{0} does not exist'.format(device) cmd = 'multipath -f {0}'.format(device) return __salt__['cmd.run'](cmd).splitlines()
def inflate(self): """Load the resource from the server, if not already loaded.""" if not self._is_inflated: if self._is_inflating: # catch infinite recursion when attempting to inflate # an object that doesn't have enough data to inflate msg = ("There is not enough data to inflate this object. " "Need either an href: {} or a {}: {}") msg = msg.format(self._href, self.primary_key, self._data.get(self.primary_key)) raise exceptions.ClientError(msg) self._is_inflating = True try: params = self.searchParameters if hasattr(self, 'searchParameters') else {} # To keep the method same as the original request. The default is GET self.load(self.client.request(self.method, self.url, **params)) except Exception: self.load(self._data) self._is_inflated = True self._is_inflating = False return self
Load the resource from the server, if not already loaded.
Below is the the instruction that describes the task: ### Input: Load the resource from the server, if not already loaded. ### Response: def inflate(self): """Load the resource from the server, if not already loaded.""" if not self._is_inflated: if self._is_inflating: # catch infinite recursion when attempting to inflate # an object that doesn't have enough data to inflate msg = ("There is not enough data to inflate this object. " "Need either an href: {} or a {}: {}") msg = msg.format(self._href, self.primary_key, self._data.get(self.primary_key)) raise exceptions.ClientError(msg) self._is_inflating = True try: params = self.searchParameters if hasattr(self, 'searchParameters') else {} # To keep the method same as the original request. The default is GET self.load(self.client.request(self.method, self.url, **params)) except Exception: self.load(self._data) self._is_inflated = True self._is_inflating = False return self
def trend(self, order=LINEAR): '''Override Series.trend() to return a TimeSeries instance.''' coefficients = self.trend_coefficients(order) x = self.timestamps trend_y = LazyImport.numpy().polyval(coefficients, x) return TimeSeries(zip(x, trend_y))
Override Series.trend() to return a TimeSeries instance.
Below is the the instruction that describes the task: ### Input: Override Series.trend() to return a TimeSeries instance. ### Response: def trend(self, order=LINEAR): '''Override Series.trend() to return a TimeSeries instance.''' coefficients = self.trend_coefficients(order) x = self.timestamps trend_y = LazyImport.numpy().polyval(coefficients, x) return TimeSeries(zip(x, trend_y))
def handle_request(self, filter_name, path): """ Handle image request :param filter_name: filter_name :param path: image_path :return: """ if filter_name in self._filter_sets: if self._filter_sets[filter_name]['cached']: cached_item_path = self._adapter.check_cached_item('%s/%s' % (filter_name, path)) if cached_item_path: return redirect(cached_item_path, self._redirect_code) resource = self._adapter.get_item(path) if resource: for filter_item in self._filter_sets[filter_name]['filters']: resource = filter_item.apply(resource) if self._filter_sets[filter_name]['cached']: return redirect( self._adapter.create_cached_item('%s/%s' % (filter_name, path), resource), self._redirect_code ) else: output = BytesIO() resource.save(output, format=str(resource.format)) return output.getvalue() else: LOGGER.warning('File "%s" not found.' % path) abort(404) else: LOGGER.warning('Filter "%s" not found.' % filter_name) abort(404)
Handle image request :param filter_name: filter_name :param path: image_path :return:
Below is the the instruction that describes the task: ### Input: Handle image request :param filter_name: filter_name :param path: image_path :return: ### Response: def handle_request(self, filter_name, path): """ Handle image request :param filter_name: filter_name :param path: image_path :return: """ if filter_name in self._filter_sets: if self._filter_sets[filter_name]['cached']: cached_item_path = self._adapter.check_cached_item('%s/%s' % (filter_name, path)) if cached_item_path: return redirect(cached_item_path, self._redirect_code) resource = self._adapter.get_item(path) if resource: for filter_item in self._filter_sets[filter_name]['filters']: resource = filter_item.apply(resource) if self._filter_sets[filter_name]['cached']: return redirect( self._adapter.create_cached_item('%s/%s' % (filter_name, path), resource), self._redirect_code ) else: output = BytesIO() resource.save(output, format=str(resource.format)) return output.getvalue() else: LOGGER.warning('File "%s" not found.' % path) abort(404) else: LOGGER.warning('Filter "%s" not found.' % filter_name) abort(404)
def run(self): """ Run the given command and yield each line(s) one by one. .. note:: The difference between this method and :code:`self.execute()` is that :code:`self.execute()` wait for the process to end in order to return its output. """ with Popen(self.command, stdout=PIPE, shell=True) as process: # We initiate a process and parse the command to it. while True: # We loop infinitly because we want to get the output # until there is none. # We get the current line from the process stdout. # # Note: we use rstrip() because we are paranoid :-) current_line = process.stdout.readline().rstrip() if not current_line: # The current line is empty or equal to None. # We break the loop. break # The line is not empty nor equal to None. # We encode and yield the current line yield self._decode_output(current_line)
Run the given command and yield each line(s) one by one. .. note:: The difference between this method and :code:`self.execute()` is that :code:`self.execute()` wait for the process to end in order to return its output.
Below is the the instruction that describes the task: ### Input: Run the given command and yield each line(s) one by one. .. note:: The difference between this method and :code:`self.execute()` is that :code:`self.execute()` wait for the process to end in order to return its output. ### Response: def run(self): """ Run the given command and yield each line(s) one by one. .. note:: The difference between this method and :code:`self.execute()` is that :code:`self.execute()` wait for the process to end in order to return its output. """ with Popen(self.command, stdout=PIPE, shell=True) as process: # We initiate a process and parse the command to it. while True: # We loop infinitly because we want to get the output # until there is none. # We get the current line from the process stdout. # # Note: we use rstrip() because we are paranoid :-) current_line = process.stdout.readline().rstrip() if not current_line: # The current line is empty or equal to None. # We break the loop. break # The line is not empty nor equal to None. # We encode and yield the current line yield self._decode_output(current_line)
def _locate_file(f, base_dir): """ Utility method for finding full path to a filename as string """ if base_dir == None: return f file_name = os.path.join(base_dir, f) real = os.path.realpath(file_name) #print_v('- Located %s at %s'%(f,real)) return real
Utility method for finding full path to a filename as string
Below is the the instruction that describes the task: ### Input: Utility method for finding full path to a filename as string ### Response: def _locate_file(f, base_dir): """ Utility method for finding full path to a filename as string """ if base_dir == None: return f file_name = os.path.join(base_dir, f) real = os.path.realpath(file_name) #print_v('- Located %s at %s'%(f,real)) return real
def table(self, name, database=None, schema=None): """Create a table expression that references a particular a table called `name` in a MySQL database called `database`. Parameters ---------- name : str The name of the table to retrieve. database : str, optional The database in which the table referred to by `name` resides. If ``None`` then the ``current_database`` is used. schema : str, optional The schema in which the table resides. If ``None`` then the `public` schema is assumed. Returns ------- table : TableExpr A table expression. """ if database is not None and database != self.current_database: return self.database(name=database).table(name=name, schema=schema) else: alch_table = self._get_sqla_table(name, schema=schema) node = self.table_class(alch_table, self, self._schemas.get(name)) return self.table_expr_class(node)
Create a table expression that references a particular a table called `name` in a MySQL database called `database`. Parameters ---------- name : str The name of the table to retrieve. database : str, optional The database in which the table referred to by `name` resides. If ``None`` then the ``current_database`` is used. schema : str, optional The schema in which the table resides. If ``None`` then the `public` schema is assumed. Returns ------- table : TableExpr A table expression.
Below is the the instruction that describes the task: ### Input: Create a table expression that references a particular a table called `name` in a MySQL database called `database`. Parameters ---------- name : str The name of the table to retrieve. database : str, optional The database in which the table referred to by `name` resides. If ``None`` then the ``current_database`` is used. schema : str, optional The schema in which the table resides. If ``None`` then the `public` schema is assumed. Returns ------- table : TableExpr A table expression. ### Response: def table(self, name, database=None, schema=None): """Create a table expression that references a particular a table called `name` in a MySQL database called `database`. Parameters ---------- name : str The name of the table to retrieve. database : str, optional The database in which the table referred to by `name` resides. If ``None`` then the ``current_database`` is used. schema : str, optional The schema in which the table resides. If ``None`` then the `public` schema is assumed. Returns ------- table : TableExpr A table expression. """ if database is not None and database != self.current_database: return self.database(name=database).table(name=name, schema=schema) else: alch_table = self._get_sqla_table(name, schema=schema) node = self.table_class(alch_table, self, self._schemas.get(name)) return self.table_expr_class(node)
def draw(self): """ Renders the class balance chart on the specified axes from support. """ # Number of colors is either number of classes or 2 colors = resolve_colors(len(self.support_)) if self._mode == BALANCE: self.ax.bar( np.arange(len(self.support_)), self.support_, color=colors, align='center', width=0.5 ) # Compare mode else: bar_width = 0.35 labels = ["train", "test"] for idx, support in enumerate(self.support_): index = np.arange(len(self.classes_)) if idx > 0: index = index + bar_width self.ax.bar( index, support, bar_width, color=colors[idx], label=labels[idx] ) return self.ax
Renders the class balance chart on the specified axes from support.
Below is the the instruction that describes the task: ### Input: Renders the class balance chart on the specified axes from support. ### Response: def draw(self): """ Renders the class balance chart on the specified axes from support. """ # Number of colors is either number of classes or 2 colors = resolve_colors(len(self.support_)) if self._mode == BALANCE: self.ax.bar( np.arange(len(self.support_)), self.support_, color=colors, align='center', width=0.5 ) # Compare mode else: bar_width = 0.35 labels = ["train", "test"] for idx, support in enumerate(self.support_): index = np.arange(len(self.classes_)) if idx > 0: index = index + bar_width self.ax.bar( index, support, bar_width, color=colors[idx], label=labels[idx] ) return self.ax
def run_HTM_false_positive_experiment_synapses(num_neurons = 1, a = 512, dim = 16000, num_samples = 1000, num_dendrites = 500, test_dendrite_lengths = range(2, 32, 2), num_trials = 1000): """ Run an experiment to test the false positive rate based on number of synapses per dendrite, dimension and sparsity. Uses a single neuron, with a threshold nonlinearity of theta = s/2. Based on figure 5B in the original SDR paper. The parameters used in generating the figure for this experiment are: 1. a = 512, dim = 16000 2. a = 4000, dim = 16000 3. a = 32, dim = 2000 4. a = 32, dim = 4000 In each case, we used 1000 samples per trial, 1000 trials, 500 dendrite segments, and tested dendrite lengths in (2, 4, ..., 30), with the threshold for each segment being half its length. """ for dendrite_length in test_dendrite_lengths: nonlinearity = threshold_nonlinearity(dendrite_length / 2) fps = [] fns = [] for trial in range(num_trials): neuron = Neuron(size = dendrite_length*num_dendrites, num_dendrites = num_dendrites, dendrite_length = dendrite_length, dim = dim, nonlinearity = nonlinearity) pos, neg = generate_evenly_distributed_data_sparse(dim = dim, num_active = a, num_samples = num_samples/2), generate_evenly_distributed_data_sparse(dim = dim, num_active = a, num_samples = num_samples/2) #labels = numpy.asarray([1 for i in range(num_samples/2)] + [-1 for i in range(num_samples/2)]) neuron.HTM_style_initialize_on_data(pos, numpy.asarray([1 for i in range(num_samples/2)])) error, fp, fn = get_error(neg, [-1 for i in range(num_samples/2)], [neuron]) fps.append(fp) fns.append(fn) print "Error at {} synapses per dendrite is {}, with {} false positives and {} false negatives".format(dendrite_length, fp/(num_samples/2.), fp, fn) with open("num_dendrites_FP_{}_{}.txt".format(a, dim), "a") as f: f.write(str(dendrite_length) + ", " + str(sum(fps)) + ", " + str(num_trials*num_samples/2.) + "\n")
Run an experiment to test the false positive rate based on number of synapses per dendrite, dimension and sparsity. Uses a single neuron, with a threshold nonlinearity of theta = s/2. Based on figure 5B in the original SDR paper. The parameters used in generating the figure for this experiment are: 1. a = 512, dim = 16000 2. a = 4000, dim = 16000 3. a = 32, dim = 2000 4. a = 32, dim = 4000 In each case, we used 1000 samples per trial, 1000 trials, 500 dendrite segments, and tested dendrite lengths in (2, 4, ..., 30), with the threshold for each segment being half its length.
Below is the the instruction that describes the task: ### Input: Run an experiment to test the false positive rate based on number of synapses per dendrite, dimension and sparsity. Uses a single neuron, with a threshold nonlinearity of theta = s/2. Based on figure 5B in the original SDR paper. The parameters used in generating the figure for this experiment are: 1. a = 512, dim = 16000 2. a = 4000, dim = 16000 3. a = 32, dim = 2000 4. a = 32, dim = 4000 In each case, we used 1000 samples per trial, 1000 trials, 500 dendrite segments, and tested dendrite lengths in (2, 4, ..., 30), with the threshold for each segment being half its length. ### Response: def run_HTM_false_positive_experiment_synapses(num_neurons = 1, a = 512, dim = 16000, num_samples = 1000, num_dendrites = 500, test_dendrite_lengths = range(2, 32, 2), num_trials = 1000): """ Run an experiment to test the false positive rate based on number of synapses per dendrite, dimension and sparsity. Uses a single neuron, with a threshold nonlinearity of theta = s/2. Based on figure 5B in the original SDR paper. The parameters used in generating the figure for this experiment are: 1. a = 512, dim = 16000 2. a = 4000, dim = 16000 3. a = 32, dim = 2000 4. a = 32, dim = 4000 In each case, we used 1000 samples per trial, 1000 trials, 500 dendrite segments, and tested dendrite lengths in (2, 4, ..., 30), with the threshold for each segment being half its length. """ for dendrite_length in test_dendrite_lengths: nonlinearity = threshold_nonlinearity(dendrite_length / 2) fps = [] fns = [] for trial in range(num_trials): neuron = Neuron(size = dendrite_length*num_dendrites, num_dendrites = num_dendrites, dendrite_length = dendrite_length, dim = dim, nonlinearity = nonlinearity) pos, neg = generate_evenly_distributed_data_sparse(dim = dim, num_active = a, num_samples = num_samples/2), generate_evenly_distributed_data_sparse(dim = dim, num_active = a, num_samples = num_samples/2) #labels = numpy.asarray([1 for i in range(num_samples/2)] + [-1 for i in range(num_samples/2)]) neuron.HTM_style_initialize_on_data(pos, numpy.asarray([1 for i in range(num_samples/2)])) error, fp, fn = get_error(neg, [-1 for i in range(num_samples/2)], [neuron]) fps.append(fp) fns.append(fn) print "Error at {} synapses per dendrite is {}, with {} false positives and {} false negatives".format(dendrite_length, fp/(num_samples/2.), fp, fn) with open("num_dendrites_FP_{}_{}.txt".format(a, dim), "a") as f: f.write(str(dendrite_length) + ", " + str(sum(fps)) + ", " + str(num_trials*num_samples/2.) + "\n")
def source_table(self): """Source table (`~astropy.table.Table`). Columns: GLON, GLAT, COUNTS """ table = Table() table['GLON'] = np.array([0, 45, 45], dtype='float32') table['GLAT'] = np.array([0, 0, 45], dtype='float32') table['COUNTS'] = np.array([100, 100, 100], dtype='int32') return table
Source table (`~astropy.table.Table`). Columns: GLON, GLAT, COUNTS
Below is the the instruction that describes the task: ### Input: Source table (`~astropy.table.Table`). Columns: GLON, GLAT, COUNTS ### Response: def source_table(self): """Source table (`~astropy.table.Table`). Columns: GLON, GLAT, COUNTS """ table = Table() table['GLON'] = np.array([0, 45, 45], dtype='float32') table['GLAT'] = np.array([0, 0, 45], dtype='float32') table['COUNTS'] = np.array([100, 100, 100], dtype='int32') return table
def read_smet(filename, mode): """Reads smet data and returns the data in required dataformat (pd df) See https://models.slf.ch/docserver/meteoio/SMET_specifications.pdf for further details on the specifications of this file format. Parameters ---- filename : SMET file to read mode : "d" for daily and "h" for hourly input Returns ---- [header, data] header: header as dict data : data as pd df """ # dictionary # based on smet spec V.1.1 and self defined # daily data dict_d = {'TA': 'tmean', 'TMAX': 'tmax', # no spec 'TMIN': 'tmin', # no spec 'PSUM': 'precip', 'ISWR': 'glob', # no spec 'RH': 'hum', 'VW': 'wind'} # hourly data dict_h = {'TA': 'temp', 'PSUM': 'precip', 'ISWR': 'glob', # no spec 'RH': 'hum', 'VW': 'wind'} with open(filename) as f: in_header = False data_start = None header = collections.OrderedDict() for line_num, line in enumerate(f): if line.strip() == '[HEADER]': in_header = True continue elif line.strip() == '[DATA]': data_start = line_num + 1 break if in_header: line_split = line.split('=') k = line_split[0].strip() v = line_split[1].strip() header[k] = v # get column names columns = header['fields'].split() multiplier = [float(x) for x in header['units_multiplier'].split()][1:] data = pd.read_table( filename, sep=r'\s+', na_values=[-999], skiprows=data_start, names=columns, index_col='timestamp', parse_dates=True, ) data = data*multiplier del data.index.name # rename columns if mode == "d": data = data.rename(columns=dict_d) if mode == "h": data = data.rename(columns=dict_h) return header, data
Reads smet data and returns the data in required dataformat (pd df) See https://models.slf.ch/docserver/meteoio/SMET_specifications.pdf for further details on the specifications of this file format. Parameters ---- filename : SMET file to read mode : "d" for daily and "h" for hourly input Returns ---- [header, data] header: header as dict data : data as pd df
Below is the the instruction that describes the task: ### Input: Reads smet data and returns the data in required dataformat (pd df) See https://models.slf.ch/docserver/meteoio/SMET_specifications.pdf for further details on the specifications of this file format. Parameters ---- filename : SMET file to read mode : "d" for daily and "h" for hourly input Returns ---- [header, data] header: header as dict data : data as pd df ### Response: def read_smet(filename, mode): """Reads smet data and returns the data in required dataformat (pd df) See https://models.slf.ch/docserver/meteoio/SMET_specifications.pdf for further details on the specifications of this file format. Parameters ---- filename : SMET file to read mode : "d" for daily and "h" for hourly input Returns ---- [header, data] header: header as dict data : data as pd df """ # dictionary # based on smet spec V.1.1 and self defined # daily data dict_d = {'TA': 'tmean', 'TMAX': 'tmax', # no spec 'TMIN': 'tmin', # no spec 'PSUM': 'precip', 'ISWR': 'glob', # no spec 'RH': 'hum', 'VW': 'wind'} # hourly data dict_h = {'TA': 'temp', 'PSUM': 'precip', 'ISWR': 'glob', # no spec 'RH': 'hum', 'VW': 'wind'} with open(filename) as f: in_header = False data_start = None header = collections.OrderedDict() for line_num, line in enumerate(f): if line.strip() == '[HEADER]': in_header = True continue elif line.strip() == '[DATA]': data_start = line_num + 1 break if in_header: line_split = line.split('=') k = line_split[0].strip() v = line_split[1].strip() header[k] = v # get column names columns = header['fields'].split() multiplier = [float(x) for x in header['units_multiplier'].split()][1:] data = pd.read_table( filename, sep=r'\s+', na_values=[-999], skiprows=data_start, names=columns, index_col='timestamp', parse_dates=True, ) data = data*multiplier del data.index.name # rename columns if mode == "d": data = data.rename(columns=dict_d) if mode == "h": data = data.rename(columns=dict_h) return header, data
def _get_pos(self): """ Get current position for scroll bar. """ if self._canvas.height >= self._max_height: return 0 else: return self._canvas.start_line / (self._max_height - self._canvas.height + 1)
Get current position for scroll bar.
Below is the the instruction that describes the task: ### Input: Get current position for scroll bar. ### Response: def _get_pos(self): """ Get current position for scroll bar. """ if self._canvas.height >= self._max_height: return 0 else: return self._canvas.start_line / (self._max_height - self._canvas.height + 1)
def more_statements(self, more_url): """Query the LRS for more statements :param more_url: URL from a StatementsResult object used to retrieve more statements :type more_url: str | unicode :return: LRS Response object with the returned StatementsResult object as content :rtype: :class:`tincan.lrs_response.LRSResponse` """ if isinstance(more_url, StatementsResult): more_url = more_url.more more_url = self.get_endpoint_server_root() + more_url request = HTTPRequest( method="GET", resource=more_url ) lrs_response = self._send_request(request) if lrs_response.success: lrs_response.content = StatementsResult.from_json(lrs_response.data) return lrs_response
Query the LRS for more statements :param more_url: URL from a StatementsResult object used to retrieve more statements :type more_url: str | unicode :return: LRS Response object with the returned StatementsResult object as content :rtype: :class:`tincan.lrs_response.LRSResponse`
Below is the the instruction that describes the task: ### Input: Query the LRS for more statements :param more_url: URL from a StatementsResult object used to retrieve more statements :type more_url: str | unicode :return: LRS Response object with the returned StatementsResult object as content :rtype: :class:`tincan.lrs_response.LRSResponse` ### Response: def more_statements(self, more_url): """Query the LRS for more statements :param more_url: URL from a StatementsResult object used to retrieve more statements :type more_url: str | unicode :return: LRS Response object with the returned StatementsResult object as content :rtype: :class:`tincan.lrs_response.LRSResponse` """ if isinstance(more_url, StatementsResult): more_url = more_url.more more_url = self.get_endpoint_server_root() + more_url request = HTTPRequest( method="GET", resource=more_url ) lrs_response = self._send_request(request) if lrs_response.success: lrs_response.content = StatementsResult.from_json(lrs_response.data) return lrs_response
def obfn_reg(self): r"""Compute regularisation terms and contribution to objective function. Regularisation terms are :math:`\| Y \|_1` and :math:`\| Y \|_{2,1}`. """ rl21 = np.sum(self.wl21 * np.sqrt(np.sum(self.obfn_gvar()**2, axis=self.cri.axisC))) rgr = sl.rfl2norm2(np.sqrt(self.GHGf*np.conj(fvf)*fvf), self.cri.Nv, self.cri.axisN)/2.0 return (self.lmbda*rl21 + self.mu*rgr, rl21, rgr)
r"""Compute regularisation terms and contribution to objective function. Regularisation terms are :math:`\| Y \|_1` and :math:`\| Y \|_{2,1}`.
Below is the the instruction that describes the task: ### Input: r"""Compute regularisation terms and contribution to objective function. Regularisation terms are :math:`\| Y \|_1` and :math:`\| Y \|_{2,1}`. ### Response: def obfn_reg(self): r"""Compute regularisation terms and contribution to objective function. Regularisation terms are :math:`\| Y \|_1` and :math:`\| Y \|_{2,1}`. """ rl21 = np.sum(self.wl21 * np.sqrt(np.sum(self.obfn_gvar()**2, axis=self.cri.axisC))) rgr = sl.rfl2norm2(np.sqrt(self.GHGf*np.conj(fvf)*fvf), self.cri.Nv, self.cri.axisN)/2.0 return (self.lmbda*rl21 + self.mu*rgr, rl21, rgr)
def add_date_facet(self, *args, **kwargs): """Add a date factory facet""" self.facets.append(DateHistogramFacet(*args, **kwargs))
Add a date factory facet
Below is the the instruction that describes the task: ### Input: Add a date factory facet ### Response: def add_date_facet(self, *args, **kwargs): """Add a date factory facet""" self.facets.append(DateHistogramFacet(*args, **kwargs))
def triangle_normal(a,b,c): ''' triangle_normal(a, b, c) yields the normal vector of the triangle whose vertices are given by the points a, b, and c. If the points are 2D points, then 3D normal vectors are still yielded, that are always (0,0,1) or (0,0,-1). This function auto-threads over matrices, in which case they must be in equivalent orientations, and the result is returned in whatever orientation they are given in. In some cases, the intended orientation of the matrices is ambiguous (e.g., if a, b, and c are 2 x 3 matrices), in which case the matrix is always assumed to be given in (dims x vertices) orientation. ''' (a,b,c) = [np.asarray(x) for x in (a,b,c)] if len(a.shape) == 1 and len(b.shape) == 1 and len(c.shape) == 1: return triangle_normal(*[np.transpose([x]) for x in (a,b,c)])[:,0] (a,b,c) = [np.transpose([x]) if len(x.shape) == 1 else x for x in (a,b,c)] # find a required number of dimensions, if possible if a.shape[0] in (2,3): dims = a.shape[0] tx = True else: dims = a.shape[1] (a,b,c) = [x.T for x in (a,b,c)] tx = False n = (a.shape[1] if a.shape[1] != 1 else b.shape[1] if b.shape[1] != 1 else c.shape[1] if c.shape[1] != 1 else 1) if dims == 2: (a,b,c) = [np.vstack((x, np.zeros((1,n)))) for x in (a,b,c)] ab = normalize(b - a) ac = normalize(c - a) res = np.cross(ab, ac, axisa=0, axisb=0) return res.T if tx else res
triangle_normal(a, b, c) yields the normal vector of the triangle whose vertices are given by the points a, b, and c. If the points are 2D points, then 3D normal vectors are still yielded, that are always (0,0,1) or (0,0,-1). This function auto-threads over matrices, in which case they must be in equivalent orientations, and the result is returned in whatever orientation they are given in. In some cases, the intended orientation of the matrices is ambiguous (e.g., if a, b, and c are 2 x 3 matrices), in which case the matrix is always assumed to be given in (dims x vertices) orientation.
Below is the the instruction that describes the task: ### Input: triangle_normal(a, b, c) yields the normal vector of the triangle whose vertices are given by the points a, b, and c. If the points are 2D points, then 3D normal vectors are still yielded, that are always (0,0,1) or (0,0,-1). This function auto-threads over matrices, in which case they must be in equivalent orientations, and the result is returned in whatever orientation they are given in. In some cases, the intended orientation of the matrices is ambiguous (e.g., if a, b, and c are 2 x 3 matrices), in which case the matrix is always assumed to be given in (dims x vertices) orientation. ### Response: def triangle_normal(a,b,c): ''' triangle_normal(a, b, c) yields the normal vector of the triangle whose vertices are given by the points a, b, and c. If the points are 2D points, then 3D normal vectors are still yielded, that are always (0,0,1) or (0,0,-1). This function auto-threads over matrices, in which case they must be in equivalent orientations, and the result is returned in whatever orientation they are given in. In some cases, the intended orientation of the matrices is ambiguous (e.g., if a, b, and c are 2 x 3 matrices), in which case the matrix is always assumed to be given in (dims x vertices) orientation. ''' (a,b,c) = [np.asarray(x) for x in (a,b,c)] if len(a.shape) == 1 and len(b.shape) == 1 and len(c.shape) == 1: return triangle_normal(*[np.transpose([x]) for x in (a,b,c)])[:,0] (a,b,c) = [np.transpose([x]) if len(x.shape) == 1 else x for x in (a,b,c)] # find a required number of dimensions, if possible if a.shape[0] in (2,3): dims = a.shape[0] tx = True else: dims = a.shape[1] (a,b,c) = [x.T for x in (a,b,c)] tx = False n = (a.shape[1] if a.shape[1] != 1 else b.shape[1] if b.shape[1] != 1 else c.shape[1] if c.shape[1] != 1 else 1) if dims == 2: (a,b,c) = [np.vstack((x, np.zeros((1,n)))) for x in (a,b,c)] ab = normalize(b - a) ac = normalize(c - a) res = np.cross(ab, ac, axisa=0, axisb=0) return res.T if tx else res
def get_direct_derivatives(self, address): """Get all targets derived directly from the specified target. Note that the specified target itself is not returned. :API: public """ derivative_addrs = self._derivatives_by_derived_from.get(address, []) return [self.get_target(addr) for addr in derivative_addrs]
Get all targets derived directly from the specified target. Note that the specified target itself is not returned. :API: public
Below is the the instruction that describes the task: ### Input: Get all targets derived directly from the specified target. Note that the specified target itself is not returned. :API: public ### Response: def get_direct_derivatives(self, address): """Get all targets derived directly from the specified target. Note that the specified target itself is not returned. :API: public """ derivative_addrs = self._derivatives_by_derived_from.get(address, []) return [self.get_target(addr) for addr in derivative_addrs]
def switchport_list(self): """list[dict]:A list of dictionary items describing the details of list of dictionary items describing the details of switch port""" urn = "{urn:brocade.com:mgmt:brocade-interface-ext}" result = [] request_interface = self.get_interface_switchport_request() interface_result = self._callback(request_interface, 'get') for interface in interface_result.findall('%sswitchport' % urn): vlans = [] interface_type = self.get_node_value(interface, '%sinterface-type', urn) interface_name = self.get_node_value(interface, '%sinterface-name', urn) mode = self.get_node_value(interface, '%smode', urn) intf = interface.find('%sactive-vlans' % urn) for vlan_node in intf.findall('%svlanid' % urn): vlan = vlan_node.text vlans.append(vlan) results = {'vlan-id': vlans, 'mode': mode, 'interface-name': interface_name, 'interface_type': interface_type} result.append(results) return result
list[dict]:A list of dictionary items describing the details of list of dictionary items describing the details of switch port
Below is the the instruction that describes the task: ### Input: list[dict]:A list of dictionary items describing the details of list of dictionary items describing the details of switch port ### Response: def switchport_list(self): """list[dict]:A list of dictionary items describing the details of list of dictionary items describing the details of switch port""" urn = "{urn:brocade.com:mgmt:brocade-interface-ext}" result = [] request_interface = self.get_interface_switchport_request() interface_result = self._callback(request_interface, 'get') for interface in interface_result.findall('%sswitchport' % urn): vlans = [] interface_type = self.get_node_value(interface, '%sinterface-type', urn) interface_name = self.get_node_value(interface, '%sinterface-name', urn) mode = self.get_node_value(interface, '%smode', urn) intf = interface.find('%sactive-vlans' % urn) for vlan_node in intf.findall('%svlanid' % urn): vlan = vlan_node.text vlans.append(vlan) results = {'vlan-id': vlans, 'mode': mode, 'interface-name': interface_name, 'interface_type': interface_type} result.append(results) return result
def scene_color(frames): """parse a scene.color message""" # "scene.color" <scene_id> <color> reader = MessageReader(frames) results = reader.string("command").uint32("scene_id").uint8_3("color").assert_end().get() if results.command != "scene.color": raise MessageParserError("Command is not 'scene.color'") return (results.scene_id, np.array([results.color[0]/255, results.color[1]/255, results.color[2]/255]))
parse a scene.color message
Below is the the instruction that describes the task: ### Input: parse a scene.color message ### Response: def scene_color(frames): """parse a scene.color message""" # "scene.color" <scene_id> <color> reader = MessageReader(frames) results = reader.string("command").uint32("scene_id").uint8_3("color").assert_end().get() if results.command != "scene.color": raise MessageParserError("Command is not 'scene.color'") return (results.scene_id, np.array([results.color[0]/255, results.color[1]/255, results.color[2]/255]))
def _append_log(self, specs): """ The log contains the tids and corresponding specifications used during launch with the specifications in JSON format. """ self._spec_log += specs # This should be removed log_path = os.path.join(self.root_directory, ("%s.log" % self.batch_name)) core.Log.write_log(log_path, [spec for (_, spec) in specs], allow_append=True)
The log contains the tids and corresponding specifications used during launch with the specifications in JSON format.
Below is the the instruction that describes the task: ### Input: The log contains the tids and corresponding specifications used during launch with the specifications in JSON format. ### Response: def _append_log(self, specs): """ The log contains the tids and corresponding specifications used during launch with the specifications in JSON format. """ self._spec_log += specs # This should be removed log_path = os.path.join(self.root_directory, ("%s.log" % self.batch_name)) core.Log.write_log(log_path, [spec for (_, spec) in specs], allow_append=True)
def SETNS(cpu, dest): """ Sets byte if not sign. :param cpu: current CPU. :param dest: destination operand. """ dest.write(Operators.ITEBV(dest.size, cpu.SF == False, 1, 0))
Sets byte if not sign. :param cpu: current CPU. :param dest: destination operand.
Below is the the instruction that describes the task: ### Input: Sets byte if not sign. :param cpu: current CPU. :param dest: destination operand. ### Response: def SETNS(cpu, dest): """ Sets byte if not sign. :param cpu: current CPU. :param dest: destination operand. """ dest.write(Operators.ITEBV(dest.size, cpu.SF == False, 1, 0))
def _purge_jobs(timestamp): ''' Purge records from the returner tables. :param job_age_in_seconds: Purge jobs older than this :return: ''' with _get_serv() as cur: try: sql = 'delete from `jids` where jid in (select distinct jid from salt_returns where alter_time < %s)' cur.execute(sql, (timestamp,)) cur.execute('COMMIT') except MySQLdb.Error as e: log.error('mysql returner archiver was unable to delete contents of table \'jids\'') log.error(six.text_type(e)) raise salt.exceptions.SaltRunnerError(six.text_type(e)) try: sql = 'delete from `salt_returns` where alter_time < %s' cur.execute(sql, (timestamp,)) cur.execute('COMMIT') except MySQLdb.Error as e: log.error('mysql returner archiver was unable to delete contents of table \'salt_returns\'') log.error(six.text_type(e)) raise salt.exceptions.SaltRunnerError(six.text_type(e)) try: sql = 'delete from `salt_events` where alter_time < %s' cur.execute(sql, (timestamp,)) cur.execute('COMMIT') except MySQLdb.Error as e: log.error('mysql returner archiver was unable to delete contents of table \'salt_events\'') log.error(six.text_type(e)) raise salt.exceptions.SaltRunnerError(six.text_type(e)) return True
Purge records from the returner tables. :param job_age_in_seconds: Purge jobs older than this :return:
Below is the the instruction that describes the task: ### Input: Purge records from the returner tables. :param job_age_in_seconds: Purge jobs older than this :return: ### Response: def _purge_jobs(timestamp): ''' Purge records from the returner tables. :param job_age_in_seconds: Purge jobs older than this :return: ''' with _get_serv() as cur: try: sql = 'delete from `jids` where jid in (select distinct jid from salt_returns where alter_time < %s)' cur.execute(sql, (timestamp,)) cur.execute('COMMIT') except MySQLdb.Error as e: log.error('mysql returner archiver was unable to delete contents of table \'jids\'') log.error(six.text_type(e)) raise salt.exceptions.SaltRunnerError(six.text_type(e)) try: sql = 'delete from `salt_returns` where alter_time < %s' cur.execute(sql, (timestamp,)) cur.execute('COMMIT') except MySQLdb.Error as e: log.error('mysql returner archiver was unable to delete contents of table \'salt_returns\'') log.error(six.text_type(e)) raise salt.exceptions.SaltRunnerError(six.text_type(e)) try: sql = 'delete from `salt_events` where alter_time < %s' cur.execute(sql, (timestamp,)) cur.execute('COMMIT') except MySQLdb.Error as e: log.error('mysql returner archiver was unable to delete contents of table \'salt_events\'') log.error(six.text_type(e)) raise salt.exceptions.SaltRunnerError(six.text_type(e)) return True
def set_completed(self, *, completition_date=None): """ Sets this message flag as completed :param completition_date: the datetime this followUp was completed """ self.__status = Flag.Complete completition_date = completition_date or dt.datetime.now() if completition_date.tzinfo is None: completition_date = self.protocol.timezone.localize(completition_date) self.__completed = completition_date self._track_changes()
Sets this message flag as completed :param completition_date: the datetime this followUp was completed
Below is the the instruction that describes the task: ### Input: Sets this message flag as completed :param completition_date: the datetime this followUp was completed ### Response: def set_completed(self, *, completition_date=None): """ Sets this message flag as completed :param completition_date: the datetime this followUp was completed """ self.__status = Flag.Complete completition_date = completition_date or dt.datetime.now() if completition_date.tzinfo is None: completition_date = self.protocol.timezone.localize(completition_date) self.__completed = completition_date self._track_changes()
def _get_best_percentile(self, cluster, counts): ''' return all UMIs with counts >1% of the median counts in the cluster ''' if len(cluster) == 1: return list(cluster) else: threshold = np.median(list(counts.values()))/100 return [read for read in cluster if counts[read] > threshold]
return all UMIs with counts >1% of the median counts in the cluster
Below is the the instruction that describes the task: ### Input: return all UMIs with counts >1% of the median counts in the cluster ### Response: def _get_best_percentile(self, cluster, counts): ''' return all UMIs with counts >1% of the median counts in the cluster ''' if len(cluster) == 1: return list(cluster) else: threshold = np.median(list(counts.values()))/100 return [read for read in cluster if counts[read] > threshold]
def move_to(self, x, y, pre_dl=None, post_dl=None): """Move mouse to (x, y) **中文文档** 移动鼠标到 (x, y) 的坐标处。 """ self.delay(pre_dl) self.m.move(x, y) self.delay(post_dl)
Move mouse to (x, y) **中文文档** 移动鼠标到 (x, y) 的坐标处。
Below is the the instruction that describes the task: ### Input: Move mouse to (x, y) **中文文档** 移动鼠标到 (x, y) 的坐标处。 ### Response: def move_to(self, x, y, pre_dl=None, post_dl=None): """Move mouse to (x, y) **中文文档** 移动鼠标到 (x, y) 的坐标处。 """ self.delay(pre_dl) self.m.move(x, y) self.delay(post_dl)
def sha1(filename): """Return SHA1 of filename.""" filename = unmap_file(filename) if filename not in file_cache: cache_file(filename) if filename not in file_cache: return None pass if file_cache[filename].sha1: return file_cache[filename].sha1.hexdigest() sha1 = hashlib.sha1() for line in file_cache[filename].lines['plain']: sha1.update(line.encode('utf-8')) pass file_cache[filename].sha1 = sha1 return sha1.hexdigest()
Return SHA1 of filename.
Below is the the instruction that describes the task: ### Input: Return SHA1 of filename. ### Response: def sha1(filename): """Return SHA1 of filename.""" filename = unmap_file(filename) if filename not in file_cache: cache_file(filename) if filename not in file_cache: return None pass if file_cache[filename].sha1: return file_cache[filename].sha1.hexdigest() sha1 = hashlib.sha1() for line in file_cache[filename].lines['plain']: sha1.update(line.encode('utf-8')) pass file_cache[filename].sha1 = sha1 return sha1.hexdigest()
def write_crtf(regions, filename, coordsys='fk5', fmt='.6f', radunit='deg'): """ Converts a `list` of `~regions.Region` to CRTF string and write to file. Parameters ---------- regions : `list` List of `~regions.Region` objects filename : `str` Filename in which the string is to be written. Default is 'new.crtf' coordsys : `str`, optional Astropy Coordinate system that overrides the coordinate frames of all regions. Default is 'fk5'. fmt : `str`, optional A python string format defining the output precision. Default is .6f, which is accurate to 0.0036 arcseconds. radunit : `str`, optional This denotes the unit of the radius. Default is deg (degrees) Examples -------- >>> from astropy import units as u >>> from astropy.coordinates import SkyCoord >>> from regions import CircleSkyRegion, write_crtf >>> reg_sky = CircleSkyRegion(SkyCoord(1 * u.deg, 2 * u.deg), 5 * u.deg) >>> write_crtf([reg_sky], 'test_write.crtf') >>> with open('test_write.crtf') as f: ... print(f.read()) #CRTF global coord=fk5 +circle[[1.000007deg, 2.000002deg], 5.000000deg] """ output = crtf_objects_to_string(regions, coordsys, fmt, radunit) with open(filename, 'w') as fh: fh.write(output)
Converts a `list` of `~regions.Region` to CRTF string and write to file. Parameters ---------- regions : `list` List of `~regions.Region` objects filename : `str` Filename in which the string is to be written. Default is 'new.crtf' coordsys : `str`, optional Astropy Coordinate system that overrides the coordinate frames of all regions. Default is 'fk5'. fmt : `str`, optional A python string format defining the output precision. Default is .6f, which is accurate to 0.0036 arcseconds. radunit : `str`, optional This denotes the unit of the radius. Default is deg (degrees) Examples -------- >>> from astropy import units as u >>> from astropy.coordinates import SkyCoord >>> from regions import CircleSkyRegion, write_crtf >>> reg_sky = CircleSkyRegion(SkyCoord(1 * u.deg, 2 * u.deg), 5 * u.deg) >>> write_crtf([reg_sky], 'test_write.crtf') >>> with open('test_write.crtf') as f: ... print(f.read()) #CRTF global coord=fk5 +circle[[1.000007deg, 2.000002deg], 5.000000deg]
Below is the the instruction that describes the task: ### Input: Converts a `list` of `~regions.Region` to CRTF string and write to file. Parameters ---------- regions : `list` List of `~regions.Region` objects filename : `str` Filename in which the string is to be written. Default is 'new.crtf' coordsys : `str`, optional Astropy Coordinate system that overrides the coordinate frames of all regions. Default is 'fk5'. fmt : `str`, optional A python string format defining the output precision. Default is .6f, which is accurate to 0.0036 arcseconds. radunit : `str`, optional This denotes the unit of the radius. Default is deg (degrees) Examples -------- >>> from astropy import units as u >>> from astropy.coordinates import SkyCoord >>> from regions import CircleSkyRegion, write_crtf >>> reg_sky = CircleSkyRegion(SkyCoord(1 * u.deg, 2 * u.deg), 5 * u.deg) >>> write_crtf([reg_sky], 'test_write.crtf') >>> with open('test_write.crtf') as f: ... print(f.read()) #CRTF global coord=fk5 +circle[[1.000007deg, 2.000002deg], 5.000000deg] ### Response: def write_crtf(regions, filename, coordsys='fk5', fmt='.6f', radunit='deg'): """ Converts a `list` of `~regions.Region` to CRTF string and write to file. Parameters ---------- regions : `list` List of `~regions.Region` objects filename : `str` Filename in which the string is to be written. Default is 'new.crtf' coordsys : `str`, optional Astropy Coordinate system that overrides the coordinate frames of all regions. Default is 'fk5'. fmt : `str`, optional A python string format defining the output precision. Default is .6f, which is accurate to 0.0036 arcseconds. radunit : `str`, optional This denotes the unit of the radius. Default is deg (degrees) Examples -------- >>> from astropy import units as u >>> from astropy.coordinates import SkyCoord >>> from regions import CircleSkyRegion, write_crtf >>> reg_sky = CircleSkyRegion(SkyCoord(1 * u.deg, 2 * u.deg), 5 * u.deg) >>> write_crtf([reg_sky], 'test_write.crtf') >>> with open('test_write.crtf') as f: ... print(f.read()) #CRTF global coord=fk5 +circle[[1.000007deg, 2.000002deg], 5.000000deg] """ output = crtf_objects_to_string(regions, coordsys, fmt, radunit) with open(filename, 'w') as fh: fh.write(output)
def replace_wildcards(string, wildcard, regex): """ Replace wildcard symbols with regular expressions :param wildcard: :type wildcard: _sre.SRE_Pattern :param regex: :type regex: str :rtype: tuple of (str, bool) """ replaced = False match = wildcard.search(string) if match: string = wildcard.sub(regex, string) logging.getLogger('agentml.trigger').debug('Parsing Pattern wildcards: {pattern}'.format(pattern=string)) replaced = True return string, replaced
Replace wildcard symbols with regular expressions :param wildcard: :type wildcard: _sre.SRE_Pattern :param regex: :type regex: str :rtype: tuple of (str, bool)
Below is the the instruction that describes the task: ### Input: Replace wildcard symbols with regular expressions :param wildcard: :type wildcard: _sre.SRE_Pattern :param regex: :type regex: str :rtype: tuple of (str, bool) ### Response: def replace_wildcards(string, wildcard, regex): """ Replace wildcard symbols with regular expressions :param wildcard: :type wildcard: _sre.SRE_Pattern :param regex: :type regex: str :rtype: tuple of (str, bool) """ replaced = False match = wildcard.search(string) if match: string = wildcard.sub(regex, string) logging.getLogger('agentml.trigger').debug('Parsing Pattern wildcards: {pattern}'.format(pattern=string)) replaced = True return string, replaced
def do_dot2(self, args, arguments): """ :: Usage: dot2 FILENAME FORMAT Export the data in cvs format to a file. Former cvs command Arguments: FILENAME The filename FORMAT the export format, pdf, png, ... """ filename = arguments['FILENAME'] output_format = arguments['FORMAT'] base = filename.replace(".dot", "") out = base + "." + output_format if output_format == "pdf": exec_command = "dot -Tps %s | epstopdf --filter --ooutput %s" % ( file, out) else: exec_command = "dot -T%s %s -o %s 2>/tmp/err" % (output_format, file, out) os.system(exec_command)
:: Usage: dot2 FILENAME FORMAT Export the data in cvs format to a file. Former cvs command Arguments: FILENAME The filename FORMAT the export format, pdf, png, ...
Below is the the instruction that describes the task: ### Input: :: Usage: dot2 FILENAME FORMAT Export the data in cvs format to a file. Former cvs command Arguments: FILENAME The filename FORMAT the export format, pdf, png, ... ### Response: def do_dot2(self, args, arguments): """ :: Usage: dot2 FILENAME FORMAT Export the data in cvs format to a file. Former cvs command Arguments: FILENAME The filename FORMAT the export format, pdf, png, ... """ filename = arguments['FILENAME'] output_format = arguments['FORMAT'] base = filename.replace(".dot", "") out = base + "." + output_format if output_format == "pdf": exec_command = "dot -Tps %s | epstopdf --filter --ooutput %s" % ( file, out) else: exec_command = "dot -T%s %s -o %s 2>/tmp/err" % (output_format, file, out) os.system(exec_command)
def fill_missing_info(info: dict, site_url: str = DEFAULT_SITE) -> dict: "Add missing info in a censored post info dict." try: md5, ext = find_censored_md5ext(info["id"]) except TypeError: # None returned by find_.. return info sample_ext = "jpg" if ext != "zip" else "webm" if info["id"] > 2_800_000: site_url = site_url.rstrip("/") file_url = f"{site_url}/data/{md5}.{ext}" sample_url = f"{site_url}/data/sample/sample-{md5}.{sample_ext}" else: server = "raikou2" if info["id"] > 850_000 else "raikou1" url_base = f"https://{server}.donmai.us" file_url = f"{url_base}/{md5[:2]}/{md5[2:4]}/{md5}.{ext}" sample_url = (f"{url_base}/sample/{md5[:2]}/{md5[2:4]}/" f"sample-{md5}.{sample_ext}") if info["image_width"] < 850: sample_url = file_url return {**info, **{ "file_ext": ext, "md5": md5, "file_url": file_url, "large_file_url": sample_url, "preview_file_url": (f"https://raikou4.donmai.us/preview/" f"{md5[:2]}/{md5[2:4]}/{md5}.jpg"), }}
Add missing info in a censored post info dict.
Below is the the instruction that describes the task: ### Input: Add missing info in a censored post info dict. ### Response: def fill_missing_info(info: dict, site_url: str = DEFAULT_SITE) -> dict: "Add missing info in a censored post info dict." try: md5, ext = find_censored_md5ext(info["id"]) except TypeError: # None returned by find_.. return info sample_ext = "jpg" if ext != "zip" else "webm" if info["id"] > 2_800_000: site_url = site_url.rstrip("/") file_url = f"{site_url}/data/{md5}.{ext}" sample_url = f"{site_url}/data/sample/sample-{md5}.{sample_ext}" else: server = "raikou2" if info["id"] > 850_000 else "raikou1" url_base = f"https://{server}.donmai.us" file_url = f"{url_base}/{md5[:2]}/{md5[2:4]}/{md5}.{ext}" sample_url = (f"{url_base}/sample/{md5[:2]}/{md5[2:4]}/" f"sample-{md5}.{sample_ext}") if info["image_width"] < 850: sample_url = file_url return {**info, **{ "file_ext": ext, "md5": md5, "file_url": file_url, "large_file_url": sample_url, "preview_file_url": (f"https://raikou4.donmai.us/preview/" f"{md5[:2]}/{md5[2:4]}/{md5}.jpg"), }}
def to_ngrams(self, terms): ''' Converts terms to all possibe ngrams terms: list of terms ''' if len(terms) <= self.n: return terms if self.n == 1: n_grams = [[term] for term in terms] else: n_grams = [] for i in range(0,len(terms)-self.n+1): n_grams.append(terms[i:i+self.n]) return n_grams
Converts terms to all possibe ngrams terms: list of terms
Below is the the instruction that describes the task: ### Input: Converts terms to all possibe ngrams terms: list of terms ### Response: def to_ngrams(self, terms): ''' Converts terms to all possibe ngrams terms: list of terms ''' if len(terms) <= self.n: return terms if self.n == 1: n_grams = [[term] for term in terms] else: n_grams = [] for i in range(0,len(terms)-self.n+1): n_grams.append(terms[i:i+self.n]) return n_grams
def get_daily_songs(self): """ 获取每日推荐歌曲 """ self._daily_playlist = douban.get_daily_songs() # 加入索引 for index, i in enumerate(self._daily_playlist): i['title'] = str(index + 1) + '/' + str(len(self._daily_playlist)) + ' ' + i['title']
获取每日推荐歌曲
Below is the the instruction that describes the task: ### Input: 获取每日推荐歌曲 ### Response: def get_daily_songs(self): """ 获取每日推荐歌曲 """ self._daily_playlist = douban.get_daily_songs() # 加入索引 for index, i in enumerate(self._daily_playlist): i['title'] = str(index + 1) + '/' + str(len(self._daily_playlist)) + ' ' + i['title']
def clean_code(self, name, forbidden): """ Remove lines containing items in 'forbidden' from the code. Helpful for executing converted notebooks that still retain IPython magic commands. """ code = self.read_code(name) code = code.split('\n') new_code = [] for line in code: if [bad for bad in forbidden if bad in line]: pass else: allowed = ['time','timeit'] # Magics where we want to keep the command line = self.strip_line_magic(line, allowed) if isinstance(line,list): line = ' '.join(line) new_code.append(line) new_code = '\n'.join(new_code) self.write_code(name, new_code) return new_code
Remove lines containing items in 'forbidden' from the code. Helpful for executing converted notebooks that still retain IPython magic commands.
Below is the the instruction that describes the task: ### Input: Remove lines containing items in 'forbidden' from the code. Helpful for executing converted notebooks that still retain IPython magic commands. ### Response: def clean_code(self, name, forbidden): """ Remove lines containing items in 'forbidden' from the code. Helpful for executing converted notebooks that still retain IPython magic commands. """ code = self.read_code(name) code = code.split('\n') new_code = [] for line in code: if [bad for bad in forbidden if bad in line]: pass else: allowed = ['time','timeit'] # Magics where we want to keep the command line = self.strip_line_magic(line, allowed) if isinstance(line,list): line = ' '.join(line) new_code.append(line) new_code = '\n'.join(new_code) self.write_code(name, new_code) return new_code
def parse_roles(self, fetched_role, params): """ Parse a single IAM role and fetch additional data """ role = {} role['instances_count'] = 'N/A' # When resuming upon throttling error, skip if already fetched if fetched_role['RoleName'] in self.roles: return api_client = params['api_client'] # Ensure consistent attribute names across resource types role['id'] = fetched_role.pop('RoleId') role['name'] = fetched_role.pop('RoleName') role['arn'] = fetched_role.pop('Arn') # Get other attributes get_keys(fetched_role, role, [ 'CreateDate', 'Path']) # Get role policies policies = self.__get_inline_policies(api_client, 'role', role['id'], role['name']) if len(policies): role['inline_policies'] = policies role['inline_policies_count'] = len(policies) # Get instance profiles profiles = handle_truncated_response(api_client.list_instance_profiles_for_role, {'RoleName': role['name']}, ['InstanceProfiles']) manage_dictionary(role, 'instance_profiles', {}) for profile in profiles['InstanceProfiles']: manage_dictionary(role['instance_profiles'], profile['InstanceProfileId'], {}) role['instance_profiles'][profile['InstanceProfileId']]['arn'] = profile['Arn'] role['instance_profiles'][profile['InstanceProfileId']]['name'] = profile['InstanceProfileName'] # Get trust relationship role['assume_role_policy'] = {} role['assume_role_policy']['PolicyDocument'] = fetched_role.pop('AssumeRolePolicyDocument') # Save role self.roles[role['id']] = role
Parse a single IAM role and fetch additional data
Below is the the instruction that describes the task: ### Input: Parse a single IAM role and fetch additional data ### Response: def parse_roles(self, fetched_role, params): """ Parse a single IAM role and fetch additional data """ role = {} role['instances_count'] = 'N/A' # When resuming upon throttling error, skip if already fetched if fetched_role['RoleName'] in self.roles: return api_client = params['api_client'] # Ensure consistent attribute names across resource types role['id'] = fetched_role.pop('RoleId') role['name'] = fetched_role.pop('RoleName') role['arn'] = fetched_role.pop('Arn') # Get other attributes get_keys(fetched_role, role, [ 'CreateDate', 'Path']) # Get role policies policies = self.__get_inline_policies(api_client, 'role', role['id'], role['name']) if len(policies): role['inline_policies'] = policies role['inline_policies_count'] = len(policies) # Get instance profiles profiles = handle_truncated_response(api_client.list_instance_profiles_for_role, {'RoleName': role['name']}, ['InstanceProfiles']) manage_dictionary(role, 'instance_profiles', {}) for profile in profiles['InstanceProfiles']: manage_dictionary(role['instance_profiles'], profile['InstanceProfileId'], {}) role['instance_profiles'][profile['InstanceProfileId']]['arn'] = profile['Arn'] role['instance_profiles'][profile['InstanceProfileId']]['name'] = profile['InstanceProfileName'] # Get trust relationship role['assume_role_policy'] = {} role['assume_role_policy']['PolicyDocument'] = fetched_role.pop('AssumeRolePolicyDocument') # Save role self.roles[role['id']] = role
def init_input_obj(self): """Section 4 - Create uwg objects from input parameters self.simTime # simulation time parameter obj self.weather # weather obj for simulation time period self.forcIP # Forcing obj self.forc # Empty forcing obj self.geoParam # geographic parameters obj self.RSM # Rural site & vertical diffusion model obj self.USM # Urban site & vertical diffusion model obj self.UCM # Urban canopy model obj self.UBL # Urban boundary layer model self.road # urban road element self.rural # rural road element self.soilindex1 # soil index for urban rsoad depth self.soilindex2 # soil index for rural road depth self.Sch # list of Schedule objects """ climate_file_path = os.path.join(self.epwDir, self.epwFileName) self.simTime = SimParam(self.dtSim, self.dtWeather, self.Month, self.Day, self.nDay) # simulation time parametrs # weather file data for simulation time period self.weather = Weather(climate_file_path, self.simTime.timeInitial, self.simTime.timeFinal) self.forcIP = Forcing(self.weather.staTemp, self.weather) # initialized Forcing class self.forc = Forcing() # empty forcing class # Initialize geographic Param and Urban Boundary Layer Objects nightStart = 18. # arbitrary values for begin/end hour for night setpoint nightEnd = 8. maxdx = 250. # max dx (m) self.geoParam = Param(self.h_ubl1, self.h_ubl2, self.h_ref, self.h_temp, self.h_wind, self.c_circ, self.maxDay, self.maxNight, self.latTree, self.latGrss, self.albVeg, self.vegStart, self.vegEnd, nightStart, nightEnd, self.windMin, self.WGMAX, self.c_exch, maxdx, self.G, self.CP, self.VK, self.R, self.RV, self.LV, math.pi, self.SIGMA, self.WATERDENS, self.LVTT, self.TT, self.ESTT, self.CL, self.CPV, self.B, self.CM, self.COLBURN) self.UBL = UBLDef( 'C', self.charLength, self.weather.staTemp[0], maxdx, self.geoParam.dayBLHeight, self.geoParam.nightBLHeight) # Defining road emis = 0.93 asphalt = Material(self.kRoad, self.cRoad, 'asphalt') road_T_init = 293. road_horizontal = 1 # fraction of surface vegetation coverage road_veg_coverage = min(self.vegCover/(1-self.bldDensity), 1.) # define road layers road_layer_num = int(math.ceil(self.d_road/0.05)) # 0.5/0.05 ~ 10 x 1 matrix of 0.05 thickness thickness_vector = [0.05 for r in range(road_layer_num)] material_vector = [asphalt for r in range(road_layer_num)] self.road = Element(self.alb_road, emis, thickness_vector, material_vector, road_veg_coverage, road_T_init, road_horizontal, name="urban_road") self.rural = copy.deepcopy(self.road) self.rural.vegCoverage = self.rurVegCover self.rural._name = "rural_road" # Reference site class (also include VDM) self.RSM = RSMDef(self.lat, self.lon, self.GMT, self.h_obs, self.weather.staTemp[0], self.weather.staPres[0], self.geoParam, self.z_meso_dir_path) self.USM = RSMDef(self.lat, self.lon, self.GMT, self.bldHeight/10., self.weather.staTemp[0], self.weather.staPres[0], self.geoParam, self.z_meso_dir_path) T_init = self.weather.staTemp[0] H_init = self.weather.staHum[0] self.UCM = UCMDef(self.bldHeight, self.bldDensity, self.verToHor, self.treeCoverage, self.sensAnth, self.latAnth, T_init, H_init, self.weather.staUmod[0], self.geoParam, self.r_glaze_total, self.SHGC_total, self.alb_wall_total, self.road) self.UCM.h_mix = self.h_mix # Define Road Element & buffer to match ground temperature depth roadMat, newthickness = procMat(self.road, self.MAXTHICKNESS, self.MINTHICKNESS) for i in range(self.nSoil): # if soil depth is greater then the thickness of the road # we add new slices of soil at max thickness until road is greater or equal is_soildepth_equal = self.is_near_zero(self.depth_soil[i][0] - sum(newthickness), 1e-15) if is_soildepth_equal or (self.depth_soil[i][0] > sum(newthickness)): while self.depth_soil[i][0] > sum(newthickness): newthickness.append(self.MAXTHICKNESS) roadMat.append(self.SOIL) self.soilindex1 = i break self.road = Element(self.road.albedo, self.road.emissivity, newthickness, roadMat, self.road.vegCoverage, self.road.layerTemp[0], self.road.horizontal, self.road._name) # Define Rural Element ruralMat, newthickness = procMat(self.rural, self.MAXTHICKNESS, self.MINTHICKNESS) for i in range(self.nSoil): # if soil depth is greater then the thickness of the road # we add new slices of soil at max thickness until road is greater or equal is_soildepth_equal = self.is_near_zero(self.depth_soil[i][0] - sum(newthickness), 1e-15) if is_soildepth_equal or (self.depth_soil[i][0] > sum(newthickness)): while self.depth_soil[i][0] > sum(newthickness): newthickness.append(self.MAXTHICKNESS) ruralMat.append(self.SOIL) self.soilindex2 = i break self.rural = Element(self.rural.albedo, self.rural.emissivity, newthickness, ruralMat, self.rural.vegCoverage, self.rural.layerTemp[0], self.rural.horizontal, self.rural._name)
Section 4 - Create uwg objects from input parameters self.simTime # simulation time parameter obj self.weather # weather obj for simulation time period self.forcIP # Forcing obj self.forc # Empty forcing obj self.geoParam # geographic parameters obj self.RSM # Rural site & vertical diffusion model obj self.USM # Urban site & vertical diffusion model obj self.UCM # Urban canopy model obj self.UBL # Urban boundary layer model self.road # urban road element self.rural # rural road element self.soilindex1 # soil index for urban rsoad depth self.soilindex2 # soil index for rural road depth self.Sch # list of Schedule objects
Below is the the instruction that describes the task: ### Input: Section 4 - Create uwg objects from input parameters self.simTime # simulation time parameter obj self.weather # weather obj for simulation time period self.forcIP # Forcing obj self.forc # Empty forcing obj self.geoParam # geographic parameters obj self.RSM # Rural site & vertical diffusion model obj self.USM # Urban site & vertical diffusion model obj self.UCM # Urban canopy model obj self.UBL # Urban boundary layer model self.road # urban road element self.rural # rural road element self.soilindex1 # soil index for urban rsoad depth self.soilindex2 # soil index for rural road depth self.Sch # list of Schedule objects ### Response: def init_input_obj(self): """Section 4 - Create uwg objects from input parameters self.simTime # simulation time parameter obj self.weather # weather obj for simulation time period self.forcIP # Forcing obj self.forc # Empty forcing obj self.geoParam # geographic parameters obj self.RSM # Rural site & vertical diffusion model obj self.USM # Urban site & vertical diffusion model obj self.UCM # Urban canopy model obj self.UBL # Urban boundary layer model self.road # urban road element self.rural # rural road element self.soilindex1 # soil index for urban rsoad depth self.soilindex2 # soil index for rural road depth self.Sch # list of Schedule objects """ climate_file_path = os.path.join(self.epwDir, self.epwFileName) self.simTime = SimParam(self.dtSim, self.dtWeather, self.Month, self.Day, self.nDay) # simulation time parametrs # weather file data for simulation time period self.weather = Weather(climate_file_path, self.simTime.timeInitial, self.simTime.timeFinal) self.forcIP = Forcing(self.weather.staTemp, self.weather) # initialized Forcing class self.forc = Forcing() # empty forcing class # Initialize geographic Param and Urban Boundary Layer Objects nightStart = 18. # arbitrary values for begin/end hour for night setpoint nightEnd = 8. maxdx = 250. # max dx (m) self.geoParam = Param(self.h_ubl1, self.h_ubl2, self.h_ref, self.h_temp, self.h_wind, self.c_circ, self.maxDay, self.maxNight, self.latTree, self.latGrss, self.albVeg, self.vegStart, self.vegEnd, nightStart, nightEnd, self.windMin, self.WGMAX, self.c_exch, maxdx, self.G, self.CP, self.VK, self.R, self.RV, self.LV, math.pi, self.SIGMA, self.WATERDENS, self.LVTT, self.TT, self.ESTT, self.CL, self.CPV, self.B, self.CM, self.COLBURN) self.UBL = UBLDef( 'C', self.charLength, self.weather.staTemp[0], maxdx, self.geoParam.dayBLHeight, self.geoParam.nightBLHeight) # Defining road emis = 0.93 asphalt = Material(self.kRoad, self.cRoad, 'asphalt') road_T_init = 293. road_horizontal = 1 # fraction of surface vegetation coverage road_veg_coverage = min(self.vegCover/(1-self.bldDensity), 1.) # define road layers road_layer_num = int(math.ceil(self.d_road/0.05)) # 0.5/0.05 ~ 10 x 1 matrix of 0.05 thickness thickness_vector = [0.05 for r in range(road_layer_num)] material_vector = [asphalt for r in range(road_layer_num)] self.road = Element(self.alb_road, emis, thickness_vector, material_vector, road_veg_coverage, road_T_init, road_horizontal, name="urban_road") self.rural = copy.deepcopy(self.road) self.rural.vegCoverage = self.rurVegCover self.rural._name = "rural_road" # Reference site class (also include VDM) self.RSM = RSMDef(self.lat, self.lon, self.GMT, self.h_obs, self.weather.staTemp[0], self.weather.staPres[0], self.geoParam, self.z_meso_dir_path) self.USM = RSMDef(self.lat, self.lon, self.GMT, self.bldHeight/10., self.weather.staTemp[0], self.weather.staPres[0], self.geoParam, self.z_meso_dir_path) T_init = self.weather.staTemp[0] H_init = self.weather.staHum[0] self.UCM = UCMDef(self.bldHeight, self.bldDensity, self.verToHor, self.treeCoverage, self.sensAnth, self.latAnth, T_init, H_init, self.weather.staUmod[0], self.geoParam, self.r_glaze_total, self.SHGC_total, self.alb_wall_total, self.road) self.UCM.h_mix = self.h_mix # Define Road Element & buffer to match ground temperature depth roadMat, newthickness = procMat(self.road, self.MAXTHICKNESS, self.MINTHICKNESS) for i in range(self.nSoil): # if soil depth is greater then the thickness of the road # we add new slices of soil at max thickness until road is greater or equal is_soildepth_equal = self.is_near_zero(self.depth_soil[i][0] - sum(newthickness), 1e-15) if is_soildepth_equal or (self.depth_soil[i][0] > sum(newthickness)): while self.depth_soil[i][0] > sum(newthickness): newthickness.append(self.MAXTHICKNESS) roadMat.append(self.SOIL) self.soilindex1 = i break self.road = Element(self.road.albedo, self.road.emissivity, newthickness, roadMat, self.road.vegCoverage, self.road.layerTemp[0], self.road.horizontal, self.road._name) # Define Rural Element ruralMat, newthickness = procMat(self.rural, self.MAXTHICKNESS, self.MINTHICKNESS) for i in range(self.nSoil): # if soil depth is greater then the thickness of the road # we add new slices of soil at max thickness until road is greater or equal is_soildepth_equal = self.is_near_zero(self.depth_soil[i][0] - sum(newthickness), 1e-15) if is_soildepth_equal or (self.depth_soil[i][0] > sum(newthickness)): while self.depth_soil[i][0] > sum(newthickness): newthickness.append(self.MAXTHICKNESS) ruralMat.append(self.SOIL) self.soilindex2 = i break self.rural = Element(self.rural.albedo, self.rural.emissivity, newthickness, ruralMat, self.rural.vegCoverage, self.rural.layerTemp[0], self.rural.horizontal, self.rural._name)
def interpolate_bilinear_lonlat(self, lon, lat, values): """ Interpolate values at specific longitudes/latitudes using bilinear interpolation If a position does not have four neighbours, this currently returns NaN. Parameters ---------- lon, lat : :class:`~astropy.units.Quantity` The longitude and latitude values as :class:`~astropy.units.Quantity` instances with angle units. values : `~numpy.ndarray` 1-D array with the values in each HEALPix pixel. This must have a length of the form 12 * nside ** 2 (and nside is determined automatically from this). Returns ------- result : `~numpy.ndarray` 1-D array of interpolated values """ if len(values) != self.npix: raise ValueError('values must be an array of length {0} (got {1})'.format(self.npix, len(values))) return interpolate_bilinear_lonlat(lon, lat, values, order=self.order)
Interpolate values at specific longitudes/latitudes using bilinear interpolation If a position does not have four neighbours, this currently returns NaN. Parameters ---------- lon, lat : :class:`~astropy.units.Quantity` The longitude and latitude values as :class:`~astropy.units.Quantity` instances with angle units. values : `~numpy.ndarray` 1-D array with the values in each HEALPix pixel. This must have a length of the form 12 * nside ** 2 (and nside is determined automatically from this). Returns ------- result : `~numpy.ndarray` 1-D array of interpolated values
Below is the the instruction that describes the task: ### Input: Interpolate values at specific longitudes/latitudes using bilinear interpolation If a position does not have four neighbours, this currently returns NaN. Parameters ---------- lon, lat : :class:`~astropy.units.Quantity` The longitude and latitude values as :class:`~astropy.units.Quantity` instances with angle units. values : `~numpy.ndarray` 1-D array with the values in each HEALPix pixel. This must have a length of the form 12 * nside ** 2 (and nside is determined automatically from this). Returns ------- result : `~numpy.ndarray` 1-D array of interpolated values ### Response: def interpolate_bilinear_lonlat(self, lon, lat, values): """ Interpolate values at specific longitudes/latitudes using bilinear interpolation If a position does not have four neighbours, this currently returns NaN. Parameters ---------- lon, lat : :class:`~astropy.units.Quantity` The longitude and latitude values as :class:`~astropy.units.Quantity` instances with angle units. values : `~numpy.ndarray` 1-D array with the values in each HEALPix pixel. This must have a length of the form 12 * nside ** 2 (and nside is determined automatically from this). Returns ------- result : `~numpy.ndarray` 1-D array of interpolated values """ if len(values) != self.npix: raise ValueError('values must be an array of length {0} (got {1})'.format(self.npix, len(values))) return interpolate_bilinear_lonlat(lon, lat, values, order=self.order)
def xml_to_string(elem, qualified_name=None, public_id=None, system_id=None): """ Return a pretty-printed XML string for the Element. Also allows setting a document type. """ from xml.dom import minidom rough_string = ET.tostring(elem, 'utf-8') reparsed = minidom.parseString(rough_string) if qualified_name: doctype = minidom.DOMImplementation().createDocumentType( qualified_name, public_id, system_id) reparsed.insertBefore(doctype, reparsed.documentElement) return reparsed.toprettyxml(indent=" ")
Return a pretty-printed XML string for the Element. Also allows setting a document type.
Below is the the instruction that describes the task: ### Input: Return a pretty-printed XML string for the Element. Also allows setting a document type. ### Response: def xml_to_string(elem, qualified_name=None, public_id=None, system_id=None): """ Return a pretty-printed XML string for the Element. Also allows setting a document type. """ from xml.dom import minidom rough_string = ET.tostring(elem, 'utf-8') reparsed = minidom.parseString(rough_string) if qualified_name: doctype = minidom.DOMImplementation().createDocumentType( qualified_name, public_id, system_id) reparsed.insertBefore(doctype, reparsed.documentElement) return reparsed.toprettyxml(indent=" ")
def from_dict(config): ''' Instantiate a new ProxyConfig from a dictionary that represents a client configuration, as described in `the documentation`_. .. _the documentation: https://docs.docker.com/network/proxy/#configure-the-docker-client ''' return ProxyConfig( http=config.get('httpProxy'), https=config.get('httpsProxy'), ftp=config.get('ftpProxy'), no_proxy=config.get('noProxy'), )
Instantiate a new ProxyConfig from a dictionary that represents a client configuration, as described in `the documentation`_. .. _the documentation: https://docs.docker.com/network/proxy/#configure-the-docker-client
Below is the the instruction that describes the task: ### Input: Instantiate a new ProxyConfig from a dictionary that represents a client configuration, as described in `the documentation`_. .. _the documentation: https://docs.docker.com/network/proxy/#configure-the-docker-client ### Response: def from_dict(config): ''' Instantiate a new ProxyConfig from a dictionary that represents a client configuration, as described in `the documentation`_. .. _the documentation: https://docs.docker.com/network/proxy/#configure-the-docker-client ''' return ProxyConfig( http=config.get('httpProxy'), https=config.get('httpsProxy'), ftp=config.get('ftpProxy'), no_proxy=config.get('noProxy'), )
def compress(self, condition, axis=0, out=None): """Return selected slices of an array along given axis. Parameters ---------- condition : array_like, bool Array that selects which entries to return. N.B., if len(condition) is less than the size of the given axis, then output is truncated to the length of the condition array. axis : int, optional Axis along which to take slices. If None, work on the flattened array. out : ndarray, optional Output array. Its type is preserved and it must be of the right shape to hold the output. Returns ------- out : HaplotypeArray A copy of the array without the slices along axis for which `condition` is false. Examples -------- >>> import allel >>> h = allel.HaplotypeArray([[0, 0, 0, 1], ... [0, 1, 1, 1], ... [0, 2, -1, -1]], dtype='i1') >>> h.compress([True, False, True], axis=0) <HaplotypeArray shape=(2, 4) dtype=int8> 0 0 0 1 0 2 . . >>> h.compress([True, False, True, False], axis=1) <HaplotypeArray shape=(3, 2) dtype=int8> 0 0 0 1 0 . """ return compress_haplotype_array(self, condition, axis=axis, cls=type(self), compress=np.compress, out=out)
Return selected slices of an array along given axis. Parameters ---------- condition : array_like, bool Array that selects which entries to return. N.B., if len(condition) is less than the size of the given axis, then output is truncated to the length of the condition array. axis : int, optional Axis along which to take slices. If None, work on the flattened array. out : ndarray, optional Output array. Its type is preserved and it must be of the right shape to hold the output. Returns ------- out : HaplotypeArray A copy of the array without the slices along axis for which `condition` is false. Examples -------- >>> import allel >>> h = allel.HaplotypeArray([[0, 0, 0, 1], ... [0, 1, 1, 1], ... [0, 2, -1, -1]], dtype='i1') >>> h.compress([True, False, True], axis=0) <HaplotypeArray shape=(2, 4) dtype=int8> 0 0 0 1 0 2 . . >>> h.compress([True, False, True, False], axis=1) <HaplotypeArray shape=(3, 2) dtype=int8> 0 0 0 1 0 .
Below is the the instruction that describes the task: ### Input: Return selected slices of an array along given axis. Parameters ---------- condition : array_like, bool Array that selects which entries to return. N.B., if len(condition) is less than the size of the given axis, then output is truncated to the length of the condition array. axis : int, optional Axis along which to take slices. If None, work on the flattened array. out : ndarray, optional Output array. Its type is preserved and it must be of the right shape to hold the output. Returns ------- out : HaplotypeArray A copy of the array without the slices along axis for which `condition` is false. Examples -------- >>> import allel >>> h = allel.HaplotypeArray([[0, 0, 0, 1], ... [0, 1, 1, 1], ... [0, 2, -1, -1]], dtype='i1') >>> h.compress([True, False, True], axis=0) <HaplotypeArray shape=(2, 4) dtype=int8> 0 0 0 1 0 2 . . >>> h.compress([True, False, True, False], axis=1) <HaplotypeArray shape=(3, 2) dtype=int8> 0 0 0 1 0 . ### Response: def compress(self, condition, axis=0, out=None): """Return selected slices of an array along given axis. Parameters ---------- condition : array_like, bool Array that selects which entries to return. N.B., if len(condition) is less than the size of the given axis, then output is truncated to the length of the condition array. axis : int, optional Axis along which to take slices. If None, work on the flattened array. out : ndarray, optional Output array. Its type is preserved and it must be of the right shape to hold the output. Returns ------- out : HaplotypeArray A copy of the array without the slices along axis for which `condition` is false. Examples -------- >>> import allel >>> h = allel.HaplotypeArray([[0, 0, 0, 1], ... [0, 1, 1, 1], ... [0, 2, -1, -1]], dtype='i1') >>> h.compress([True, False, True], axis=0) <HaplotypeArray shape=(2, 4) dtype=int8> 0 0 0 1 0 2 . . >>> h.compress([True, False, True, False], axis=1) <HaplotypeArray shape=(3, 2) dtype=int8> 0 0 0 1 0 . """ return compress_haplotype_array(self, condition, axis=axis, cls=type(self), compress=np.compress, out=out)
def normalize(self, bias_range=1, poly_range=None, ignored_terms=None): """Normalizes the biases of the binary polynomial such that they fall in the provided range(s). If `poly_range` is provided, then `bias_range` will be treated as the range for the linear biases and `poly_range` will be used for the range of the other biases. Args: bias_range (number/pair): Value/range by which to normalize the all the biases, or if `poly_range` is provided, just the linear biases. poly_range (number/pair, optional): Value/range by which to normalize the higher order biases. ignored_terms (iterable, optional): Biases associated with these terms are not scaled. """ def parse_range(r): if isinstance(r, Number): return -abs(r), abs(r) return r if ignored_terms is None: ignored_terms = set() else: ignored_terms = {asfrozenset(term) for term in ignored_terms} if poly_range is None: linear_range, poly_range = bias_range, bias_range else: linear_range = bias_range lin_range, poly_range = map(parse_range, (linear_range, poly_range)) # determine the current ranges for linear, higherorder lmin = lmax = 0 pmin = pmax = 0 for term, bias in self.items(): if term in ignored_terms: # we don't use the ignored terms to calculate the scaling continue if len(term) == 1: lmin = min(bias, lmin) lmax = max(bias, lmax) elif len(term) > 1: pmin = min(bias, pmin) pmax = max(bias, pmax) inv_scalar = max(lmin / lin_range[0], lmax / lin_range[1], pmin / poly_range[0], pmax / poly_range[1]) if inv_scalar != 0: self.scale(1 / inv_scalar, ignored_terms=ignored_terms)
Normalizes the biases of the binary polynomial such that they fall in the provided range(s). If `poly_range` is provided, then `bias_range` will be treated as the range for the linear biases and `poly_range` will be used for the range of the other biases. Args: bias_range (number/pair): Value/range by which to normalize the all the biases, or if `poly_range` is provided, just the linear biases. poly_range (number/pair, optional): Value/range by which to normalize the higher order biases. ignored_terms (iterable, optional): Biases associated with these terms are not scaled.
Below is the the instruction that describes the task: ### Input: Normalizes the biases of the binary polynomial such that they fall in the provided range(s). If `poly_range` is provided, then `bias_range` will be treated as the range for the linear biases and `poly_range` will be used for the range of the other biases. Args: bias_range (number/pair): Value/range by which to normalize the all the biases, or if `poly_range` is provided, just the linear biases. poly_range (number/pair, optional): Value/range by which to normalize the higher order biases. ignored_terms (iterable, optional): Biases associated with these terms are not scaled. ### Response: def normalize(self, bias_range=1, poly_range=None, ignored_terms=None): """Normalizes the biases of the binary polynomial such that they fall in the provided range(s). If `poly_range` is provided, then `bias_range` will be treated as the range for the linear biases and `poly_range` will be used for the range of the other biases. Args: bias_range (number/pair): Value/range by which to normalize the all the biases, or if `poly_range` is provided, just the linear biases. poly_range (number/pair, optional): Value/range by which to normalize the higher order biases. ignored_terms (iterable, optional): Biases associated with these terms are not scaled. """ def parse_range(r): if isinstance(r, Number): return -abs(r), abs(r) return r if ignored_terms is None: ignored_terms = set() else: ignored_terms = {asfrozenset(term) for term in ignored_terms} if poly_range is None: linear_range, poly_range = bias_range, bias_range else: linear_range = bias_range lin_range, poly_range = map(parse_range, (linear_range, poly_range)) # determine the current ranges for linear, higherorder lmin = lmax = 0 pmin = pmax = 0 for term, bias in self.items(): if term in ignored_terms: # we don't use the ignored terms to calculate the scaling continue if len(term) == 1: lmin = min(bias, lmin) lmax = max(bias, lmax) elif len(term) > 1: pmin = min(bias, pmin) pmax = max(bias, pmax) inv_scalar = max(lmin / lin_range[0], lmax / lin_range[1], pmin / poly_range[0], pmax / poly_range[1]) if inv_scalar != 0: self.scale(1 / inv_scalar, ignored_terms=ignored_terms)
def readcols(infile, cols=[0, 1, 2, 3], hms=False): """ Read the columns from an ASCII file as numpy arrays. Parameters ---------- infile : str Filename of ASCII file with array data as columns. cols : list of int List of 0-indexed column numbers for columns to be turned into numpy arrays (DEFAULT- [0,1,2,3]). Returns ------- outarr : list of numpy arrays Simple list of numpy arrays in the order as specifed in the 'cols' parameter. """ fin = open(infile,'r') outarr = [] for l in fin.readlines(): l = l.strip() if len(l) == 0 or len(l.split()) < len(cols) or (len(l) > 0 and l[0] == '#' or (l.find("INDEF") > -1)): continue for i in range(10): lnew = l.replace(" "," ") if lnew == l: break else: l = lnew lspl = lnew.split(" ") if len(outarr) == 0: for c in range(len(cols)): outarr.append([]) for c,n in zip(cols,list(range(len(cols)))): if not hms: val = float(lspl[c]) else: val = lspl[c] outarr[n].append(val) fin.close() for n in range(len(cols)): outarr[n] = np.array(outarr[n]) return outarr
Read the columns from an ASCII file as numpy arrays. Parameters ---------- infile : str Filename of ASCII file with array data as columns. cols : list of int List of 0-indexed column numbers for columns to be turned into numpy arrays (DEFAULT- [0,1,2,3]). Returns ------- outarr : list of numpy arrays Simple list of numpy arrays in the order as specifed in the 'cols' parameter.
Below is the the instruction that describes the task: ### Input: Read the columns from an ASCII file as numpy arrays. Parameters ---------- infile : str Filename of ASCII file with array data as columns. cols : list of int List of 0-indexed column numbers for columns to be turned into numpy arrays (DEFAULT- [0,1,2,3]). Returns ------- outarr : list of numpy arrays Simple list of numpy arrays in the order as specifed in the 'cols' parameter. ### Response: def readcols(infile, cols=[0, 1, 2, 3], hms=False): """ Read the columns from an ASCII file as numpy arrays. Parameters ---------- infile : str Filename of ASCII file with array data as columns. cols : list of int List of 0-indexed column numbers for columns to be turned into numpy arrays (DEFAULT- [0,1,2,3]). Returns ------- outarr : list of numpy arrays Simple list of numpy arrays in the order as specifed in the 'cols' parameter. """ fin = open(infile,'r') outarr = [] for l in fin.readlines(): l = l.strip() if len(l) == 0 or len(l.split()) < len(cols) or (len(l) > 0 and l[0] == '#' or (l.find("INDEF") > -1)): continue for i in range(10): lnew = l.replace(" "," ") if lnew == l: break else: l = lnew lspl = lnew.split(" ") if len(outarr) == 0: for c in range(len(cols)): outarr.append([]) for c,n in zip(cols,list(range(len(cols)))): if not hms: val = float(lspl[c]) else: val = lspl[c] outarr[n].append(val) fin.close() for n in range(len(cols)): outarr[n] = np.array(outarr[n]) return outarr
def del_application(self, application, sync=True): """ delete application from this company :param application: the subnet to be deleted from this company :param sync: If sync=True(default) synchronize with Ariane server. If sync=False, add the application object on list to be removed on next save(). :return: """ LOGGER.debug("Company.del_application") if not sync: self.applications_2_rm.append(application) else: if application.id is None: application.sync() if self.id is not None and application.id is not None: params = { 'id': self.id, 'applicationID': application.id } args = {'http_operation': 'GET', 'operation_path': 'update/applications/delete', 'parameters': params} response = CompanyService.requester.call(args) if response.rc != 0: LOGGER.warning( 'Company.del_application - Problem while updating company ' + self.name + '. Reason: ' + str(response.response_content) + '-' + str(response.error_message) + " (" + str(response.rc) + ")" ) else: self.applications_ids.remove(application.id) application.sync() else: LOGGER.warning( 'Company.del_application - Problem while updating company ' + self.name + '. Reason: application ' + application.name + ' id is None or self.id is None' )
delete application from this company :param application: the subnet to be deleted from this company :param sync: If sync=True(default) synchronize with Ariane server. If sync=False, add the application object on list to be removed on next save(). :return:
Below is the the instruction that describes the task: ### Input: delete application from this company :param application: the subnet to be deleted from this company :param sync: If sync=True(default) synchronize with Ariane server. If sync=False, add the application object on list to be removed on next save(). :return: ### Response: def del_application(self, application, sync=True): """ delete application from this company :param application: the subnet to be deleted from this company :param sync: If sync=True(default) synchronize with Ariane server. If sync=False, add the application object on list to be removed on next save(). :return: """ LOGGER.debug("Company.del_application") if not sync: self.applications_2_rm.append(application) else: if application.id is None: application.sync() if self.id is not None and application.id is not None: params = { 'id': self.id, 'applicationID': application.id } args = {'http_operation': 'GET', 'operation_path': 'update/applications/delete', 'parameters': params} response = CompanyService.requester.call(args) if response.rc != 0: LOGGER.warning( 'Company.del_application - Problem while updating company ' + self.name + '. Reason: ' + str(response.response_content) + '-' + str(response.error_message) + " (" + str(response.rc) + ")" ) else: self.applications_ids.remove(application.id) application.sync() else: LOGGER.warning( 'Company.del_application - Problem while updating company ' + self.name + '. Reason: application ' + application.name + ' id is None or self.id is None' )
def start(self, on_add, on_update, on_delete): """ Starts monitoring the file path, passing along on_(add|update|delete) callbacks to a watchdog observer. Iterates over the files in the target path before starting the observer and calls the on_created callback before starting the observer, so that existing files aren't missed. """ handler = ConfigFileChangeHandler( self.target_class, on_add, on_update, on_delete ) for file_name in os.listdir(self.file_path): if os.path.isdir(os.path.join(self.file_path, file_name)): continue if ( not self.target_class.config_subdirectory and not ( file_name.endswith(".yaml") or file_name.endswith(".yml") ) ): continue handler.on_created( events.FileCreatedEvent( os.path.join(self.file_path, file_name) ) ) observer = observers.Observer() observer.schedule(handler, self.file_path) observer.start() return observer
Starts monitoring the file path, passing along on_(add|update|delete) callbacks to a watchdog observer. Iterates over the files in the target path before starting the observer and calls the on_created callback before starting the observer, so that existing files aren't missed.
Below is the the instruction that describes the task: ### Input: Starts monitoring the file path, passing along on_(add|update|delete) callbacks to a watchdog observer. Iterates over the files in the target path before starting the observer and calls the on_created callback before starting the observer, so that existing files aren't missed. ### Response: def start(self, on_add, on_update, on_delete): """ Starts monitoring the file path, passing along on_(add|update|delete) callbacks to a watchdog observer. Iterates over the files in the target path before starting the observer and calls the on_created callback before starting the observer, so that existing files aren't missed. """ handler = ConfigFileChangeHandler( self.target_class, on_add, on_update, on_delete ) for file_name in os.listdir(self.file_path): if os.path.isdir(os.path.join(self.file_path, file_name)): continue if ( not self.target_class.config_subdirectory and not ( file_name.endswith(".yaml") or file_name.endswith(".yml") ) ): continue handler.on_created( events.FileCreatedEvent( os.path.join(self.file_path, file_name) ) ) observer = observers.Observer() observer.schedule(handler, self.file_path) observer.start() return observer
def __process_by_python(self): """! @brief Performs processing using python code. """ self.__scores = {} for k in range(self.__kmin, self.__kmax): clusters = self.__calculate_clusters(k) if len(clusters) != k: self.__scores[k] = float('nan') continue score = silhouette(self.__data, clusters).process().get_score() self.__scores[k] = sum(score) / len(score) if self.__scores[k] > self.__score: self.__score = self.__scores[k] self.__amount = k
! @brief Performs processing using python code.
Below is the the instruction that describes the task: ### Input: ! @brief Performs processing using python code. ### Response: def __process_by_python(self): """! @brief Performs processing using python code. """ self.__scores = {} for k in range(self.__kmin, self.__kmax): clusters = self.__calculate_clusters(k) if len(clusters) != k: self.__scores[k] = float('nan') continue score = silhouette(self.__data, clusters).process().get_score() self.__scores[k] = sum(score) / len(score) if self.__scores[k] > self.__score: self.__score = self.__scores[k] self.__amount = k
def _call(self, x): """Return wavelet transform of ``x``.""" if self.impl == 'pywt': coeffs = pywt.wavedecn( x, wavelet=self.pywt_wavelet, level=self.nlevels, mode=self.pywt_pad_mode, axes=self.axes) return pywt.ravel_coeffs(coeffs, axes=self.axes)[0] else: raise RuntimeError("bad `impl` '{}'".format(self.impl))
Return wavelet transform of ``x``.
Below is the the instruction that describes the task: ### Input: Return wavelet transform of ``x``. ### Response: def _call(self, x): """Return wavelet transform of ``x``.""" if self.impl == 'pywt': coeffs = pywt.wavedecn( x, wavelet=self.pywt_wavelet, level=self.nlevels, mode=self.pywt_pad_mode, axes=self.axes) return pywt.ravel_coeffs(coeffs, axes=self.axes)[0] else: raise RuntimeError("bad `impl` '{}'".format(self.impl))
def run(self, arguments=None, get_unknowns=False): """ Init point to execute the script. If `arguments` string is given, will evaluate the arguments, else evaluates sys.argv. Any inheriting class should extend the run method (but first calling BaseCmdLineTool.run(self)). """ # redirect PIPE signal to quiet kill script, if not on Windows if os.name != 'nt': signal.signal(signal.SIGPIPE, signal.SIG_DFL) if get_unknowns: if arguments: self.args, self.unknown_args = (self.argparser.parse_known_args (args=arguments.split())) else: (self.args, self.unknown_args) = self.argparser.parse_known_args() self.args = vars(self.args) else: if arguments: myargs = arguments.split() self.args = vars(self.argparser.parse_args (args=myargs)) else: self.args = vars(self.argparser.parse_args()) self.progress_bar_enabled = (not (self.args['no_progressbar'] or self.is_stdin))
Init point to execute the script. If `arguments` string is given, will evaluate the arguments, else evaluates sys.argv. Any inheriting class should extend the run method (but first calling BaseCmdLineTool.run(self)).
Below is the the instruction that describes the task: ### Input: Init point to execute the script. If `arguments` string is given, will evaluate the arguments, else evaluates sys.argv. Any inheriting class should extend the run method (but first calling BaseCmdLineTool.run(self)). ### Response: def run(self, arguments=None, get_unknowns=False): """ Init point to execute the script. If `arguments` string is given, will evaluate the arguments, else evaluates sys.argv. Any inheriting class should extend the run method (but first calling BaseCmdLineTool.run(self)). """ # redirect PIPE signal to quiet kill script, if not on Windows if os.name != 'nt': signal.signal(signal.SIGPIPE, signal.SIG_DFL) if get_unknowns: if arguments: self.args, self.unknown_args = (self.argparser.parse_known_args (args=arguments.split())) else: (self.args, self.unknown_args) = self.argparser.parse_known_args() self.args = vars(self.args) else: if arguments: myargs = arguments.split() self.args = vars(self.argparser.parse_args (args=myargs)) else: self.args = vars(self.argparser.parse_args()) self.progress_bar_enabled = (not (self.args['no_progressbar'] or self.is_stdin))
def close(self): """Close the cursor""" if self.closed or self.connection.closed: return self._cursor.close() self.closed = True
Close the cursor
Below is the the instruction that describes the task: ### Input: Close the cursor ### Response: def close(self): """Close the cursor""" if self.closed or self.connection.closed: return self._cursor.close() self.closed = True
def _processSegmentUpdates(self, activeColumns): """ Go through the list of accumulated segment updates and process them as follows: if the segment update is too old, remove the update else if the cell received bottom-up, update its permanences else if it's still being predicted, leave it in the queue else remove it. :param activeColumns TODO: document """ # The segmentUpdates dict has keys which are the column,cellIdx of the # owner cell. The values are lists of segment updates for that cell removeKeys = [] trimSegments = [] for key, updateList in self.segmentUpdates.iteritems(): # Get the column number and cell index of the owner cell c, i = key[0], key[1] # If the cell received bottom-up, update its segments if c in activeColumns: action = 'update' # If not, either keep it around if it's still predicted, or remove it else: # If it is still predicted, and we are pooling, keep it around if self.doPooling and self.lrnPredictedState['t'][c, i] == 1: action = 'keep' else: action = 'remove' # Process each segment for this cell. Each segment entry contains # [creationDate, SegmentInfo] updateListKeep = [] if action != 'remove': for (createDate, segUpdate) in updateList: if self.verbosity >= 4: print "_nLrnIterations =", self.lrnIterationIdx, print segUpdate # If this segment has expired. Ignore this update (and hence remove it # from list) if self.lrnIterationIdx - createDate > self.segUpdateValidDuration: continue if action == 'update': trimSegment = self._adaptSegment(segUpdate) if trimSegment: trimSegments.append((segUpdate.columnIdx, segUpdate.cellIdx, segUpdate.segment)) else: # Keep segments that haven't expired yet (the cell is still being # predicted) updateListKeep.append((createDate, segUpdate)) self.segmentUpdates[key] = updateListKeep if len(updateListKeep) == 0: removeKeys.append(key) # Clean out empty segment updates for key in removeKeys: self.segmentUpdates.pop(key) # Trim segments that had synapses go to 0 for (c, i, segment) in trimSegments: self._trimSegmentsInCell(c, i, [segment], minPermanence = 0.00001, minNumSyns = 0)
Go through the list of accumulated segment updates and process them as follows: if the segment update is too old, remove the update else if the cell received bottom-up, update its permanences else if it's still being predicted, leave it in the queue else remove it. :param activeColumns TODO: document
Below is the the instruction that describes the task: ### Input: Go through the list of accumulated segment updates and process them as follows: if the segment update is too old, remove the update else if the cell received bottom-up, update its permanences else if it's still being predicted, leave it in the queue else remove it. :param activeColumns TODO: document ### Response: def _processSegmentUpdates(self, activeColumns): """ Go through the list of accumulated segment updates and process them as follows: if the segment update is too old, remove the update else if the cell received bottom-up, update its permanences else if it's still being predicted, leave it in the queue else remove it. :param activeColumns TODO: document """ # The segmentUpdates dict has keys which are the column,cellIdx of the # owner cell. The values are lists of segment updates for that cell removeKeys = [] trimSegments = [] for key, updateList in self.segmentUpdates.iteritems(): # Get the column number and cell index of the owner cell c, i = key[0], key[1] # If the cell received bottom-up, update its segments if c in activeColumns: action = 'update' # If not, either keep it around if it's still predicted, or remove it else: # If it is still predicted, and we are pooling, keep it around if self.doPooling and self.lrnPredictedState['t'][c, i] == 1: action = 'keep' else: action = 'remove' # Process each segment for this cell. Each segment entry contains # [creationDate, SegmentInfo] updateListKeep = [] if action != 'remove': for (createDate, segUpdate) in updateList: if self.verbosity >= 4: print "_nLrnIterations =", self.lrnIterationIdx, print segUpdate # If this segment has expired. Ignore this update (and hence remove it # from list) if self.lrnIterationIdx - createDate > self.segUpdateValidDuration: continue if action == 'update': trimSegment = self._adaptSegment(segUpdate) if trimSegment: trimSegments.append((segUpdate.columnIdx, segUpdate.cellIdx, segUpdate.segment)) else: # Keep segments that haven't expired yet (the cell is still being # predicted) updateListKeep.append((createDate, segUpdate)) self.segmentUpdates[key] = updateListKeep if len(updateListKeep) == 0: removeKeys.append(key) # Clean out empty segment updates for key in removeKeys: self.segmentUpdates.pop(key) # Trim segments that had synapses go to 0 for (c, i, segment) in trimSegments: self._trimSegmentsInCell(c, i, [segment], minPermanence = 0.00001, minNumSyns = 0)
def heartbeat(self): """Heartbeat request to keep session alive. """ unique_id = self.new_unique_id() message = { 'op': 'heartbeat', 'id': unique_id, } self._send(message) return unique_id
Heartbeat request to keep session alive.
Below is the the instruction that describes the task: ### Input: Heartbeat request to keep session alive. ### Response: def heartbeat(self): """Heartbeat request to keep session alive. """ unique_id = self.new_unique_id() message = { 'op': 'heartbeat', 'id': unique_id, } self._send(message) return unique_id
def get_value_from_user(sc): """ Prompts the user for a value for the symbol or choice 'sc'. For bool/tristate symbols and choices, provides a list of all the assignable values. """ if not sc.visibility: print(sc.name + " is not currently visible") return False prompt = "Value for {}".format(sc.name) if sc.type in (BOOL, TRISTATE): prompt += " (available: {})" \ .format(", ".join(TRI_TO_STR[val] for val in sc.assignable)) prompt += ": " val = input(prompt) # Automatically add a "0x" prefix for hex symbols, like the menuconfig # interface does. This isn't done when loading .config files, hence why # set_value() doesn't do it automatically. if sc.type == HEX and not val.startswith(("0x", "0X")): val = "0x" + val # Let Kconfiglib itself print a warning here if the value is invalid. We # could also disable warnings temporarily with # kconf.disable_warnings() / kconf.enable_warnings() and print our own # warning. return sc.set_value(val)
Prompts the user for a value for the symbol or choice 'sc'. For bool/tristate symbols and choices, provides a list of all the assignable values.
Below is the the instruction that describes the task: ### Input: Prompts the user for a value for the symbol or choice 'sc'. For bool/tristate symbols and choices, provides a list of all the assignable values. ### Response: def get_value_from_user(sc): """ Prompts the user for a value for the symbol or choice 'sc'. For bool/tristate symbols and choices, provides a list of all the assignable values. """ if not sc.visibility: print(sc.name + " is not currently visible") return False prompt = "Value for {}".format(sc.name) if sc.type in (BOOL, TRISTATE): prompt += " (available: {})" \ .format(", ".join(TRI_TO_STR[val] for val in sc.assignable)) prompt += ": " val = input(prompt) # Automatically add a "0x" prefix for hex symbols, like the menuconfig # interface does. This isn't done when loading .config files, hence why # set_value() doesn't do it automatically. if sc.type == HEX and not val.startswith(("0x", "0X")): val = "0x" + val # Let Kconfiglib itself print a warning here if the value is invalid. We # could also disable warnings temporarily with # kconf.disable_warnings() / kconf.enable_warnings() and print our own # warning. return sc.set_value(val)
def subsample(self, key, order='random', auto_resize=False, ID=None): """ Allows arbitrary slicing (subsampling) of the data. .. note:: When using order='random', the sampling is random for each of the measurements in the collection. Parameters ---------- {FCMeasurement_subsample_parameters} Returns ------- FCCollection or a subclass new collection of subsampled event data. """ def func(well): return well.subsample(key=key, order=order, auto_resize=auto_resize) return self.apply(func, output_format='collection', ID=ID)
Allows arbitrary slicing (subsampling) of the data. .. note:: When using order='random', the sampling is random for each of the measurements in the collection. Parameters ---------- {FCMeasurement_subsample_parameters} Returns ------- FCCollection or a subclass new collection of subsampled event data.
Below is the the instruction that describes the task: ### Input: Allows arbitrary slicing (subsampling) of the data. .. note:: When using order='random', the sampling is random for each of the measurements in the collection. Parameters ---------- {FCMeasurement_subsample_parameters} Returns ------- FCCollection or a subclass new collection of subsampled event data. ### Response: def subsample(self, key, order='random', auto_resize=False, ID=None): """ Allows arbitrary slicing (subsampling) of the data. .. note:: When using order='random', the sampling is random for each of the measurements in the collection. Parameters ---------- {FCMeasurement_subsample_parameters} Returns ------- FCCollection or a subclass new collection of subsampled event data. """ def func(well): return well.subsample(key=key, order=order, auto_resize=auto_resize) return self.apply(func, output_format='collection', ID=ID)
def run_forever(self) -> None: '''Execute the tasky/asyncio event loop until terminated.''' Log.debug('running event loop until terminated') asyncio.ensure_future(self.init()) self.loop.run_forever() self.loop.close()
Execute the tasky/asyncio event loop until terminated.
Below is the the instruction that describes the task: ### Input: Execute the tasky/asyncio event loop until terminated. ### Response: def run_forever(self) -> None: '''Execute the tasky/asyncio event loop until terminated.''' Log.debug('running event loop until terminated') asyncio.ensure_future(self.init()) self.loop.run_forever() self.loop.close()
def vi_score(self, x, index): """ Wrapper function for selecting appropriate score Parameters ---------- x : float A random variable index : int 0 or 1 depending on which latent variable Returns ---------- The gradient of the scale latent variable at x """ if index == 0: return self.vi_loc_score(x) elif index == 1: return self.vi_scale_score(x)
Wrapper function for selecting appropriate score Parameters ---------- x : float A random variable index : int 0 or 1 depending on which latent variable Returns ---------- The gradient of the scale latent variable at x
Below is the the instruction that describes the task: ### Input: Wrapper function for selecting appropriate score Parameters ---------- x : float A random variable index : int 0 or 1 depending on which latent variable Returns ---------- The gradient of the scale latent variable at x ### Response: def vi_score(self, x, index): """ Wrapper function for selecting appropriate score Parameters ---------- x : float A random variable index : int 0 or 1 depending on which latent variable Returns ---------- The gradient of the scale latent variable at x """ if index == 0: return self.vi_loc_score(x) elif index == 1: return self.vi_scale_score(x)
def wait_for(self, job_id, base_path=None, interval=5): """ Wait for an asynchronous task to finish. Unlike the thin methods elsewhere on this object, this one is actually specific to how the Luminoso API works. This will poll an API endpoint to find out the status of the job numbered `job_id`, repeating every 5 seconds (by default) until the job is done. When the job is done, it will return an object representing the result of that job. In the Luminoso API, requests that may take a long time return a job ID instead of a result, so that your code can continue running in the meantime. When it needs the job to be done to proceed, it can use this method to wait. The base URL where it looks for that job is by default `jobs/id/` under the current URL, assuming that this LuminosoClient's URL represents a project. You can specify a different URL by changing `base_path`. If the job failed, will raise a LuminosoError with the job status as its message. """ if base_path is None: base_path = 'jobs/id' path = '%s%d' % (ensure_trailing_slash(base_path), job_id) start = time.time() next_log = 0 while True: response = self.get(path) if response['stop_time']: if response['success']: return response else: raise LuminosoError(response) elapsed = time.time() - start if elapsed > next_log: logger.info('Still waiting (%d seconds elapsed).', next_log) next_log += 120 time.sleep(interval)
Wait for an asynchronous task to finish. Unlike the thin methods elsewhere on this object, this one is actually specific to how the Luminoso API works. This will poll an API endpoint to find out the status of the job numbered `job_id`, repeating every 5 seconds (by default) until the job is done. When the job is done, it will return an object representing the result of that job. In the Luminoso API, requests that may take a long time return a job ID instead of a result, so that your code can continue running in the meantime. When it needs the job to be done to proceed, it can use this method to wait. The base URL where it looks for that job is by default `jobs/id/` under the current URL, assuming that this LuminosoClient's URL represents a project. You can specify a different URL by changing `base_path`. If the job failed, will raise a LuminosoError with the job status as its message.
Below is the the instruction that describes the task: ### Input: Wait for an asynchronous task to finish. Unlike the thin methods elsewhere on this object, this one is actually specific to how the Luminoso API works. This will poll an API endpoint to find out the status of the job numbered `job_id`, repeating every 5 seconds (by default) until the job is done. When the job is done, it will return an object representing the result of that job. In the Luminoso API, requests that may take a long time return a job ID instead of a result, so that your code can continue running in the meantime. When it needs the job to be done to proceed, it can use this method to wait. The base URL where it looks for that job is by default `jobs/id/` under the current URL, assuming that this LuminosoClient's URL represents a project. You can specify a different URL by changing `base_path`. If the job failed, will raise a LuminosoError with the job status as its message. ### Response: def wait_for(self, job_id, base_path=None, interval=5): """ Wait for an asynchronous task to finish. Unlike the thin methods elsewhere on this object, this one is actually specific to how the Luminoso API works. This will poll an API endpoint to find out the status of the job numbered `job_id`, repeating every 5 seconds (by default) until the job is done. When the job is done, it will return an object representing the result of that job. In the Luminoso API, requests that may take a long time return a job ID instead of a result, so that your code can continue running in the meantime. When it needs the job to be done to proceed, it can use this method to wait. The base URL where it looks for that job is by default `jobs/id/` under the current URL, assuming that this LuminosoClient's URL represents a project. You can specify a different URL by changing `base_path`. If the job failed, will raise a LuminosoError with the job status as its message. """ if base_path is None: base_path = 'jobs/id' path = '%s%d' % (ensure_trailing_slash(base_path), job_id) start = time.time() next_log = 0 while True: response = self.get(path) if response['stop_time']: if response['success']: return response else: raise LuminosoError(response) elapsed = time.time() - start if elapsed > next_log: logger.info('Still waiting (%d seconds elapsed).', next_log) next_log += 120 time.sleep(interval)
def create_route(self, uri, sub_service): """Create the route for the URI. :param uri: string - URI to be routed :param sub_service: boolean - is the URI for a sub-service :returns: n/a """ if uri not in self.routes.keys(): logger.debug('Service ({0}): Creating routes' .format(self.name)) self.routes[uri] = { 'regex': StackInABoxService.get_service_regex(self.base_url, uri, sub_service), 'uri': uri, 'handlers': StackInABoxServiceRouter(self.name, uri, None, self) }
Create the route for the URI. :param uri: string - URI to be routed :param sub_service: boolean - is the URI for a sub-service :returns: n/a
Below is the the instruction that describes the task: ### Input: Create the route for the URI. :param uri: string - URI to be routed :param sub_service: boolean - is the URI for a sub-service :returns: n/a ### Response: def create_route(self, uri, sub_service): """Create the route for the URI. :param uri: string - URI to be routed :param sub_service: boolean - is the URI for a sub-service :returns: n/a """ if uri not in self.routes.keys(): logger.debug('Service ({0}): Creating routes' .format(self.name)) self.routes[uri] = { 'regex': StackInABoxService.get_service_regex(self.base_url, uri, sub_service), 'uri': uri, 'handlers': StackInABoxServiceRouter(self.name, uri, None, self) }
def _initialize_attributes(model_class, name, bases, attrs): """Initialize the attributes of the model.""" model_class._attributes = {} for k, v in attrs.iteritems(): if isinstance(v, Attribute): model_class._attributes[k] = v v.name = v.name or k
Initialize the attributes of the model.
Below is the the instruction that describes the task: ### Input: Initialize the attributes of the model. ### Response: def _initialize_attributes(model_class, name, bases, attrs): """Initialize the attributes of the model.""" model_class._attributes = {} for k, v in attrs.iteritems(): if isinstance(v, Attribute): model_class._attributes[k] = v v.name = v.name or k
def process_response(self, request, response): """ Sets the cache and deals with caching headers if needed """ if not self.should_cache(request, response): # We don't need to update the cache, just return return response response = self.patch_headers(response) self.set_cache(request, response) return response
Sets the cache and deals with caching headers if needed
Below is the the instruction that describes the task: ### Input: Sets the cache and deals with caching headers if needed ### Response: def process_response(self, request, response): """ Sets the cache and deals with caching headers if needed """ if not self.should_cache(request, response): # We don't need to update the cache, just return return response response = self.patch_headers(response) self.set_cache(request, response) return response
def update_extension_statistics(self, extension_statistics_update, publisher_name, extension_name): """UpdateExtensionStatistics. [Preview API] :param :class:`<ExtensionStatisticUpdate> <azure.devops.v5_0.gallery.models.ExtensionStatisticUpdate>` extension_statistics_update: :param str publisher_name: :param str extension_name: """ route_values = {} if publisher_name is not None: route_values['publisherName'] = self._serialize.url('publisher_name', publisher_name, 'str') if extension_name is not None: route_values['extensionName'] = self._serialize.url('extension_name', extension_name, 'str') content = self._serialize.body(extension_statistics_update, 'ExtensionStatisticUpdate') self._send(http_method='PATCH', location_id='a0ea3204-11e9-422d-a9ca-45851cc41400', version='5.0-preview.1', route_values=route_values, content=content)
UpdateExtensionStatistics. [Preview API] :param :class:`<ExtensionStatisticUpdate> <azure.devops.v5_0.gallery.models.ExtensionStatisticUpdate>` extension_statistics_update: :param str publisher_name: :param str extension_name:
Below is the the instruction that describes the task: ### Input: UpdateExtensionStatistics. [Preview API] :param :class:`<ExtensionStatisticUpdate> <azure.devops.v5_0.gallery.models.ExtensionStatisticUpdate>` extension_statistics_update: :param str publisher_name: :param str extension_name: ### Response: def update_extension_statistics(self, extension_statistics_update, publisher_name, extension_name): """UpdateExtensionStatistics. [Preview API] :param :class:`<ExtensionStatisticUpdate> <azure.devops.v5_0.gallery.models.ExtensionStatisticUpdate>` extension_statistics_update: :param str publisher_name: :param str extension_name: """ route_values = {} if publisher_name is not None: route_values['publisherName'] = self._serialize.url('publisher_name', publisher_name, 'str') if extension_name is not None: route_values['extensionName'] = self._serialize.url('extension_name', extension_name, 'str') content = self._serialize.body(extension_statistics_update, 'ExtensionStatisticUpdate') self._send(http_method='PATCH', location_id='a0ea3204-11e9-422d-a9ca-45851cc41400', version='5.0-preview.1', route_values=route_values, content=content)
def files(self): """ File uploads parsed into an instance of :class:`MultiDict`. This property contains file uploads parsed from an `multipart/form-data` encoded POST request body. The values are instances of :class:`cgi.FieldStorage`. """ files = MultiDict() for name, item in self.POST.iterallitems(): if hasattr(item, 'filename'): files[name] = item return files
File uploads parsed into an instance of :class:`MultiDict`. This property contains file uploads parsed from an `multipart/form-data` encoded POST request body. The values are instances of :class:`cgi.FieldStorage`.
Below is the the instruction that describes the task: ### Input: File uploads parsed into an instance of :class:`MultiDict`. This property contains file uploads parsed from an `multipart/form-data` encoded POST request body. The values are instances of :class:`cgi.FieldStorage`. ### Response: def files(self): """ File uploads parsed into an instance of :class:`MultiDict`. This property contains file uploads parsed from an `multipart/form-data` encoded POST request body. The values are instances of :class:`cgi.FieldStorage`. """ files = MultiDict() for name, item in self.POST.iterallitems(): if hasattr(item, 'filename'): files[name] = item return files
def add_distribution_list_alias(self, distribution_list, alias): """ :param distribution_list: a distribution list object to be used as a selector :param alias: email alias address :returns: None (the API itself returns nothing) """ self.request('AddDistributionListAlias', { 'id': self._get_or_fetch_id( distribution_list, self.get_distribution_list ), 'alias': alias, })
:param distribution_list: a distribution list object to be used as a selector :param alias: email alias address :returns: None (the API itself returns nothing)
Below is the the instruction that describes the task: ### Input: :param distribution_list: a distribution list object to be used as a selector :param alias: email alias address :returns: None (the API itself returns nothing) ### Response: def add_distribution_list_alias(self, distribution_list, alias): """ :param distribution_list: a distribution list object to be used as a selector :param alias: email alias address :returns: None (the API itself returns nothing) """ self.request('AddDistributionListAlias', { 'id': self._get_or_fetch_id( distribution_list, self.get_distribution_list ), 'alias': alias, })