code
stringlengths
75
104k
docstring
stringlengths
1
46.9k
text
stringlengths
164
112k
def parse_plugin_metadata(content): """Parse summary metadata to a Python object. Arguments: content: The `content` field of a `SummaryMetadata` proto corresponding to the pr_curves plugin. Returns: A `PrCurvesPlugin` protobuf object. """ if not isinstance(content, bytes): raise TypeError('Content type must be bytes') result = plugin_data_pb2.PrCurvePluginData.FromString(content) if result.version == 0: return result else: logger.warn( 'Unknown metadata version: %s. The latest version known to ' 'this build of TensorBoard is %s; perhaps a newer build is ' 'available?', result.version, PROTO_VERSION) return result
Parse summary metadata to a Python object. Arguments: content: The `content` field of a `SummaryMetadata` proto corresponding to the pr_curves plugin. Returns: A `PrCurvesPlugin` protobuf object.
Below is the the instruction that describes the task: ### Input: Parse summary metadata to a Python object. Arguments: content: The `content` field of a `SummaryMetadata` proto corresponding to the pr_curves plugin. Returns: A `PrCurvesPlugin` protobuf object. ### Response: def parse_plugin_metadata(content): """Parse summary metadata to a Python object. Arguments: content: The `content` field of a `SummaryMetadata` proto corresponding to the pr_curves plugin. Returns: A `PrCurvesPlugin` protobuf object. """ if not isinstance(content, bytes): raise TypeError('Content type must be bytes') result = plugin_data_pb2.PrCurvePluginData.FromString(content) if result.version == 0: return result else: logger.warn( 'Unknown metadata version: %s. The latest version known to ' 'this build of TensorBoard is %s; perhaps a newer build is ' 'available?', result.version, PROTO_VERSION) return result
def init_menu(): """Initialize menu before first request.""" # Register settings menu item = current_menu.submenu('settings.admin') item.register( "admin.index", # NOTE: Menu item text (icon replaced by a cogs icon). _('%(icon)s Administration', icon='<i class="fa fa-cogs fa-fw"></i>'), visible_when=_has_admin_access, order=100)
Initialize menu before first request.
Below is the the instruction that describes the task: ### Input: Initialize menu before first request. ### Response: def init_menu(): """Initialize menu before first request.""" # Register settings menu item = current_menu.submenu('settings.admin') item.register( "admin.index", # NOTE: Menu item text (icon replaced by a cogs icon). _('%(icon)s Administration', icon='<i class="fa fa-cogs fa-fw"></i>'), visible_when=_has_admin_access, order=100)
def command(self, verb, args=None): """Call a command on the server. If the user has not authenticated then authentication will be done as part of calling the command on the server. For commands that don't return a status message the status message will default to an empty string. Args: verb: The verb of the command to call. args: The arguments of the command as a string (default None). Returns: A tuple of status code (as an integer) and status message. Note: You can run raw commands by supplying the full command (including args) in the verb. Note: Although it is possible you shouldn't issue more than one command at a time by adding newlines to the verb as it will most likely lead to undesirable results. """ if self.__generating: raise NNTPSyncError("Command issued while a generator is active") cmd = verb if args: cmd += " " + args cmd += "\r\n" self.socket.sendall(cmd) try: code, message = self.status() except NNTPTemporaryError as e: if e.code() != 480: raise e code, message = self.command("AUTHINFO USER", self.username) if code == 381: code, message = self.command("AUTHINFO PASS", self.password) if code != 281: raise NNTPReplyError(code, message) code, message = self.command(verb, args) return code, message
Call a command on the server. If the user has not authenticated then authentication will be done as part of calling the command on the server. For commands that don't return a status message the status message will default to an empty string. Args: verb: The verb of the command to call. args: The arguments of the command as a string (default None). Returns: A tuple of status code (as an integer) and status message. Note: You can run raw commands by supplying the full command (including args) in the verb. Note: Although it is possible you shouldn't issue more than one command at a time by adding newlines to the verb as it will most likely lead to undesirable results.
Below is the the instruction that describes the task: ### Input: Call a command on the server. If the user has not authenticated then authentication will be done as part of calling the command on the server. For commands that don't return a status message the status message will default to an empty string. Args: verb: The verb of the command to call. args: The arguments of the command as a string (default None). Returns: A tuple of status code (as an integer) and status message. Note: You can run raw commands by supplying the full command (including args) in the verb. Note: Although it is possible you shouldn't issue more than one command at a time by adding newlines to the verb as it will most likely lead to undesirable results. ### Response: def command(self, verb, args=None): """Call a command on the server. If the user has not authenticated then authentication will be done as part of calling the command on the server. For commands that don't return a status message the status message will default to an empty string. Args: verb: The verb of the command to call. args: The arguments of the command as a string (default None). Returns: A tuple of status code (as an integer) and status message. Note: You can run raw commands by supplying the full command (including args) in the verb. Note: Although it is possible you shouldn't issue more than one command at a time by adding newlines to the verb as it will most likely lead to undesirable results. """ if self.__generating: raise NNTPSyncError("Command issued while a generator is active") cmd = verb if args: cmd += " " + args cmd += "\r\n" self.socket.sendall(cmd) try: code, message = self.status() except NNTPTemporaryError as e: if e.code() != 480: raise e code, message = self.command("AUTHINFO USER", self.username) if code == 381: code, message = self.command("AUTHINFO PASS", self.password) if code != 281: raise NNTPReplyError(code, message) code, message = self.command(verb, args) return code, message
def from_request(cls, request): """Create new TransientShardState from webapp request.""" mapreduce_spec = MapreduceSpec.from_json_str(request.get("mapreduce_spec")) mapper_spec = mapreduce_spec.mapper input_reader_spec_dict = json.loads(request.get("input_reader_state"), cls=json_util.JsonDecoder) input_reader = mapper_spec.input_reader_class().from_json( input_reader_spec_dict) initial_input_reader_spec_dict = json.loads( request.get("initial_input_reader_state"), cls=json_util.JsonDecoder) initial_input_reader = mapper_spec.input_reader_class().from_json( initial_input_reader_spec_dict) output_writer = None if mapper_spec.output_writer_class(): output_writer = mapper_spec.output_writer_class().from_json( json.loads(request.get("output_writer_state", "{}"), cls=json_util.JsonDecoder)) assert isinstance(output_writer, mapper_spec.output_writer_class()), ( "%s.from_json returned an instance of wrong class: %s" % ( mapper_spec.output_writer_class(), output_writer.__class__)) handler = util.try_deserialize_handler(request.get("serialized_handler")) if not handler: handler = mapreduce_spec.mapper.handler return cls(mapreduce_spec.params["base_path"], mapreduce_spec, str(request.get("shard_id")), int(request.get("slice_id")), input_reader, initial_input_reader, output_writer=output_writer, retries=int(request.get("retries")), handler=handler)
Create new TransientShardState from webapp request.
Below is the the instruction that describes the task: ### Input: Create new TransientShardState from webapp request. ### Response: def from_request(cls, request): """Create new TransientShardState from webapp request.""" mapreduce_spec = MapreduceSpec.from_json_str(request.get("mapreduce_spec")) mapper_spec = mapreduce_spec.mapper input_reader_spec_dict = json.loads(request.get("input_reader_state"), cls=json_util.JsonDecoder) input_reader = mapper_spec.input_reader_class().from_json( input_reader_spec_dict) initial_input_reader_spec_dict = json.loads( request.get("initial_input_reader_state"), cls=json_util.JsonDecoder) initial_input_reader = mapper_spec.input_reader_class().from_json( initial_input_reader_spec_dict) output_writer = None if mapper_spec.output_writer_class(): output_writer = mapper_spec.output_writer_class().from_json( json.loads(request.get("output_writer_state", "{}"), cls=json_util.JsonDecoder)) assert isinstance(output_writer, mapper_spec.output_writer_class()), ( "%s.from_json returned an instance of wrong class: %s" % ( mapper_spec.output_writer_class(), output_writer.__class__)) handler = util.try_deserialize_handler(request.get("serialized_handler")) if not handler: handler = mapreduce_spec.mapper.handler return cls(mapreduce_spec.params["base_path"], mapreduce_spec, str(request.get("shard_id")), int(request.get("slice_id")), input_reader, initial_input_reader, output_writer=output_writer, retries=int(request.get("retries")), handler=handler)
def _read_conf_file(path): ''' Read in a config file from a given path and process it into a dictionary ''' log.debug('Reading configuration from %s', path) with salt.utils.files.fopen(path, 'r') as conf_file: try: conf_opts = salt.utils.yaml.safe_load(conf_file) or {} except salt.utils.yaml.YAMLError as err: message = 'Error parsing configuration file: {0} - {1}'.format(path, err) log.error(message) raise salt.exceptions.SaltConfigurationError(message) # only interpret documents as a valid conf, not things like strings, # which might have been caused by invalid yaml syntax if not isinstance(conf_opts, dict): message = 'Error parsing configuration file: {0} - conf ' \ 'should be a document, not {1}.'.format(path, type(conf_opts)) log.error(message) raise salt.exceptions.SaltConfigurationError(message) # allow using numeric ids: convert int to string if 'id' in conf_opts: if not isinstance(conf_opts['id'], six.string_types): conf_opts['id'] = six.text_type(conf_opts['id']) else: conf_opts['id'] = salt.utils.data.decode(conf_opts['id']) return conf_opts
Read in a config file from a given path and process it into a dictionary
Below is the the instruction that describes the task: ### Input: Read in a config file from a given path and process it into a dictionary ### Response: def _read_conf_file(path): ''' Read in a config file from a given path and process it into a dictionary ''' log.debug('Reading configuration from %s', path) with salt.utils.files.fopen(path, 'r') as conf_file: try: conf_opts = salt.utils.yaml.safe_load(conf_file) or {} except salt.utils.yaml.YAMLError as err: message = 'Error parsing configuration file: {0} - {1}'.format(path, err) log.error(message) raise salt.exceptions.SaltConfigurationError(message) # only interpret documents as a valid conf, not things like strings, # which might have been caused by invalid yaml syntax if not isinstance(conf_opts, dict): message = 'Error parsing configuration file: {0} - conf ' \ 'should be a document, not {1}.'.format(path, type(conf_opts)) log.error(message) raise salt.exceptions.SaltConfigurationError(message) # allow using numeric ids: convert int to string if 'id' in conf_opts: if not isinstance(conf_opts['id'], six.string_types): conf_opts['id'] = six.text_type(conf_opts['id']) else: conf_opts['id'] = salt.utils.data.decode(conf_opts['id']) return conf_opts
def _persist(self) -> None: """ Persists the current data group """ if self._store: self._store.save(self._key, self._snapshot)
Persists the current data group
Below is the the instruction that describes the task: ### Input: Persists the current data group ### Response: def _persist(self) -> None: """ Persists the current data group """ if self._store: self._store.save(self._key, self._snapshot)
def _handle_history_reply(self, msg): """ Implemented to handle history tail replies, which are only supported by the IPython kernel. """ content = msg['content'] if 'history' not in content: self.log.error("History request failed: %r"%content) if content.get('status', '') == 'aborted' and \ not self._retrying_history_request: # a *different* action caused this request to be aborted, so # we should try again. self.log.error("Retrying aborted history request") # prevent multiple retries of aborted requests: self._retrying_history_request = True # wait out the kernel's queue flush, which is currently timed at 0.1s time.sleep(0.25) self.kernel_manager.shell_channel.history(hist_access_type='tail',n=1000) else: self._retrying_history_request = False return # reset retry flag self._retrying_history_request = False history_items = content['history'] self.log.debug("Received history reply with %i entries", len(history_items)) items = [] last_cell = u"" for _, _, cell in history_items: cell = cell.rstrip() if cell != last_cell: items.append(cell) last_cell = cell self._set_history(items)
Implemented to handle history tail replies, which are only supported by the IPython kernel.
Below is the the instruction that describes the task: ### Input: Implemented to handle history tail replies, which are only supported by the IPython kernel. ### Response: def _handle_history_reply(self, msg): """ Implemented to handle history tail replies, which are only supported by the IPython kernel. """ content = msg['content'] if 'history' not in content: self.log.error("History request failed: %r"%content) if content.get('status', '') == 'aborted' and \ not self._retrying_history_request: # a *different* action caused this request to be aborted, so # we should try again. self.log.error("Retrying aborted history request") # prevent multiple retries of aborted requests: self._retrying_history_request = True # wait out the kernel's queue flush, which is currently timed at 0.1s time.sleep(0.25) self.kernel_manager.shell_channel.history(hist_access_type='tail',n=1000) else: self._retrying_history_request = False return # reset retry flag self._retrying_history_request = False history_items = content['history'] self.log.debug("Received history reply with %i entries", len(history_items)) items = [] last_cell = u"" for _, _, cell in history_items: cell = cell.rstrip() if cell != last_cell: items.append(cell) last_cell = cell self._set_history(items)
def render_mako_template_to( template, outpath, subsd, only_update=False, cwd=None, prev_subsd=None, create_dest_dirs=False, logger=None, pass_warn_string=True, **kwargs): """ template: either string of path or file like obj. Beware of the only_update option, it pays no attention to an updated subsd. pass_warn_string: defult True if True or instance of str: an extra vairable named '_warning_in_the_generated_file_not_to_edit' is passed with a preset (True) or string warning not to directly edit the generated file. """ if cwd: template = os.path.join(cwd, template) outpath = os.path.join(cwd, outpath) outdir = os.path.dirname(outpath) or '.' # avoid '' if not os.path.exists(outdir): if create_dest_dirs: make_dirs(outdir, logger=logger) else: raise FileNotFoundError( "Dest. dir. non-existent: {}".format(outdir)) msg = None if pass_warn_string is True: subsd['_warning_in_the_generated_file_not_to_edit'] = ( "DO NOT EDIT THIS FILE! (Generated from template: {} using" + " Mako python templating engine)" ).format(os.path.basename(template)) elif isinstance(pass_warn_string, str): subsd['_warning_in_the_generated_file_not_to_edit'] =\ pass_warn_string if only_update: if prev_subsd == subsd and not \ missing_or_other_newer(outpath, template): if logger: msg = "Did not re-render {}. (destination newer + same dict)" logger.info(msg.format(template)) return if hasattr(template, 'read'): # set in-file handle to provided template ifh = template else: # Assume template is a string of the path to the template ifh = open(template, 'rt') template_str = ifh.read() kwargs_Template = {'input_encoding': 'utf-8', 'output_encoding': 'utf-8'} kwargs_Template.update(kwargs) with open(outpath, 'wb') as ofh: from mako.template import Template from mako.exceptions import text_error_template try: rendered = Template( template_str, **kwargs_Template).render(**subsd) except: if logger: logger.error(text_error_template().render()) else: print(text_error_template().render()) raise if logger: logger.info("Rendering '{}' to '{}'...".format( ifh.name, outpath)) ofh.write(rendered) return outpath
template: either string of path or file like obj. Beware of the only_update option, it pays no attention to an updated subsd. pass_warn_string: defult True if True or instance of str: an extra vairable named '_warning_in_the_generated_file_not_to_edit' is passed with a preset (True) or string warning not to directly edit the generated file.
Below is the the instruction that describes the task: ### Input: template: either string of path or file like obj. Beware of the only_update option, it pays no attention to an updated subsd. pass_warn_string: defult True if True or instance of str: an extra vairable named '_warning_in_the_generated_file_not_to_edit' is passed with a preset (True) or string warning not to directly edit the generated file. ### Response: def render_mako_template_to( template, outpath, subsd, only_update=False, cwd=None, prev_subsd=None, create_dest_dirs=False, logger=None, pass_warn_string=True, **kwargs): """ template: either string of path or file like obj. Beware of the only_update option, it pays no attention to an updated subsd. pass_warn_string: defult True if True or instance of str: an extra vairable named '_warning_in_the_generated_file_not_to_edit' is passed with a preset (True) or string warning not to directly edit the generated file. """ if cwd: template = os.path.join(cwd, template) outpath = os.path.join(cwd, outpath) outdir = os.path.dirname(outpath) or '.' # avoid '' if not os.path.exists(outdir): if create_dest_dirs: make_dirs(outdir, logger=logger) else: raise FileNotFoundError( "Dest. dir. non-existent: {}".format(outdir)) msg = None if pass_warn_string is True: subsd['_warning_in_the_generated_file_not_to_edit'] = ( "DO NOT EDIT THIS FILE! (Generated from template: {} using" + " Mako python templating engine)" ).format(os.path.basename(template)) elif isinstance(pass_warn_string, str): subsd['_warning_in_the_generated_file_not_to_edit'] =\ pass_warn_string if only_update: if prev_subsd == subsd and not \ missing_or_other_newer(outpath, template): if logger: msg = "Did not re-render {}. (destination newer + same dict)" logger.info(msg.format(template)) return if hasattr(template, 'read'): # set in-file handle to provided template ifh = template else: # Assume template is a string of the path to the template ifh = open(template, 'rt') template_str = ifh.read() kwargs_Template = {'input_encoding': 'utf-8', 'output_encoding': 'utf-8'} kwargs_Template.update(kwargs) with open(outpath, 'wb') as ofh: from mako.template import Template from mako.exceptions import text_error_template try: rendered = Template( template_str, **kwargs_Template).render(**subsd) except: if logger: logger.error(text_error_template().render()) else: print(text_error_template().render()) raise if logger: logger.info("Rendering '{}' to '{}'...".format( ifh.name, outpath)) ofh.write(rendered) return outpath
def delete(self, file_id): """ Remove a specific file from the File Manager. :param file_id: The unique id for the File Manager file. :type file_id: :py:class:`str` """ self.file_id = file_id return self._mc_client._delete(url=self._build_path(file_id))
Remove a specific file from the File Manager. :param file_id: The unique id for the File Manager file. :type file_id: :py:class:`str`
Below is the the instruction that describes the task: ### Input: Remove a specific file from the File Manager. :param file_id: The unique id for the File Manager file. :type file_id: :py:class:`str` ### Response: def delete(self, file_id): """ Remove a specific file from the File Manager. :param file_id: The unique id for the File Manager file. :type file_id: :py:class:`str` """ self.file_id = file_id return self._mc_client._delete(url=self._build_path(file_id))
def _edges_classify_intersection9(): """The edges for the curved polygon intersection used below. Helper for :func:`classify_intersection9`. """ edges1 = ( bezier.Curve.from_nodes( np.asfortranarray([[32.0, 30.0], [20.0, 25.0]]) ), bezier.Curve.from_nodes( np.asfortranarray([[30.0, 25.0, 20.0], [25.0, 20.0, 20.0]]) ), bezier.Curve.from_nodes( np.asfortranarray([[20.0, 25.0, 30.0], [20.0, 20.0, 15.0]]) ), bezier.Curve.from_nodes( np.asfortranarray([[30.0, 32.0], [15.0, 20.0]]) ), ) edges2 = ( bezier.Curve.from_nodes( np.asfortranarray([[8.0, 10.0], [20.0, 15.0]]) ), bezier.Curve.from_nodes( np.asfortranarray([[10.0, 15.0, 20.0], [15.0, 20.0, 20.0]]) ), bezier.Curve.from_nodes( np.asfortranarray([[20.0, 15.0, 10.0], [20.0, 20.0, 25.0]]) ), bezier.Curve.from_nodes( np.asfortranarray([[10.0, 8.0], [25.0, 20.0]]) ), ) return edges1, edges2
The edges for the curved polygon intersection used below. Helper for :func:`classify_intersection9`.
Below is the the instruction that describes the task: ### Input: The edges for the curved polygon intersection used below. Helper for :func:`classify_intersection9`. ### Response: def _edges_classify_intersection9(): """The edges for the curved polygon intersection used below. Helper for :func:`classify_intersection9`. """ edges1 = ( bezier.Curve.from_nodes( np.asfortranarray([[32.0, 30.0], [20.0, 25.0]]) ), bezier.Curve.from_nodes( np.asfortranarray([[30.0, 25.0, 20.0], [25.0, 20.0, 20.0]]) ), bezier.Curve.from_nodes( np.asfortranarray([[20.0, 25.0, 30.0], [20.0, 20.0, 15.0]]) ), bezier.Curve.from_nodes( np.asfortranarray([[30.0, 32.0], [15.0, 20.0]]) ), ) edges2 = ( bezier.Curve.from_nodes( np.asfortranarray([[8.0, 10.0], [20.0, 15.0]]) ), bezier.Curve.from_nodes( np.asfortranarray([[10.0, 15.0, 20.0], [15.0, 20.0, 20.0]]) ), bezier.Curve.from_nodes( np.asfortranarray([[20.0, 15.0, 10.0], [20.0, 20.0, 25.0]]) ), bezier.Curve.from_nodes( np.asfortranarray([[10.0, 8.0], [25.0, 20.0]]) ), ) return edges1, edges2
def vagrant_settings(self, name='', *args, **kwargs): """ Context manager that sets a vagrant VM as the remote host. Use this context manager inside a task to run commands on your current Vagrant box:: from burlap.vagrant import vagrant_settings with vagrant_settings(): run('hostname') """ config = self.ssh_config(name) extra_args = self._settings_dict(config) kwargs.update(extra_args) return self.settings(*args, **kwargs)
Context manager that sets a vagrant VM as the remote host. Use this context manager inside a task to run commands on your current Vagrant box:: from burlap.vagrant import vagrant_settings with vagrant_settings(): run('hostname')
Below is the the instruction that describes the task: ### Input: Context manager that sets a vagrant VM as the remote host. Use this context manager inside a task to run commands on your current Vagrant box:: from burlap.vagrant import vagrant_settings with vagrant_settings(): run('hostname') ### Response: def vagrant_settings(self, name='', *args, **kwargs): """ Context manager that sets a vagrant VM as the remote host. Use this context manager inside a task to run commands on your current Vagrant box:: from burlap.vagrant import vagrant_settings with vagrant_settings(): run('hostname') """ config = self.ssh_config(name) extra_args = self._settings_dict(config) kwargs.update(extra_args) return self.settings(*args, **kwargs)
def listDatasetParents(self, dataset=''): """ API to list A datasets parents in DBS. :param dataset: dataset (Required) :type dataset: str :returns: List of dictionaries containing the following keys (this_dataset, parent_dataset_id, parent_dataset) :rtype: list of dicts """ try: return self.dbsDataset.listDatasetParents(dataset) except dbsException as de: dbsExceptionHandler(de.eCode, de.message, self.logger.exception, de.serverError) except Exception as ex: sError = "DBSReaderModel/listDatasetParents. %s\n. Exception trace: \n %s" \ % (ex, traceback.format_exc()) dbsExceptionHandler('dbsException-server-error', dbsExceptionCode['dbsException-server-error'], self.logger.exception, sError)
API to list A datasets parents in DBS. :param dataset: dataset (Required) :type dataset: str :returns: List of dictionaries containing the following keys (this_dataset, parent_dataset_id, parent_dataset) :rtype: list of dicts
Below is the the instruction that describes the task: ### Input: API to list A datasets parents in DBS. :param dataset: dataset (Required) :type dataset: str :returns: List of dictionaries containing the following keys (this_dataset, parent_dataset_id, parent_dataset) :rtype: list of dicts ### Response: def listDatasetParents(self, dataset=''): """ API to list A datasets parents in DBS. :param dataset: dataset (Required) :type dataset: str :returns: List of dictionaries containing the following keys (this_dataset, parent_dataset_id, parent_dataset) :rtype: list of dicts """ try: return self.dbsDataset.listDatasetParents(dataset) except dbsException as de: dbsExceptionHandler(de.eCode, de.message, self.logger.exception, de.serverError) except Exception as ex: sError = "DBSReaderModel/listDatasetParents. %s\n. Exception trace: \n %s" \ % (ex, traceback.format_exc()) dbsExceptionHandler('dbsException-server-error', dbsExceptionCode['dbsException-server-error'], self.logger.exception, sError)
def _wrap_attribute(self, attr): """Wrap the empty attributes of the Slice in a Const node.""" if not attr: const = const_factory(attr) const.parent = self return const return attr
Wrap the empty attributes of the Slice in a Const node.
Below is the the instruction that describes the task: ### Input: Wrap the empty attributes of the Slice in a Const node. ### Response: def _wrap_attribute(self, attr): """Wrap the empty attributes of the Slice in a Const node.""" if not attr: const = const_factory(attr) const.parent = self return const return attr
def _fusion_range_to_dsl(tokens) -> FusionRangeBase: """Convert a PyParsing data dictionary into a PyBEL. :type tokens: ParseResult """ if FUSION_MISSING in tokens: return missing_fusion_range() return fusion_range( reference=tokens[FUSION_REFERENCE], start=tokens[FUSION_START], stop=tokens[FUSION_STOP] )
Convert a PyParsing data dictionary into a PyBEL. :type tokens: ParseResult
Below is the the instruction that describes the task: ### Input: Convert a PyParsing data dictionary into a PyBEL. :type tokens: ParseResult ### Response: def _fusion_range_to_dsl(tokens) -> FusionRangeBase: """Convert a PyParsing data dictionary into a PyBEL. :type tokens: ParseResult """ if FUSION_MISSING in tokens: return missing_fusion_range() return fusion_range( reference=tokens[FUSION_REFERENCE], start=tokens[FUSION_START], stop=tokens[FUSION_STOP] )
def matcher(self): """ Matcher engine: ruled, unruled, unparsed. """ if self.args.matcher is None: return 'ruled' elif self.args.matcher.startswith('-'): matcher = self.args.matcher.strip('-').replace('-', '_') else: matcher = self.args.matcher if matcher not in ['ruled', 'unruled', 'unparsed']: raise LogRaptorArgumentError('matcher', 'unknown matcher argument %r' % matcher) return matcher
Matcher engine: ruled, unruled, unparsed.
Below is the the instruction that describes the task: ### Input: Matcher engine: ruled, unruled, unparsed. ### Response: def matcher(self): """ Matcher engine: ruled, unruled, unparsed. """ if self.args.matcher is None: return 'ruled' elif self.args.matcher.startswith('-'): matcher = self.args.matcher.strip('-').replace('-', '_') else: matcher = self.args.matcher if matcher not in ['ruled', 'unruled', 'unparsed']: raise LogRaptorArgumentError('matcher', 'unknown matcher argument %r' % matcher) return matcher
def gen_stack_patches(patch_list, nr_row=None, nr_col=None, border=None, max_width=1000, max_height=1000, bgcolor=255, viz=False, lclick_cb=None): """ Similar to :func:`stack_patches` but with a generator interface. It takes a much-longer list and yields stacked results one by one. For example, if ``patch_list`` contains 1000 images and ``nr_row==nr_col==10``, this generator yields 10 stacked images. Args: nr_row(int), nr_col(int): rows and cols of each result. max_width(int), max_height(int): Maximum allowed size of the stacked image. If ``nr_row/nr_col`` are None, this number will be used to infer the rows and cols. Otherwise the option is ignored. patch_list, border, viz, lclick_cb: same as in :func:`stack_patches`. Yields: np.ndarray: the stacked image. """ # setup parameters patch_list = _preprocess_patch_list(patch_list) if lclick_cb is not None: viz = True ph, pw = patch_list.shape[1:3] if border is None: border = int(0.05 * min(ph, pw)) if nr_row is None: nr_row = int(max_height / (ph + border)) if nr_col is None: nr_col = int(max_width / (pw + border)) canvas = Canvas(ph, pw, nr_row, nr_col, patch_list.shape[-1], border, bgcolor) nr_patch = nr_row * nr_col start = 0 if lclick_cb is not None: def lclick_callback(img, x, y): idx = canvas.get_patchid_from_coord(x, y) idx = idx + start if idx < end: lclick_cb(patch_list[idx], idx) else: lclick_callback = None while True: end = start + nr_patch cur_list = patch_list[start:end] if not len(cur_list): return canvas.draw_patches(cur_list) if viz: interactive_imshow(canvas.canvas, lclick_cb=lclick_callback) yield canvas.canvas start = end
Similar to :func:`stack_patches` but with a generator interface. It takes a much-longer list and yields stacked results one by one. For example, if ``patch_list`` contains 1000 images and ``nr_row==nr_col==10``, this generator yields 10 stacked images. Args: nr_row(int), nr_col(int): rows and cols of each result. max_width(int), max_height(int): Maximum allowed size of the stacked image. If ``nr_row/nr_col`` are None, this number will be used to infer the rows and cols. Otherwise the option is ignored. patch_list, border, viz, lclick_cb: same as in :func:`stack_patches`. Yields: np.ndarray: the stacked image.
Below is the the instruction that describes the task: ### Input: Similar to :func:`stack_patches` but with a generator interface. It takes a much-longer list and yields stacked results one by one. For example, if ``patch_list`` contains 1000 images and ``nr_row==nr_col==10``, this generator yields 10 stacked images. Args: nr_row(int), nr_col(int): rows and cols of each result. max_width(int), max_height(int): Maximum allowed size of the stacked image. If ``nr_row/nr_col`` are None, this number will be used to infer the rows and cols. Otherwise the option is ignored. patch_list, border, viz, lclick_cb: same as in :func:`stack_patches`. Yields: np.ndarray: the stacked image. ### Response: def gen_stack_patches(patch_list, nr_row=None, nr_col=None, border=None, max_width=1000, max_height=1000, bgcolor=255, viz=False, lclick_cb=None): """ Similar to :func:`stack_patches` but with a generator interface. It takes a much-longer list and yields stacked results one by one. For example, if ``patch_list`` contains 1000 images and ``nr_row==nr_col==10``, this generator yields 10 stacked images. Args: nr_row(int), nr_col(int): rows and cols of each result. max_width(int), max_height(int): Maximum allowed size of the stacked image. If ``nr_row/nr_col`` are None, this number will be used to infer the rows and cols. Otherwise the option is ignored. patch_list, border, viz, lclick_cb: same as in :func:`stack_patches`. Yields: np.ndarray: the stacked image. """ # setup parameters patch_list = _preprocess_patch_list(patch_list) if lclick_cb is not None: viz = True ph, pw = patch_list.shape[1:3] if border is None: border = int(0.05 * min(ph, pw)) if nr_row is None: nr_row = int(max_height / (ph + border)) if nr_col is None: nr_col = int(max_width / (pw + border)) canvas = Canvas(ph, pw, nr_row, nr_col, patch_list.shape[-1], border, bgcolor) nr_patch = nr_row * nr_col start = 0 if lclick_cb is not None: def lclick_callback(img, x, y): idx = canvas.get_patchid_from_coord(x, y) idx = idx + start if idx < end: lclick_cb(patch_list[idx], idx) else: lclick_callback = None while True: end = start + nr_patch cur_list = patch_list[start:end] if not len(cur_list): return canvas.draw_patches(cur_list) if viz: interactive_imshow(canvas.canvas, lclick_cb=lclick_callback) yield canvas.canvas start = end
def create_key(policy=None, description=None, key_usage=None, region=None, key=None, keyid=None, profile=None): ''' Creates a master key. CLI example:: salt myminion boto_kms.create_key '{"Statement":...}' "My master key" ''' conn = _get_conn(region=region, key=key, keyid=keyid, profile=profile) r = {} _policy = salt.serializers.json.serialize(policy) try: key_metadata = conn.create_key( _policy, description=description, key_usage=key_usage ) r['key_metadata'] = key_metadata['KeyMetadata'] except boto.exception.BotoServerError as e: r['error'] = __utils__['boto.get_error'](e) return r
Creates a master key. CLI example:: salt myminion boto_kms.create_key '{"Statement":...}' "My master key"
Below is the the instruction that describes the task: ### Input: Creates a master key. CLI example:: salt myminion boto_kms.create_key '{"Statement":...}' "My master key" ### Response: def create_key(policy=None, description=None, key_usage=None, region=None, key=None, keyid=None, profile=None): ''' Creates a master key. CLI example:: salt myminion boto_kms.create_key '{"Statement":...}' "My master key" ''' conn = _get_conn(region=region, key=key, keyid=keyid, profile=profile) r = {} _policy = salt.serializers.json.serialize(policy) try: key_metadata = conn.create_key( _policy, description=description, key_usage=key_usage ) r['key_metadata'] = key_metadata['KeyMetadata'] except boto.exception.BotoServerError as e: r['error'] = __utils__['boto.get_error'](e) return r
def send_backspace(self, count): """ Sends the given number of backspace key presses. """ for i in range(count): self.interface.send_key(Key.BACKSPACE)
Sends the given number of backspace key presses.
Below is the the instruction that describes the task: ### Input: Sends the given number of backspace key presses. ### Response: def send_backspace(self, count): """ Sends the given number of backspace key presses. """ for i in range(count): self.interface.send_key(Key.BACKSPACE)
def index_bamfile(job, bamfile, sample_type, univ_options, samtools_options, sample_info=None, export=True): """ Index `bamfile` using samtools :param toil.fileStore.FileID bamfile: fsID for the bam file :param str sample_type: Description of the sample to inject into the filename :param dict univ_options: Dict of universal options used by almost all tools :param dict samtools_options: Options specific to samtools :param str sample_info: Information regarding the sample that will beinjected into the filename as `sample_type`_`sample_info`.bam(.bai) :param bool export: Should the bam and bai be exported to the output directory? :return: Dict containing input bam and the generated index (.bam.bai) output_files: |- '<sample_type>(_<sample_info>).bam': fsID +- '<sample_type>(_<sample_info>).bam.bai': fsID :rtype: dict """ work_dir = os.getcwd() in_bamfile = sample_type if sample_info is not None: assert isinstance(sample_info, str) in_bamfile = '_'.join([in_bamfile, sample_info]) in_bamfile += '.bam' input_files = { in_bamfile: bamfile} input_files = get_files_from_filestore(job, input_files, work_dir, docker=True) parameters = ['index', input_files[in_bamfile]] docker_call(tool='samtools', tool_parameters=parameters, work_dir=work_dir, dockerhub=univ_options['dockerhub'], tool_version=samtools_options['version']) out_bai = '/'.join([work_dir, in_bamfile + '.bai']) output_files = {in_bamfile: bamfile, in_bamfile + '.bai': job.fileStore.writeGlobalFile(out_bai)} if export: export_results(job, bamfile, os.path.splitext(out_bai)[0], univ_options, subfolder='alignments') export_results(job, output_files[in_bamfile + '.bai'], out_bai, univ_options, subfolder='alignments') job.fileStore.logToMaster('Ran samtools-index on %s:%s successfully' % (univ_options['patient'], sample_type)) return output_files
Index `bamfile` using samtools :param toil.fileStore.FileID bamfile: fsID for the bam file :param str sample_type: Description of the sample to inject into the filename :param dict univ_options: Dict of universal options used by almost all tools :param dict samtools_options: Options specific to samtools :param str sample_info: Information regarding the sample that will beinjected into the filename as `sample_type`_`sample_info`.bam(.bai) :param bool export: Should the bam and bai be exported to the output directory? :return: Dict containing input bam and the generated index (.bam.bai) output_files: |- '<sample_type>(_<sample_info>).bam': fsID +- '<sample_type>(_<sample_info>).bam.bai': fsID :rtype: dict
Below is the the instruction that describes the task: ### Input: Index `bamfile` using samtools :param toil.fileStore.FileID bamfile: fsID for the bam file :param str sample_type: Description of the sample to inject into the filename :param dict univ_options: Dict of universal options used by almost all tools :param dict samtools_options: Options specific to samtools :param str sample_info: Information regarding the sample that will beinjected into the filename as `sample_type`_`sample_info`.bam(.bai) :param bool export: Should the bam and bai be exported to the output directory? :return: Dict containing input bam and the generated index (.bam.bai) output_files: |- '<sample_type>(_<sample_info>).bam': fsID +- '<sample_type>(_<sample_info>).bam.bai': fsID :rtype: dict ### Response: def index_bamfile(job, bamfile, sample_type, univ_options, samtools_options, sample_info=None, export=True): """ Index `bamfile` using samtools :param toil.fileStore.FileID bamfile: fsID for the bam file :param str sample_type: Description of the sample to inject into the filename :param dict univ_options: Dict of universal options used by almost all tools :param dict samtools_options: Options specific to samtools :param str sample_info: Information regarding the sample that will beinjected into the filename as `sample_type`_`sample_info`.bam(.bai) :param bool export: Should the bam and bai be exported to the output directory? :return: Dict containing input bam and the generated index (.bam.bai) output_files: |- '<sample_type>(_<sample_info>).bam': fsID +- '<sample_type>(_<sample_info>).bam.bai': fsID :rtype: dict """ work_dir = os.getcwd() in_bamfile = sample_type if sample_info is not None: assert isinstance(sample_info, str) in_bamfile = '_'.join([in_bamfile, sample_info]) in_bamfile += '.bam' input_files = { in_bamfile: bamfile} input_files = get_files_from_filestore(job, input_files, work_dir, docker=True) parameters = ['index', input_files[in_bamfile]] docker_call(tool='samtools', tool_parameters=parameters, work_dir=work_dir, dockerhub=univ_options['dockerhub'], tool_version=samtools_options['version']) out_bai = '/'.join([work_dir, in_bamfile + '.bai']) output_files = {in_bamfile: bamfile, in_bamfile + '.bai': job.fileStore.writeGlobalFile(out_bai)} if export: export_results(job, bamfile, os.path.splitext(out_bai)[0], univ_options, subfolder='alignments') export_results(job, output_files[in_bamfile + '.bai'], out_bai, univ_options, subfolder='alignments') job.fileStore.logToMaster('Ran samtools-index on %s:%s successfully' % (univ_options['patient'], sample_type)) return output_files
def mboxes(self): """Get the mboxes managed by this mailing list. Returns the archives sorted by date in ascending order. :returns: a list of `.MBoxArchive` objects """ archives = [] for mbox in super().mboxes: dt = self._parse_date_from_filepath(mbox.filepath) archives.append((dt, mbox)) archives.sort(key=lambda x: x[0]) return [a[1] for a in archives]
Get the mboxes managed by this mailing list. Returns the archives sorted by date in ascending order. :returns: a list of `.MBoxArchive` objects
Below is the the instruction that describes the task: ### Input: Get the mboxes managed by this mailing list. Returns the archives sorted by date in ascending order. :returns: a list of `.MBoxArchive` objects ### Response: def mboxes(self): """Get the mboxes managed by this mailing list. Returns the archives sorted by date in ascending order. :returns: a list of `.MBoxArchive` objects """ archives = [] for mbox in super().mboxes: dt = self._parse_date_from_filepath(mbox.filepath) archives.append((dt, mbox)) archives.sort(key=lambda x: x[0]) return [a[1] for a in archives]
def getNextRecord(self): """ Get the next record to encode. Includes getting a record from the `dataSource` and applying filters. If the filters request more data from the `dataSource` continue to get data from the `dataSource` until all filters are satisfied. This method is separate from :meth:`.RecordSensor.compute` so that we can use a standalone :class:`.RecordSensor` to get filtered data. """ allFiltersHaveEnoughData = False while not allFiltersHaveEnoughData: # Get the data from the dataSource data = self.dataSource.getNextRecordDict() if not data: raise StopIteration("Datasource has no more data") # temporary check if "_reset" not in data: data["_reset"] = 0 if "_sequenceId" not in data: data["_sequenceId"] = 0 if "_category" not in data: data["_category"] = [None] data, allFiltersHaveEnoughData = self.applyFilters(data) self.lastRecord = data return data
Get the next record to encode. Includes getting a record from the `dataSource` and applying filters. If the filters request more data from the `dataSource` continue to get data from the `dataSource` until all filters are satisfied. This method is separate from :meth:`.RecordSensor.compute` so that we can use a standalone :class:`.RecordSensor` to get filtered data.
Below is the the instruction that describes the task: ### Input: Get the next record to encode. Includes getting a record from the `dataSource` and applying filters. If the filters request more data from the `dataSource` continue to get data from the `dataSource` until all filters are satisfied. This method is separate from :meth:`.RecordSensor.compute` so that we can use a standalone :class:`.RecordSensor` to get filtered data. ### Response: def getNextRecord(self): """ Get the next record to encode. Includes getting a record from the `dataSource` and applying filters. If the filters request more data from the `dataSource` continue to get data from the `dataSource` until all filters are satisfied. This method is separate from :meth:`.RecordSensor.compute` so that we can use a standalone :class:`.RecordSensor` to get filtered data. """ allFiltersHaveEnoughData = False while not allFiltersHaveEnoughData: # Get the data from the dataSource data = self.dataSource.getNextRecordDict() if not data: raise StopIteration("Datasource has no more data") # temporary check if "_reset" not in data: data["_reset"] = 0 if "_sequenceId" not in data: data["_sequenceId"] = 0 if "_category" not in data: data["_category"] = [None] data, allFiltersHaveEnoughData = self.applyFilters(data) self.lastRecord = data return data
def autoclean_cv(training_dataframe, testing_dataframe, drop_nans=False, copy=False, encoder=None, encoder_kwargs=None, ignore_update_check=False): """Performs a series of automated data cleaning transformations on the provided training and testing data sets Unlike `autoclean()`, this function takes cross-validation into account by learning the data transformations from only the training set, then applying those transformations to both the training and testing set. By doing so, this function will prevent information leak from the training set into the testing set. Parameters ---------- training_dataframe: pandas.DataFrame Training data set testing_dataframe: pandas.DataFrame Testing data set drop_nans: bool Drop all rows that have a NaN in any column (default: False) copy: bool Make a copy of the data set (default: False) encoder: category_encoders transformer The a valid category_encoders transformer which is passed an inferred cols list. Default (None: LabelEncoder) encoder_kwargs: category_encoders The a valid sklearn transformer to encode categorical features. Default (None) ignore_update_check: bool Do not check for the latest version of datacleaner Returns ---------- output_training_dataframe: pandas.DataFrame Cleaned training data set output_testing_dataframe: pandas.DataFrame Cleaned testing data set """ global update_checked if ignore_update_check: update_checked = True if not update_checked: update_check('datacleaner', __version__) update_checked = True if set(training_dataframe.columns.values) != set(testing_dataframe.columns.values): raise ValueError('The training and testing DataFrames do not have the same columns. ' 'Make sure that you are providing the same columns.') if copy: training_dataframe = training_dataframe.copy() testing_dataframe = testing_dataframe.copy() if drop_nans: training_dataframe.dropna(inplace=True) testing_dataframe.dropna(inplace=True) if encoder_kwargs is None: encoder_kwargs = {} for column in training_dataframe.columns.values: # Replace NaNs with the median or mode of the column depending on the column type try: column_median = training_dataframe[column].median() training_dataframe[column].fillna(column_median, inplace=True) testing_dataframe[column].fillna(column_median, inplace=True) except TypeError: column_mode = training_dataframe[column].mode()[0] training_dataframe[column].fillna(column_mode, inplace=True) testing_dataframe[column].fillna(column_mode, inplace=True) # Encode all strings with numerical equivalents if str(training_dataframe[column].values.dtype) == 'object': if encoder is not None: column_encoder = encoder(**encoder_kwargs).fit(training_dataframe[column].values) else: column_encoder = LabelEncoder().fit(training_dataframe[column].values) training_dataframe[column] = column_encoder.transform(training_dataframe[column].values) testing_dataframe[column] = column_encoder.transform(testing_dataframe[column].values) return training_dataframe, testing_dataframe
Performs a series of automated data cleaning transformations on the provided training and testing data sets Unlike `autoclean()`, this function takes cross-validation into account by learning the data transformations from only the training set, then applying those transformations to both the training and testing set. By doing so, this function will prevent information leak from the training set into the testing set. Parameters ---------- training_dataframe: pandas.DataFrame Training data set testing_dataframe: pandas.DataFrame Testing data set drop_nans: bool Drop all rows that have a NaN in any column (default: False) copy: bool Make a copy of the data set (default: False) encoder: category_encoders transformer The a valid category_encoders transformer which is passed an inferred cols list. Default (None: LabelEncoder) encoder_kwargs: category_encoders The a valid sklearn transformer to encode categorical features. Default (None) ignore_update_check: bool Do not check for the latest version of datacleaner Returns ---------- output_training_dataframe: pandas.DataFrame Cleaned training data set output_testing_dataframe: pandas.DataFrame Cleaned testing data set
Below is the the instruction that describes the task: ### Input: Performs a series of automated data cleaning transformations on the provided training and testing data sets Unlike `autoclean()`, this function takes cross-validation into account by learning the data transformations from only the training set, then applying those transformations to both the training and testing set. By doing so, this function will prevent information leak from the training set into the testing set. Parameters ---------- training_dataframe: pandas.DataFrame Training data set testing_dataframe: pandas.DataFrame Testing data set drop_nans: bool Drop all rows that have a NaN in any column (default: False) copy: bool Make a copy of the data set (default: False) encoder: category_encoders transformer The a valid category_encoders transformer which is passed an inferred cols list. Default (None: LabelEncoder) encoder_kwargs: category_encoders The a valid sklearn transformer to encode categorical features. Default (None) ignore_update_check: bool Do not check for the latest version of datacleaner Returns ---------- output_training_dataframe: pandas.DataFrame Cleaned training data set output_testing_dataframe: pandas.DataFrame Cleaned testing data set ### Response: def autoclean_cv(training_dataframe, testing_dataframe, drop_nans=False, copy=False, encoder=None, encoder_kwargs=None, ignore_update_check=False): """Performs a series of automated data cleaning transformations on the provided training and testing data sets Unlike `autoclean()`, this function takes cross-validation into account by learning the data transformations from only the training set, then applying those transformations to both the training and testing set. By doing so, this function will prevent information leak from the training set into the testing set. Parameters ---------- training_dataframe: pandas.DataFrame Training data set testing_dataframe: pandas.DataFrame Testing data set drop_nans: bool Drop all rows that have a NaN in any column (default: False) copy: bool Make a copy of the data set (default: False) encoder: category_encoders transformer The a valid category_encoders transformer which is passed an inferred cols list. Default (None: LabelEncoder) encoder_kwargs: category_encoders The a valid sklearn transformer to encode categorical features. Default (None) ignore_update_check: bool Do not check for the latest version of datacleaner Returns ---------- output_training_dataframe: pandas.DataFrame Cleaned training data set output_testing_dataframe: pandas.DataFrame Cleaned testing data set """ global update_checked if ignore_update_check: update_checked = True if not update_checked: update_check('datacleaner', __version__) update_checked = True if set(training_dataframe.columns.values) != set(testing_dataframe.columns.values): raise ValueError('The training and testing DataFrames do not have the same columns. ' 'Make sure that you are providing the same columns.') if copy: training_dataframe = training_dataframe.copy() testing_dataframe = testing_dataframe.copy() if drop_nans: training_dataframe.dropna(inplace=True) testing_dataframe.dropna(inplace=True) if encoder_kwargs is None: encoder_kwargs = {} for column in training_dataframe.columns.values: # Replace NaNs with the median or mode of the column depending on the column type try: column_median = training_dataframe[column].median() training_dataframe[column].fillna(column_median, inplace=True) testing_dataframe[column].fillna(column_median, inplace=True) except TypeError: column_mode = training_dataframe[column].mode()[0] training_dataframe[column].fillna(column_mode, inplace=True) testing_dataframe[column].fillna(column_mode, inplace=True) # Encode all strings with numerical equivalents if str(training_dataframe[column].values.dtype) == 'object': if encoder is not None: column_encoder = encoder(**encoder_kwargs).fit(training_dataframe[column].values) else: column_encoder = LabelEncoder().fit(training_dataframe[column].values) training_dataframe[column] = column_encoder.transform(training_dataframe[column].values) testing_dataframe[column] = column_encoder.transform(testing_dataframe[column].values) return training_dataframe, testing_dataframe
def copy_data(data_length, blocksize, infp, outfp): # type: (int, int, BinaryIO, BinaryIO) -> None ''' A utility function to copy data from the input file object to the output file object. This function will use the most efficient copy method available, which is often sendfile. Parameters: data_length - The amount of data to copy. blocksize - How much data to copy per iteration. infp - The file object to copy data from. outfp - The file object to copy data to. Returns: Nothing. ''' use_sendfile = False if have_sendfile: # Python 3 implements the fileno method for all file-like objects, so # we can't just use the existence of the method to tell whether it is # available. Instead, we try to assign it, and if we fail, then we # assume it is not available. try: x_unused = infp.fileno() # NOQA y_unused = outfp.fileno() # NOQA use_sendfile = True except (AttributeError, io.UnsupportedOperation): pass if use_sendfile: # This is one of those instances where using the file object and the # file descriptor causes problems. The sendfile() call actually updates # the underlying file descriptor, but the file object does not know # about it. To get around this, we instead get the offset, allow # sendfile() to update the offset, then manually seek the file object # to the right location. This ensures that the file object gets updated # properly. in_offset = infp.tell() out_offset = outfp.tell() sendfile(outfp.fileno(), infp.fileno(), in_offset, data_length) infp.seek(in_offset + data_length) outfp.seek(out_offset + data_length) else: left = data_length readsize = blocksize while left > 0: if left < readsize: readsize = left data = infp.read(readsize) # We have seen ISOs in the wild (Tribes Vengeance 1of4.iso) that # lie about the size of their files, causing reads to fail (since # we hit EOF before the supposed end of the file). If we are using # sendfile above, sendfile just silently returns as much data as it # can, with no additional checking. We should do the same here, so # if we got less data than we asked for, abort the loop silently. data_len = len(data) if data_len != readsize: data_len = left outfp.write(data) left -= data_len
A utility function to copy data from the input file object to the output file object. This function will use the most efficient copy method available, which is often sendfile. Parameters: data_length - The amount of data to copy. blocksize - How much data to copy per iteration. infp - The file object to copy data from. outfp - The file object to copy data to. Returns: Nothing.
Below is the the instruction that describes the task: ### Input: A utility function to copy data from the input file object to the output file object. This function will use the most efficient copy method available, which is often sendfile. Parameters: data_length - The amount of data to copy. blocksize - How much data to copy per iteration. infp - The file object to copy data from. outfp - The file object to copy data to. Returns: Nothing. ### Response: def copy_data(data_length, blocksize, infp, outfp): # type: (int, int, BinaryIO, BinaryIO) -> None ''' A utility function to copy data from the input file object to the output file object. This function will use the most efficient copy method available, which is often sendfile. Parameters: data_length - The amount of data to copy. blocksize - How much data to copy per iteration. infp - The file object to copy data from. outfp - The file object to copy data to. Returns: Nothing. ''' use_sendfile = False if have_sendfile: # Python 3 implements the fileno method for all file-like objects, so # we can't just use the existence of the method to tell whether it is # available. Instead, we try to assign it, and if we fail, then we # assume it is not available. try: x_unused = infp.fileno() # NOQA y_unused = outfp.fileno() # NOQA use_sendfile = True except (AttributeError, io.UnsupportedOperation): pass if use_sendfile: # This is one of those instances where using the file object and the # file descriptor causes problems. The sendfile() call actually updates # the underlying file descriptor, but the file object does not know # about it. To get around this, we instead get the offset, allow # sendfile() to update the offset, then manually seek the file object # to the right location. This ensures that the file object gets updated # properly. in_offset = infp.tell() out_offset = outfp.tell() sendfile(outfp.fileno(), infp.fileno(), in_offset, data_length) infp.seek(in_offset + data_length) outfp.seek(out_offset + data_length) else: left = data_length readsize = blocksize while left > 0: if left < readsize: readsize = left data = infp.read(readsize) # We have seen ISOs in the wild (Tribes Vengeance 1of4.iso) that # lie about the size of their files, causing reads to fail (since # we hit EOF before the supposed end of the file). If we are using # sendfile above, sendfile just silently returns as much data as it # can, with no additional checking. We should do the same here, so # if we got less data than we asked for, abort the loop silently. data_len = len(data) if data_len != readsize: data_len = left outfp.write(data) left -= data_len
def get_all_apps(): """Get a list of all applications in Spinnaker. Returns: requests.models.Response: Response from Gate containing list of all apps. """ LOG.info('Retreiving list of all Spinnaker applications') url = '{}/applications'.format(API_URL) response = requests.get(url, verify=GATE_CA_BUNDLE, cert=GATE_CLIENT_CERT) assert response.ok, 'Could not retrieve application list' pipelines = response.json() LOG.debug('All Applications:\n%s', pipelines) return pipelines
Get a list of all applications in Spinnaker. Returns: requests.models.Response: Response from Gate containing list of all apps.
Below is the the instruction that describes the task: ### Input: Get a list of all applications in Spinnaker. Returns: requests.models.Response: Response from Gate containing list of all apps. ### Response: def get_all_apps(): """Get a list of all applications in Spinnaker. Returns: requests.models.Response: Response from Gate containing list of all apps. """ LOG.info('Retreiving list of all Spinnaker applications') url = '{}/applications'.format(API_URL) response = requests.get(url, verify=GATE_CA_BUNDLE, cert=GATE_CLIENT_CERT) assert response.ok, 'Could not retrieve application list' pipelines = response.json() LOG.debug('All Applications:\n%s', pipelines) return pipelines
def get_devices_by_parent(self, hid_filter=None): """Group devices returned from filter query in order \ by devcice parent id. """ all_devs = self.get_devices(hid_filter) dev_group = dict() for hid_device in all_devs: #keep a list of known devices matching parent device Ids parent_id = hid_device.get_parent_instance_id() device_set = dev_group.get(parent_id, []) device_set.append(hid_device) if parent_id not in dev_group: #add new dev_group[parent_id] = device_set return dev_group
Group devices returned from filter query in order \ by devcice parent id.
Below is the the instruction that describes the task: ### Input: Group devices returned from filter query in order \ by devcice parent id. ### Response: def get_devices_by_parent(self, hid_filter=None): """Group devices returned from filter query in order \ by devcice parent id. """ all_devs = self.get_devices(hid_filter) dev_group = dict() for hid_device in all_devs: #keep a list of known devices matching parent device Ids parent_id = hid_device.get_parent_instance_id() device_set = dev_group.get(parent_id, []) device_set.append(hid_device) if parent_id not in dev_group: #add new dev_group[parent_id] = device_set return dev_group
def _calc(cls, **kwargs): """ Calculate sunrise or sunset based on: Parameters: jd: Julian Day lat: latitude lon: longitude stage: sunrise or sunset """ zenith = 90.833333 # offical value jd = kwargs.get("jd", None) lat = kwargs.get("lat", None) lon = kwargs.get("lon", None) stage = kwargs.get("stage", None) if jd is None or stage is None or lat is None or lon is None: raise ValueError("Must supply an 'jd', 'lat, 'lon', and 'stage' parameter") if stage != SunCycles.RISING and stage != SunCycles.SETTING: raise ValueError("'stage' parameter must be %s or %s" % (SunCycles.RISING, SunCycles.SETTING)) longhr = lon / 15. if stage == SunCycles.RISING: apx = jd + ( (6 - longhr) / 24 ) elif stage == SunCycles.SETTING: apx = jd + ( (18 - longhr) / 24 ) sun_mean_anom = ( 0.9856 * apx ) - 3.289 # sun's mean anomaly #sun's longitude sun_lon = sun_mean_anom + (1.916 * np.sin( np.radians(sun_mean_anom) )) \ + (0.02 * np.sin( np.radians(2 * sun_mean_anom) )) + 282.634 if sun_lon > 360: sun_lon = sun_lon - 360 elif sun_lon < 0: sun_lon = sun_lon + 360 right_ascension = np.degrees(np.arctan( 0.91764 * np.tan( np.radians(sun_lon) ) )) # sun's right ascension if right_ascension > 360: right_ascension = right_ascension - 360 elif right_ascension < 0: right_ascension = right_ascension + 360 # put sun's right ascension value in the same quadrant as the sun's # true longitude lQuad = 90. * np.floor(sun_lon / 90.) raQuad = 90. * np.floor(right_ascension / 90.) right_ascension = right_ascension + ( lQuad - raQuad) right_ascension = right_ascension / 15. # Convert to hours # Sun's declination sinDecl = 0.39782 * np.sin( np.radians(sun_lon) ) cosDecl = np.cos( np.arcsin( sinDecl ) ) # Sun's local hour angle cosHr = (np.cos( np.radians(zenith) ) - ( sinDecl * np.sin(np.radians(lat)) )) \ / ( cosDecl * np.cos( np.radians(lat) ) ) if cosHr > 1: # Sun doesnt rise on this loc on this date return -1, -1 elif cosHr < -1: # Sun doesnt set on this location on this date return -1, -1 elif stage == SunCycles.RISING: # Sunrise hr = 360 - np.degrees(np.arccos(cosHr)) elif stage == SunCycles.SETTING: # Sunset hr = np.degrees(np.arccos(cosHr)) hr = hr / 15. # Convert angle to hours localTime = hr + right_ascension - ( 0.06571 * apx ) - 6.622# local meantime of rise/set UTtime = localTime - longhr # adjust to UTC if UTtime < 0: UTtime = UTtime + 24 elif UTtime > 24: UTtime = UTtime - 24 hour = np.floor(UTtime) minute = (UTtime - hour) * 60 if minute == 60: hour = hour + 1 minute = 0 return hour, minute
Calculate sunrise or sunset based on: Parameters: jd: Julian Day lat: latitude lon: longitude stage: sunrise or sunset
Below is the the instruction that describes the task: ### Input: Calculate sunrise or sunset based on: Parameters: jd: Julian Day lat: latitude lon: longitude stage: sunrise or sunset ### Response: def _calc(cls, **kwargs): """ Calculate sunrise or sunset based on: Parameters: jd: Julian Day lat: latitude lon: longitude stage: sunrise or sunset """ zenith = 90.833333 # offical value jd = kwargs.get("jd", None) lat = kwargs.get("lat", None) lon = kwargs.get("lon", None) stage = kwargs.get("stage", None) if jd is None or stage is None or lat is None or lon is None: raise ValueError("Must supply an 'jd', 'lat, 'lon', and 'stage' parameter") if stage != SunCycles.RISING and stage != SunCycles.SETTING: raise ValueError("'stage' parameter must be %s or %s" % (SunCycles.RISING, SunCycles.SETTING)) longhr = lon / 15. if stage == SunCycles.RISING: apx = jd + ( (6 - longhr) / 24 ) elif stage == SunCycles.SETTING: apx = jd + ( (18 - longhr) / 24 ) sun_mean_anom = ( 0.9856 * apx ) - 3.289 # sun's mean anomaly #sun's longitude sun_lon = sun_mean_anom + (1.916 * np.sin( np.radians(sun_mean_anom) )) \ + (0.02 * np.sin( np.radians(2 * sun_mean_anom) )) + 282.634 if sun_lon > 360: sun_lon = sun_lon - 360 elif sun_lon < 0: sun_lon = sun_lon + 360 right_ascension = np.degrees(np.arctan( 0.91764 * np.tan( np.radians(sun_lon) ) )) # sun's right ascension if right_ascension > 360: right_ascension = right_ascension - 360 elif right_ascension < 0: right_ascension = right_ascension + 360 # put sun's right ascension value in the same quadrant as the sun's # true longitude lQuad = 90. * np.floor(sun_lon / 90.) raQuad = 90. * np.floor(right_ascension / 90.) right_ascension = right_ascension + ( lQuad - raQuad) right_ascension = right_ascension / 15. # Convert to hours # Sun's declination sinDecl = 0.39782 * np.sin( np.radians(sun_lon) ) cosDecl = np.cos( np.arcsin( sinDecl ) ) # Sun's local hour angle cosHr = (np.cos( np.radians(zenith) ) - ( sinDecl * np.sin(np.radians(lat)) )) \ / ( cosDecl * np.cos( np.radians(lat) ) ) if cosHr > 1: # Sun doesnt rise on this loc on this date return -1, -1 elif cosHr < -1: # Sun doesnt set on this location on this date return -1, -1 elif stage == SunCycles.RISING: # Sunrise hr = 360 - np.degrees(np.arccos(cosHr)) elif stage == SunCycles.SETTING: # Sunset hr = np.degrees(np.arccos(cosHr)) hr = hr / 15. # Convert angle to hours localTime = hr + right_ascension - ( 0.06571 * apx ) - 6.622# local meantime of rise/set UTtime = localTime - longhr # adjust to UTC if UTtime < 0: UTtime = UTtime + 24 elif UTtime > 24: UTtime = UTtime - 24 hour = np.floor(UTtime) minute = (UTtime - hour) * 60 if minute == 60: hour = hour + 1 minute = 0 return hour, minute
def dust(args): """ %prog dust assembly.fasta Remove low-complexity contigs within assembly. """ p = OptionParser(dust.__doc__) opts, args = p.parse_args(args) if len(args) != 1: sys.exit(not p.print_help()) fastafile, = args dustfastafile = fastafile.rsplit(".", 1)[0] + ".dust.fasta" if need_update(fastafile, dustfastafile): cmd = "dustmasker -in {0}".format(fastafile) cmd += " -out {0} -outfmt fasta".format(dustfastafile) sh(cmd) for name, seq in parse_fasta(dustfastafile): nlow = sum(1 for x in seq if x in "acgtnN") pctlow = nlow * 100. / len(seq) if pctlow < 98: continue #print "{0}\t{1:.1f}".format(name, pctlow) print(name)
%prog dust assembly.fasta Remove low-complexity contigs within assembly.
Below is the the instruction that describes the task: ### Input: %prog dust assembly.fasta Remove low-complexity contigs within assembly. ### Response: def dust(args): """ %prog dust assembly.fasta Remove low-complexity contigs within assembly. """ p = OptionParser(dust.__doc__) opts, args = p.parse_args(args) if len(args) != 1: sys.exit(not p.print_help()) fastafile, = args dustfastafile = fastafile.rsplit(".", 1)[0] + ".dust.fasta" if need_update(fastafile, dustfastafile): cmd = "dustmasker -in {0}".format(fastafile) cmd += " -out {0} -outfmt fasta".format(dustfastafile) sh(cmd) for name, seq in parse_fasta(dustfastafile): nlow = sum(1 for x in seq if x in "acgtnN") pctlow = nlow * 100. / len(seq) if pctlow < 98: continue #print "{0}\t{1:.1f}".format(name, pctlow) print(name)
def biomaRtTOkegg(df): """ Transforms a pandas dataframe with the columns 'ensembl_gene_id','kegg_enzyme' to dataframe ready for use in ... :param df: a pandas dataframe with the following columns: 'ensembl_gene_id','kegg_enzyme' :returns: a pandas dataframe with the following columns: 'ensembl_gene_id','kegg_enzyme' """ df=df.dropna() ECcols=df.columns.tolist() df.reset_index(inplace=True,drop=True) # field = ECsb[['kegg_enzyme']] field = pd.DataFrame(df['kegg_enzyme'].str.split('+',1).tolist())[1] field = pd.DataFrame(field) df=pd.concat([df[['ensembl_gene_id']],field],axis=1) df.columns=ECcols df.drop_duplicates(inplace=True) df.reset_index(inplace=True,drop=True) plus=df['kegg_enzyme'].tolist() plus=[ s for s in plus if "+" in s ] noPlus=df[~df['kegg_enzyme'].isin(plus)] plus=df[df['kegg_enzyme'].isin(plus)] noPlus.reset_index(inplace=True, drop=True) plus.reset_index(inplace=True, drop=True) for p in range(0,len(plus)): enz=plus.ix[p]['kegg_enzyme'] enz=enz.split("+") enz=pd.DataFrame(enz) enz.colums=['kegg_enzyme'] enz['ensembl_gene_id']=plus.ix[p]['kegg_enzyme'] noPlus=pd.concat([noPlus,enz]) noPlus=noPlus.drop_duplicates() noPlus=noPlus[['ensembl_gene_id','kegg_enzyme']] noPlus['fake']='ec:' noPlus['kegg_enzyme']=noPlus['fake']+noPlus['kegg_enzyme'] noPlus=noPlus[['ensembl_gene_id','kegg_enzyme']] return noPlus
Transforms a pandas dataframe with the columns 'ensembl_gene_id','kegg_enzyme' to dataframe ready for use in ... :param df: a pandas dataframe with the following columns: 'ensembl_gene_id','kegg_enzyme' :returns: a pandas dataframe with the following columns: 'ensembl_gene_id','kegg_enzyme'
Below is the the instruction that describes the task: ### Input: Transforms a pandas dataframe with the columns 'ensembl_gene_id','kegg_enzyme' to dataframe ready for use in ... :param df: a pandas dataframe with the following columns: 'ensembl_gene_id','kegg_enzyme' :returns: a pandas dataframe with the following columns: 'ensembl_gene_id','kegg_enzyme' ### Response: def biomaRtTOkegg(df): """ Transforms a pandas dataframe with the columns 'ensembl_gene_id','kegg_enzyme' to dataframe ready for use in ... :param df: a pandas dataframe with the following columns: 'ensembl_gene_id','kegg_enzyme' :returns: a pandas dataframe with the following columns: 'ensembl_gene_id','kegg_enzyme' """ df=df.dropna() ECcols=df.columns.tolist() df.reset_index(inplace=True,drop=True) # field = ECsb[['kegg_enzyme']] field = pd.DataFrame(df['kegg_enzyme'].str.split('+',1).tolist())[1] field = pd.DataFrame(field) df=pd.concat([df[['ensembl_gene_id']],field],axis=1) df.columns=ECcols df.drop_duplicates(inplace=True) df.reset_index(inplace=True,drop=True) plus=df['kegg_enzyme'].tolist() plus=[ s for s in plus if "+" in s ] noPlus=df[~df['kegg_enzyme'].isin(plus)] plus=df[df['kegg_enzyme'].isin(plus)] noPlus.reset_index(inplace=True, drop=True) plus.reset_index(inplace=True, drop=True) for p in range(0,len(plus)): enz=plus.ix[p]['kegg_enzyme'] enz=enz.split("+") enz=pd.DataFrame(enz) enz.colums=['kegg_enzyme'] enz['ensembl_gene_id']=plus.ix[p]['kegg_enzyme'] noPlus=pd.concat([noPlus,enz]) noPlus=noPlus.drop_duplicates() noPlus=noPlus[['ensembl_gene_id','kegg_enzyme']] noPlus['fake']='ec:' noPlus['kegg_enzyme']=noPlus['fake']+noPlus['kegg_enzyme'] noPlus=noPlus[['ensembl_gene_id','kegg_enzyme']] return noPlus
def snapshot (self): """Take a snapshot of the experiment. Returns `self`.""" nextSnapshotNum = self.nextSnapshotNum nextSnapshotPath = self.getFullPathToSnapshot(nextSnapshotNum) if os.path.lexists(nextSnapshotPath): self.rmR(nextSnapshotPath) self.mkdirp(os.path.join(nextSnapshotPath, ".experiment")) return self.dump(nextSnapshotPath).__markLatest(nextSnapshotNum)
Take a snapshot of the experiment. Returns `self`.
Below is the the instruction that describes the task: ### Input: Take a snapshot of the experiment. Returns `self`. ### Response: def snapshot (self): """Take a snapshot of the experiment. Returns `self`.""" nextSnapshotNum = self.nextSnapshotNum nextSnapshotPath = self.getFullPathToSnapshot(nextSnapshotNum) if os.path.lexists(nextSnapshotPath): self.rmR(nextSnapshotPath) self.mkdirp(os.path.join(nextSnapshotPath, ".experiment")) return self.dump(nextSnapshotPath).__markLatest(nextSnapshotNum)
def create(vm_=None, call=None): ''' Create a single VM from a data dict ''' if call: raise SaltCloudSystemExit( 'You cannot create an instance with -a or -f.' ) try: # Check for required profile parameters before sending any API calls. if vm_['profile'] and config.is_profile_configured(__opts__, __active_provider_name__ or 'ec2', vm_['profile'], vm_=vm_) is False: return False except AttributeError: pass # Check for private_key and keyfile name for bootstrapping new instances deploy = config.get_cloud_config_value( 'deploy', vm_, __opts__, default=True ) win_password = config.get_cloud_config_value( 'win_password', vm_, __opts__, default='' ) key_filename = config.get_cloud_config_value( 'private_key', vm_, __opts__, search_global=False, default=None ) if deploy: # The private_key and keyname settings are only needed for bootstrapping # new instances when deploy is True _validate_key_path_and_mode(key_filename) __utils__['cloud.fire_event']( 'event', 'starting create', 'salt/cloud/{0}/creating'.format(vm_['name']), args=__utils__['cloud.filter_event']('creating', vm_, ['name', 'profile', 'provider', 'driver']), sock_dir=__opts__['sock_dir'], transport=__opts__['transport'] ) __utils__['cloud.cachedir_index_add']( vm_['name'], vm_['profile'], 'ec2', vm_['driver'] ) vm_['key_filename'] = key_filename # wait_for_instance requires private_key vm_['private_key'] = key_filename # Get SSH Gateway config early to verify the private_key, # if used, exists or not. We don't want to deploy an instance # and not be able to access it via the gateway. vm_['gateway'] = get_ssh_gateway_config(vm_) location = get_location(vm_) vm_['location'] = location log.info('Creating Cloud VM %s in %s', vm_['name'], location) vm_['usernames'] = salt.utils.cloud.ssh_usernames( vm_, __opts__, default_users=( 'ec2-user', # Amazon Linux, Fedora, RHEL; FreeBSD 'centos', # CentOS AMIs from AWS Marketplace 'ubuntu', # Ubuntu 'admin', # Debian GNU/Linux 'bitnami', # BitNami AMIs 'root' # Last resort, default user on RHEL 5, SUSE ) ) if 'instance_id' in vm_: # This was probably created via another process, and doesn't have # things like salt keys created yet, so let's create them now. if 'pub_key' not in vm_ and 'priv_key' not in vm_: log.debug('Generating minion keys for \'%s\'', vm_['name']) vm_['priv_key'], vm_['pub_key'] = salt.utils.cloud.gen_keys( salt.config.get_cloud_config_value( 'keysize', vm_, __opts__ ) ) else: # Put together all of the information required to request the instance, # and then fire off the request for it if keyname(vm_) is None: raise SaltCloudSystemExit( 'The required \'keyname\' configuration setting is missing from the ' '\'ec2\' driver.' ) data, vm_ = request_instance(vm_, location) # If data is a str, it's an error if isinstance(data, six.string_types): log.error('Error requesting instance: %s', data) return {} # Pull the instance ID, valid for both spot and normal instances # Multiple instances may have been spun up, get all their IDs vm_['instance_id_list'] = [] for instance in data: vm_['instance_id_list'].append(instance['instanceId']) vm_['instance_id'] = vm_['instance_id_list'].pop() if vm_['instance_id_list']: # Multiple instances were spun up, get one now, and queue the rest queue_instances(vm_['instance_id_list']) # Wait for vital information, such as IP addresses, to be available # for the new instance data = query_instance(vm_) # Now that the instance is available, tag it appropriately. Should # mitigate race conditions with tags tags = config.get_cloud_config_value('tag', vm_, __opts__, {}, search_global=False) if not isinstance(tags, dict): raise SaltCloudConfigError( '\'tag\' should be a dict.' ) for value in six.itervalues(tags): if not isinstance(value, six.string_types): raise SaltCloudConfigError( '\'tag\' values must be strings. Try quoting the values. ' 'e.g. "2013-09-19T20:09:46Z".' ) tags['Name'] = vm_['name'] __utils__['cloud.fire_event']( 'event', 'setting tags', 'salt/cloud/{0}/tagging'.format(vm_['name']), args={'tags': tags}, sock_dir=__opts__['sock_dir'], transport=__opts__['transport'] ) salt.utils.cloud.wait_for_fun( set_tags, timeout=30, name=vm_['name'], tags=tags, instance_id=vm_['instance_id'], call='action', location=location ) # Once instance tags are set, tag the spot request if configured if 'spot_config' in vm_ and 'tag' in vm_['spot_config']: if not isinstance(vm_['spot_config']['tag'], dict): raise SaltCloudConfigError( '\'tag\' should be a dict.' ) for value in six.itervalues(vm_['spot_config']['tag']): if not isinstance(value, str): raise SaltCloudConfigError( '\'tag\' values must be strings. Try quoting the values. ' 'e.g. "2013-09-19T20:09:46Z".' ) spot_request_tags = {} if 'spotRequestId' not in vm_: raise SaltCloudConfigError('Failed to find spotRequestId') sir_id = vm_['spotRequestId'] spot_request_tags['Name'] = vm_['name'] for k, v in six.iteritems(vm_['spot_config']['tag']): spot_request_tags[k] = v __utils__['cloud.fire_event']( 'event', 'setting tags', 'salt/cloud/spot_request_{0}/tagging'.format(sir_id), args={'tags': spot_request_tags}, sock_dir=__opts__['sock_dir'], transport=__opts__['transport'] ) salt.utils.cloud.wait_for_fun( set_tags, timeout=30, name=vm_['name'], tags=spot_request_tags, instance_id=sir_id, call='action', location=location ) network_interfaces = config.get_cloud_config_value( 'network_interfaces', vm_, __opts__, search_global=False ) if network_interfaces: _update_enis(network_interfaces, data, vm_) # At this point, the node is created and tagged, and now needs to be # bootstrapped, once the necessary port is available. log.info('Created node %s', vm_['name']) instance = data[0]['instancesSet']['item'] # Wait for the necessary port to become available to bootstrap if ssh_interface(vm_) == 'private_ips': ip_address = instance['privateIpAddress'] log.info('Salt node data. Private_ip: %s', ip_address) else: ip_address = instance['ipAddress'] log.info('Salt node data. Public_ip: %s', ip_address) vm_['ssh_host'] = ip_address if salt.utils.cloud.get_salt_interface(vm_, __opts__) == 'private_ips': salt_ip_address = instance['privateIpAddress'] log.info('Salt interface set to: %s', salt_ip_address) else: salt_ip_address = instance['ipAddress'] log.debug('Salt interface set to: %s', salt_ip_address) vm_['salt_host'] = salt_ip_address if deploy: display_ssh_output = config.get_cloud_config_value( 'display_ssh_output', vm_, __opts__, default=True ) vm_ = wait_for_instance( vm_, data, ip_address, display_ssh_output ) # The instance is booted and accessible, let's Salt it! ret = instance.copy() # Get ANY defined volumes settings, merging data, in the following order # 1. VM config # 2. Profile config # 3. Global configuration volumes = config.get_cloud_config_value( 'volumes', vm_, __opts__, search_global=True ) if volumes: __utils__['cloud.fire_event']( 'event', 'attaching volumes', 'salt/cloud/{0}/attaching_volumes'.format(vm_['name']), args={'volumes': volumes}, sock_dir=__opts__['sock_dir'], transport=__opts__['transport'] ) log.info('Create and attach volumes to node %s', vm_['name']) created = create_attach_volumes( vm_['name'], { 'volumes': volumes, 'zone': ret['placement']['availabilityZone'], 'instance_id': ret['instanceId'], 'del_all_vols_on_destroy': vm_.get('del_all_vols_on_destroy', False) }, call='action' ) ret['Attached Volumes'] = created # Associate instance with a ssm document, if present ssm_document = config.get_cloud_config_value( 'ssm_document', vm_, __opts__, None, search_global=False ) if ssm_document: log.debug('Associating with ssm document: %s', ssm_document) assoc = ssm_create_association( vm_['name'], {'ssm_document': ssm_document}, instance_id=vm_['instance_id'], call='action' ) if isinstance(assoc, dict) and assoc.get('error', None): log.error( 'Failed to associate instance %s with ssm document %s', vm_['instance_id'], ssm_document ) return {} for key, value in six.iteritems(__utils__['cloud.bootstrap'](vm_, __opts__)): ret.setdefault(key, value) log.info('Created Cloud VM \'%s\'', vm_['name']) log.debug( '\'%s\' VM creation details:\n%s', vm_['name'], pprint.pformat(instance) ) event_data = { 'name': vm_['name'], 'profile': vm_['profile'], 'provider': vm_['driver'], 'instance_id': vm_['instance_id'], } if volumes: event_data['volumes'] = volumes if ssm_document: event_data['ssm_document'] = ssm_document __utils__['cloud.fire_event']( 'event', 'created instance', 'salt/cloud/{0}/created'.format(vm_['name']), args=__utils__['cloud.filter_event']('created', event_data, list(event_data)), sock_dir=__opts__['sock_dir'], transport=__opts__['transport'] ) # Ensure that the latest node data is returned node = _get_node(instance_id=vm_['instance_id']) __utils__['cloud.cache_node'](node, __active_provider_name__, __opts__) ret.update(node) # Add any block device tags specified ex_blockdevicetags = {} blockdevicemappings_holder = block_device_mappings(vm_) if blockdevicemappings_holder: for _bd in blockdevicemappings_holder: if 'tag' in _bd: ex_blockdevicetags[_bd['DeviceName']] = _bd['tag'] block_device_volume_id_map = {} if ex_blockdevicetags: for _device, _map in six.iteritems(ret['blockDeviceMapping']): bd_items = [] if isinstance(_map, dict): bd_items.append(_map) else: for mapitem in _map: bd_items.append(mapitem) for blockitem in bd_items: if blockitem['deviceName'] in ex_blockdevicetags and 'Name' not in ex_blockdevicetags[blockitem['deviceName']]: ex_blockdevicetags[blockitem['deviceName']]['Name'] = vm_['name'] if blockitem['deviceName'] in ex_blockdevicetags: block_device_volume_id_map[blockitem[ret['rootDeviceType']]['volumeId']] = ex_blockdevicetags[blockitem['deviceName']] if block_device_volume_id_map: for volid, tags in six.iteritems(block_device_volume_id_map): __utils__['cloud.fire_event']( 'event', 'setting tags', 'salt/cloud/block_volume_{0}/tagging'.format(str(volid)), args={'tags': tags}, sock_dir=__opts__['sock_dir'], transport=__opts__['transport'] ) __utils__['cloud.wait_for_fun']( set_tags, timeout=30, name=vm_['name'], tags=tags, resource_id=volid, call='action', location=location ) return ret
Create a single VM from a data dict
Below is the the instruction that describes the task: ### Input: Create a single VM from a data dict ### Response: def create(vm_=None, call=None): ''' Create a single VM from a data dict ''' if call: raise SaltCloudSystemExit( 'You cannot create an instance with -a or -f.' ) try: # Check for required profile parameters before sending any API calls. if vm_['profile'] and config.is_profile_configured(__opts__, __active_provider_name__ or 'ec2', vm_['profile'], vm_=vm_) is False: return False except AttributeError: pass # Check for private_key and keyfile name for bootstrapping new instances deploy = config.get_cloud_config_value( 'deploy', vm_, __opts__, default=True ) win_password = config.get_cloud_config_value( 'win_password', vm_, __opts__, default='' ) key_filename = config.get_cloud_config_value( 'private_key', vm_, __opts__, search_global=False, default=None ) if deploy: # The private_key and keyname settings are only needed for bootstrapping # new instances when deploy is True _validate_key_path_and_mode(key_filename) __utils__['cloud.fire_event']( 'event', 'starting create', 'salt/cloud/{0}/creating'.format(vm_['name']), args=__utils__['cloud.filter_event']('creating', vm_, ['name', 'profile', 'provider', 'driver']), sock_dir=__opts__['sock_dir'], transport=__opts__['transport'] ) __utils__['cloud.cachedir_index_add']( vm_['name'], vm_['profile'], 'ec2', vm_['driver'] ) vm_['key_filename'] = key_filename # wait_for_instance requires private_key vm_['private_key'] = key_filename # Get SSH Gateway config early to verify the private_key, # if used, exists or not. We don't want to deploy an instance # and not be able to access it via the gateway. vm_['gateway'] = get_ssh_gateway_config(vm_) location = get_location(vm_) vm_['location'] = location log.info('Creating Cloud VM %s in %s', vm_['name'], location) vm_['usernames'] = salt.utils.cloud.ssh_usernames( vm_, __opts__, default_users=( 'ec2-user', # Amazon Linux, Fedora, RHEL; FreeBSD 'centos', # CentOS AMIs from AWS Marketplace 'ubuntu', # Ubuntu 'admin', # Debian GNU/Linux 'bitnami', # BitNami AMIs 'root' # Last resort, default user on RHEL 5, SUSE ) ) if 'instance_id' in vm_: # This was probably created via another process, and doesn't have # things like salt keys created yet, so let's create them now. if 'pub_key' not in vm_ and 'priv_key' not in vm_: log.debug('Generating minion keys for \'%s\'', vm_['name']) vm_['priv_key'], vm_['pub_key'] = salt.utils.cloud.gen_keys( salt.config.get_cloud_config_value( 'keysize', vm_, __opts__ ) ) else: # Put together all of the information required to request the instance, # and then fire off the request for it if keyname(vm_) is None: raise SaltCloudSystemExit( 'The required \'keyname\' configuration setting is missing from the ' '\'ec2\' driver.' ) data, vm_ = request_instance(vm_, location) # If data is a str, it's an error if isinstance(data, six.string_types): log.error('Error requesting instance: %s', data) return {} # Pull the instance ID, valid for both spot and normal instances # Multiple instances may have been spun up, get all their IDs vm_['instance_id_list'] = [] for instance in data: vm_['instance_id_list'].append(instance['instanceId']) vm_['instance_id'] = vm_['instance_id_list'].pop() if vm_['instance_id_list']: # Multiple instances were spun up, get one now, and queue the rest queue_instances(vm_['instance_id_list']) # Wait for vital information, such as IP addresses, to be available # for the new instance data = query_instance(vm_) # Now that the instance is available, tag it appropriately. Should # mitigate race conditions with tags tags = config.get_cloud_config_value('tag', vm_, __opts__, {}, search_global=False) if not isinstance(tags, dict): raise SaltCloudConfigError( '\'tag\' should be a dict.' ) for value in six.itervalues(tags): if not isinstance(value, six.string_types): raise SaltCloudConfigError( '\'tag\' values must be strings. Try quoting the values. ' 'e.g. "2013-09-19T20:09:46Z".' ) tags['Name'] = vm_['name'] __utils__['cloud.fire_event']( 'event', 'setting tags', 'salt/cloud/{0}/tagging'.format(vm_['name']), args={'tags': tags}, sock_dir=__opts__['sock_dir'], transport=__opts__['transport'] ) salt.utils.cloud.wait_for_fun( set_tags, timeout=30, name=vm_['name'], tags=tags, instance_id=vm_['instance_id'], call='action', location=location ) # Once instance tags are set, tag the spot request if configured if 'spot_config' in vm_ and 'tag' in vm_['spot_config']: if not isinstance(vm_['spot_config']['tag'], dict): raise SaltCloudConfigError( '\'tag\' should be a dict.' ) for value in six.itervalues(vm_['spot_config']['tag']): if not isinstance(value, str): raise SaltCloudConfigError( '\'tag\' values must be strings. Try quoting the values. ' 'e.g. "2013-09-19T20:09:46Z".' ) spot_request_tags = {} if 'spotRequestId' not in vm_: raise SaltCloudConfigError('Failed to find spotRequestId') sir_id = vm_['spotRequestId'] spot_request_tags['Name'] = vm_['name'] for k, v in six.iteritems(vm_['spot_config']['tag']): spot_request_tags[k] = v __utils__['cloud.fire_event']( 'event', 'setting tags', 'salt/cloud/spot_request_{0}/tagging'.format(sir_id), args={'tags': spot_request_tags}, sock_dir=__opts__['sock_dir'], transport=__opts__['transport'] ) salt.utils.cloud.wait_for_fun( set_tags, timeout=30, name=vm_['name'], tags=spot_request_tags, instance_id=sir_id, call='action', location=location ) network_interfaces = config.get_cloud_config_value( 'network_interfaces', vm_, __opts__, search_global=False ) if network_interfaces: _update_enis(network_interfaces, data, vm_) # At this point, the node is created and tagged, and now needs to be # bootstrapped, once the necessary port is available. log.info('Created node %s', vm_['name']) instance = data[0]['instancesSet']['item'] # Wait for the necessary port to become available to bootstrap if ssh_interface(vm_) == 'private_ips': ip_address = instance['privateIpAddress'] log.info('Salt node data. Private_ip: %s', ip_address) else: ip_address = instance['ipAddress'] log.info('Salt node data. Public_ip: %s', ip_address) vm_['ssh_host'] = ip_address if salt.utils.cloud.get_salt_interface(vm_, __opts__) == 'private_ips': salt_ip_address = instance['privateIpAddress'] log.info('Salt interface set to: %s', salt_ip_address) else: salt_ip_address = instance['ipAddress'] log.debug('Salt interface set to: %s', salt_ip_address) vm_['salt_host'] = salt_ip_address if deploy: display_ssh_output = config.get_cloud_config_value( 'display_ssh_output', vm_, __opts__, default=True ) vm_ = wait_for_instance( vm_, data, ip_address, display_ssh_output ) # The instance is booted and accessible, let's Salt it! ret = instance.copy() # Get ANY defined volumes settings, merging data, in the following order # 1. VM config # 2. Profile config # 3. Global configuration volumes = config.get_cloud_config_value( 'volumes', vm_, __opts__, search_global=True ) if volumes: __utils__['cloud.fire_event']( 'event', 'attaching volumes', 'salt/cloud/{0}/attaching_volumes'.format(vm_['name']), args={'volumes': volumes}, sock_dir=__opts__['sock_dir'], transport=__opts__['transport'] ) log.info('Create and attach volumes to node %s', vm_['name']) created = create_attach_volumes( vm_['name'], { 'volumes': volumes, 'zone': ret['placement']['availabilityZone'], 'instance_id': ret['instanceId'], 'del_all_vols_on_destroy': vm_.get('del_all_vols_on_destroy', False) }, call='action' ) ret['Attached Volumes'] = created # Associate instance with a ssm document, if present ssm_document = config.get_cloud_config_value( 'ssm_document', vm_, __opts__, None, search_global=False ) if ssm_document: log.debug('Associating with ssm document: %s', ssm_document) assoc = ssm_create_association( vm_['name'], {'ssm_document': ssm_document}, instance_id=vm_['instance_id'], call='action' ) if isinstance(assoc, dict) and assoc.get('error', None): log.error( 'Failed to associate instance %s with ssm document %s', vm_['instance_id'], ssm_document ) return {} for key, value in six.iteritems(__utils__['cloud.bootstrap'](vm_, __opts__)): ret.setdefault(key, value) log.info('Created Cloud VM \'%s\'', vm_['name']) log.debug( '\'%s\' VM creation details:\n%s', vm_['name'], pprint.pformat(instance) ) event_data = { 'name': vm_['name'], 'profile': vm_['profile'], 'provider': vm_['driver'], 'instance_id': vm_['instance_id'], } if volumes: event_data['volumes'] = volumes if ssm_document: event_data['ssm_document'] = ssm_document __utils__['cloud.fire_event']( 'event', 'created instance', 'salt/cloud/{0}/created'.format(vm_['name']), args=__utils__['cloud.filter_event']('created', event_data, list(event_data)), sock_dir=__opts__['sock_dir'], transport=__opts__['transport'] ) # Ensure that the latest node data is returned node = _get_node(instance_id=vm_['instance_id']) __utils__['cloud.cache_node'](node, __active_provider_name__, __opts__) ret.update(node) # Add any block device tags specified ex_blockdevicetags = {} blockdevicemappings_holder = block_device_mappings(vm_) if blockdevicemappings_holder: for _bd in blockdevicemappings_holder: if 'tag' in _bd: ex_blockdevicetags[_bd['DeviceName']] = _bd['tag'] block_device_volume_id_map = {} if ex_blockdevicetags: for _device, _map in six.iteritems(ret['blockDeviceMapping']): bd_items = [] if isinstance(_map, dict): bd_items.append(_map) else: for mapitem in _map: bd_items.append(mapitem) for blockitem in bd_items: if blockitem['deviceName'] in ex_blockdevicetags and 'Name' not in ex_blockdevicetags[blockitem['deviceName']]: ex_blockdevicetags[blockitem['deviceName']]['Name'] = vm_['name'] if blockitem['deviceName'] in ex_blockdevicetags: block_device_volume_id_map[blockitem[ret['rootDeviceType']]['volumeId']] = ex_blockdevicetags[blockitem['deviceName']] if block_device_volume_id_map: for volid, tags in six.iteritems(block_device_volume_id_map): __utils__['cloud.fire_event']( 'event', 'setting tags', 'salt/cloud/block_volume_{0}/tagging'.format(str(volid)), args={'tags': tags}, sock_dir=__opts__['sock_dir'], transport=__opts__['transport'] ) __utils__['cloud.wait_for_fun']( set_tags, timeout=30, name=vm_['name'], tags=tags, resource_id=volid, call='action', location=location ) return ret
def rename_tables(db, table_mapping, reverse=False): """ renames tables from source to destination name, if the source exists and the destination does not exist yet. """ from django.db import connection if reverse: table_mapping = [(dst, src) for src, dst in table_mapping] table_names = connection.introspection.table_names() for source, destination in table_mapping: if source in table_names and destination in table_names: print(u" WARNING: not renaming {0} to {1}, because both tables already exist.".format(source, destination)) elif source in table_names and destination not in table_names: print(u" - renaming {0} to {1}".format(source, destination)) db.rename_table(source, destination)
renames tables from source to destination name, if the source exists and the destination does not exist yet.
Below is the the instruction that describes the task: ### Input: renames tables from source to destination name, if the source exists and the destination does not exist yet. ### Response: def rename_tables(db, table_mapping, reverse=False): """ renames tables from source to destination name, if the source exists and the destination does not exist yet. """ from django.db import connection if reverse: table_mapping = [(dst, src) for src, dst in table_mapping] table_names = connection.introspection.table_names() for source, destination in table_mapping: if source in table_names and destination in table_names: print(u" WARNING: not renaming {0} to {1}, because both tables already exist.".format(source, destination)) elif source in table_names and destination not in table_names: print(u" - renaming {0} to {1}".format(source, destination)) db.rename_table(source, destination)
def create_x_axis(self, name, label=None, format=None, date=False, custom_format=False): """Create X-axis""" axis = {} if custom_format and format: axis['tickFormat'] = format elif format: if format == 'AM_PM': axis['tickFormat'] = "function(d) { return get_am_pm(parseInt(d)); }" else: axis['tickFormat'] = "d3.format(',%s')" % format if label: axis['axisLabel'] = "'" + label + "'" # date format : see https://github.com/mbostock/d3/wiki/Time-Formatting if date: self.dateformat = format axis['tickFormat'] = ("function(d) { return d3.time.format('%s')" "(new Date(parseInt(d))) }\n" "" % self.dateformat) # flag is the x Axis is a date if name[0] == 'x': self.x_axis_date = True # Add new axis to list of axis self.axislist[name] = axis # Create x2Axis if focus_enable if name == "xAxis" and self.focus_enable: self.axislist['x2Axis'] = axis
Create X-axis
Below is the the instruction that describes the task: ### Input: Create X-axis ### Response: def create_x_axis(self, name, label=None, format=None, date=False, custom_format=False): """Create X-axis""" axis = {} if custom_format and format: axis['tickFormat'] = format elif format: if format == 'AM_PM': axis['tickFormat'] = "function(d) { return get_am_pm(parseInt(d)); }" else: axis['tickFormat'] = "d3.format(',%s')" % format if label: axis['axisLabel'] = "'" + label + "'" # date format : see https://github.com/mbostock/d3/wiki/Time-Formatting if date: self.dateformat = format axis['tickFormat'] = ("function(d) { return d3.time.format('%s')" "(new Date(parseInt(d))) }\n" "" % self.dateformat) # flag is the x Axis is a date if name[0] == 'x': self.x_axis_date = True # Add new axis to list of axis self.axislist[name] = axis # Create x2Axis if focus_enable if name == "xAxis" and self.focus_enable: self.axislist['x2Axis'] = axis
def thub(data, n): """ Tee or "T" hub auto-copier to help working with Stream instances as well as with numbers. Parameters ---------- data : Input to be copied. Can be anything. n : Number of copies. Returns ------- A StreamTeeHub instance, if input data is iterable. The data itself, otherwise. Examples -------- >>> def sub_sum(x, y): ... x = thub(x, 2) # Casts to StreamTeeHub, when needed ... y = thub(y, 2) ... return (x - y) / (x + y) # Return type might be number or Stream With numbers: >>> sub_sum(1, 1.) 0.0 Combining number with iterable: >>> sub_sum(3., [1, 2, 3]) <audiolazy.lazy_stream.Stream object at 0x...> >>> list(sub_sum(3., [1, 2, 3])) [0.5, 0.2, 0.0] Both iterables (the Stream input behaves like an endless [6, 1, 6, 1, ...]): >>> list(sub_sum([4., 3., 2., 1.], [1, 2, 3])) [0.6, 0.2, -0.2] >>> list(sub_sum([4., 3., 2., 1.], Stream(6, 1))) [-0.2, 0.5, -0.5, 0.0] This function can also be used as a an alternative to the Stream constructor when your function has only one parameter, to avoid casting when that's not needed: >>> func = lambda x: 250 * thub(x, 1) >>> func(1) 250 >>> func([2] * 10) <audiolazy.lazy_stream.Stream object at 0x...> >>> func([2] * 10).take(5) [500, 500, 500, 500, 500] """ return StreamTeeHub(data, n) if isinstance(data, Iterable) else data
Tee or "T" hub auto-copier to help working with Stream instances as well as with numbers. Parameters ---------- data : Input to be copied. Can be anything. n : Number of copies. Returns ------- A StreamTeeHub instance, if input data is iterable. The data itself, otherwise. Examples -------- >>> def sub_sum(x, y): ... x = thub(x, 2) # Casts to StreamTeeHub, when needed ... y = thub(y, 2) ... return (x - y) / (x + y) # Return type might be number or Stream With numbers: >>> sub_sum(1, 1.) 0.0 Combining number with iterable: >>> sub_sum(3., [1, 2, 3]) <audiolazy.lazy_stream.Stream object at 0x...> >>> list(sub_sum(3., [1, 2, 3])) [0.5, 0.2, 0.0] Both iterables (the Stream input behaves like an endless [6, 1, 6, 1, ...]): >>> list(sub_sum([4., 3., 2., 1.], [1, 2, 3])) [0.6, 0.2, -0.2] >>> list(sub_sum([4., 3., 2., 1.], Stream(6, 1))) [-0.2, 0.5, -0.5, 0.0] This function can also be used as a an alternative to the Stream constructor when your function has only one parameter, to avoid casting when that's not needed: >>> func = lambda x: 250 * thub(x, 1) >>> func(1) 250 >>> func([2] * 10) <audiolazy.lazy_stream.Stream object at 0x...> >>> func([2] * 10).take(5) [500, 500, 500, 500, 500]
Below is the the instruction that describes the task: ### Input: Tee or "T" hub auto-copier to help working with Stream instances as well as with numbers. Parameters ---------- data : Input to be copied. Can be anything. n : Number of copies. Returns ------- A StreamTeeHub instance, if input data is iterable. The data itself, otherwise. Examples -------- >>> def sub_sum(x, y): ... x = thub(x, 2) # Casts to StreamTeeHub, when needed ... y = thub(y, 2) ... return (x - y) / (x + y) # Return type might be number or Stream With numbers: >>> sub_sum(1, 1.) 0.0 Combining number with iterable: >>> sub_sum(3., [1, 2, 3]) <audiolazy.lazy_stream.Stream object at 0x...> >>> list(sub_sum(3., [1, 2, 3])) [0.5, 0.2, 0.0] Both iterables (the Stream input behaves like an endless [6, 1, 6, 1, ...]): >>> list(sub_sum([4., 3., 2., 1.], [1, 2, 3])) [0.6, 0.2, -0.2] >>> list(sub_sum([4., 3., 2., 1.], Stream(6, 1))) [-0.2, 0.5, -0.5, 0.0] This function can also be used as a an alternative to the Stream constructor when your function has only one parameter, to avoid casting when that's not needed: >>> func = lambda x: 250 * thub(x, 1) >>> func(1) 250 >>> func([2] * 10) <audiolazy.lazy_stream.Stream object at 0x...> >>> func([2] * 10).take(5) [500, 500, 500, 500, 500] ### Response: def thub(data, n): """ Tee or "T" hub auto-copier to help working with Stream instances as well as with numbers. Parameters ---------- data : Input to be copied. Can be anything. n : Number of copies. Returns ------- A StreamTeeHub instance, if input data is iterable. The data itself, otherwise. Examples -------- >>> def sub_sum(x, y): ... x = thub(x, 2) # Casts to StreamTeeHub, when needed ... y = thub(y, 2) ... return (x - y) / (x + y) # Return type might be number or Stream With numbers: >>> sub_sum(1, 1.) 0.0 Combining number with iterable: >>> sub_sum(3., [1, 2, 3]) <audiolazy.lazy_stream.Stream object at 0x...> >>> list(sub_sum(3., [1, 2, 3])) [0.5, 0.2, 0.0] Both iterables (the Stream input behaves like an endless [6, 1, 6, 1, ...]): >>> list(sub_sum([4., 3., 2., 1.], [1, 2, 3])) [0.6, 0.2, -0.2] >>> list(sub_sum([4., 3., 2., 1.], Stream(6, 1))) [-0.2, 0.5, -0.5, 0.0] This function can also be used as a an alternative to the Stream constructor when your function has only one parameter, to avoid casting when that's not needed: >>> func = lambda x: 250 * thub(x, 1) >>> func(1) 250 >>> func([2] * 10) <audiolazy.lazy_stream.Stream object at 0x...> >>> func([2] * 10).take(5) [500, 500, 500, 500, 500] """ return StreamTeeHub(data, n) if isinstance(data, Iterable) else data
def add_resources(self, resources): """ Adds new resources to the event. *resources* can be a list of email addresses or :class:`ExchangeEventAttendee` objects. """ new_resources = self._build_resource_dictionary(resources) for key in new_resources: self._resources[key] = new_resources[key] self._dirty_attributes.add(u'resources')
Adds new resources to the event. *resources* can be a list of email addresses or :class:`ExchangeEventAttendee` objects.
Below is the the instruction that describes the task: ### Input: Adds new resources to the event. *resources* can be a list of email addresses or :class:`ExchangeEventAttendee` objects. ### Response: def add_resources(self, resources): """ Adds new resources to the event. *resources* can be a list of email addresses or :class:`ExchangeEventAttendee` objects. """ new_resources = self._build_resource_dictionary(resources) for key in new_resources: self._resources[key] = new_resources[key] self._dirty_attributes.add(u'resources')
def edit(self, resource): """Edit a job. :param resource: :class:`jobs.Job <jobs.Job>` object :return: :class:`jobs.Job <jobs.Job>` object :rtype: jobs.Job """ schema = JobSchema(exclude=('id', 'status', 'options', 'package_name', 'config_name', 'device_name', 'result_id', 'user_id', 'created', 'updated', 'automatic', 'run_at')) json = self.service.encode(schema, resource) schema = JobSchema() resp = self.service.edit(self.base, resource.name, json) return self.service.decode(schema, resp)
Edit a job. :param resource: :class:`jobs.Job <jobs.Job>` object :return: :class:`jobs.Job <jobs.Job>` object :rtype: jobs.Job
Below is the the instruction that describes the task: ### Input: Edit a job. :param resource: :class:`jobs.Job <jobs.Job>` object :return: :class:`jobs.Job <jobs.Job>` object :rtype: jobs.Job ### Response: def edit(self, resource): """Edit a job. :param resource: :class:`jobs.Job <jobs.Job>` object :return: :class:`jobs.Job <jobs.Job>` object :rtype: jobs.Job """ schema = JobSchema(exclude=('id', 'status', 'options', 'package_name', 'config_name', 'device_name', 'result_id', 'user_id', 'created', 'updated', 'automatic', 'run_at')) json = self.service.encode(schema, resource) schema = JobSchema() resp = self.service.edit(self.base, resource.name, json) return self.service.decode(schema, resp)
def get_embedded_items(result_collection): """ Given a result_collection (returned by a previous API call that returns a collection, like get_bundle_list() or search()), return a list of embedded items with each item in the returned list considered a result object. 'result_collection' a JSON object returned by a previous API call. The parameter 'embed_items' must have been True when the result_collection was originally requested.May not be None. Returns a list, which may be empty if no embedded items were found. """ # Argument error checking. assert result_collection is not None result = [] embedded_objects = result_collection.get('_embedded') if embedded_objects is not None: # Handle being passed a non-collection gracefully. result = embedded_objects.get('items', result) return result
Given a result_collection (returned by a previous API call that returns a collection, like get_bundle_list() or search()), return a list of embedded items with each item in the returned list considered a result object. 'result_collection' a JSON object returned by a previous API call. The parameter 'embed_items' must have been True when the result_collection was originally requested.May not be None. Returns a list, which may be empty if no embedded items were found.
Below is the the instruction that describes the task: ### Input: Given a result_collection (returned by a previous API call that returns a collection, like get_bundle_list() or search()), return a list of embedded items with each item in the returned list considered a result object. 'result_collection' a JSON object returned by a previous API call. The parameter 'embed_items' must have been True when the result_collection was originally requested.May not be None. Returns a list, which may be empty if no embedded items were found. ### Response: def get_embedded_items(result_collection): """ Given a result_collection (returned by a previous API call that returns a collection, like get_bundle_list() or search()), return a list of embedded items with each item in the returned list considered a result object. 'result_collection' a JSON object returned by a previous API call. The parameter 'embed_items' must have been True when the result_collection was originally requested.May not be None. Returns a list, which may be empty if no embedded items were found. """ # Argument error checking. assert result_collection is not None result = [] embedded_objects = result_collection.get('_embedded') if embedded_objects is not None: # Handle being passed a non-collection gracefully. result = embedded_objects.get('items', result) return result
def _item_to_metric(iterator, log_metric_pb): """Convert a metric protobuf to the native object. :type iterator: :class:`~google.api_core.page_iterator.Iterator` :param iterator: The iterator that is currently in use. :type log_metric_pb: :class:`.logging_metrics_pb2.LogMetric` :param log_metric_pb: Metric protobuf returned from the API. :rtype: :class:`~google.cloud.logging.metric.Metric` :returns: The next metric in the page. """ # NOTE: LogMetric message type does not have an ``Any`` field # so `MessageToDict`` can safely be used. resource = MessageToDict(log_metric_pb) return Metric.from_api_repr(resource, iterator.client)
Convert a metric protobuf to the native object. :type iterator: :class:`~google.api_core.page_iterator.Iterator` :param iterator: The iterator that is currently in use. :type log_metric_pb: :class:`.logging_metrics_pb2.LogMetric` :param log_metric_pb: Metric protobuf returned from the API. :rtype: :class:`~google.cloud.logging.metric.Metric` :returns: The next metric in the page.
Below is the the instruction that describes the task: ### Input: Convert a metric protobuf to the native object. :type iterator: :class:`~google.api_core.page_iterator.Iterator` :param iterator: The iterator that is currently in use. :type log_metric_pb: :class:`.logging_metrics_pb2.LogMetric` :param log_metric_pb: Metric protobuf returned from the API. :rtype: :class:`~google.cloud.logging.metric.Metric` :returns: The next metric in the page. ### Response: def _item_to_metric(iterator, log_metric_pb): """Convert a metric protobuf to the native object. :type iterator: :class:`~google.api_core.page_iterator.Iterator` :param iterator: The iterator that is currently in use. :type log_metric_pb: :class:`.logging_metrics_pb2.LogMetric` :param log_metric_pb: Metric protobuf returned from the API. :rtype: :class:`~google.cloud.logging.metric.Metric` :returns: The next metric in the page. """ # NOTE: LogMetric message type does not have an ``Any`` field # so `MessageToDict`` can safely be used. resource = MessageToDict(log_metric_pb) return Metric.from_api_repr(resource, iterator.client)
def switch_to_window(self, window_name=None, title=None, url=None): """ WebDriver implements switching to other window only by it's name. With wrapper there is also option to switch by title of window or URL. URL can be also relative path. """ if window_name: self.switch_to.window(window_name) return if url: url = self.get_url(path=url) for window_handle in self.window_handles: self.switch_to.window(window_handle) if title and self.title == title: return if url and self.current_url == url: return raise selenium_exc.NoSuchWindowException('Window (title=%s, url=%s) not found.' % (title, url))
WebDriver implements switching to other window only by it's name. With wrapper there is also option to switch by title of window or URL. URL can be also relative path.
Below is the the instruction that describes the task: ### Input: WebDriver implements switching to other window only by it's name. With wrapper there is also option to switch by title of window or URL. URL can be also relative path. ### Response: def switch_to_window(self, window_name=None, title=None, url=None): """ WebDriver implements switching to other window only by it's name. With wrapper there is also option to switch by title of window or URL. URL can be also relative path. """ if window_name: self.switch_to.window(window_name) return if url: url = self.get_url(path=url) for window_handle in self.window_handles: self.switch_to.window(window_handle) if title and self.title == title: return if url and self.current_url == url: return raise selenium_exc.NoSuchWindowException('Window (title=%s, url=%s) not found.' % (title, url))
def _complete_execution(self, g): """Forward any raised exceptions across a channel.""" # Triggered via completion callback. # # Runs in its own greenlet, so take care to forward the # exception, if any, to fail the entire transfer in event of # trouble. assert g.ready() self.greenlets.remove(g) placed = UserCritical(msg='placeholder bogus exception', hint='report a bug') if g.successful(): try: segment = g.get() if not segment.explicit: segment.mark_done() except BaseException as e: # Absorb and forward exceptions across the channel. placed = e else: placed = None else: placed = g.exception self.wait_change.put(placed)
Forward any raised exceptions across a channel.
Below is the the instruction that describes the task: ### Input: Forward any raised exceptions across a channel. ### Response: def _complete_execution(self, g): """Forward any raised exceptions across a channel.""" # Triggered via completion callback. # # Runs in its own greenlet, so take care to forward the # exception, if any, to fail the entire transfer in event of # trouble. assert g.ready() self.greenlets.remove(g) placed = UserCritical(msg='placeholder bogus exception', hint='report a bug') if g.successful(): try: segment = g.get() if not segment.explicit: segment.mark_done() except BaseException as e: # Absorb and forward exceptions across the channel. placed = e else: placed = None else: placed = g.exception self.wait_change.put(placed)
def normalize_example(self, example, hparams): """Assumes that example contains both inputs and targets.""" length = self.max_length(hparams) def _to_constant_shape(tensor): tensor = tensor[:length] tensor = tf.pad(tensor, [(0, length - tf.shape(tensor)[0])]) return tf.reshape(tensor, [length]) if self.has_inputs: example['inputs'] = _to_constant_shape(example['inputs']) example['targets'] = _to_constant_shape(example['targets']) elif 'inputs' in example: if self.packed_length: raise ValueError('cannot concatenate packed examples on the fly.') inputs = example.pop('inputs')[:-1] # Remove EOS token. targets = tf.concat([inputs, example['targets']], 0) example['targets'] = _to_constant_shape(targets) else: example['targets'] = _to_constant_shape(example['targets']) if self.packed_length: if self.has_inputs: if 'inputs_segmentation' in example: example['inputs_segmentation'] = _to_constant_shape( example['inputs_segmentation']) example['inputs_position'] = _to_constant_shape( example['inputs_position']) else: example['inputs_segmentation'] = tf.to_int64( tf.not_equal(example['inputs'], 0)) example['inputs_position'] = ( example['inputs_segmentation'] * tf.range(length, dtype=tf.int64)) if 'targets_segmentation' in example: example['targets_segmentation'] = _to_constant_shape( example['targets_segmentation']) example['targets_position'] = _to_constant_shape( example['targets_position']) else: example['targets_segmentation'] = tf.to_int64( tf.not_equal(example['targets'], 0)) example['targets_position'] = ( example['targets_segmentation'] * tf.range(length, dtype=tf.int64)) return example
Assumes that example contains both inputs and targets.
Below is the the instruction that describes the task: ### Input: Assumes that example contains both inputs and targets. ### Response: def normalize_example(self, example, hparams): """Assumes that example contains both inputs and targets.""" length = self.max_length(hparams) def _to_constant_shape(tensor): tensor = tensor[:length] tensor = tf.pad(tensor, [(0, length - tf.shape(tensor)[0])]) return tf.reshape(tensor, [length]) if self.has_inputs: example['inputs'] = _to_constant_shape(example['inputs']) example['targets'] = _to_constant_shape(example['targets']) elif 'inputs' in example: if self.packed_length: raise ValueError('cannot concatenate packed examples on the fly.') inputs = example.pop('inputs')[:-1] # Remove EOS token. targets = tf.concat([inputs, example['targets']], 0) example['targets'] = _to_constant_shape(targets) else: example['targets'] = _to_constant_shape(example['targets']) if self.packed_length: if self.has_inputs: if 'inputs_segmentation' in example: example['inputs_segmentation'] = _to_constant_shape( example['inputs_segmentation']) example['inputs_position'] = _to_constant_shape( example['inputs_position']) else: example['inputs_segmentation'] = tf.to_int64( tf.not_equal(example['inputs'], 0)) example['inputs_position'] = ( example['inputs_segmentation'] * tf.range(length, dtype=tf.int64)) if 'targets_segmentation' in example: example['targets_segmentation'] = _to_constant_shape( example['targets_segmentation']) example['targets_position'] = _to_constant_shape( example['targets_position']) else: example['targets_segmentation'] = tf.to_int64( tf.not_equal(example['targets'], 0)) example['targets_position'] = ( example['targets_segmentation'] * tf.range(length, dtype=tf.int64)) return example
def clear_messages(self): """ Clears all messages. """ while len(self._messages): msg = self._messages.pop(0) usd = msg.block.userData() if usd and hasattr(usd, 'messages'): usd.messages[:] = [] if msg.decoration: self.editor.decorations.remove(msg.decoration)
Clears all messages.
Below is the the instruction that describes the task: ### Input: Clears all messages. ### Response: def clear_messages(self): """ Clears all messages. """ while len(self._messages): msg = self._messages.pop(0) usd = msg.block.userData() if usd and hasattr(usd, 'messages'): usd.messages[:] = [] if msg.decoration: self.editor.decorations.remove(msg.decoration)
def create_optparser(progname=None): """ an OptionParser instance filled with options and groups appropriate for use with the distdiff command """ from . import report parser = ArgumentParser(prog=progname) parser.add_argument("dist", nargs=2, help="distributions to compare") add_general_optgroup(parser) add_distdiff_optgroup(parser) add_jardiff_optgroup(parser) add_classdiff_optgroup(parser) report.add_general_report_optgroup(parser) report.add_json_report_optgroup(parser) report.add_html_report_optgroup(parser) return parser
an OptionParser instance filled with options and groups appropriate for use with the distdiff command
Below is the the instruction that describes the task: ### Input: an OptionParser instance filled with options and groups appropriate for use with the distdiff command ### Response: def create_optparser(progname=None): """ an OptionParser instance filled with options and groups appropriate for use with the distdiff command """ from . import report parser = ArgumentParser(prog=progname) parser.add_argument("dist", nargs=2, help="distributions to compare") add_general_optgroup(parser) add_distdiff_optgroup(parser) add_jardiff_optgroup(parser) add_classdiff_optgroup(parser) report.add_general_report_optgroup(parser) report.add_json_report_optgroup(parser) report.add_html_report_optgroup(parser) return parser
def level_grouper(text, getreffs, level=None, groupby=20): """ Alternative to level_chunker: groups levels together at the latest level :param text: Text object :param getreffs: GetValidReff query callback :param level: Level of citation to retrieve :param groupby: Number of level to groupby :return: Automatically curated references """ if level is None or level > len(text.citation): level = len(text.citation) references = [ref.split(":")[-1] for ref in getreffs(level=level)] _refs = OrderedDict() for key in references: k = ".".join(key.split(".")[:level-1]) if k not in _refs: _refs[k] = [] _refs[k].append(key) del k return [ ( join_or_single(ref[0], ref[-1]), join_or_single(ref[0], ref[-1]) ) for sublist in _refs.values() for ref in [ sublist[i:i+groupby] for i in range(0, len(sublist), groupby) ] ]
Alternative to level_chunker: groups levels together at the latest level :param text: Text object :param getreffs: GetValidReff query callback :param level: Level of citation to retrieve :param groupby: Number of level to groupby :return: Automatically curated references
Below is the the instruction that describes the task: ### Input: Alternative to level_chunker: groups levels together at the latest level :param text: Text object :param getreffs: GetValidReff query callback :param level: Level of citation to retrieve :param groupby: Number of level to groupby :return: Automatically curated references ### Response: def level_grouper(text, getreffs, level=None, groupby=20): """ Alternative to level_chunker: groups levels together at the latest level :param text: Text object :param getreffs: GetValidReff query callback :param level: Level of citation to retrieve :param groupby: Number of level to groupby :return: Automatically curated references """ if level is None or level > len(text.citation): level = len(text.citation) references = [ref.split(":")[-1] for ref in getreffs(level=level)] _refs = OrderedDict() for key in references: k = ".".join(key.split(".")[:level-1]) if k not in _refs: _refs[k] = [] _refs[k].append(key) del k return [ ( join_or_single(ref[0], ref[-1]), join_or_single(ref[0], ref[-1]) ) for sublist in _refs.values() for ref in [ sublist[i:i+groupby] for i in range(0, len(sublist), groupby) ] ]
def _put_pages(self): """ First, the Document object does the heavy-lifting for the individual page objects and content. Then, the overall "Pages" object is generated. """ self.document._get_orientation_changes() self.document._output_pages() # Pages Object, provides reference to page objects (Kids list). self.session._add_object(1) self.session._out('<</Type /Pages') kids = '/Kids [' for i in xrange(0, len(self.document.pages)): kids += str(3 + 2 * i) + ' 0 R ' self.session._out(kids + ']') self.session._out('/Count %s' % len(self.document.pages)) # Overall size of the default PDF page self.session._out('/MediaBox [0 0 %.2f %.2f]' % (self.document.page.width, self.document.page.height)) self.session._out('>>') self.session._out('endobj')
First, the Document object does the heavy-lifting for the individual page objects and content. Then, the overall "Pages" object is generated.
Below is the the instruction that describes the task: ### Input: First, the Document object does the heavy-lifting for the individual page objects and content. Then, the overall "Pages" object is generated. ### Response: def _put_pages(self): """ First, the Document object does the heavy-lifting for the individual page objects and content. Then, the overall "Pages" object is generated. """ self.document._get_orientation_changes() self.document._output_pages() # Pages Object, provides reference to page objects (Kids list). self.session._add_object(1) self.session._out('<</Type /Pages') kids = '/Kids [' for i in xrange(0, len(self.document.pages)): kids += str(3 + 2 * i) + ' 0 R ' self.session._out(kids + ']') self.session._out('/Count %s' % len(self.document.pages)) # Overall size of the default PDF page self.session._out('/MediaBox [0 0 %.2f %.2f]' % (self.document.page.width, self.document.page.height)) self.session._out('>>') self.session._out('endobj')
def on_person_new(self, people): """ Add new people All people supported need to be added simultaneously, since on every call a unjoin() followed by a join() is issued :param people: People to add :type people: list[paps.people.People] :rtype: None :raises Exception: On error (for now just an exception) """ try: self.on_person_leave([]) except: # Already caught and logged pass try: self.sensor_client.join(people) except: self.exception("Failed to join audience") raise Exception("Joining audience failed")
Add new people All people supported need to be added simultaneously, since on every call a unjoin() followed by a join() is issued :param people: People to add :type people: list[paps.people.People] :rtype: None :raises Exception: On error (for now just an exception)
Below is the the instruction that describes the task: ### Input: Add new people All people supported need to be added simultaneously, since on every call a unjoin() followed by a join() is issued :param people: People to add :type people: list[paps.people.People] :rtype: None :raises Exception: On error (for now just an exception) ### Response: def on_person_new(self, people): """ Add new people All people supported need to be added simultaneously, since on every call a unjoin() followed by a join() is issued :param people: People to add :type people: list[paps.people.People] :rtype: None :raises Exception: On error (for now just an exception) """ try: self.on_person_leave([]) except: # Already caught and logged pass try: self.sensor_client.join(people) except: self.exception("Failed to join audience") raise Exception("Joining audience failed")
def sign( self, hash, random_k ): """Return a signature for the provided hash, using the provided random nonce. It is absolutely vital that random_k be an unpredictable number in the range [1, self.public_key.point.order()-1]. If an attacker can guess random_k, he can compute our private key from a single signature. Also, if an attacker knows a few high-order bits (or a few low-order bits) of random_k, he can compute our private key from many signatures. The generation of nonces with adequate cryptographic strength is very difficult and far beyond the scope of this comment. May raise RuntimeError, in which case retrying with a new random value k is in order. """ G = self.public_key.generator n = G.order() k = random_k % n p1 = k * G r = p1.x() if r == 0: raise RuntimeError("amazingly unlucky random number r") s = ( numbertheory.inverse_mod( k, n ) * \ ( hash + ( self.secret_multiplier * r ) % n ) ) % n if s == 0: raise RuntimeError("amazingly unlucky random number s") return Signature( r, s )
Return a signature for the provided hash, using the provided random nonce. It is absolutely vital that random_k be an unpredictable number in the range [1, self.public_key.point.order()-1]. If an attacker can guess random_k, he can compute our private key from a single signature. Also, if an attacker knows a few high-order bits (or a few low-order bits) of random_k, he can compute our private key from many signatures. The generation of nonces with adequate cryptographic strength is very difficult and far beyond the scope of this comment. May raise RuntimeError, in which case retrying with a new random value k is in order.
Below is the the instruction that describes the task: ### Input: Return a signature for the provided hash, using the provided random nonce. It is absolutely vital that random_k be an unpredictable number in the range [1, self.public_key.point.order()-1]. If an attacker can guess random_k, he can compute our private key from a single signature. Also, if an attacker knows a few high-order bits (or a few low-order bits) of random_k, he can compute our private key from many signatures. The generation of nonces with adequate cryptographic strength is very difficult and far beyond the scope of this comment. May raise RuntimeError, in which case retrying with a new random value k is in order. ### Response: def sign( self, hash, random_k ): """Return a signature for the provided hash, using the provided random nonce. It is absolutely vital that random_k be an unpredictable number in the range [1, self.public_key.point.order()-1]. If an attacker can guess random_k, he can compute our private key from a single signature. Also, if an attacker knows a few high-order bits (or a few low-order bits) of random_k, he can compute our private key from many signatures. The generation of nonces with adequate cryptographic strength is very difficult and far beyond the scope of this comment. May raise RuntimeError, in which case retrying with a new random value k is in order. """ G = self.public_key.generator n = G.order() k = random_k % n p1 = k * G r = p1.x() if r == 0: raise RuntimeError("amazingly unlucky random number r") s = ( numbertheory.inverse_mod( k, n ) * \ ( hash + ( self.secret_multiplier * r ) % n ) ) % n if s == 0: raise RuntimeError("amazingly unlucky random number s") return Signature( r, s )
def _iterative_matches(self, nodes): """Helper to iteratively yield the matches.""" nodelen = len(nodes) if 0 >= self.min: yield 0, {} results = [] # generate matches that use just one alt from self.content for alt in self.content: for c, r in generate_matches(alt, nodes): yield c, r results.append((c, r)) # for each match, iterate down the nodes while results: new_results = [] for c0, r0 in results: # stop if the entire set of nodes has been matched if c0 < nodelen and c0 <= self.max: for alt in self.content: for c1, r1 in generate_matches(alt, nodes[c0:]): if c1 > 0: r = {} r.update(r0) r.update(r1) yield c0 + c1, r new_results.append((c0 + c1, r)) results = new_results
Helper to iteratively yield the matches.
Below is the the instruction that describes the task: ### Input: Helper to iteratively yield the matches. ### Response: def _iterative_matches(self, nodes): """Helper to iteratively yield the matches.""" nodelen = len(nodes) if 0 >= self.min: yield 0, {} results = [] # generate matches that use just one alt from self.content for alt in self.content: for c, r in generate_matches(alt, nodes): yield c, r results.append((c, r)) # for each match, iterate down the nodes while results: new_results = [] for c0, r0 in results: # stop if the entire set of nodes has been matched if c0 < nodelen and c0 <= self.max: for alt in self.content: for c1, r1 in generate_matches(alt, nodes[c0:]): if c1 > 0: r = {} r.update(r0) r.update(r1) yield c0 + c1, r new_results.append((c0 + c1, r)) results = new_results
def letter_set(self): """ Return the letter set of this node. """ end_str = ctypes.create_string_buffer(MAX_CHARS) cgaddag.gdg_letter_set(self.gdg, self.node, end_str) return [char for char in end_str.value.decode("ascii")]
Return the letter set of this node.
Below is the the instruction that describes the task: ### Input: Return the letter set of this node. ### Response: def letter_set(self): """ Return the letter set of this node. """ end_str = ctypes.create_string_buffer(MAX_CHARS) cgaddag.gdg_letter_set(self.gdg, self.node, end_str) return [char for char in end_str.value.decode("ascii")]
def get_posts(self, count=10, offset=0, recent=True, tag=None, user_id=None, include_draft=False): """ Get posts given by filter criteria :param count: The number of posts to retrieve (default 10) :type count: int :param offset: The number of posts to offset (default 0) :type offset: int :param recent: Order by recent posts or not :type recent: bool :param tag: Filter by a specific tag :type tag: str :param user_id: Filter by a specific user :type user_id: str :param include_draft: Whether to include posts marked as draft or not :type include_draft: bool :return: A list of posts, with each element a dict containing values for the following keys: (title, text, draft, post_date, last_modified_date). If count is ``None``, then all the posts are returned. """ user_id = str(user_id) if user_id else user_id with self._engine.begin() as conn: try: # post_statement ensures the correct posts are selected # in the correct order post_statement = sqla.select([self._post_table]) post_filter = self._get_filter( tag, user_id, include_draft, conn ) if post_filter is not None: post_statement = post_statement.where(post_filter) if count: post_statement = post_statement.limit(count) if offset: post_statement = post_statement.offset(offset) post_ordering = \ sqla.desc(self._post_table.c.post_date) if recent \ else self._post_table.c.post_date post_statement = post_statement.order_by(post_ordering) post_statement = post_statement.alias('post') # joined_statement ensures other data is retrieved joined_statement = post_statement.join(self._tag_posts_table) \ .join(self._tag_table) \ .join(self._user_posts_table) \ .alias('join') joined_ordering = \ sqla.desc(joined_statement.c.post_post_date) if recent \ else joined_statement.c.post_post_date joined_statement = sqla.select([joined_statement]) \ .order_by(joined_ordering) all_rows = conn.execute(joined_statement).fetchall() result = \ self._serialise_posts_and_tags_from_joined_rows(all_rows) except Exception as e: self._logger.exception(str(e)) result = [] return result
Get posts given by filter criteria :param count: The number of posts to retrieve (default 10) :type count: int :param offset: The number of posts to offset (default 0) :type offset: int :param recent: Order by recent posts or not :type recent: bool :param tag: Filter by a specific tag :type tag: str :param user_id: Filter by a specific user :type user_id: str :param include_draft: Whether to include posts marked as draft or not :type include_draft: bool :return: A list of posts, with each element a dict containing values for the following keys: (title, text, draft, post_date, last_modified_date). If count is ``None``, then all the posts are returned.
Below is the the instruction that describes the task: ### Input: Get posts given by filter criteria :param count: The number of posts to retrieve (default 10) :type count: int :param offset: The number of posts to offset (default 0) :type offset: int :param recent: Order by recent posts or not :type recent: bool :param tag: Filter by a specific tag :type tag: str :param user_id: Filter by a specific user :type user_id: str :param include_draft: Whether to include posts marked as draft or not :type include_draft: bool :return: A list of posts, with each element a dict containing values for the following keys: (title, text, draft, post_date, last_modified_date). If count is ``None``, then all the posts are returned. ### Response: def get_posts(self, count=10, offset=0, recent=True, tag=None, user_id=None, include_draft=False): """ Get posts given by filter criteria :param count: The number of posts to retrieve (default 10) :type count: int :param offset: The number of posts to offset (default 0) :type offset: int :param recent: Order by recent posts or not :type recent: bool :param tag: Filter by a specific tag :type tag: str :param user_id: Filter by a specific user :type user_id: str :param include_draft: Whether to include posts marked as draft or not :type include_draft: bool :return: A list of posts, with each element a dict containing values for the following keys: (title, text, draft, post_date, last_modified_date). If count is ``None``, then all the posts are returned. """ user_id = str(user_id) if user_id else user_id with self._engine.begin() as conn: try: # post_statement ensures the correct posts are selected # in the correct order post_statement = sqla.select([self._post_table]) post_filter = self._get_filter( tag, user_id, include_draft, conn ) if post_filter is not None: post_statement = post_statement.where(post_filter) if count: post_statement = post_statement.limit(count) if offset: post_statement = post_statement.offset(offset) post_ordering = \ sqla.desc(self._post_table.c.post_date) if recent \ else self._post_table.c.post_date post_statement = post_statement.order_by(post_ordering) post_statement = post_statement.alias('post') # joined_statement ensures other data is retrieved joined_statement = post_statement.join(self._tag_posts_table) \ .join(self._tag_table) \ .join(self._user_posts_table) \ .alias('join') joined_ordering = \ sqla.desc(joined_statement.c.post_post_date) if recent \ else joined_statement.c.post_post_date joined_statement = sqla.select([joined_statement]) \ .order_by(joined_ordering) all_rows = conn.execute(joined_statement).fetchall() result = \ self._serialise_posts_and_tags_from_joined_rows(all_rows) except Exception as e: self._logger.exception(str(e)) result = [] return result
def Burr(c, k, tag=None): """ A Burr random variate Parameters ---------- c : scalar The first shape parameter k : scalar The second shape parameter """ assert c > 0 and k > 0, 'Burr "c" and "k" parameters must be greater than zero' return uv(ss.burr(c, k), tag=tag)
A Burr random variate Parameters ---------- c : scalar The first shape parameter k : scalar The second shape parameter
Below is the the instruction that describes the task: ### Input: A Burr random variate Parameters ---------- c : scalar The first shape parameter k : scalar The second shape parameter ### Response: def Burr(c, k, tag=None): """ A Burr random variate Parameters ---------- c : scalar The first shape parameter k : scalar The second shape parameter """ assert c > 0 and k > 0, 'Burr "c" and "k" parameters must be greater than zero' return uv(ss.burr(c, k), tag=tag)
def get_trading_days(self, market, start=None, end=None): """获取交易日 :param market: 市场类型,Market_ :param start: 起始日期。例如'2018-01-01'。 :param end: 结束日期。例如'2018-01-01'。 start和end的组合如下: ========== ========== ======================================== start类型 end类型 说明 ========== ========== ======================================== str str start和end分别为指定的日期 None str start为end往前365天 str None end为start往后365天 None None end为当前日期,start为end往前365天 ========== ========== ======================================== :return: 成功时返回(RET_OK, data),data是字符串数组;失败时返回(RET_ERROR, data),其中data是错误描述字符串 """ if market is None or is_str(market) is False: error_str = ERROR_STR_PREFIX + "the type of market param is wrong" return RET_ERROR, error_str ret, msg, start, end = normalize_start_end_date(start, end, 365) if ret != RET_OK: return ret, msg query_processor = self._get_sync_query_processor( TradeDayQuery.pack_req, TradeDayQuery.unpack_rsp) # the keys of kargs should be corresponding to the actual function arguments kargs = { 'market': market, 'start_date': start, 'end_date': end, 'conn_id': self.get_sync_conn_id() } ret_code, msg, trade_day_list = query_processor(**kargs) if ret_code != RET_OK: return RET_ERROR, msg return RET_OK, trade_day_list
获取交易日 :param market: 市场类型,Market_ :param start: 起始日期。例如'2018-01-01'。 :param end: 结束日期。例如'2018-01-01'。 start和end的组合如下: ========== ========== ======================================== start类型 end类型 说明 ========== ========== ======================================== str str start和end分别为指定的日期 None str start为end往前365天 str None end为start往后365天 None None end为当前日期,start为end往前365天 ========== ========== ======================================== :return: 成功时返回(RET_OK, data),data是字符串数组;失败时返回(RET_ERROR, data),其中data是错误描述字符串
Below is the the instruction that describes the task: ### Input: 获取交易日 :param market: 市场类型,Market_ :param start: 起始日期。例如'2018-01-01'。 :param end: 结束日期。例如'2018-01-01'。 start和end的组合如下: ========== ========== ======================================== start类型 end类型 说明 ========== ========== ======================================== str str start和end分别为指定的日期 None str start为end往前365天 str None end为start往后365天 None None end为当前日期,start为end往前365天 ========== ========== ======================================== :return: 成功时返回(RET_OK, data),data是字符串数组;失败时返回(RET_ERROR, data),其中data是错误描述字符串 ### Response: def get_trading_days(self, market, start=None, end=None): """获取交易日 :param market: 市场类型,Market_ :param start: 起始日期。例如'2018-01-01'。 :param end: 结束日期。例如'2018-01-01'。 start和end的组合如下: ========== ========== ======================================== start类型 end类型 说明 ========== ========== ======================================== str str start和end分别为指定的日期 None str start为end往前365天 str None end为start往后365天 None None end为当前日期,start为end往前365天 ========== ========== ======================================== :return: 成功时返回(RET_OK, data),data是字符串数组;失败时返回(RET_ERROR, data),其中data是错误描述字符串 """ if market is None or is_str(market) is False: error_str = ERROR_STR_PREFIX + "the type of market param is wrong" return RET_ERROR, error_str ret, msg, start, end = normalize_start_end_date(start, end, 365) if ret != RET_OK: return ret, msg query_processor = self._get_sync_query_processor( TradeDayQuery.pack_req, TradeDayQuery.unpack_rsp) # the keys of kargs should be corresponding to the actual function arguments kargs = { 'market': market, 'start_date': start, 'end_date': end, 'conn_id': self.get_sync_conn_id() } ret_code, msg, trade_day_list = query_processor(**kargs) if ret_code != RET_OK: return RET_ERROR, msg return RET_OK, trade_day_list
def show_edge(self, edge_id): """Displays edge with ce_ratio. :param edge_id: Edge ID for which to show the ce_ratio. :type edge_id: int """ # pylint: disable=unused-variable,relative-import from mpl_toolkits.mplot3d import Axes3D from matplotlib import pyplot as plt if "faces" not in self.cells: self.create_cell_face_relationships() if "edges" not in self.faces: self.create_face_edge_relationships() fig = plt.figure() ax = fig.gca(projection=Axes3D.name) plt.axis("equal") # find all faces with this edge adj_face_ids = numpy.where((self.faces["edges"] == edge_id).any(axis=1))[0] # find all cells with the faces # https://stackoverflow.com/a/38481969/353337 adj_cell_ids = numpy.where( numpy.in1d(self.cells["faces"], adj_face_ids) .reshape(self.cells["faces"].shape) .any(axis=1) )[0] # plot all those adjacent cells; first collect all edges adj_edge_ids = numpy.unique( [ adj_edge_id for adj_cell_id in adj_cell_ids for face_id in self.cells["faces"][adj_cell_id] for adj_edge_id in self.faces["edges"][face_id] ] ) col = "k" for adj_edge_id in adj_edge_ids: x = self.node_coords[self.edges["nodes"][adj_edge_id]] ax.plot(x[:, 0], x[:, 1], x[:, 2], col) # make clear which is edge_id x = self.node_coords[self.edges["nodes"][edge_id]] ax.plot(x[:, 0], x[:, 1], x[:, 2], color=col, linewidth=3.0) # connect the face circumcenters with the corresponding cell # circumcenters X = self.node_coords for cell_id in adj_cell_ids: cc = self._circumcenters[cell_id] # x = X[self.node_face_cells[..., [cell_id]]] face_ccs = compute_triangle_circumcenters(x, self.ei_dot_ei, self.ei_dot_ej) # draw the face circumcenters ax.plot( face_ccs[..., 0].flatten(), face_ccs[..., 1].flatten(), face_ccs[..., 2].flatten(), "go", ) # draw the connections # tet circumcenter---face circumcenter for face_cc in face_ccs: ax.plot( [cc[..., 0], face_cc[..., 0]], [cc[..., 1], face_cc[..., 1]], [cc[..., 2], face_cc[..., 2]], "b-", ) # draw the cell circumcenters cc = self._circumcenters[adj_cell_ids] ax.plot(cc[:, 0], cc[:, 1], cc[:, 2], "ro") return
Displays edge with ce_ratio. :param edge_id: Edge ID for which to show the ce_ratio. :type edge_id: int
Below is the the instruction that describes the task: ### Input: Displays edge with ce_ratio. :param edge_id: Edge ID for which to show the ce_ratio. :type edge_id: int ### Response: def show_edge(self, edge_id): """Displays edge with ce_ratio. :param edge_id: Edge ID for which to show the ce_ratio. :type edge_id: int """ # pylint: disable=unused-variable,relative-import from mpl_toolkits.mplot3d import Axes3D from matplotlib import pyplot as plt if "faces" not in self.cells: self.create_cell_face_relationships() if "edges" not in self.faces: self.create_face_edge_relationships() fig = plt.figure() ax = fig.gca(projection=Axes3D.name) plt.axis("equal") # find all faces with this edge adj_face_ids = numpy.where((self.faces["edges"] == edge_id).any(axis=1))[0] # find all cells with the faces # https://stackoverflow.com/a/38481969/353337 adj_cell_ids = numpy.where( numpy.in1d(self.cells["faces"], adj_face_ids) .reshape(self.cells["faces"].shape) .any(axis=1) )[0] # plot all those adjacent cells; first collect all edges adj_edge_ids = numpy.unique( [ adj_edge_id for adj_cell_id in adj_cell_ids for face_id in self.cells["faces"][adj_cell_id] for adj_edge_id in self.faces["edges"][face_id] ] ) col = "k" for adj_edge_id in adj_edge_ids: x = self.node_coords[self.edges["nodes"][adj_edge_id]] ax.plot(x[:, 0], x[:, 1], x[:, 2], col) # make clear which is edge_id x = self.node_coords[self.edges["nodes"][edge_id]] ax.plot(x[:, 0], x[:, 1], x[:, 2], color=col, linewidth=3.0) # connect the face circumcenters with the corresponding cell # circumcenters X = self.node_coords for cell_id in adj_cell_ids: cc = self._circumcenters[cell_id] # x = X[self.node_face_cells[..., [cell_id]]] face_ccs = compute_triangle_circumcenters(x, self.ei_dot_ei, self.ei_dot_ej) # draw the face circumcenters ax.plot( face_ccs[..., 0].flatten(), face_ccs[..., 1].flatten(), face_ccs[..., 2].flatten(), "go", ) # draw the connections # tet circumcenter---face circumcenter for face_cc in face_ccs: ax.plot( [cc[..., 0], face_cc[..., 0]], [cc[..., 1], face_cc[..., 1]], [cc[..., 2], face_cc[..., 2]], "b-", ) # draw the cell circumcenters cc = self._circumcenters[adj_cell_ids] ax.plot(cc[:, 0], cc[:, 1], cc[:, 2], "ro") return
def setMovie(self, movie): """ Sets the movie that will play for the given column. :param movie | <QtGui.QMovie> || None """ mov = self.movie() if mov is not None: mov.frameChanged.disconnect(self._updateFrame) if movie is not None: self._movie = movie self.setIcon(QtGui.QIcon(movie.currentPixmap())) movie.frameChanged.connect(self._updateFrame) widget = self.listWidget() widget.destroyed.connect(self.cleanup) else: self._movie = None
Sets the movie that will play for the given column. :param movie | <QtGui.QMovie> || None
Below is the the instruction that describes the task: ### Input: Sets the movie that will play for the given column. :param movie | <QtGui.QMovie> || None ### Response: def setMovie(self, movie): """ Sets the movie that will play for the given column. :param movie | <QtGui.QMovie> || None """ mov = self.movie() if mov is not None: mov.frameChanged.disconnect(self._updateFrame) if movie is not None: self._movie = movie self.setIcon(QtGui.QIcon(movie.currentPixmap())) movie.frameChanged.connect(self._updateFrame) widget = self.listWidget() widget.destroyed.connect(self.cleanup) else: self._movie = None
def _write_min_gradient(self)->None: "Writes the minimum of the gradients to Tensorboard." min_gradient = min(x.data.min() for x in self.gradients) self._add_gradient_scalar('min_gradient', scalar_value=min_gradient)
Writes the minimum of the gradients to Tensorboard.
Below is the the instruction that describes the task: ### Input: Writes the minimum of the gradients to Tensorboard. ### Response: def _write_min_gradient(self)->None: "Writes the minimum of the gradients to Tensorboard." min_gradient = min(x.data.min() for x in self.gradients) self._add_gradient_scalar('min_gradient', scalar_value=min_gradient)
def _text_attr(self, attr): """ Given a text attribute, set the current cursor appropriately. """ attr = text[attr] if attr == "reset": self.cursor_attributes = self.default_attributes elif attr == "underline-off": self.cursor_attributes = self._remove_text_attr("underline") elif attr == "blink-off": self.cursor_attributes = self._remove_text_attr("blink") elif attr == "reverse-off": self.cursor_attributes = self._remove_text_attr("reverse") else: self.cursor_attributes = self._add_text_attr(attr)
Given a text attribute, set the current cursor appropriately.
Below is the the instruction that describes the task: ### Input: Given a text attribute, set the current cursor appropriately. ### Response: def _text_attr(self, attr): """ Given a text attribute, set the current cursor appropriately. """ attr = text[attr] if attr == "reset": self.cursor_attributes = self.default_attributes elif attr == "underline-off": self.cursor_attributes = self._remove_text_attr("underline") elif attr == "blink-off": self.cursor_attributes = self._remove_text_attr("blink") elif attr == "reverse-off": self.cursor_attributes = self._remove_text_attr("reverse") else: self.cursor_attributes = self._add_text_attr(attr)
def find_pingback_href(self, content): """ Try to find LINK markups to pingback URL. """ soup = BeautifulSoup(content, 'html.parser') for link in soup.find_all('link'): dict_attr = dict(link.attrs) if 'rel' in dict_attr and 'href' in dict_attr: for rel_type in dict_attr['rel']: if rel_type.lower() == PINGBACK: return dict_attr.get('href')
Try to find LINK markups to pingback URL.
Below is the the instruction that describes the task: ### Input: Try to find LINK markups to pingback URL. ### Response: def find_pingback_href(self, content): """ Try to find LINK markups to pingback URL. """ soup = BeautifulSoup(content, 'html.parser') for link in soup.find_all('link'): dict_attr = dict(link.attrs) if 'rel' in dict_attr and 'href' in dict_attr: for rel_type in dict_attr['rel']: if rel_type.lower() == PINGBACK: return dict_attr.get('href')
def build_pyfile_path_from_docname(self, docfile): """Build the expected Python file name based on the given documentation file name. :param str docfile: The documentation file name from which to build the Python file name. :rtype: str """ name, ext = os.path.splitext(docfile) expected_py_name = name.replace('.', '/') + '.py' return expected_py_name
Build the expected Python file name based on the given documentation file name. :param str docfile: The documentation file name from which to build the Python file name. :rtype: str
Below is the the instruction that describes the task: ### Input: Build the expected Python file name based on the given documentation file name. :param str docfile: The documentation file name from which to build the Python file name. :rtype: str ### Response: def build_pyfile_path_from_docname(self, docfile): """Build the expected Python file name based on the given documentation file name. :param str docfile: The documentation file name from which to build the Python file name. :rtype: str """ name, ext = os.path.splitext(docfile) expected_py_name = name.replace('.', '/') + '.py' return expected_py_name
def parse_options(files, env_prefix='CONFPY', strict=True): """Parse configuration options and return a configuration object. Args: files (iter of str): File paths which identify configuration files. These files are processed in order with values in later files overwriting values in earlier files. env_prefix (str): The static prefix prepended to all options when set as environment variables. The default is CONFPY. strict (bool): Whether or not to parse the files in strict mode. Returns: confpy.core.config.Configuration: The loaded configuration object. Raises: MissingRequiredOption: If a required option is not defined in any file. NamespaceNotRegistered: If a file contains a namespace which is not defined. OptionNotRegistered: If a file contains an option which is not defined but resides under a valid namespace. UnrecognizedFileExtension: If there is no loader for a path. """ return check_for_missing_options( config=set_cli_options( config=set_environment_var_options( config=configuration_from_paths( paths=files, strict=strict, ), prefix=env_prefix, ), ) )
Parse configuration options and return a configuration object. Args: files (iter of str): File paths which identify configuration files. These files are processed in order with values in later files overwriting values in earlier files. env_prefix (str): The static prefix prepended to all options when set as environment variables. The default is CONFPY. strict (bool): Whether or not to parse the files in strict mode. Returns: confpy.core.config.Configuration: The loaded configuration object. Raises: MissingRequiredOption: If a required option is not defined in any file. NamespaceNotRegistered: If a file contains a namespace which is not defined. OptionNotRegistered: If a file contains an option which is not defined but resides under a valid namespace. UnrecognizedFileExtension: If there is no loader for a path.
Below is the the instruction that describes the task: ### Input: Parse configuration options and return a configuration object. Args: files (iter of str): File paths which identify configuration files. These files are processed in order with values in later files overwriting values in earlier files. env_prefix (str): The static prefix prepended to all options when set as environment variables. The default is CONFPY. strict (bool): Whether or not to parse the files in strict mode. Returns: confpy.core.config.Configuration: The loaded configuration object. Raises: MissingRequiredOption: If a required option is not defined in any file. NamespaceNotRegistered: If a file contains a namespace which is not defined. OptionNotRegistered: If a file contains an option which is not defined but resides under a valid namespace. UnrecognizedFileExtension: If there is no loader for a path. ### Response: def parse_options(files, env_prefix='CONFPY', strict=True): """Parse configuration options and return a configuration object. Args: files (iter of str): File paths which identify configuration files. These files are processed in order with values in later files overwriting values in earlier files. env_prefix (str): The static prefix prepended to all options when set as environment variables. The default is CONFPY. strict (bool): Whether or not to parse the files in strict mode. Returns: confpy.core.config.Configuration: The loaded configuration object. Raises: MissingRequiredOption: If a required option is not defined in any file. NamespaceNotRegistered: If a file contains a namespace which is not defined. OptionNotRegistered: If a file contains an option which is not defined but resides under a valid namespace. UnrecognizedFileExtension: If there is no loader for a path. """ return check_for_missing_options( config=set_cli_options( config=set_environment_var_options( config=configuration_from_paths( paths=files, strict=strict, ), prefix=env_prefix, ), ) )
def _config(self, args, config): """ Get configuration for the current used listing. """ listings = dict((x.args, x) for x in config.subsections('listing')) listing = listings.get(args.listing) if listing is None: if args.listing == u'default': return {'pattern': self._profile.list_default_pattern, 'order': self._profile.list_default_order} else: raise KolektoRuntimeError('Unknown listing %r' % args.listing) else: return {'pattern': listing.get('pattern'), 'order': listing.get('order')}
Get configuration for the current used listing.
Below is the the instruction that describes the task: ### Input: Get configuration for the current used listing. ### Response: def _config(self, args, config): """ Get configuration for the current used listing. """ listings = dict((x.args, x) for x in config.subsections('listing')) listing = listings.get(args.listing) if listing is None: if args.listing == u'default': return {'pattern': self._profile.list_default_pattern, 'order': self._profile.list_default_order} else: raise KolektoRuntimeError('Unknown listing %r' % args.listing) else: return {'pattern': listing.get('pattern'), 'order': listing.get('order')}
def _get_group_randomstate(rs, seed, group): """Return a RandomState, equal to the input unless rs is None. When rs is None, try to get the random state from the 'last_random_state' attribute in `group`. When not available, use `seed` to generate a random state. When seed is None the returned random state will have a random seed. """ if rs is None: rs = np.random.RandomState(seed=seed) # Try to set the random state from the last session to preserve # a single random stream when simulating timestamps multiple times if 'last_random_state' in group._v_attrs: rs.set_state(group._v_attrs['last_random_state']) print("INFO: Random state set to last saved state in '%s'." % group._v_name) else: print("INFO: Random state initialized from seed (%d)." % seed) return rs
Return a RandomState, equal to the input unless rs is None. When rs is None, try to get the random state from the 'last_random_state' attribute in `group`. When not available, use `seed` to generate a random state. When seed is None the returned random state will have a random seed.
Below is the the instruction that describes the task: ### Input: Return a RandomState, equal to the input unless rs is None. When rs is None, try to get the random state from the 'last_random_state' attribute in `group`. When not available, use `seed` to generate a random state. When seed is None the returned random state will have a random seed. ### Response: def _get_group_randomstate(rs, seed, group): """Return a RandomState, equal to the input unless rs is None. When rs is None, try to get the random state from the 'last_random_state' attribute in `group`. When not available, use `seed` to generate a random state. When seed is None the returned random state will have a random seed. """ if rs is None: rs = np.random.RandomState(seed=seed) # Try to set the random state from the last session to preserve # a single random stream when simulating timestamps multiple times if 'last_random_state' in group._v_attrs: rs.set_state(group._v_attrs['last_random_state']) print("INFO: Random state set to last saved state in '%s'." % group._v_name) else: print("INFO: Random state initialized from seed (%d)." % seed) return rs
def preprocess_image(image_buffer, output_height, output_width, num_channels, is_training=False): """Preprocesses the given image. Preprocessing includes decoding, cropping, and resizing for both training and eval images. Training preprocessing, however, introduces some random distortion of the image to improve accuracy. Args: image_buffer: scalar string Tensor representing the raw JPEG image buffer. output_height: The height of the image after preprocessing. output_width: The width of the image after preprocessing. num_channels: Integer depth of the image buffer for decoding. is_training: `True` if we're preprocessing the image for training and `False` otherwise. Returns: A preprocessed image. """ if is_training: # For training, we want to randomize some of the distortions. image = _decode_crop_and_flip(image_buffer, num_channels) mlperf_log.resnet_print(key=mlperf_log.INPUT_RESIZE, value=[output_height, output_width]) image = _resize_image(image, output_height, output_width) else: # For validation, we want to decode, resize, then just crop the middle. image = tf.image.decode_jpeg(image_buffer, channels=num_channels) image = _aspect_preserving_resize(image, _RESIZE_MIN) mlperf_log.resnet_print(key=mlperf_log.INPUT_RESIZE, value=[output_height, output_width]) image = _central_crop(image, output_height, output_width) image.set_shape([output_height, output_width, num_channels]) return _mean_image_subtraction(image, _CHANNEL_MEANS, num_channels)
Preprocesses the given image. Preprocessing includes decoding, cropping, and resizing for both training and eval images. Training preprocessing, however, introduces some random distortion of the image to improve accuracy. Args: image_buffer: scalar string Tensor representing the raw JPEG image buffer. output_height: The height of the image after preprocessing. output_width: The width of the image after preprocessing. num_channels: Integer depth of the image buffer for decoding. is_training: `True` if we're preprocessing the image for training and `False` otherwise. Returns: A preprocessed image.
Below is the the instruction that describes the task: ### Input: Preprocesses the given image. Preprocessing includes decoding, cropping, and resizing for both training and eval images. Training preprocessing, however, introduces some random distortion of the image to improve accuracy. Args: image_buffer: scalar string Tensor representing the raw JPEG image buffer. output_height: The height of the image after preprocessing. output_width: The width of the image after preprocessing. num_channels: Integer depth of the image buffer for decoding. is_training: `True` if we're preprocessing the image for training and `False` otherwise. Returns: A preprocessed image. ### Response: def preprocess_image(image_buffer, output_height, output_width, num_channels, is_training=False): """Preprocesses the given image. Preprocessing includes decoding, cropping, and resizing for both training and eval images. Training preprocessing, however, introduces some random distortion of the image to improve accuracy. Args: image_buffer: scalar string Tensor representing the raw JPEG image buffer. output_height: The height of the image after preprocessing. output_width: The width of the image after preprocessing. num_channels: Integer depth of the image buffer for decoding. is_training: `True` if we're preprocessing the image for training and `False` otherwise. Returns: A preprocessed image. """ if is_training: # For training, we want to randomize some of the distortions. image = _decode_crop_and_flip(image_buffer, num_channels) mlperf_log.resnet_print(key=mlperf_log.INPUT_RESIZE, value=[output_height, output_width]) image = _resize_image(image, output_height, output_width) else: # For validation, we want to decode, resize, then just crop the middle. image = tf.image.decode_jpeg(image_buffer, channels=num_channels) image = _aspect_preserving_resize(image, _RESIZE_MIN) mlperf_log.resnet_print(key=mlperf_log.INPUT_RESIZE, value=[output_height, output_width]) image = _central_crop(image, output_height, output_width) image.set_shape([output_height, output_width, num_channels]) return _mean_image_subtraction(image, _CHANNEL_MEANS, num_channels)
def lines(self) -> str: """Return the source code lines for this error.""" if self.definition is None: return '' source = '' lines = self.definition.source offset = self.definition.start # type: ignore lines_stripped = list(reversed(list(dropwhile(is_blank, reversed(lines))))) numbers_width = len(str(offset + len(lines_stripped))) line_format = '{{:{}}}:{{}}'.format(numbers_width) for n, line in enumerate(lines_stripped): if line: line = ' ' + line source += line_format.format(n + offset, line) if n > 5: source += ' ...\n' break return source
Return the source code lines for this error.
Below is the the instruction that describes the task: ### Input: Return the source code lines for this error. ### Response: def lines(self) -> str: """Return the source code lines for this error.""" if self.definition is None: return '' source = '' lines = self.definition.source offset = self.definition.start # type: ignore lines_stripped = list(reversed(list(dropwhile(is_blank, reversed(lines))))) numbers_width = len(str(offset + len(lines_stripped))) line_format = '{{:{}}}:{{}}'.format(numbers_width) for n, line in enumerate(lines_stripped): if line: line = ' ' + line source += line_format.format(n + offset, line) if n > 5: source += ' ...\n' break return source
def get_dataset(self, datasetid): """The method is getting information about dataset byt it's id""" path = '/api/1.0/meta/dataset/{}' return self._api_get(definition.Dataset, path.format(datasetid))
The method is getting information about dataset byt it's id
Below is the the instruction that describes the task: ### Input: The method is getting information about dataset byt it's id ### Response: def get_dataset(self, datasetid): """The method is getting information about dataset byt it's id""" path = '/api/1.0/meta/dataset/{}' return self._api_get(definition.Dataset, path.format(datasetid))
def update(self, validate=False): """ Update the data associated with this snapshot by querying EC2. :type validate: bool :param validate: By default, if EC2 returns no data about the snapshot the update method returns quietly. If the validate param is True, however, it will raise a ValueError exception if no data is returned from EC2. """ rs = self.connection.get_all_snapshots([self.id]) if len(rs) > 0: self._update(rs[0]) elif validate: raise ValueError('%s is not a valid Snapshot ID' % self.id) return self.progress
Update the data associated with this snapshot by querying EC2. :type validate: bool :param validate: By default, if EC2 returns no data about the snapshot the update method returns quietly. If the validate param is True, however, it will raise a ValueError exception if no data is returned from EC2.
Below is the the instruction that describes the task: ### Input: Update the data associated with this snapshot by querying EC2. :type validate: bool :param validate: By default, if EC2 returns no data about the snapshot the update method returns quietly. If the validate param is True, however, it will raise a ValueError exception if no data is returned from EC2. ### Response: def update(self, validate=False): """ Update the data associated with this snapshot by querying EC2. :type validate: bool :param validate: By default, if EC2 returns no data about the snapshot the update method returns quietly. If the validate param is True, however, it will raise a ValueError exception if no data is returned from EC2. """ rs = self.connection.get_all_snapshots([self.id]) if len(rs) > 0: self._update(rs[0]) elif validate: raise ValueError('%s is not a valid Snapshot ID' % self.id) return self.progress
def FetchResponses(self, session_id): """Retrieves responses for a well known flow. Args: session_id: The session_id to get the requests/responses for. Yields: The retrieved responses. """ timestamp = (0, self.frozen_timestamp or rdfvalue.RDFDatetime.Now()) for response in self.data_store.FetchResponsesForWellKnownFlow( session_id, self.response_limit, timestamp=timestamp): yield response
Retrieves responses for a well known flow. Args: session_id: The session_id to get the requests/responses for. Yields: The retrieved responses.
Below is the the instruction that describes the task: ### Input: Retrieves responses for a well known flow. Args: session_id: The session_id to get the requests/responses for. Yields: The retrieved responses. ### Response: def FetchResponses(self, session_id): """Retrieves responses for a well known flow. Args: session_id: The session_id to get the requests/responses for. Yields: The retrieved responses. """ timestamp = (0, self.frozen_timestamp or rdfvalue.RDFDatetime.Now()) for response in self.data_store.FetchResponsesForWellKnownFlow( session_id, self.response_limit, timestamp=timestamp): yield response
def adsPortOpenEx(): # type: () -> int """Connect to the TwinCAT message router. :rtype: int :return: port number """ port_open_ex = _adsDLL.AdsPortOpenEx port_open_ex.restype = ctypes.c_long port = port_open_ex() if port == 0: raise RuntimeError("Failed to open port on AMS router.") return port
Connect to the TwinCAT message router. :rtype: int :return: port number
Below is the the instruction that describes the task: ### Input: Connect to the TwinCAT message router. :rtype: int :return: port number ### Response: def adsPortOpenEx(): # type: () -> int """Connect to the TwinCAT message router. :rtype: int :return: port number """ port_open_ex = _adsDLL.AdsPortOpenEx port_open_ex.restype = ctypes.c_long port = port_open_ex() if port == 0: raise RuntimeError("Failed to open port on AMS router.") return port
def convert_date_columns(df, date_format='epoch'): """Convert dates/datetimes to preferred string format if specified i.e. '%Y-%m-%d', 'epoch', 'iso' """ if date_format not in ['epoch', 'iso']: if '%' in date_format: try: datetime.datetime.now().strftime(date_format) except: raise DateConversionError('Error serializing dates in DataFrame using format {}.'.format(date_format)) finally: for column, data_type in df.dtypes.to_dict().items(): if 'date' in str(data_type): df[column] = df[column].dt.strftime(date_format) else: raise DateConversionError('Error serializing dates in DataFrame using format {}.'.format(date_format)) return df
Convert dates/datetimes to preferred string format if specified i.e. '%Y-%m-%d', 'epoch', 'iso'
Below is the the instruction that describes the task: ### Input: Convert dates/datetimes to preferred string format if specified i.e. '%Y-%m-%d', 'epoch', 'iso' ### Response: def convert_date_columns(df, date_format='epoch'): """Convert dates/datetimes to preferred string format if specified i.e. '%Y-%m-%d', 'epoch', 'iso' """ if date_format not in ['epoch', 'iso']: if '%' in date_format: try: datetime.datetime.now().strftime(date_format) except: raise DateConversionError('Error serializing dates in DataFrame using format {}.'.format(date_format)) finally: for column, data_type in df.dtypes.to_dict().items(): if 'date' in str(data_type): df[column] = df[column].dt.strftime(date_format) else: raise DateConversionError('Error serializing dates in DataFrame using format {}.'.format(date_format)) return df
def print_stats(self): """ Print a series of relevant stats about a full execution. This function is meant to be called at the end of the program. """ stats = self.calculate() total_time = '%d:%02d:%02d' % (stats['total_time'] / 3600, (stats['total_time'] / 3600) / 60, (stats['total_time'] % 3600) % 60) output = """\ Total runtime: {total_time} Lyrics found: {found} Lyrics not found:{notfound} Most useful source:\ {best} ({best_count} lyrics found) ({best_rate:.2f}% success rate) Least useful source:\ {worst} ({worst_count} lyrics found) ({worst_rate:.2f}% success rate) Fastest website to scrape: {fastest} (Avg: {fastest_time:.2f}s per search) Slowest website to scrape: {slowest} (Avg: {slowest_time:.2f}s per search) Average time per website: {avg_time:.2f}s xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxx PER WEBSITE STATS: xxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx """ output = output.format(total_time=total_time, found=stats['found'], notfound=stats['notfound'], best=stats['best'][0].capitalize(), best_count=stats['best'][1], best_rate=stats['best'][2], worst=stats['worst'][0].capitalize(), worst_count=stats['worst'][1], worst_rate=stats['worst'][2], fastest=stats['fastest'][0].capitalize(), fastest_time=stats['fastest'][1], slowest=stats['slowest'][0].capitalize(), slowest_time=stats['slowest'][1], avg_time=self.avg_time()) for source in sources: stat = str(self.source_stats[source.__name__]) output += f'\n{source.__name__.upper()}\n{stat}\n' print(output)
Print a series of relevant stats about a full execution. This function is meant to be called at the end of the program.
Below is the the instruction that describes the task: ### Input: Print a series of relevant stats about a full execution. This function is meant to be called at the end of the program. ### Response: def print_stats(self): """ Print a series of relevant stats about a full execution. This function is meant to be called at the end of the program. """ stats = self.calculate() total_time = '%d:%02d:%02d' % (stats['total_time'] / 3600, (stats['total_time'] / 3600) / 60, (stats['total_time'] % 3600) % 60) output = """\ Total runtime: {total_time} Lyrics found: {found} Lyrics not found:{notfound} Most useful source:\ {best} ({best_count} lyrics found) ({best_rate:.2f}% success rate) Least useful source:\ {worst} ({worst_count} lyrics found) ({worst_rate:.2f}% success rate) Fastest website to scrape: {fastest} (Avg: {fastest_time:.2f}s per search) Slowest website to scrape: {slowest} (Avg: {slowest_time:.2f}s per search) Average time per website: {avg_time:.2f}s xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxx PER WEBSITE STATS: xxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx """ output = output.format(total_time=total_time, found=stats['found'], notfound=stats['notfound'], best=stats['best'][0].capitalize(), best_count=stats['best'][1], best_rate=stats['best'][2], worst=stats['worst'][0].capitalize(), worst_count=stats['worst'][1], worst_rate=stats['worst'][2], fastest=stats['fastest'][0].capitalize(), fastest_time=stats['fastest'][1], slowest=stats['slowest'][0].capitalize(), slowest_time=stats['slowest'][1], avg_time=self.avg_time()) for source in sources: stat = str(self.source_stats[source.__name__]) output += f'\n{source.__name__.upper()}\n{stat}\n' print(output)
def load(self, code, setup='', teardown=''): """Prepares a set of setup, test, and teardown code to be run in the console. PARAMETERS: code -- list; processed lines of code. Elements in the list are either strings (input) or CodeAnswer objects (output) setup -- str; raw setup code teardown -- str; raw teardown code """ self._setup = textwrap.dedent(setup).splitlines() self._code = code self._teardown = textwrap.dedent(teardown).splitlines()
Prepares a set of setup, test, and teardown code to be run in the console. PARAMETERS: code -- list; processed lines of code. Elements in the list are either strings (input) or CodeAnswer objects (output) setup -- str; raw setup code teardown -- str; raw teardown code
Below is the the instruction that describes the task: ### Input: Prepares a set of setup, test, and teardown code to be run in the console. PARAMETERS: code -- list; processed lines of code. Elements in the list are either strings (input) or CodeAnswer objects (output) setup -- str; raw setup code teardown -- str; raw teardown code ### Response: def load(self, code, setup='', teardown=''): """Prepares a set of setup, test, and teardown code to be run in the console. PARAMETERS: code -- list; processed lines of code. Elements in the list are either strings (input) or CodeAnswer objects (output) setup -- str; raw setup code teardown -- str; raw teardown code """ self._setup = textwrap.dedent(setup).splitlines() self._code = code self._teardown = textwrap.dedent(teardown).splitlines()
def user_play_list(uid, offset=0, limit=1000): """获取用户歌单,包含收藏的歌单 :param uid: 用户的ID,可通过登录或者其他接口获取 :param offset: (optional) 分段起始位置,默认 0 :param limit: (optional) 数据上限多少行,默认 1000 """ if uid is None: raise ParamsError() r = NCloudBot() r.method = 'USER_PLAY_LIST' r.data = {'offset': offset, 'uid': uid, 'limit': limit, 'csrf_token': ''} r.send() return r.response
获取用户歌单,包含收藏的歌单 :param uid: 用户的ID,可通过登录或者其他接口获取 :param offset: (optional) 分段起始位置,默认 0 :param limit: (optional) 数据上限多少行,默认 1000
Below is the the instruction that describes the task: ### Input: 获取用户歌单,包含收藏的歌单 :param uid: 用户的ID,可通过登录或者其他接口获取 :param offset: (optional) 分段起始位置,默认 0 :param limit: (optional) 数据上限多少行,默认 1000 ### Response: def user_play_list(uid, offset=0, limit=1000): """获取用户歌单,包含收藏的歌单 :param uid: 用户的ID,可通过登录或者其他接口获取 :param offset: (optional) 分段起始位置,默认 0 :param limit: (optional) 数据上限多少行,默认 1000 """ if uid is None: raise ParamsError() r = NCloudBot() r.method = 'USER_PLAY_LIST' r.data = {'offset': offset, 'uid': uid, 'limit': limit, 'csrf_token': ''} r.send() return r.response
def add(self, urls): """ Add the provided urls to this purge request The urls argument can be a single string, a list of strings, a queryset or model instance. Models must implement `get_absolute_url()`. """ if isinstance(urls, (list, tuple)): self.urls.extend(urls) elif isinstance(urls, basestring): self.urls.append(urls) elif isinstance(urls, QuerySet): for obj in urls: self.urls.append(obj.get_absolute_url()) elif hasattr(urls, 'get_absolute_url'): self.urls.append(urls.get_absolute_url()) else: raise TypeError("Don't know how to handle %r" % urls)
Add the provided urls to this purge request The urls argument can be a single string, a list of strings, a queryset or model instance. Models must implement `get_absolute_url()`.
Below is the the instruction that describes the task: ### Input: Add the provided urls to this purge request The urls argument can be a single string, a list of strings, a queryset or model instance. Models must implement `get_absolute_url()`. ### Response: def add(self, urls): """ Add the provided urls to this purge request The urls argument can be a single string, a list of strings, a queryset or model instance. Models must implement `get_absolute_url()`. """ if isinstance(urls, (list, tuple)): self.urls.extend(urls) elif isinstance(urls, basestring): self.urls.append(urls) elif isinstance(urls, QuerySet): for obj in urls: self.urls.append(obj.get_absolute_url()) elif hasattr(urls, 'get_absolute_url'): self.urls.append(urls.get_absolute_url()) else: raise TypeError("Don't know how to handle %r" % urls)
def delete_report(self, report): """ Deletes a generated report instance. https://canvas.instructure.com/doc/api/account_reports.html#method.account_reports.destroy """ url = ACCOUNTS_API.format(report.account_id) + "/reports/{}/{}".format( report.type, report.report_id) response = self._delete_resource(url) return True
Deletes a generated report instance. https://canvas.instructure.com/doc/api/account_reports.html#method.account_reports.destroy
Below is the the instruction that describes the task: ### Input: Deletes a generated report instance. https://canvas.instructure.com/doc/api/account_reports.html#method.account_reports.destroy ### Response: def delete_report(self, report): """ Deletes a generated report instance. https://canvas.instructure.com/doc/api/account_reports.html#method.account_reports.destroy """ url = ACCOUNTS_API.format(report.account_id) + "/reports/{}/{}".format( report.type, report.report_id) response = self._delete_resource(url) return True
def disconnect_handler(remote, *args, **kwargs): """Handle unlinking of remote account.""" if not current_user.is_authenticated: return current_app.login_manager.unauthorized() account = RemoteAccount.get(user_id=current_user.get_id(), client_id=remote.consumer_key) external_id = account.extra_data.get('external_id') if external_id: oauth_unlink_external_id(dict(id=external_id, method='cern')) if account: with db.session.begin_nested(): account.delete() disconnect_identity(g.identity) return redirect(url_for('invenio_oauthclient_settings.index'))
Handle unlinking of remote account.
Below is the the instruction that describes the task: ### Input: Handle unlinking of remote account. ### Response: def disconnect_handler(remote, *args, **kwargs): """Handle unlinking of remote account.""" if not current_user.is_authenticated: return current_app.login_manager.unauthorized() account = RemoteAccount.get(user_id=current_user.get_id(), client_id=remote.consumer_key) external_id = account.extra_data.get('external_id') if external_id: oauth_unlink_external_id(dict(id=external_id, method='cern')) if account: with db.session.begin_nested(): account.delete() disconnect_identity(g.identity) return redirect(url_for('invenio_oauthclient_settings.index'))
def _UpdateChildIndex(self, urn, mutation_pool): """Update the child indexes. This function maintains the index for direct child relations. When we set an AFF4 path, we always add an attribute like index:dir/%(childname)s to its parent. This is written asynchronously to its parent. In order to query for all direct children of an AFF4 object, we then simple get the attributes which match the regex index:dir/.+ which are the direct children. Args: urn: The AFF4 object for which we update the index. mutation_pool: A MutationPool object to write to. """ try: # Create navigation aids by touching intermediate subject names. while urn.Path() != "/": basename = urn.Basename() dirname = rdfvalue.RDFURN(urn.Dirname()) try: self.intermediate_cache.Get(urn) return except KeyError: extra_attributes = None # This is a performance optimization. On the root there is no point # setting the last access time since it gets accessed all the time. # TODO(amoser): Can we get rid of the index in the root node entirely? # It's too big to query anyways... if dirname != u"/": extra_attributes = { AFF4Object.SchemaCls.LAST: [ rdfvalue.RDFDatetime.Now().SerializeToDataStore() ] } mutation_pool.AFF4AddChild( dirname, basename, extra_attributes=extra_attributes) self.intermediate_cache.Put(urn, 1) urn = dirname except access_control.UnauthorizedAccess: pass
Update the child indexes. This function maintains the index for direct child relations. When we set an AFF4 path, we always add an attribute like index:dir/%(childname)s to its parent. This is written asynchronously to its parent. In order to query for all direct children of an AFF4 object, we then simple get the attributes which match the regex index:dir/.+ which are the direct children. Args: urn: The AFF4 object for which we update the index. mutation_pool: A MutationPool object to write to.
Below is the the instruction that describes the task: ### Input: Update the child indexes. This function maintains the index for direct child relations. When we set an AFF4 path, we always add an attribute like index:dir/%(childname)s to its parent. This is written asynchronously to its parent. In order to query for all direct children of an AFF4 object, we then simple get the attributes which match the regex index:dir/.+ which are the direct children. Args: urn: The AFF4 object for which we update the index. mutation_pool: A MutationPool object to write to. ### Response: def _UpdateChildIndex(self, urn, mutation_pool): """Update the child indexes. This function maintains the index for direct child relations. When we set an AFF4 path, we always add an attribute like index:dir/%(childname)s to its parent. This is written asynchronously to its parent. In order to query for all direct children of an AFF4 object, we then simple get the attributes which match the regex index:dir/.+ which are the direct children. Args: urn: The AFF4 object for which we update the index. mutation_pool: A MutationPool object to write to. """ try: # Create navigation aids by touching intermediate subject names. while urn.Path() != "/": basename = urn.Basename() dirname = rdfvalue.RDFURN(urn.Dirname()) try: self.intermediate_cache.Get(urn) return except KeyError: extra_attributes = None # This is a performance optimization. On the root there is no point # setting the last access time since it gets accessed all the time. # TODO(amoser): Can we get rid of the index in the root node entirely? # It's too big to query anyways... if dirname != u"/": extra_attributes = { AFF4Object.SchemaCls.LAST: [ rdfvalue.RDFDatetime.Now().SerializeToDataStore() ] } mutation_pool.AFF4AddChild( dirname, basename, extra_attributes=extra_attributes) self.intermediate_cache.Put(urn, 1) urn = dirname except access_control.UnauthorizedAccess: pass
async def notify(self, *args): """ Notify handlers :param args: :return: """ from .filters import check_filters, FilterNotPassed results = [] data = {} ctx_data.set(data) if self.middleware_key: try: await self.dispatcher.middleware.trigger(f"pre_process_{self.middleware_key}", args + (data,)) except CancelHandler: # Allow to cancel current event return results try: for handler_obj in self.handlers: try: data.update(await check_filters(handler_obj.filters, args)) except FilterNotPassed: continue else: ctx_token = current_handler.set(handler_obj.handler) try: if self.middleware_key: await self.dispatcher.middleware.trigger(f"process_{self.middleware_key}", args + (data,)) partial_data = _check_spec(handler_obj.spec, data) response = await handler_obj.handler(*args, **partial_data) if response is not None: results.append(response) if self.once: break except SkipHandler: continue except CancelHandler: break finally: current_handler.reset(ctx_token) finally: if self.middleware_key: await self.dispatcher.middleware.trigger(f"post_process_{self.middleware_key}", args + (results, data,)) return results
Notify handlers :param args: :return:
Below is the the instruction that describes the task: ### Input: Notify handlers :param args: :return: ### Response: async def notify(self, *args): """ Notify handlers :param args: :return: """ from .filters import check_filters, FilterNotPassed results = [] data = {} ctx_data.set(data) if self.middleware_key: try: await self.dispatcher.middleware.trigger(f"pre_process_{self.middleware_key}", args + (data,)) except CancelHandler: # Allow to cancel current event return results try: for handler_obj in self.handlers: try: data.update(await check_filters(handler_obj.filters, args)) except FilterNotPassed: continue else: ctx_token = current_handler.set(handler_obj.handler) try: if self.middleware_key: await self.dispatcher.middleware.trigger(f"process_{self.middleware_key}", args + (data,)) partial_data = _check_spec(handler_obj.spec, data) response = await handler_obj.handler(*args, **partial_data) if response is not None: results.append(response) if self.once: break except SkipHandler: continue except CancelHandler: break finally: current_handler.reset(ctx_token) finally: if self.middleware_key: await self.dispatcher.middleware.trigger(f"post_process_{self.middleware_key}", args + (results, data,)) return results
def _create_dir_path(self, file_hash, path=None, hash_list=None): """ Create proper filesystem paths for given `file_hash`. Args: file_hash (str): Hash of the file for which the path should be created. path (str, default None): Recursion argument, don't set this. hash_list (list, default None): Recursion argument, don't set this. Returns: str: Created path. """ # first, non-recursive call - parse `file_hash` if hash_list is None: hash_list = list(file_hash) if not hash_list: raise IOError("Directory structure is too full!") # first, non-recursive call - look for subpath of `self.path` if not path: path = os.path.join( self.path, hash_list.pop(0) ) # if the path not yet exists, create it and work on it if not os.path.exists(path): os.mkdir(path) return self._create_dir_path( file_hash=file_hash, path=path, hash_list=hash_list ) files = os.listdir(path) # file is already in storage if file_hash in files: return path # if the directory is not yet full, use it if len(files) < self.dir_limit: return path # in full directories create new sub-directories return self._create_dir_path( file_hash=file_hash, path=os.path.join(path, hash_list.pop(0)), hash_list=hash_list )
Create proper filesystem paths for given `file_hash`. Args: file_hash (str): Hash of the file for which the path should be created. path (str, default None): Recursion argument, don't set this. hash_list (list, default None): Recursion argument, don't set this. Returns: str: Created path.
Below is the the instruction that describes the task: ### Input: Create proper filesystem paths for given `file_hash`. Args: file_hash (str): Hash of the file for which the path should be created. path (str, default None): Recursion argument, don't set this. hash_list (list, default None): Recursion argument, don't set this. Returns: str: Created path. ### Response: def _create_dir_path(self, file_hash, path=None, hash_list=None): """ Create proper filesystem paths for given `file_hash`. Args: file_hash (str): Hash of the file for which the path should be created. path (str, default None): Recursion argument, don't set this. hash_list (list, default None): Recursion argument, don't set this. Returns: str: Created path. """ # first, non-recursive call - parse `file_hash` if hash_list is None: hash_list = list(file_hash) if not hash_list: raise IOError("Directory structure is too full!") # first, non-recursive call - look for subpath of `self.path` if not path: path = os.path.join( self.path, hash_list.pop(0) ) # if the path not yet exists, create it and work on it if not os.path.exists(path): os.mkdir(path) return self._create_dir_path( file_hash=file_hash, path=path, hash_list=hash_list ) files = os.listdir(path) # file is already in storage if file_hash in files: return path # if the directory is not yet full, use it if len(files) < self.dir_limit: return path # in full directories create new sub-directories return self._create_dir_path( file_hash=file_hash, path=os.path.join(path, hash_list.pop(0)), hash_list=hash_list )
def gen_cisco_vdp_oui(self, oui_id, oui_data): """Cisco specific handler for constructing OUI arguments. """ oui_list = [] vm_name = oui_data.get('vm_name') if vm_name is not None: oui_str = "oui=%s," % oui_id oui_name_str = oui_str + "vm_name=" + vm_name oui_list.append(oui_name_str) ip_addr = oui_data.get('ip_addr') if ip_addr is not None: oui_str = "oui=%s," % oui_id ip_addr_str = oui_str + "ipv4_addr=" + ip_addr oui_list.append(ip_addr_str) vm_uuid = oui_data.get('vm_uuid') if vm_uuid is not None: oui_str = "oui=%s," % oui_id vm_uuid_str = oui_str + "vm_uuid=" + vm_uuid oui_list.append(vm_uuid_str) return oui_list
Cisco specific handler for constructing OUI arguments.
Below is the the instruction that describes the task: ### Input: Cisco specific handler for constructing OUI arguments. ### Response: def gen_cisco_vdp_oui(self, oui_id, oui_data): """Cisco specific handler for constructing OUI arguments. """ oui_list = [] vm_name = oui_data.get('vm_name') if vm_name is not None: oui_str = "oui=%s," % oui_id oui_name_str = oui_str + "vm_name=" + vm_name oui_list.append(oui_name_str) ip_addr = oui_data.get('ip_addr') if ip_addr is not None: oui_str = "oui=%s," % oui_id ip_addr_str = oui_str + "ipv4_addr=" + ip_addr oui_list.append(ip_addr_str) vm_uuid = oui_data.get('vm_uuid') if vm_uuid is not None: oui_str = "oui=%s," % oui_id vm_uuid_str = oui_str + "vm_uuid=" + vm_uuid oui_list.append(vm_uuid_str) return oui_list
def get(self, sid): """ Constructs a IpAccessControlListContext :param sid: A string that identifies the resource to fetch :returns: twilio.rest.api.v2010.account.sip.ip_access_control_list.IpAccessControlListContext :rtype: twilio.rest.api.v2010.account.sip.ip_access_control_list.IpAccessControlListContext """ return IpAccessControlListContext(self._version, account_sid=self._solution['account_sid'], sid=sid, )
Constructs a IpAccessControlListContext :param sid: A string that identifies the resource to fetch :returns: twilio.rest.api.v2010.account.sip.ip_access_control_list.IpAccessControlListContext :rtype: twilio.rest.api.v2010.account.sip.ip_access_control_list.IpAccessControlListContext
Below is the the instruction that describes the task: ### Input: Constructs a IpAccessControlListContext :param sid: A string that identifies the resource to fetch :returns: twilio.rest.api.v2010.account.sip.ip_access_control_list.IpAccessControlListContext :rtype: twilio.rest.api.v2010.account.sip.ip_access_control_list.IpAccessControlListContext ### Response: def get(self, sid): """ Constructs a IpAccessControlListContext :param sid: A string that identifies the resource to fetch :returns: twilio.rest.api.v2010.account.sip.ip_access_control_list.IpAccessControlListContext :rtype: twilio.rest.api.v2010.account.sip.ip_access_control_list.IpAccessControlListContext """ return IpAccessControlListContext(self._version, account_sid=self._solution['account_sid'], sid=sid, )
async def on_raw_410(self, message): """ Unknown CAP subcommand or CAP error. Force-end negotiations. """ self.logger.error('Server sent "Unknown CAP subcommand: %s". Aborting capability negotiation.', message.params[0]) self._capabilities_requested = set() self._capabilities_negotiating = set() await self.rawmsg('CAP', 'END')
Unknown CAP subcommand or CAP error. Force-end negotiations.
Below is the the instruction that describes the task: ### Input: Unknown CAP subcommand or CAP error. Force-end negotiations. ### Response: async def on_raw_410(self, message): """ Unknown CAP subcommand or CAP error. Force-end negotiations. """ self.logger.error('Server sent "Unknown CAP subcommand: %s". Aborting capability negotiation.', message.params[0]) self._capabilities_requested = set() self._capabilities_negotiating = set() await self.rawmsg('CAP', 'END')
def docopt(doc, argv=None, help=True, version=None, options_first=False): """Parse `argv` based on command-line interface described in `doc`. `docopt` creates your command-line interface based on its description that you pass as `doc`. Such description can contain --options, <positional-argument>, commands, which could be [optional], (required), (mutually | exclusive) or repeated... Parameters ---------- doc : str Description of your command-line interface. argv : list of str, optional Argument vector to be parsed. sys.argv[1:] is used if not provided. help : bool (default: True) Set to False to disable automatic help on -h or --help options. version : any object If passed, the object will be printed if --version is in `argv`. options_first : bool (default: False) Set to True to require options preceed positional arguments, i.e. to forbid options and positional arguments intermix. Returns ------- args : dict A dictionary, where keys are names of command-line elements such as e.g. "--verbose" and "<path>", and values are the parsed values of those elements. Example ------- >>> from docopt import docopt >>> doc = ''' Usage: my_program tcp <host> <port> [--timeout=<seconds>] my_program serial <port> [--baud=<n>] [--timeout=<seconds>] my_program (-h | --help | --version) Options: -h, --help Show this screen and exit. --baud=<n> Baudrate [default: 9600] ''' >>> argv = ['tcp', '127.0.0.1', '80', '--timeout', '30'] >>> docopt(doc, argv) {'--baud': '9600', '--help': False, '--timeout': '30', '--version': False, '<host>': '127.0.0.1', '<port>': '80', 'serial': False, 'tcp': True} See also -------- * For video introduction see http://docopt.org * Full documentation is available in README.rst as well as online at https://github.com/docopt/docopt#readme """ if argv is None: argv = sys.argv[1:] DocoptExit.usage = printable_usage(doc) options = parse_defaults(doc) pattern = parse_pattern(formal_usage(DocoptExit.usage), options) # [default] syntax for argument is disabled #for a in pattern.flat(Argument): # same_name = [d for d in arguments if d.name == a.name] # if same_name: # a.value = same_name[0].value argv = parse_argv(TokenStream(argv, DocoptExit), list(options), options_first) pattern_options = set(pattern.flat(Option)) for ao in pattern.flat(AnyOptions): doc_options = parse_defaults(doc) ao.children = list(set(doc_options) - pattern_options) #if any_options: # ao.children += [Option(o.short, o.long, o.argcount) # for o in argv if type(o) is Option] extras(help, version, argv, doc) matched, left, collected = pattern.fix().match(argv) if matched: return Dict((a.name, a.value) for a in (pattern.flat() + collected)) raise DocoptExit()
Parse `argv` based on command-line interface described in `doc`. `docopt` creates your command-line interface based on its description that you pass as `doc`. Such description can contain --options, <positional-argument>, commands, which could be [optional], (required), (mutually | exclusive) or repeated... Parameters ---------- doc : str Description of your command-line interface. argv : list of str, optional Argument vector to be parsed. sys.argv[1:] is used if not provided. help : bool (default: True) Set to False to disable automatic help on -h or --help options. version : any object If passed, the object will be printed if --version is in `argv`. options_first : bool (default: False) Set to True to require options preceed positional arguments, i.e. to forbid options and positional arguments intermix. Returns ------- args : dict A dictionary, where keys are names of command-line elements such as e.g. "--verbose" and "<path>", and values are the parsed values of those elements. Example ------- >>> from docopt import docopt >>> doc = ''' Usage: my_program tcp <host> <port> [--timeout=<seconds>] my_program serial <port> [--baud=<n>] [--timeout=<seconds>] my_program (-h | --help | --version) Options: -h, --help Show this screen and exit. --baud=<n> Baudrate [default: 9600] ''' >>> argv = ['tcp', '127.0.0.1', '80', '--timeout', '30'] >>> docopt(doc, argv) {'--baud': '9600', '--help': False, '--timeout': '30', '--version': False, '<host>': '127.0.0.1', '<port>': '80', 'serial': False, 'tcp': True} See also -------- * For video introduction see http://docopt.org * Full documentation is available in README.rst as well as online at https://github.com/docopt/docopt#readme
Below is the the instruction that describes the task: ### Input: Parse `argv` based on command-line interface described in `doc`. `docopt` creates your command-line interface based on its description that you pass as `doc`. Such description can contain --options, <positional-argument>, commands, which could be [optional], (required), (mutually | exclusive) or repeated... Parameters ---------- doc : str Description of your command-line interface. argv : list of str, optional Argument vector to be parsed. sys.argv[1:] is used if not provided. help : bool (default: True) Set to False to disable automatic help on -h or --help options. version : any object If passed, the object will be printed if --version is in `argv`. options_first : bool (default: False) Set to True to require options preceed positional arguments, i.e. to forbid options and positional arguments intermix. Returns ------- args : dict A dictionary, where keys are names of command-line elements such as e.g. "--verbose" and "<path>", and values are the parsed values of those elements. Example ------- >>> from docopt import docopt >>> doc = ''' Usage: my_program tcp <host> <port> [--timeout=<seconds>] my_program serial <port> [--baud=<n>] [--timeout=<seconds>] my_program (-h | --help | --version) Options: -h, --help Show this screen and exit. --baud=<n> Baudrate [default: 9600] ''' >>> argv = ['tcp', '127.0.0.1', '80', '--timeout', '30'] >>> docopt(doc, argv) {'--baud': '9600', '--help': False, '--timeout': '30', '--version': False, '<host>': '127.0.0.1', '<port>': '80', 'serial': False, 'tcp': True} See also -------- * For video introduction see http://docopt.org * Full documentation is available in README.rst as well as online at https://github.com/docopt/docopt#readme ### Response: def docopt(doc, argv=None, help=True, version=None, options_first=False): """Parse `argv` based on command-line interface described in `doc`. `docopt` creates your command-line interface based on its description that you pass as `doc`. Such description can contain --options, <positional-argument>, commands, which could be [optional], (required), (mutually | exclusive) or repeated... Parameters ---------- doc : str Description of your command-line interface. argv : list of str, optional Argument vector to be parsed. sys.argv[1:] is used if not provided. help : bool (default: True) Set to False to disable automatic help on -h or --help options. version : any object If passed, the object will be printed if --version is in `argv`. options_first : bool (default: False) Set to True to require options preceed positional arguments, i.e. to forbid options and positional arguments intermix. Returns ------- args : dict A dictionary, where keys are names of command-line elements such as e.g. "--verbose" and "<path>", and values are the parsed values of those elements. Example ------- >>> from docopt import docopt >>> doc = ''' Usage: my_program tcp <host> <port> [--timeout=<seconds>] my_program serial <port> [--baud=<n>] [--timeout=<seconds>] my_program (-h | --help | --version) Options: -h, --help Show this screen and exit. --baud=<n> Baudrate [default: 9600] ''' >>> argv = ['tcp', '127.0.0.1', '80', '--timeout', '30'] >>> docopt(doc, argv) {'--baud': '9600', '--help': False, '--timeout': '30', '--version': False, '<host>': '127.0.0.1', '<port>': '80', 'serial': False, 'tcp': True} See also -------- * For video introduction see http://docopt.org * Full documentation is available in README.rst as well as online at https://github.com/docopt/docopt#readme """ if argv is None: argv = sys.argv[1:] DocoptExit.usage = printable_usage(doc) options = parse_defaults(doc) pattern = parse_pattern(formal_usage(DocoptExit.usage), options) # [default] syntax for argument is disabled #for a in pattern.flat(Argument): # same_name = [d for d in arguments if d.name == a.name] # if same_name: # a.value = same_name[0].value argv = parse_argv(TokenStream(argv, DocoptExit), list(options), options_first) pattern_options = set(pattern.flat(Option)) for ao in pattern.flat(AnyOptions): doc_options = parse_defaults(doc) ao.children = list(set(doc_options) - pattern_options) #if any_options: # ao.children += [Option(o.short, o.long, o.argcount) # for o in argv if type(o) is Option] extras(help, version, argv, doc) matched, left, collected = pattern.fix().match(argv) if matched: return Dict((a.name, a.value) for a in (pattern.flat() + collected)) raise DocoptExit()
def suppress_exceptions(callables, *exceptions): """ Call each callable in callables, suppressing any exceptions supplied. If no exception classes are supplied, all Exceptions will be suppressed. >>> import functools >>> c1 = functools.partial(int, 'a') >>> c2 = functools.partial(int, '10') >>> list(suppress_exceptions((c1, c2))) [10] >>> list(suppress_exceptions((c1, c2), KeyError)) Traceback (most recent call last): ... ValueError: invalid literal for int() with base 10: 'a' """ if not exceptions: exceptions = Exception, for callable in callables: try: yield callable() except exceptions: pass
Call each callable in callables, suppressing any exceptions supplied. If no exception classes are supplied, all Exceptions will be suppressed. >>> import functools >>> c1 = functools.partial(int, 'a') >>> c2 = functools.partial(int, '10') >>> list(suppress_exceptions((c1, c2))) [10] >>> list(suppress_exceptions((c1, c2), KeyError)) Traceback (most recent call last): ... ValueError: invalid literal for int() with base 10: 'a'
Below is the the instruction that describes the task: ### Input: Call each callable in callables, suppressing any exceptions supplied. If no exception classes are supplied, all Exceptions will be suppressed. >>> import functools >>> c1 = functools.partial(int, 'a') >>> c2 = functools.partial(int, '10') >>> list(suppress_exceptions((c1, c2))) [10] >>> list(suppress_exceptions((c1, c2), KeyError)) Traceback (most recent call last): ... ValueError: invalid literal for int() with base 10: 'a' ### Response: def suppress_exceptions(callables, *exceptions): """ Call each callable in callables, suppressing any exceptions supplied. If no exception classes are supplied, all Exceptions will be suppressed. >>> import functools >>> c1 = functools.partial(int, 'a') >>> c2 = functools.partial(int, '10') >>> list(suppress_exceptions((c1, c2))) [10] >>> list(suppress_exceptions((c1, c2), KeyError)) Traceback (most recent call last): ... ValueError: invalid literal for int() with base 10: 'a' """ if not exceptions: exceptions = Exception, for callable in callables: try: yield callable() except exceptions: pass
def pad_event_roll(event_roll, length): """Pad event roll's length to given length Parameters ---------- event_roll: np.ndarray, shape=(m,k) Event roll length : int Length to be padded Returns ------- event_roll: np.ndarray, shape=(m,k) Padded event roll """ if length > event_roll.shape[0]: padding = numpy.zeros((length-event_roll.shape[0], event_roll.shape[1])) event_roll = numpy.vstack((event_roll, padding)) return event_roll
Pad event roll's length to given length Parameters ---------- event_roll: np.ndarray, shape=(m,k) Event roll length : int Length to be padded Returns ------- event_roll: np.ndarray, shape=(m,k) Padded event roll
Below is the the instruction that describes the task: ### Input: Pad event roll's length to given length Parameters ---------- event_roll: np.ndarray, shape=(m,k) Event roll length : int Length to be padded Returns ------- event_roll: np.ndarray, shape=(m,k) Padded event roll ### Response: def pad_event_roll(event_roll, length): """Pad event roll's length to given length Parameters ---------- event_roll: np.ndarray, shape=(m,k) Event roll length : int Length to be padded Returns ------- event_roll: np.ndarray, shape=(m,k) Padded event roll """ if length > event_roll.shape[0]: padding = numpy.zeros((length-event_roll.shape[0], event_roll.shape[1])) event_roll = numpy.vstack((event_roll, padding)) return event_roll
def update_visual_baseline(self): """Configure baseline directory after driver is created""" # Update baseline with real platformVersion value if '{PlatformVersion}' in self.baseline_name: try: platform_version = self.driver.desired_capabilities['platformVersion'] except KeyError: platform_version = None self.baseline_name = self.baseline_name.replace('{PlatformVersion}', str(platform_version)) self.visual_baseline_directory = os.path.join(DriverWrappersPool.visual_baseline_directory, self.baseline_name) # Update baseline with real version value if '{Version}' in self.baseline_name: try: splitted_version = self.driver.desired_capabilities['version'].split('.') version = '.'.join(splitted_version[:2]) except KeyError: version = None self.baseline_name = self.baseline_name.replace('{Version}', str(version)) self.visual_baseline_directory = os.path.join(DriverWrappersPool.visual_baseline_directory, self.baseline_name) # Update baseline with remote node value if '{RemoteNode}' in self.baseline_name: self.baseline_name = self.baseline_name.replace('{RemoteNode}', str(self.remote_node)) self.visual_baseline_directory = os.path.join(DriverWrappersPool.visual_baseline_directory, self.baseline_name)
Configure baseline directory after driver is created
Below is the the instruction that describes the task: ### Input: Configure baseline directory after driver is created ### Response: def update_visual_baseline(self): """Configure baseline directory after driver is created""" # Update baseline with real platformVersion value if '{PlatformVersion}' in self.baseline_name: try: platform_version = self.driver.desired_capabilities['platformVersion'] except KeyError: platform_version = None self.baseline_name = self.baseline_name.replace('{PlatformVersion}', str(platform_version)) self.visual_baseline_directory = os.path.join(DriverWrappersPool.visual_baseline_directory, self.baseline_name) # Update baseline with real version value if '{Version}' in self.baseline_name: try: splitted_version = self.driver.desired_capabilities['version'].split('.') version = '.'.join(splitted_version[:2]) except KeyError: version = None self.baseline_name = self.baseline_name.replace('{Version}', str(version)) self.visual_baseline_directory = os.path.join(DriverWrappersPool.visual_baseline_directory, self.baseline_name) # Update baseline with remote node value if '{RemoteNode}' in self.baseline_name: self.baseline_name = self.baseline_name.replace('{RemoteNode}', str(self.remote_node)) self.visual_baseline_directory = os.path.join(DriverWrappersPool.visual_baseline_directory, self.baseline_name)
def json_obj_to_cursor(self, json): """(Deprecated) Converts a JSON object to a mongo db cursor :param str json: A json string :returns: dictionary with ObjectId type :rtype: dict """ cursor = json_util.loads(json) if "id" in json: cursor["_id"] = ObjectId(cursor["id"]) del cursor["id"] return cursor
(Deprecated) Converts a JSON object to a mongo db cursor :param str json: A json string :returns: dictionary with ObjectId type :rtype: dict
Below is the the instruction that describes the task: ### Input: (Deprecated) Converts a JSON object to a mongo db cursor :param str json: A json string :returns: dictionary with ObjectId type :rtype: dict ### Response: def json_obj_to_cursor(self, json): """(Deprecated) Converts a JSON object to a mongo db cursor :param str json: A json string :returns: dictionary with ObjectId type :rtype: dict """ cursor = json_util.loads(json) if "id" in json: cursor["_id"] = ObjectId(cursor["id"]) del cursor["id"] return cursor
def start(self): """Start the consumer. This starts a listen loop on a zmq.PULL socket, calling ``self.handle`` on each incoming request and pushing the response on a zmq.PUSH socket back to the producer.""" if not self.initialized: raise Exception("Consumer not initialized (no Producer).") producer = self.producer context = zmq._Context() self.pull = context.socket(zmq.PULL) self.push = context.socket(zmq.PUSH) self.pull.connect('tcp://%s:%s' % (producer.host, producer.push_port)) self.push.connect('tcp://%s:%s' % (producer.host, producer.pull_port)) # TODO: notify the producer that this consumer's ready for work? self.listen()
Start the consumer. This starts a listen loop on a zmq.PULL socket, calling ``self.handle`` on each incoming request and pushing the response on a zmq.PUSH socket back to the producer.
Below is the the instruction that describes the task: ### Input: Start the consumer. This starts a listen loop on a zmq.PULL socket, calling ``self.handle`` on each incoming request and pushing the response on a zmq.PUSH socket back to the producer. ### Response: def start(self): """Start the consumer. This starts a listen loop on a zmq.PULL socket, calling ``self.handle`` on each incoming request and pushing the response on a zmq.PUSH socket back to the producer.""" if not self.initialized: raise Exception("Consumer not initialized (no Producer).") producer = self.producer context = zmq._Context() self.pull = context.socket(zmq.PULL) self.push = context.socket(zmq.PUSH) self.pull.connect('tcp://%s:%s' % (producer.host, producer.push_port)) self.push.connect('tcp://%s:%s' % (producer.host, producer.pull_port)) # TODO: notify the producer that this consumer's ready for work? self.listen()
def put(self, instance, errors): """ Update a model instance. :param instance: The model instance. :param errors: Any errors. :return: The updated model instance, or a dictionary of errors. """ if errors: return self.errors(errors) return self.updated(instance)
Update a model instance. :param instance: The model instance. :param errors: Any errors. :return: The updated model instance, or a dictionary of errors.
Below is the the instruction that describes the task: ### Input: Update a model instance. :param instance: The model instance. :param errors: Any errors. :return: The updated model instance, or a dictionary of errors. ### Response: def put(self, instance, errors): """ Update a model instance. :param instance: The model instance. :param errors: Any errors. :return: The updated model instance, or a dictionary of errors. """ if errors: return self.errors(errors) return self.updated(instance)
def is_alias_command(subcommands, args): """ Check if the user is invoking one of the comments in 'subcommands' in the from az alias . Args: subcommands: The list of subcommands to check through. args: The CLI arguments to process. Returns: True if the user is invoking 'az alias {command}'. """ if not args: return False for subcommand in subcommands: if args[:2] == ['alias', subcommand]: return True return False
Check if the user is invoking one of the comments in 'subcommands' in the from az alias . Args: subcommands: The list of subcommands to check through. args: The CLI arguments to process. Returns: True if the user is invoking 'az alias {command}'.
Below is the the instruction that describes the task: ### Input: Check if the user is invoking one of the comments in 'subcommands' in the from az alias . Args: subcommands: The list of subcommands to check through. args: The CLI arguments to process. Returns: True if the user is invoking 'az alias {command}'. ### Response: def is_alias_command(subcommands, args): """ Check if the user is invoking one of the comments in 'subcommands' in the from az alias . Args: subcommands: The list of subcommands to check through. args: The CLI arguments to process. Returns: True if the user is invoking 'az alias {command}'. """ if not args: return False for subcommand in subcommands: if args[:2] == ['alias', subcommand]: return True return False
def importProfile(self, filename=''): """ Exports the current profile to a file. :param filename | <str> """ if not (filename and isinstance(filename, basestring)): filename = QtGui.QFileDialog.getOpenFileName(self, 'Import Layout from...', QtCore.QDir.currentPath(), 'XView (*.xview)') if type(filename) == tuple: filename = nativestring(filename[0]) filename = nativestring(filename) if not filename: return if not filename.endswith('.xview'): filename += '.xview' profile = XViewProfile.load(filename) if not profile: return profile.restore(self)
Exports the current profile to a file. :param filename | <str>
Below is the the instruction that describes the task: ### Input: Exports the current profile to a file. :param filename | <str> ### Response: def importProfile(self, filename=''): """ Exports the current profile to a file. :param filename | <str> """ if not (filename and isinstance(filename, basestring)): filename = QtGui.QFileDialog.getOpenFileName(self, 'Import Layout from...', QtCore.QDir.currentPath(), 'XView (*.xview)') if type(filename) == tuple: filename = nativestring(filename[0]) filename = nativestring(filename) if not filename: return if not filename.endswith('.xview'): filename += '.xview' profile = XViewProfile.load(filename) if not profile: return profile.restore(self)
def copyto_at(self, n, src, m): """Copy to at a given location. Parameters ---------- n: int index where to copy src: `ThetaParticles` object source m: int index of the element to be copied Note ---- Basically, does self[n] <- src[m] """ for k in self.containers: self.__dict__[k][n] = src.__dict__[k][m]
Copy to at a given location. Parameters ---------- n: int index where to copy src: `ThetaParticles` object source m: int index of the element to be copied Note ---- Basically, does self[n] <- src[m]
Below is the the instruction that describes the task: ### Input: Copy to at a given location. Parameters ---------- n: int index where to copy src: `ThetaParticles` object source m: int index of the element to be copied Note ---- Basically, does self[n] <- src[m] ### Response: def copyto_at(self, n, src, m): """Copy to at a given location. Parameters ---------- n: int index where to copy src: `ThetaParticles` object source m: int index of the element to be copied Note ---- Basically, does self[n] <- src[m] """ for k in self.containers: self.__dict__[k][n] = src.__dict__[k][m]
def get_template_attribute(template_name, attribute): """Loads a macro (or variable) a template exports. This can be used to invoke a macro from within Python code. If you for example have a template named `_cider.html` with the following contents: .. sourcecode:: html+jinja {% macro hello(name) %}Hello {{ name }}!{% endmacro %} You can access this from Python code like this:: hello = get_template_attribute('_cider.html', 'hello') return hello('World') .. versionadded:: 0.2 :param template_name: the name of the template :param attribute: the name of the variable of macro to access """ return getattr(current_app.jinja_env.get_template(template_name).module, attribute)
Loads a macro (or variable) a template exports. This can be used to invoke a macro from within Python code. If you for example have a template named `_cider.html` with the following contents: .. sourcecode:: html+jinja {% macro hello(name) %}Hello {{ name }}!{% endmacro %} You can access this from Python code like this:: hello = get_template_attribute('_cider.html', 'hello') return hello('World') .. versionadded:: 0.2 :param template_name: the name of the template :param attribute: the name of the variable of macro to access
Below is the the instruction that describes the task: ### Input: Loads a macro (or variable) a template exports. This can be used to invoke a macro from within Python code. If you for example have a template named `_cider.html` with the following contents: .. sourcecode:: html+jinja {% macro hello(name) %}Hello {{ name }}!{% endmacro %} You can access this from Python code like this:: hello = get_template_attribute('_cider.html', 'hello') return hello('World') .. versionadded:: 0.2 :param template_name: the name of the template :param attribute: the name of the variable of macro to access ### Response: def get_template_attribute(template_name, attribute): """Loads a macro (or variable) a template exports. This can be used to invoke a macro from within Python code. If you for example have a template named `_cider.html` with the following contents: .. sourcecode:: html+jinja {% macro hello(name) %}Hello {{ name }}!{% endmacro %} You can access this from Python code like this:: hello = get_template_attribute('_cider.html', 'hello') return hello('World') .. versionadded:: 0.2 :param template_name: the name of the template :param attribute: the name of the variable of macro to access """ return getattr(current_app.jinja_env.get_template(template_name).module, attribute)
def originalTextFor(expr, asString=True): """Helper to return the original, untokenized text for a given expression. Useful to restore the parsed fields of an HTML start tag into the raw tag text itself, or to revert separate tokens with intervening whitespace back to the original matching input text. By default, returns astring containing the original parsed text. If the optional ``asString`` argument is passed as ``False``, then the return value is a :class:`ParseResults` containing any results names that were originally matched, and a single token containing the original matched text from the input string. So if the expression passed to :class:`originalTextFor` contains expressions with defined results names, you must set ``asString`` to ``False`` if you want to preserve those results name values. Example:: src = "this is test <b> bold <i>text</i> </b> normal text " for tag in ("b","i"): opener,closer = makeHTMLTags(tag) patt = originalTextFor(opener + SkipTo(closer) + closer) print(patt.searchString(src)[0]) prints:: ['<b> bold <i>text</i> </b>'] ['<i>text</i>'] """ locMarker = Empty().setParseAction(lambda s,loc,t: loc) endlocMarker = locMarker.copy() endlocMarker.callPreparse = False matchExpr = locMarker("_original_start") + expr + endlocMarker("_original_end") if asString: extractText = lambda s,l,t: s[t._original_start:t._original_end] else: def extractText(s,l,t): t[:] = [s[t.pop('_original_start'):t.pop('_original_end')]] matchExpr.setParseAction(extractText) matchExpr.ignoreExprs = expr.ignoreExprs return matchExpr
Helper to return the original, untokenized text for a given expression. Useful to restore the parsed fields of an HTML start tag into the raw tag text itself, or to revert separate tokens with intervening whitespace back to the original matching input text. By default, returns astring containing the original parsed text. If the optional ``asString`` argument is passed as ``False``, then the return value is a :class:`ParseResults` containing any results names that were originally matched, and a single token containing the original matched text from the input string. So if the expression passed to :class:`originalTextFor` contains expressions with defined results names, you must set ``asString`` to ``False`` if you want to preserve those results name values. Example:: src = "this is test <b> bold <i>text</i> </b> normal text " for tag in ("b","i"): opener,closer = makeHTMLTags(tag) patt = originalTextFor(opener + SkipTo(closer) + closer) print(patt.searchString(src)[0]) prints:: ['<b> bold <i>text</i> </b>'] ['<i>text</i>']
Below is the the instruction that describes the task: ### Input: Helper to return the original, untokenized text for a given expression. Useful to restore the parsed fields of an HTML start tag into the raw tag text itself, or to revert separate tokens with intervening whitespace back to the original matching input text. By default, returns astring containing the original parsed text. If the optional ``asString`` argument is passed as ``False``, then the return value is a :class:`ParseResults` containing any results names that were originally matched, and a single token containing the original matched text from the input string. So if the expression passed to :class:`originalTextFor` contains expressions with defined results names, you must set ``asString`` to ``False`` if you want to preserve those results name values. Example:: src = "this is test <b> bold <i>text</i> </b> normal text " for tag in ("b","i"): opener,closer = makeHTMLTags(tag) patt = originalTextFor(opener + SkipTo(closer) + closer) print(patt.searchString(src)[0]) prints:: ['<b> bold <i>text</i> </b>'] ['<i>text</i>'] ### Response: def originalTextFor(expr, asString=True): """Helper to return the original, untokenized text for a given expression. Useful to restore the parsed fields of an HTML start tag into the raw tag text itself, or to revert separate tokens with intervening whitespace back to the original matching input text. By default, returns astring containing the original parsed text. If the optional ``asString`` argument is passed as ``False``, then the return value is a :class:`ParseResults` containing any results names that were originally matched, and a single token containing the original matched text from the input string. So if the expression passed to :class:`originalTextFor` contains expressions with defined results names, you must set ``asString`` to ``False`` if you want to preserve those results name values. Example:: src = "this is test <b> bold <i>text</i> </b> normal text " for tag in ("b","i"): opener,closer = makeHTMLTags(tag) patt = originalTextFor(opener + SkipTo(closer) + closer) print(patt.searchString(src)[0]) prints:: ['<b> bold <i>text</i> </b>'] ['<i>text</i>'] """ locMarker = Empty().setParseAction(lambda s,loc,t: loc) endlocMarker = locMarker.copy() endlocMarker.callPreparse = False matchExpr = locMarker("_original_start") + expr + endlocMarker("_original_end") if asString: extractText = lambda s,l,t: s[t._original_start:t._original_end] else: def extractText(s,l,t): t[:] = [s[t.pop('_original_start'):t.pop('_original_end')]] matchExpr.setParseAction(extractText) matchExpr.ignoreExprs = expr.ignoreExprs return matchExpr
def normalizeName(self,in_name): """ Takes in an object and normalizes it to its name/string. Currently, only integers and strings may be passed in, else a :py:exc:`TypeError` will be thrown. """ if isinstance(in_name,str): assert in_name in self._data["reg"].inv return in_name elif isinstance(in_name,int): assert in_name in self._data["reg"] return self._data["reg"][in_name] else: raise TypeError("Only int and str can be converted to names")
Takes in an object and normalizes it to its name/string. Currently, only integers and strings may be passed in, else a :py:exc:`TypeError` will be thrown.
Below is the the instruction that describes the task: ### Input: Takes in an object and normalizes it to its name/string. Currently, only integers and strings may be passed in, else a :py:exc:`TypeError` will be thrown. ### Response: def normalizeName(self,in_name): """ Takes in an object and normalizes it to its name/string. Currently, only integers and strings may be passed in, else a :py:exc:`TypeError` will be thrown. """ if isinstance(in_name,str): assert in_name in self._data["reg"].inv return in_name elif isinstance(in_name,int): assert in_name in self._data["reg"] return self._data["reg"][in_name] else: raise TypeError("Only int and str can be converted to names")
def get_dns_servers(interface='Local Area Connection'): ''' Return a list of the configured DNS servers of the specified interface CLI Example: .. code-block:: bash salt '*' win_dns_client.get_dns_servers 'Local Area Connection' ''' # remove any escape characters interface = interface.split('\\') interface = ''.join(interface) with salt.utils.winapi.Com(): c = wmi.WMI() for iface in c.Win32_NetworkAdapter(NetEnabled=True): if interface == iface.NetConnectionID: iface_config = c.Win32_NetworkAdapterConfiguration(Index=iface.Index).pop() try: return list(iface_config.DNSServerSearchOrder) except TypeError: return [] log.debug('Interface "%s" not found', interface) return False
Return a list of the configured DNS servers of the specified interface CLI Example: .. code-block:: bash salt '*' win_dns_client.get_dns_servers 'Local Area Connection'
Below is the the instruction that describes the task: ### Input: Return a list of the configured DNS servers of the specified interface CLI Example: .. code-block:: bash salt '*' win_dns_client.get_dns_servers 'Local Area Connection' ### Response: def get_dns_servers(interface='Local Area Connection'): ''' Return a list of the configured DNS servers of the specified interface CLI Example: .. code-block:: bash salt '*' win_dns_client.get_dns_servers 'Local Area Connection' ''' # remove any escape characters interface = interface.split('\\') interface = ''.join(interface) with salt.utils.winapi.Com(): c = wmi.WMI() for iface in c.Win32_NetworkAdapter(NetEnabled=True): if interface == iface.NetConnectionID: iface_config = c.Win32_NetworkAdapterConfiguration(Index=iface.Index).pop() try: return list(iface_config.DNSServerSearchOrder) except TypeError: return [] log.debug('Interface "%s" not found', interface) return False
def filter_host_by_tag(tpl): """Filter for host Filter on tag :param tpl: tag to filter :type tpl: str :return: Filter :rtype: bool """ def inner_filter(items): """Inner filter for host. Accept if tag in host.tags""" host = items["host"] if host is None: return False return tpl in [t.strip() for t in host.tags] return inner_filter
Filter for host Filter on tag :param tpl: tag to filter :type tpl: str :return: Filter :rtype: bool
Below is the the instruction that describes the task: ### Input: Filter for host Filter on tag :param tpl: tag to filter :type tpl: str :return: Filter :rtype: bool ### Response: def filter_host_by_tag(tpl): """Filter for host Filter on tag :param tpl: tag to filter :type tpl: str :return: Filter :rtype: bool """ def inner_filter(items): """Inner filter for host. Accept if tag in host.tags""" host = items["host"] if host is None: return False return tpl in [t.strip() for t in host.tags] return inner_filter
def geo_length(arg, use_spheroid=None): """ Compute length of a geo spatial data Parameters ---------- arg : geometry or geography use_spheroid : default None Returns ------- length : double scalar """ op = ops.GeoLength(arg, use_spheroid) return op.to_expr()
Compute length of a geo spatial data Parameters ---------- arg : geometry or geography use_spheroid : default None Returns ------- length : double scalar
Below is the the instruction that describes the task: ### Input: Compute length of a geo spatial data Parameters ---------- arg : geometry or geography use_spheroid : default None Returns ------- length : double scalar ### Response: def geo_length(arg, use_spheroid=None): """ Compute length of a geo spatial data Parameters ---------- arg : geometry or geography use_spheroid : default None Returns ------- length : double scalar """ op = ops.GeoLength(arg, use_spheroid) return op.to_expr()
def _wait_for_disk_threads(self, terminate): # type: (Uploader, bool) -> None """Wait for disk threads :param Uploader self: this :param bool terminate: terminate threads """ if terminate: self._upload_terminate = terminate for thr in self._disk_threads: thr.join()
Wait for disk threads :param Uploader self: this :param bool terminate: terminate threads
Below is the the instruction that describes the task: ### Input: Wait for disk threads :param Uploader self: this :param bool terminate: terminate threads ### Response: def _wait_for_disk_threads(self, terminate): # type: (Uploader, bool) -> None """Wait for disk threads :param Uploader self: this :param bool terminate: terminate threads """ if terminate: self._upload_terminate = terminate for thr in self._disk_threads: thr.join()
def image_get(fingerprint, remote_addr=None, cert=None, key=None, verify_cert=True, _raw=False): ''' Get an image by its fingerprint fingerprint : The fingerprint of the image to retrieve remote_addr : An URL to a remote Server, you also have to give cert and key if you provide remote_addr and its a TCP Address! Examples: https://myserver.lan:8443 /var/lib/mysocket.sock cert : PEM Formatted SSL Certificate. Examples: ~/.config/lxc/client.crt key : PEM Formatted SSL Key. Examples: ~/.config/lxc/client.key verify_cert : True Wherever to verify the cert, this is by default True but in the most cases you want to set it off as LXD normaly uses self-signed certificates. _raw : False Return the raw pylxd object or a dict of it? CLI Examples: ..code-block:: bash $ salt '*' lxd.image_get <fingerprint> ''' client = pylxd_client_get(remote_addr, cert, key, verify_cert) image = None try: image = client.images.get(fingerprint) except pylxd.exceptions.LXDAPIException: raise SaltInvocationError( 'Image with fingerprint \'{0}\' not found'.format(fingerprint) ) if _raw: return image return _pylxd_model_to_dict(image)
Get an image by its fingerprint fingerprint : The fingerprint of the image to retrieve remote_addr : An URL to a remote Server, you also have to give cert and key if you provide remote_addr and its a TCP Address! Examples: https://myserver.lan:8443 /var/lib/mysocket.sock cert : PEM Formatted SSL Certificate. Examples: ~/.config/lxc/client.crt key : PEM Formatted SSL Key. Examples: ~/.config/lxc/client.key verify_cert : True Wherever to verify the cert, this is by default True but in the most cases you want to set it off as LXD normaly uses self-signed certificates. _raw : False Return the raw pylxd object or a dict of it? CLI Examples: ..code-block:: bash $ salt '*' lxd.image_get <fingerprint>
Below is the the instruction that describes the task: ### Input: Get an image by its fingerprint fingerprint : The fingerprint of the image to retrieve remote_addr : An URL to a remote Server, you also have to give cert and key if you provide remote_addr and its a TCP Address! Examples: https://myserver.lan:8443 /var/lib/mysocket.sock cert : PEM Formatted SSL Certificate. Examples: ~/.config/lxc/client.crt key : PEM Formatted SSL Key. Examples: ~/.config/lxc/client.key verify_cert : True Wherever to verify the cert, this is by default True but in the most cases you want to set it off as LXD normaly uses self-signed certificates. _raw : False Return the raw pylxd object or a dict of it? CLI Examples: ..code-block:: bash $ salt '*' lxd.image_get <fingerprint> ### Response: def image_get(fingerprint, remote_addr=None, cert=None, key=None, verify_cert=True, _raw=False): ''' Get an image by its fingerprint fingerprint : The fingerprint of the image to retrieve remote_addr : An URL to a remote Server, you also have to give cert and key if you provide remote_addr and its a TCP Address! Examples: https://myserver.lan:8443 /var/lib/mysocket.sock cert : PEM Formatted SSL Certificate. Examples: ~/.config/lxc/client.crt key : PEM Formatted SSL Key. Examples: ~/.config/lxc/client.key verify_cert : True Wherever to verify the cert, this is by default True but in the most cases you want to set it off as LXD normaly uses self-signed certificates. _raw : False Return the raw pylxd object or a dict of it? CLI Examples: ..code-block:: bash $ salt '*' lxd.image_get <fingerprint> ''' client = pylxd_client_get(remote_addr, cert, key, verify_cert) image = None try: image = client.images.get(fingerprint) except pylxd.exceptions.LXDAPIException: raise SaltInvocationError( 'Image with fingerprint \'{0}\' not found'.format(fingerprint) ) if _raw: return image return _pylxd_model_to_dict(image)
def email_action_view(self, id, action): """ Perform action 'action' on UserEmail object 'id' """ # Retrieve UserEmail by id user_email = self.db_manager.get_user_email_by_id(id=id) # Users may only change their own UserEmails if not user_email or user_email.user_id != current_user.id: return self.unauthorized_view() # Delete UserEmail if action == 'delete': # Primary UserEmail can not be deleted if user_email.is_primary: return self.unauthorized_view() # Delete UserEmail self.db_manager.delete_object(user_email) self.db_manager.commit() # Set UserEmail.is_primary elif action == 'make-primary': # Disable previously primary emails user_emails = self.db_manager.find_user_emails(current_user) for other_user_email in user_emails: if other_user_email.is_primary: other_user_email.is_primary=False self.db_manager.save_object(other_user_email) # Enable current primary email user_email.is_primary=True self.db_manager.save_object(user_email) self.db_manager.commit() # Send confirm email elif action == 'confirm': self._send_confirm_email_email(user_email.user, user_email) else: return self.unauthorized_view() return redirect(url_for('user.manage_emails'))
Perform action 'action' on UserEmail object 'id'
Below is the the instruction that describes the task: ### Input: Perform action 'action' on UserEmail object 'id' ### Response: def email_action_view(self, id, action): """ Perform action 'action' on UserEmail object 'id' """ # Retrieve UserEmail by id user_email = self.db_manager.get_user_email_by_id(id=id) # Users may only change their own UserEmails if not user_email or user_email.user_id != current_user.id: return self.unauthorized_view() # Delete UserEmail if action == 'delete': # Primary UserEmail can not be deleted if user_email.is_primary: return self.unauthorized_view() # Delete UserEmail self.db_manager.delete_object(user_email) self.db_manager.commit() # Set UserEmail.is_primary elif action == 'make-primary': # Disable previously primary emails user_emails = self.db_manager.find_user_emails(current_user) for other_user_email in user_emails: if other_user_email.is_primary: other_user_email.is_primary=False self.db_manager.save_object(other_user_email) # Enable current primary email user_email.is_primary=True self.db_manager.save_object(user_email) self.db_manager.commit() # Send confirm email elif action == 'confirm': self._send_confirm_email_email(user_email.user, user_email) else: return self.unauthorized_view() return redirect(url_for('user.manage_emails'))
def refresh(self): """ Refresh this objects attributes to the newest values. Attributes that weren't added to the object before, due to lazy loading, will be added by calling refresh. """ resp = self._imgur._send_request(self._INFO_URL) self._populate(resp) self._has_fetched = True
Refresh this objects attributes to the newest values. Attributes that weren't added to the object before, due to lazy loading, will be added by calling refresh.
Below is the the instruction that describes the task: ### Input: Refresh this objects attributes to the newest values. Attributes that weren't added to the object before, due to lazy loading, will be added by calling refresh. ### Response: def refresh(self): """ Refresh this objects attributes to the newest values. Attributes that weren't added to the object before, due to lazy loading, will be added by calling refresh. """ resp = self._imgur._send_request(self._INFO_URL) self._populate(resp) self._has_fetched = True
def cache_json(filename): """Caches the JSON-serializable output of the function to a given file Args: filename (str) The filename (sans directory) to store the output Returns: decorator, applicable to a function that produces JSON-serializable output """ def cache_decorator(cacheable_function): @wraps(cacheable_function) def cache_wrapper(*args, **kwargs): path = CACHE_DIRECTORY + filename check_create_folder(path) if os.path.exists(path): with open(path) as infile: return json.load(infile) else: function_output = cacheable_function(*args, **kwargs) with open(path, 'w') as outfile: json.dump(function_output, outfile) return function_output return cache_wrapper return cache_decorator
Caches the JSON-serializable output of the function to a given file Args: filename (str) The filename (sans directory) to store the output Returns: decorator, applicable to a function that produces JSON-serializable output
Below is the the instruction that describes the task: ### Input: Caches the JSON-serializable output of the function to a given file Args: filename (str) The filename (sans directory) to store the output Returns: decorator, applicable to a function that produces JSON-serializable output ### Response: def cache_json(filename): """Caches the JSON-serializable output of the function to a given file Args: filename (str) The filename (sans directory) to store the output Returns: decorator, applicable to a function that produces JSON-serializable output """ def cache_decorator(cacheable_function): @wraps(cacheable_function) def cache_wrapper(*args, **kwargs): path = CACHE_DIRECTORY + filename check_create_folder(path) if os.path.exists(path): with open(path) as infile: return json.load(infile) else: function_output = cacheable_function(*args, **kwargs) with open(path, 'w') as outfile: json.dump(function_output, outfile) return function_output return cache_wrapper return cache_decorator