code
stringlengths
75
104k
docstring
stringlengths
1
46.9k
text
stringlengths
164
112k
def _adjusted_script_code(self, script): ''' Checks if the script code pased in to the sighash function is already length-prepended This will break if there's a redeem script that's just a pushdata That won't happen in practice Args: script (bytes): the spend script Returns: (bytes): the length-prepended script (if necessary) ''' script_code = ByteData() if script[0] == len(script) - 1: return script script_code += VarInt(len(script)) script_code += script return script_code
Checks if the script code pased in to the sighash function is already length-prepended This will break if there's a redeem script that's just a pushdata That won't happen in practice Args: script (bytes): the spend script Returns: (bytes): the length-prepended script (if necessary)
Below is the the instruction that describes the task: ### Input: Checks if the script code pased in to the sighash function is already length-prepended This will break if there's a redeem script that's just a pushdata That won't happen in practice Args: script (bytes): the spend script Returns: (bytes): the length-prepended script (if necessary) ### Response: def _adjusted_script_code(self, script): ''' Checks if the script code pased in to the sighash function is already length-prepended This will break if there's a redeem script that's just a pushdata That won't happen in practice Args: script (bytes): the spend script Returns: (bytes): the length-prepended script (if necessary) ''' script_code = ByteData() if script[0] == len(script) - 1: return script script_code += VarInt(len(script)) script_code += script return script_code
def median_approx(self, expression, percentage=50., binby=[], limits=None, shape=default_shape, percentile_shape=256, percentile_limits="minmax", selection=False, delay=False): """Calculate the median , possibly on a grid defined by binby. NOTE: this value is approximated by calculating the cumulative distribution on a grid defined by percentile_shape and percentile_limits :param expression: {expression} :param binby: {binby} :param limits: {limits} :param shape: {shape} :param percentile_limits: {percentile_limits} :param percentile_shape: {percentile_shape} :param selection: {selection} :param delay: {delay} :return: {return_stat_scalar} """ return self.percentile_approx(expression, 50, binby=binby, limits=limits, shape=shape, percentile_shape=percentile_shape, percentile_limits=percentile_limits, selection=selection, delay=delay)
Calculate the median , possibly on a grid defined by binby. NOTE: this value is approximated by calculating the cumulative distribution on a grid defined by percentile_shape and percentile_limits :param expression: {expression} :param binby: {binby} :param limits: {limits} :param shape: {shape} :param percentile_limits: {percentile_limits} :param percentile_shape: {percentile_shape} :param selection: {selection} :param delay: {delay} :return: {return_stat_scalar}
Below is the the instruction that describes the task: ### Input: Calculate the median , possibly on a grid defined by binby. NOTE: this value is approximated by calculating the cumulative distribution on a grid defined by percentile_shape and percentile_limits :param expression: {expression} :param binby: {binby} :param limits: {limits} :param shape: {shape} :param percentile_limits: {percentile_limits} :param percentile_shape: {percentile_shape} :param selection: {selection} :param delay: {delay} :return: {return_stat_scalar} ### Response: def median_approx(self, expression, percentage=50., binby=[], limits=None, shape=default_shape, percentile_shape=256, percentile_limits="minmax", selection=False, delay=False): """Calculate the median , possibly on a grid defined by binby. NOTE: this value is approximated by calculating the cumulative distribution on a grid defined by percentile_shape and percentile_limits :param expression: {expression} :param binby: {binby} :param limits: {limits} :param shape: {shape} :param percentile_limits: {percentile_limits} :param percentile_shape: {percentile_shape} :param selection: {selection} :param delay: {delay} :return: {return_stat_scalar} """ return self.percentile_approx(expression, 50, binby=binby, limits=limits, shape=shape, percentile_shape=percentile_shape, percentile_limits=percentile_limits, selection=selection, delay=delay)
async def unignore_all(self, ctx): """Unignores all channels in this server from being processed. To use this command you must have the Manage Channels permission or have the Bot Admin role. """ channels = [c for c in ctx.message.server.channels if c.type is discord.ChannelType.text] await ctx.invoke(self.unignore, *channels)
Unignores all channels in this server from being processed. To use this command you must have the Manage Channels permission or have the Bot Admin role.
Below is the the instruction that describes the task: ### Input: Unignores all channels in this server from being processed. To use this command you must have the Manage Channels permission or have the Bot Admin role. ### Response: async def unignore_all(self, ctx): """Unignores all channels in this server from being processed. To use this command you must have the Manage Channels permission or have the Bot Admin role. """ channels = [c for c in ctx.message.server.channels if c.type is discord.ChannelType.text] await ctx.invoke(self.unignore, *channels)
def user_has_reviewed(obj, user): """Returns True if the user has already reviewed the object.""" ctype = ContentType.objects.get_for_model(obj) try: models.Review.objects.get(user=user, content_type=ctype, object_id=obj.id) except models.Review.DoesNotExist: return False return True
Returns True if the user has already reviewed the object.
Below is the the instruction that describes the task: ### Input: Returns True if the user has already reviewed the object. ### Response: def user_has_reviewed(obj, user): """Returns True if the user has already reviewed the object.""" ctype = ContentType.objects.get_for_model(obj) try: models.Review.objects.get(user=user, content_type=ctype, object_id=obj.id) except models.Review.DoesNotExist: return False return True
def get_high_level_mean_pars(self, high_level_type, high_level_name, calculation_type, elements_type, mean_fit, dirtype): """ Gets the Parameters of a mean of lower level data such as a Site level Fisher mean of Specimen interpretations Parameters ---------- high_level_type : 'samples','sites','locations','study' high_level_name : sample, site, location, or study whose data to which to apply the mean calculation_type : 'Bingham','Fisher','Fisher by polarity' elements_type : what to average: 'specimens', 'samples', 'sites' (Ron. ToDo allow VGP and maybe locations?) mean_fit : name of interpretation to average if All uses all figure out what level to average,and what elements to average (specimen, samples, sites, vgp) """ elements_list = self.Data_hierarchy[high_level_type][high_level_name][elements_type] pars_for_mean = {} pars_for_mean["All"] = [] for element in elements_list: if elements_type == 'specimens' and element in self.pmag_results_data['specimens']: for fit in self.pmag_results_data['specimens'][element]: if fit in self.bad_fits: continue if fit.name not in list(pars_for_mean.keys()): pars_for_mean[fit.name] = [] try: # is this fit to be included in mean if mean_fit == 'All' or mean_fit == fit.name: pars = fit.get(dirtype) if pars == {} or pars == None: pars = self.get_PCA_parameters( element, fit, fit.tmin, fit.tmax, dirtype, fit.PCA_type) if pars == {} or pars == None: print(("cannot calculate parameters for element %s and fit %s in calculate_high_level_mean leaving out of fisher mean, please check this value." % ( element, fit.name))) continue fit.put(element, dirtype, pars) else: continue if "calculation_type" in list(pars.keys()) and pars["calculation_type"] == 'DE-BFP': dec, inc, direction_type = pars["specimen_dec"], pars["specimen_inc"], 'p' elif "specimen_dec" in list(pars.keys()) and "specimen_inc" in list(pars.keys()): dec, inc, direction_type = pars["specimen_dec"], pars["specimen_inc"], 'l' elif "dec" in list(pars.keys()) and "inc" in list(pars.keys()): dec, inc, direction_type = pars["dec"], pars["inc"], 'l' else: print( ("-E- ERROR: can't find mean for specimen interpertation: %s , %s" % (element, fit.name))) print(pars) continue # add for calculation pars_for_mean[fit.name].append({'dec': float(dec), 'inc': float( inc), 'direction_type': direction_type, 'element_name': element}) pars_for_mean["All"].append({'dec': float(dec), 'inc': float( inc), 'direction_type': direction_type, 'element_name': element}) except KeyError: print( ("KeyError in calculate_high_level_mean for element: " + str(element))) continue else: try: pars = self.high_level_means[elements_type][element][mean_fit][dirtype] if "dec" in list(pars.keys()) and "inc" in list(pars.keys()): dec, inc, direction_type = pars["dec"], pars["inc"], 'l' else: # print "-E- ERROR: can't find mean for element %s"%element continue except KeyError: # print("KeyError in calculate_high_level_mean for element: " + str(element) + " please report to a dev") continue return pars_for_mean
Gets the Parameters of a mean of lower level data such as a Site level Fisher mean of Specimen interpretations Parameters ---------- high_level_type : 'samples','sites','locations','study' high_level_name : sample, site, location, or study whose data to which to apply the mean calculation_type : 'Bingham','Fisher','Fisher by polarity' elements_type : what to average: 'specimens', 'samples', 'sites' (Ron. ToDo allow VGP and maybe locations?) mean_fit : name of interpretation to average if All uses all figure out what level to average,and what elements to average (specimen, samples, sites, vgp)
Below is the the instruction that describes the task: ### Input: Gets the Parameters of a mean of lower level data such as a Site level Fisher mean of Specimen interpretations Parameters ---------- high_level_type : 'samples','sites','locations','study' high_level_name : sample, site, location, or study whose data to which to apply the mean calculation_type : 'Bingham','Fisher','Fisher by polarity' elements_type : what to average: 'specimens', 'samples', 'sites' (Ron. ToDo allow VGP and maybe locations?) mean_fit : name of interpretation to average if All uses all figure out what level to average,and what elements to average (specimen, samples, sites, vgp) ### Response: def get_high_level_mean_pars(self, high_level_type, high_level_name, calculation_type, elements_type, mean_fit, dirtype): """ Gets the Parameters of a mean of lower level data such as a Site level Fisher mean of Specimen interpretations Parameters ---------- high_level_type : 'samples','sites','locations','study' high_level_name : sample, site, location, or study whose data to which to apply the mean calculation_type : 'Bingham','Fisher','Fisher by polarity' elements_type : what to average: 'specimens', 'samples', 'sites' (Ron. ToDo allow VGP and maybe locations?) mean_fit : name of interpretation to average if All uses all figure out what level to average,and what elements to average (specimen, samples, sites, vgp) """ elements_list = self.Data_hierarchy[high_level_type][high_level_name][elements_type] pars_for_mean = {} pars_for_mean["All"] = [] for element in elements_list: if elements_type == 'specimens' and element in self.pmag_results_data['specimens']: for fit in self.pmag_results_data['specimens'][element]: if fit in self.bad_fits: continue if fit.name not in list(pars_for_mean.keys()): pars_for_mean[fit.name] = [] try: # is this fit to be included in mean if mean_fit == 'All' or mean_fit == fit.name: pars = fit.get(dirtype) if pars == {} or pars == None: pars = self.get_PCA_parameters( element, fit, fit.tmin, fit.tmax, dirtype, fit.PCA_type) if pars == {} or pars == None: print(("cannot calculate parameters for element %s and fit %s in calculate_high_level_mean leaving out of fisher mean, please check this value." % ( element, fit.name))) continue fit.put(element, dirtype, pars) else: continue if "calculation_type" in list(pars.keys()) and pars["calculation_type"] == 'DE-BFP': dec, inc, direction_type = pars["specimen_dec"], pars["specimen_inc"], 'p' elif "specimen_dec" in list(pars.keys()) and "specimen_inc" in list(pars.keys()): dec, inc, direction_type = pars["specimen_dec"], pars["specimen_inc"], 'l' elif "dec" in list(pars.keys()) and "inc" in list(pars.keys()): dec, inc, direction_type = pars["dec"], pars["inc"], 'l' else: print( ("-E- ERROR: can't find mean for specimen interpertation: %s , %s" % (element, fit.name))) print(pars) continue # add for calculation pars_for_mean[fit.name].append({'dec': float(dec), 'inc': float( inc), 'direction_type': direction_type, 'element_name': element}) pars_for_mean["All"].append({'dec': float(dec), 'inc': float( inc), 'direction_type': direction_type, 'element_name': element}) except KeyError: print( ("KeyError in calculate_high_level_mean for element: " + str(element))) continue else: try: pars = self.high_level_means[elements_type][element][mean_fit][dirtype] if "dec" in list(pars.keys()) and "inc" in list(pars.keys()): dec, inc, direction_type = pars["dec"], pars["inc"], 'l' else: # print "-E- ERROR: can't find mean for element %s"%element continue except KeyError: # print("KeyError in calculate_high_level_mean for element: " + str(element) + " please report to a dev") continue return pars_for_mean
def set_header(self, name: str, value: _HeaderTypes) -> None: """Sets the given response header name and value. All header values are converted to strings (`datetime` objects are formatted according to the HTTP specification for the ``Date`` header). """ self._headers[name] = self._convert_header_value(value)
Sets the given response header name and value. All header values are converted to strings (`datetime` objects are formatted according to the HTTP specification for the ``Date`` header).
Below is the the instruction that describes the task: ### Input: Sets the given response header name and value. All header values are converted to strings (`datetime` objects are formatted according to the HTTP specification for the ``Date`` header). ### Response: def set_header(self, name: str, value: _HeaderTypes) -> None: """Sets the given response header name and value. All header values are converted to strings (`datetime` objects are formatted according to the HTTP specification for the ``Date`` header). """ self._headers[name] = self._convert_header_value(value)
def path(self): """ Return the path to this directory. """ p = '' if self._parent and self._parent.path: p = os.path.join(p, self._parent.path) if self._base: p = os.path.join(p, self._base) if self._path: p = os.path.join(p, self._path) return p
Return the path to this directory.
Below is the the instruction that describes the task: ### Input: Return the path to this directory. ### Response: def path(self): """ Return the path to this directory. """ p = '' if self._parent and self._parent.path: p = os.path.join(p, self._parent.path) if self._base: p = os.path.join(p, self._base) if self._path: p = os.path.join(p, self._path) return p
def _to_topology(self, atom_list, chains=None, residues=None): """Create a mdtraj.Topology from a Compound. Parameters ---------- atom_list : list of mb.Compound Atoms to include in the topology chains : mb.Compound or list of mb.Compound Chain types to add to the topology residues : str of list of str Labels of residues in the Compound. Residues are assigned by checking against Compound.name. Returns ------- top : mdtraj.Topology See Also -------- mdtraj.Topology : Details on the mdtraj Topology object """ from mdtraj.core.topology import Topology if isinstance(chains, string_types): chains = [chains] if isinstance(chains, (list, set)): chains = tuple(chains) if isinstance(residues, string_types): residues = [residues] if isinstance(residues, (list, set)): residues = tuple(residues) top = Topology() atom_mapping = {} default_chain = top.add_chain() default_residue = top.add_residue('RES', default_chain) compound_residue_map = dict() atom_residue_map = dict() compound_chain_map = dict() atom_chain_map = dict() for atom in atom_list: # Chains if chains: if atom.name in chains: current_chain = top.add_chain() compound_chain_map[atom] = current_chain else: for parent in atom.ancestors(): if chains and parent.name in chains: if parent not in compound_chain_map: current_chain = top.add_chain() compound_chain_map[parent] = current_chain current_residue = top.add_residue( 'RES', current_chain) break else: current_chain = default_chain else: current_chain = default_chain atom_chain_map[atom] = current_chain # Residues if residues: if atom.name in residues: current_residue = top.add_residue(atom.name, current_chain) compound_residue_map[atom] = current_residue else: for parent in atom.ancestors(): if residues and parent.name in residues: if parent not in compound_residue_map: current_residue = top.add_residue( parent.name, current_chain) compound_residue_map[parent] = current_residue break else: current_residue = default_residue else: if chains: try: # Grab the default residue from the custom chain. current_residue = next(current_chain.residues) except StopIteration: # Add the residue to the current chain current_residue = top.add_residue('RES', current_chain) else: # Grab the default chain's default residue current_residue = default_residue atom_residue_map[atom] = current_residue # Add the actual atoms try: elem = get_by_symbol(atom.name) except KeyError: elem = get_by_symbol("VS") at = top.add_atom(atom.name, elem, atom_residue_map[atom]) at.charge = atom.charge atom_mapping[atom] = at # Remove empty default residues. chains_to_remove = [ chain for chain in top.chains if chain.n_atoms == 0] residues_to_remove = [res for res in top.residues if res.n_atoms == 0] for chain in chains_to_remove: top._chains.remove(chain) for res in residues_to_remove: for chain in top.chains: try: chain._residues.remove(res) except ValueError: # Already gone. pass for atom1, atom2 in self.bonds(): # Ensure that both atoms are part of the compound. This becomes an # issue if you try to convert a sub-compound to a topology which is # bonded to a different subcompound. if all(a in atom_mapping.keys() for a in [atom1, atom2]): top.add_bond(atom_mapping[atom1], atom_mapping[atom2]) return top
Create a mdtraj.Topology from a Compound. Parameters ---------- atom_list : list of mb.Compound Atoms to include in the topology chains : mb.Compound or list of mb.Compound Chain types to add to the topology residues : str of list of str Labels of residues in the Compound. Residues are assigned by checking against Compound.name. Returns ------- top : mdtraj.Topology See Also -------- mdtraj.Topology : Details on the mdtraj Topology object
Below is the the instruction that describes the task: ### Input: Create a mdtraj.Topology from a Compound. Parameters ---------- atom_list : list of mb.Compound Atoms to include in the topology chains : mb.Compound or list of mb.Compound Chain types to add to the topology residues : str of list of str Labels of residues in the Compound. Residues are assigned by checking against Compound.name. Returns ------- top : mdtraj.Topology See Also -------- mdtraj.Topology : Details on the mdtraj Topology object ### Response: def _to_topology(self, atom_list, chains=None, residues=None): """Create a mdtraj.Topology from a Compound. Parameters ---------- atom_list : list of mb.Compound Atoms to include in the topology chains : mb.Compound or list of mb.Compound Chain types to add to the topology residues : str of list of str Labels of residues in the Compound. Residues are assigned by checking against Compound.name. Returns ------- top : mdtraj.Topology See Also -------- mdtraj.Topology : Details on the mdtraj Topology object """ from mdtraj.core.topology import Topology if isinstance(chains, string_types): chains = [chains] if isinstance(chains, (list, set)): chains = tuple(chains) if isinstance(residues, string_types): residues = [residues] if isinstance(residues, (list, set)): residues = tuple(residues) top = Topology() atom_mapping = {} default_chain = top.add_chain() default_residue = top.add_residue('RES', default_chain) compound_residue_map = dict() atom_residue_map = dict() compound_chain_map = dict() atom_chain_map = dict() for atom in atom_list: # Chains if chains: if atom.name in chains: current_chain = top.add_chain() compound_chain_map[atom] = current_chain else: for parent in atom.ancestors(): if chains and parent.name in chains: if parent not in compound_chain_map: current_chain = top.add_chain() compound_chain_map[parent] = current_chain current_residue = top.add_residue( 'RES', current_chain) break else: current_chain = default_chain else: current_chain = default_chain atom_chain_map[atom] = current_chain # Residues if residues: if atom.name in residues: current_residue = top.add_residue(atom.name, current_chain) compound_residue_map[atom] = current_residue else: for parent in atom.ancestors(): if residues and parent.name in residues: if parent not in compound_residue_map: current_residue = top.add_residue( parent.name, current_chain) compound_residue_map[parent] = current_residue break else: current_residue = default_residue else: if chains: try: # Grab the default residue from the custom chain. current_residue = next(current_chain.residues) except StopIteration: # Add the residue to the current chain current_residue = top.add_residue('RES', current_chain) else: # Grab the default chain's default residue current_residue = default_residue atom_residue_map[atom] = current_residue # Add the actual atoms try: elem = get_by_symbol(atom.name) except KeyError: elem = get_by_symbol("VS") at = top.add_atom(atom.name, elem, atom_residue_map[atom]) at.charge = atom.charge atom_mapping[atom] = at # Remove empty default residues. chains_to_remove = [ chain for chain in top.chains if chain.n_atoms == 0] residues_to_remove = [res for res in top.residues if res.n_atoms == 0] for chain in chains_to_remove: top._chains.remove(chain) for res in residues_to_remove: for chain in top.chains: try: chain._residues.remove(res) except ValueError: # Already gone. pass for atom1, atom2 in self.bonds(): # Ensure that both atoms are part of the compound. This becomes an # issue if you try to convert a sub-compound to a topology which is # bonded to a different subcompound. if all(a in atom_mapping.keys() for a in [atom1, atom2]): top.add_bond(atom_mapping[atom1], atom_mapping[atom2]) return top
def is_smooth_from(self, previous, warning_on=True): """[Warning: The name of this method is somewhat misleading (yet kept for compatibility with scripts created using svg.path 2.0). This method is meant only for d string creation and should not be used to check for kinks. To check a segment for differentiability, use the joins_smoothly_with() method instead.]""" if warning_on: warn(_is_smooth_from_warning) if isinstance(previous, QuadraticBezier): return (self.start == previous.end and (self.control - self.start) == ( previous.end - previous.control)) else: return self.control == self.start
[Warning: The name of this method is somewhat misleading (yet kept for compatibility with scripts created using svg.path 2.0). This method is meant only for d string creation and should not be used to check for kinks. To check a segment for differentiability, use the joins_smoothly_with() method instead.]
Below is the the instruction that describes the task: ### Input: [Warning: The name of this method is somewhat misleading (yet kept for compatibility with scripts created using svg.path 2.0). This method is meant only for d string creation and should not be used to check for kinks. To check a segment for differentiability, use the joins_smoothly_with() method instead.] ### Response: def is_smooth_from(self, previous, warning_on=True): """[Warning: The name of this method is somewhat misleading (yet kept for compatibility with scripts created using svg.path 2.0). This method is meant only for d string creation and should not be used to check for kinks. To check a segment for differentiability, use the joins_smoothly_with() method instead.]""" if warning_on: warn(_is_smooth_from_warning) if isinstance(previous, QuadraticBezier): return (self.start == previous.end and (self.control - self.start) == ( previous.end - previous.control)) else: return self.control == self.start
def list_gemeenten(self, sort=1): ''' List all `gemeenten` in Vlaanderen. :param integer sort: What field to sort on. :rtype: A :class:`list` of :class:`Gemeente`. ''' def creator(): url = self.base_url + '/municipality' h = self.base_headers p = { 'orderbyCode': sort == 1 } res = capakey_rest_gateway_request(url, h, p).json() return [ Gemeente(r['municipalityCode'], r['municipalityName']) for r in res['municipalities'] ] if self.caches['permanent'].is_configured: key = 'list_gemeenten_rest#%s' % sort gemeente = self.caches['permanent'].get_or_create(key, creator) else: gemeente = creator() for g in gemeente: g.set_gateway(self) return gemeente
List all `gemeenten` in Vlaanderen. :param integer sort: What field to sort on. :rtype: A :class:`list` of :class:`Gemeente`.
Below is the the instruction that describes the task: ### Input: List all `gemeenten` in Vlaanderen. :param integer sort: What field to sort on. :rtype: A :class:`list` of :class:`Gemeente`. ### Response: def list_gemeenten(self, sort=1): ''' List all `gemeenten` in Vlaanderen. :param integer sort: What field to sort on. :rtype: A :class:`list` of :class:`Gemeente`. ''' def creator(): url = self.base_url + '/municipality' h = self.base_headers p = { 'orderbyCode': sort == 1 } res = capakey_rest_gateway_request(url, h, p).json() return [ Gemeente(r['municipalityCode'], r['municipalityName']) for r in res['municipalities'] ] if self.caches['permanent'].is_configured: key = 'list_gemeenten_rest#%s' % sort gemeente = self.caches['permanent'].get_or_create(key, creator) else: gemeente = creator() for g in gemeente: g.set_gateway(self) return gemeente
def create(cls, title, conn=None, google_user=None, google_password=None): """ Create a new spreadsheet with the given ``title``. """ conn = Connection.connect(conn=conn, google_user=google_user, google_password=google_password) res = Resource(type='spreadsheet', title=title) res = conn.docs_client.CreateResource(res) id = res.id.text.rsplit('%3A', 1)[-1] return cls(id, conn, resource=res)
Create a new spreadsheet with the given ``title``.
Below is the the instruction that describes the task: ### Input: Create a new spreadsheet with the given ``title``. ### Response: def create(cls, title, conn=None, google_user=None, google_password=None): """ Create a new spreadsheet with the given ``title``. """ conn = Connection.connect(conn=conn, google_user=google_user, google_password=google_password) res = Resource(type='spreadsheet', title=title) res = conn.docs_client.CreateResource(res) id = res.id.text.rsplit('%3A', 1)[-1] return cls(id, conn, resource=res)
def getLogicalInterfaces(self, draft=False, name=None, schemaId=None): """ Get all logical interfaces for an org. Parameters: draft (boolean). Returns: - list of ids - response object Throws APIException on failure. """ if draft: req = ApiClient.allLogicalInterfacesUrl % (self.host, "/draft") else: req = ApiClient.allLogicalInterfacesUrl % (self.host, "") if name or schemaId: req += "?" if name: req += "name="+name if schemaId: if name: req += "&" req += "schemaId="+schemaId resp = requests.get(req, auth=self.credentials, verify=self.verify) if resp.status_code == 200: self.logger.debug("All logical interfaces retrieved") else: raise ibmiotf.APIException(resp.status_code, "HTTP error getting all logical interfaces", resp) return [x["id"] for x in resp.json()["results"]], resp.json()
Get all logical interfaces for an org. Parameters: draft (boolean). Returns: - list of ids - response object Throws APIException on failure.
Below is the the instruction that describes the task: ### Input: Get all logical interfaces for an org. Parameters: draft (boolean). Returns: - list of ids - response object Throws APIException on failure. ### Response: def getLogicalInterfaces(self, draft=False, name=None, schemaId=None): """ Get all logical interfaces for an org. Parameters: draft (boolean). Returns: - list of ids - response object Throws APIException on failure. """ if draft: req = ApiClient.allLogicalInterfacesUrl % (self.host, "/draft") else: req = ApiClient.allLogicalInterfacesUrl % (self.host, "") if name or schemaId: req += "?" if name: req += "name="+name if schemaId: if name: req += "&" req += "schemaId="+schemaId resp = requests.get(req, auth=self.credentials, verify=self.verify) if resp.status_code == 200: self.logger.debug("All logical interfaces retrieved") else: raise ibmiotf.APIException(resp.status_code, "HTTP error getting all logical interfaces", resp) return [x["id"] for x in resp.json()["results"]], resp.json()
def interval_cover(I): """Minimum interval cover :param I: list of closed intervals :returns: minimum list of points covering all intervals :complexity: O(n log n) """ S = [] for start, end in sorted(I, key=lambda v: v[1]): if not S or S[-1] < start: S.append(end) return S
Minimum interval cover :param I: list of closed intervals :returns: minimum list of points covering all intervals :complexity: O(n log n)
Below is the the instruction that describes the task: ### Input: Minimum interval cover :param I: list of closed intervals :returns: minimum list of points covering all intervals :complexity: O(n log n) ### Response: def interval_cover(I): """Minimum interval cover :param I: list of closed intervals :returns: minimum list of points covering all intervals :complexity: O(n log n) """ S = [] for start, end in sorted(I, key=lambda v: v[1]): if not S or S[-1] < start: S.append(end) return S
def clean(self): """ Check format name uniqueness for sites :return: cleaned_data """ data = self.cleaned_data formats = Format.objects.filter(name=data['name']) if self.instance: formats = formats.exclude(pk=self.instance.pk) exists_sites = [] for f in formats: for s in f.sites.all(): if s in data['sites']: exists_sites.append(s.__unicode__()) if len(exists_sites): raise ValidationError(ugettext("Format with this name exists for site(s): %s" % ", ".join(exists_sites))) return data
Check format name uniqueness for sites :return: cleaned_data
Below is the the instruction that describes the task: ### Input: Check format name uniqueness for sites :return: cleaned_data ### Response: def clean(self): """ Check format name uniqueness for sites :return: cleaned_data """ data = self.cleaned_data formats = Format.objects.filter(name=data['name']) if self.instance: formats = formats.exclude(pk=self.instance.pk) exists_sites = [] for f in formats: for s in f.sites.all(): if s in data['sites']: exists_sites.append(s.__unicode__()) if len(exists_sites): raise ValidationError(ugettext("Format with this name exists for site(s): %s" % ", ".join(exists_sites))) return data
def less(a, b, *args): """Implements the '<' operator with JS-style type coertion.""" types = set([type(a), type(b)]) if float in types or int in types: try: a, b = float(a), float(b) except TypeError: # NaN return False return a < b and (not args or less(b, *args))
Implements the '<' operator with JS-style type coertion.
Below is the the instruction that describes the task: ### Input: Implements the '<' operator with JS-style type coertion. ### Response: def less(a, b, *args): """Implements the '<' operator with JS-style type coertion.""" types = set([type(a), type(b)]) if float in types or int in types: try: a, b = float(a), float(b) except TypeError: # NaN return False return a < b and (not args or less(b, *args))
def _classes_default(self): """This has to be in a method, for TerminalIPythonApp to be available.""" return [ InteractiveShellApp, # ShellApp comes before TerminalApp, because self.__class__, # it will also affect subclasses (e.g. QtConsole) TerminalInteractiveShell, PromptManager, HistoryManager, ProfileDir, PlainTextFormatter, IPCompleter, ScriptMagics, ]
This has to be in a method, for TerminalIPythonApp to be available.
Below is the the instruction that describes the task: ### Input: This has to be in a method, for TerminalIPythonApp to be available. ### Response: def _classes_default(self): """This has to be in a method, for TerminalIPythonApp to be available.""" return [ InteractiveShellApp, # ShellApp comes before TerminalApp, because self.__class__, # it will also affect subclasses (e.g. QtConsole) TerminalInteractiveShell, PromptManager, HistoryManager, ProfileDir, PlainTextFormatter, IPCompleter, ScriptMagics, ]
def data_directory(self): """ The absolute pathname of the directory where pip-accel's data files are stored (a string). - Environment variable: ``$PIP_ACCEL_CACHE`` - Configuration option: ``data-directory`` - Default: ``/var/cache/pip-accel`` if running as ``root``, ``~/.pip-accel`` otherwise """ return expand_path(self.get(property_name='data_directory', environment_variable='PIP_ACCEL_CACHE', configuration_option='data-directory', default='/var/cache/pip-accel' if is_root() else '~/.pip-accel'))
The absolute pathname of the directory where pip-accel's data files are stored (a string). - Environment variable: ``$PIP_ACCEL_CACHE`` - Configuration option: ``data-directory`` - Default: ``/var/cache/pip-accel`` if running as ``root``, ``~/.pip-accel`` otherwise
Below is the the instruction that describes the task: ### Input: The absolute pathname of the directory where pip-accel's data files are stored (a string). - Environment variable: ``$PIP_ACCEL_CACHE`` - Configuration option: ``data-directory`` - Default: ``/var/cache/pip-accel`` if running as ``root``, ``~/.pip-accel`` otherwise ### Response: def data_directory(self): """ The absolute pathname of the directory where pip-accel's data files are stored (a string). - Environment variable: ``$PIP_ACCEL_CACHE`` - Configuration option: ``data-directory`` - Default: ``/var/cache/pip-accel`` if running as ``root``, ``~/.pip-accel`` otherwise """ return expand_path(self.get(property_name='data_directory', environment_variable='PIP_ACCEL_CACHE', configuration_option='data-directory', default='/var/cache/pip-accel' if is_root() else '~/.pip-accel'))
def translations_generator_to_dataframe(translations_generator): """ Given a generator of (Variant, [Translation]) pairs, returns a DataFrame of translated protein fragments with columns for each field of a Translation object (and chr/pos/ref/alt per variant). """ return dataframe_from_generator( element_class=Translation, variant_and_elements_generator=translations_generator, exclude=[], converters={ "untrimmed_variant_sequence": lambda vs: vs.sequence, "variant_sequence_in_reading_frame": ( lambda vs: vs.in_frame_cdna_sequence), "reference_context": ( lambda rc: ";".join([ transcript.name for transcript in rc.transcripts])) }, extra_column_fns={ "untrimmed_variant_sequence_read_count": ( lambda _, t: len(t.untrimmed_variant_sequence.reads)), })
Given a generator of (Variant, [Translation]) pairs, returns a DataFrame of translated protein fragments with columns for each field of a Translation object (and chr/pos/ref/alt per variant).
Below is the the instruction that describes the task: ### Input: Given a generator of (Variant, [Translation]) pairs, returns a DataFrame of translated protein fragments with columns for each field of a Translation object (and chr/pos/ref/alt per variant). ### Response: def translations_generator_to_dataframe(translations_generator): """ Given a generator of (Variant, [Translation]) pairs, returns a DataFrame of translated protein fragments with columns for each field of a Translation object (and chr/pos/ref/alt per variant). """ return dataframe_from_generator( element_class=Translation, variant_and_elements_generator=translations_generator, exclude=[], converters={ "untrimmed_variant_sequence": lambda vs: vs.sequence, "variant_sequence_in_reading_frame": ( lambda vs: vs.in_frame_cdna_sequence), "reference_context": ( lambda rc: ";".join([ transcript.name for transcript in rc.transcripts])) }, extra_column_fns={ "untrimmed_variant_sequence_read_count": ( lambda _, t: len(t.untrimmed_variant_sequence.reads)), })
def render_pulp_tag(self): """ Configure the pulp_tag plugin. """ if not self.dj.dock_json_has_plugin_conf('postbuild_plugins', 'pulp_tag'): return pulp_registry = self.spec.pulp_registry.value if pulp_registry: self.dj.dock_json_set_arg('postbuild_plugins', 'pulp_tag', 'pulp_registry_name', pulp_registry) # Verify we have either a secret or username/password if self.spec.pulp_secret.value is None: conf = self.dj.dock_json_get_plugin_conf('postbuild_plugins', 'pulp_tag') args = conf.get('args', {}) if 'username' not in args: raise OsbsValidationException("Pulp registry specified " "but no auth config") else: # If no pulp registry is specified, don't run the pulp plugin logger.info("removing pulp_tag from request, " "requires pulp_registry") self.dj.remove_plugin("postbuild_plugins", "pulp_tag")
Configure the pulp_tag plugin.
Below is the the instruction that describes the task: ### Input: Configure the pulp_tag plugin. ### Response: def render_pulp_tag(self): """ Configure the pulp_tag plugin. """ if not self.dj.dock_json_has_plugin_conf('postbuild_plugins', 'pulp_tag'): return pulp_registry = self.spec.pulp_registry.value if pulp_registry: self.dj.dock_json_set_arg('postbuild_plugins', 'pulp_tag', 'pulp_registry_name', pulp_registry) # Verify we have either a secret or username/password if self.spec.pulp_secret.value is None: conf = self.dj.dock_json_get_plugin_conf('postbuild_plugins', 'pulp_tag') args = conf.get('args', {}) if 'username' not in args: raise OsbsValidationException("Pulp registry specified " "but no auth config") else: # If no pulp registry is specified, don't run the pulp plugin logger.info("removing pulp_tag from request, " "requires pulp_registry") self.dj.remove_plugin("postbuild_plugins", "pulp_tag")
def remove(name_or_path): '''Remove an environment or module :param name_or_path: name or path to environment or module ''' r = resolve(name_or_path) r.resolved[0].remove() EnvironmentCache.discard(r.resolved[0]) EnvironmentCache.save()
Remove an environment or module :param name_or_path: name or path to environment or module
Below is the the instruction that describes the task: ### Input: Remove an environment or module :param name_or_path: name or path to environment or module ### Response: def remove(name_or_path): '''Remove an environment or module :param name_or_path: name or path to environment or module ''' r = resolve(name_or_path) r.resolved[0].remove() EnvironmentCache.discard(r.resolved[0]) EnvironmentCache.save()
def reduce_stock(self, product_id, sku_info, quantity): """ 减少库存 :param product_id: 商品ID :param sku_info: sku信息,格式"id1:vid1;id2:vid2",如商品为统一规格,则此处赋值为空字符串即可 :param quantity: 减少的库存数量 :return: 返回的 JSON 数据包 """ return self._post( 'merchant/stock/reduce', data={ "product_id": product_id, "sku_info": sku_info, "quantity": quantity } )
减少库存 :param product_id: 商品ID :param sku_info: sku信息,格式"id1:vid1;id2:vid2",如商品为统一规格,则此处赋值为空字符串即可 :param quantity: 减少的库存数量 :return: 返回的 JSON 数据包
Below is the the instruction that describes the task: ### Input: 减少库存 :param product_id: 商品ID :param sku_info: sku信息,格式"id1:vid1;id2:vid2",如商品为统一规格,则此处赋值为空字符串即可 :param quantity: 减少的库存数量 :return: 返回的 JSON 数据包 ### Response: def reduce_stock(self, product_id, sku_info, quantity): """ 减少库存 :param product_id: 商品ID :param sku_info: sku信息,格式"id1:vid1;id2:vid2",如商品为统一规格,则此处赋值为空字符串即可 :param quantity: 减少的库存数量 :return: 返回的 JSON 数据包 """ return self._post( 'merchant/stock/reduce', data={ "product_id": product_id, "sku_info": sku_info, "quantity": quantity } )
def slice_to(self, s): ''' Copy the slice into the supplied StringBuffer @type s: string ''' result = '' if self.slice_check(): result = self.current[self.bra:self.ket] return result
Copy the slice into the supplied StringBuffer @type s: string
Below is the the instruction that describes the task: ### Input: Copy the slice into the supplied StringBuffer @type s: string ### Response: def slice_to(self, s): ''' Copy the slice into the supplied StringBuffer @type s: string ''' result = '' if self.slice_check(): result = self.current[self.bra:self.ket] return result
def add_time(data): """And a friendly update time to the supplied data. Arguments: data (:py:class:`dict`): The response data and its update time. Returns: :py:class:`dict`: The data with a friendly update time. """ payload = data['data'] updated = data['updated'].date() if updated == date.today(): payload['last_updated'] = data['updated'].strftime('today at %H:%M:%S') elif updated >= (date.today() - timedelta(days=1)): payload['last_updated'] = 'yesterday' elif updated >= (date.today() - timedelta(days=7)): payload['last_updated'] = updated.strftime('on %A') else: payload['last_updated'] = updated.strftime('%Y-%m-%d') return payload
And a friendly update time to the supplied data. Arguments: data (:py:class:`dict`): The response data and its update time. Returns: :py:class:`dict`: The data with a friendly update time.
Below is the the instruction that describes the task: ### Input: And a friendly update time to the supplied data. Arguments: data (:py:class:`dict`): The response data and its update time. Returns: :py:class:`dict`: The data with a friendly update time. ### Response: def add_time(data): """And a friendly update time to the supplied data. Arguments: data (:py:class:`dict`): The response data and its update time. Returns: :py:class:`dict`: The data with a friendly update time. """ payload = data['data'] updated = data['updated'].date() if updated == date.today(): payload['last_updated'] = data['updated'].strftime('today at %H:%M:%S') elif updated >= (date.today() - timedelta(days=1)): payload['last_updated'] = 'yesterday' elif updated >= (date.today() - timedelta(days=7)): payload['last_updated'] = updated.strftime('on %A') else: payload['last_updated'] = updated.strftime('%Y-%m-%d') return payload
def get_job(self, job_id): """GetJob https://apidocs.joyent.com/manta/api.html#GetJob with the added sugar that it will retrieve the archived job if it has been archived, per: https://apidocs.joyent.com/manta/jobs-reference.html#job-completion-and-archival """ try: return RawMantaClient.get_job(self, job_id) except errors.MantaAPIError as ex: if ex.res.status != 404: raise # Job was archived, try to retrieve the archived data. mpath = "/%s/jobs/%s/job.json" % (self.account, job_id) content = self.get_object(mpath, accept='application/json') try: return json.loads(content) except ValueError: raise errors.MantaError('invalid job data: %r' % content)
GetJob https://apidocs.joyent.com/manta/api.html#GetJob with the added sugar that it will retrieve the archived job if it has been archived, per: https://apidocs.joyent.com/manta/jobs-reference.html#job-completion-and-archival
Below is the the instruction that describes the task: ### Input: GetJob https://apidocs.joyent.com/manta/api.html#GetJob with the added sugar that it will retrieve the archived job if it has been archived, per: https://apidocs.joyent.com/manta/jobs-reference.html#job-completion-and-archival ### Response: def get_job(self, job_id): """GetJob https://apidocs.joyent.com/manta/api.html#GetJob with the added sugar that it will retrieve the archived job if it has been archived, per: https://apidocs.joyent.com/manta/jobs-reference.html#job-completion-and-archival """ try: return RawMantaClient.get_job(self, job_id) except errors.MantaAPIError as ex: if ex.res.status != 404: raise # Job was archived, try to retrieve the archived data. mpath = "/%s/jobs/%s/job.json" % (self.account, job_id) content = self.get_object(mpath, accept='application/json') try: return json.loads(content) except ValueError: raise errors.MantaError('invalid job data: %r' % content)
def unpack(self, buff, offset=0): """Unpack a binary message into this object's attributes. Unpack the binary value *buff* and update this object attributes based on the results. Args: buff (bytes): Binary data package to be unpacked. offset (int): Where to begin unpacking. Raises: Exception: If there is a struct unpacking error. """ self.action_type = UBInt16(enum_ref=ActionType) self.action_type.unpack(buff, offset) for cls in ActionHeader.__subclasses__(): if self.action_type.value in cls.get_allowed_types(): self.__class__ = cls break super().unpack(buff, offset)
Unpack a binary message into this object's attributes. Unpack the binary value *buff* and update this object attributes based on the results. Args: buff (bytes): Binary data package to be unpacked. offset (int): Where to begin unpacking. Raises: Exception: If there is a struct unpacking error.
Below is the the instruction that describes the task: ### Input: Unpack a binary message into this object's attributes. Unpack the binary value *buff* and update this object attributes based on the results. Args: buff (bytes): Binary data package to be unpacked. offset (int): Where to begin unpacking. Raises: Exception: If there is a struct unpacking error. ### Response: def unpack(self, buff, offset=0): """Unpack a binary message into this object's attributes. Unpack the binary value *buff* and update this object attributes based on the results. Args: buff (bytes): Binary data package to be unpacked. offset (int): Where to begin unpacking. Raises: Exception: If there is a struct unpacking error. """ self.action_type = UBInt16(enum_ref=ActionType) self.action_type.unpack(buff, offset) for cls in ActionHeader.__subclasses__(): if self.action_type.value in cls.get_allowed_types(): self.__class__ = cls break super().unpack(buff, offset)
def prepare_env(app, env, docname): """ Prepares the sphinx environment to store sphinx-needs internal data. """ if not hasattr(env, 'needs_all_needs'): # Used to store all needed information about all needs in document env.needs_all_needs = {} if not hasattr(env, 'needs_functions'): # Used to store all registered functions for supporting dynamic need values. env.needs_functions = {} # needs_functions = getattr(app.config, 'needs_functions', []) needs_functions = app.needs_functions if needs_functions is None: needs_functions = [] if not isinstance(needs_functions, list): raise SphinxError('Config parameter needs_functions must be a list!') # Register built-in functions for need_common_func in needs_common_functions: register_func(env, need_common_func) # Register functions configured by user for needs_func in needs_functions: register_func(env, needs_func) app.config.needs_hide_options += ['hidden'] app.config.needs_extra_options['hidden'] = directives.unchanged if not hasattr(env, 'needs_workflow'): # Used to store workflow status information for already executed tasks. # Some tasks like backlink_creation need be be performed only once. # But most sphinx-events get called several times (for each single document file), which would also # execute our code several times... env.needs_workflow = { 'backlink_creation': False, 'dynamic_values_resolved': False }
Prepares the sphinx environment to store sphinx-needs internal data.
Below is the the instruction that describes the task: ### Input: Prepares the sphinx environment to store sphinx-needs internal data. ### Response: def prepare_env(app, env, docname): """ Prepares the sphinx environment to store sphinx-needs internal data. """ if not hasattr(env, 'needs_all_needs'): # Used to store all needed information about all needs in document env.needs_all_needs = {} if not hasattr(env, 'needs_functions'): # Used to store all registered functions for supporting dynamic need values. env.needs_functions = {} # needs_functions = getattr(app.config, 'needs_functions', []) needs_functions = app.needs_functions if needs_functions is None: needs_functions = [] if not isinstance(needs_functions, list): raise SphinxError('Config parameter needs_functions must be a list!') # Register built-in functions for need_common_func in needs_common_functions: register_func(env, need_common_func) # Register functions configured by user for needs_func in needs_functions: register_func(env, needs_func) app.config.needs_hide_options += ['hidden'] app.config.needs_extra_options['hidden'] = directives.unchanged if not hasattr(env, 'needs_workflow'): # Used to store workflow status information for already executed tasks. # Some tasks like backlink_creation need be be performed only once. # But most sphinx-events get called several times (for each single document file), which would also # execute our code several times... env.needs_workflow = { 'backlink_creation': False, 'dynamic_values_resolved': False }
def to_mapping(self,**values): """ Create a JSON-serializable representation of the plane that is usable with the javascript frontend """ strike, dip, rake = self.strike_dip_rake() min, max = self.angular_errors() try: disabled = self.disabled except AttributeError: disabled = False mapping = dict( uid=self.hash, axes=self.axes.tolist(), hyperbolic_axes=self.hyperbolic_axes.tolist(), max_angular_error=max, min_angular_error=min, strike=strike, dip=dip, rake=rake, disabled=disabled) # Add in user-provided-values, overwriting if # necessary for k,v in values.items(): mapping[k] = v return mapping
Create a JSON-serializable representation of the plane that is usable with the javascript frontend
Below is the the instruction that describes the task: ### Input: Create a JSON-serializable representation of the plane that is usable with the javascript frontend ### Response: def to_mapping(self,**values): """ Create a JSON-serializable representation of the plane that is usable with the javascript frontend """ strike, dip, rake = self.strike_dip_rake() min, max = self.angular_errors() try: disabled = self.disabled except AttributeError: disabled = False mapping = dict( uid=self.hash, axes=self.axes.tolist(), hyperbolic_axes=self.hyperbolic_axes.tolist(), max_angular_error=max, min_angular_error=min, strike=strike, dip=dip, rake=rake, disabled=disabled) # Add in user-provided-values, overwriting if # necessary for k,v in values.items(): mapping[k] = v return mapping
def guard_submit(analysis_request): """Return whether the transition "submit" can be performed or not. Returns True if there is at least one analysis in a non-detached state and all analyses in a non-detached analyses have been submitted. """ analyses_ready = False for analysis in analysis_request.getAnalyses(): analysis = api.get_object(analysis) analysis_status = api.get_workflow_status_of(analysis) if analysis_status in ANALYSIS_DETACHED_STATES: continue if analysis_status in ['assigned', 'unassigned', 'registered']: return False analyses_ready = True return analyses_ready
Return whether the transition "submit" can be performed or not. Returns True if there is at least one analysis in a non-detached state and all analyses in a non-detached analyses have been submitted.
Below is the the instruction that describes the task: ### Input: Return whether the transition "submit" can be performed or not. Returns True if there is at least one analysis in a non-detached state and all analyses in a non-detached analyses have been submitted. ### Response: def guard_submit(analysis_request): """Return whether the transition "submit" can be performed or not. Returns True if there is at least one analysis in a non-detached state and all analyses in a non-detached analyses have been submitted. """ analyses_ready = False for analysis in analysis_request.getAnalyses(): analysis = api.get_object(analysis) analysis_status = api.get_workflow_status_of(analysis) if analysis_status in ANALYSIS_DETACHED_STATES: continue if analysis_status in ['assigned', 'unassigned', 'registered']: return False analyses_ready = True return analyses_ready
def from_array(array): """ Deserialize a new Sticker from a given dictionary. :return: new Sticker instance. :rtype: Sticker """ if array is None or not array: return None # end if assert_type_or_raise(array, dict, parameter_name="array") from pytgbot.api_types.receivable.media import PhotoSize from pytgbot.api_types.receivable.stickers import MaskPosition data = {} data['file_id'] = u(array.get('file_id')) data['width'] = int(array.get('width')) data['height'] = int(array.get('height')) data['thumb'] = PhotoSize.from_array(array.get('thumb')) if array.get('thumb') is not None else None data['emoji'] = u(array.get('emoji')) if array.get('emoji') is not None else None data['set_name'] = u(array.get('set_name')) if array.get('set_name') is not None else None data['mask_position'] = MaskPosition.from_array(array.get('mask_position')) if array.get('mask_position') is not None else None data['file_size'] = int(array.get('file_size')) if array.get('file_size') is not None else None data['_raw'] = array return Sticker(**data)
Deserialize a new Sticker from a given dictionary. :return: new Sticker instance. :rtype: Sticker
Below is the the instruction that describes the task: ### Input: Deserialize a new Sticker from a given dictionary. :return: new Sticker instance. :rtype: Sticker ### Response: def from_array(array): """ Deserialize a new Sticker from a given dictionary. :return: new Sticker instance. :rtype: Sticker """ if array is None or not array: return None # end if assert_type_or_raise(array, dict, parameter_name="array") from pytgbot.api_types.receivable.media import PhotoSize from pytgbot.api_types.receivable.stickers import MaskPosition data = {} data['file_id'] = u(array.get('file_id')) data['width'] = int(array.get('width')) data['height'] = int(array.get('height')) data['thumb'] = PhotoSize.from_array(array.get('thumb')) if array.get('thumb') is not None else None data['emoji'] = u(array.get('emoji')) if array.get('emoji') is not None else None data['set_name'] = u(array.get('set_name')) if array.get('set_name') is not None else None data['mask_position'] = MaskPosition.from_array(array.get('mask_position')) if array.get('mask_position') is not None else None data['file_size'] = int(array.get('file_size')) if array.get('file_size') is not None else None data['_raw'] = array return Sticker(**data)
def start_packet_groups(self, clear_time_stamps=True, *ports): """ Start packet groups on ports. :param clear_time_stamps: True - clear time stamps, False - don't. :param ports: list of ports to start traffic on, if empty start on all ports. """ port_list = self.set_ports_list(*ports) if clear_time_stamps: self.api.call_rc('ixClearTimeStamp {}'.format(port_list)) self.api.call_rc('ixStartPacketGroups {}'.format(port_list))
Start packet groups on ports. :param clear_time_stamps: True - clear time stamps, False - don't. :param ports: list of ports to start traffic on, if empty start on all ports.
Below is the the instruction that describes the task: ### Input: Start packet groups on ports. :param clear_time_stamps: True - clear time stamps, False - don't. :param ports: list of ports to start traffic on, if empty start on all ports. ### Response: def start_packet_groups(self, clear_time_stamps=True, *ports): """ Start packet groups on ports. :param clear_time_stamps: True - clear time stamps, False - don't. :param ports: list of ports to start traffic on, if empty start on all ports. """ port_list = self.set_ports_list(*ports) if clear_time_stamps: self.api.call_rc('ixClearTimeStamp {}'.format(port_list)) self.api.call_rc('ixStartPacketGroups {}'.format(port_list))
def get_leaves(self): """Get the deepest entries as a flat set.""" ret_set = set() for val in self.values(): if isinstance(val, self.__class__): ret_set |= val.get_leaves() elif isinstance(val, dict): ret_set |= set(val.values()) elif isinstance(val, list): ret_set |= set(val) elif isinstance(val, set): ret_set |= val else: ret_set.add(val) return ret_set
Get the deepest entries as a flat set.
Below is the the instruction that describes the task: ### Input: Get the deepest entries as a flat set. ### Response: def get_leaves(self): """Get the deepest entries as a flat set.""" ret_set = set() for val in self.values(): if isinstance(val, self.__class__): ret_set |= val.get_leaves() elif isinstance(val, dict): ret_set |= set(val.values()) elif isinstance(val, list): ret_set |= set(val) elif isinstance(val, set): ret_set |= val else: ret_set.add(val) return ret_set
def define_passive_branch_flows_with_kirchhoff(network,snapshots,skip_vars=False): """ define passive branch flows with the kirchoff method """ for sub_network in network.sub_networks.obj: find_tree(sub_network) find_cycles(sub_network) #following is necessary to calculate angles post-facto find_bus_controls(sub_network) if len(sub_network.branches_i()) > 0: calculate_B_H(sub_network) passive_branches = network.passive_branches() if not skip_vars: network.model.passive_branch_p = Var(list(passive_branches.index), snapshots) cycle_index = [] cycle_constraints = {} for subnetwork in network.sub_networks.obj: branches = subnetwork.branches() attribute = "r_pu_eff" if network.sub_networks.at[subnetwork.name,"carrier"] == "DC" else "x_pu_eff" sub_network_cycle_index, sub_network_cycle_constraints = define_sub_network_cycle_constraints( subnetwork, snapshots, network.model.passive_branch_p, attribute) cycle_index.extend( sub_network_cycle_index) cycle_constraints.update( sub_network_cycle_constraints) l_constraint(network.model, "cycle_constraints", cycle_constraints, cycle_index, snapshots)
define passive branch flows with the kirchoff method
Below is the the instruction that describes the task: ### Input: define passive branch flows with the kirchoff method ### Response: def define_passive_branch_flows_with_kirchhoff(network,snapshots,skip_vars=False): """ define passive branch flows with the kirchoff method """ for sub_network in network.sub_networks.obj: find_tree(sub_network) find_cycles(sub_network) #following is necessary to calculate angles post-facto find_bus_controls(sub_network) if len(sub_network.branches_i()) > 0: calculate_B_H(sub_network) passive_branches = network.passive_branches() if not skip_vars: network.model.passive_branch_p = Var(list(passive_branches.index), snapshots) cycle_index = [] cycle_constraints = {} for subnetwork in network.sub_networks.obj: branches = subnetwork.branches() attribute = "r_pu_eff" if network.sub_networks.at[subnetwork.name,"carrier"] == "DC" else "x_pu_eff" sub_network_cycle_index, sub_network_cycle_constraints = define_sub_network_cycle_constraints( subnetwork, snapshots, network.model.passive_branch_p, attribute) cycle_index.extend( sub_network_cycle_index) cycle_constraints.update( sub_network_cycle_constraints) l_constraint(network.model, "cycle_constraints", cycle_constraints, cycle_index, snapshots)
def rectify_ajax_form_data(self, data): """ If a widget was converted and the Form data was submitted through an Ajax request, then these data fields must be converted to suit the Django Form validation """ for name, field in self.base_fields.items(): try: data[name] = field.convert_ajax_data(data.get(name, {})) except AttributeError: pass return data
If a widget was converted and the Form data was submitted through an Ajax request, then these data fields must be converted to suit the Django Form validation
Below is the the instruction that describes the task: ### Input: If a widget was converted and the Form data was submitted through an Ajax request, then these data fields must be converted to suit the Django Form validation ### Response: def rectify_ajax_form_data(self, data): """ If a widget was converted and the Form data was submitted through an Ajax request, then these data fields must be converted to suit the Django Form validation """ for name, field in self.base_fields.items(): try: data[name] = field.convert_ajax_data(data.get(name, {})) except AttributeError: pass return data
def ParseOptions(cls, options, analysis_plugin): """Parses and validates options. Args: options (argparse.Namespace): parser options. analysis_plugin (AnalysisPlugin): analysis plugin to configure. Raises: BadConfigObject: when the output module object is of the wrong type. BadConfigOption: when a configuration parameter fails validation. """ if not isinstance(analysis_plugin, tagging.TaggingAnalysisPlugin): raise errors.BadConfigObject( 'Analysis plugin is not an instance of TaggingAnalysisPlugin') tagging_file = cls._ParseStringOption(options, 'tagging_file') if not tagging_file: raise errors.BadConfigOption( 'Tagging analysis plugin requires a tagging file.') tagging_file_path = tagging_file if not os.path.isfile(tagging_file_path): # Check if the file exists in the data location path. data_location = getattr(options, 'data_location', None) if data_location: tagging_file_path = os.path.join(data_location, tagging_file) if not os.path.isfile(tagging_file_path): raise errors.BadConfigOption( 'No such tagging file: {0:s}.'.format(tagging_file)) try: analysis_plugin.SetAndLoadTagFile(tagging_file_path) except UnicodeDecodeError: raise errors.BadConfigOption( 'Invalid tagging file: {0:s} encoding must be UTF-8.'.format( tagging_file)) except errors.TaggingFileError as exception: raise errors.BadConfigOption( 'Unable to read tagging file: {0:s} with error: {1!s}'.format( tagging_file, exception))
Parses and validates options. Args: options (argparse.Namespace): parser options. analysis_plugin (AnalysisPlugin): analysis plugin to configure. Raises: BadConfigObject: when the output module object is of the wrong type. BadConfigOption: when a configuration parameter fails validation.
Below is the the instruction that describes the task: ### Input: Parses and validates options. Args: options (argparse.Namespace): parser options. analysis_plugin (AnalysisPlugin): analysis plugin to configure. Raises: BadConfigObject: when the output module object is of the wrong type. BadConfigOption: when a configuration parameter fails validation. ### Response: def ParseOptions(cls, options, analysis_plugin): """Parses and validates options. Args: options (argparse.Namespace): parser options. analysis_plugin (AnalysisPlugin): analysis plugin to configure. Raises: BadConfigObject: when the output module object is of the wrong type. BadConfigOption: when a configuration parameter fails validation. """ if not isinstance(analysis_plugin, tagging.TaggingAnalysisPlugin): raise errors.BadConfigObject( 'Analysis plugin is not an instance of TaggingAnalysisPlugin') tagging_file = cls._ParseStringOption(options, 'tagging_file') if not tagging_file: raise errors.BadConfigOption( 'Tagging analysis plugin requires a tagging file.') tagging_file_path = tagging_file if not os.path.isfile(tagging_file_path): # Check if the file exists in the data location path. data_location = getattr(options, 'data_location', None) if data_location: tagging_file_path = os.path.join(data_location, tagging_file) if not os.path.isfile(tagging_file_path): raise errors.BadConfigOption( 'No such tagging file: {0:s}.'.format(tagging_file)) try: analysis_plugin.SetAndLoadTagFile(tagging_file_path) except UnicodeDecodeError: raise errors.BadConfigOption( 'Invalid tagging file: {0:s} encoding must be UTF-8.'.format( tagging_file)) except errors.TaggingFileError as exception: raise errors.BadConfigOption( 'Unable to read tagging file: {0:s} with error: {1!s}'.format( tagging_file, exception))
def _computeOverlaps(data, selfOverlaps=False, dtype="int16"): """ Calculates all pairwise overlaps between the rows of the input. Returns an array of all n(n-1)/2 values in the upper triangular portion of the pairwise overlap matrix. Values are returned in row-major order. @param data (scipy.sparse.csr_matrix) A CSR sparse matrix with one vector per row. Any non-zero value is considered an active bit. @param selfOverlaps (boolean) If true, include diagonal (density) values from the pairwise similarity matrix. Then the returned vector has n(n+1)/2 elements. Optional, defaults to False. @param dtype (string) Data type of returned array in numpy dtype format. Optional, defaults to 'int16'. @returns (numpy.ndarray) A vector of pairwise overlaps as described above. """ nVectors = data.shape[0] nDims = data.shape[1] nPairs = (nVectors+1)*nVectors/2 if selfOverlaps else ( nVectors*(nVectors-1)/2) overlaps = numpy.ndarray(nPairs, dtype=dtype) pos = 0 for i in xrange(nVectors): start = i if selfOverlaps else i+1 a = data[i] b = data[start:] newOverlaps = a.multiply(b).getnnz(1) run = newOverlaps.shape[0] overlaps[pos:pos+run] = newOverlaps pos += run return overlaps
Calculates all pairwise overlaps between the rows of the input. Returns an array of all n(n-1)/2 values in the upper triangular portion of the pairwise overlap matrix. Values are returned in row-major order. @param data (scipy.sparse.csr_matrix) A CSR sparse matrix with one vector per row. Any non-zero value is considered an active bit. @param selfOverlaps (boolean) If true, include diagonal (density) values from the pairwise similarity matrix. Then the returned vector has n(n+1)/2 elements. Optional, defaults to False. @param dtype (string) Data type of returned array in numpy dtype format. Optional, defaults to 'int16'. @returns (numpy.ndarray) A vector of pairwise overlaps as described above.
Below is the the instruction that describes the task: ### Input: Calculates all pairwise overlaps between the rows of the input. Returns an array of all n(n-1)/2 values in the upper triangular portion of the pairwise overlap matrix. Values are returned in row-major order. @param data (scipy.sparse.csr_matrix) A CSR sparse matrix with one vector per row. Any non-zero value is considered an active bit. @param selfOverlaps (boolean) If true, include diagonal (density) values from the pairwise similarity matrix. Then the returned vector has n(n+1)/2 elements. Optional, defaults to False. @param dtype (string) Data type of returned array in numpy dtype format. Optional, defaults to 'int16'. @returns (numpy.ndarray) A vector of pairwise overlaps as described above. ### Response: def _computeOverlaps(data, selfOverlaps=False, dtype="int16"): """ Calculates all pairwise overlaps between the rows of the input. Returns an array of all n(n-1)/2 values in the upper triangular portion of the pairwise overlap matrix. Values are returned in row-major order. @param data (scipy.sparse.csr_matrix) A CSR sparse matrix with one vector per row. Any non-zero value is considered an active bit. @param selfOverlaps (boolean) If true, include diagonal (density) values from the pairwise similarity matrix. Then the returned vector has n(n+1)/2 elements. Optional, defaults to False. @param dtype (string) Data type of returned array in numpy dtype format. Optional, defaults to 'int16'. @returns (numpy.ndarray) A vector of pairwise overlaps as described above. """ nVectors = data.shape[0] nDims = data.shape[1] nPairs = (nVectors+1)*nVectors/2 if selfOverlaps else ( nVectors*(nVectors-1)/2) overlaps = numpy.ndarray(nPairs, dtype=dtype) pos = 0 for i in xrange(nVectors): start = i if selfOverlaps else i+1 a = data[i] b = data[start:] newOverlaps = a.multiply(b).getnnz(1) run = newOverlaps.shape[0] overlaps[pos:pos+run] = newOverlaps pos += run return overlaps
def get_ip(self, use_cached=True): """Get the last known IP of this device""" device_json = self.get_device_json(use_cached) return device_json.get("dpLastKnownIp")
Get the last known IP of this device
Below is the the instruction that describes the task: ### Input: Get the last known IP of this device ### Response: def get_ip(self, use_cached=True): """Get the last known IP of this device""" device_json = self.get_device_json(use_cached) return device_json.get("dpLastKnownIp")
def get(self, url, name, params=None, headers=None, connection=None): """ Synchronous GET request. """ if name is None: name = '' params = params or {} headers = headers or {} endpoint = self._build_endpoint_url(url, name) self._authenticate(params, headers) return make_get_request(endpoint, params, headers, connection=connection)
Synchronous GET request.
Below is the the instruction that describes the task: ### Input: Synchronous GET request. ### Response: def get(self, url, name, params=None, headers=None, connection=None): """ Synchronous GET request. """ if name is None: name = '' params = params or {} headers = headers or {} endpoint = self._build_endpoint_url(url, name) self._authenticate(params, headers) return make_get_request(endpoint, params, headers, connection=connection)
def contains(bank, key): ''' Checks if the specified bank contains the specified key. ''' _init_client() etcd_key = '{0}/{1}/{2}'.format(path_prefix, bank, key) try: r = client.read(etcd_key) # return True for keys, not dirs return r.dir is False except etcd.EtcdKeyNotFound: return False except Exception as exc: raise SaltCacheError( 'There was an error getting the key, {0}: {1}'.format( etcd_key, exc ) )
Checks if the specified bank contains the specified key.
Below is the the instruction that describes the task: ### Input: Checks if the specified bank contains the specified key. ### Response: def contains(bank, key): ''' Checks if the specified bank contains the specified key. ''' _init_client() etcd_key = '{0}/{1}/{2}'.format(path_prefix, bank, key) try: r = client.read(etcd_key) # return True for keys, not dirs return r.dir is False except etcd.EtcdKeyNotFound: return False except Exception as exc: raise SaltCacheError( 'There was an error getting the key, {0}: {1}'.format( etcd_key, exc ) )
def expand_star(mod_name): """Expand something like 'unuk.tasks.*' into a list of all the modules there. """ expanded = [] mod_dir = os.path.dirname( __import__(mod_name[:-2], {}, {}, ['']).__file__) for f in glob.glob1(mod_dir, "[!_]*.py"): expanded.append('%s.%s' % (mod_name[:-2], f[:-3])) return expanded
Expand something like 'unuk.tasks.*' into a list of all the modules there.
Below is the the instruction that describes the task: ### Input: Expand something like 'unuk.tasks.*' into a list of all the modules there. ### Response: def expand_star(mod_name): """Expand something like 'unuk.tasks.*' into a list of all the modules there. """ expanded = [] mod_dir = os.path.dirname( __import__(mod_name[:-2], {}, {}, ['']).__file__) for f in glob.glob1(mod_dir, "[!_]*.py"): expanded.append('%s.%s' % (mod_name[:-2], f[:-3])) return expanded
def split_func(string): """ Take a string like 'requiredIf("arg_name")' return the function name and the argument: (requiredIf, arg_name) """ ind = string.index("(") return string[:ind], string[ind+1:-1].strip('"')
Take a string like 'requiredIf("arg_name")' return the function name and the argument: (requiredIf, arg_name)
Below is the the instruction that describes the task: ### Input: Take a string like 'requiredIf("arg_name")' return the function name and the argument: (requiredIf, arg_name) ### Response: def split_func(string): """ Take a string like 'requiredIf("arg_name")' return the function name and the argument: (requiredIf, arg_name) """ ind = string.index("(") return string[:ind], string[ind+1:-1].strip('"')
def bar_chart(data, bar_char='=', width=80): """Return an horizontal bar chart >>> print bar_chart({ ... 'one': '1', ... 'two': '2', ... 'three': '3', ... 'four': '4', ... 'five': '5', ... }) five ===== four ==== one = three === two == >>> print bar_chart({ ... '1/1': 1/1.0, ... '1/2': 1/2.0, ... '1/3': 1/3.0, ... '1/4': 1/4.0, ... '1/5': 1/5.0, ... '2': 2, ... '3': 3, ... '4': 4, ... '5': 5, ... }) 1/1 =============== 1/2 ======= 1/3 ===== 1/4 === 1/5 === 2 ============================== 3 ============================================= 4 ============================================================ 5 =========================================================================== >>> print bar_chart({ ... '1': 2**1, ... '2': 2**2, ... '3': 2**3, ... '4': 2**4, ... '5': 2**5, ... '6': 2**6, ... '7': 2**7, ... }) 1 = 2 == 3 ==== 4 ========= 5 =================== 6 ====================================== 7 ============================================================================= """ if type(data) is dict: output = [] max_len = len(max(data, key=len)) float_values = map(float, data.values()) max_value = max(float_values) min_value = min(float_values) all_integer = all(f.is_integer() for f in float_values) for key in sorted(data): output.append('%s %s'%(key.rjust(max_len, ' '), draw_bar(bar_char, float(data[key]), all_integer, min_value, max_value, width-max_len-2))) return '\n'.join(output)
Return an horizontal bar chart >>> print bar_chart({ ... 'one': '1', ... 'two': '2', ... 'three': '3', ... 'four': '4', ... 'five': '5', ... }) five ===== four ==== one = three === two == >>> print bar_chart({ ... '1/1': 1/1.0, ... '1/2': 1/2.0, ... '1/3': 1/3.0, ... '1/4': 1/4.0, ... '1/5': 1/5.0, ... '2': 2, ... '3': 3, ... '4': 4, ... '5': 5, ... }) 1/1 =============== 1/2 ======= 1/3 ===== 1/4 === 1/5 === 2 ============================== 3 ============================================= 4 ============================================================ 5 =========================================================================== >>> print bar_chart({ ... '1': 2**1, ... '2': 2**2, ... '3': 2**3, ... '4': 2**4, ... '5': 2**5, ... '6': 2**6, ... '7': 2**7, ... }) 1 = 2 == 3 ==== 4 ========= 5 =================== 6 ====================================== 7 =============================================================================
Below is the the instruction that describes the task: ### Input: Return an horizontal bar chart >>> print bar_chart({ ... 'one': '1', ... 'two': '2', ... 'three': '3', ... 'four': '4', ... 'five': '5', ... }) five ===== four ==== one = three === two == >>> print bar_chart({ ... '1/1': 1/1.0, ... '1/2': 1/2.0, ... '1/3': 1/3.0, ... '1/4': 1/4.0, ... '1/5': 1/5.0, ... '2': 2, ... '3': 3, ... '4': 4, ... '5': 5, ... }) 1/1 =============== 1/2 ======= 1/3 ===== 1/4 === 1/5 === 2 ============================== 3 ============================================= 4 ============================================================ 5 =========================================================================== >>> print bar_chart({ ... '1': 2**1, ... '2': 2**2, ... '3': 2**3, ... '4': 2**4, ... '5': 2**5, ... '6': 2**6, ... '7': 2**7, ... }) 1 = 2 == 3 ==== 4 ========= 5 =================== 6 ====================================== 7 ============================================================================= ### Response: def bar_chart(data, bar_char='=', width=80): """Return an horizontal bar chart >>> print bar_chart({ ... 'one': '1', ... 'two': '2', ... 'three': '3', ... 'four': '4', ... 'five': '5', ... }) five ===== four ==== one = three === two == >>> print bar_chart({ ... '1/1': 1/1.0, ... '1/2': 1/2.0, ... '1/3': 1/3.0, ... '1/4': 1/4.0, ... '1/5': 1/5.0, ... '2': 2, ... '3': 3, ... '4': 4, ... '5': 5, ... }) 1/1 =============== 1/2 ======= 1/3 ===== 1/4 === 1/5 === 2 ============================== 3 ============================================= 4 ============================================================ 5 =========================================================================== >>> print bar_chart({ ... '1': 2**1, ... '2': 2**2, ... '3': 2**3, ... '4': 2**4, ... '5': 2**5, ... '6': 2**6, ... '7': 2**7, ... }) 1 = 2 == 3 ==== 4 ========= 5 =================== 6 ====================================== 7 ============================================================================= """ if type(data) is dict: output = [] max_len = len(max(data, key=len)) float_values = map(float, data.values()) max_value = max(float_values) min_value = min(float_values) all_integer = all(f.is_integer() for f in float_values) for key in sorted(data): output.append('%s %s'%(key.rjust(max_len, ' '), draw_bar(bar_char, float(data[key]), all_integer, min_value, max_value, width-max_len-2))) return '\n'.join(output)
def handle(self): """ Handle a single message. SocketServer takes care of splitting out the messages. Messages are JSON-encoded logging module records. """ # Unpack the data from the request data, socket = self.request try: # Parse it as JSON message_attrs = json.loads(data.decode('utf-8')) # Fluff it up into a proper logging record record = logging.makeLogRecord(message_attrs) except: # Complain someone is sending us bad logging data logging.error("Malformed log message from {}".format(self.client_address[0])) else: # Log level filtering should have been done on the remote end. The handle() method # skips it on this end. log.handle(record)
Handle a single message. SocketServer takes care of splitting out the messages. Messages are JSON-encoded logging module records.
Below is the the instruction that describes the task: ### Input: Handle a single message. SocketServer takes care of splitting out the messages. Messages are JSON-encoded logging module records. ### Response: def handle(self): """ Handle a single message. SocketServer takes care of splitting out the messages. Messages are JSON-encoded logging module records. """ # Unpack the data from the request data, socket = self.request try: # Parse it as JSON message_attrs = json.loads(data.decode('utf-8')) # Fluff it up into a proper logging record record = logging.makeLogRecord(message_attrs) except: # Complain someone is sending us bad logging data logging.error("Malformed log message from {}".format(self.client_address[0])) else: # Log level filtering should have been done on the remote end. The handle() method # skips it on this end. log.handle(record)
def getConstants(ast): ''' RAM: implemented magic method __lt__ for ASTNode to fix issues #88 and #209. The following test code works now, as does the test suite. import numexpr as ne a = 1 + 3j; b = 5.0 ne.evaluate( 'a*2 + 15j - b' ) ''' constants_order = sorted( ast.allOf('constant') ) constants = [convertConstantToKind(a.value, a.astKind) for a in constants_order] return constants_order, constants
RAM: implemented magic method __lt__ for ASTNode to fix issues #88 and #209. The following test code works now, as does the test suite. import numexpr as ne a = 1 + 3j; b = 5.0 ne.evaluate( 'a*2 + 15j - b' )
Below is the the instruction that describes the task: ### Input: RAM: implemented magic method __lt__ for ASTNode to fix issues #88 and #209. The following test code works now, as does the test suite. import numexpr as ne a = 1 + 3j; b = 5.0 ne.evaluate( 'a*2 + 15j - b' ) ### Response: def getConstants(ast): ''' RAM: implemented magic method __lt__ for ASTNode to fix issues #88 and #209. The following test code works now, as does the test suite. import numexpr as ne a = 1 + 3j; b = 5.0 ne.evaluate( 'a*2 + 15j - b' ) ''' constants_order = sorted( ast.allOf('constant') ) constants = [convertConstantToKind(a.value, a.astKind) for a in constants_order] return constants_order, constants
def volumes(self): """Returns all available volumes""" if self._data is not None: volumes = [] for volume in self._data["volumes"]: volumes.append(volume["id"]) return volumes
Returns all available volumes
Below is the the instruction that describes the task: ### Input: Returns all available volumes ### Response: def volumes(self): """Returns all available volumes""" if self._data is not None: volumes = [] for volume in self._data["volumes"]: volumes.append(volume["id"]) return volumes
def visit_ImportFrom(self, node): """callback for 'import from' statement""" self.imports.extend((node.module, n.name, n.asname, node.level) for n in node.names) ast.NodeVisitor.generic_visit(self, node)
callback for 'import from' statement
Below is the the instruction that describes the task: ### Input: callback for 'import from' statement ### Response: def visit_ImportFrom(self, node): """callback for 'import from' statement""" self.imports.extend((node.module, n.name, n.asname, node.level) for n in node.names) ast.NodeVisitor.generic_visit(self, node)
def segment_file(self, value): """ Setter for _segment_file attribute """ assert os.path.isfile(value), "%s is not a valid file" % value self._segment_file = value
Setter for _segment_file attribute
Below is the the instruction that describes the task: ### Input: Setter for _segment_file attribute ### Response: def segment_file(self, value): """ Setter for _segment_file attribute """ assert os.path.isfile(value), "%s is not a valid file" % value self._segment_file = value
def transform(self, Z): """Transform an ArrayRDD (or DictRDD with column 'X') containing sequence of documents to a document-term matrix. Parameters ---------- Z : ArrayRDD or DictRDD with raw text documents Samples. Each sample must be a text document (either bytes or unicode strings) which will be tokenized and hashed. Returns ------- Z : SparseRDD/DictRDD containg scipy.sparse matrix Document-term matrix. """ mapper = super(SparkHashingVectorizer, self).transform return Z.transform(mapper, column='X', dtype=sp.spmatrix)
Transform an ArrayRDD (or DictRDD with column 'X') containing sequence of documents to a document-term matrix. Parameters ---------- Z : ArrayRDD or DictRDD with raw text documents Samples. Each sample must be a text document (either bytes or unicode strings) which will be tokenized and hashed. Returns ------- Z : SparseRDD/DictRDD containg scipy.sparse matrix Document-term matrix.
Below is the the instruction that describes the task: ### Input: Transform an ArrayRDD (or DictRDD with column 'X') containing sequence of documents to a document-term matrix. Parameters ---------- Z : ArrayRDD or DictRDD with raw text documents Samples. Each sample must be a text document (either bytes or unicode strings) which will be tokenized and hashed. Returns ------- Z : SparseRDD/DictRDD containg scipy.sparse matrix Document-term matrix. ### Response: def transform(self, Z): """Transform an ArrayRDD (or DictRDD with column 'X') containing sequence of documents to a document-term matrix. Parameters ---------- Z : ArrayRDD or DictRDD with raw text documents Samples. Each sample must be a text document (either bytes or unicode strings) which will be tokenized and hashed. Returns ------- Z : SparseRDD/DictRDD containg scipy.sparse matrix Document-term matrix. """ mapper = super(SparkHashingVectorizer, self).transform return Z.transform(mapper, column='X', dtype=sp.spmatrix)
def _encode_telegram_base64(string): """ Inverse for `_decode_telegram_base64`. """ try: return base64.urlsafe_b64encode(string).rstrip(b'=').decode('ascii') except (binascii.Error, ValueError, TypeError): return None
Inverse for `_decode_telegram_base64`.
Below is the the instruction that describes the task: ### Input: Inverse for `_decode_telegram_base64`. ### Response: def _encode_telegram_base64(string): """ Inverse for `_decode_telegram_base64`. """ try: return base64.urlsafe_b64encode(string).rstrip(b'=').decode('ascii') except (binascii.Error, ValueError, TypeError): return None
def log_pdf(self, y, mu, weights=None): """ computes the log of the pdf or pmf of the values under the current distribution Parameters ---------- y : array-like of length n target values mu : array-like of length n expected values weights : array-like shape (n,) or None, default: None sample weights if None, defaults to array of ones Returns ------- pdf/pmf : np.array of length n """ if weights is None: weights = np.ones_like(mu) n = self.levels p = mu / self.levels return sp.stats.binom.logpmf(y, n, p)
computes the log of the pdf or pmf of the values under the current distribution Parameters ---------- y : array-like of length n target values mu : array-like of length n expected values weights : array-like shape (n,) or None, default: None sample weights if None, defaults to array of ones Returns ------- pdf/pmf : np.array of length n
Below is the the instruction that describes the task: ### Input: computes the log of the pdf or pmf of the values under the current distribution Parameters ---------- y : array-like of length n target values mu : array-like of length n expected values weights : array-like shape (n,) or None, default: None sample weights if None, defaults to array of ones Returns ------- pdf/pmf : np.array of length n ### Response: def log_pdf(self, y, mu, weights=None): """ computes the log of the pdf or pmf of the values under the current distribution Parameters ---------- y : array-like of length n target values mu : array-like of length n expected values weights : array-like shape (n,) or None, default: None sample weights if None, defaults to array of ones Returns ------- pdf/pmf : np.array of length n """ if weights is None: weights = np.ones_like(mu) n = self.levels p = mu / self.levels return sp.stats.binom.logpmf(y, n, p)
def add_trial(self, trial): """Add trial to bracket assuming bracket is not filled. At a later iteration, a newly added trial will be given equal opportunity to catch up.""" assert not self.filled(), "Cannot add trial to filled bracket!" self._live_trials[trial] = None self._all_trials.append(trial)
Add trial to bracket assuming bracket is not filled. At a later iteration, a newly added trial will be given equal opportunity to catch up.
Below is the the instruction that describes the task: ### Input: Add trial to bracket assuming bracket is not filled. At a later iteration, a newly added trial will be given equal opportunity to catch up. ### Response: def add_trial(self, trial): """Add trial to bracket assuming bracket is not filled. At a later iteration, a newly added trial will be given equal opportunity to catch up.""" assert not self.filled(), "Cannot add trial to filled bracket!" self._live_trials[trial] = None self._all_trials.append(trial)
def timefrequency(data, method='morlet', time_skip=1, **options): """Compute the power spectrum over time. Parameters ---------- data : instance of ChanTime data to analyze method : str the method to compute the time-frequency representation, such as 'morlet' (wavelet using complex morlet window), 'spectrogram' (corresponds to 'spectraldensity' in frequency()), 'stft' (short-time fourier transform, corresponds to 'complex' in frequency()) options : dict options depend on the method used, see below. Returns ------- instance of ChanTimeFreq data in time-frequency representation. The exact output depends on the method. Using 'morlet', you get a complex output at each frequency where the wavelet was computed. Examples -------- The data in ChanTimeFreq are complex and they should stay that way. You can also get the magnitude or power the easy way using Math. >>> from wonambi.trans import math, timefreq >>> tf = timefreq(data, foi=(8, 10)) >>> tf_abs = math(tf, operator_name='abs') >>> tf_abs.data[0][0, 0, 0] 1737.4662329214384) Notes ----- It uses sampling frequency as specified in s_freq, it does not recompute the sampling frequency based on the time axis. For method 'morlet', the following options should be specified: foi : ndarray or list or tuple vector with frequency of interest ratio : float ratio for a wavelet family ( = freq / sigma_f) sigma_f : float standard deviation of the wavelet in frequency domain dur_in_sd : float duration of the wavelet, given as number of the standard deviation in the time domain, in one side. dur_in_s : float total duration of the wavelet, two-sided (i.e. from start to finish) time_skip : int, in samples number of time points to skip (it runs convolution on all the data points, but you don't need to store them all) normalization : str 'area' means that energy is normalized to 1, 'peak' means that the peak of the wavelet is set at 1, 'max' is a normalization used by nitime where the max value of the output of the convolution remains the same even if you change the sigma_f. zero_mean : bool make sure that the wavelet has zero mean (only relevant if ratio < 5) For method 'spectrogram' or 'stft', the following options should be specified: duraton : int duration of the window to compute the power spectrum, in s overlap : int amount of overlap (0 -> no overlap, 1 -> full overlap) """ implemented_methods = ('morlet', 'spectrogram', # this is output spectraldensity 'stft') # this is output complex if method not in implemented_methods: raise ValueError('Method ' + method + ' is not implemented yet.\n' 'Currently implemented methods are ' + ', '.join(implemented_methods)) if method == 'morlet': default_options = {'foi': None, 'ratio': 5, 'sigma_f': None, 'dur_in_sd': 4, 'dur_in_s': None, 'normalization': 'area', 'zero_mean': False, } elif method in ('spectrogram', 'stft'): default_options = {'duration': 1, 'overlap': 0.5, 'step': None, 'detrend': 'linear', 'taper': 'hann', 'sides': 'one', 'scaling': 'power', 'halfbandwidth': 2, 'NW': None, } default_options.update(options) options = default_options timefreq = ChanTimeFreq() timefreq.attr = deepcopy(data.attr) timefreq.s_freq = data.s_freq timefreq.start_time = data.start_time timefreq.axis['chan'] = data.axis['chan'] timefreq.axis['time'] = empty(data.number_of('trial'), dtype='O') timefreq.axis['freq'] = empty(data.number_of('trial'), dtype='O') if method == 'stft': timefreq.axis['taper'] = empty(data.number_of('trial'), dtype='O') timefreq.data = empty(data.number_of('trial'), dtype='O') if method == 'morlet': wavelets = _create_morlet(deepcopy(options), data.s_freq) for i in range(data.number_of('trial')): lg.info('Processing trial # {0: 6}'.format(i)) timefreq.axis['freq'][i] = array(options['foi']) timefreq.axis['time'][i] = data.axis['time'][i][::time_skip] timefreq.data[i] = empty((data.number_of('chan')[i], data.number_of('time')[i] // time_skip, len(options['foi'])), dtype='complex') for i_c, chan in enumerate(data.axis['chan'][i]): dat = data(trial=i, chan=chan) for i_f, wavelet in enumerate(wavelets): tf = fftconvolve(dat, wavelet, 'same') timefreq.data[i][i_c, :, i_f] = tf[::time_skip] if time_skip != 1: warn('sampling frequency in s_freq refers to the input data, ' 'not to the timefrequency output') elif method in ('spectrogram', 'stft'): # TODO: add timeskip nperseg = int(options['duration'] * data.s_freq) if options['step'] is not None: nstep = int(options['step'] * data.s_freq) else: nstep = nperseg - int(options['overlap'] * nperseg) if method == 'spectrogram': output = 'spectraldensity' elif method == 'stft': output = 'complex' for i in range(data.number_of('trial')): t = _create_subepochs(data.time[i], nperseg, nstep).mean(axis=1) x = _create_subepochs(data(trial=i), nperseg, nstep) f, Sxx = _fft(x, s_freq=data.s_freq, detrend=options['detrend'], taper=options['taper'], output=output, sides=options['sides'], scaling=options['scaling'], halfbandwidth=options['halfbandwidth'], NW=options['NW']) timefreq.axis['time'][i] = t timefreq.axis['freq'][i] = f if method == 'stft': timefreq.axis['taper'][i] = arange(Sxx.shape[-1]) timefreq.data[i] = Sxx return timefreq
Compute the power spectrum over time. Parameters ---------- data : instance of ChanTime data to analyze method : str the method to compute the time-frequency representation, such as 'morlet' (wavelet using complex morlet window), 'spectrogram' (corresponds to 'spectraldensity' in frequency()), 'stft' (short-time fourier transform, corresponds to 'complex' in frequency()) options : dict options depend on the method used, see below. Returns ------- instance of ChanTimeFreq data in time-frequency representation. The exact output depends on the method. Using 'morlet', you get a complex output at each frequency where the wavelet was computed. Examples -------- The data in ChanTimeFreq are complex and they should stay that way. You can also get the magnitude or power the easy way using Math. >>> from wonambi.trans import math, timefreq >>> tf = timefreq(data, foi=(8, 10)) >>> tf_abs = math(tf, operator_name='abs') >>> tf_abs.data[0][0, 0, 0] 1737.4662329214384) Notes ----- It uses sampling frequency as specified in s_freq, it does not recompute the sampling frequency based on the time axis. For method 'morlet', the following options should be specified: foi : ndarray or list or tuple vector with frequency of interest ratio : float ratio for a wavelet family ( = freq / sigma_f) sigma_f : float standard deviation of the wavelet in frequency domain dur_in_sd : float duration of the wavelet, given as number of the standard deviation in the time domain, in one side. dur_in_s : float total duration of the wavelet, two-sided (i.e. from start to finish) time_skip : int, in samples number of time points to skip (it runs convolution on all the data points, but you don't need to store them all) normalization : str 'area' means that energy is normalized to 1, 'peak' means that the peak of the wavelet is set at 1, 'max' is a normalization used by nitime where the max value of the output of the convolution remains the same even if you change the sigma_f. zero_mean : bool make sure that the wavelet has zero mean (only relevant if ratio < 5) For method 'spectrogram' or 'stft', the following options should be specified: duraton : int duration of the window to compute the power spectrum, in s overlap : int amount of overlap (0 -> no overlap, 1 -> full overlap)
Below is the the instruction that describes the task: ### Input: Compute the power spectrum over time. Parameters ---------- data : instance of ChanTime data to analyze method : str the method to compute the time-frequency representation, such as 'morlet' (wavelet using complex morlet window), 'spectrogram' (corresponds to 'spectraldensity' in frequency()), 'stft' (short-time fourier transform, corresponds to 'complex' in frequency()) options : dict options depend on the method used, see below. Returns ------- instance of ChanTimeFreq data in time-frequency representation. The exact output depends on the method. Using 'morlet', you get a complex output at each frequency where the wavelet was computed. Examples -------- The data in ChanTimeFreq are complex and they should stay that way. You can also get the magnitude or power the easy way using Math. >>> from wonambi.trans import math, timefreq >>> tf = timefreq(data, foi=(8, 10)) >>> tf_abs = math(tf, operator_name='abs') >>> tf_abs.data[0][0, 0, 0] 1737.4662329214384) Notes ----- It uses sampling frequency as specified in s_freq, it does not recompute the sampling frequency based on the time axis. For method 'morlet', the following options should be specified: foi : ndarray or list or tuple vector with frequency of interest ratio : float ratio for a wavelet family ( = freq / sigma_f) sigma_f : float standard deviation of the wavelet in frequency domain dur_in_sd : float duration of the wavelet, given as number of the standard deviation in the time domain, in one side. dur_in_s : float total duration of the wavelet, two-sided (i.e. from start to finish) time_skip : int, in samples number of time points to skip (it runs convolution on all the data points, but you don't need to store them all) normalization : str 'area' means that energy is normalized to 1, 'peak' means that the peak of the wavelet is set at 1, 'max' is a normalization used by nitime where the max value of the output of the convolution remains the same even if you change the sigma_f. zero_mean : bool make sure that the wavelet has zero mean (only relevant if ratio < 5) For method 'spectrogram' or 'stft', the following options should be specified: duraton : int duration of the window to compute the power spectrum, in s overlap : int amount of overlap (0 -> no overlap, 1 -> full overlap) ### Response: def timefrequency(data, method='morlet', time_skip=1, **options): """Compute the power spectrum over time. Parameters ---------- data : instance of ChanTime data to analyze method : str the method to compute the time-frequency representation, such as 'morlet' (wavelet using complex morlet window), 'spectrogram' (corresponds to 'spectraldensity' in frequency()), 'stft' (short-time fourier transform, corresponds to 'complex' in frequency()) options : dict options depend on the method used, see below. Returns ------- instance of ChanTimeFreq data in time-frequency representation. The exact output depends on the method. Using 'morlet', you get a complex output at each frequency where the wavelet was computed. Examples -------- The data in ChanTimeFreq are complex and they should stay that way. You can also get the magnitude or power the easy way using Math. >>> from wonambi.trans import math, timefreq >>> tf = timefreq(data, foi=(8, 10)) >>> tf_abs = math(tf, operator_name='abs') >>> tf_abs.data[0][0, 0, 0] 1737.4662329214384) Notes ----- It uses sampling frequency as specified in s_freq, it does not recompute the sampling frequency based on the time axis. For method 'morlet', the following options should be specified: foi : ndarray or list or tuple vector with frequency of interest ratio : float ratio for a wavelet family ( = freq / sigma_f) sigma_f : float standard deviation of the wavelet in frequency domain dur_in_sd : float duration of the wavelet, given as number of the standard deviation in the time domain, in one side. dur_in_s : float total duration of the wavelet, two-sided (i.e. from start to finish) time_skip : int, in samples number of time points to skip (it runs convolution on all the data points, but you don't need to store them all) normalization : str 'area' means that energy is normalized to 1, 'peak' means that the peak of the wavelet is set at 1, 'max' is a normalization used by nitime where the max value of the output of the convolution remains the same even if you change the sigma_f. zero_mean : bool make sure that the wavelet has zero mean (only relevant if ratio < 5) For method 'spectrogram' or 'stft', the following options should be specified: duraton : int duration of the window to compute the power spectrum, in s overlap : int amount of overlap (0 -> no overlap, 1 -> full overlap) """ implemented_methods = ('morlet', 'spectrogram', # this is output spectraldensity 'stft') # this is output complex if method not in implemented_methods: raise ValueError('Method ' + method + ' is not implemented yet.\n' 'Currently implemented methods are ' + ', '.join(implemented_methods)) if method == 'morlet': default_options = {'foi': None, 'ratio': 5, 'sigma_f': None, 'dur_in_sd': 4, 'dur_in_s': None, 'normalization': 'area', 'zero_mean': False, } elif method in ('spectrogram', 'stft'): default_options = {'duration': 1, 'overlap': 0.5, 'step': None, 'detrend': 'linear', 'taper': 'hann', 'sides': 'one', 'scaling': 'power', 'halfbandwidth': 2, 'NW': None, } default_options.update(options) options = default_options timefreq = ChanTimeFreq() timefreq.attr = deepcopy(data.attr) timefreq.s_freq = data.s_freq timefreq.start_time = data.start_time timefreq.axis['chan'] = data.axis['chan'] timefreq.axis['time'] = empty(data.number_of('trial'), dtype='O') timefreq.axis['freq'] = empty(data.number_of('trial'), dtype='O') if method == 'stft': timefreq.axis['taper'] = empty(data.number_of('trial'), dtype='O') timefreq.data = empty(data.number_of('trial'), dtype='O') if method == 'morlet': wavelets = _create_morlet(deepcopy(options), data.s_freq) for i in range(data.number_of('trial')): lg.info('Processing trial # {0: 6}'.format(i)) timefreq.axis['freq'][i] = array(options['foi']) timefreq.axis['time'][i] = data.axis['time'][i][::time_skip] timefreq.data[i] = empty((data.number_of('chan')[i], data.number_of('time')[i] // time_skip, len(options['foi'])), dtype='complex') for i_c, chan in enumerate(data.axis['chan'][i]): dat = data(trial=i, chan=chan) for i_f, wavelet in enumerate(wavelets): tf = fftconvolve(dat, wavelet, 'same') timefreq.data[i][i_c, :, i_f] = tf[::time_skip] if time_skip != 1: warn('sampling frequency in s_freq refers to the input data, ' 'not to the timefrequency output') elif method in ('spectrogram', 'stft'): # TODO: add timeskip nperseg = int(options['duration'] * data.s_freq) if options['step'] is not None: nstep = int(options['step'] * data.s_freq) else: nstep = nperseg - int(options['overlap'] * nperseg) if method == 'spectrogram': output = 'spectraldensity' elif method == 'stft': output = 'complex' for i in range(data.number_of('trial')): t = _create_subepochs(data.time[i], nperseg, nstep).mean(axis=1) x = _create_subepochs(data(trial=i), nperseg, nstep) f, Sxx = _fft(x, s_freq=data.s_freq, detrend=options['detrend'], taper=options['taper'], output=output, sides=options['sides'], scaling=options['scaling'], halfbandwidth=options['halfbandwidth'], NW=options['NW']) timefreq.axis['time'][i] = t timefreq.axis['freq'][i] = f if method == 'stft': timefreq.axis['taper'][i] = arange(Sxx.shape[-1]) timefreq.data[i] = Sxx return timefreq
def simulate_dynamic(self, order = 0.998, solution = solve_type.FAST, collect_dynamic = False, step = 0.1, int_step = 0.01, threshold_changes = 0.0000001): """! @brief Performs dynamic simulation of the network until stop condition is not reached. Stop condition is defined by input argument 'order'. @param[in] order (double): Order of process synchronization, distributed 0..1. @param[in] solution (solve_type): Type of solution. @param[in] collect_dynamic (bool): If True - returns whole dynamic of oscillatory network, otherwise returns only last values of dynamics. @param[in] step (double): Time step of one iteration of simulation. @param[in] int_step (double): Integration step, should be less than step. @param[in] threshold_changes (double): Additional stop condition that helps prevent infinite simulation, defines limit of changes of oscillators between current and previous steps. @return (list) Dynamic of oscillatory network. If argument 'collect_dynamic' = True, than return dynamic for the whole simulation time, otherwise returns only last values (last step of simulation) of dynamic. @see simulate() @see simulate_static() """ if (self._ccore_network_pointer is not None): ccore_instance_dynamic = wrapper.sync_simulate_dynamic(self._ccore_network_pointer, order, solution, collect_dynamic, step, int_step, threshold_changes); return sync_dynamic(None, None, ccore_instance_dynamic); # For statistics and integration time_counter = 0; # Prevent infinite loop. It's possible when required state cannot be reached. previous_order = 0; current_order = self.sync_local_order(); # If requested input dynamics dyn_phase = []; dyn_time = []; if (collect_dynamic == True): dyn_phase.append(self._phases); dyn_time.append(0); # Execute until sync state will be reached while (current_order < order): # update states of oscillators self._phases = self._calculate_phases(solution, time_counter, step, int_step); # update time time_counter += step; # if requested input dynamic if (collect_dynamic == True): dyn_phase.append(self._phases); dyn_time.append(time_counter); # update orders previous_order = current_order; current_order = self.sync_local_order(); # hang prevention if (abs(current_order - previous_order) < threshold_changes): # print("Warning: sync_network::simulate_dynamic - simulation is aborted due to low level of convergence rate (order = " + str(current_order) + ")."); break; if (collect_dynamic != True): dyn_phase.append(self._phases); dyn_time.append(time_counter); output_sync_dynamic = sync_dynamic(dyn_phase, dyn_time, None); return output_sync_dynamic;
! @brief Performs dynamic simulation of the network until stop condition is not reached. Stop condition is defined by input argument 'order'. @param[in] order (double): Order of process synchronization, distributed 0..1. @param[in] solution (solve_type): Type of solution. @param[in] collect_dynamic (bool): If True - returns whole dynamic of oscillatory network, otherwise returns only last values of dynamics. @param[in] step (double): Time step of one iteration of simulation. @param[in] int_step (double): Integration step, should be less than step. @param[in] threshold_changes (double): Additional stop condition that helps prevent infinite simulation, defines limit of changes of oscillators between current and previous steps. @return (list) Dynamic of oscillatory network. If argument 'collect_dynamic' = True, than return dynamic for the whole simulation time, otherwise returns only last values (last step of simulation) of dynamic. @see simulate() @see simulate_static()
Below is the the instruction that describes the task: ### Input: ! @brief Performs dynamic simulation of the network until stop condition is not reached. Stop condition is defined by input argument 'order'. @param[in] order (double): Order of process synchronization, distributed 0..1. @param[in] solution (solve_type): Type of solution. @param[in] collect_dynamic (bool): If True - returns whole dynamic of oscillatory network, otherwise returns only last values of dynamics. @param[in] step (double): Time step of one iteration of simulation. @param[in] int_step (double): Integration step, should be less than step. @param[in] threshold_changes (double): Additional stop condition that helps prevent infinite simulation, defines limit of changes of oscillators between current and previous steps. @return (list) Dynamic of oscillatory network. If argument 'collect_dynamic' = True, than return dynamic for the whole simulation time, otherwise returns only last values (last step of simulation) of dynamic. @see simulate() @see simulate_static() ### Response: def simulate_dynamic(self, order = 0.998, solution = solve_type.FAST, collect_dynamic = False, step = 0.1, int_step = 0.01, threshold_changes = 0.0000001): """! @brief Performs dynamic simulation of the network until stop condition is not reached. Stop condition is defined by input argument 'order'. @param[in] order (double): Order of process synchronization, distributed 0..1. @param[in] solution (solve_type): Type of solution. @param[in] collect_dynamic (bool): If True - returns whole dynamic of oscillatory network, otherwise returns only last values of dynamics. @param[in] step (double): Time step of one iteration of simulation. @param[in] int_step (double): Integration step, should be less than step. @param[in] threshold_changes (double): Additional stop condition that helps prevent infinite simulation, defines limit of changes of oscillators between current and previous steps. @return (list) Dynamic of oscillatory network. If argument 'collect_dynamic' = True, than return dynamic for the whole simulation time, otherwise returns only last values (last step of simulation) of dynamic. @see simulate() @see simulate_static() """ if (self._ccore_network_pointer is not None): ccore_instance_dynamic = wrapper.sync_simulate_dynamic(self._ccore_network_pointer, order, solution, collect_dynamic, step, int_step, threshold_changes); return sync_dynamic(None, None, ccore_instance_dynamic); # For statistics and integration time_counter = 0; # Prevent infinite loop. It's possible when required state cannot be reached. previous_order = 0; current_order = self.sync_local_order(); # If requested input dynamics dyn_phase = []; dyn_time = []; if (collect_dynamic == True): dyn_phase.append(self._phases); dyn_time.append(0); # Execute until sync state will be reached while (current_order < order): # update states of oscillators self._phases = self._calculate_phases(solution, time_counter, step, int_step); # update time time_counter += step; # if requested input dynamic if (collect_dynamic == True): dyn_phase.append(self._phases); dyn_time.append(time_counter); # update orders previous_order = current_order; current_order = self.sync_local_order(); # hang prevention if (abs(current_order - previous_order) < threshold_changes): # print("Warning: sync_network::simulate_dynamic - simulation is aborted due to low level of convergence rate (order = " + str(current_order) + ")."); break; if (collect_dynamic != True): dyn_phase.append(self._phases); dyn_time.append(time_counter); output_sync_dynamic = sync_dynamic(dyn_phase, dyn_time, None); return output_sync_dynamic;
def from_deformation(cls, deformation): """ Factory method that returns a Strain object from a deformation gradient Args: deformation (3x3 array-like): """ dfm = Deformation(deformation) return cls(0.5 * (np.dot(dfm.trans, dfm) - np.eye(3)))
Factory method that returns a Strain object from a deformation gradient Args: deformation (3x3 array-like):
Below is the the instruction that describes the task: ### Input: Factory method that returns a Strain object from a deformation gradient Args: deformation (3x3 array-like): ### Response: def from_deformation(cls, deformation): """ Factory method that returns a Strain object from a deformation gradient Args: deformation (3x3 array-like): """ dfm = Deformation(deformation) return cls(0.5 * (np.dot(dfm.trans, dfm) - np.eye(3)))
def context(name): '''A decorator for theme context processors''' def wrapper(func): g.theme.context_processors[name] = func return func return wrapper
A decorator for theme context processors
Below is the the instruction that describes the task: ### Input: A decorator for theme context processors ### Response: def context(name): '''A decorator for theme context processors''' def wrapper(func): g.theme.context_processors[name] = func return func return wrapper
def add(self, other): """Return the QuantumChannel self + other. Args: other (QuantumChannel): a quantum channel. Returns: Chi: the linear addition self + other as a Chi object. Raises: QiskitError: if other is not a QuantumChannel subclass, or has incompatible dimensions. """ if not isinstance(other, Chi): other = Chi(other) if self.dim != other.dim: raise QiskitError("other QuantumChannel dimensions are not equal") return Chi(self._data + other.data, self._input_dims, self._output_dims)
Return the QuantumChannel self + other. Args: other (QuantumChannel): a quantum channel. Returns: Chi: the linear addition self + other as a Chi object. Raises: QiskitError: if other is not a QuantumChannel subclass, or has incompatible dimensions.
Below is the the instruction that describes the task: ### Input: Return the QuantumChannel self + other. Args: other (QuantumChannel): a quantum channel. Returns: Chi: the linear addition self + other as a Chi object. Raises: QiskitError: if other is not a QuantumChannel subclass, or has incompatible dimensions. ### Response: def add(self, other): """Return the QuantumChannel self + other. Args: other (QuantumChannel): a quantum channel. Returns: Chi: the linear addition self + other as a Chi object. Raises: QiskitError: if other is not a QuantumChannel subclass, or has incompatible dimensions. """ if not isinstance(other, Chi): other = Chi(other) if self.dim != other.dim: raise QiskitError("other QuantumChannel dimensions are not equal") return Chi(self._data + other.data, self._input_dims, self._output_dims)
def CreateNewZipWithSignedLibs(z_in, z_out, ignore_files=None, signer=None, skip_signing_files=None): """Copies files from one zip to another, signing all qualifying files.""" ignore_files = ignore_files or [] skip_signing_files = skip_signing_files or [] extensions_to_sign = [".sys", ".exe", ".dll", ".pyd"] to_sign = [] for template_file in z_in.namelist(): if template_file not in ignore_files: extension = os.path.splitext(template_file)[1].lower() if (signer and template_file not in skip_signing_files and extension in extensions_to_sign): to_sign.append(template_file) else: CopyFileInZip(z_in, template_file, z_out) temp_files = {} for filename in to_sign: fd, path = tempfile.mkstemp() with os.fdopen(fd, "wb") as temp_fd: temp_fd.write(z_in.read(filename)) temp_files[filename] = path try: signer.SignFiles(itervalues(temp_files)) except AttributeError: for f in itervalues(temp_files): signer.SignFile(f) for filename, tempfile_path in iteritems(temp_files): z_out.writestr(filename, open(tempfile_path, "rb").read())
Copies files from one zip to another, signing all qualifying files.
Below is the the instruction that describes the task: ### Input: Copies files from one zip to another, signing all qualifying files. ### Response: def CreateNewZipWithSignedLibs(z_in, z_out, ignore_files=None, signer=None, skip_signing_files=None): """Copies files from one zip to another, signing all qualifying files.""" ignore_files = ignore_files or [] skip_signing_files = skip_signing_files or [] extensions_to_sign = [".sys", ".exe", ".dll", ".pyd"] to_sign = [] for template_file in z_in.namelist(): if template_file not in ignore_files: extension = os.path.splitext(template_file)[1].lower() if (signer and template_file not in skip_signing_files and extension in extensions_to_sign): to_sign.append(template_file) else: CopyFileInZip(z_in, template_file, z_out) temp_files = {} for filename in to_sign: fd, path = tempfile.mkstemp() with os.fdopen(fd, "wb") as temp_fd: temp_fd.write(z_in.read(filename)) temp_files[filename] = path try: signer.SignFiles(itervalues(temp_files)) except AttributeError: for f in itervalues(temp_files): signer.SignFile(f) for filename, tempfile_path in iteritems(temp_files): z_out.writestr(filename, open(tempfile_path, "rb").read())
def start_web_rtc(self, ersip, ersport, roomId): """ Starts a WebRTC signalling client to an ERS (Evostream Rendezvous Server). :param ersip: IP address (xx.yy.zz.xx) of ERS. :type ersip: str :param ersport: IP port of ERS. :type ersport: int :param roomId: Unique room Identifier within ERS that will be used by client browsers to connect to this EMS. :type roomId: str :link: http://docs.evostream.com/ems_api_definition/startwebrtc """ return self.protocol.execute('startwebrtc', ersip=ersip, ersport=ersport, roomId=roomId)
Starts a WebRTC signalling client to an ERS (Evostream Rendezvous Server). :param ersip: IP address (xx.yy.zz.xx) of ERS. :type ersip: str :param ersport: IP port of ERS. :type ersport: int :param roomId: Unique room Identifier within ERS that will be used by client browsers to connect to this EMS. :type roomId: str :link: http://docs.evostream.com/ems_api_definition/startwebrtc
Below is the the instruction that describes the task: ### Input: Starts a WebRTC signalling client to an ERS (Evostream Rendezvous Server). :param ersip: IP address (xx.yy.zz.xx) of ERS. :type ersip: str :param ersport: IP port of ERS. :type ersport: int :param roomId: Unique room Identifier within ERS that will be used by client browsers to connect to this EMS. :type roomId: str :link: http://docs.evostream.com/ems_api_definition/startwebrtc ### Response: def start_web_rtc(self, ersip, ersport, roomId): """ Starts a WebRTC signalling client to an ERS (Evostream Rendezvous Server). :param ersip: IP address (xx.yy.zz.xx) of ERS. :type ersip: str :param ersport: IP port of ERS. :type ersport: int :param roomId: Unique room Identifier within ERS that will be used by client browsers to connect to this EMS. :type roomId: str :link: http://docs.evostream.com/ems_api_definition/startwebrtc """ return self.protocol.execute('startwebrtc', ersip=ersip, ersport=ersport, roomId=roomId)
def _start_member(self): """Starts writing a new member if required. """ if self._new_member: self._init_write(self.name) self._write_gzip_header() self._new_member = False
Starts writing a new member if required.
Below is the the instruction that describes the task: ### Input: Starts writing a new member if required. ### Response: def _start_member(self): """Starts writing a new member if required. """ if self._new_member: self._init_write(self.name) self._write_gzip_header() self._new_member = False
def _put_output(self, output: Optional[str]) -> None: """Put output string to ffmpeg command.""" if output is None: self._argv.extend(["-f", "null", "-"]) return output_cmd = shlex.split(str(output)) if len(output_cmd) > 1: self._argv.extend(output_cmd) else: self._argv.append(output)
Put output string to ffmpeg command.
Below is the the instruction that describes the task: ### Input: Put output string to ffmpeg command. ### Response: def _put_output(self, output: Optional[str]) -> None: """Put output string to ffmpeg command.""" if output is None: self._argv.extend(["-f", "null", "-"]) return output_cmd = shlex.split(str(output)) if len(output_cmd) > 1: self._argv.extend(output_cmd) else: self._argv.append(output)
def matchi(string, templ, wstr, wchr): """ Determine whether a string is matched by a template containing wild cards. The pattern comparison is case-insensitive. http://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/cspice/matchi_c.html :param string: String to be tested. :type string: str :param templ: Template (with wild cards) to test against string. :type templ: str :param wstr: Wild string token. :type wstr: str of length 1 :param wchr: Wild character token. :type wchr: str of length 1 :return: The function returns True if string matches templ, else False :rtype: bool """ string = stypes.stringToCharP(string) templ = stypes.stringToCharP(templ) wstr = ctypes.c_char(wstr.encode(encoding='UTF-8')) wchr = ctypes.c_char(wchr.encode(encoding='UTF-8')) return bool(libspice.matchi_c(string, templ, wstr, wchr))
Determine whether a string is matched by a template containing wild cards. The pattern comparison is case-insensitive. http://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/cspice/matchi_c.html :param string: String to be tested. :type string: str :param templ: Template (with wild cards) to test against string. :type templ: str :param wstr: Wild string token. :type wstr: str of length 1 :param wchr: Wild character token. :type wchr: str of length 1 :return: The function returns True if string matches templ, else False :rtype: bool
Below is the the instruction that describes the task: ### Input: Determine whether a string is matched by a template containing wild cards. The pattern comparison is case-insensitive. http://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/cspice/matchi_c.html :param string: String to be tested. :type string: str :param templ: Template (with wild cards) to test against string. :type templ: str :param wstr: Wild string token. :type wstr: str of length 1 :param wchr: Wild character token. :type wchr: str of length 1 :return: The function returns True if string matches templ, else False :rtype: bool ### Response: def matchi(string, templ, wstr, wchr): """ Determine whether a string is matched by a template containing wild cards. The pattern comparison is case-insensitive. http://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/cspice/matchi_c.html :param string: String to be tested. :type string: str :param templ: Template (with wild cards) to test against string. :type templ: str :param wstr: Wild string token. :type wstr: str of length 1 :param wchr: Wild character token. :type wchr: str of length 1 :return: The function returns True if string matches templ, else False :rtype: bool """ string = stypes.stringToCharP(string) templ = stypes.stringToCharP(templ) wstr = ctypes.c_char(wstr.encode(encoding='UTF-8')) wchr = ctypes.c_char(wchr.encode(encoding='UTF-8')) return bool(libspice.matchi_c(string, templ, wstr, wchr))
def format_relation_name(value, format_type=None): """ .. warning:: The 'format_relation_name' function has been renamed 'format_resource_type' and the settings are now 'JSON_API_FORMAT_TYPES' and 'JSON_API_PLURALIZE_TYPES' instead of 'JSON_API_FORMAT_RELATION_KEYS' and 'JSON_API_PLURALIZE_RELATION_TYPE' """ warnings.warn( "The 'format_relation_name' function has been renamed 'format_resource_type' and the " "settings are now 'JSON_API_FORMAT_TYPES' and 'JSON_API_PLURALIZE_TYPES' instead of " "'JSON_API_FORMAT_RELATION_KEYS' and 'JSON_API_PLURALIZE_RELATION_TYPE'", DeprecationWarning ) if format_type is None: format_type = json_api_settings.FORMAT_RELATION_KEYS pluralize = json_api_settings.PLURALIZE_RELATION_TYPE return format_resource_type(value, format_type, pluralize)
.. warning:: The 'format_relation_name' function has been renamed 'format_resource_type' and the settings are now 'JSON_API_FORMAT_TYPES' and 'JSON_API_PLURALIZE_TYPES' instead of 'JSON_API_FORMAT_RELATION_KEYS' and 'JSON_API_PLURALIZE_RELATION_TYPE'
Below is the the instruction that describes the task: ### Input: .. warning:: The 'format_relation_name' function has been renamed 'format_resource_type' and the settings are now 'JSON_API_FORMAT_TYPES' and 'JSON_API_PLURALIZE_TYPES' instead of 'JSON_API_FORMAT_RELATION_KEYS' and 'JSON_API_PLURALIZE_RELATION_TYPE' ### Response: def format_relation_name(value, format_type=None): """ .. warning:: The 'format_relation_name' function has been renamed 'format_resource_type' and the settings are now 'JSON_API_FORMAT_TYPES' and 'JSON_API_PLURALIZE_TYPES' instead of 'JSON_API_FORMAT_RELATION_KEYS' and 'JSON_API_PLURALIZE_RELATION_TYPE' """ warnings.warn( "The 'format_relation_name' function has been renamed 'format_resource_type' and the " "settings are now 'JSON_API_FORMAT_TYPES' and 'JSON_API_PLURALIZE_TYPES' instead of " "'JSON_API_FORMAT_RELATION_KEYS' and 'JSON_API_PLURALIZE_RELATION_TYPE'", DeprecationWarning ) if format_type is None: format_type = json_api_settings.FORMAT_RELATION_KEYS pluralize = json_api_settings.PLURALIZE_RELATION_TYPE return format_resource_type(value, format_type, pluralize)
def minimise_tables(routing_tables, target_lengths, methods=(remove_default_entries, ordered_covering)): """Utility function which attempts to minimises routing tables for multiple chips. For each routing table supplied, this function will attempt to use the minimisation algorithms given (or some sensible default algorithms), trying each sequentially until a target number of routing entries has been reached. Parameters ---------- routing_tables : {(x, y): [\ :py:class:`~rig.routing_table.RoutingTableEntry`, ...], ...} Dictionary mapping chip co-ordinates to the routing tables associated with that chip. NOTE: This is the data structure as returned by :py:meth:`~rig.routing_table.routing_tree_to_tables`. target_lengths : int or {(x, y): int or None, ...} or None Maximum length of routing tables. If an integer this is assumed to be the maximum length for any table; if a dictionary then it is assumed to be a mapping from co-ordinate to maximum length (or None); if None then tables will be minimised as far as possible. methods : Each method is tried in the order presented and the first to meet the required target length for a given chip is used. Consequently less computationally costly algorithms should be nearer the start of the list. The defaults will try to remove default routes (:py:meth:`rig.routing_table.remove_default_routes.minimise`) and then fall back on the ordered covering algorithm (:py:meth:`rig.routing_table.ordered_covering.minimise`). Returns ------- {(x, y): [:py:class:`~rig.routing_table.RoutingTableEntry`, ...], ...} Minimised routing tables, guaranteed to be at least as small as the table sizes specified by `target_lengths`. Raises ------ MinimisationFailedError If no method can sufficiently minimise a table. """ # Coerce the target lengths into the correct forms if not isinstance(target_lengths, dict): lengths = collections.defaultdict(lambda: target_lengths) else: lengths = target_lengths # Minimise the routing tables new_tables = dict() for chip, table in iteritems(routing_tables): # Try to minimise the table try: new_table = minimise_table(table, lengths[chip], methods) except MinimisationFailedError as exc: exc.chip = chip raise # Store the table if it isn't empty if new_table: new_tables[chip] = new_table return new_tables
Utility function which attempts to minimises routing tables for multiple chips. For each routing table supplied, this function will attempt to use the minimisation algorithms given (or some sensible default algorithms), trying each sequentially until a target number of routing entries has been reached. Parameters ---------- routing_tables : {(x, y): [\ :py:class:`~rig.routing_table.RoutingTableEntry`, ...], ...} Dictionary mapping chip co-ordinates to the routing tables associated with that chip. NOTE: This is the data structure as returned by :py:meth:`~rig.routing_table.routing_tree_to_tables`. target_lengths : int or {(x, y): int or None, ...} or None Maximum length of routing tables. If an integer this is assumed to be the maximum length for any table; if a dictionary then it is assumed to be a mapping from co-ordinate to maximum length (or None); if None then tables will be minimised as far as possible. methods : Each method is tried in the order presented and the first to meet the required target length for a given chip is used. Consequently less computationally costly algorithms should be nearer the start of the list. The defaults will try to remove default routes (:py:meth:`rig.routing_table.remove_default_routes.minimise`) and then fall back on the ordered covering algorithm (:py:meth:`rig.routing_table.ordered_covering.minimise`). Returns ------- {(x, y): [:py:class:`~rig.routing_table.RoutingTableEntry`, ...], ...} Minimised routing tables, guaranteed to be at least as small as the table sizes specified by `target_lengths`. Raises ------ MinimisationFailedError If no method can sufficiently minimise a table.
Below is the the instruction that describes the task: ### Input: Utility function which attempts to minimises routing tables for multiple chips. For each routing table supplied, this function will attempt to use the minimisation algorithms given (or some sensible default algorithms), trying each sequentially until a target number of routing entries has been reached. Parameters ---------- routing_tables : {(x, y): [\ :py:class:`~rig.routing_table.RoutingTableEntry`, ...], ...} Dictionary mapping chip co-ordinates to the routing tables associated with that chip. NOTE: This is the data structure as returned by :py:meth:`~rig.routing_table.routing_tree_to_tables`. target_lengths : int or {(x, y): int or None, ...} or None Maximum length of routing tables. If an integer this is assumed to be the maximum length for any table; if a dictionary then it is assumed to be a mapping from co-ordinate to maximum length (or None); if None then tables will be minimised as far as possible. methods : Each method is tried in the order presented and the first to meet the required target length for a given chip is used. Consequently less computationally costly algorithms should be nearer the start of the list. The defaults will try to remove default routes (:py:meth:`rig.routing_table.remove_default_routes.minimise`) and then fall back on the ordered covering algorithm (:py:meth:`rig.routing_table.ordered_covering.minimise`). Returns ------- {(x, y): [:py:class:`~rig.routing_table.RoutingTableEntry`, ...], ...} Minimised routing tables, guaranteed to be at least as small as the table sizes specified by `target_lengths`. Raises ------ MinimisationFailedError If no method can sufficiently minimise a table. ### Response: def minimise_tables(routing_tables, target_lengths, methods=(remove_default_entries, ordered_covering)): """Utility function which attempts to minimises routing tables for multiple chips. For each routing table supplied, this function will attempt to use the minimisation algorithms given (or some sensible default algorithms), trying each sequentially until a target number of routing entries has been reached. Parameters ---------- routing_tables : {(x, y): [\ :py:class:`~rig.routing_table.RoutingTableEntry`, ...], ...} Dictionary mapping chip co-ordinates to the routing tables associated with that chip. NOTE: This is the data structure as returned by :py:meth:`~rig.routing_table.routing_tree_to_tables`. target_lengths : int or {(x, y): int or None, ...} or None Maximum length of routing tables. If an integer this is assumed to be the maximum length for any table; if a dictionary then it is assumed to be a mapping from co-ordinate to maximum length (or None); if None then tables will be minimised as far as possible. methods : Each method is tried in the order presented and the first to meet the required target length for a given chip is used. Consequently less computationally costly algorithms should be nearer the start of the list. The defaults will try to remove default routes (:py:meth:`rig.routing_table.remove_default_routes.minimise`) and then fall back on the ordered covering algorithm (:py:meth:`rig.routing_table.ordered_covering.minimise`). Returns ------- {(x, y): [:py:class:`~rig.routing_table.RoutingTableEntry`, ...], ...} Minimised routing tables, guaranteed to be at least as small as the table sizes specified by `target_lengths`. Raises ------ MinimisationFailedError If no method can sufficiently minimise a table. """ # Coerce the target lengths into the correct forms if not isinstance(target_lengths, dict): lengths = collections.defaultdict(lambda: target_lengths) else: lengths = target_lengths # Minimise the routing tables new_tables = dict() for chip, table in iteritems(routing_tables): # Try to minimise the table try: new_table = minimise_table(table, lengths[chip], methods) except MinimisationFailedError as exc: exc.chip = chip raise # Store the table if it isn't empty if new_table: new_tables[chip] = new_table return new_tables
def forward_complex(self, log_sigma): """Compute a model response, i.e. complex impedances Parameters ---------- log_sigma : 1xN or 2xN numpy.ndarray Model parameters log sigma, N the number of cells. If first dimension is of length one, assume phase values to be zero Returns ------- measurements : Nx2 numpy nd array Return log_e sigma values of computed forward response """ m = 1.0 / np.exp(log_sigma) tdm = self._get_tdm(m) measurements = tdm.measurements() # import IPython # IPython.embed() # convert R to log sigma measurements[:, 0] = np.log(1.0 / measurements[:, 0]) return measurements
Compute a model response, i.e. complex impedances Parameters ---------- log_sigma : 1xN or 2xN numpy.ndarray Model parameters log sigma, N the number of cells. If first dimension is of length one, assume phase values to be zero Returns ------- measurements : Nx2 numpy nd array Return log_e sigma values of computed forward response
Below is the the instruction that describes the task: ### Input: Compute a model response, i.e. complex impedances Parameters ---------- log_sigma : 1xN or 2xN numpy.ndarray Model parameters log sigma, N the number of cells. If first dimension is of length one, assume phase values to be zero Returns ------- measurements : Nx2 numpy nd array Return log_e sigma values of computed forward response ### Response: def forward_complex(self, log_sigma): """Compute a model response, i.e. complex impedances Parameters ---------- log_sigma : 1xN or 2xN numpy.ndarray Model parameters log sigma, N the number of cells. If first dimension is of length one, assume phase values to be zero Returns ------- measurements : Nx2 numpy nd array Return log_e sigma values of computed forward response """ m = 1.0 / np.exp(log_sigma) tdm = self._get_tdm(m) measurements = tdm.measurements() # import IPython # IPython.embed() # convert R to log sigma measurements[:, 0] = np.log(1.0 / measurements[:, 0]) return measurements
def handler(self, environ, start_response): """Proxy for requests to the actual http server""" logger = logging.getLogger(__name__ + '.WSGIProxyApplication.handler') url = urlparse(reconstruct_url(environ, self.port)) # Create connection object try: connection = self.connection_class(url.netloc) # Build path path = url.geturl().replace('%s://%s' % (url.scheme, url.netloc), '') except Exception: start_response('501 Gateway Error', [('Content-Type', 'text/html')]) logger.exception('Could not Connect') yield '<H1>Could not connect</H1>' return # Read in request body if it exists body = length = None try: length = int(environ['CONTENT_LENGTH']) except (KeyError, ValueError): # This is a situation where client HTTP POST is missing content-length. # This is also situation where (WebOb?) may screw up encoding and isert extranous = in the body. # https://github.com/ipython/ipython/issues/8416 if environ["REQUEST_METHOD"] == "POST": if environ.get("CONTENT_TYPE") == 'application/x-www-form-urlencoded; charset=UTF-8': body = environ['wsgi.input'].read() try: body = unquote_plus(body.decode("utf-8")) # Fix extra = at end of JSON payload if body.startswith("{") and body.endswith("}="): body = body[0:len(body) - 1] except Exception as e: logger.exception(e) logger.error("Could not decode body: %s", body) length = len(body) else: body = environ['wsgi.input'].read(length) # Build headers logger.debug('environ = %r', environ) headers = dict( (key, value) for key, value in ( # This is a hacky way of getting the header names right (key[5:].lower().replace('_', '-'), value) for key, value in environ.items() # Keys that start with HTTP_ are all headers if key.startswith('HTTP_') ) if not is_hop_by_hop(key) ) # Handler headers that aren't HTTP_ in environ try: headers['content-type'] = environ['CONTENT_TYPE'] except KeyError: pass # Add our host if one isn't defined if 'host' not in headers: headers['host'] = environ['SERVER_NAME'] # Make the remote request try: logger.debug('%s %s %r', environ['REQUEST_METHOD'], path, headers) connection.request(environ['REQUEST_METHOD'], path, body=body, headers=headers) except Exception as e: # We need extra exception handling in the case the server fails # in mid connection, it's an edge case but I've seen it if isinstance(e, ConnectionRefusedError): # The notebook was shutdown by the user pass else: # This might be a genuine error logger.exception(e) start_response('501 Gateway Error', [('Content-Type', 'text/html')]) yield '<H1>Could not proxy IPython Notebook running localhost:{}</H1>'.format(self.port).encode("utf-8") return try: response = connection.getresponse() except ConnectionResetError: # Notebook shutdown start_response('501 Gateway Error', [('Content-Type', 'text/html')]) yield '<H1>Could not proxy IPython Notebook running localhost:{}</H1>'.format(self.port).encode("utf-8") return hopped_headers = response.getheaders() headers = [(key, value) for key, value in hopped_headers if not is_hop_by_hop(key)] start_response('{0.status} {0.reason}'.format(response), headers) while True: chunk = response.read(4096) if chunk: yield chunk else: break
Proxy for requests to the actual http server
Below is the the instruction that describes the task: ### Input: Proxy for requests to the actual http server ### Response: def handler(self, environ, start_response): """Proxy for requests to the actual http server""" logger = logging.getLogger(__name__ + '.WSGIProxyApplication.handler') url = urlparse(reconstruct_url(environ, self.port)) # Create connection object try: connection = self.connection_class(url.netloc) # Build path path = url.geturl().replace('%s://%s' % (url.scheme, url.netloc), '') except Exception: start_response('501 Gateway Error', [('Content-Type', 'text/html')]) logger.exception('Could not Connect') yield '<H1>Could not connect</H1>' return # Read in request body if it exists body = length = None try: length = int(environ['CONTENT_LENGTH']) except (KeyError, ValueError): # This is a situation where client HTTP POST is missing content-length. # This is also situation where (WebOb?) may screw up encoding and isert extranous = in the body. # https://github.com/ipython/ipython/issues/8416 if environ["REQUEST_METHOD"] == "POST": if environ.get("CONTENT_TYPE") == 'application/x-www-form-urlencoded; charset=UTF-8': body = environ['wsgi.input'].read() try: body = unquote_plus(body.decode("utf-8")) # Fix extra = at end of JSON payload if body.startswith("{") and body.endswith("}="): body = body[0:len(body) - 1] except Exception as e: logger.exception(e) logger.error("Could not decode body: %s", body) length = len(body) else: body = environ['wsgi.input'].read(length) # Build headers logger.debug('environ = %r', environ) headers = dict( (key, value) for key, value in ( # This is a hacky way of getting the header names right (key[5:].lower().replace('_', '-'), value) for key, value in environ.items() # Keys that start with HTTP_ are all headers if key.startswith('HTTP_') ) if not is_hop_by_hop(key) ) # Handler headers that aren't HTTP_ in environ try: headers['content-type'] = environ['CONTENT_TYPE'] except KeyError: pass # Add our host if one isn't defined if 'host' not in headers: headers['host'] = environ['SERVER_NAME'] # Make the remote request try: logger.debug('%s %s %r', environ['REQUEST_METHOD'], path, headers) connection.request(environ['REQUEST_METHOD'], path, body=body, headers=headers) except Exception as e: # We need extra exception handling in the case the server fails # in mid connection, it's an edge case but I've seen it if isinstance(e, ConnectionRefusedError): # The notebook was shutdown by the user pass else: # This might be a genuine error logger.exception(e) start_response('501 Gateway Error', [('Content-Type', 'text/html')]) yield '<H1>Could not proxy IPython Notebook running localhost:{}</H1>'.format(self.port).encode("utf-8") return try: response = connection.getresponse() except ConnectionResetError: # Notebook shutdown start_response('501 Gateway Error', [('Content-Type', 'text/html')]) yield '<H1>Could not proxy IPython Notebook running localhost:{}</H1>'.format(self.port).encode("utf-8") return hopped_headers = response.getheaders() headers = [(key, value) for key, value in hopped_headers if not is_hop_by_hop(key)] start_response('{0.status} {0.reason}'.format(response), headers) while True: chunk = response.read(4096) if chunk: yield chunk else: break
def sizeof(self, context=None) -> int: """ Return the size of the construct in bytes. :param context: Optional context dictionary. """ if context is None: context = Context() if not isinstance(context, Context): context = Context(context) try: return self._sizeof(context) except Error: raise except Exception as exc: raise SizeofError(str(exc))
Return the size of the construct in bytes. :param context: Optional context dictionary.
Below is the the instruction that describes the task: ### Input: Return the size of the construct in bytes. :param context: Optional context dictionary. ### Response: def sizeof(self, context=None) -> int: """ Return the size of the construct in bytes. :param context: Optional context dictionary. """ if context is None: context = Context() if not isinstance(context, Context): context = Context(context) try: return self._sizeof(context) except Error: raise except Exception as exc: raise SizeofError(str(exc))
def create(python, env_dir, system, prompt, bare, virtualenv_py=None): """Main entry point to use this as a module. """ if not python or python == sys.executable: _create_with_this( env_dir=env_dir, system=system, prompt=prompt, bare=bare, virtualenv_py=virtualenv_py, ) else: _create_with_python( python=python, env_dir=env_dir, system=system, prompt=prompt, bare=bare, virtualenv_py=virtualenv_py, )
Main entry point to use this as a module.
Below is the the instruction that describes the task: ### Input: Main entry point to use this as a module. ### Response: def create(python, env_dir, system, prompt, bare, virtualenv_py=None): """Main entry point to use this as a module. """ if not python or python == sys.executable: _create_with_this( env_dir=env_dir, system=system, prompt=prompt, bare=bare, virtualenv_py=virtualenv_py, ) else: _create_with_python( python=python, env_dir=env_dir, system=system, prompt=prompt, bare=bare, virtualenv_py=virtualenv_py, )
def json_worker(self, mask, cache_id=None, cache_method="string", cache_section="www"): """A function annotation that adds a worker request. A worker request is a POST request that is computed asynchronously. That is, the actual task is performed in a different thread and the network request returns immediately. The client side uses polling to fetch the result and can also cancel the task. The worker javascript client side must be linked and used for accessing the request. Parameters ---------- mask : string The URL that must be matched to perform this request. cache_id : function(args) or None Optional function for caching the result. If set the worker must be idempotent. Requires a `cache` object for the server. The function needs to return an object constructed from the function arguments to uniquely identify the result. Results are cached verbatim. cache_method : string or None Optional cache method string. Gets passed to get_hnd() of the cache. Defaults to "string" which requires a JSON serializable cache_id. cache_section : string or None Optional cache section string. Gets passed to get_hnd() of the cache. Defaults to "www". fun : function(args); (The annotated function) A function returning a (JSON-able) object. The function takes one argument which is the dictionary containing the payload from the client side. If the result is None a 404 error is sent. """ use_cache = cache_id is not None def wrapper(fun): lock = threading.RLock() tasks = {} cargo = {} cargo_cleaner = [None] def is_done(cur_key): with lock: if cur_key not in tasks: return True if "running" not in tasks[cur_key]: return False return not tasks[cur_key]["running"] def start_cargo_cleaner(): def get_next_cargo(): with lock: next_ttl = None for value in cargo.values(): ttl, _ = value if next_ttl is None or ttl < next_ttl: next_ttl = ttl return next_ttl def clean_for(timestamp): with lock: keys = [] for (key, value) in cargo.items(): ttl, _ = value if ttl > timestamp: continue keys.append(key) for k in keys: cargo.pop(k) msg("purged cargo that was never read ({0})", k) def remove_cleaner(): with lock: if get_next_cargo() is not None: return False cargo_cleaner[0] = None return True def clean(): while True: next_ttl = get_next_cargo() if next_ttl is None: if remove_cleaner(): break else: continue time_until = next_ttl - time.time() if time_until > 0: time.sleep(time_until) clean_for(time.time()) with lock: if cargo_cleaner[0] is not None: return cleaner = self._thread_factory( target=clean, name="{0}-Cargo-Cleaner".format(self.__class__)) cleaner.daemon = True cargo_cleaner[0] = cleaner cleaner.start() def add_cargo(content): with lock: mcs = self.max_chunk_size if mcs < 1: raise ValueError("invalid chunk size: {0}".format(mcs)) ttl = time.time() + 10 * 60 # 10 minutes chunks = [] while len(content) > 0: chunk = content[:mcs] content = content[mcs:] cur_key = get_key() cargo[cur_key] = (ttl, chunk) chunks.append(cur_key) start_cargo_cleaner() return chunks def remove_cargo(cur_key): with lock: _, result = cargo.pop(cur_key) return result def remove_worker(cur_key): with lock: task = tasks.pop(cur_key, None) if task is None: err_msg = "Task {0} not found!".format(cur_key) return None, (ValueError(err_msg), None) if task["running"]: th = task["thread"] if th.is_alive(): # kill the thread tid = None for tk, tobj in threading._active.items(): if tobj is th: tid = tk break if tid is not None: papi = ctypes.pythonapi pts_sae = papi.PyThreadState_SetAsyncExc res = pts_sae(ctypes.c_long(tid), ctypes.py_object(WorkerDeath)) if res == 0: # invalid thread id -- the thread might # be done already msg("invalid thread id for " + "killing worker {0}", cur_key) elif res != 1: # roll back pts_sae(ctypes.c_long(tid), None) msg("killed too many ({0}) workers? {1}", res, cur_key) else: if self.verbose_workers: msg("killed worker {0}", cur_key) err_msg = "Task {0} is still running!".format(cur_key) return None, (ValueError(err_msg), None) return task["result"], task["exception"] def start_worker(args, cur_key, get_thread): try: with lock: task = { "running": True, "result": None, "exception": None, "thread": get_thread(), } tasks[cur_key] = task if use_cache: cache_obj = cache_id(args) if cache_obj is not None and self.cache is not None: with self.cache.get_hnd( cache_obj, section=cache_section, method=cache_method) as hnd: if hnd.has(): result = hnd.read() else: result = hnd.write(json_dumps(fun(args))) else: result = json_dumps(fun(args)) else: result = json_dumps(fun(args)) with lock: task["running"] = False task["result"] = result except (KeyboardInterrupt, SystemExit): raise except Exception as e: with lock: task["running"] = False task["exception"] = (e, traceback.format_exc()) return # make sure the result does not get stored forever try: # remove 2 minutes after not reading the result time.sleep(120) finally: _result, err = remove_worker(cur_key) if err is not None: e, tb = err if tb is not None: msg("Error in purged worker for {0}: {1}\n{2}", cur_key, e, tb) return msg("purged result that was never read ({0})", cur_key) def get_key(): with lock: crc32 = zlib.crc32(repr(get_time()).encode('utf8')) cur_key = int(crc32 & 0xFFFFFFFF) while cur_key in tasks or cur_key in cargo: key = int(cur_key + 1) if key == cur_key: key = 0 cur_key = key return cur_key def reserve_worker(): with lock: cur_key = get_key() tasks[cur_key] = {} # put marker return cur_key def run_worker(req, args): post = args["post"] try: action = post["action"] cur_key = None if action == "stop": cur_key = post["token"] remove_worker(cur_key) # throw away the result return { "token": cur_key, "done": True, "result": None, "continue": False, } if action == "start": cur_key = reserve_worker() inner_post = post.get("payload", {}) th = [] wname = "{0}-Worker-{1}".format(self.__class__, cur_key) worker = self._thread_factory( target=start_worker, name=wname, args=(inner_post, cur_key, lambda: th[0])) th.append(worker) worker.start() # give fast tasks a way to immediately return results time.sleep(0.1) if action == "cargo": cur_key = post["token"] result = remove_cargo(cur_key) return { "token": cur_key, "result": result, } if action == "get": cur_key = post["token"] if cur_key is None: raise ValueError("invalid action: {0}".format(action)) if is_done(cur_key): result, exception = remove_worker(cur_key) if exception is not None: e, tb = exception if tb is None: # token does not exist anymore return { "token": cur_key, "done": False, "result": None, "continue": False, } if isinstance(e, PreventDefaultResponse): raise e msg("Error in worker for {0}: {1}\n{2}", cur_key, e, tb) raise PreventDefaultResponse(500, "worker error") if len(result) > self.max_chunk_size: cargo_keys = add_cargo(result) return { "token": cur_key, "done": True, "result": cargo_keys, "continue": True, } return { "token": cur_key, "done": True, "result": result, "continue": False, } return { "token": cur_key, "done": False, "result": None, "continue": True, } except: # nopep8 msg("Error processing worker command: {0}", post) raise self.add_json_post_mask(mask, run_worker) self.set_file_argc(mask, 0) return fun return wrapper
A function annotation that adds a worker request. A worker request is a POST request that is computed asynchronously. That is, the actual task is performed in a different thread and the network request returns immediately. The client side uses polling to fetch the result and can also cancel the task. The worker javascript client side must be linked and used for accessing the request. Parameters ---------- mask : string The URL that must be matched to perform this request. cache_id : function(args) or None Optional function for caching the result. If set the worker must be idempotent. Requires a `cache` object for the server. The function needs to return an object constructed from the function arguments to uniquely identify the result. Results are cached verbatim. cache_method : string or None Optional cache method string. Gets passed to get_hnd() of the cache. Defaults to "string" which requires a JSON serializable cache_id. cache_section : string or None Optional cache section string. Gets passed to get_hnd() of the cache. Defaults to "www". fun : function(args); (The annotated function) A function returning a (JSON-able) object. The function takes one argument which is the dictionary containing the payload from the client side. If the result is None a 404 error is sent.
Below is the the instruction that describes the task: ### Input: A function annotation that adds a worker request. A worker request is a POST request that is computed asynchronously. That is, the actual task is performed in a different thread and the network request returns immediately. The client side uses polling to fetch the result and can also cancel the task. The worker javascript client side must be linked and used for accessing the request. Parameters ---------- mask : string The URL that must be matched to perform this request. cache_id : function(args) or None Optional function for caching the result. If set the worker must be idempotent. Requires a `cache` object for the server. The function needs to return an object constructed from the function arguments to uniquely identify the result. Results are cached verbatim. cache_method : string or None Optional cache method string. Gets passed to get_hnd() of the cache. Defaults to "string" which requires a JSON serializable cache_id. cache_section : string or None Optional cache section string. Gets passed to get_hnd() of the cache. Defaults to "www". fun : function(args); (The annotated function) A function returning a (JSON-able) object. The function takes one argument which is the dictionary containing the payload from the client side. If the result is None a 404 error is sent. ### Response: def json_worker(self, mask, cache_id=None, cache_method="string", cache_section="www"): """A function annotation that adds a worker request. A worker request is a POST request that is computed asynchronously. That is, the actual task is performed in a different thread and the network request returns immediately. The client side uses polling to fetch the result and can also cancel the task. The worker javascript client side must be linked and used for accessing the request. Parameters ---------- mask : string The URL that must be matched to perform this request. cache_id : function(args) or None Optional function for caching the result. If set the worker must be idempotent. Requires a `cache` object for the server. The function needs to return an object constructed from the function arguments to uniquely identify the result. Results are cached verbatim. cache_method : string or None Optional cache method string. Gets passed to get_hnd() of the cache. Defaults to "string" which requires a JSON serializable cache_id. cache_section : string or None Optional cache section string. Gets passed to get_hnd() of the cache. Defaults to "www". fun : function(args); (The annotated function) A function returning a (JSON-able) object. The function takes one argument which is the dictionary containing the payload from the client side. If the result is None a 404 error is sent. """ use_cache = cache_id is not None def wrapper(fun): lock = threading.RLock() tasks = {} cargo = {} cargo_cleaner = [None] def is_done(cur_key): with lock: if cur_key not in tasks: return True if "running" not in tasks[cur_key]: return False return not tasks[cur_key]["running"] def start_cargo_cleaner(): def get_next_cargo(): with lock: next_ttl = None for value in cargo.values(): ttl, _ = value if next_ttl is None or ttl < next_ttl: next_ttl = ttl return next_ttl def clean_for(timestamp): with lock: keys = [] for (key, value) in cargo.items(): ttl, _ = value if ttl > timestamp: continue keys.append(key) for k in keys: cargo.pop(k) msg("purged cargo that was never read ({0})", k) def remove_cleaner(): with lock: if get_next_cargo() is not None: return False cargo_cleaner[0] = None return True def clean(): while True: next_ttl = get_next_cargo() if next_ttl is None: if remove_cleaner(): break else: continue time_until = next_ttl - time.time() if time_until > 0: time.sleep(time_until) clean_for(time.time()) with lock: if cargo_cleaner[0] is not None: return cleaner = self._thread_factory( target=clean, name="{0}-Cargo-Cleaner".format(self.__class__)) cleaner.daemon = True cargo_cleaner[0] = cleaner cleaner.start() def add_cargo(content): with lock: mcs = self.max_chunk_size if mcs < 1: raise ValueError("invalid chunk size: {0}".format(mcs)) ttl = time.time() + 10 * 60 # 10 minutes chunks = [] while len(content) > 0: chunk = content[:mcs] content = content[mcs:] cur_key = get_key() cargo[cur_key] = (ttl, chunk) chunks.append(cur_key) start_cargo_cleaner() return chunks def remove_cargo(cur_key): with lock: _, result = cargo.pop(cur_key) return result def remove_worker(cur_key): with lock: task = tasks.pop(cur_key, None) if task is None: err_msg = "Task {0} not found!".format(cur_key) return None, (ValueError(err_msg), None) if task["running"]: th = task["thread"] if th.is_alive(): # kill the thread tid = None for tk, tobj in threading._active.items(): if tobj is th: tid = tk break if tid is not None: papi = ctypes.pythonapi pts_sae = papi.PyThreadState_SetAsyncExc res = pts_sae(ctypes.c_long(tid), ctypes.py_object(WorkerDeath)) if res == 0: # invalid thread id -- the thread might # be done already msg("invalid thread id for " + "killing worker {0}", cur_key) elif res != 1: # roll back pts_sae(ctypes.c_long(tid), None) msg("killed too many ({0}) workers? {1}", res, cur_key) else: if self.verbose_workers: msg("killed worker {0}", cur_key) err_msg = "Task {0} is still running!".format(cur_key) return None, (ValueError(err_msg), None) return task["result"], task["exception"] def start_worker(args, cur_key, get_thread): try: with lock: task = { "running": True, "result": None, "exception": None, "thread": get_thread(), } tasks[cur_key] = task if use_cache: cache_obj = cache_id(args) if cache_obj is not None and self.cache is not None: with self.cache.get_hnd( cache_obj, section=cache_section, method=cache_method) as hnd: if hnd.has(): result = hnd.read() else: result = hnd.write(json_dumps(fun(args))) else: result = json_dumps(fun(args)) else: result = json_dumps(fun(args)) with lock: task["running"] = False task["result"] = result except (KeyboardInterrupt, SystemExit): raise except Exception as e: with lock: task["running"] = False task["exception"] = (e, traceback.format_exc()) return # make sure the result does not get stored forever try: # remove 2 minutes after not reading the result time.sleep(120) finally: _result, err = remove_worker(cur_key) if err is not None: e, tb = err if tb is not None: msg("Error in purged worker for {0}: {1}\n{2}", cur_key, e, tb) return msg("purged result that was never read ({0})", cur_key) def get_key(): with lock: crc32 = zlib.crc32(repr(get_time()).encode('utf8')) cur_key = int(crc32 & 0xFFFFFFFF) while cur_key in tasks or cur_key in cargo: key = int(cur_key + 1) if key == cur_key: key = 0 cur_key = key return cur_key def reserve_worker(): with lock: cur_key = get_key() tasks[cur_key] = {} # put marker return cur_key def run_worker(req, args): post = args["post"] try: action = post["action"] cur_key = None if action == "stop": cur_key = post["token"] remove_worker(cur_key) # throw away the result return { "token": cur_key, "done": True, "result": None, "continue": False, } if action == "start": cur_key = reserve_worker() inner_post = post.get("payload", {}) th = [] wname = "{0}-Worker-{1}".format(self.__class__, cur_key) worker = self._thread_factory( target=start_worker, name=wname, args=(inner_post, cur_key, lambda: th[0])) th.append(worker) worker.start() # give fast tasks a way to immediately return results time.sleep(0.1) if action == "cargo": cur_key = post["token"] result = remove_cargo(cur_key) return { "token": cur_key, "result": result, } if action == "get": cur_key = post["token"] if cur_key is None: raise ValueError("invalid action: {0}".format(action)) if is_done(cur_key): result, exception = remove_worker(cur_key) if exception is not None: e, tb = exception if tb is None: # token does not exist anymore return { "token": cur_key, "done": False, "result": None, "continue": False, } if isinstance(e, PreventDefaultResponse): raise e msg("Error in worker for {0}: {1}\n{2}", cur_key, e, tb) raise PreventDefaultResponse(500, "worker error") if len(result) > self.max_chunk_size: cargo_keys = add_cargo(result) return { "token": cur_key, "done": True, "result": cargo_keys, "continue": True, } return { "token": cur_key, "done": True, "result": result, "continue": False, } return { "token": cur_key, "done": False, "result": None, "continue": True, } except: # nopep8 msg("Error processing worker command: {0}", post) raise self.add_json_post_mask(mask, run_worker) self.set_file_argc(mask, 0) return fun return wrapper
def get_season_player_stats(self, season_key, player_key): """ Calling Season Player Stats API. Arg: season_key: key of the season player_key: key of the player Return: json data """ season_player_stats_url = self.api_path + "season/" + season_key + "/player/" + player_key + "/stats/" response = self.get_response(season_player_stats_url) return response
Calling Season Player Stats API. Arg: season_key: key of the season player_key: key of the player Return: json data
Below is the the instruction that describes the task: ### Input: Calling Season Player Stats API. Arg: season_key: key of the season player_key: key of the player Return: json data ### Response: def get_season_player_stats(self, season_key, player_key): """ Calling Season Player Stats API. Arg: season_key: key of the season player_key: key of the player Return: json data """ season_player_stats_url = self.api_path + "season/" + season_key + "/player/" + player_key + "/stats/" response = self.get_response(season_player_stats_url) return response
def index_bams(job, config): """ Convenience job for handling bam indexing to make the workflow declaration cleaner :param JobFunctionWrappingJob job: passed automatically by Toil :param Namespace config: Argparse Namespace object containing argument inputs """ job.fileStore.logToMaster('Indexed sample BAMS: ' + config.uuid) disk = '1G' if config.ci_test else '20G' config.normal_bai = job.addChildJobFn(run_samtools_index, config.normal_bam, cores=1, disk=disk).rv() config.tumor_bai = job.addChildJobFn(run_samtools_index, config.tumor_bam, cores=1, disk=disk).rv() job.addFollowOnJobFn(preprocessing_declaration, config)
Convenience job for handling bam indexing to make the workflow declaration cleaner :param JobFunctionWrappingJob job: passed automatically by Toil :param Namespace config: Argparse Namespace object containing argument inputs
Below is the the instruction that describes the task: ### Input: Convenience job for handling bam indexing to make the workflow declaration cleaner :param JobFunctionWrappingJob job: passed automatically by Toil :param Namespace config: Argparse Namespace object containing argument inputs ### Response: def index_bams(job, config): """ Convenience job for handling bam indexing to make the workflow declaration cleaner :param JobFunctionWrappingJob job: passed automatically by Toil :param Namespace config: Argparse Namespace object containing argument inputs """ job.fileStore.logToMaster('Indexed sample BAMS: ' + config.uuid) disk = '1G' if config.ci_test else '20G' config.normal_bai = job.addChildJobFn(run_samtools_index, config.normal_bam, cores=1, disk=disk).rv() config.tumor_bai = job.addChildJobFn(run_samtools_index, config.tumor_bam, cores=1, disk=disk).rv() job.addFollowOnJobFn(preprocessing_declaration, config)
def verify_compact_verbose(self, jws=None, keys=None, allow_none=False, sigalg=None): """ Verify a JWT signature and return dict with validation results :param jws: A signed JSON Web Token :param keys: A list of keys that can possibly be used to verify the signature :param allow_none: If signature algorithm 'none' is allowed :param sigalg: Expected sigalg :return: Dictionary with 2 keys 'msg' required, 'key' optional. The value of 'msg' is the unpacked and verified message. The value of 'key' is the key used to verify the message """ if jws: jwt = JWSig().unpack(jws) if len(jwt) != 3: raise WrongNumberOfParts(len(jwt)) self.jwt = jwt elif not self.jwt: raise ValueError('Missing singed JWT') else: jwt = self.jwt try: _alg = jwt.headers["alg"] except KeyError: _alg = None else: if _alg is None or _alg.lower() == "none": if allow_none: self.msg = jwt.payload() return {'msg': self.msg} else: raise SignerAlgError("none not allowed") if "alg" in self and self['alg'] and _alg: if isinstance(self['alg'], list): if _alg not in self["alg"] : raise SignerAlgError( "Wrong signing algorithm, expected {} got {}".format( self['alg'], _alg)) elif _alg != self['alg']: raise SignerAlgError( "Wrong signing algorithm, expected {} got {}".format( self['alg'], _alg)) if sigalg and sigalg != _alg: raise SignerAlgError("Expected {0} got {1}".format( sigalg, jwt.headers["alg"])) self["alg"] = _alg if keys: _keys = self.pick_keys(keys) else: _keys = self.pick_keys(self._get_keys()) if not _keys: if "kid" in self: raise NoSuitableSigningKeys( "No key with kid: %s" % (self["kid"])) elif "kid" in self.jwt.headers: raise NoSuitableSigningKeys( "No key with kid: %s" % (self.jwt.headers["kid"])) else: raise NoSuitableSigningKeys("No key for algorithm: %s" % _alg) verifier = SIGNER_ALGS[_alg] for key in _keys: if isinstance(key, AsymmetricKey): _key = key.public_key() else: _key = key.key try: if not verifier.verify(jwt.sign_input(), jwt.signature(), _key): continue except (BadSignature, IndexError): pass except (ValueError, TypeError) as err: logger.warning('Exception "{}" caught'.format(err)) else: logger.debug( "Verified message using key with kid=%s" % key.kid) self.msg = jwt.payload() self.key = key return {'msg': self.msg, 'key': key} raise BadSignature()
Verify a JWT signature and return dict with validation results :param jws: A signed JSON Web Token :param keys: A list of keys that can possibly be used to verify the signature :param allow_none: If signature algorithm 'none' is allowed :param sigalg: Expected sigalg :return: Dictionary with 2 keys 'msg' required, 'key' optional. The value of 'msg' is the unpacked and verified message. The value of 'key' is the key used to verify the message
Below is the the instruction that describes the task: ### Input: Verify a JWT signature and return dict with validation results :param jws: A signed JSON Web Token :param keys: A list of keys that can possibly be used to verify the signature :param allow_none: If signature algorithm 'none' is allowed :param sigalg: Expected sigalg :return: Dictionary with 2 keys 'msg' required, 'key' optional. The value of 'msg' is the unpacked and verified message. The value of 'key' is the key used to verify the message ### Response: def verify_compact_verbose(self, jws=None, keys=None, allow_none=False, sigalg=None): """ Verify a JWT signature and return dict with validation results :param jws: A signed JSON Web Token :param keys: A list of keys that can possibly be used to verify the signature :param allow_none: If signature algorithm 'none' is allowed :param sigalg: Expected sigalg :return: Dictionary with 2 keys 'msg' required, 'key' optional. The value of 'msg' is the unpacked and verified message. The value of 'key' is the key used to verify the message """ if jws: jwt = JWSig().unpack(jws) if len(jwt) != 3: raise WrongNumberOfParts(len(jwt)) self.jwt = jwt elif not self.jwt: raise ValueError('Missing singed JWT') else: jwt = self.jwt try: _alg = jwt.headers["alg"] except KeyError: _alg = None else: if _alg is None or _alg.lower() == "none": if allow_none: self.msg = jwt.payload() return {'msg': self.msg} else: raise SignerAlgError("none not allowed") if "alg" in self and self['alg'] and _alg: if isinstance(self['alg'], list): if _alg not in self["alg"] : raise SignerAlgError( "Wrong signing algorithm, expected {} got {}".format( self['alg'], _alg)) elif _alg != self['alg']: raise SignerAlgError( "Wrong signing algorithm, expected {} got {}".format( self['alg'], _alg)) if sigalg and sigalg != _alg: raise SignerAlgError("Expected {0} got {1}".format( sigalg, jwt.headers["alg"])) self["alg"] = _alg if keys: _keys = self.pick_keys(keys) else: _keys = self.pick_keys(self._get_keys()) if not _keys: if "kid" in self: raise NoSuitableSigningKeys( "No key with kid: %s" % (self["kid"])) elif "kid" in self.jwt.headers: raise NoSuitableSigningKeys( "No key with kid: %s" % (self.jwt.headers["kid"])) else: raise NoSuitableSigningKeys("No key for algorithm: %s" % _alg) verifier = SIGNER_ALGS[_alg] for key in _keys: if isinstance(key, AsymmetricKey): _key = key.public_key() else: _key = key.key try: if not verifier.verify(jwt.sign_input(), jwt.signature(), _key): continue except (BadSignature, IndexError): pass except (ValueError, TypeError) as err: logger.warning('Exception "{}" caught'.format(err)) else: logger.debug( "Verified message using key with kid=%s" % key.kid) self.msg = jwt.payload() self.key = key return {'msg': self.msg, 'key': key} raise BadSignature()
def get_shape(self, prune=False, hs_dims=None): """Tuple of array dimensions' lengths. It returns a tuple of ints, each representing the length of a cube dimension, in the order those dimensions appear in the cube. Pruning is supported. Dimensions that get reduced to a single element (e.g. due to pruning) are removed from the returning shape, thus allowing for the differentiation between true 2D cubes (over which statistical testing can be performed) and essentially 1D cubes (over which it can't). Usage: >>> shape = get_shape() >>> pruned_shape = get_shape(prune=True) """ if not prune: return self.as_array(include_transforms_for_dims=hs_dims).shape shape = compress_pruned( self.as_array(prune=True, include_transforms_for_dims=hs_dims) ).shape # Eliminate dimensions that get reduced to 1 # (e.g. single element categoricals) return tuple(n for n in shape if n > 1)
Tuple of array dimensions' lengths. It returns a tuple of ints, each representing the length of a cube dimension, in the order those dimensions appear in the cube. Pruning is supported. Dimensions that get reduced to a single element (e.g. due to pruning) are removed from the returning shape, thus allowing for the differentiation between true 2D cubes (over which statistical testing can be performed) and essentially 1D cubes (over which it can't). Usage: >>> shape = get_shape() >>> pruned_shape = get_shape(prune=True)
Below is the the instruction that describes the task: ### Input: Tuple of array dimensions' lengths. It returns a tuple of ints, each representing the length of a cube dimension, in the order those dimensions appear in the cube. Pruning is supported. Dimensions that get reduced to a single element (e.g. due to pruning) are removed from the returning shape, thus allowing for the differentiation between true 2D cubes (over which statistical testing can be performed) and essentially 1D cubes (over which it can't). Usage: >>> shape = get_shape() >>> pruned_shape = get_shape(prune=True) ### Response: def get_shape(self, prune=False, hs_dims=None): """Tuple of array dimensions' lengths. It returns a tuple of ints, each representing the length of a cube dimension, in the order those dimensions appear in the cube. Pruning is supported. Dimensions that get reduced to a single element (e.g. due to pruning) are removed from the returning shape, thus allowing for the differentiation between true 2D cubes (over which statistical testing can be performed) and essentially 1D cubes (over which it can't). Usage: >>> shape = get_shape() >>> pruned_shape = get_shape(prune=True) """ if not prune: return self.as_array(include_transforms_for_dims=hs_dims).shape shape = compress_pruned( self.as_array(prune=True, include_transforms_for_dims=hs_dims) ).shape # Eliminate dimensions that get reduced to 1 # (e.g. single element categoricals) return tuple(n for n in shape if n > 1)
def walk(self, basedir): """Walk all the directories of basedir except hidden directories :param basedir: string, the directory to walk :returns: generator, same as os.walk """ system_d = SitePackagesDir() filter_system_d = system_d and os.path.commonprefix([system_d, basedir]) != system_d for root, dirs, files in os.walk(basedir, topdown=True): # ignore dot directories and private directories (start with underscore) dirs[:] = [d for d in dirs if d[0] != '.' and d[0] != "_"] if filter_system_d: dirs[:] = [d for d in dirs if not d.startswith(system_d)] yield root, dirs, files
Walk all the directories of basedir except hidden directories :param basedir: string, the directory to walk :returns: generator, same as os.walk
Below is the the instruction that describes the task: ### Input: Walk all the directories of basedir except hidden directories :param basedir: string, the directory to walk :returns: generator, same as os.walk ### Response: def walk(self, basedir): """Walk all the directories of basedir except hidden directories :param basedir: string, the directory to walk :returns: generator, same as os.walk """ system_d = SitePackagesDir() filter_system_d = system_d and os.path.commonprefix([system_d, basedir]) != system_d for root, dirs, files in os.walk(basedir, topdown=True): # ignore dot directories and private directories (start with underscore) dirs[:] = [d for d in dirs if d[0] != '.' and d[0] != "_"] if filter_system_d: dirs[:] = [d for d in dirs if not d.startswith(system_d)] yield root, dirs, files
def add_generic_info_message_for_error(request): """ Add message to request indicating that there was an issue processing request. Arguments: request: The current request. """ messages.info( request, _( '{strong_start}Something happened.{strong_end} ' '{span_start}This course link is currently invalid. ' 'Please reach out to your Administrator for assistance to this course.{span_end}' ).format( span_start='<span>', span_end='</span>', strong_start='<strong>', strong_end='</strong>', ) )
Add message to request indicating that there was an issue processing request. Arguments: request: The current request.
Below is the the instruction that describes the task: ### Input: Add message to request indicating that there was an issue processing request. Arguments: request: The current request. ### Response: def add_generic_info_message_for_error(request): """ Add message to request indicating that there was an issue processing request. Arguments: request: The current request. """ messages.info( request, _( '{strong_start}Something happened.{strong_end} ' '{span_start}This course link is currently invalid. ' 'Please reach out to your Administrator for assistance to this course.{span_end}' ).format( span_start='<span>', span_end='</span>', strong_start='<strong>', strong_end='</strong>', ) )
def get_plaintext_citations(arxiv_id): """ Get the citations of a given preprint, in plain text. .. note:: Bulk download of sources from arXiv is not permitted by their API. \ You should have a look at http://arxiv.org/help/bulk_data_s3. :param arxiv_id: The arXiv id (e.g. ``1401.2910`` or ``1401.2910v1``) in \ a canonical form. :returns: A list of cleaned plaintext citations. """ plaintext_citations = [] # Get the list of bbl files for this preprint bbl_files = arxiv.get_bbl(arxiv_id) for bbl_file in bbl_files: # Fetch the cited DOIs for each of the bbl files plaintext_citations.extend(bbl.get_plaintext_citations(bbl_file)) return plaintext_citations
Get the citations of a given preprint, in plain text. .. note:: Bulk download of sources from arXiv is not permitted by their API. \ You should have a look at http://arxiv.org/help/bulk_data_s3. :param arxiv_id: The arXiv id (e.g. ``1401.2910`` or ``1401.2910v1``) in \ a canonical form. :returns: A list of cleaned plaintext citations.
Below is the the instruction that describes the task: ### Input: Get the citations of a given preprint, in plain text. .. note:: Bulk download of sources from arXiv is not permitted by their API. \ You should have a look at http://arxiv.org/help/bulk_data_s3. :param arxiv_id: The arXiv id (e.g. ``1401.2910`` or ``1401.2910v1``) in \ a canonical form. :returns: A list of cleaned plaintext citations. ### Response: def get_plaintext_citations(arxiv_id): """ Get the citations of a given preprint, in plain text. .. note:: Bulk download of sources from arXiv is not permitted by their API. \ You should have a look at http://arxiv.org/help/bulk_data_s3. :param arxiv_id: The arXiv id (e.g. ``1401.2910`` or ``1401.2910v1``) in \ a canonical form. :returns: A list of cleaned plaintext citations. """ plaintext_citations = [] # Get the list of bbl files for this preprint bbl_files = arxiv.get_bbl(arxiv_id) for bbl_file in bbl_files: # Fetch the cited DOIs for each of the bbl files plaintext_citations.extend(bbl.get_plaintext_citations(bbl_file)) return plaintext_citations
def fit_transform(self, X, y=None): ''' Flips the negative eigenvalues of X. Parameters ---------- X : array, shape [n, n] The *symmetric* input similarities. If X is asymmetric, it will be treated as if it were symmetric based on its lower-triangular part. Returns ------- Xt : array, shape [n, n] The transformed training similarities. ''' n = X.shape[0] if X.shape != (n, n): raise TypeError("Input must be a square matrix.") memory = get_memory(self.memory) discard_X = not self.copy and self.negatives_likely vals, vecs = memory.cache(scipy.linalg.eigh, ignore=['overwrite_a'])( X, overwrite_a=discard_X) vals = vals[:, None] self.clip_ = np.dot(vecs, np.sign(vals) * vecs.T) if discard_X or vals[0, 0] < 0: del X np.abs(vals, out=vals) X = np.dot(vecs, vals * vecs.T) del vals, vecs # should be symmetric, but make sure because floats X = Symmetrize(copy=False).fit_transform(X) return X
Flips the negative eigenvalues of X. Parameters ---------- X : array, shape [n, n] The *symmetric* input similarities. If X is asymmetric, it will be treated as if it were symmetric based on its lower-triangular part. Returns ------- Xt : array, shape [n, n] The transformed training similarities.
Below is the the instruction that describes the task: ### Input: Flips the negative eigenvalues of X. Parameters ---------- X : array, shape [n, n] The *symmetric* input similarities. If X is asymmetric, it will be treated as if it were symmetric based on its lower-triangular part. Returns ------- Xt : array, shape [n, n] The transformed training similarities. ### Response: def fit_transform(self, X, y=None): ''' Flips the negative eigenvalues of X. Parameters ---------- X : array, shape [n, n] The *symmetric* input similarities. If X is asymmetric, it will be treated as if it were symmetric based on its lower-triangular part. Returns ------- Xt : array, shape [n, n] The transformed training similarities. ''' n = X.shape[0] if X.shape != (n, n): raise TypeError("Input must be a square matrix.") memory = get_memory(self.memory) discard_X = not self.copy and self.negatives_likely vals, vecs = memory.cache(scipy.linalg.eigh, ignore=['overwrite_a'])( X, overwrite_a=discard_X) vals = vals[:, None] self.clip_ = np.dot(vecs, np.sign(vals) * vecs.T) if discard_X or vals[0, 0] < 0: del X np.abs(vals, out=vals) X = np.dot(vecs, vals * vecs.T) del vals, vecs # should be symmetric, but make sure because floats X = Symmetrize(copy=False).fit_transform(X) return X
def textContent(self, text: str) -> None: # type: ignore """Set textContent both on this node and related browser node.""" self._set_text_content(text) if self.connected: self._set_text_content_web(text)
Set textContent both on this node and related browser node.
Below is the the instruction that describes the task: ### Input: Set textContent both on this node and related browser node. ### Response: def textContent(self, text: str) -> None: # type: ignore """Set textContent both on this node and related browser node.""" self._set_text_content(text) if self.connected: self._set_text_content_web(text)
def get_identifiers(source_code): '''Split source code into python identifier-like tokens''' tokens = set(re.split(r"[^0-9a-zA-Z_.]", source_code)) valid = re.compile(r'[a-zA-Z_]') return [token for token in tokens if re.match(valid, token)]
Split source code into python identifier-like tokens
Below is the the instruction that describes the task: ### Input: Split source code into python identifier-like tokens ### Response: def get_identifiers(source_code): '''Split source code into python identifier-like tokens''' tokens = set(re.split(r"[^0-9a-zA-Z_.]", source_code)) valid = re.compile(r'[a-zA-Z_]') return [token for token in tokens if re.match(valid, token)]
async def registry_dump_handle(request): ''' only read :param request: :return: ''' registry = registry_dump_handle.registry response_dict = {} repo = registry._repository response_dict['registered_services'] = repo._registered_services response_dict['uptimes'] = repo._uptimes response_dict['service_dependencies'] = repo._service_dependencies return web.Response(status=400, content_type='application/json', body=json.dumps(response_dict).encode())
only read :param request: :return:
Below is the the instruction that describes the task: ### Input: only read :param request: :return: ### Response: async def registry_dump_handle(request): ''' only read :param request: :return: ''' registry = registry_dump_handle.registry response_dict = {} repo = registry._repository response_dict['registered_services'] = repo._registered_services response_dict['uptimes'] = repo._uptimes response_dict['service_dependencies'] = repo._service_dependencies return web.Response(status=400, content_type='application/json', body=json.dumps(response_dict).encode())
def long_click(self, duration=2.0): """ Perform the long click action on the UI element(s) represented by the UI proxy. If this UI proxy represents a set of UI elements, the first one in the set is clicked and the anchor point of the UI element is used as the default one. Similar to click but press the screen for the given time interval and then release. Args: duration (:py:obj:`float`): whole action duration. Return: the same as :py:meth:`poco.pocofw.Poco.long_click`, depending on poco agent implementation. """ try: duration = float(duration) except ValueError: raise ValueError('Argument `duration` should be <float>. Got {}'.format(repr(duration))) pos_in_percentage = self.get_position(self._focus or 'anchor') self.poco.pre_action('long_click', self, pos_in_percentage) ret = self.poco.long_click(pos_in_percentage, duration) self.poco.post_action('long_click', self, pos_in_percentage) return ret
Perform the long click action on the UI element(s) represented by the UI proxy. If this UI proxy represents a set of UI elements, the first one in the set is clicked and the anchor point of the UI element is used as the default one. Similar to click but press the screen for the given time interval and then release. Args: duration (:py:obj:`float`): whole action duration. Return: the same as :py:meth:`poco.pocofw.Poco.long_click`, depending on poco agent implementation.
Below is the the instruction that describes the task: ### Input: Perform the long click action on the UI element(s) represented by the UI proxy. If this UI proxy represents a set of UI elements, the first one in the set is clicked and the anchor point of the UI element is used as the default one. Similar to click but press the screen for the given time interval and then release. Args: duration (:py:obj:`float`): whole action duration. Return: the same as :py:meth:`poco.pocofw.Poco.long_click`, depending on poco agent implementation. ### Response: def long_click(self, duration=2.0): """ Perform the long click action on the UI element(s) represented by the UI proxy. If this UI proxy represents a set of UI elements, the first one in the set is clicked and the anchor point of the UI element is used as the default one. Similar to click but press the screen for the given time interval and then release. Args: duration (:py:obj:`float`): whole action duration. Return: the same as :py:meth:`poco.pocofw.Poco.long_click`, depending on poco agent implementation. """ try: duration = float(duration) except ValueError: raise ValueError('Argument `duration` should be <float>. Got {}'.format(repr(duration))) pos_in_percentage = self.get_position(self._focus or 'anchor') self.poco.pre_action('long_click', self, pos_in_percentage) ret = self.poco.long_click(pos_in_percentage, duration) self.poco.post_action('long_click', self, pos_in_percentage) return ret
def time_auth(self, load): ''' Make sure that all failures happen in the same amount of time ''' start = time.time() ret = self.__auth_call(load) if ret: return ret f_time = time.time() - start if f_time > self.max_fail: self.max_fail = f_time deviation = self.max_fail / 4 r_time = random.SystemRandom().uniform( self.max_fail - deviation, self.max_fail + deviation ) while start + r_time > time.time(): time.sleep(0.001) return False
Make sure that all failures happen in the same amount of time
Below is the the instruction that describes the task: ### Input: Make sure that all failures happen in the same amount of time ### Response: def time_auth(self, load): ''' Make sure that all failures happen in the same amount of time ''' start = time.time() ret = self.__auth_call(load) if ret: return ret f_time = time.time() - start if f_time > self.max_fail: self.max_fail = f_time deviation = self.max_fail / 4 r_time = random.SystemRandom().uniform( self.max_fail - deviation, self.max_fail + deviation ) while start + r_time > time.time(): time.sleep(0.001) return False
def intervalTrees(reffh, scoreType=int, verbose=False): """ Build a dictionary of interval trees indexed by chrom from a BED stream or file :param reffh: This can be either a string, or a stream-like object. In the former case, it is treated as a filename. The format of the file/stream must be BED. :param scoreType: The data type for scores (the fifth column) in the BED file. :param verbose: output progress messages to sys.stderr if True """ if type(reffh).__name__ == "str": fh = open(reffh) else: fh = reffh # load all the regions and split them into lists for each chrom elements = {} if verbose and fh != sys.stdin: totalLines = linesInFile(fh.name) pind = ProgressIndicator(totalToDo=totalLines, messagePrefix="completed", messageSuffix="of loading " + fh.name) for element in BEDIterator(fh, scoreType=scoreType, verbose=verbose): if element.chrom not in elements: elements[element.chrom] = [] elements[element.chrom].append(element) if verbose and fh != sys.stdin: pind.done += 1 pind.showProgress() # create an interval tree for each list trees = {} if verbose: totalLines = len(elements) pind = ProgressIndicator(totalToDo=totalLines, messagePrefix="completed", messageSuffix="of making interval trees") for chrom in elements: trees[chrom] = IntervalTree(elements[chrom], openEnded=True) if verbose: pind.done += 1 pind.showProgress() return trees
Build a dictionary of interval trees indexed by chrom from a BED stream or file :param reffh: This can be either a string, or a stream-like object. In the former case, it is treated as a filename. The format of the file/stream must be BED. :param scoreType: The data type for scores (the fifth column) in the BED file. :param verbose: output progress messages to sys.stderr if True
Below is the the instruction that describes the task: ### Input: Build a dictionary of interval trees indexed by chrom from a BED stream or file :param reffh: This can be either a string, or a stream-like object. In the former case, it is treated as a filename. The format of the file/stream must be BED. :param scoreType: The data type for scores (the fifth column) in the BED file. :param verbose: output progress messages to sys.stderr if True ### Response: def intervalTrees(reffh, scoreType=int, verbose=False): """ Build a dictionary of interval trees indexed by chrom from a BED stream or file :param reffh: This can be either a string, or a stream-like object. In the former case, it is treated as a filename. The format of the file/stream must be BED. :param scoreType: The data type for scores (the fifth column) in the BED file. :param verbose: output progress messages to sys.stderr if True """ if type(reffh).__name__ == "str": fh = open(reffh) else: fh = reffh # load all the regions and split them into lists for each chrom elements = {} if verbose and fh != sys.stdin: totalLines = linesInFile(fh.name) pind = ProgressIndicator(totalToDo=totalLines, messagePrefix="completed", messageSuffix="of loading " + fh.name) for element in BEDIterator(fh, scoreType=scoreType, verbose=verbose): if element.chrom not in elements: elements[element.chrom] = [] elements[element.chrom].append(element) if verbose and fh != sys.stdin: pind.done += 1 pind.showProgress() # create an interval tree for each list trees = {} if verbose: totalLines = len(elements) pind = ProgressIndicator(totalToDo=totalLines, messagePrefix="completed", messageSuffix="of making interval trees") for chrom in elements: trees[chrom] = IntervalTree(elements[chrom], openEnded=True) if verbose: pind.done += 1 pind.showProgress() return trees
def find_xy_peak(img, center=None, sigma=3.0): """ Find the center of the peak of offsets """ # find level of noise in histogram istats = imagestats.ImageStats(img.astype(np.float32), nclip=1, fields='stddev,mode,mean,max,min') if istats.stddev == 0.0: istats = imagestats.ImageStats(img.astype(np.float32), fields='stddev,mode,mean,max,min') imgsum = img.sum() # clip out all values below mean+3*sigma from histogram imgc = img[:, :].copy() imgc[imgc < istats.mode + istats.stddev * sigma] = 0.0 # identify position of peak yp0, xp0 = np.where(imgc == imgc.max()) # Perform bounds checking on slice from img ymin = max(0, int(yp0[0]) - 3) ymax = min(img.shape[0], int(yp0[0]) + 4) xmin = max(0, int(xp0[0]) - 3) xmax = min(img.shape[1], int(xp0[0]) + 4) # take sum of at most a 7x7 pixel box around peak xp_slice = (slice(ymin, ymax), slice(xmin, xmax)) yp, xp = ndimage.measurements.center_of_mass(img[xp_slice]) if np.isnan(xp) or np.isnan(yp): xp = 0.0 yp = 0.0 flux = 0.0 zpqual = None else: xp += xp_slice[1].start yp += xp_slice[0].start # compute S/N criteria for this peak: flux/sqrt(mean of rest of array) flux = imgc[xp_slice].sum() delta_size = float(img.size - imgc[xp_slice].size) if delta_size == 0: delta_size = 1 delta_flux = float(imgsum - flux) if flux > imgc[xp_slice].max(): delta_flux = flux - imgc[xp_slice].max() else: delta_flux = flux zpqual = flux / np.sqrt(delta_flux / delta_size) if np.isnan(zpqual) or np.isinf(zpqual): zpqual = None if center is not None: xp -= center[0] yp -= center[1] flux = imgc[xp_slice].max() del imgc return xp, yp, flux, zpqual
Find the center of the peak of offsets
Below is the the instruction that describes the task: ### Input: Find the center of the peak of offsets ### Response: def find_xy_peak(img, center=None, sigma=3.0): """ Find the center of the peak of offsets """ # find level of noise in histogram istats = imagestats.ImageStats(img.astype(np.float32), nclip=1, fields='stddev,mode,mean,max,min') if istats.stddev == 0.0: istats = imagestats.ImageStats(img.astype(np.float32), fields='stddev,mode,mean,max,min') imgsum = img.sum() # clip out all values below mean+3*sigma from histogram imgc = img[:, :].copy() imgc[imgc < istats.mode + istats.stddev * sigma] = 0.0 # identify position of peak yp0, xp0 = np.where(imgc == imgc.max()) # Perform bounds checking on slice from img ymin = max(0, int(yp0[0]) - 3) ymax = min(img.shape[0], int(yp0[0]) + 4) xmin = max(0, int(xp0[0]) - 3) xmax = min(img.shape[1], int(xp0[0]) + 4) # take sum of at most a 7x7 pixel box around peak xp_slice = (slice(ymin, ymax), slice(xmin, xmax)) yp, xp = ndimage.measurements.center_of_mass(img[xp_slice]) if np.isnan(xp) or np.isnan(yp): xp = 0.0 yp = 0.0 flux = 0.0 zpqual = None else: xp += xp_slice[1].start yp += xp_slice[0].start # compute S/N criteria for this peak: flux/sqrt(mean of rest of array) flux = imgc[xp_slice].sum() delta_size = float(img.size - imgc[xp_slice].size) if delta_size == 0: delta_size = 1 delta_flux = float(imgsum - flux) if flux > imgc[xp_slice].max(): delta_flux = flux - imgc[xp_slice].max() else: delta_flux = flux zpqual = flux / np.sqrt(delta_flux / delta_size) if np.isnan(zpqual) or np.isinf(zpqual): zpqual = None if center is not None: xp -= center[0] yp -= center[1] flux = imgc[xp_slice].max() del imgc return xp, yp, flux, zpqual
def kelly_kapowski(s, g, w, its=50, r=0.025, m=1.5, **kwargs): """ Compute cortical thickness using the DiReCT algorithm. Diffeomorphic registration-based cortical thickness based on probabilistic segmentation of an image. This is an optimization algorithm. Arguments --------- s : ANTsimage segmentation image g : ANTsImage gray matter probability image w : ANTsImage white matter probability image its : integer convergence params - controls iterations r : scalar gradient descent update parameter m : scalar gradient field smoothing parameter kwargs : keyword arguments anything else, see KellyKapowski help in ANTs Returns ------- ANTsImage Example ------- >>> import ants >>> img = ants.image_read( ants.get_ants_data('r16') ,2) >>> img = ants.resample_image(img, (64,64),1,0) >>> mask = ants.get_mask( img ) >>> segs = ants.kmeans_segmentation( img, k=3, kmask = mask) >>> thick = ants.kelly_kapowski(s=segs['segmentation'], g=segs['probabilityimages'][1], w=segs['probabilityimages'][2], its=45, r=0.5, m=1) """ if isinstance(s, iio.ANTsImage): s = s.clone('unsigned int') d = s.dimension outimg = g.clone() kellargs = {'d': d, 's': s, 'g': g, 'w': w, 'c': its, 'r': r, 'm': m, 'o': outimg} for k, v in kwargs.items(): kellargs[k] = v processed_kellargs = utils._int_antsProcessArguments(kellargs) libfn = utils.get_lib_fn('KellyKapowski') libfn(processed_kellargs) return outimg
Compute cortical thickness using the DiReCT algorithm. Diffeomorphic registration-based cortical thickness based on probabilistic segmentation of an image. This is an optimization algorithm. Arguments --------- s : ANTsimage segmentation image g : ANTsImage gray matter probability image w : ANTsImage white matter probability image its : integer convergence params - controls iterations r : scalar gradient descent update parameter m : scalar gradient field smoothing parameter kwargs : keyword arguments anything else, see KellyKapowski help in ANTs Returns ------- ANTsImage Example ------- >>> import ants >>> img = ants.image_read( ants.get_ants_data('r16') ,2) >>> img = ants.resample_image(img, (64,64),1,0) >>> mask = ants.get_mask( img ) >>> segs = ants.kmeans_segmentation( img, k=3, kmask = mask) >>> thick = ants.kelly_kapowski(s=segs['segmentation'], g=segs['probabilityimages'][1], w=segs['probabilityimages'][2], its=45, r=0.5, m=1)
Below is the the instruction that describes the task: ### Input: Compute cortical thickness using the DiReCT algorithm. Diffeomorphic registration-based cortical thickness based on probabilistic segmentation of an image. This is an optimization algorithm. Arguments --------- s : ANTsimage segmentation image g : ANTsImage gray matter probability image w : ANTsImage white matter probability image its : integer convergence params - controls iterations r : scalar gradient descent update parameter m : scalar gradient field smoothing parameter kwargs : keyword arguments anything else, see KellyKapowski help in ANTs Returns ------- ANTsImage Example ------- >>> import ants >>> img = ants.image_read( ants.get_ants_data('r16') ,2) >>> img = ants.resample_image(img, (64,64),1,0) >>> mask = ants.get_mask( img ) >>> segs = ants.kmeans_segmentation( img, k=3, kmask = mask) >>> thick = ants.kelly_kapowski(s=segs['segmentation'], g=segs['probabilityimages'][1], w=segs['probabilityimages'][2], its=45, r=0.5, m=1) ### Response: def kelly_kapowski(s, g, w, its=50, r=0.025, m=1.5, **kwargs): """ Compute cortical thickness using the DiReCT algorithm. Diffeomorphic registration-based cortical thickness based on probabilistic segmentation of an image. This is an optimization algorithm. Arguments --------- s : ANTsimage segmentation image g : ANTsImage gray matter probability image w : ANTsImage white matter probability image its : integer convergence params - controls iterations r : scalar gradient descent update parameter m : scalar gradient field smoothing parameter kwargs : keyword arguments anything else, see KellyKapowski help in ANTs Returns ------- ANTsImage Example ------- >>> import ants >>> img = ants.image_read( ants.get_ants_data('r16') ,2) >>> img = ants.resample_image(img, (64,64),1,0) >>> mask = ants.get_mask( img ) >>> segs = ants.kmeans_segmentation( img, k=3, kmask = mask) >>> thick = ants.kelly_kapowski(s=segs['segmentation'], g=segs['probabilityimages'][1], w=segs['probabilityimages'][2], its=45, r=0.5, m=1) """ if isinstance(s, iio.ANTsImage): s = s.clone('unsigned int') d = s.dimension outimg = g.clone() kellargs = {'d': d, 's': s, 'g': g, 'w': w, 'c': its, 'r': r, 'm': m, 'o': outimg} for k, v in kwargs.items(): kellargs[k] = v processed_kellargs = utils._int_antsProcessArguments(kellargs) libfn = utils.get_lib_fn('KellyKapowski') libfn(processed_kellargs) return outimg
def acknowledge_message(self): """Comment provided when acknowledging the alarm.""" if (self.is_acknowledged and self._proto.acknowledgeInfo.HasField('acknowledgeMessage')): return self._proto.acknowledgeInfo.acknowledgeMessage return None
Comment provided when acknowledging the alarm.
Below is the the instruction that describes the task: ### Input: Comment provided when acknowledging the alarm. ### Response: def acknowledge_message(self): """Comment provided when acknowledging the alarm.""" if (self.is_acknowledged and self._proto.acknowledgeInfo.HasField('acknowledgeMessage')): return self._proto.acknowledgeInfo.acknowledgeMessage return None
def _asym_transform_deriv_shape(systematic_utilities, alt_IDs, rows_to_alts, eta, ref_position=None, dh_dc_array=None, fill_dc_d_eta=None, output_array=None, *args, **kwargs): """ Parameters ---------- systematic_utilities : 1D ndarray. Contains the systematic utilities for each each available alternative for each observation. All elements should be ints, floats, or longs. alt_IDs : 1D ndarray. All elements should be ints. There should be one row per obervation per available alternative for the given observation. Elements denote the alternative corresponding to the given row of the design matrix. rows_to_alts : 2D ndarray. There should be one row per observation per available alternative and one column per possible alternative. This matrix maps the rows of the design matrix to the possible alternatives for this dataset. eta : 1D ndarray. Each element should be an int, float, or long. There should be one value per transformed shape parameter. Note that if there are J possible alternatives in the dataset, then there should be J - 1 elements in `eta`. ref_position : int. Specifies the position in the array of natural shape parameters that should be equal to 1 - the sum of the other elements. Specifies the alternative in the ordered array of unique alternatives that is not having its shape parameter estimated (to ensure identifiability). dh_dc_array : 2D scipy sparse matrix. Its data is to be replaced with the correct derivatives of the transformed index vector with respect to the shape parameter vector. Should have shape `(systematic_utilities.shape[0], rows_to_alts.shape[1])`. fill_dc_d_eta : callable. Should accept `eta` and `ref_position` and return a 2D numpy array containing the derivatives of the 'natural' shape parameter vector with respect to the vector of transformed shape parameters. output_array : 2D numpy matrix. This matrix's data is to be replaced with the correct derivatives of the transformed systematic utilities with respect to the vector of transformed shape parameters. Should have shape `(systematic_utilities.shape[0], shape_params.shape[0])`. Returns ------- output_array : 2D ndarray. The shape of the returned array will be `(systematic_utilities.shape[0], shape_params.shape[0])`. The returned array specifies the derivative of the transformed utilities with respect to the shape parameters. """ ########## # Convert the reduced shape parameters to the natural shape parameters ########## natural_shape_params = _convert_eta_to_c(eta, ref_position) ########## # Calculate the derivative of the transformed utilities with respect to # the vector of natural shape parameters, c ########## # Create a vector which contains the appropriate shape for each row in the # design matrix. Note as long as natural_shape_params is a numpy array, # then long_shapes will be a numpy array. long_shapes = rows_to_alts.dot(natural_shape_params) # Calculate d_ln(long_shape)_d_long_shape d_lnShape_dShape = 1.0 / long_shapes # Guard against overflow d_lnShape_dShape[np.isposinf(d_lnShape_dShape)] = max_comp_value # Calculate d_ln((1-long_shape)/(J-1))_d_long_shape d_lnShapeComp_dShape = -1.0 / (1 - long_shapes) # Guard against overflow d_lnShapeComp_dShape[np.isneginf(d_lnShapeComp_dShape)] = -max_comp_value # Differentiate the multiplier with respect to natural_shape_j. deriv_multiplier = ((systematic_utilities >= 0) * d_lnShape_dShape + (systematic_utilities < 0) * d_lnShapeComp_dShape) # assert not np.isnan(deriv_multiplier).any() # Calculate the derivative of h_ij with respect to natural_shape_j. # Store these derivatives in their respective places in the dh_dc array # Note that d_hij_d_ck = 0 for k != j dh_dc_values = d_lnShape_dShape - systematic_utilities * deriv_multiplier # Guard against overflow dh_dc_values[np.isinf(dh_dc_values)] = -1 * max_comp_value # Assign the computed values to the scipy sparse array dh_dc_array.data = dh_dc_values ########## # Calculate the derivative of the natural shape parameters, c with # respect to the vector of reduced shape parameters, eta ########## # Return the matrix of dh_d_eta. Note the matrix should be of dimension # (systematic_utilities.shape[0], shape_params.shape[0]) # Note the calculation is essentially dh_dc * dc_d_eta = dh_d_eta output_array[:, :] = dh_dc_array.dot(fill_dc_d_eta(natural_shape_params, ref_position)) return output_array
Parameters ---------- systematic_utilities : 1D ndarray. Contains the systematic utilities for each each available alternative for each observation. All elements should be ints, floats, or longs. alt_IDs : 1D ndarray. All elements should be ints. There should be one row per obervation per available alternative for the given observation. Elements denote the alternative corresponding to the given row of the design matrix. rows_to_alts : 2D ndarray. There should be one row per observation per available alternative and one column per possible alternative. This matrix maps the rows of the design matrix to the possible alternatives for this dataset. eta : 1D ndarray. Each element should be an int, float, or long. There should be one value per transformed shape parameter. Note that if there are J possible alternatives in the dataset, then there should be J - 1 elements in `eta`. ref_position : int. Specifies the position in the array of natural shape parameters that should be equal to 1 - the sum of the other elements. Specifies the alternative in the ordered array of unique alternatives that is not having its shape parameter estimated (to ensure identifiability). dh_dc_array : 2D scipy sparse matrix. Its data is to be replaced with the correct derivatives of the transformed index vector with respect to the shape parameter vector. Should have shape `(systematic_utilities.shape[0], rows_to_alts.shape[1])`. fill_dc_d_eta : callable. Should accept `eta` and `ref_position` and return a 2D numpy array containing the derivatives of the 'natural' shape parameter vector with respect to the vector of transformed shape parameters. output_array : 2D numpy matrix. This matrix's data is to be replaced with the correct derivatives of the transformed systematic utilities with respect to the vector of transformed shape parameters. Should have shape `(systematic_utilities.shape[0], shape_params.shape[0])`. Returns ------- output_array : 2D ndarray. The shape of the returned array will be `(systematic_utilities.shape[0], shape_params.shape[0])`. The returned array specifies the derivative of the transformed utilities with respect to the shape parameters.
Below is the the instruction that describes the task: ### Input: Parameters ---------- systematic_utilities : 1D ndarray. Contains the systematic utilities for each each available alternative for each observation. All elements should be ints, floats, or longs. alt_IDs : 1D ndarray. All elements should be ints. There should be one row per obervation per available alternative for the given observation. Elements denote the alternative corresponding to the given row of the design matrix. rows_to_alts : 2D ndarray. There should be one row per observation per available alternative and one column per possible alternative. This matrix maps the rows of the design matrix to the possible alternatives for this dataset. eta : 1D ndarray. Each element should be an int, float, or long. There should be one value per transformed shape parameter. Note that if there are J possible alternatives in the dataset, then there should be J - 1 elements in `eta`. ref_position : int. Specifies the position in the array of natural shape parameters that should be equal to 1 - the sum of the other elements. Specifies the alternative in the ordered array of unique alternatives that is not having its shape parameter estimated (to ensure identifiability). dh_dc_array : 2D scipy sparse matrix. Its data is to be replaced with the correct derivatives of the transformed index vector with respect to the shape parameter vector. Should have shape `(systematic_utilities.shape[0], rows_to_alts.shape[1])`. fill_dc_d_eta : callable. Should accept `eta` and `ref_position` and return a 2D numpy array containing the derivatives of the 'natural' shape parameter vector with respect to the vector of transformed shape parameters. output_array : 2D numpy matrix. This matrix's data is to be replaced with the correct derivatives of the transformed systematic utilities with respect to the vector of transformed shape parameters. Should have shape `(systematic_utilities.shape[0], shape_params.shape[0])`. Returns ------- output_array : 2D ndarray. The shape of the returned array will be `(systematic_utilities.shape[0], shape_params.shape[0])`. The returned array specifies the derivative of the transformed utilities with respect to the shape parameters. ### Response: def _asym_transform_deriv_shape(systematic_utilities, alt_IDs, rows_to_alts, eta, ref_position=None, dh_dc_array=None, fill_dc_d_eta=None, output_array=None, *args, **kwargs): """ Parameters ---------- systematic_utilities : 1D ndarray. Contains the systematic utilities for each each available alternative for each observation. All elements should be ints, floats, or longs. alt_IDs : 1D ndarray. All elements should be ints. There should be one row per obervation per available alternative for the given observation. Elements denote the alternative corresponding to the given row of the design matrix. rows_to_alts : 2D ndarray. There should be one row per observation per available alternative and one column per possible alternative. This matrix maps the rows of the design matrix to the possible alternatives for this dataset. eta : 1D ndarray. Each element should be an int, float, or long. There should be one value per transformed shape parameter. Note that if there are J possible alternatives in the dataset, then there should be J - 1 elements in `eta`. ref_position : int. Specifies the position in the array of natural shape parameters that should be equal to 1 - the sum of the other elements. Specifies the alternative in the ordered array of unique alternatives that is not having its shape parameter estimated (to ensure identifiability). dh_dc_array : 2D scipy sparse matrix. Its data is to be replaced with the correct derivatives of the transformed index vector with respect to the shape parameter vector. Should have shape `(systematic_utilities.shape[0], rows_to_alts.shape[1])`. fill_dc_d_eta : callable. Should accept `eta` and `ref_position` and return a 2D numpy array containing the derivatives of the 'natural' shape parameter vector with respect to the vector of transformed shape parameters. output_array : 2D numpy matrix. This matrix's data is to be replaced with the correct derivatives of the transformed systematic utilities with respect to the vector of transformed shape parameters. Should have shape `(systematic_utilities.shape[0], shape_params.shape[0])`. Returns ------- output_array : 2D ndarray. The shape of the returned array will be `(systematic_utilities.shape[0], shape_params.shape[0])`. The returned array specifies the derivative of the transformed utilities with respect to the shape parameters. """ ########## # Convert the reduced shape parameters to the natural shape parameters ########## natural_shape_params = _convert_eta_to_c(eta, ref_position) ########## # Calculate the derivative of the transformed utilities with respect to # the vector of natural shape parameters, c ########## # Create a vector which contains the appropriate shape for each row in the # design matrix. Note as long as natural_shape_params is a numpy array, # then long_shapes will be a numpy array. long_shapes = rows_to_alts.dot(natural_shape_params) # Calculate d_ln(long_shape)_d_long_shape d_lnShape_dShape = 1.0 / long_shapes # Guard against overflow d_lnShape_dShape[np.isposinf(d_lnShape_dShape)] = max_comp_value # Calculate d_ln((1-long_shape)/(J-1))_d_long_shape d_lnShapeComp_dShape = -1.0 / (1 - long_shapes) # Guard against overflow d_lnShapeComp_dShape[np.isneginf(d_lnShapeComp_dShape)] = -max_comp_value # Differentiate the multiplier with respect to natural_shape_j. deriv_multiplier = ((systematic_utilities >= 0) * d_lnShape_dShape + (systematic_utilities < 0) * d_lnShapeComp_dShape) # assert not np.isnan(deriv_multiplier).any() # Calculate the derivative of h_ij with respect to natural_shape_j. # Store these derivatives in their respective places in the dh_dc array # Note that d_hij_d_ck = 0 for k != j dh_dc_values = d_lnShape_dShape - systematic_utilities * deriv_multiplier # Guard against overflow dh_dc_values[np.isinf(dh_dc_values)] = -1 * max_comp_value # Assign the computed values to the scipy sparse array dh_dc_array.data = dh_dc_values ########## # Calculate the derivative of the natural shape parameters, c with # respect to the vector of reduced shape parameters, eta ########## # Return the matrix of dh_d_eta. Note the matrix should be of dimension # (systematic_utilities.shape[0], shape_params.shape[0]) # Note the calculation is essentially dh_dc * dc_d_eta = dh_d_eta output_array[:, :] = dh_dc_array.dot(fill_dc_d_eta(natural_shape_params, ref_position)) return output_array
def bboxiter(tile_bounds, tiles_per_row_per_region=1): """ Iterate through a grid of regions defined by a TileBB. Args: tile_bounds (GridBB): tiles_per_row_per_region: Combine multiple tiles in one region. E.g. if set to two, four tiles will be combined in one region. See `kml` module description for more details. Leaving the default value '1' simply yields all tiles in the bounding box. Note: If the number of regions would not be an integer due to specification of the `tiles_per_row_per_region` parameter, the boundaries will be rounded to the next smaller or next larger integer respectively. Example: We have the following bounding box with size 2x2 and set tiles_per_row_per_region = 2, delimited by the coordinates (x, y):: (5,5)--- --- | | | | | | --- ---(9,7) Although this could be represented in one single region with two tiles per row, it will create four regions:: (2,2)--- --- (5/2 = 2.5 -> 2, 5/2 = 2.5 -> 2) | | | --- --- | | | --- ---(5,4) (9/2 = 4.5 -> 5, 7/2 = 3.5 -> 4) Yields: Tuple: all tuples (x, y) in the region delimited by the TileBB """ x_lower = math.floor(tile_bounds.min.x / tiles_per_row_per_region) y_lower = math.floor(tile_bounds.min.y / tiles_per_row_per_region) ncol = math.ceil(tile_bounds.max.x / tiles_per_row_per_region) - x_lower nrow = math.ceil(tile_bounds.max.y / tiles_per_row_per_region) - y_lower yield from griditer(x_lower, y_lower, ncol, nrow)
Iterate through a grid of regions defined by a TileBB. Args: tile_bounds (GridBB): tiles_per_row_per_region: Combine multiple tiles in one region. E.g. if set to two, four tiles will be combined in one region. See `kml` module description for more details. Leaving the default value '1' simply yields all tiles in the bounding box. Note: If the number of regions would not be an integer due to specification of the `tiles_per_row_per_region` parameter, the boundaries will be rounded to the next smaller or next larger integer respectively. Example: We have the following bounding box with size 2x2 and set tiles_per_row_per_region = 2, delimited by the coordinates (x, y):: (5,5)--- --- | | | | | | --- ---(9,7) Although this could be represented in one single region with two tiles per row, it will create four regions:: (2,2)--- --- (5/2 = 2.5 -> 2, 5/2 = 2.5 -> 2) | | | --- --- | | | --- ---(5,4) (9/2 = 4.5 -> 5, 7/2 = 3.5 -> 4) Yields: Tuple: all tuples (x, y) in the region delimited by the TileBB
Below is the the instruction that describes the task: ### Input: Iterate through a grid of regions defined by a TileBB. Args: tile_bounds (GridBB): tiles_per_row_per_region: Combine multiple tiles in one region. E.g. if set to two, four tiles will be combined in one region. See `kml` module description for more details. Leaving the default value '1' simply yields all tiles in the bounding box. Note: If the number of regions would not be an integer due to specification of the `tiles_per_row_per_region` parameter, the boundaries will be rounded to the next smaller or next larger integer respectively. Example: We have the following bounding box with size 2x2 and set tiles_per_row_per_region = 2, delimited by the coordinates (x, y):: (5,5)--- --- | | | | | | --- ---(9,7) Although this could be represented in one single region with two tiles per row, it will create four regions:: (2,2)--- --- (5/2 = 2.5 -> 2, 5/2 = 2.5 -> 2) | | | --- --- | | | --- ---(5,4) (9/2 = 4.5 -> 5, 7/2 = 3.5 -> 4) Yields: Tuple: all tuples (x, y) in the region delimited by the TileBB ### Response: def bboxiter(tile_bounds, tiles_per_row_per_region=1): """ Iterate through a grid of regions defined by a TileBB. Args: tile_bounds (GridBB): tiles_per_row_per_region: Combine multiple tiles in one region. E.g. if set to two, four tiles will be combined in one region. See `kml` module description for more details. Leaving the default value '1' simply yields all tiles in the bounding box. Note: If the number of regions would not be an integer due to specification of the `tiles_per_row_per_region` parameter, the boundaries will be rounded to the next smaller or next larger integer respectively. Example: We have the following bounding box with size 2x2 and set tiles_per_row_per_region = 2, delimited by the coordinates (x, y):: (5,5)--- --- | | | | | | --- ---(9,7) Although this could be represented in one single region with two tiles per row, it will create four regions:: (2,2)--- --- (5/2 = 2.5 -> 2, 5/2 = 2.5 -> 2) | | | --- --- | | | --- ---(5,4) (9/2 = 4.5 -> 5, 7/2 = 3.5 -> 4) Yields: Tuple: all tuples (x, y) in the region delimited by the TileBB """ x_lower = math.floor(tile_bounds.min.x / tiles_per_row_per_region) y_lower = math.floor(tile_bounds.min.y / tiles_per_row_per_region) ncol = math.ceil(tile_bounds.max.x / tiles_per_row_per_region) - x_lower nrow = math.ceil(tile_bounds.max.y / tiles_per_row_per_region) - y_lower yield from griditer(x_lower, y_lower, ncol, nrow)
def get_next_step(self): """Find the proper step when user clicks the Next button. :returns: The step to be switched to. :rtype: WizardStep instance or None """ if self.layer_purpose != layer_purpose_aggregation: subcategory = self.parent.step_kw_subcategory.\ selected_subcategory() else: subcategory = {'key': None} if is_raster_layer(self.parent.layer): return self.parent.step_kw_source # Check if it can go to inasafe field step inasafe_fields = get_non_compulsory_fields( self.layer_purpose['key'], subcategory['key']) if not skip_inasafe_field(self.parent.layer, inasafe_fields): return self.parent.step_kw_inasafe_fields # Check if it can go to inasafe default field step default_inasafe_fields = get_fields( self.layer_purpose['key'], subcategory['key'], replace_null=True, in_group=False ) if default_inasafe_fields: return self.parent.step_kw_default_inasafe_fields # Any other case return self.parent.step_kw_source
Find the proper step when user clicks the Next button. :returns: The step to be switched to. :rtype: WizardStep instance or None
Below is the the instruction that describes the task: ### Input: Find the proper step when user clicks the Next button. :returns: The step to be switched to. :rtype: WizardStep instance or None ### Response: def get_next_step(self): """Find the proper step when user clicks the Next button. :returns: The step to be switched to. :rtype: WizardStep instance or None """ if self.layer_purpose != layer_purpose_aggregation: subcategory = self.parent.step_kw_subcategory.\ selected_subcategory() else: subcategory = {'key': None} if is_raster_layer(self.parent.layer): return self.parent.step_kw_source # Check if it can go to inasafe field step inasafe_fields = get_non_compulsory_fields( self.layer_purpose['key'], subcategory['key']) if not skip_inasafe_field(self.parent.layer, inasafe_fields): return self.parent.step_kw_inasafe_fields # Check if it can go to inasafe default field step default_inasafe_fields = get_fields( self.layer_purpose['key'], subcategory['key'], replace_null=True, in_group=False ) if default_inasafe_fields: return self.parent.step_kw_default_inasafe_fields # Any other case return self.parent.step_kw_source
def main(self, options, args): """ Main routine for running the reference viewer. `options` is a OptionParser object that has been populated with values from parsing the command line. It should at least include the options from add_default_options() `args` is a list of arguments to the viewer after parsing out options. It should contain a list of files or URLs to load. """ # Create a logger logger = log.get_logger(name='ginga', options=options) # Get settings (preferences) basedir = paths.ginga_home if not os.path.exists(basedir): try: os.mkdir(basedir) except OSError as e: logger.warning( "Couldn't create ginga settings area (%s): %s" % ( basedir, str(e))) logger.warning("Preferences will not be able to be saved") # Set up preferences prefs = Settings.Preferences(basefolder=basedir, logger=logger) settings = prefs.create_category('general') settings.set_defaults(useMatplotlibColormaps=False, widgetSet='choose', WCSpkg='choose', FITSpkg='choose', recursion_limit=2000, icc_working_profile=None, font_scaling_factor=None, save_layout=True, channel_prefix="Image") settings.load(onError='silent') # default of 1000 is a little too small sys.setrecursionlimit(settings.get('recursion_limit')) # So we can find our plugins sys.path.insert(0, basedir) package_home = os.path.split(sys.modules['ginga.version'].__file__)[0] child_dir = os.path.join(package_home, 'rv', 'plugins') sys.path.insert(0, child_dir) plugin_dir = os.path.join(basedir, 'plugins') sys.path.insert(0, plugin_dir) gc = os.path.join(basedir, "ginga_config.py") have_ginga_config = os.path.exists(gc) # User configuration, earliest possible intervention if have_ginga_config: try: import ginga_config if hasattr(ginga_config, 'init_config'): ginga_config.init_config(self) except Exception as e: try: (type, value, tb) = sys.exc_info() tb_str = "\n".join(traceback.format_tb(tb)) except Exception: tb_str = "Traceback information unavailable." logger.error("Error processing Ginga config file: %s" % ( str(e))) logger.error("Traceback:\n%s" % (tb_str)) # Choose a toolkit if options.toolkit: toolkit = options.toolkit else: toolkit = settings.get('widgetSet', 'choose') if toolkit == 'choose': try: ginga_toolkit.choose() except ImportError as e: print("UI toolkit choose error: %s" % str(e)) sys.exit(1) else: ginga_toolkit.use(toolkit) tkname = ginga_toolkit.get_family() logger.info("Chosen toolkit (%s) family is '%s'" % ( ginga_toolkit.toolkit, tkname)) # these imports have to be here, otherwise they force the choice # of toolkit too early from ginga.rv.Control import GingaShell, GuiLogHandler if settings.get('useMatplotlibColormaps', False): # Add matplotlib color maps if matplotlib is installed try: from ginga import cmap cmap.add_matplotlib_cmaps(fail_on_import_error=False) except Exception as e: logger.warning( "failed to load matplotlib colormaps: %s" % (str(e))) # user wants to set font scaling font_scaling = settings.get('font_scaling_factor', None) if font_scaling is not None: from ginga.fonts import font_asst font_asst.default_scaling_factor = font_scaling # Set a working RGB ICC profile if user has one working_profile = settings.get('icc_working_profile', None) rgb_cms.working_profile = working_profile # User wants to customize the WCS package? if options.wcspkg: wcspkg = options.wcspkg else: wcspkg = settings.get('WCSpkg', 'choose') try: from ginga.util import wcsmod if wcspkg != 'choose': assert wcsmod.use(wcspkg) is True except Exception as e: logger.warning( "failed to set WCS package preference: %s" % (str(e))) # User wants to customize the FITS package? if options.fitspkg: fitspkg = options.fitspkg else: fitspkg = settings.get('FITSpkg', 'choose') try: from ginga.util import io_fits if fitspkg != 'choose': assert io_fits.use(fitspkg) is True except Exception as e: logger.warning( "failed to set FITS package preference: %s" % (str(e))) # Check whether user wants to use OpenCv use_opencv = settings.get('use_opencv', False) if use_opencv or options.opencv: from ginga import trcalc try: trcalc.use('opencv') except Exception as e: logger.warning( "failed to set OpenCv preference: %s" % (str(e))) # Check whether user wants to use OpenCL use_opencl = settings.get('use_opencl', False) if use_opencl or options.opencl: from ginga import trcalc try: trcalc.use('opencl') except Exception as e: logger.warning( "failed to set OpenCL preference: %s" % (str(e))) # Create the dynamic module manager mm = ModuleManager.ModuleManager(logger) # Create and start thread pool ev_quit = threading.Event() thread_pool = Task.ThreadPool(options.numthreads, logger, ev_quit=ev_quit) thread_pool.startall() # Create the Ginga main object ginga_shell = GingaShell(logger, thread_pool, mm, prefs, ev_quit=ev_quit) layout_file = None if not options.norestore and settings.get('save_layout', False): layout_file = os.path.join(basedir, 'layout') ginga_shell.set_layout(self.layout, layout_file=layout_file) # User configuration (custom star catalogs, etc.) if have_ginga_config: try: if hasattr(ginga_config, 'pre_gui_config'): ginga_config.pre_gui_config(ginga_shell) except Exception as e: try: (type, value, tb) = sys.exc_info() tb_str = "\n".join(traceback.format_tb(tb)) except Exception: tb_str = "Traceback information unavailable." logger.error("Error importing Ginga config file: %s" % ( str(e))) logger.error("Traceback:\n%s" % (tb_str)) # Build desired layout ginga_shell.build_toplevel() # Did user specify a particular geometry? if options.geometry: ginga_shell.set_geometry(options.geometry) # make the list of disabled plugins if options.disable_plugins is not None: disabled_plugins = options.disable_plugins.lower().split(',') else: disabled_plugins = settings.get('disable_plugins', []) if not isinstance(disabled_plugins, list): disabled_plugins = disabled_plugins.lower().split(',') # Add GUI log handler (for "Log" global plugin) guiHdlr = GuiLogHandler(ginga_shell) guiHdlr.setLevel(options.loglevel) fmt = logging.Formatter(log.LOG_FORMAT) guiHdlr.setFormatter(fmt) logger.addHandler(guiHdlr) # Load any custom modules if options.modules is not None: modules = options.modules.split(',') else: modules = settings.get('global_plugins', []) if not isinstance(modules, list): modules = modules.split(',') for long_plugin_name in modules: if '.' in long_plugin_name: tmpstr = long_plugin_name.split('.') plugin_name = tmpstr[-1] pfx = '.'.join(tmpstr[:-1]) else: plugin_name = long_plugin_name pfx = None menu_name = "%s [G]" % (plugin_name) spec = Bunch(name=plugin_name, module=plugin_name, ptype='global', tab=plugin_name, menu=menu_name, category="Custom", workspace='right', pfx=pfx) self.add_plugin_spec(spec) # Load any custom local plugins if options.plugins is not None: plugins = options.plugins.split(',') else: plugins = settings.get('local_plugins', []) if not isinstance(plugins, list): plugins = plugins.split(',') for long_plugin_name in plugins: if '.' in long_plugin_name: tmpstr = long_plugin_name.split('.') plugin_name = tmpstr[-1] pfx = '.'.join(tmpstr[:-1]) else: plugin_name = long_plugin_name pfx = None spec = Bunch(module=plugin_name, workspace='dialogs', ptype='local', category="Custom", hidden=False, pfx=pfx) self.add_plugin_spec(spec) # Add non-disabled plugins enabled_plugins = [spec for spec in self.plugins if spec.module.lower() not in disabled_plugins] ginga_shell.set_plugins(enabled_plugins) # start any plugins that have start=True ginga_shell.boot_plugins() ginga_shell.update_pending() # TEMP? tab_names = [name.lower() for name in ginga_shell.ds.get_tabnames(group=None)] if 'info' in tab_names: ginga_shell.ds.raise_tab('Info') if 'synopsis' in tab_names: ginga_shell.ds.raise_tab('Synopsis') if 'thumbs' in tab_names: ginga_shell.ds.raise_tab('Thumbs') # Add custom channels if options.channels is not None: channels = options.channels.split(',') else: channels = settings.get('channels', []) if not isinstance(channels, list): channels = channels.split(',') if len(channels) == 0: # should provide at least one default channel? channels = [settings.get('channel_prefix', "Image")] for chname in channels: ginga_shell.add_channel(chname) ginga_shell.change_channel(channels[0]) # User configuration (custom star catalogs, etc.) if have_ginga_config: try: if hasattr(ginga_config, 'post_gui_config'): ginga_config.post_gui_config(ginga_shell) except Exception as e: try: (type, value, tb) = sys.exc_info() tb_str = "\n".join(traceback.format_tb(tb)) except Exception: tb_str = "Traceback information unavailable." logger.error("Error processing Ginga config file: %s" % ( str(e))) logger.error("Traceback:\n%s" % (tb_str)) # Redirect warnings to logger for hdlr in logger.handlers: logging.getLogger('py.warnings').addHandler(hdlr) # Display banner the first time run, unless suppressed showBanner = True try: showBanner = settings.get('showBanner') except KeyError: # disable for subsequent runs settings.set(showBanner=False) if not os.path.exists(settings.preffile): settings.save() if (not options.nosplash) and (len(args) == 0) and showBanner: ginga_shell.banner(raiseTab=True) # Handle inputs like "*.fits[ext]" that sys cmd cannot auto expand. expanded_args = [] for imgfile in args: if '*' in imgfile: if '[' in imgfile and imgfile.endswith(']'): s = imgfile.split('[') ext = '[' + s[1] imgfile = s[0] else: ext = '' for fname in glob.iglob(imgfile): expanded_args.append(fname + ext) else: expanded_args.append(imgfile) # Assume remaining arguments are fits files and load them. if not options.separate_channels: chname = channels[0] ginga_shell.gui_do(ginga_shell.open_uris, expanded_args, chname=chname) else: i = 0 num_channels = len(channels) for imgfile in expanded_args: if i < num_channels: chname = channels[i] i = i + 1 else: channel = ginga_shell.add_channel_auto() chname = channel.name ginga_shell.gui_do(ginga_shell.open_uris, [imgfile], chname=chname) try: try: # if there is a network component, start it if hasattr(ginga_shell, 'start'): task = Task.FuncTask2(ginga_shell.start) thread_pool.addTask(task) # Main loop to handle GUI events logger.info("Entering mainloop...") ginga_shell.mainloop(timeout=0.001) except KeyboardInterrupt: logger.error("Received keyboard interrupt!") finally: logger.info("Shutting down...") ev_quit.set() sys.exit(0)
Main routine for running the reference viewer. `options` is a OptionParser object that has been populated with values from parsing the command line. It should at least include the options from add_default_options() `args` is a list of arguments to the viewer after parsing out options. It should contain a list of files or URLs to load.
Below is the the instruction that describes the task: ### Input: Main routine for running the reference viewer. `options` is a OptionParser object that has been populated with values from parsing the command line. It should at least include the options from add_default_options() `args` is a list of arguments to the viewer after parsing out options. It should contain a list of files or URLs to load. ### Response: def main(self, options, args): """ Main routine for running the reference viewer. `options` is a OptionParser object that has been populated with values from parsing the command line. It should at least include the options from add_default_options() `args` is a list of arguments to the viewer after parsing out options. It should contain a list of files or URLs to load. """ # Create a logger logger = log.get_logger(name='ginga', options=options) # Get settings (preferences) basedir = paths.ginga_home if not os.path.exists(basedir): try: os.mkdir(basedir) except OSError as e: logger.warning( "Couldn't create ginga settings area (%s): %s" % ( basedir, str(e))) logger.warning("Preferences will not be able to be saved") # Set up preferences prefs = Settings.Preferences(basefolder=basedir, logger=logger) settings = prefs.create_category('general') settings.set_defaults(useMatplotlibColormaps=False, widgetSet='choose', WCSpkg='choose', FITSpkg='choose', recursion_limit=2000, icc_working_profile=None, font_scaling_factor=None, save_layout=True, channel_prefix="Image") settings.load(onError='silent') # default of 1000 is a little too small sys.setrecursionlimit(settings.get('recursion_limit')) # So we can find our plugins sys.path.insert(0, basedir) package_home = os.path.split(sys.modules['ginga.version'].__file__)[0] child_dir = os.path.join(package_home, 'rv', 'plugins') sys.path.insert(0, child_dir) plugin_dir = os.path.join(basedir, 'plugins') sys.path.insert(0, plugin_dir) gc = os.path.join(basedir, "ginga_config.py") have_ginga_config = os.path.exists(gc) # User configuration, earliest possible intervention if have_ginga_config: try: import ginga_config if hasattr(ginga_config, 'init_config'): ginga_config.init_config(self) except Exception as e: try: (type, value, tb) = sys.exc_info() tb_str = "\n".join(traceback.format_tb(tb)) except Exception: tb_str = "Traceback information unavailable." logger.error("Error processing Ginga config file: %s" % ( str(e))) logger.error("Traceback:\n%s" % (tb_str)) # Choose a toolkit if options.toolkit: toolkit = options.toolkit else: toolkit = settings.get('widgetSet', 'choose') if toolkit == 'choose': try: ginga_toolkit.choose() except ImportError as e: print("UI toolkit choose error: %s" % str(e)) sys.exit(1) else: ginga_toolkit.use(toolkit) tkname = ginga_toolkit.get_family() logger.info("Chosen toolkit (%s) family is '%s'" % ( ginga_toolkit.toolkit, tkname)) # these imports have to be here, otherwise they force the choice # of toolkit too early from ginga.rv.Control import GingaShell, GuiLogHandler if settings.get('useMatplotlibColormaps', False): # Add matplotlib color maps if matplotlib is installed try: from ginga import cmap cmap.add_matplotlib_cmaps(fail_on_import_error=False) except Exception as e: logger.warning( "failed to load matplotlib colormaps: %s" % (str(e))) # user wants to set font scaling font_scaling = settings.get('font_scaling_factor', None) if font_scaling is not None: from ginga.fonts import font_asst font_asst.default_scaling_factor = font_scaling # Set a working RGB ICC profile if user has one working_profile = settings.get('icc_working_profile', None) rgb_cms.working_profile = working_profile # User wants to customize the WCS package? if options.wcspkg: wcspkg = options.wcspkg else: wcspkg = settings.get('WCSpkg', 'choose') try: from ginga.util import wcsmod if wcspkg != 'choose': assert wcsmod.use(wcspkg) is True except Exception as e: logger.warning( "failed to set WCS package preference: %s" % (str(e))) # User wants to customize the FITS package? if options.fitspkg: fitspkg = options.fitspkg else: fitspkg = settings.get('FITSpkg', 'choose') try: from ginga.util import io_fits if fitspkg != 'choose': assert io_fits.use(fitspkg) is True except Exception as e: logger.warning( "failed to set FITS package preference: %s" % (str(e))) # Check whether user wants to use OpenCv use_opencv = settings.get('use_opencv', False) if use_opencv or options.opencv: from ginga import trcalc try: trcalc.use('opencv') except Exception as e: logger.warning( "failed to set OpenCv preference: %s" % (str(e))) # Check whether user wants to use OpenCL use_opencl = settings.get('use_opencl', False) if use_opencl or options.opencl: from ginga import trcalc try: trcalc.use('opencl') except Exception as e: logger.warning( "failed to set OpenCL preference: %s" % (str(e))) # Create the dynamic module manager mm = ModuleManager.ModuleManager(logger) # Create and start thread pool ev_quit = threading.Event() thread_pool = Task.ThreadPool(options.numthreads, logger, ev_quit=ev_quit) thread_pool.startall() # Create the Ginga main object ginga_shell = GingaShell(logger, thread_pool, mm, prefs, ev_quit=ev_quit) layout_file = None if not options.norestore and settings.get('save_layout', False): layout_file = os.path.join(basedir, 'layout') ginga_shell.set_layout(self.layout, layout_file=layout_file) # User configuration (custom star catalogs, etc.) if have_ginga_config: try: if hasattr(ginga_config, 'pre_gui_config'): ginga_config.pre_gui_config(ginga_shell) except Exception as e: try: (type, value, tb) = sys.exc_info() tb_str = "\n".join(traceback.format_tb(tb)) except Exception: tb_str = "Traceback information unavailable." logger.error("Error importing Ginga config file: %s" % ( str(e))) logger.error("Traceback:\n%s" % (tb_str)) # Build desired layout ginga_shell.build_toplevel() # Did user specify a particular geometry? if options.geometry: ginga_shell.set_geometry(options.geometry) # make the list of disabled plugins if options.disable_plugins is not None: disabled_plugins = options.disable_plugins.lower().split(',') else: disabled_plugins = settings.get('disable_plugins', []) if not isinstance(disabled_plugins, list): disabled_plugins = disabled_plugins.lower().split(',') # Add GUI log handler (for "Log" global plugin) guiHdlr = GuiLogHandler(ginga_shell) guiHdlr.setLevel(options.loglevel) fmt = logging.Formatter(log.LOG_FORMAT) guiHdlr.setFormatter(fmt) logger.addHandler(guiHdlr) # Load any custom modules if options.modules is not None: modules = options.modules.split(',') else: modules = settings.get('global_plugins', []) if not isinstance(modules, list): modules = modules.split(',') for long_plugin_name in modules: if '.' in long_plugin_name: tmpstr = long_plugin_name.split('.') plugin_name = tmpstr[-1] pfx = '.'.join(tmpstr[:-1]) else: plugin_name = long_plugin_name pfx = None menu_name = "%s [G]" % (plugin_name) spec = Bunch(name=plugin_name, module=plugin_name, ptype='global', tab=plugin_name, menu=menu_name, category="Custom", workspace='right', pfx=pfx) self.add_plugin_spec(spec) # Load any custom local plugins if options.plugins is not None: plugins = options.plugins.split(',') else: plugins = settings.get('local_plugins', []) if not isinstance(plugins, list): plugins = plugins.split(',') for long_plugin_name in plugins: if '.' in long_plugin_name: tmpstr = long_plugin_name.split('.') plugin_name = tmpstr[-1] pfx = '.'.join(tmpstr[:-1]) else: plugin_name = long_plugin_name pfx = None spec = Bunch(module=plugin_name, workspace='dialogs', ptype='local', category="Custom", hidden=False, pfx=pfx) self.add_plugin_spec(spec) # Add non-disabled plugins enabled_plugins = [spec for spec in self.plugins if spec.module.lower() not in disabled_plugins] ginga_shell.set_plugins(enabled_plugins) # start any plugins that have start=True ginga_shell.boot_plugins() ginga_shell.update_pending() # TEMP? tab_names = [name.lower() for name in ginga_shell.ds.get_tabnames(group=None)] if 'info' in tab_names: ginga_shell.ds.raise_tab('Info') if 'synopsis' in tab_names: ginga_shell.ds.raise_tab('Synopsis') if 'thumbs' in tab_names: ginga_shell.ds.raise_tab('Thumbs') # Add custom channels if options.channels is not None: channels = options.channels.split(',') else: channels = settings.get('channels', []) if not isinstance(channels, list): channels = channels.split(',') if len(channels) == 0: # should provide at least one default channel? channels = [settings.get('channel_prefix', "Image")] for chname in channels: ginga_shell.add_channel(chname) ginga_shell.change_channel(channels[0]) # User configuration (custom star catalogs, etc.) if have_ginga_config: try: if hasattr(ginga_config, 'post_gui_config'): ginga_config.post_gui_config(ginga_shell) except Exception as e: try: (type, value, tb) = sys.exc_info() tb_str = "\n".join(traceback.format_tb(tb)) except Exception: tb_str = "Traceback information unavailable." logger.error("Error processing Ginga config file: %s" % ( str(e))) logger.error("Traceback:\n%s" % (tb_str)) # Redirect warnings to logger for hdlr in logger.handlers: logging.getLogger('py.warnings').addHandler(hdlr) # Display banner the first time run, unless suppressed showBanner = True try: showBanner = settings.get('showBanner') except KeyError: # disable for subsequent runs settings.set(showBanner=False) if not os.path.exists(settings.preffile): settings.save() if (not options.nosplash) and (len(args) == 0) and showBanner: ginga_shell.banner(raiseTab=True) # Handle inputs like "*.fits[ext]" that sys cmd cannot auto expand. expanded_args = [] for imgfile in args: if '*' in imgfile: if '[' in imgfile and imgfile.endswith(']'): s = imgfile.split('[') ext = '[' + s[1] imgfile = s[0] else: ext = '' for fname in glob.iglob(imgfile): expanded_args.append(fname + ext) else: expanded_args.append(imgfile) # Assume remaining arguments are fits files and load them. if not options.separate_channels: chname = channels[0] ginga_shell.gui_do(ginga_shell.open_uris, expanded_args, chname=chname) else: i = 0 num_channels = len(channels) for imgfile in expanded_args: if i < num_channels: chname = channels[i] i = i + 1 else: channel = ginga_shell.add_channel_auto() chname = channel.name ginga_shell.gui_do(ginga_shell.open_uris, [imgfile], chname=chname) try: try: # if there is a network component, start it if hasattr(ginga_shell, 'start'): task = Task.FuncTask2(ginga_shell.start) thread_pool.addTask(task) # Main loop to handle GUI events logger.info("Entering mainloop...") ginga_shell.mainloop(timeout=0.001) except KeyboardInterrupt: logger.error("Received keyboard interrupt!") finally: logger.info("Shutting down...") ev_quit.set() sys.exit(0)
def _resolve_shape(self, name, layers): '''Given a list of layers, find the layer output with the given name. Parameters ---------- name : str Name of a layer to resolve. layers : list of :class:`theanets.layers.base.Layer` A list of layers to search in. Raises ------ util.ConfigurationError : If there is no such layer, or if there are more than one. Returns ------- name : str The fully-scoped name of the desired output. shape : tuple of None and/or int The shape of the named output. ''' matches = [l for l in layers if name.split(':')[0] == l.name] if len(matches) != 1: raise util.ConfigurationError( 'layer "{}" cannot resolve "{}" using {}' .format(self.name, name, [l.name for l in layers])) name = name if ':' in name else matches[0].output_name return name, matches[0]._output_shapes[name.split(':')[1]]
Given a list of layers, find the layer output with the given name. Parameters ---------- name : str Name of a layer to resolve. layers : list of :class:`theanets.layers.base.Layer` A list of layers to search in. Raises ------ util.ConfigurationError : If there is no such layer, or if there are more than one. Returns ------- name : str The fully-scoped name of the desired output. shape : tuple of None and/or int The shape of the named output.
Below is the the instruction that describes the task: ### Input: Given a list of layers, find the layer output with the given name. Parameters ---------- name : str Name of a layer to resolve. layers : list of :class:`theanets.layers.base.Layer` A list of layers to search in. Raises ------ util.ConfigurationError : If there is no such layer, or if there are more than one. Returns ------- name : str The fully-scoped name of the desired output. shape : tuple of None and/or int The shape of the named output. ### Response: def _resolve_shape(self, name, layers): '''Given a list of layers, find the layer output with the given name. Parameters ---------- name : str Name of a layer to resolve. layers : list of :class:`theanets.layers.base.Layer` A list of layers to search in. Raises ------ util.ConfigurationError : If there is no such layer, or if there are more than one. Returns ------- name : str The fully-scoped name of the desired output. shape : tuple of None and/or int The shape of the named output. ''' matches = [l for l in layers if name.split(':')[0] == l.name] if len(matches) != 1: raise util.ConfigurationError( 'layer "{}" cannot resolve "{}" using {}' .format(self.name, name, [l.name for l in layers])) name = name if ':' in name else matches[0].output_name return name, matches[0]._output_shapes[name.split(':')[1]]
def get_postadres_by_huisnummer(self, huisnummer): ''' Get the `postadres` for a :class:`Huisnummer`. :param huisnummer: The :class:`Huisnummer` for which the \ `postadres` is wanted. OR A huisnummer id. :rtype: A :class:`str`. ''' try: id = huisnummer.id except AttributeError: id = huisnummer def creator(): res = crab_gateway_request( self.client, 'GetPostadresByHuisnummerId', id ) if res == None: raise GatewayResourceNotFoundException() return res.Postadres if self.caches['short'].is_configured: key = 'GetPostadresByHuisnummerId#%s' % (id) postadres = self.caches['short'].get_or_create(key, creator) else: postadres = creator() return postadres
Get the `postadres` for a :class:`Huisnummer`. :param huisnummer: The :class:`Huisnummer` for which the \ `postadres` is wanted. OR A huisnummer id. :rtype: A :class:`str`.
Below is the the instruction that describes the task: ### Input: Get the `postadres` for a :class:`Huisnummer`. :param huisnummer: The :class:`Huisnummer` for which the \ `postadres` is wanted. OR A huisnummer id. :rtype: A :class:`str`. ### Response: def get_postadres_by_huisnummer(self, huisnummer): ''' Get the `postadres` for a :class:`Huisnummer`. :param huisnummer: The :class:`Huisnummer` for which the \ `postadres` is wanted. OR A huisnummer id. :rtype: A :class:`str`. ''' try: id = huisnummer.id except AttributeError: id = huisnummer def creator(): res = crab_gateway_request( self.client, 'GetPostadresByHuisnummerId', id ) if res == None: raise GatewayResourceNotFoundException() return res.Postadres if self.caches['short'].is_configured: key = 'GetPostadresByHuisnummerId#%s' % (id) postadres = self.caches['short'].get_or_create(key, creator) else: postadres = creator() return postadres
def warn_deprecated(since, message='', name='', alternative='', pending=False, obj_type='attribute', addendum=''): """Display deprecation warning in a standard way. Parameters ---------- since : str The release at which this API became deprecated. message : str, optional Override the default deprecation message. The format specifier `%(name)s` may be used for the name of the function, and `%(alternative)s` may be used in the deprecation message to insert the name of an alternative to the deprecated function. `%(obj_type)s` may be used to insert a friendly name for the type of object being deprecated. name : str, optional The name of the deprecated object. alternative : str, optional An alternative function that the user may use in place of the deprecated function. The deprecation warning will tell the user about this alternative if provided. pending : bool, optional If True, uses a PendingDeprecationWarning instead of a DeprecationWarning. obj_type : str, optional The object type being deprecated. addendum : str, optional Additional text appended directly to the final message. Examples -------- Basic example:: # To warn of the deprecation of "metpy.name_of_module" warn_deprecated('0.6.0', name='metpy.name_of_module', obj_type='module') """ message = _generate_deprecation_message(since, message, name, alternative, pending, obj_type) warnings.warn(message, metpyDeprecation, stacklevel=1)
Display deprecation warning in a standard way. Parameters ---------- since : str The release at which this API became deprecated. message : str, optional Override the default deprecation message. The format specifier `%(name)s` may be used for the name of the function, and `%(alternative)s` may be used in the deprecation message to insert the name of an alternative to the deprecated function. `%(obj_type)s` may be used to insert a friendly name for the type of object being deprecated. name : str, optional The name of the deprecated object. alternative : str, optional An alternative function that the user may use in place of the deprecated function. The deprecation warning will tell the user about this alternative if provided. pending : bool, optional If True, uses a PendingDeprecationWarning instead of a DeprecationWarning. obj_type : str, optional The object type being deprecated. addendum : str, optional Additional text appended directly to the final message. Examples -------- Basic example:: # To warn of the deprecation of "metpy.name_of_module" warn_deprecated('0.6.0', name='metpy.name_of_module', obj_type='module')
Below is the the instruction that describes the task: ### Input: Display deprecation warning in a standard way. Parameters ---------- since : str The release at which this API became deprecated. message : str, optional Override the default deprecation message. The format specifier `%(name)s` may be used for the name of the function, and `%(alternative)s` may be used in the deprecation message to insert the name of an alternative to the deprecated function. `%(obj_type)s` may be used to insert a friendly name for the type of object being deprecated. name : str, optional The name of the deprecated object. alternative : str, optional An alternative function that the user may use in place of the deprecated function. The deprecation warning will tell the user about this alternative if provided. pending : bool, optional If True, uses a PendingDeprecationWarning instead of a DeprecationWarning. obj_type : str, optional The object type being deprecated. addendum : str, optional Additional text appended directly to the final message. Examples -------- Basic example:: # To warn of the deprecation of "metpy.name_of_module" warn_deprecated('0.6.0', name='metpy.name_of_module', obj_type='module') ### Response: def warn_deprecated(since, message='', name='', alternative='', pending=False, obj_type='attribute', addendum=''): """Display deprecation warning in a standard way. Parameters ---------- since : str The release at which this API became deprecated. message : str, optional Override the default deprecation message. The format specifier `%(name)s` may be used for the name of the function, and `%(alternative)s` may be used in the deprecation message to insert the name of an alternative to the deprecated function. `%(obj_type)s` may be used to insert a friendly name for the type of object being deprecated. name : str, optional The name of the deprecated object. alternative : str, optional An alternative function that the user may use in place of the deprecated function. The deprecation warning will tell the user about this alternative if provided. pending : bool, optional If True, uses a PendingDeprecationWarning instead of a DeprecationWarning. obj_type : str, optional The object type being deprecated. addendum : str, optional Additional text appended directly to the final message. Examples -------- Basic example:: # To warn of the deprecation of "metpy.name_of_module" warn_deprecated('0.6.0', name='metpy.name_of_module', obj_type='module') """ message = _generate_deprecation_message(since, message, name, alternative, pending, obj_type) warnings.warn(message, metpyDeprecation, stacklevel=1)
def surround_parse(self, node, pre_char, post_char): """Parse the subnodes of a given node. Subnodes with tags in the `ignore` list are ignored. Prepend `pre_char` and append `post_char` to the output in self.pieces.""" self.add_text(pre_char) self.subnode_parse(node) self.add_text(post_char)
Parse the subnodes of a given node. Subnodes with tags in the `ignore` list are ignored. Prepend `pre_char` and append `post_char` to the output in self.pieces.
Below is the the instruction that describes the task: ### Input: Parse the subnodes of a given node. Subnodes with tags in the `ignore` list are ignored. Prepend `pre_char` and append `post_char` to the output in self.pieces. ### Response: def surround_parse(self, node, pre_char, post_char): """Parse the subnodes of a given node. Subnodes with tags in the `ignore` list are ignored. Prepend `pre_char` and append `post_char` to the output in self.pieces.""" self.add_text(pre_char) self.subnode_parse(node) self.add_text(post_char)
async def delete(self, *args, **kwargs): ''' Corresponds to DELETE request with a resource identifier, deleting a single document from the database ''' pk = self.pk_type(kwargs['pk']) result = await self._meta.object_class.delete_entries(db=self.db, query={self.pk: pk}) if result.acknowledged: if result.deleted_count == 0: raise NotFound() else: raise BadRequest('Failed to delete object')
Corresponds to DELETE request with a resource identifier, deleting a single document from the database
Below is the the instruction that describes the task: ### Input: Corresponds to DELETE request with a resource identifier, deleting a single document from the database ### Response: async def delete(self, *args, **kwargs): ''' Corresponds to DELETE request with a resource identifier, deleting a single document from the database ''' pk = self.pk_type(kwargs['pk']) result = await self._meta.object_class.delete_entries(db=self.db, query={self.pk: pk}) if result.acknowledged: if result.deleted_count == 0: raise NotFound() else: raise BadRequest('Failed to delete object')
def _add_pos1(token): """ Adds a 'pos1' element to a frog token. """ result = token.copy() result['pos1'] = _POSMAP[token['pos'].split("(")[0]] return result
Adds a 'pos1' element to a frog token.
Below is the the instruction that describes the task: ### Input: Adds a 'pos1' element to a frog token. ### Response: def _add_pos1(token): """ Adds a 'pos1' element to a frog token. """ result = token.copy() result['pos1'] = _POSMAP[token['pos'].split("(")[0]] return result
def add_link(dataset, source, target, count=1): """Add a link. Parameters ---------- dataset : `dict` of ([`int`, `str`] or [`list` of `int`, `list` of `str`]) Dataset. source : `iterable` of `str` Link source. target : `str` Link target. count : `int`, optional Link count (default: 1). """ try: node = dataset[source] values, links = node if isinstance(links, list): try: idx = links.index(target) values[idx] += count except ValueError: links.append(target) values.append(count) elif links == target: node[0] += count else: node[0] = [values, count] node[1] = [links, target] except KeyError: dataset[source] = [count, target]
Add a link. Parameters ---------- dataset : `dict` of ([`int`, `str`] or [`list` of `int`, `list` of `str`]) Dataset. source : `iterable` of `str` Link source. target : `str` Link target. count : `int`, optional Link count (default: 1).
Below is the the instruction that describes the task: ### Input: Add a link. Parameters ---------- dataset : `dict` of ([`int`, `str`] or [`list` of `int`, `list` of `str`]) Dataset. source : `iterable` of `str` Link source. target : `str` Link target. count : `int`, optional Link count (default: 1). ### Response: def add_link(dataset, source, target, count=1): """Add a link. Parameters ---------- dataset : `dict` of ([`int`, `str`] or [`list` of `int`, `list` of `str`]) Dataset. source : `iterable` of `str` Link source. target : `str` Link target. count : `int`, optional Link count (default: 1). """ try: node = dataset[source] values, links = node if isinstance(links, list): try: idx = links.index(target) values[idx] += count except ValueError: links.append(target) values.append(count) elif links == target: node[0] += count else: node[0] = [values, count] node[1] = [links, target] except KeyError: dataset[source] = [count, target]
def get_batched_changesets(self, changesets_request_data): """GetBatchedChangesets. Returns changesets for a given list of changeset Ids. :param :class:`<TfvcChangesetsRequestData> <azure.devops.v5_0.tfvc.models.TfvcChangesetsRequestData>` changesets_request_data: List of changeset IDs. :rtype: [TfvcChangesetRef] """ content = self._serialize.body(changesets_request_data, 'TfvcChangesetsRequestData') response = self._send(http_method='POST', location_id='b7e7c173-803c-4fea-9ec8-31ee35c5502a', version='5.0', content=content) return self._deserialize('[TfvcChangesetRef]', self._unwrap_collection(response))
GetBatchedChangesets. Returns changesets for a given list of changeset Ids. :param :class:`<TfvcChangesetsRequestData> <azure.devops.v5_0.tfvc.models.TfvcChangesetsRequestData>` changesets_request_data: List of changeset IDs. :rtype: [TfvcChangesetRef]
Below is the the instruction that describes the task: ### Input: GetBatchedChangesets. Returns changesets for a given list of changeset Ids. :param :class:`<TfvcChangesetsRequestData> <azure.devops.v5_0.tfvc.models.TfvcChangesetsRequestData>` changesets_request_data: List of changeset IDs. :rtype: [TfvcChangesetRef] ### Response: def get_batched_changesets(self, changesets_request_data): """GetBatchedChangesets. Returns changesets for a given list of changeset Ids. :param :class:`<TfvcChangesetsRequestData> <azure.devops.v5_0.tfvc.models.TfvcChangesetsRequestData>` changesets_request_data: List of changeset IDs. :rtype: [TfvcChangesetRef] """ content = self._serialize.body(changesets_request_data, 'TfvcChangesetsRequestData') response = self._send(http_method='POST', location_id='b7e7c173-803c-4fea-9ec8-31ee35c5502a', version='5.0', content=content) return self._deserialize('[TfvcChangesetRef]', self._unwrap_collection(response))
def crack1(self, rnum, snum, message, signsecret): """ find privkey, given signsecret k, message m, signature (r,s) x= (s*k-m)/r """ m = self.GFn.value(message) r = self.GFn.value(rnum) s = self.GFn.value(snum) k = self.GFn.value(signsecret) return (s * k - m) / r
find privkey, given signsecret k, message m, signature (r,s) x= (s*k-m)/r
Below is the the instruction that describes the task: ### Input: find privkey, given signsecret k, message m, signature (r,s) x= (s*k-m)/r ### Response: def crack1(self, rnum, snum, message, signsecret): """ find privkey, given signsecret k, message m, signature (r,s) x= (s*k-m)/r """ m = self.GFn.value(message) r = self.GFn.value(rnum) s = self.GFn.value(snum) k = self.GFn.value(signsecret) return (s * k - m) / r
def _assert_valid_categorical_missing_value(value): """ Check that value is a valid categorical missing_value. Raises a TypeError if the value is cannot be used as the missing_value for a categorical_dtype Term. """ label_types = LabelArray.SUPPORTED_SCALAR_TYPES if not isinstance(value, label_types): raise TypeError( "Categorical terms must have missing values of type " "{types}.".format( types=' or '.join([t.__name__ for t in label_types]), ) )
Check that value is a valid categorical missing_value. Raises a TypeError if the value is cannot be used as the missing_value for a categorical_dtype Term.
Below is the the instruction that describes the task: ### Input: Check that value is a valid categorical missing_value. Raises a TypeError if the value is cannot be used as the missing_value for a categorical_dtype Term. ### Response: def _assert_valid_categorical_missing_value(value): """ Check that value is a valid categorical missing_value. Raises a TypeError if the value is cannot be used as the missing_value for a categorical_dtype Term. """ label_types = LabelArray.SUPPORTED_SCALAR_TYPES if not isinstance(value, label_types): raise TypeError( "Categorical terms must have missing values of type " "{types}.".format( types=' or '.join([t.__name__ for t in label_types]), ) )
def run_command(self, command, shell=True, env=None, execute='/bin/bash', return_code=None): """Run a shell command. The options available: * ``shell`` to be enabled or disabled, which provides the ability to execute arbitrary stings or not. if disabled commands must be in the format of a ``list`` * ``env`` is an environment override and or manipulation setting which sets environment variables within the locally executed shell. * ``execute`` changes the interpreter which is executing the command(s). * ``return_code`` defines the return code that the command must have in order to ensure success. This can be a list of return codes if multiple return codes are acceptable. :param command: ``str`` :param shell: ``bol`` :param env: ``dict`` :param execute: ``str`` :param return_code: ``int`` """ self.log.info('Command: [ %s ]', command) if env is None: env = os.environ if self.debug is False: stdout = open(os.devnull, 'wb') else: stdout = subprocess.PIPE if return_code is None: return_code = [0] stderr = subprocess.PIPE process = subprocess.Popen( command, stdout=stdout, stderr=stderr, executable=execute, env=env, shell=shell ) output, error = process.communicate() if process.returncode not in return_code: self.log.debug('Command Output: %s, Error Msg: %s', output, error) return error, False else: self.log.debug('Command Output: %s', output) return output, True
Run a shell command. The options available: * ``shell`` to be enabled or disabled, which provides the ability to execute arbitrary stings or not. if disabled commands must be in the format of a ``list`` * ``env`` is an environment override and or manipulation setting which sets environment variables within the locally executed shell. * ``execute`` changes the interpreter which is executing the command(s). * ``return_code`` defines the return code that the command must have in order to ensure success. This can be a list of return codes if multiple return codes are acceptable. :param command: ``str`` :param shell: ``bol`` :param env: ``dict`` :param execute: ``str`` :param return_code: ``int``
Below is the the instruction that describes the task: ### Input: Run a shell command. The options available: * ``shell`` to be enabled or disabled, which provides the ability to execute arbitrary stings or not. if disabled commands must be in the format of a ``list`` * ``env`` is an environment override and or manipulation setting which sets environment variables within the locally executed shell. * ``execute`` changes the interpreter which is executing the command(s). * ``return_code`` defines the return code that the command must have in order to ensure success. This can be a list of return codes if multiple return codes are acceptable. :param command: ``str`` :param shell: ``bol`` :param env: ``dict`` :param execute: ``str`` :param return_code: ``int`` ### Response: def run_command(self, command, shell=True, env=None, execute='/bin/bash', return_code=None): """Run a shell command. The options available: * ``shell`` to be enabled or disabled, which provides the ability to execute arbitrary stings or not. if disabled commands must be in the format of a ``list`` * ``env`` is an environment override and or manipulation setting which sets environment variables within the locally executed shell. * ``execute`` changes the interpreter which is executing the command(s). * ``return_code`` defines the return code that the command must have in order to ensure success. This can be a list of return codes if multiple return codes are acceptable. :param command: ``str`` :param shell: ``bol`` :param env: ``dict`` :param execute: ``str`` :param return_code: ``int`` """ self.log.info('Command: [ %s ]', command) if env is None: env = os.environ if self.debug is False: stdout = open(os.devnull, 'wb') else: stdout = subprocess.PIPE if return_code is None: return_code = [0] stderr = subprocess.PIPE process = subprocess.Popen( command, stdout=stdout, stderr=stderr, executable=execute, env=env, shell=shell ) output, error = process.communicate() if process.returncode not in return_code: self.log.debug('Command Output: %s, Error Msg: %s', output, error) return error, False else: self.log.debug('Command Output: %s', output) return output, True
def peek_string(self, lpBaseAddress, fUnicode = False, dwMaxSize = 0x1000): """ Tries to read an ASCII or Unicode string from the address space of the process. @see: L{read_string} @type lpBaseAddress: int @param lpBaseAddress: Memory address to begin reading. @type fUnicode: bool @param fUnicode: C{True} is the string is expected to be Unicode, C{False} if it's expected to be ANSI. @type dwMaxSize: int @param dwMaxSize: Maximum allowed string length to read, in bytes. @rtype: str, compat.unicode @return: String read from the process memory space. It B{doesn't} include the terminating null character. Returns an empty string on failure. """ # Validate the parameters. if not lpBaseAddress or dwMaxSize == 0: if fUnicode: return u'' return '' if not dwMaxSize: dwMaxSize = 0x1000 # Read the string. szString = self.peek(lpBaseAddress, dwMaxSize) # If the string is Unicode... if fUnicode: # Decode the string. szString = compat.unicode(szString, 'U16', 'replace') ## try: ## szString = compat.unicode(szString, 'U16') ## except UnicodeDecodeError: ## szString = struct.unpack('H' * (len(szString) / 2), szString) ## szString = [ unichr(c) for c in szString ] ## szString = u''.join(szString) # Truncate the string when the first null char is found. szString = szString[ : szString.find(u'\0') ] # If the string is ANSI... else: # Truncate the string when the first null char is found. szString = szString[ : szString.find('\0') ] # Return the decoded string. return szString
Tries to read an ASCII or Unicode string from the address space of the process. @see: L{read_string} @type lpBaseAddress: int @param lpBaseAddress: Memory address to begin reading. @type fUnicode: bool @param fUnicode: C{True} is the string is expected to be Unicode, C{False} if it's expected to be ANSI. @type dwMaxSize: int @param dwMaxSize: Maximum allowed string length to read, in bytes. @rtype: str, compat.unicode @return: String read from the process memory space. It B{doesn't} include the terminating null character. Returns an empty string on failure.
Below is the the instruction that describes the task: ### Input: Tries to read an ASCII or Unicode string from the address space of the process. @see: L{read_string} @type lpBaseAddress: int @param lpBaseAddress: Memory address to begin reading. @type fUnicode: bool @param fUnicode: C{True} is the string is expected to be Unicode, C{False} if it's expected to be ANSI. @type dwMaxSize: int @param dwMaxSize: Maximum allowed string length to read, in bytes. @rtype: str, compat.unicode @return: String read from the process memory space. It B{doesn't} include the terminating null character. Returns an empty string on failure. ### Response: def peek_string(self, lpBaseAddress, fUnicode = False, dwMaxSize = 0x1000): """ Tries to read an ASCII or Unicode string from the address space of the process. @see: L{read_string} @type lpBaseAddress: int @param lpBaseAddress: Memory address to begin reading. @type fUnicode: bool @param fUnicode: C{True} is the string is expected to be Unicode, C{False} if it's expected to be ANSI. @type dwMaxSize: int @param dwMaxSize: Maximum allowed string length to read, in bytes. @rtype: str, compat.unicode @return: String read from the process memory space. It B{doesn't} include the terminating null character. Returns an empty string on failure. """ # Validate the parameters. if not lpBaseAddress or dwMaxSize == 0: if fUnicode: return u'' return '' if not dwMaxSize: dwMaxSize = 0x1000 # Read the string. szString = self.peek(lpBaseAddress, dwMaxSize) # If the string is Unicode... if fUnicode: # Decode the string. szString = compat.unicode(szString, 'U16', 'replace') ## try: ## szString = compat.unicode(szString, 'U16') ## except UnicodeDecodeError: ## szString = struct.unpack('H' * (len(szString) / 2), szString) ## szString = [ unichr(c) for c in szString ] ## szString = u''.join(szString) # Truncate the string when the first null char is found. szString = szString[ : szString.find(u'\0') ] # If the string is ANSI... else: # Truncate the string when the first null char is found. szString = szString[ : szString.find('\0') ] # Return the decoded string. return szString