code
stringlengths
75
104k
docstring
stringlengths
1
46.9k
text
stringlengths
164
112k
def _search(self, trie, strings, limit=None): """Search in cache :param strings: list of strings to get from the cache :type strings: str list :param limit: limit search results :type limit: int :rtype: [Resource | Collection] """ results = [trie.has_keys_with_prefix(s) for s in strings] if not any(results): return [] for result, s in zip(results, strings): if result is True: return trie.values(s)[:limit]
Search in cache :param strings: list of strings to get from the cache :type strings: str list :param limit: limit search results :type limit: int :rtype: [Resource | Collection]
Below is the the instruction that describes the task: ### Input: Search in cache :param strings: list of strings to get from the cache :type strings: str list :param limit: limit search results :type limit: int :rtype: [Resource | Collection] ### Response: def _search(self, trie, strings, limit=None): """Search in cache :param strings: list of strings to get from the cache :type strings: str list :param limit: limit search results :type limit: int :rtype: [Resource | Collection] """ results = [trie.has_keys_with_prefix(s) for s in strings] if not any(results): return [] for result, s in zip(results, strings): if result is True: return trie.values(s)[:limit]
def patch_traces( self, project_id, traces, retry=google.api_core.gapic_v1.method.DEFAULT, timeout=google.api_core.gapic_v1.method.DEFAULT, metadata=None, ): """ Sends new traces to Stackdriver Trace or updates existing traces. If the ID of a trace that you send matches that of an existing trace, any fields in the existing trace and its spans are overwritten by the provided values, and any new fields provided are merged with the existing trace data. If the ID does not match, a new trace is created. Example: >>> from google.cloud import trace_v1 >>> >>> client = trace_v1.TraceServiceClient() >>> >>> # TODO: Initialize `project_id`: >>> project_id = '' >>> >>> # TODO: Initialize `traces`: >>> traces = {} >>> >>> client.patch_traces(project_id, traces) Args: project_id (str): ID of the Cloud project where the trace data is stored. traces (Union[dict, ~google.cloud.trace_v1.types.Traces]): The body of the message. If a dict is provided, it must be of the same form as the protobuf message :class:`~google.cloud.trace_v1.types.Traces` retry (Optional[google.api_core.retry.Retry]): A retry object used to retry requests. If ``None`` is specified, requests will not be retried. timeout (Optional[float]): The amount of time, in seconds, to wait for the request to complete. Note that if ``retry`` is specified, the timeout applies to each individual attempt. metadata (Optional[Sequence[Tuple[str, str]]]): Additional metadata that is provided to the method. Raises: google.api_core.exceptions.GoogleAPICallError: If the request failed for any reason. google.api_core.exceptions.RetryError: If the request failed due to a retryable error and retry attempts failed. ValueError: If the parameters are invalid. """ # Wrap the transport method to add retry and timeout logic. if "patch_traces" not in self._inner_api_calls: self._inner_api_calls[ "patch_traces" ] = google.api_core.gapic_v1.method.wrap_method( self.transport.patch_traces, default_retry=self._method_configs["PatchTraces"].retry, default_timeout=self._method_configs["PatchTraces"].timeout, client_info=self._client_info, ) request = trace_pb2.PatchTracesRequest(project_id=project_id, traces=traces) if metadata is None: metadata = [] metadata = list(metadata) try: routing_header = [("project_id", project_id)] except AttributeError: pass else: routing_metadata = google.api_core.gapic_v1.routing_header.to_grpc_metadata( routing_header ) metadata.append(routing_metadata) self._inner_api_calls["patch_traces"]( request, retry=retry, timeout=timeout, metadata=metadata )
Sends new traces to Stackdriver Trace or updates existing traces. If the ID of a trace that you send matches that of an existing trace, any fields in the existing trace and its spans are overwritten by the provided values, and any new fields provided are merged with the existing trace data. If the ID does not match, a new trace is created. Example: >>> from google.cloud import trace_v1 >>> >>> client = trace_v1.TraceServiceClient() >>> >>> # TODO: Initialize `project_id`: >>> project_id = '' >>> >>> # TODO: Initialize `traces`: >>> traces = {} >>> >>> client.patch_traces(project_id, traces) Args: project_id (str): ID of the Cloud project where the trace data is stored. traces (Union[dict, ~google.cloud.trace_v1.types.Traces]): The body of the message. If a dict is provided, it must be of the same form as the protobuf message :class:`~google.cloud.trace_v1.types.Traces` retry (Optional[google.api_core.retry.Retry]): A retry object used to retry requests. If ``None`` is specified, requests will not be retried. timeout (Optional[float]): The amount of time, in seconds, to wait for the request to complete. Note that if ``retry`` is specified, the timeout applies to each individual attempt. metadata (Optional[Sequence[Tuple[str, str]]]): Additional metadata that is provided to the method. Raises: google.api_core.exceptions.GoogleAPICallError: If the request failed for any reason. google.api_core.exceptions.RetryError: If the request failed due to a retryable error and retry attempts failed. ValueError: If the parameters are invalid.
Below is the the instruction that describes the task: ### Input: Sends new traces to Stackdriver Trace or updates existing traces. If the ID of a trace that you send matches that of an existing trace, any fields in the existing trace and its spans are overwritten by the provided values, and any new fields provided are merged with the existing trace data. If the ID does not match, a new trace is created. Example: >>> from google.cloud import trace_v1 >>> >>> client = trace_v1.TraceServiceClient() >>> >>> # TODO: Initialize `project_id`: >>> project_id = '' >>> >>> # TODO: Initialize `traces`: >>> traces = {} >>> >>> client.patch_traces(project_id, traces) Args: project_id (str): ID of the Cloud project where the trace data is stored. traces (Union[dict, ~google.cloud.trace_v1.types.Traces]): The body of the message. If a dict is provided, it must be of the same form as the protobuf message :class:`~google.cloud.trace_v1.types.Traces` retry (Optional[google.api_core.retry.Retry]): A retry object used to retry requests. If ``None`` is specified, requests will not be retried. timeout (Optional[float]): The amount of time, in seconds, to wait for the request to complete. Note that if ``retry`` is specified, the timeout applies to each individual attempt. metadata (Optional[Sequence[Tuple[str, str]]]): Additional metadata that is provided to the method. Raises: google.api_core.exceptions.GoogleAPICallError: If the request failed for any reason. google.api_core.exceptions.RetryError: If the request failed due to a retryable error and retry attempts failed. ValueError: If the parameters are invalid. ### Response: def patch_traces( self, project_id, traces, retry=google.api_core.gapic_v1.method.DEFAULT, timeout=google.api_core.gapic_v1.method.DEFAULT, metadata=None, ): """ Sends new traces to Stackdriver Trace or updates existing traces. If the ID of a trace that you send matches that of an existing trace, any fields in the existing trace and its spans are overwritten by the provided values, and any new fields provided are merged with the existing trace data. If the ID does not match, a new trace is created. Example: >>> from google.cloud import trace_v1 >>> >>> client = trace_v1.TraceServiceClient() >>> >>> # TODO: Initialize `project_id`: >>> project_id = '' >>> >>> # TODO: Initialize `traces`: >>> traces = {} >>> >>> client.patch_traces(project_id, traces) Args: project_id (str): ID of the Cloud project where the trace data is stored. traces (Union[dict, ~google.cloud.trace_v1.types.Traces]): The body of the message. If a dict is provided, it must be of the same form as the protobuf message :class:`~google.cloud.trace_v1.types.Traces` retry (Optional[google.api_core.retry.Retry]): A retry object used to retry requests. If ``None`` is specified, requests will not be retried. timeout (Optional[float]): The amount of time, in seconds, to wait for the request to complete. Note that if ``retry`` is specified, the timeout applies to each individual attempt. metadata (Optional[Sequence[Tuple[str, str]]]): Additional metadata that is provided to the method. Raises: google.api_core.exceptions.GoogleAPICallError: If the request failed for any reason. google.api_core.exceptions.RetryError: If the request failed due to a retryable error and retry attempts failed. ValueError: If the parameters are invalid. """ # Wrap the transport method to add retry and timeout logic. if "patch_traces" not in self._inner_api_calls: self._inner_api_calls[ "patch_traces" ] = google.api_core.gapic_v1.method.wrap_method( self.transport.patch_traces, default_retry=self._method_configs["PatchTraces"].retry, default_timeout=self._method_configs["PatchTraces"].timeout, client_info=self._client_info, ) request = trace_pb2.PatchTracesRequest(project_id=project_id, traces=traces) if metadata is None: metadata = [] metadata = list(metadata) try: routing_header = [("project_id", project_id)] except AttributeError: pass else: routing_metadata = google.api_core.gapic_v1.routing_header.to_grpc_metadata( routing_header ) metadata.append(routing_metadata) self._inner_api_calls["patch_traces"]( request, retry=retry, timeout=timeout, metadata=metadata )
def mode(self, set_bytes): """Set the operating protocol of the USB-ISS with additional parameters for the protocol """ self._mode = set_bytes data = [self.ISS_CMD, self.ISS_SET_MODE] + set_bytes self.write_data(data) response = self.read_data(2) if response[0] == 0: error_dict = { 0x05: 'Unknown Command', 0x06: 'Internal Error 1', 0x07: 'Internal Error 2' } try: raise USBISSError(error_dict[response(1)]) except KeyError: raise USBISSError('Undocumented Error')
Set the operating protocol of the USB-ISS with additional parameters for the protocol
Below is the the instruction that describes the task: ### Input: Set the operating protocol of the USB-ISS with additional parameters for the protocol ### Response: def mode(self, set_bytes): """Set the operating protocol of the USB-ISS with additional parameters for the protocol """ self._mode = set_bytes data = [self.ISS_CMD, self.ISS_SET_MODE] + set_bytes self.write_data(data) response = self.read_data(2) if response[0] == 0: error_dict = { 0x05: 'Unknown Command', 0x06: 'Internal Error 1', 0x07: 'Internal Error 2' } try: raise USBISSError(error_dict[response(1)]) except KeyError: raise USBISSError('Undocumented Error')
def with_args(self, **kwargs): """Send these keyword-arguments to the phase when called.""" # Make a copy so we can have multiple of the same phase with different args # in the same test. new_info = mutablerecords.CopyRecord(self) new_info.options = new_info.options.format_strings(**kwargs) new_info.extra_kwargs.update(kwargs) new_info.measurements = [m.with_args(**kwargs) for m in self.measurements] return new_info
Send these keyword-arguments to the phase when called.
Below is the the instruction that describes the task: ### Input: Send these keyword-arguments to the phase when called. ### Response: def with_args(self, **kwargs): """Send these keyword-arguments to the phase when called.""" # Make a copy so we can have multiple of the same phase with different args # in the same test. new_info = mutablerecords.CopyRecord(self) new_info.options = new_info.options.format_strings(**kwargs) new_info.extra_kwargs.update(kwargs) new_info.measurements = [m.with_args(**kwargs) for m in self.measurements] return new_info
def plot_comp(df_var, fig=None, ax=None, **kwargs): """Short summary. Parameters ---------- df_var : pd.DataFrame DataFrame containing variables to plot with datetime as index Returns ------- MPL.figure figure showing 1:1 line plot """ if fig is None and ax is None: fig, ax = plt.subplots() elif fig is None: fig = ax.get_figure() elif ax is None: ax = fig.gca() # plt.clf() # plt.cla() # ax = sns.regplot( # x='Obs', y='Sim', # data=df_var, # fit_reg=True) # add regression expression df_var_fit = df_var.dropna(how='any') # regr = linear_model.LinearRegression() # val_x = df_var_fit['Obs'].values.reshape(-1, 1) # val_y = df_var_fit['Sim'].values.reshape(-1, 1) # regr.fit(val_x, val_y) val_x = df_var_fit['Obs'] val_y = df_var_fit['Sim'] slope, intercept, r_value, p_value, std_err = stats.linregress( val_x, val_y) mae = (val_y - val_x).abs().mean() sns.regplot( x='Obs', y='Sim', data=df_var, ax=ax, fit_reg=True, line_kws={ 'label': "y={0:.2f}x{1}{2:.2f}".format(slope, '+' if intercept>0 else '', intercept) + '\n' + '$R^2$={0:.4f}'.format(r_value) + '\n' + 'MAE={0:.2f}'.format(mae) + '\n' + 'n={}'.format(df_var.shape[0]) }, **kwargs ) # ax.plot(val_x, y_pred, color='red', linewidth=2, # label='r2= ' + str("%.3f" % r2) + '\n' + # 'y=' + str("%.3f" % a[0][0]) + 'x+' + str("%.2f" % b[0])) # ax.legend(fontsize=15) ax.legend() # ax.set_title(var + '_' + title) # set equal plotting range x0, x1 = ax.get_xlim() y0, y1 = ax.get_ylim() lim_low, lim_high = np.min([x0, y0]), np.max([x1, y1]) ax.set_xlim(lim_low, lim_high) ax.set_ylim(lim_low, lim_high) # set 1:1 aspect ratio ax.set_aspect('equal') # add 1:1 line ax.plot([lim_low, lim_high], [lim_low, lim_high], color='red', linewidth=1, zorder=0) # fig = ax.figure return fig, ax
Short summary. Parameters ---------- df_var : pd.DataFrame DataFrame containing variables to plot with datetime as index Returns ------- MPL.figure figure showing 1:1 line plot
Below is the the instruction that describes the task: ### Input: Short summary. Parameters ---------- df_var : pd.DataFrame DataFrame containing variables to plot with datetime as index Returns ------- MPL.figure figure showing 1:1 line plot ### Response: def plot_comp(df_var, fig=None, ax=None, **kwargs): """Short summary. Parameters ---------- df_var : pd.DataFrame DataFrame containing variables to plot with datetime as index Returns ------- MPL.figure figure showing 1:1 line plot """ if fig is None and ax is None: fig, ax = plt.subplots() elif fig is None: fig = ax.get_figure() elif ax is None: ax = fig.gca() # plt.clf() # plt.cla() # ax = sns.regplot( # x='Obs', y='Sim', # data=df_var, # fit_reg=True) # add regression expression df_var_fit = df_var.dropna(how='any') # regr = linear_model.LinearRegression() # val_x = df_var_fit['Obs'].values.reshape(-1, 1) # val_y = df_var_fit['Sim'].values.reshape(-1, 1) # regr.fit(val_x, val_y) val_x = df_var_fit['Obs'] val_y = df_var_fit['Sim'] slope, intercept, r_value, p_value, std_err = stats.linregress( val_x, val_y) mae = (val_y - val_x).abs().mean() sns.regplot( x='Obs', y='Sim', data=df_var, ax=ax, fit_reg=True, line_kws={ 'label': "y={0:.2f}x{1}{2:.2f}".format(slope, '+' if intercept>0 else '', intercept) + '\n' + '$R^2$={0:.4f}'.format(r_value) + '\n' + 'MAE={0:.2f}'.format(mae) + '\n' + 'n={}'.format(df_var.shape[0]) }, **kwargs ) # ax.plot(val_x, y_pred, color='red', linewidth=2, # label='r2= ' + str("%.3f" % r2) + '\n' + # 'y=' + str("%.3f" % a[0][0]) + 'x+' + str("%.2f" % b[0])) # ax.legend(fontsize=15) ax.legend() # ax.set_title(var + '_' + title) # set equal plotting range x0, x1 = ax.get_xlim() y0, y1 = ax.get_ylim() lim_low, lim_high = np.min([x0, y0]), np.max([x1, y1]) ax.set_xlim(lim_low, lim_high) ax.set_ylim(lim_low, lim_high) # set 1:1 aspect ratio ax.set_aspect('equal') # add 1:1 line ax.plot([lim_low, lim_high], [lim_low, lim_high], color='red', linewidth=1, zorder=0) # fig = ax.figure return fig, ax
def marvcli_query(ctx, list_tags, collections, discarded, outdated, path, tags, null): """Query datasets. Use --collection=* to list all datasets across all collections. """ if not any([collections, discarded, list_tags, outdated, path, tags]): click.echo(ctx.get_help()) ctx.exit(1) sep = '\x00' if null else '\n' site = create_app().site if '*' in collections: collections = None else: for col in collections: if col not in site.collections: ctx.fail('Unknown collection: {}'.format(col)) if list_tags: tags = site.listtags(collections) if tags: click.echo(sep.join(tags), nl=not null) else: click.echo('no tags', err=True) return setids = site.query(collections, discarded, outdated, path, tags) if setids: sep = '\x00' if null else '\n' click.echo(sep.join(setids), nl=not null)
Query datasets. Use --collection=* to list all datasets across all collections.
Below is the the instruction that describes the task: ### Input: Query datasets. Use --collection=* to list all datasets across all collections. ### Response: def marvcli_query(ctx, list_tags, collections, discarded, outdated, path, tags, null): """Query datasets. Use --collection=* to list all datasets across all collections. """ if not any([collections, discarded, list_tags, outdated, path, tags]): click.echo(ctx.get_help()) ctx.exit(1) sep = '\x00' if null else '\n' site = create_app().site if '*' in collections: collections = None else: for col in collections: if col not in site.collections: ctx.fail('Unknown collection: {}'.format(col)) if list_tags: tags = site.listtags(collections) if tags: click.echo(sep.join(tags), nl=not null) else: click.echo('no tags', err=True) return setids = site.query(collections, discarded, outdated, path, tags) if setids: sep = '\x00' if null else '\n' click.echo(sep.join(setids), nl=not null)
def get_ticker(self): '''Return a ticker object. Generated from quote and trade.''' lastQuote = self.data['quote'][-1] lastTrade = self.data['trade'][-1] ticker = { "last": lastTrade['price'], "buy": lastQuote['bidPrice'], "sell": lastQuote['askPrice'], "mid": (float(lastQuote['bidPrice'] or 0) + float(lastQuote['askPrice'] or 0)) / 2 } # The instrument has a tickSize. Use it to round values. instrument = self.data['instrument'][0] return {k: round(float(v or 0), instrument['tickLog']) for k, v in list(ticker.items())}
Return a ticker object. Generated from quote and trade.
Below is the the instruction that describes the task: ### Input: Return a ticker object. Generated from quote and trade. ### Response: def get_ticker(self): '''Return a ticker object. Generated from quote and trade.''' lastQuote = self.data['quote'][-1] lastTrade = self.data['trade'][-1] ticker = { "last": lastTrade['price'], "buy": lastQuote['bidPrice'], "sell": lastQuote['askPrice'], "mid": (float(lastQuote['bidPrice'] or 0) + float(lastQuote['askPrice'] or 0)) / 2 } # The instrument has a tickSize. Use it to round values. instrument = self.data['instrument'][0] return {k: round(float(v or 0), instrument['tickLog']) for k, v in list(ticker.items())}
def get_port_profile_for_intf_output_interface_port_profile_name(self, **kwargs): """Auto Generated Code """ config = ET.Element("config") get_port_profile_for_intf = ET.Element("get_port_profile_for_intf") config = get_port_profile_for_intf output = ET.SubElement(get_port_profile_for_intf, "output") interface = ET.SubElement(output, "interface") port_profile = ET.SubElement(interface, "port-profile") name = ET.SubElement(port_profile, "name") name.text = kwargs.pop('name') callback = kwargs.pop('callback', self._callback) return callback(config)
Auto Generated Code
Below is the the instruction that describes the task: ### Input: Auto Generated Code ### Response: def get_port_profile_for_intf_output_interface_port_profile_name(self, **kwargs): """Auto Generated Code """ config = ET.Element("config") get_port_profile_for_intf = ET.Element("get_port_profile_for_intf") config = get_port_profile_for_intf output = ET.SubElement(get_port_profile_for_intf, "output") interface = ET.SubElement(output, "interface") port_profile = ET.SubElement(interface, "port-profile") name = ET.SubElement(port_profile, "name") name.text = kwargs.pop('name') callback = kwargs.pop('callback', self._callback) return callback(config)
def get_rowspanned_columns(self): """Return a dictionary mapping column indices to the number of columns spanned.""" spanned_columns = {} current_row_index = self._index current_row_cols = sum(cell.colspan for cell in self) prev_rows = iter(reversed(self.section[:current_row_index])) while current_row_cols < self.section.num_columns: row = next(prev_rows) min_rowspan = current_row_index - int(row._index) if row.maximum_rowspan > min_rowspan: for cell in (c for c in row if c.rowspan > min_rowspan): col_index = int(cell.column_index) spanned_columns[col_index] = cell.colspan current_row_cols += cell.colspan return spanned_columns
Return a dictionary mapping column indices to the number of columns spanned.
Below is the the instruction that describes the task: ### Input: Return a dictionary mapping column indices to the number of columns spanned. ### Response: def get_rowspanned_columns(self): """Return a dictionary mapping column indices to the number of columns spanned.""" spanned_columns = {} current_row_index = self._index current_row_cols = sum(cell.colspan for cell in self) prev_rows = iter(reversed(self.section[:current_row_index])) while current_row_cols < self.section.num_columns: row = next(prev_rows) min_rowspan = current_row_index - int(row._index) if row.maximum_rowspan > min_rowspan: for cell in (c for c in row if c.rowspan > min_rowspan): col_index = int(cell.column_index) spanned_columns[col_index] = cell.colspan current_row_cols += cell.colspan return spanned_columns
def _repr_values(self): """Return values that are to be shown in repr string.""" def getattr_better(obj, field): try: return getattr(obj, field) except AttributeError as e: try: return getattr(obj, '_' + field) except AttributeError: raise e return (getattr_better(self, attr) for attr in self._repr_attributes)
Return values that are to be shown in repr string.
Below is the the instruction that describes the task: ### Input: Return values that are to be shown in repr string. ### Response: def _repr_values(self): """Return values that are to be shown in repr string.""" def getattr_better(obj, field): try: return getattr(obj, field) except AttributeError as e: try: return getattr(obj, '_' + field) except AttributeError: raise e return (getattr_better(self, attr) for attr in self._repr_attributes)
def ensure_text(str_or_bytes, encoding='utf-8'): """Ensures an input is a string, decoding if it is bytes. """ if not isinstance(str_or_bytes, six.text_type): return str_or_bytes.decode(encoding) return str_or_bytes
Ensures an input is a string, decoding if it is bytes.
Below is the the instruction that describes the task: ### Input: Ensures an input is a string, decoding if it is bytes. ### Response: def ensure_text(str_or_bytes, encoding='utf-8'): """Ensures an input is a string, decoding if it is bytes. """ if not isinstance(str_or_bytes, six.text_type): return str_or_bytes.decode(encoding) return str_or_bytes
def _all_add_or_modify_row(self, item_name, insert_dict, table, index=None, condition=None, condvars=None, flags=(ADD_ROW, MODIFY_ROW,)): """Adds or changes a row in a pytable. :param item_name: Name of item, the row is about, only important for throwing errors. :param insert_dict: Dictionary of data that is about to be inserted into the pytables row. :param table: The table to insert or modify a row in :param index: Index of row to be modified. Instead of an index a search condition can be used as well, see below. :param condition: Condition to search for in the table :param condvars: Variables for the search condition :param flags: Flags whether to add, modify, or remove a row in the table """ if len(flags) == 0: # No flags means no-op return # You can only specify either an index or a condition not both if index is not None and condition is not None: raise ValueError('Please give either a condition or an index or none!') elif condition is not None: row_iterator = table.where(condition, condvars=condvars) elif index is not None: row_iterator = table.iterrows(index, index + 1) else: row_iterator = None try: row = next(row_iterator) except TypeError: row = None except StopIteration: row = None # multiple_entries = [] if ((HDF5StorageService.MODIFY_ROW in flags or HDF5StorageService.ADD_ROW in flags) and HDF5StorageService.REMOVE_ROW in flags): # You cannot remove and modify or add at the same time raise ValueError('You cannot add or modify and remove a row at the same time.') if row is None and HDF5StorageService.ADD_ROW in flags: # Here we add a new row row = table.row self._all_insert_into_row(row, insert_dict) row.append() elif row is not None and HDF5StorageService.MODIFY_ROW in flags: # Here we modify an existing row self._all_insert_into_row(row, insert_dict) row.update() elif HDF5StorageService.REMOVE_ROW in flags: # Here we delete an existing row if row is not None: # Only delete if the row does exist otherwise we do not have to do anything row_number = row.nrow try: table.remove_rows(start=row_number, stop=row_number+1) except NotImplementedError: pass # We get here if we try to remove the last row of a table # there is nothing we can do but keep it :-( else: raise ValueError('Something is wrong, you might not have found ' 'a row, or your flags are not set appropriately') self._all_kill_iterator(row_iterator) table.flush() if HDF5StorageService.REMOVE_ROW not in flags and row is None: raise RuntimeError('Could not add or modify entries of `%s` in ' 'table %s' % (item_name, table._v_name))
Adds or changes a row in a pytable. :param item_name: Name of item, the row is about, only important for throwing errors. :param insert_dict: Dictionary of data that is about to be inserted into the pytables row. :param table: The table to insert or modify a row in :param index: Index of row to be modified. Instead of an index a search condition can be used as well, see below. :param condition: Condition to search for in the table :param condvars: Variables for the search condition :param flags: Flags whether to add, modify, or remove a row in the table
Below is the the instruction that describes the task: ### Input: Adds or changes a row in a pytable. :param item_name: Name of item, the row is about, only important for throwing errors. :param insert_dict: Dictionary of data that is about to be inserted into the pytables row. :param table: The table to insert or modify a row in :param index: Index of row to be modified. Instead of an index a search condition can be used as well, see below. :param condition: Condition to search for in the table :param condvars: Variables for the search condition :param flags: Flags whether to add, modify, or remove a row in the table ### Response: def _all_add_or_modify_row(self, item_name, insert_dict, table, index=None, condition=None, condvars=None, flags=(ADD_ROW, MODIFY_ROW,)): """Adds or changes a row in a pytable. :param item_name: Name of item, the row is about, only important for throwing errors. :param insert_dict: Dictionary of data that is about to be inserted into the pytables row. :param table: The table to insert or modify a row in :param index: Index of row to be modified. Instead of an index a search condition can be used as well, see below. :param condition: Condition to search for in the table :param condvars: Variables for the search condition :param flags: Flags whether to add, modify, or remove a row in the table """ if len(flags) == 0: # No flags means no-op return # You can only specify either an index or a condition not both if index is not None and condition is not None: raise ValueError('Please give either a condition or an index or none!') elif condition is not None: row_iterator = table.where(condition, condvars=condvars) elif index is not None: row_iterator = table.iterrows(index, index + 1) else: row_iterator = None try: row = next(row_iterator) except TypeError: row = None except StopIteration: row = None # multiple_entries = [] if ((HDF5StorageService.MODIFY_ROW in flags or HDF5StorageService.ADD_ROW in flags) and HDF5StorageService.REMOVE_ROW in flags): # You cannot remove and modify or add at the same time raise ValueError('You cannot add or modify and remove a row at the same time.') if row is None and HDF5StorageService.ADD_ROW in flags: # Here we add a new row row = table.row self._all_insert_into_row(row, insert_dict) row.append() elif row is not None and HDF5StorageService.MODIFY_ROW in flags: # Here we modify an existing row self._all_insert_into_row(row, insert_dict) row.update() elif HDF5StorageService.REMOVE_ROW in flags: # Here we delete an existing row if row is not None: # Only delete if the row does exist otherwise we do not have to do anything row_number = row.nrow try: table.remove_rows(start=row_number, stop=row_number+1) except NotImplementedError: pass # We get here if we try to remove the last row of a table # there is nothing we can do but keep it :-( else: raise ValueError('Something is wrong, you might not have found ' 'a row, or your flags are not set appropriately') self._all_kill_iterator(row_iterator) table.flush() if HDF5StorageService.REMOVE_ROW not in flags and row is None: raise RuntimeError('Could not add or modify entries of `%s` in ' 'table %s' % (item_name, table._v_name))
def to_list(i, use_keys=False): ''' Converts items to a list. :param i: Item to convert * If `i` is ``None``, the result is an empty list * If `i` is 'string', the result won't be \ ``['s', 't', 'r',...]`` rather more like ``['string']`` * If `i` is a nested dictionary, the result will be a flattened list. :param use_keys: If i is a dictionary, use the keys instead of values :returns: All items in i as list ''' from photon.util.system import shell_notify if not i: return [] if isinstance(i, str): return [i] if isinstance(i, list): return i if isinstance(i, dict): res = list() for e in i.keys() if use_keys else i.values(): res.append(to_list(e)) if isinstance(e, dict) else res.append(e) return res shell_notify('type for %s uncovered' % (i), state=True, more=type(i))
Converts items to a list. :param i: Item to convert * If `i` is ``None``, the result is an empty list * If `i` is 'string', the result won't be \ ``['s', 't', 'r',...]`` rather more like ``['string']`` * If `i` is a nested dictionary, the result will be a flattened list. :param use_keys: If i is a dictionary, use the keys instead of values :returns: All items in i as list
Below is the the instruction that describes the task: ### Input: Converts items to a list. :param i: Item to convert * If `i` is ``None``, the result is an empty list * If `i` is 'string', the result won't be \ ``['s', 't', 'r',...]`` rather more like ``['string']`` * If `i` is a nested dictionary, the result will be a flattened list. :param use_keys: If i is a dictionary, use the keys instead of values :returns: All items in i as list ### Response: def to_list(i, use_keys=False): ''' Converts items to a list. :param i: Item to convert * If `i` is ``None``, the result is an empty list * If `i` is 'string', the result won't be \ ``['s', 't', 'r',...]`` rather more like ``['string']`` * If `i` is a nested dictionary, the result will be a flattened list. :param use_keys: If i is a dictionary, use the keys instead of values :returns: All items in i as list ''' from photon.util.system import shell_notify if not i: return [] if isinstance(i, str): return [i] if isinstance(i, list): return i if isinstance(i, dict): res = list() for e in i.keys() if use_keys else i.values(): res.append(to_list(e)) if isinstance(e, dict) else res.append(e) return res shell_notify('type for %s uncovered' % (i), state=True, more=type(i))
def check_sso_login(self, operator_email, request_id): """ Login to the CloudGenix API, and see if SAML SSO has occurred. This function is used to check and see if SAML SSO has succeeded while waiting. **Parameters:** - **operator_email:** String with the username to log in with - **request_id:** String containing the SAML 2.0 Request ID from previous login attempt. **Returns:** Tuple (Boolean success, Token on success, JSON response on error.) """ data = { "email": operator_email, "requestId": request_id } # If debug is set.. api_logger.info('check_sso_login function:') response = self._parent_class.post.login(data=data) # If valid response, but no token. if not response.cgx_content.get('x_auth_token'): # no valid login yet. return response # update with token and region auth_region = self._parent_class.parse_region(response) self._parent_class.update_region_to_controller(auth_region) self._parent_class.reparse_login_cookie_after_region_update(response) return response
Login to the CloudGenix API, and see if SAML SSO has occurred. This function is used to check and see if SAML SSO has succeeded while waiting. **Parameters:** - **operator_email:** String with the username to log in with - **request_id:** String containing the SAML 2.0 Request ID from previous login attempt. **Returns:** Tuple (Boolean success, Token on success, JSON response on error.)
Below is the the instruction that describes the task: ### Input: Login to the CloudGenix API, and see if SAML SSO has occurred. This function is used to check and see if SAML SSO has succeeded while waiting. **Parameters:** - **operator_email:** String with the username to log in with - **request_id:** String containing the SAML 2.0 Request ID from previous login attempt. **Returns:** Tuple (Boolean success, Token on success, JSON response on error.) ### Response: def check_sso_login(self, operator_email, request_id): """ Login to the CloudGenix API, and see if SAML SSO has occurred. This function is used to check and see if SAML SSO has succeeded while waiting. **Parameters:** - **operator_email:** String with the username to log in with - **request_id:** String containing the SAML 2.0 Request ID from previous login attempt. **Returns:** Tuple (Boolean success, Token on success, JSON response on error.) """ data = { "email": operator_email, "requestId": request_id } # If debug is set.. api_logger.info('check_sso_login function:') response = self._parent_class.post.login(data=data) # If valid response, but no token. if not response.cgx_content.get('x_auth_token'): # no valid login yet. return response # update with token and region auth_region = self._parent_class.parse_region(response) self._parent_class.update_region_to_controller(auth_region) self._parent_class.reparse_login_cookie_after_region_update(response) return response
def prep_message(msg): """ Add the size header """ if six.PY3: msg_out = msg.as_string().encode("utf-8") else: msg_out = msg.as_string() our_len = len(msg_out) + 4 size = struct.pack('>L', our_len) # why the hell is this "bytes" on python3? return size + msg_out
Add the size header
Below is the the instruction that describes the task: ### Input: Add the size header ### Response: def prep_message(msg): """ Add the size header """ if six.PY3: msg_out = msg.as_string().encode("utf-8") else: msg_out = msg.as_string() our_len = len(msg_out) + 4 size = struct.pack('>L', our_len) # why the hell is this "bytes" on python3? return size + msg_out
def receive_message_batch(self, max_batch_size=None, on_message_received=None, timeout=0): """Receive a batch of messages. Messages returned in the batch have already been accepted - if you wish to add logic to accept or reject messages based on custom criteria, pass in a callback. This method will return as soon as some messages are available rather than waiting to achieve a specific batch size, and therefore the number of messages returned per call will vary up to the maximum allowed. If the receive client is configured with `auto_complete=True` then the messages received in the batch returned by this function will already be settled. Alternatively, if `auto_complete=False`, then each message will need to be explicitly settled before it expires and is released. :param max_batch_size: The maximum number of messages that can be returned in one call. This value cannot be larger than the prefetch value, and if not specified, the prefetch value will be used. :type max_batch_size: int :param on_message_received: A callback to process messages as they arrive from the service. It takes a single argument, a ~uamqp.message.Message object. :type on_message_received: callable[~uamqp.message.Message] :param timeout: I timeout in milliseconds for which to wait to receive any messages. If no messages are received in this time, an empty list will be returned. If set to 0, the client will continue to wait until at least one message is received. The default is 0. :type timeout: int """ self._message_received_callback = on_message_received max_batch_size = max_batch_size or self._prefetch if max_batch_size > self._prefetch: raise ValueError( 'Maximum batch size cannot be greater than the ' 'connection link credit: {}'.format(self._prefetch)) timeout = self._counter.get_current_ms() + timeout if timeout else 0 expired = False self._received_messages = self._received_messages or compat.queue.Queue() self.open() receiving = True batch = [] while not self._received_messages.empty() and len(batch) < max_batch_size: batch.append(self._received_messages.get()) self._received_messages.task_done() if len(batch) >= max_batch_size: return batch while receiving and not expired and len(batch) < max_batch_size: while receiving and self._received_messages.qsize() < max_batch_size: if timeout and self._counter.get_current_ms() > timeout: expired = True break before = self._received_messages.qsize() receiving = self.do_work() received = self._received_messages.qsize() - before if self._received_messages.qsize() > 0 and received == 0: # No new messages arrived, but we have some - so return what we have. expired = True break while not self._received_messages.empty() and len(batch) < max_batch_size: batch.append(self._received_messages.get()) self._received_messages.task_done() return batch
Receive a batch of messages. Messages returned in the batch have already been accepted - if you wish to add logic to accept or reject messages based on custom criteria, pass in a callback. This method will return as soon as some messages are available rather than waiting to achieve a specific batch size, and therefore the number of messages returned per call will vary up to the maximum allowed. If the receive client is configured with `auto_complete=True` then the messages received in the batch returned by this function will already be settled. Alternatively, if `auto_complete=False`, then each message will need to be explicitly settled before it expires and is released. :param max_batch_size: The maximum number of messages that can be returned in one call. This value cannot be larger than the prefetch value, and if not specified, the prefetch value will be used. :type max_batch_size: int :param on_message_received: A callback to process messages as they arrive from the service. It takes a single argument, a ~uamqp.message.Message object. :type on_message_received: callable[~uamqp.message.Message] :param timeout: I timeout in milliseconds for which to wait to receive any messages. If no messages are received in this time, an empty list will be returned. If set to 0, the client will continue to wait until at least one message is received. The default is 0. :type timeout: int
Below is the the instruction that describes the task: ### Input: Receive a batch of messages. Messages returned in the batch have already been accepted - if you wish to add logic to accept or reject messages based on custom criteria, pass in a callback. This method will return as soon as some messages are available rather than waiting to achieve a specific batch size, and therefore the number of messages returned per call will vary up to the maximum allowed. If the receive client is configured with `auto_complete=True` then the messages received in the batch returned by this function will already be settled. Alternatively, if `auto_complete=False`, then each message will need to be explicitly settled before it expires and is released. :param max_batch_size: The maximum number of messages that can be returned in one call. This value cannot be larger than the prefetch value, and if not specified, the prefetch value will be used. :type max_batch_size: int :param on_message_received: A callback to process messages as they arrive from the service. It takes a single argument, a ~uamqp.message.Message object. :type on_message_received: callable[~uamqp.message.Message] :param timeout: I timeout in milliseconds for which to wait to receive any messages. If no messages are received in this time, an empty list will be returned. If set to 0, the client will continue to wait until at least one message is received. The default is 0. :type timeout: int ### Response: def receive_message_batch(self, max_batch_size=None, on_message_received=None, timeout=0): """Receive a batch of messages. Messages returned in the batch have already been accepted - if you wish to add logic to accept or reject messages based on custom criteria, pass in a callback. This method will return as soon as some messages are available rather than waiting to achieve a specific batch size, and therefore the number of messages returned per call will vary up to the maximum allowed. If the receive client is configured with `auto_complete=True` then the messages received in the batch returned by this function will already be settled. Alternatively, if `auto_complete=False`, then each message will need to be explicitly settled before it expires and is released. :param max_batch_size: The maximum number of messages that can be returned in one call. This value cannot be larger than the prefetch value, and if not specified, the prefetch value will be used. :type max_batch_size: int :param on_message_received: A callback to process messages as they arrive from the service. It takes a single argument, a ~uamqp.message.Message object. :type on_message_received: callable[~uamqp.message.Message] :param timeout: I timeout in milliseconds for which to wait to receive any messages. If no messages are received in this time, an empty list will be returned. If set to 0, the client will continue to wait until at least one message is received. The default is 0. :type timeout: int """ self._message_received_callback = on_message_received max_batch_size = max_batch_size or self._prefetch if max_batch_size > self._prefetch: raise ValueError( 'Maximum batch size cannot be greater than the ' 'connection link credit: {}'.format(self._prefetch)) timeout = self._counter.get_current_ms() + timeout if timeout else 0 expired = False self._received_messages = self._received_messages or compat.queue.Queue() self.open() receiving = True batch = [] while not self._received_messages.empty() and len(batch) < max_batch_size: batch.append(self._received_messages.get()) self._received_messages.task_done() if len(batch) >= max_batch_size: return batch while receiving and not expired and len(batch) < max_batch_size: while receiving and self._received_messages.qsize() < max_batch_size: if timeout and self._counter.get_current_ms() > timeout: expired = True break before = self._received_messages.qsize() receiving = self.do_work() received = self._received_messages.qsize() - before if self._received_messages.qsize() > 0 and received == 0: # No new messages arrived, but we have some - so return what we have. expired = True break while not self._received_messages.empty() and len(batch) < max_batch_size: batch.append(self._received_messages.get()) self._received_messages.task_done() return batch
def lambda_function(f): """ Decorator for making error handling on AWS Lambda easier """ @functools.wraps(f) def wrapper(event, context): global _CURRENT_LAMBDA_CONTEXT _CURRENT_LAMBDA_CONTEXT = context try: result = f(event, context) return wait(lambda: result) except: cls, exc, trace = sys.exc_info() report_exc_info((cls, exc, trace.tb_next)) wait() raise return wrapper
Decorator for making error handling on AWS Lambda easier
Below is the the instruction that describes the task: ### Input: Decorator for making error handling on AWS Lambda easier ### Response: def lambda_function(f): """ Decorator for making error handling on AWS Lambda easier """ @functools.wraps(f) def wrapper(event, context): global _CURRENT_LAMBDA_CONTEXT _CURRENT_LAMBDA_CONTEXT = context try: result = f(event, context) return wait(lambda: result) except: cls, exc, trace = sys.exc_info() report_exc_info((cls, exc, trace.tb_next)) wait() raise return wrapper
def decode(self, bytes): """Decodes the given bytes according to this AIT Argument Definition. """ value = self.type.decode(bytes) if self._enum is not None: for name, val in self._enum.items(): if value == val: value = name break return value
Decodes the given bytes according to this AIT Argument Definition.
Below is the the instruction that describes the task: ### Input: Decodes the given bytes according to this AIT Argument Definition. ### Response: def decode(self, bytes): """Decodes the given bytes according to this AIT Argument Definition. """ value = self.type.decode(bytes) if self._enum is not None: for name, val in self._enum.items(): if value == val: value = name break return value
def personality(self, category: str = 'mbti') -> Union[str, int]: """Generate a type of personality. :param category: Category. :return: Personality type. :rtype: str or int :Example: ISFJ. """ mbtis = ('ISFJ', 'ISTJ', 'INFJ', 'INTJ', 'ISTP', 'ISFP', 'INFP', 'INTP', 'ESTP', 'ESFP', 'ENFP', 'ENTP', 'ESTJ', 'ESFJ', 'ENFJ', 'ENTJ') if category.lower() == 'rheti': return self.random.randint(1, 10) return self.random.choice(mbtis)
Generate a type of personality. :param category: Category. :return: Personality type. :rtype: str or int :Example: ISFJ.
Below is the the instruction that describes the task: ### Input: Generate a type of personality. :param category: Category. :return: Personality type. :rtype: str or int :Example: ISFJ. ### Response: def personality(self, category: str = 'mbti') -> Union[str, int]: """Generate a type of personality. :param category: Category. :return: Personality type. :rtype: str or int :Example: ISFJ. """ mbtis = ('ISFJ', 'ISTJ', 'INFJ', 'INTJ', 'ISTP', 'ISFP', 'INFP', 'INTP', 'ESTP', 'ESFP', 'ENFP', 'ENTP', 'ESTJ', 'ESFJ', 'ENFJ', 'ENTJ') if category.lower() == 'rheti': return self.random.randint(1, 10) return self.random.choice(mbtis)
def configure_alias(graph, ns, mappings): """ Register Alias endpoints for a resource object. """ convention = AliasConvention(graph) convention.configure(ns, mappings)
Register Alias endpoints for a resource object.
Below is the the instruction that describes the task: ### Input: Register Alias endpoints for a resource object. ### Response: def configure_alias(graph, ns, mappings): """ Register Alias endpoints for a resource object. """ convention = AliasConvention(graph) convention.configure(ns, mappings)
def filter_service_by_host_bp_rule_label(label): """Filter for service Filter on label :param label: label to filter :type label: str :return: Filter :rtype: bool """ def inner_filter(items): """Inner filter for service. Accept if label in service.host.labels""" service = items["service"] host = items["hosts"][service.host] if service is None or host is None: return False return label in host.labels return inner_filter
Filter for service Filter on label :param label: label to filter :type label: str :return: Filter :rtype: bool
Below is the the instruction that describes the task: ### Input: Filter for service Filter on label :param label: label to filter :type label: str :return: Filter :rtype: bool ### Response: def filter_service_by_host_bp_rule_label(label): """Filter for service Filter on label :param label: label to filter :type label: str :return: Filter :rtype: bool """ def inner_filter(items): """Inner filter for service. Accept if label in service.host.labels""" service = items["service"] host = items["hosts"][service.host] if service is None or host is None: return False return label in host.labels return inner_filter
def calculateLocalElasticity(self, bp, frames=None, helical=False, unit='kT'): r"""Calculate local elastic matrix or stiffness matrix for local DNA segment .. note:: Here local DNA segment referred to less than 5 base-pair long. In case of :ref:`base-step-image`: Shift (:math:`Dx`), Slide (:math:`Dy`), Rise (:math:`Dz`), Tilt (:math:`\tau`), Roll (:math:`\rho`) and Twist (:math:`\omega`), following elastic matrix is calculated. .. math:: \mathbf{K}_{base-step} = \begin{bmatrix} K_{Dx} & K_{Dx,Dy} & K_{Dx,Dz} & K_{Dx,\tau} & K_{Dx,\rho} & K_{Dx,\omega} \\ K_{Dx,Dy} & K_{Dy} & K_{Dy,Dz} & K_{Dy,\tau} & K_{Dy,\rho} & K_{Dy,\omega} \\ K_{Dx,Dz} & K_{Dy,Dz} & K_{Dz} & K_{Dz,\tau} & K_{Dz,\rho} & K_{Dz,\omega} \\ K_{Dx,\tau} & K_{Dy,\tau} & K_{Dz,\tau} & K_{\tau} & K_{\tau, \rho} & K_{\tau,\omega} \\ K_{Dx,\rho} & K_{Dy,\rho} & K_{Dz,\rho} & K_{\tau, \rho} & K_{\rho} & K_{\rho,\omega} \\ K_{Dx,\omega} & K_{Dy,\omega} & K_{Dz,\omega} & K_{\tau, \omega} & K_{\rho, \omega} & K_{\omega} \\ \end{bmatrix} In case of :ref:`helical-base-step-image`: x-displacement (:math:`dx`), y-displacement (:math:`dy`), h-rise (:math:`h`), inclination (:math:`\eta`), tip (:math:`\theta`) and twist (:math:`\Omega`), following elastic matrix is calculated. .. math:: \mathbf{K}_{helical-base-step} = \begin{bmatrix} K_{dx} & K_{dx,dy} & K_{dx,h} & K_{dx,\eta} & K_{dx,\theta} & K_{dx,\Omega} \\ K_{dx,dy} & K_{dy} & K_{dy,h} & K_{dy,\eta} & K_{dy,\theta} & K_{dy,\Omega} \\ K_{dx,h} & K_{dy,h} & K_{h} & K_{h,\eta} & K_{h,\theta} & K_{h,\Omega} \\ K_{dx,\eta} & K_{dy,\eta} & K_{h,\eta} & K_{\eta} & K_{\eta, \theta} & K_{\eta,\Omega} \\ K_{dx,\theta} & K_{dy,\theta} & K_{h,\theta} & K_{\eta, \theta} & K_{\theta} & K_{\theta,\Omega} \\ K_{dx,\Omega} & K_{dy,\Omega} & K_{h,\Omega} & K_{\eta, \Omega} & K_{\theta, \Omega} & K_{\Omega} \\ \end{bmatrix} Parameters ---------- bp : list List of two base-steps forming the DNA segment. For example: with ``bp=[5, 50]``, 5-50 base-step segment will be considered. frames : list List of two trajectory frames between which parameters will be extracted. It can be used to select portions of the trajectory. For example, with ``frames=[100, 1000]``, 100th to 1000th frame of the trajectory will be considered. helical : bool If ``helical=True``, elastic matrix for **helical base-step** parameters are calculated. Otherwise, by default, elastic matrix for **base-step** parameters are calculated. unit : str Unit of energy. Allowed units are: ``'kT', 'kJ/mol' and 'kcal/mol'``. Return ------ mean : numpy.ndarray Value of parameters at which energy is zero. Minimum point on energy landscape. if ``helical=False`` .. math:: \begin{bmatrix} Dx_0 & Dy_0 & Dz_0 & \tau_0 & \rho_0 & \omega_0 \end{bmatrix} if ``helical=True`` .. math:: \begin{bmatrix} dx_0 & dy_0 & h_0 & \eta_0 & \theta_0 & \Omega_0 \end{bmatrix} result : numpy.ndarray Elastic matrix. """ acceptedUnit = ['kT', 'kJ/mol', 'kcal/mol'] if unit not in acceptedUnit: raise ValueError(" {0} not accepted. Use any of the following: {1} ".format(unit, acceptedUnit)) frames = self._validateFrames(frames) name = '{0}-{1}-{2}-{3}-local-{4}'.format(bp[0], bp[1], frames[0], frames[1], int(helical)) if bp[1]-bp[0]+1 > 4: raise ValueError("Selected span {0} is larger than 4, and therefore, not recommended for local elasticity".format(bp[1]-bp[0]+1)) if name not in self.esMatrix: time, array = self.extractLocalParameters(self.dna, bp, helical=helical, frames=frames) mean = np.mean(array, axis = 1) esMatrix = self.getElasticMatrix(array) self.esMatrix[name] = esMatrix self.minimumPoint[name] = mean else: esMatrix = self.esMatrix[name] mean = self.minimumPoint[name] if unit == 'kJ/mol': result = 2.4946938107879997 * esMatrix # (1.38064852e-23 * 300 * 6.023e23 / 1000 ) kT.NA/1000 elif unit == 'kcal/mol': result = 0.5962461306854684 * esMatrix # (1.38064852e-23 * 300 * 6.023e23 / 1000 / 4.184) kT.NA/1000 else: result = esMatrix return mean, result
r"""Calculate local elastic matrix or stiffness matrix for local DNA segment .. note:: Here local DNA segment referred to less than 5 base-pair long. In case of :ref:`base-step-image`: Shift (:math:`Dx`), Slide (:math:`Dy`), Rise (:math:`Dz`), Tilt (:math:`\tau`), Roll (:math:`\rho`) and Twist (:math:`\omega`), following elastic matrix is calculated. .. math:: \mathbf{K}_{base-step} = \begin{bmatrix} K_{Dx} & K_{Dx,Dy} & K_{Dx,Dz} & K_{Dx,\tau} & K_{Dx,\rho} & K_{Dx,\omega} \\ K_{Dx,Dy} & K_{Dy} & K_{Dy,Dz} & K_{Dy,\tau} & K_{Dy,\rho} & K_{Dy,\omega} \\ K_{Dx,Dz} & K_{Dy,Dz} & K_{Dz} & K_{Dz,\tau} & K_{Dz,\rho} & K_{Dz,\omega} \\ K_{Dx,\tau} & K_{Dy,\tau} & K_{Dz,\tau} & K_{\tau} & K_{\tau, \rho} & K_{\tau,\omega} \\ K_{Dx,\rho} & K_{Dy,\rho} & K_{Dz,\rho} & K_{\tau, \rho} & K_{\rho} & K_{\rho,\omega} \\ K_{Dx,\omega} & K_{Dy,\omega} & K_{Dz,\omega} & K_{\tau, \omega} & K_{\rho, \omega} & K_{\omega} \\ \end{bmatrix} In case of :ref:`helical-base-step-image`: x-displacement (:math:`dx`), y-displacement (:math:`dy`), h-rise (:math:`h`), inclination (:math:`\eta`), tip (:math:`\theta`) and twist (:math:`\Omega`), following elastic matrix is calculated. .. math:: \mathbf{K}_{helical-base-step} = \begin{bmatrix} K_{dx} & K_{dx,dy} & K_{dx,h} & K_{dx,\eta} & K_{dx,\theta} & K_{dx,\Omega} \\ K_{dx,dy} & K_{dy} & K_{dy,h} & K_{dy,\eta} & K_{dy,\theta} & K_{dy,\Omega} \\ K_{dx,h} & K_{dy,h} & K_{h} & K_{h,\eta} & K_{h,\theta} & K_{h,\Omega} \\ K_{dx,\eta} & K_{dy,\eta} & K_{h,\eta} & K_{\eta} & K_{\eta, \theta} & K_{\eta,\Omega} \\ K_{dx,\theta} & K_{dy,\theta} & K_{h,\theta} & K_{\eta, \theta} & K_{\theta} & K_{\theta,\Omega} \\ K_{dx,\Omega} & K_{dy,\Omega} & K_{h,\Omega} & K_{\eta, \Omega} & K_{\theta, \Omega} & K_{\Omega} \\ \end{bmatrix} Parameters ---------- bp : list List of two base-steps forming the DNA segment. For example: with ``bp=[5, 50]``, 5-50 base-step segment will be considered. frames : list List of two trajectory frames between which parameters will be extracted. It can be used to select portions of the trajectory. For example, with ``frames=[100, 1000]``, 100th to 1000th frame of the trajectory will be considered. helical : bool If ``helical=True``, elastic matrix for **helical base-step** parameters are calculated. Otherwise, by default, elastic matrix for **base-step** parameters are calculated. unit : str Unit of energy. Allowed units are: ``'kT', 'kJ/mol' and 'kcal/mol'``. Return ------ mean : numpy.ndarray Value of parameters at which energy is zero. Minimum point on energy landscape. if ``helical=False`` .. math:: \begin{bmatrix} Dx_0 & Dy_0 & Dz_0 & \tau_0 & \rho_0 & \omega_0 \end{bmatrix} if ``helical=True`` .. math:: \begin{bmatrix} dx_0 & dy_0 & h_0 & \eta_0 & \theta_0 & \Omega_0 \end{bmatrix} result : numpy.ndarray Elastic matrix.
Below is the the instruction that describes the task: ### Input: r"""Calculate local elastic matrix or stiffness matrix for local DNA segment .. note:: Here local DNA segment referred to less than 5 base-pair long. In case of :ref:`base-step-image`: Shift (:math:`Dx`), Slide (:math:`Dy`), Rise (:math:`Dz`), Tilt (:math:`\tau`), Roll (:math:`\rho`) and Twist (:math:`\omega`), following elastic matrix is calculated. .. math:: \mathbf{K}_{base-step} = \begin{bmatrix} K_{Dx} & K_{Dx,Dy} & K_{Dx,Dz} & K_{Dx,\tau} & K_{Dx,\rho} & K_{Dx,\omega} \\ K_{Dx,Dy} & K_{Dy} & K_{Dy,Dz} & K_{Dy,\tau} & K_{Dy,\rho} & K_{Dy,\omega} \\ K_{Dx,Dz} & K_{Dy,Dz} & K_{Dz} & K_{Dz,\tau} & K_{Dz,\rho} & K_{Dz,\omega} \\ K_{Dx,\tau} & K_{Dy,\tau} & K_{Dz,\tau} & K_{\tau} & K_{\tau, \rho} & K_{\tau,\omega} \\ K_{Dx,\rho} & K_{Dy,\rho} & K_{Dz,\rho} & K_{\tau, \rho} & K_{\rho} & K_{\rho,\omega} \\ K_{Dx,\omega} & K_{Dy,\omega} & K_{Dz,\omega} & K_{\tau, \omega} & K_{\rho, \omega} & K_{\omega} \\ \end{bmatrix} In case of :ref:`helical-base-step-image`: x-displacement (:math:`dx`), y-displacement (:math:`dy`), h-rise (:math:`h`), inclination (:math:`\eta`), tip (:math:`\theta`) and twist (:math:`\Omega`), following elastic matrix is calculated. .. math:: \mathbf{K}_{helical-base-step} = \begin{bmatrix} K_{dx} & K_{dx,dy} & K_{dx,h} & K_{dx,\eta} & K_{dx,\theta} & K_{dx,\Omega} \\ K_{dx,dy} & K_{dy} & K_{dy,h} & K_{dy,\eta} & K_{dy,\theta} & K_{dy,\Omega} \\ K_{dx,h} & K_{dy,h} & K_{h} & K_{h,\eta} & K_{h,\theta} & K_{h,\Omega} \\ K_{dx,\eta} & K_{dy,\eta} & K_{h,\eta} & K_{\eta} & K_{\eta, \theta} & K_{\eta,\Omega} \\ K_{dx,\theta} & K_{dy,\theta} & K_{h,\theta} & K_{\eta, \theta} & K_{\theta} & K_{\theta,\Omega} \\ K_{dx,\Omega} & K_{dy,\Omega} & K_{h,\Omega} & K_{\eta, \Omega} & K_{\theta, \Omega} & K_{\Omega} \\ \end{bmatrix} Parameters ---------- bp : list List of two base-steps forming the DNA segment. For example: with ``bp=[5, 50]``, 5-50 base-step segment will be considered. frames : list List of two trajectory frames between which parameters will be extracted. It can be used to select portions of the trajectory. For example, with ``frames=[100, 1000]``, 100th to 1000th frame of the trajectory will be considered. helical : bool If ``helical=True``, elastic matrix for **helical base-step** parameters are calculated. Otherwise, by default, elastic matrix for **base-step** parameters are calculated. unit : str Unit of energy. Allowed units are: ``'kT', 'kJ/mol' and 'kcal/mol'``. Return ------ mean : numpy.ndarray Value of parameters at which energy is zero. Minimum point on energy landscape. if ``helical=False`` .. math:: \begin{bmatrix} Dx_0 & Dy_0 & Dz_0 & \tau_0 & \rho_0 & \omega_0 \end{bmatrix} if ``helical=True`` .. math:: \begin{bmatrix} dx_0 & dy_0 & h_0 & \eta_0 & \theta_0 & \Omega_0 \end{bmatrix} result : numpy.ndarray Elastic matrix. ### Response: def calculateLocalElasticity(self, bp, frames=None, helical=False, unit='kT'): r"""Calculate local elastic matrix or stiffness matrix for local DNA segment .. note:: Here local DNA segment referred to less than 5 base-pair long. In case of :ref:`base-step-image`: Shift (:math:`Dx`), Slide (:math:`Dy`), Rise (:math:`Dz`), Tilt (:math:`\tau`), Roll (:math:`\rho`) and Twist (:math:`\omega`), following elastic matrix is calculated. .. math:: \mathbf{K}_{base-step} = \begin{bmatrix} K_{Dx} & K_{Dx,Dy} & K_{Dx,Dz} & K_{Dx,\tau} & K_{Dx,\rho} & K_{Dx,\omega} \\ K_{Dx,Dy} & K_{Dy} & K_{Dy,Dz} & K_{Dy,\tau} & K_{Dy,\rho} & K_{Dy,\omega} \\ K_{Dx,Dz} & K_{Dy,Dz} & K_{Dz} & K_{Dz,\tau} & K_{Dz,\rho} & K_{Dz,\omega} \\ K_{Dx,\tau} & K_{Dy,\tau} & K_{Dz,\tau} & K_{\tau} & K_{\tau, \rho} & K_{\tau,\omega} \\ K_{Dx,\rho} & K_{Dy,\rho} & K_{Dz,\rho} & K_{\tau, \rho} & K_{\rho} & K_{\rho,\omega} \\ K_{Dx,\omega} & K_{Dy,\omega} & K_{Dz,\omega} & K_{\tau, \omega} & K_{\rho, \omega} & K_{\omega} \\ \end{bmatrix} In case of :ref:`helical-base-step-image`: x-displacement (:math:`dx`), y-displacement (:math:`dy`), h-rise (:math:`h`), inclination (:math:`\eta`), tip (:math:`\theta`) and twist (:math:`\Omega`), following elastic matrix is calculated. .. math:: \mathbf{K}_{helical-base-step} = \begin{bmatrix} K_{dx} & K_{dx,dy} & K_{dx,h} & K_{dx,\eta} & K_{dx,\theta} & K_{dx,\Omega} \\ K_{dx,dy} & K_{dy} & K_{dy,h} & K_{dy,\eta} & K_{dy,\theta} & K_{dy,\Omega} \\ K_{dx,h} & K_{dy,h} & K_{h} & K_{h,\eta} & K_{h,\theta} & K_{h,\Omega} \\ K_{dx,\eta} & K_{dy,\eta} & K_{h,\eta} & K_{\eta} & K_{\eta, \theta} & K_{\eta,\Omega} \\ K_{dx,\theta} & K_{dy,\theta} & K_{h,\theta} & K_{\eta, \theta} & K_{\theta} & K_{\theta,\Omega} \\ K_{dx,\Omega} & K_{dy,\Omega} & K_{h,\Omega} & K_{\eta, \Omega} & K_{\theta, \Omega} & K_{\Omega} \\ \end{bmatrix} Parameters ---------- bp : list List of two base-steps forming the DNA segment. For example: with ``bp=[5, 50]``, 5-50 base-step segment will be considered. frames : list List of two trajectory frames between which parameters will be extracted. It can be used to select portions of the trajectory. For example, with ``frames=[100, 1000]``, 100th to 1000th frame of the trajectory will be considered. helical : bool If ``helical=True``, elastic matrix for **helical base-step** parameters are calculated. Otherwise, by default, elastic matrix for **base-step** parameters are calculated. unit : str Unit of energy. Allowed units are: ``'kT', 'kJ/mol' and 'kcal/mol'``. Return ------ mean : numpy.ndarray Value of parameters at which energy is zero. Minimum point on energy landscape. if ``helical=False`` .. math:: \begin{bmatrix} Dx_0 & Dy_0 & Dz_0 & \tau_0 & \rho_0 & \omega_0 \end{bmatrix} if ``helical=True`` .. math:: \begin{bmatrix} dx_0 & dy_0 & h_0 & \eta_0 & \theta_0 & \Omega_0 \end{bmatrix} result : numpy.ndarray Elastic matrix. """ acceptedUnit = ['kT', 'kJ/mol', 'kcal/mol'] if unit not in acceptedUnit: raise ValueError(" {0} not accepted. Use any of the following: {1} ".format(unit, acceptedUnit)) frames = self._validateFrames(frames) name = '{0}-{1}-{2}-{3}-local-{4}'.format(bp[0], bp[1], frames[0], frames[1], int(helical)) if bp[1]-bp[0]+1 > 4: raise ValueError("Selected span {0} is larger than 4, and therefore, not recommended for local elasticity".format(bp[1]-bp[0]+1)) if name not in self.esMatrix: time, array = self.extractLocalParameters(self.dna, bp, helical=helical, frames=frames) mean = np.mean(array, axis = 1) esMatrix = self.getElasticMatrix(array) self.esMatrix[name] = esMatrix self.minimumPoint[name] = mean else: esMatrix = self.esMatrix[name] mean = self.minimumPoint[name] if unit == 'kJ/mol': result = 2.4946938107879997 * esMatrix # (1.38064852e-23 * 300 * 6.023e23 / 1000 ) kT.NA/1000 elif unit == 'kcal/mol': result = 0.5962461306854684 * esMatrix # (1.38064852e-23 * 300 * 6.023e23 / 1000 / 4.184) kT.NA/1000 else: result = esMatrix return mean, result
def queue_manager_stats(self, queue_manager, tags): """ Get stats from the queue manager """ for mname, pymqi_value in iteritems(metrics.queue_manager_metrics()): try: m = queue_manager.inquire(pymqi_value) mname = '{}.queue_manager.{}'.format(self.METRIC_PREFIX, mname) self.gauge(mname, m, tags=tags) self.service_check(self.QUEUE_MANAGER_SERVICE_CHECK, AgentCheck.OK, tags) except pymqi.Error as e: self.warning("Error getting queue manager stats: {}".format(e)) self.service_check(self.QUEUE_MANAGER_SERVICE_CHECK, AgentCheck.CRITICAL, tags)
Get stats from the queue manager
Below is the the instruction that describes the task: ### Input: Get stats from the queue manager ### Response: def queue_manager_stats(self, queue_manager, tags): """ Get stats from the queue manager """ for mname, pymqi_value in iteritems(metrics.queue_manager_metrics()): try: m = queue_manager.inquire(pymqi_value) mname = '{}.queue_manager.{}'.format(self.METRIC_PREFIX, mname) self.gauge(mname, m, tags=tags) self.service_check(self.QUEUE_MANAGER_SERVICE_CHECK, AgentCheck.OK, tags) except pymqi.Error as e: self.warning("Error getting queue manager stats: {}".format(e)) self.service_check(self.QUEUE_MANAGER_SERVICE_CHECK, AgentCheck.CRITICAL, tags)
def get_alignment_df(a_aln_seq, b_aln_seq, a_seq_id=None, b_seq_id=None): """Summarize two alignment strings in a dataframe. Args: a_aln_seq (str): Aligned sequence string b_aln_seq (str): Aligned sequence string a_seq_id (str): Optional ID of a_seq b_seq_id (str): Optional ID of b_aln_seq Returns: DataFrame: a per-residue level annotation of the alignment """ if len(a_aln_seq) != len(b_aln_seq): raise ValueError('Sequence lengths not equal - was an alignment run?') if not a_seq_id: a_seq_id = 'a_seq' if not b_seq_id: b_seq_id = 'b_seq' a_aln_seq = ssbio.protein.sequence.utils.cast_to_str(a_aln_seq) b_aln_seq = ssbio.protein.sequence.utils.cast_to_str(b_aln_seq) a_idx = 1 b_idx = 1 appender = [] for i, (a,b) in enumerate(zip(a_aln_seq, b_aln_seq)): to_append = {} if a == b and a != '-' and b != '-': aa_flag = 'match' elif a != b and a == '-' and b != '-': aa_flag = 'insertion' elif a != b and a != '-' and b == '-': aa_flag = 'deletion' elif a != b and a != '-' and b == 'X': aa_flag = 'unresolved' elif a != b and b != '-' and a == 'X': aa_flag = 'unresolved' elif a != b and a != '-' and b != '-': aa_flag = 'mutation' to_append['id_a'] = a_seq_id to_append['id_b'] = b_seq_id to_append['type'] = aa_flag if aa_flag == 'match' or aa_flag == 'unresolved' or aa_flag == 'mutation': to_append['id_a_aa'] = a to_append['id_a_pos'] = int(a_idx) to_append['id_b_aa'] = b to_append['id_b_pos'] = int(b_idx) a_idx += 1 b_idx += 1 if aa_flag == 'deletion': to_append['id_a_aa'] = a to_append['id_a_pos'] = int(a_idx) a_idx += 1 if aa_flag == 'insertion': to_append['id_b_aa'] = b to_append['id_b_pos'] = int(b_idx) b_idx += 1 appender.append(to_append) cols = ['id_a', 'id_b', 'type', 'id_a_aa', 'id_a_pos', 'id_b_aa', 'id_b_pos'] alignment_df = pd.DataFrame.from_records(appender, columns=cols) alignment_df = alignment_df.fillna(value=np.nan) return alignment_df
Summarize two alignment strings in a dataframe. Args: a_aln_seq (str): Aligned sequence string b_aln_seq (str): Aligned sequence string a_seq_id (str): Optional ID of a_seq b_seq_id (str): Optional ID of b_aln_seq Returns: DataFrame: a per-residue level annotation of the alignment
Below is the the instruction that describes the task: ### Input: Summarize two alignment strings in a dataframe. Args: a_aln_seq (str): Aligned sequence string b_aln_seq (str): Aligned sequence string a_seq_id (str): Optional ID of a_seq b_seq_id (str): Optional ID of b_aln_seq Returns: DataFrame: a per-residue level annotation of the alignment ### Response: def get_alignment_df(a_aln_seq, b_aln_seq, a_seq_id=None, b_seq_id=None): """Summarize two alignment strings in a dataframe. Args: a_aln_seq (str): Aligned sequence string b_aln_seq (str): Aligned sequence string a_seq_id (str): Optional ID of a_seq b_seq_id (str): Optional ID of b_aln_seq Returns: DataFrame: a per-residue level annotation of the alignment """ if len(a_aln_seq) != len(b_aln_seq): raise ValueError('Sequence lengths not equal - was an alignment run?') if not a_seq_id: a_seq_id = 'a_seq' if not b_seq_id: b_seq_id = 'b_seq' a_aln_seq = ssbio.protein.sequence.utils.cast_to_str(a_aln_seq) b_aln_seq = ssbio.protein.sequence.utils.cast_to_str(b_aln_seq) a_idx = 1 b_idx = 1 appender = [] for i, (a,b) in enumerate(zip(a_aln_seq, b_aln_seq)): to_append = {} if a == b and a != '-' and b != '-': aa_flag = 'match' elif a != b and a == '-' and b != '-': aa_flag = 'insertion' elif a != b and a != '-' and b == '-': aa_flag = 'deletion' elif a != b and a != '-' and b == 'X': aa_flag = 'unresolved' elif a != b and b != '-' and a == 'X': aa_flag = 'unresolved' elif a != b and a != '-' and b != '-': aa_flag = 'mutation' to_append['id_a'] = a_seq_id to_append['id_b'] = b_seq_id to_append['type'] = aa_flag if aa_flag == 'match' or aa_flag == 'unresolved' or aa_flag == 'mutation': to_append['id_a_aa'] = a to_append['id_a_pos'] = int(a_idx) to_append['id_b_aa'] = b to_append['id_b_pos'] = int(b_idx) a_idx += 1 b_idx += 1 if aa_flag == 'deletion': to_append['id_a_aa'] = a to_append['id_a_pos'] = int(a_idx) a_idx += 1 if aa_flag == 'insertion': to_append['id_b_aa'] = b to_append['id_b_pos'] = int(b_idx) b_idx += 1 appender.append(to_append) cols = ['id_a', 'id_b', 'type', 'id_a_aa', 'id_a_pos', 'id_b_aa', 'id_b_pos'] alignment_df = pd.DataFrame.from_records(appender, columns=cols) alignment_df = alignment_df.fillna(value=np.nan) return alignment_df
def parse_args(spectypes): """ Return arguments object formed by parsing the command line used to launch the program. """ arg_parser = argparse.ArgumentParser() arg_parser.add_argument( "-c", "--constants", help="emit constants instead of spec dict", action="store_true" ) arg_parser.add_argument( "spectype", help="specifies the spec type to be generated", choices=spectypes ) return arg_parser.parse_args()
Return arguments object formed by parsing the command line used to launch the program.
Below is the the instruction that describes the task: ### Input: Return arguments object formed by parsing the command line used to launch the program. ### Response: def parse_args(spectypes): """ Return arguments object formed by parsing the command line used to launch the program. """ arg_parser = argparse.ArgumentParser() arg_parser.add_argument( "-c", "--constants", help="emit constants instead of spec dict", action="store_true" ) arg_parser.add_argument( "spectype", help="specifies the spec type to be generated", choices=spectypes ) return arg_parser.parse_args()
def vis_keypoints(img, kps, kp_thresh=2, alpha=0.7): """Visualizes keypoints (adapted from vis_one_image). kps has shape (4, #keypoints) where 4 rows are (x, y, logit, prob). """ dataset_keypoints = PersonKeypoints.NAMES kp_lines = PersonKeypoints.CONNECTIONS # Convert from plt 0-1 RGBA colors to 0-255 BGR colors for opencv. cmap = plt.get_cmap('rainbow') colors = [cmap(i) for i in np.linspace(0, 1, len(kp_lines) + 2)] colors = [(c[2] * 255, c[1] * 255, c[0] * 255) for c in colors] # Perform the drawing on a copy of the image, to allow for blending. kp_mask = np.copy(img) # Draw mid shoulder / mid hip first for better visualization. mid_shoulder = ( kps[:2, dataset_keypoints.index('right_shoulder')] + kps[:2, dataset_keypoints.index('left_shoulder')]) / 2.0 sc_mid_shoulder = np.minimum( kps[2, dataset_keypoints.index('right_shoulder')], kps[2, dataset_keypoints.index('left_shoulder')]) mid_hip = ( kps[:2, dataset_keypoints.index('right_hip')] + kps[:2, dataset_keypoints.index('left_hip')]) / 2.0 sc_mid_hip = np.minimum( kps[2, dataset_keypoints.index('right_hip')], kps[2, dataset_keypoints.index('left_hip')]) nose_idx = dataset_keypoints.index('nose') if sc_mid_shoulder > kp_thresh and kps[2, nose_idx] > kp_thresh: cv2.line( kp_mask, tuple(mid_shoulder), tuple(kps[:2, nose_idx]), color=colors[len(kp_lines)], thickness=2, lineType=cv2.LINE_AA) if sc_mid_shoulder > kp_thresh and sc_mid_hip > kp_thresh: cv2.line( kp_mask, tuple(mid_shoulder), tuple(mid_hip), color=colors[len(kp_lines) + 1], thickness=2, lineType=cv2.LINE_AA) # Draw the keypoints. for l in range(len(kp_lines)): i1 = kp_lines[l][0] i2 = kp_lines[l][1] p1 = kps[0, i1], kps[1, i1] p2 = kps[0, i2], kps[1, i2] if kps[2, i1] > kp_thresh and kps[2, i2] > kp_thresh: cv2.line( kp_mask, p1, p2, color=colors[l], thickness=2, lineType=cv2.LINE_AA) if kps[2, i1] > kp_thresh: cv2.circle( kp_mask, p1, radius=3, color=colors[l], thickness=-1, lineType=cv2.LINE_AA) if kps[2, i2] > kp_thresh: cv2.circle( kp_mask, p2, radius=3, color=colors[l], thickness=-1, lineType=cv2.LINE_AA) # Blend the keypoints. return cv2.addWeighted(img, 1.0 - alpha, kp_mask, alpha, 0)
Visualizes keypoints (adapted from vis_one_image). kps has shape (4, #keypoints) where 4 rows are (x, y, logit, prob).
Below is the the instruction that describes the task: ### Input: Visualizes keypoints (adapted from vis_one_image). kps has shape (4, #keypoints) where 4 rows are (x, y, logit, prob). ### Response: def vis_keypoints(img, kps, kp_thresh=2, alpha=0.7): """Visualizes keypoints (adapted from vis_one_image). kps has shape (4, #keypoints) where 4 rows are (x, y, logit, prob). """ dataset_keypoints = PersonKeypoints.NAMES kp_lines = PersonKeypoints.CONNECTIONS # Convert from plt 0-1 RGBA colors to 0-255 BGR colors for opencv. cmap = plt.get_cmap('rainbow') colors = [cmap(i) for i in np.linspace(0, 1, len(kp_lines) + 2)] colors = [(c[2] * 255, c[1] * 255, c[0] * 255) for c in colors] # Perform the drawing on a copy of the image, to allow for blending. kp_mask = np.copy(img) # Draw mid shoulder / mid hip first for better visualization. mid_shoulder = ( kps[:2, dataset_keypoints.index('right_shoulder')] + kps[:2, dataset_keypoints.index('left_shoulder')]) / 2.0 sc_mid_shoulder = np.minimum( kps[2, dataset_keypoints.index('right_shoulder')], kps[2, dataset_keypoints.index('left_shoulder')]) mid_hip = ( kps[:2, dataset_keypoints.index('right_hip')] + kps[:2, dataset_keypoints.index('left_hip')]) / 2.0 sc_mid_hip = np.minimum( kps[2, dataset_keypoints.index('right_hip')], kps[2, dataset_keypoints.index('left_hip')]) nose_idx = dataset_keypoints.index('nose') if sc_mid_shoulder > kp_thresh and kps[2, nose_idx] > kp_thresh: cv2.line( kp_mask, tuple(mid_shoulder), tuple(kps[:2, nose_idx]), color=colors[len(kp_lines)], thickness=2, lineType=cv2.LINE_AA) if sc_mid_shoulder > kp_thresh and sc_mid_hip > kp_thresh: cv2.line( kp_mask, tuple(mid_shoulder), tuple(mid_hip), color=colors[len(kp_lines) + 1], thickness=2, lineType=cv2.LINE_AA) # Draw the keypoints. for l in range(len(kp_lines)): i1 = kp_lines[l][0] i2 = kp_lines[l][1] p1 = kps[0, i1], kps[1, i1] p2 = kps[0, i2], kps[1, i2] if kps[2, i1] > kp_thresh and kps[2, i2] > kp_thresh: cv2.line( kp_mask, p1, p2, color=colors[l], thickness=2, lineType=cv2.LINE_AA) if kps[2, i1] > kp_thresh: cv2.circle( kp_mask, p1, radius=3, color=colors[l], thickness=-1, lineType=cv2.LINE_AA) if kps[2, i2] > kp_thresh: cv2.circle( kp_mask, p2, radius=3, color=colors[l], thickness=-1, lineType=cv2.LINE_AA) # Blend the keypoints. return cv2.addWeighted(img, 1.0 - alpha, kp_mask, alpha, 0)
def throw_invalid_quad_params(quad, QUADS, nparams): """ Exception raised when an invalid number of params in the quad code has been emmitted. """ raise InvalidICError(str(quad), "Invalid quad code params for '%s' (expected %i, but got %i)" % (quad, QUADS[quad][0], nparams) )
Exception raised when an invalid number of params in the quad code has been emmitted.
Below is the the instruction that describes the task: ### Input: Exception raised when an invalid number of params in the quad code has been emmitted. ### Response: def throw_invalid_quad_params(quad, QUADS, nparams): """ Exception raised when an invalid number of params in the quad code has been emmitted. """ raise InvalidICError(str(quad), "Invalid quad code params for '%s' (expected %i, but got %i)" % (quad, QUADS[quad][0], nparams) )
def create_index(idx_url, clean=False): """Configure the index to work with""" try: r = requests.get(idx_url) except requests.exceptions.ConnectionError: cause = "Error connecting to Elastic Search (index: %s)" % idx_url raise ElasticSearchError(cause=cause) if r.status_code != 200: # The index does not exist r = requests.put(idx_url) if r.status_code != 200: logger.info("Can't create index %s (%s)", idx_url, r.status_code) cause = "Error creating Elastic Search index %s" % idx_url raise ElasticSearchError(cause=cause) logger.info("Index %s created", idx_url) return True elif r.status_code == 200 and clean: requests.delete(idx_url) requests.put(idx_url) logger.info("Index deleted and created (index: %s)", idx_url) return True return False
Configure the index to work with
Below is the the instruction that describes the task: ### Input: Configure the index to work with ### Response: def create_index(idx_url, clean=False): """Configure the index to work with""" try: r = requests.get(idx_url) except requests.exceptions.ConnectionError: cause = "Error connecting to Elastic Search (index: %s)" % idx_url raise ElasticSearchError(cause=cause) if r.status_code != 200: # The index does not exist r = requests.put(idx_url) if r.status_code != 200: logger.info("Can't create index %s (%s)", idx_url, r.status_code) cause = "Error creating Elastic Search index %s" % idx_url raise ElasticSearchError(cause=cause) logger.info("Index %s created", idx_url) return True elif r.status_code == 200 and clean: requests.delete(idx_url) requests.put(idx_url) logger.info("Index deleted and created (index: %s)", idx_url) return True return False
def sample_rwalk(args): """ Return a new live point proposed by random walking away from an existing live point. Parameters ---------- u : `~numpy.ndarray` with shape (npdim,) Position of the initial sample. **This is a copy of an existing live point.** loglstar : float Ln(likelihood) bound. axes : `~numpy.ndarray` with shape (ndim, ndim) Axes used to propose new points. For random walks new positions are proposed using the :class:`~dynesty.bounding.Ellipsoid` whose shape is defined by axes. scale : float Value used to scale the provided axes. prior_transform : function Function transforming a sample from the a unit cube to the parameter space of interest according to the prior. loglikelihood : function Function returning ln(likelihood) given parameters as a 1-d `~numpy` array of length `ndim`. kwargs : dict A dictionary of additional method-specific parameters. Returns ------- u : `~numpy.ndarray` with shape (npdim,) Position of the final proposed point within the unit cube. v : `~numpy.ndarray` with shape (ndim,) Position of the final proposed point in the target parameter space. logl : float Ln(likelihood) of the final proposed point. nc : int Number of function calls used to generate the sample. blob : dict Collection of ancillary quantities used to tune :data:`scale`. """ # Unzipping. (u, loglstar, axes, scale, prior_transform, loglikelihood, kwargs) = args rstate = np.random # Periodicity. nonperiodic = kwargs.get('nonperiodic', None) # Setup. n = len(u) walks = kwargs.get('walks', 25) # number of steps accept = 0 reject = 0 fail = 0 nfail = 0 nc = 0 ncall = 0 drhat, dr, du, u_prop, logl_prop = np.nan, np.nan, np.nan, np.nan, np.nan while nc < walks or accept == 0: while True: # Check scale-factor. if scale == 0.: raise RuntimeError("The random walk sampling is stuck! " "Some useful output quantities:\n" "u: {0}\n" "drhat: {1}\n" "dr: {2}\n" "du: {3}\n" "u_prop: {4}\n" "loglstar: {5}\n" "logl_prop: {6}\n" "axes: {7}\n" "scale: {8}." .format(u, drhat, dr, du, u_prop, loglstar, logl_prop, axes, scale)) # Propose a direction on the unit n-sphere. drhat = rstate.randn(n) drhat /= linalg.norm(drhat) # Scale based on dimensionality. dr = drhat * rstate.rand()**(1./n) # Transform to proposal distribution. du = np.dot(axes, dr) u_prop = u + scale * du # Check unit cube constraints. if unitcheck(u_prop, nonperiodic): break else: fail += 1 nfail += 1 # Check if we're stuck generating bad numbers. if fail > 100 * walks: warnings.warn("Random number generation appears to be " "extremely inefficient. Adjusting the " "scale-factor accordingly.") fail = 0 scale *= math.exp(-1. / n) # Check proposed point. v_prop = prior_transform(np.array(u_prop)) logl_prop = loglikelihood(np.array(v_prop)) if logl_prop >= loglstar: u = u_prop v = v_prop logl = logl_prop accept += 1 else: reject += 1 nc += 1 ncall += 1 # Check if we're stuck generating bad points. if nc > 50 * walks: scale *= math.exp(-1. / n) warnings.warn("Random walk proposals appear to be " "extremely inefficient. Adjusting the " "scale-factor accordingly.") nc, accept, reject = 0, 0, 0 # reset values blob = {'accept': accept, 'reject': reject, 'fail': nfail, 'scale': scale} return u, v, logl, ncall, blob
Return a new live point proposed by random walking away from an existing live point. Parameters ---------- u : `~numpy.ndarray` with shape (npdim,) Position of the initial sample. **This is a copy of an existing live point.** loglstar : float Ln(likelihood) bound. axes : `~numpy.ndarray` with shape (ndim, ndim) Axes used to propose new points. For random walks new positions are proposed using the :class:`~dynesty.bounding.Ellipsoid` whose shape is defined by axes. scale : float Value used to scale the provided axes. prior_transform : function Function transforming a sample from the a unit cube to the parameter space of interest according to the prior. loglikelihood : function Function returning ln(likelihood) given parameters as a 1-d `~numpy` array of length `ndim`. kwargs : dict A dictionary of additional method-specific parameters. Returns ------- u : `~numpy.ndarray` with shape (npdim,) Position of the final proposed point within the unit cube. v : `~numpy.ndarray` with shape (ndim,) Position of the final proposed point in the target parameter space. logl : float Ln(likelihood) of the final proposed point. nc : int Number of function calls used to generate the sample. blob : dict Collection of ancillary quantities used to tune :data:`scale`.
Below is the the instruction that describes the task: ### Input: Return a new live point proposed by random walking away from an existing live point. Parameters ---------- u : `~numpy.ndarray` with shape (npdim,) Position of the initial sample. **This is a copy of an existing live point.** loglstar : float Ln(likelihood) bound. axes : `~numpy.ndarray` with shape (ndim, ndim) Axes used to propose new points. For random walks new positions are proposed using the :class:`~dynesty.bounding.Ellipsoid` whose shape is defined by axes. scale : float Value used to scale the provided axes. prior_transform : function Function transforming a sample from the a unit cube to the parameter space of interest according to the prior. loglikelihood : function Function returning ln(likelihood) given parameters as a 1-d `~numpy` array of length `ndim`. kwargs : dict A dictionary of additional method-specific parameters. Returns ------- u : `~numpy.ndarray` with shape (npdim,) Position of the final proposed point within the unit cube. v : `~numpy.ndarray` with shape (ndim,) Position of the final proposed point in the target parameter space. logl : float Ln(likelihood) of the final proposed point. nc : int Number of function calls used to generate the sample. blob : dict Collection of ancillary quantities used to tune :data:`scale`. ### Response: def sample_rwalk(args): """ Return a new live point proposed by random walking away from an existing live point. Parameters ---------- u : `~numpy.ndarray` with shape (npdim,) Position of the initial sample. **This is a copy of an existing live point.** loglstar : float Ln(likelihood) bound. axes : `~numpy.ndarray` with shape (ndim, ndim) Axes used to propose new points. For random walks new positions are proposed using the :class:`~dynesty.bounding.Ellipsoid` whose shape is defined by axes. scale : float Value used to scale the provided axes. prior_transform : function Function transforming a sample from the a unit cube to the parameter space of interest according to the prior. loglikelihood : function Function returning ln(likelihood) given parameters as a 1-d `~numpy` array of length `ndim`. kwargs : dict A dictionary of additional method-specific parameters. Returns ------- u : `~numpy.ndarray` with shape (npdim,) Position of the final proposed point within the unit cube. v : `~numpy.ndarray` with shape (ndim,) Position of the final proposed point in the target parameter space. logl : float Ln(likelihood) of the final proposed point. nc : int Number of function calls used to generate the sample. blob : dict Collection of ancillary quantities used to tune :data:`scale`. """ # Unzipping. (u, loglstar, axes, scale, prior_transform, loglikelihood, kwargs) = args rstate = np.random # Periodicity. nonperiodic = kwargs.get('nonperiodic', None) # Setup. n = len(u) walks = kwargs.get('walks', 25) # number of steps accept = 0 reject = 0 fail = 0 nfail = 0 nc = 0 ncall = 0 drhat, dr, du, u_prop, logl_prop = np.nan, np.nan, np.nan, np.nan, np.nan while nc < walks or accept == 0: while True: # Check scale-factor. if scale == 0.: raise RuntimeError("The random walk sampling is stuck! " "Some useful output quantities:\n" "u: {0}\n" "drhat: {1}\n" "dr: {2}\n" "du: {3}\n" "u_prop: {4}\n" "loglstar: {5}\n" "logl_prop: {6}\n" "axes: {7}\n" "scale: {8}." .format(u, drhat, dr, du, u_prop, loglstar, logl_prop, axes, scale)) # Propose a direction on the unit n-sphere. drhat = rstate.randn(n) drhat /= linalg.norm(drhat) # Scale based on dimensionality. dr = drhat * rstate.rand()**(1./n) # Transform to proposal distribution. du = np.dot(axes, dr) u_prop = u + scale * du # Check unit cube constraints. if unitcheck(u_prop, nonperiodic): break else: fail += 1 nfail += 1 # Check if we're stuck generating bad numbers. if fail > 100 * walks: warnings.warn("Random number generation appears to be " "extremely inefficient. Adjusting the " "scale-factor accordingly.") fail = 0 scale *= math.exp(-1. / n) # Check proposed point. v_prop = prior_transform(np.array(u_prop)) logl_prop = loglikelihood(np.array(v_prop)) if logl_prop >= loglstar: u = u_prop v = v_prop logl = logl_prop accept += 1 else: reject += 1 nc += 1 ncall += 1 # Check if we're stuck generating bad points. if nc > 50 * walks: scale *= math.exp(-1. / n) warnings.warn("Random walk proposals appear to be " "extremely inefficient. Adjusting the " "scale-factor accordingly.") nc, accept, reject = 0, 0, 0 # reset values blob = {'accept': accept, 'reject': reject, 'fail': nfail, 'scale': scale} return u, v, logl, ncall, blob
def SmartStubAdapter(host='localhost', port=443, path='/sdk', url=None, sock=None, poolSize=5, certFile=None, certKeyFile=None, httpProxyHost=None, httpProxyPort=80, sslProxyPath=None, thumbprint=None, cacertsFile=None, preferredApiVersions=None, acceptCompressedResponses=True, connectionPoolTimeout=CONNECTION_POOL_IDLE_TIMEOUT_SEC, samlToken=None, sslContext=None): """ Determine the most preferred API version supported by the specified server, then create a soap stub adapter using that version The parameters are the same as for pyVmomi.SoapStubAdapter except for version which is renamed to prefferedApiVersions @param preferredApiVersions: Acceptable API version(s) (e.g. vim.version.version3) If a list of versions is specified the versions should be ordered from most to least preferred. If None is specified, the list of versions support by pyVmomi will be used. @type preferredApiVersions: string or string list """ if preferredApiVersions is None: preferredApiVersions = GetServiceVersions('vim25') sslContext = localSslFixup(host, sslContext) supportedVersion = __FindSupportedVersion('https' if port > 0 else 'http', host, port, path, preferredApiVersions, sslContext) if supportedVersion is None: raise Exception("%s:%s is not a VIM server" % (host, port)) return SoapStubAdapter(host=host, port=port, path=path, url=url, sock=sock, poolSize=poolSize, certFile=certFile, certKeyFile=certKeyFile, httpProxyHost=httpProxyHost, httpProxyPort=httpProxyPort, sslProxyPath=sslProxyPath, thumbprint=thumbprint, cacertsFile=cacertsFile, version=supportedVersion, acceptCompressedResponses=acceptCompressedResponses, connectionPoolTimeout=connectionPoolTimeout, samlToken=samlToken, sslContext=sslContext)
Determine the most preferred API version supported by the specified server, then create a soap stub adapter using that version The parameters are the same as for pyVmomi.SoapStubAdapter except for version which is renamed to prefferedApiVersions @param preferredApiVersions: Acceptable API version(s) (e.g. vim.version.version3) If a list of versions is specified the versions should be ordered from most to least preferred. If None is specified, the list of versions support by pyVmomi will be used. @type preferredApiVersions: string or string list
Below is the the instruction that describes the task: ### Input: Determine the most preferred API version supported by the specified server, then create a soap stub adapter using that version The parameters are the same as for pyVmomi.SoapStubAdapter except for version which is renamed to prefferedApiVersions @param preferredApiVersions: Acceptable API version(s) (e.g. vim.version.version3) If a list of versions is specified the versions should be ordered from most to least preferred. If None is specified, the list of versions support by pyVmomi will be used. @type preferredApiVersions: string or string list ### Response: def SmartStubAdapter(host='localhost', port=443, path='/sdk', url=None, sock=None, poolSize=5, certFile=None, certKeyFile=None, httpProxyHost=None, httpProxyPort=80, sslProxyPath=None, thumbprint=None, cacertsFile=None, preferredApiVersions=None, acceptCompressedResponses=True, connectionPoolTimeout=CONNECTION_POOL_IDLE_TIMEOUT_SEC, samlToken=None, sslContext=None): """ Determine the most preferred API version supported by the specified server, then create a soap stub adapter using that version The parameters are the same as for pyVmomi.SoapStubAdapter except for version which is renamed to prefferedApiVersions @param preferredApiVersions: Acceptable API version(s) (e.g. vim.version.version3) If a list of versions is specified the versions should be ordered from most to least preferred. If None is specified, the list of versions support by pyVmomi will be used. @type preferredApiVersions: string or string list """ if preferredApiVersions is None: preferredApiVersions = GetServiceVersions('vim25') sslContext = localSslFixup(host, sslContext) supportedVersion = __FindSupportedVersion('https' if port > 0 else 'http', host, port, path, preferredApiVersions, sslContext) if supportedVersion is None: raise Exception("%s:%s is not a VIM server" % (host, port)) return SoapStubAdapter(host=host, port=port, path=path, url=url, sock=sock, poolSize=poolSize, certFile=certFile, certKeyFile=certKeyFile, httpProxyHost=httpProxyHost, httpProxyPort=httpProxyPort, sslProxyPath=sslProxyPath, thumbprint=thumbprint, cacertsFile=cacertsFile, version=supportedVersion, acceptCompressedResponses=acceptCompressedResponses, connectionPoolTimeout=connectionPoolTimeout, samlToken=samlToken, sslContext=sslContext)
def request(self, name, content={}, namespace=None): """ Do a SOAP request and returns the result. Simple wrapper arround pythonzimbra functions :param name: ex: 'Auth' for performing an 'AuthRequest' :param content: a dict formatted pythonzimbra-style for request :param namespace: (optional), the namespace, if different from the client's :returns: a dict with response """ if not namespace: namespace = self.NAMESPACE req_name = name+'Request' resp_name = name+'Response' req = pythonzimbra.request_xml.RequestXml() resp = pythonzimbra.response_xml.ResponseXml() if self._session.is_logged_in(): req.set_auth_token(self._session.authToken) req.add_request(req_name, content, namespace) try: self.com.send_request(req, resp) except HTTPError as e: if resp: raise ZimbraSoapServerError(e.req, e.resp) else: raise try: resp_content = resp.get_response() return resp_content[resp_name] except KeyError: if 'Fault' in resp_content: raise ZimbraSoapServerError(req, resp) raise ZimbraSoapUnexpectedResponse( req, resp, 'Cannot find {} in response "{}"'.format( resp_name, resp.get_response())) return resp_content
Do a SOAP request and returns the result. Simple wrapper arround pythonzimbra functions :param name: ex: 'Auth' for performing an 'AuthRequest' :param content: a dict formatted pythonzimbra-style for request :param namespace: (optional), the namespace, if different from the client's :returns: a dict with response
Below is the the instruction that describes the task: ### Input: Do a SOAP request and returns the result. Simple wrapper arround pythonzimbra functions :param name: ex: 'Auth' for performing an 'AuthRequest' :param content: a dict formatted pythonzimbra-style for request :param namespace: (optional), the namespace, if different from the client's :returns: a dict with response ### Response: def request(self, name, content={}, namespace=None): """ Do a SOAP request and returns the result. Simple wrapper arround pythonzimbra functions :param name: ex: 'Auth' for performing an 'AuthRequest' :param content: a dict formatted pythonzimbra-style for request :param namespace: (optional), the namespace, if different from the client's :returns: a dict with response """ if not namespace: namespace = self.NAMESPACE req_name = name+'Request' resp_name = name+'Response' req = pythonzimbra.request_xml.RequestXml() resp = pythonzimbra.response_xml.ResponseXml() if self._session.is_logged_in(): req.set_auth_token(self._session.authToken) req.add_request(req_name, content, namespace) try: self.com.send_request(req, resp) except HTTPError as e: if resp: raise ZimbraSoapServerError(e.req, e.resp) else: raise try: resp_content = resp.get_response() return resp_content[resp_name] except KeyError: if 'Fault' in resp_content: raise ZimbraSoapServerError(req, resp) raise ZimbraSoapUnexpectedResponse( req, resp, 'Cannot find {} in response "{}"'.format( resp_name, resp.get_response())) return resp_content
def GetCountStopTimes(self): """Return the number of stops made by this trip.""" cursor = self._schedule._connection.cursor() cursor.execute( 'SELECT count(*) FROM stop_times WHERE trip_id=?', (self.trip_id,)) return cursor.fetchone()[0]
Return the number of stops made by this trip.
Below is the the instruction that describes the task: ### Input: Return the number of stops made by this trip. ### Response: def GetCountStopTimes(self): """Return the number of stops made by this trip.""" cursor = self._schedule._connection.cursor() cursor.execute( 'SELECT count(*) FROM stop_times WHERE trip_id=?', (self.trip_id,)) return cursor.fetchone()[0]
def load_friends(self): """Fetches the MAL user friends page and sets the current user's friends attributes. :rtype: :class:`.User` :return: Current user object. """ user_friends = self.session.session.get(u'http://myanimelist.net/profile/' + utilities.urlencode(self.username) + u'/friends').text self.set(self.parse_friends(utilities.get_clean_dom(user_friends))) return self
Fetches the MAL user friends page and sets the current user's friends attributes. :rtype: :class:`.User` :return: Current user object.
Below is the the instruction that describes the task: ### Input: Fetches the MAL user friends page and sets the current user's friends attributes. :rtype: :class:`.User` :return: Current user object. ### Response: def load_friends(self): """Fetches the MAL user friends page and sets the current user's friends attributes. :rtype: :class:`.User` :return: Current user object. """ user_friends = self.session.session.get(u'http://myanimelist.net/profile/' + utilities.urlencode(self.username) + u'/friends').text self.set(self.parse_friends(utilities.get_clean_dom(user_friends))) return self
def do_import(self): """Handle import files or streams passed with '-i'.""" tmp_import = None try: if self.args[0].startswith('@') and self.args[0] != '@-': import_file = os.path.expanduser(self.args[0][1:]) if not os.path.isfile(import_file): self.parser.error("File not found (or not a file): {}".format(import_file)) args = (xmlrpc.NOHASH, os.path.abspath(import_file)) else: script_text = '\n'.join(self.args + ['']) if script_text == '@-\n': script_text = sys.stdin.read() with tempfile.NamedTemporaryFile(suffix='.rc', prefix='rtxmlrpc-', delete=False) as handle: handle.write(script_text) tmp_import = handle.name args = (xmlrpc.NOHASH, tmp_import) self.execute(self.open(), 'import', args) finally: if tmp_import and os.path.exists(tmp_import): os.remove(tmp_import)
Handle import files or streams passed with '-i'.
Below is the the instruction that describes the task: ### Input: Handle import files or streams passed with '-i'. ### Response: def do_import(self): """Handle import files or streams passed with '-i'.""" tmp_import = None try: if self.args[0].startswith('@') and self.args[0] != '@-': import_file = os.path.expanduser(self.args[0][1:]) if not os.path.isfile(import_file): self.parser.error("File not found (or not a file): {}".format(import_file)) args = (xmlrpc.NOHASH, os.path.abspath(import_file)) else: script_text = '\n'.join(self.args + ['']) if script_text == '@-\n': script_text = sys.stdin.read() with tempfile.NamedTemporaryFile(suffix='.rc', prefix='rtxmlrpc-', delete=False) as handle: handle.write(script_text) tmp_import = handle.name args = (xmlrpc.NOHASH, tmp_import) self.execute(self.open(), 'import', args) finally: if tmp_import and os.path.exists(tmp_import): os.remove(tmp_import)
def _get_private_key(cls, private_key_path, private_key_passphrase): """Get Snowflake private key by path or None.""" if private_key_path is None or private_key_passphrase is None: return None with open(private_key_path, 'rb') as key: p_key = serialization.load_pem_private_key( key.read(), password=private_key_passphrase.encode(), backend=default_backend()) return p_key.private_bytes( encoding=serialization.Encoding.DER, format=serialization.PrivateFormat.PKCS8, encryption_algorithm=serialization.NoEncryption())
Get Snowflake private key by path or None.
Below is the the instruction that describes the task: ### Input: Get Snowflake private key by path or None. ### Response: def _get_private_key(cls, private_key_path, private_key_passphrase): """Get Snowflake private key by path or None.""" if private_key_path is None or private_key_passphrase is None: return None with open(private_key_path, 'rb') as key: p_key = serialization.load_pem_private_key( key.read(), password=private_key_passphrase.encode(), backend=default_backend()) return p_key.private_bytes( encoding=serialization.Encoding.DER, format=serialization.PrivateFormat.PKCS8, encryption_algorithm=serialization.NoEncryption())
def generate_code(meta, prefix=None, node=False, min=False): """ Generate res.js Args: meta: tuple(url_prefix, auth_header, resources) or metadata of API Returns: res.js source code """ if isinstance(meta, dict): url_prefix, auth_header, resources = parse_meta(meta) else: url_prefix, auth_header, resources = meta if prefix is not None: url_prefix = prefix core = render_core(url_prefix, auth_header, resources) if min: filename = 'res.web.min.js' else: filename = 'res.web.js' if node: filename = 'res.node.js' base = read_file(filename) return base.replace('"#res.core.js#"', core)
Generate res.js Args: meta: tuple(url_prefix, auth_header, resources) or metadata of API Returns: res.js source code
Below is the the instruction that describes the task: ### Input: Generate res.js Args: meta: tuple(url_prefix, auth_header, resources) or metadata of API Returns: res.js source code ### Response: def generate_code(meta, prefix=None, node=False, min=False): """ Generate res.js Args: meta: tuple(url_prefix, auth_header, resources) or metadata of API Returns: res.js source code """ if isinstance(meta, dict): url_prefix, auth_header, resources = parse_meta(meta) else: url_prefix, auth_header, resources = meta if prefix is not None: url_prefix = prefix core = render_core(url_prefix, auth_header, resources) if min: filename = 'res.web.min.js' else: filename = 'res.web.js' if node: filename = 'res.node.js' base = read_file(filename) return base.replace('"#res.core.js#"', core)
def run(self, **kwargs): """ Runs an instance of a scheduled task """ log = self.get_logger(**kwargs) failures = ScheduleFailure.objects log.info("Attempting to requeue <%s> failed schedules" % failures.count()) for failure in failures.iterator(): schedule = Schedule.objects.values( "id", "auth_token", "endpoint", "payload" ) schedule = schedule.get(id=failure.schedule_id) schedule["schedule_id"] = str(schedule.pop("id")) # Cleanup the failure before requeueing it. failure.delete() DeliverTask.apply_async(kwargs=schedule)
Runs an instance of a scheduled task
Below is the the instruction that describes the task: ### Input: Runs an instance of a scheduled task ### Response: def run(self, **kwargs): """ Runs an instance of a scheduled task """ log = self.get_logger(**kwargs) failures = ScheduleFailure.objects log.info("Attempting to requeue <%s> failed schedules" % failures.count()) for failure in failures.iterator(): schedule = Schedule.objects.values( "id", "auth_token", "endpoint", "payload" ) schedule = schedule.get(id=failure.schedule_id) schedule["schedule_id"] = str(schedule.pop("id")) # Cleanup the failure before requeueing it. failure.delete() DeliverTask.apply_async(kwargs=schedule)
def dl_pb_file(inputs): """ Download a file from physiobank. The input args are to be unpacked for the use of multiprocessing map, because python2 doesn't have starmap... """ basefile, subdir, db, dl_dir, keep_subdirs, overwrite = inputs # Full url of file url = posixpath.join(config.db_index_url, db, subdir, basefile) # Supposed size of the file remote_file_size = _remote_file_size(url) # Figure out where the file should be locally if keep_subdirs: dldir = os.path.join(dl_dir, subdir) else: dldir = dl_dir local_file = os.path.join(dldir, basefile) # The file exists locally. if os.path.isfile(local_file): # Redownload regardless if overwrite: dl_full_file(url, local_file) # Process accordingly. else: local_file_size = os.path.getsize(local_file) # Local file is smaller than it should be. Append it. if local_file_size < remote_file_size: print('Detected partially downloaded file: %s Appending file...' % local_file) headers = {"Range": "bytes="+str(local_file_size)+"-", 'Accept-Encoding': '*'} r = requests.get(url, headers=headers, stream=True) print('headers: ', headers) print('r content length: ', len(r.content)) with open(local_file, 'ba') as writefile: writefile.write(r.content) print('Done appending.') # Local file is larger than it should be. Redownload. elif local_file_size > remote_file_size: dl_full_file(url, local_file) # If they're the same size, do nothing. # The file doesn't exist. Download it. else: dl_full_file(url, local_file) return
Download a file from physiobank. The input args are to be unpacked for the use of multiprocessing map, because python2 doesn't have starmap...
Below is the the instruction that describes the task: ### Input: Download a file from physiobank. The input args are to be unpacked for the use of multiprocessing map, because python2 doesn't have starmap... ### Response: def dl_pb_file(inputs): """ Download a file from physiobank. The input args are to be unpacked for the use of multiprocessing map, because python2 doesn't have starmap... """ basefile, subdir, db, dl_dir, keep_subdirs, overwrite = inputs # Full url of file url = posixpath.join(config.db_index_url, db, subdir, basefile) # Supposed size of the file remote_file_size = _remote_file_size(url) # Figure out where the file should be locally if keep_subdirs: dldir = os.path.join(dl_dir, subdir) else: dldir = dl_dir local_file = os.path.join(dldir, basefile) # The file exists locally. if os.path.isfile(local_file): # Redownload regardless if overwrite: dl_full_file(url, local_file) # Process accordingly. else: local_file_size = os.path.getsize(local_file) # Local file is smaller than it should be. Append it. if local_file_size < remote_file_size: print('Detected partially downloaded file: %s Appending file...' % local_file) headers = {"Range": "bytes="+str(local_file_size)+"-", 'Accept-Encoding': '*'} r = requests.get(url, headers=headers, stream=True) print('headers: ', headers) print('r content length: ', len(r.content)) with open(local_file, 'ba') as writefile: writefile.write(r.content) print('Done appending.') # Local file is larger than it should be. Redownload. elif local_file_size > remote_file_size: dl_full_file(url, local_file) # If they're the same size, do nothing. # The file doesn't exist. Download it. else: dl_full_file(url, local_file) return
def create(self, **kwargs): """Create a new Application. Args: **kwargs: Arbitrary keyword arguments, including: name (str): A name for the new Application. Returns: A round.Application object if successful. """ resource = self.resource.create(kwargs) if 'admin_token' in kwargs: resource.context.authorize('Gem-Application', api_token=resource.api_token, admin_token=kwargs['admin_token']) app = self.wrap(resource) return self.add(app)
Create a new Application. Args: **kwargs: Arbitrary keyword arguments, including: name (str): A name for the new Application. Returns: A round.Application object if successful.
Below is the the instruction that describes the task: ### Input: Create a new Application. Args: **kwargs: Arbitrary keyword arguments, including: name (str): A name for the new Application. Returns: A round.Application object if successful. ### Response: def create(self, **kwargs): """Create a new Application. Args: **kwargs: Arbitrary keyword arguments, including: name (str): A name for the new Application. Returns: A round.Application object if successful. """ resource = self.resource.create(kwargs) if 'admin_token' in kwargs: resource.context.authorize('Gem-Application', api_token=resource.api_token, admin_token=kwargs['admin_token']) app = self.wrap(resource) return self.add(app)
def save_storage(self, instance, schema): """Save basic:json values to a Storage collection.""" for field_schema, fields in iterate_fields(instance, schema): name = field_schema['name'] value = fields[name] if field_schema.get('type', '').startswith('basic:json:'): if value and not self.pk: raise ValidationError( 'Data object must be `created` before creating `basic:json:` fields') if isinstance(value, int): # already in Storage continue if isinstance(value, str): file_path = self.location.get_path(filename=value) # pylint: disable=no-member if os.path.isfile(file_path): try: with open(file_path) as file_handler: value = json.load(file_handler) except json.JSONDecodeError: with open(file_path) as file_handler: content = file_handler.read() content = content.rstrip() raise ValidationError( "Value of '{}' must be a valid JSON, current: {}".format(name, content) ) storage = self.storages.create( # pylint: disable=no-member name='Storage for data id {}'.format(self.pk), contributor=self.contributor, json=value, ) # `value` is copied by value, so `fields[name]` must be changed fields[name] = storage.pk
Save basic:json values to a Storage collection.
Below is the the instruction that describes the task: ### Input: Save basic:json values to a Storage collection. ### Response: def save_storage(self, instance, schema): """Save basic:json values to a Storage collection.""" for field_schema, fields in iterate_fields(instance, schema): name = field_schema['name'] value = fields[name] if field_schema.get('type', '').startswith('basic:json:'): if value and not self.pk: raise ValidationError( 'Data object must be `created` before creating `basic:json:` fields') if isinstance(value, int): # already in Storage continue if isinstance(value, str): file_path = self.location.get_path(filename=value) # pylint: disable=no-member if os.path.isfile(file_path): try: with open(file_path) as file_handler: value = json.load(file_handler) except json.JSONDecodeError: with open(file_path) as file_handler: content = file_handler.read() content = content.rstrip() raise ValidationError( "Value of '{}' must be a valid JSON, current: {}".format(name, content) ) storage = self.storages.create( # pylint: disable=no-member name='Storage for data id {}'.format(self.pk), contributor=self.contributor, json=value, ) # `value` is copied by value, so `fields[name]` must be changed fields[name] = storage.pk
def parse_scalar(scalar_data, version): """ Parse a Project Haystack scalar in ZINC format. """ try: return hs_scalar[version].parseString(scalar_data, parseAll=True)[0] except pp.ParseException as pe: # Raise a new exception with the appropriate line number. raise ZincParseException( 'Failed to parse scalar: %s' % reformat_exception(pe), scalar_data, 1, pe.col) except: LOG.debug('Failing scalar data: %r (version %r)', scalar_data, version)
Parse a Project Haystack scalar in ZINC format.
Below is the the instruction that describes the task: ### Input: Parse a Project Haystack scalar in ZINC format. ### Response: def parse_scalar(scalar_data, version): """ Parse a Project Haystack scalar in ZINC format. """ try: return hs_scalar[version].parseString(scalar_data, parseAll=True)[0] except pp.ParseException as pe: # Raise a new exception with the appropriate line number. raise ZincParseException( 'Failed to parse scalar: %s' % reformat_exception(pe), scalar_data, 1, pe.col) except: LOG.debug('Failing scalar data: %r (version %r)', scalar_data, version)
def add_option(self, K=None, price=None, St=None, kind="call", pos="long"): """Add an option to the object's `options` container.""" kinds = { "call": Call, "Call": Call, "c": Call, "C": Call, "put": Put, "Put": Put, "p": Put, "P": Put, } St = self.St if St is None else St option = kinds[kind](St=St, K=K, price=price, pos=pos) self.options.append(option)
Add an option to the object's `options` container.
Below is the the instruction that describes the task: ### Input: Add an option to the object's `options` container. ### Response: def add_option(self, K=None, price=None, St=None, kind="call", pos="long"): """Add an option to the object's `options` container.""" kinds = { "call": Call, "Call": Call, "c": Call, "C": Call, "put": Put, "Put": Put, "p": Put, "P": Put, } St = self.St if St is None else St option = kinds[kind](St=St, K=K, price=price, pos=pos) self.options.append(option)
def create_rackservers(self): """Get an instance of rackservers services facade.""" return RackServers( self.networkapi_url, self.user, self.password, self.user_ldap)
Get an instance of rackservers services facade.
Below is the the instruction that describes the task: ### Input: Get an instance of rackservers services facade. ### Response: def create_rackservers(self): """Get an instance of rackservers services facade.""" return RackServers( self.networkapi_url, self.user, self.password, self.user_ldap)
def generate_tags_multiple_files(input_files, tag, ignore_tags, ns=None): """ Calls xmltag generator for multiple files. """ return itertools.chain.from_iterable([generate_xmltags( fn, tag, ignore_tags, ns) for fn in input_files])
Calls xmltag generator for multiple files.
Below is the the instruction that describes the task: ### Input: Calls xmltag generator for multiple files. ### Response: def generate_tags_multiple_files(input_files, tag, ignore_tags, ns=None): """ Calls xmltag generator for multiple files. """ return itertools.chain.from_iterable([generate_xmltags( fn, tag, ignore_tags, ns) for fn in input_files])
def _copy_docstring(original_fn, new_fn): """Wraps new_fn with the doc of original_fn.""" original_spec = tf_inspect.getfullargspec(original_fn) new_spec = tf_inspect.getfullargspec(new_fn) if original_spec != new_spec: raise ValueError( 'Arg specs do not match: original={}, new={}, fn={}'.format( original_spec, new_spec, original_fn)) @decorator.decorator def wrap(wrapped_fn, *args, **kwargs): del wrapped_fn return new_fn(*args, **kwargs) return wrap(original_fn)
Wraps new_fn with the doc of original_fn.
Below is the the instruction that describes the task: ### Input: Wraps new_fn with the doc of original_fn. ### Response: def _copy_docstring(original_fn, new_fn): """Wraps new_fn with the doc of original_fn.""" original_spec = tf_inspect.getfullargspec(original_fn) new_spec = tf_inspect.getfullargspec(new_fn) if original_spec != new_spec: raise ValueError( 'Arg specs do not match: original={}, new={}, fn={}'.format( original_spec, new_spec, original_fn)) @decorator.decorator def wrap(wrapped_fn, *args, **kwargs): del wrapped_fn return new_fn(*args, **kwargs) return wrap(original_fn)
def _get_names(self): """Get the names of the objects to include in the table. :returns: The names of the objects to include. :rtype: generator(str) """ for line in self.content: line = line.strip() if line and re.search("^[a-zA-Z0-9]", line): yield line
Get the names of the objects to include in the table. :returns: The names of the objects to include. :rtype: generator(str)
Below is the the instruction that describes the task: ### Input: Get the names of the objects to include in the table. :returns: The names of the objects to include. :rtype: generator(str) ### Response: def _get_names(self): """Get the names of the objects to include in the table. :returns: The names of the objects to include. :rtype: generator(str) """ for line in self.content: line = line.strip() if line and re.search("^[a-zA-Z0-9]", line): yield line
def _load_cache(self): """Load existing cache and merge for updating if required.""" if not self._disable_cache and os.path.exists(self._cache_path): _LOGGER.debug("Cache found at: %s", self._cache_path) loaded_cache = UTILS.load_cache(self._cache_path) UTILS.update(self._cache, loaded_cache) self._save_cache()
Load existing cache and merge for updating if required.
Below is the the instruction that describes the task: ### Input: Load existing cache and merge for updating if required. ### Response: def _load_cache(self): """Load existing cache and merge for updating if required.""" if not self._disable_cache and os.path.exists(self._cache_path): _LOGGER.debug("Cache found at: %s", self._cache_path) loaded_cache = UTILS.load_cache(self._cache_path) UTILS.update(self._cache, loaded_cache) self._save_cache()
def write(self): """If data exists for the entity, writes it to disk as a .JSON file with the url-encoded URI as the filename and returns True. Else, returns False.""" if (self.data): dataPath = self.client.local_dir / (urllib.parse.quote_plus(self.uri)+'.json') with dataPath.open(mode='w') as dump_file: json.dump(self.data, dump_file) dump_file.close() logger.info('Wrote ' + self.uri + ' to file') return True else: logger.warning('No data to write for ' + self.uri) return False
If data exists for the entity, writes it to disk as a .JSON file with the url-encoded URI as the filename and returns True. Else, returns False.
Below is the the instruction that describes the task: ### Input: If data exists for the entity, writes it to disk as a .JSON file with the url-encoded URI as the filename and returns True. Else, returns False. ### Response: def write(self): """If data exists for the entity, writes it to disk as a .JSON file with the url-encoded URI as the filename and returns True. Else, returns False.""" if (self.data): dataPath = self.client.local_dir / (urllib.parse.quote_plus(self.uri)+'.json') with dataPath.open(mode='w') as dump_file: json.dump(self.data, dump_file) dump_file.close() logger.info('Wrote ' + self.uri + ' to file') return True else: logger.warning('No data to write for ' + self.uri) return False
def schema_delete_field(cls, key): """Deletes a field.""" root = '/'.join([API_ROOT, 'schemas', cls.__name__]) payload = { 'className': cls.__name__, 'fields': { key: { '__op': 'Delete' } } } cls.PUT(root, **payload)
Deletes a field.
Below is the the instruction that describes the task: ### Input: Deletes a field. ### Response: def schema_delete_field(cls, key): """Deletes a field.""" root = '/'.join([API_ROOT, 'schemas', cls.__name__]) payload = { 'className': cls.__name__, 'fields': { key: { '__op': 'Delete' } } } cls.PUT(root, **payload)
def wr_dat_files(self, expanded=False, write_dir=''): """ Write each of the specified dat files """ # Get the set of dat files to be written, and # the channels to be written to each file. file_names, dat_channels = describe_list_indices(self.file_name) # Get the fmt and byte offset corresponding to each dat file DAT_FMTS = {} dat_offsets = {} for fn in file_names: DAT_FMTS[fn] = self.fmt[dat_channels[fn][0]] # byte_offset may not be present if self.byte_offset is None: dat_offsets[fn] = 0 else: dat_offsets[fn] = self.byte_offset[dat_channels[fn][0]] # Write the dat files if expanded: for fn in file_names: wr_dat_file(fn, DAT_FMTS[fn], None , dat_offsets[fn], True, [self.e_d_signal[ch] for ch in dat_channels[fn]], self.samps_per_frame, write_dir=write_dir) else: # Create a copy to prevent overwrite dsig = self.d_signal.copy() for fn in file_names: wr_dat_file(fn, DAT_FMTS[fn], dsig[:, dat_channels[fn][0]:dat_channels[fn][-1]+1], dat_offsets[fn], write_dir=write_dir)
Write each of the specified dat files
Below is the the instruction that describes the task: ### Input: Write each of the specified dat files ### Response: def wr_dat_files(self, expanded=False, write_dir=''): """ Write each of the specified dat files """ # Get the set of dat files to be written, and # the channels to be written to each file. file_names, dat_channels = describe_list_indices(self.file_name) # Get the fmt and byte offset corresponding to each dat file DAT_FMTS = {} dat_offsets = {} for fn in file_names: DAT_FMTS[fn] = self.fmt[dat_channels[fn][0]] # byte_offset may not be present if self.byte_offset is None: dat_offsets[fn] = 0 else: dat_offsets[fn] = self.byte_offset[dat_channels[fn][0]] # Write the dat files if expanded: for fn in file_names: wr_dat_file(fn, DAT_FMTS[fn], None , dat_offsets[fn], True, [self.e_d_signal[ch] for ch in dat_channels[fn]], self.samps_per_frame, write_dir=write_dir) else: # Create a copy to prevent overwrite dsig = self.d_signal.copy() for fn in file_names: wr_dat_file(fn, DAT_FMTS[fn], dsig[:, dat_channels[fn][0]:dat_channels[fn][-1]+1], dat_offsets[fn], write_dir=write_dir)
def master_main(painter, router, select, delay): """ Loop until CTRL+C is pressed, waiting for the next result delivered by the Select. Use parse_output() to turn that result ('ps' command output) into rich data, and finally repaint the screen if the repaint delay has passed. """ next_paint = 0 while True: msg = select.get() parse_output(msg.receiver.host, msg.unpickle()) if next_paint < time.time(): next_paint = time.time() + delay painter.paint()
Loop until CTRL+C is pressed, waiting for the next result delivered by the Select. Use parse_output() to turn that result ('ps' command output) into rich data, and finally repaint the screen if the repaint delay has passed.
Below is the the instruction that describes the task: ### Input: Loop until CTRL+C is pressed, waiting for the next result delivered by the Select. Use parse_output() to turn that result ('ps' command output) into rich data, and finally repaint the screen if the repaint delay has passed. ### Response: def master_main(painter, router, select, delay): """ Loop until CTRL+C is pressed, waiting for the next result delivered by the Select. Use parse_output() to turn that result ('ps' command output) into rich data, and finally repaint the screen if the repaint delay has passed. """ next_paint = 0 while True: msg = select.get() parse_output(msg.receiver.host, msg.unpickle()) if next_paint < time.time(): next_paint = time.time() + delay painter.paint()
def updateflags(self, flags): """ Thin wrapper around build_update(flags=X). This only handles simple status changes, anything like needinfo requestee needs to call build_update + update_bugs directly :param flags: Dictionary of the form {"flagname": "status"}, example {"needinfo": "?", "devel_ack": "+"} """ flaglist = [] for key, value in flags.items(): flaglist.append({"name": key, "status": value}) return self.bugzilla.update_bugs([self.bug_id], self.bugzilla.build_update(flags=flaglist))
Thin wrapper around build_update(flags=X). This only handles simple status changes, anything like needinfo requestee needs to call build_update + update_bugs directly :param flags: Dictionary of the form {"flagname": "status"}, example {"needinfo": "?", "devel_ack": "+"}
Below is the the instruction that describes the task: ### Input: Thin wrapper around build_update(flags=X). This only handles simple status changes, anything like needinfo requestee needs to call build_update + update_bugs directly :param flags: Dictionary of the form {"flagname": "status"}, example {"needinfo": "?", "devel_ack": "+"} ### Response: def updateflags(self, flags): """ Thin wrapper around build_update(flags=X). This only handles simple status changes, anything like needinfo requestee needs to call build_update + update_bugs directly :param flags: Dictionary of the form {"flagname": "status"}, example {"needinfo": "?", "devel_ack": "+"} """ flaglist = [] for key, value in flags.items(): flaglist.append({"name": key, "status": value}) return self.bugzilla.update_bugs([self.bug_id], self.bugzilla.build_update(flags=flaglist))
def make_connection(self, node): """ Create a new connection """ if self.count_all_num_connections(node) >= self.max_connections: if self.max_connections_per_node: raise RedisClusterException("Too many connection ({0}) for node: {1}" .format(self.count_all_num_connections(node), node['name'])) raise RedisClusterException("Too many connections") self._created_connections_per_node.setdefault(node['name'], 0) self._created_connections_per_node[node['name']] += 1 connection = self.connection_class(host=node["host"], port=node["port"], **self.connection_kwargs) # Must store node in the connection to make it eaiser to track connection.node = node return connection
Create a new connection
Below is the the instruction that describes the task: ### Input: Create a new connection ### Response: def make_connection(self, node): """ Create a new connection """ if self.count_all_num_connections(node) >= self.max_connections: if self.max_connections_per_node: raise RedisClusterException("Too many connection ({0}) for node: {1}" .format(self.count_all_num_connections(node), node['name'])) raise RedisClusterException("Too many connections") self._created_connections_per_node.setdefault(node['name'], 0) self._created_connections_per_node[node['name']] += 1 connection = self.connection_class(host=node["host"], port=node["port"], **self.connection_kwargs) # Must store node in the connection to make it eaiser to track connection.node = node return connection
def _FormatPackedIPv6Address(self, packed_ip_address): """Formats a packed IPv6 address as a human readable string. Args: packed_ip_address (list[int]): packed IPv6 address. Returns: str: human readable IPv6 address. """ # Note that socket.inet_ntop() is not supported on Windows. octet_pairs = zip(packed_ip_address[0::2], packed_ip_address[1::2]) octet_pairs = [octet1 << 8 | octet2 for octet1, octet2 in octet_pairs] # TODO: omit ":0000" from the string. return ':'.join([ '{0:04x}'.format(octet_pair) for octet_pair in octet_pairs])
Formats a packed IPv6 address as a human readable string. Args: packed_ip_address (list[int]): packed IPv6 address. Returns: str: human readable IPv6 address.
Below is the the instruction that describes the task: ### Input: Formats a packed IPv6 address as a human readable string. Args: packed_ip_address (list[int]): packed IPv6 address. Returns: str: human readable IPv6 address. ### Response: def _FormatPackedIPv6Address(self, packed_ip_address): """Formats a packed IPv6 address as a human readable string. Args: packed_ip_address (list[int]): packed IPv6 address. Returns: str: human readable IPv6 address. """ # Note that socket.inet_ntop() is not supported on Windows. octet_pairs = zip(packed_ip_address[0::2], packed_ip_address[1::2]) octet_pairs = [octet1 << 8 | octet2 for octet1, octet2 in octet_pairs] # TODO: omit ":0000" from the string. return ':'.join([ '{0:04x}'.format(octet_pair) for octet_pair in octet_pairs])
def command_template(self): """Build and return a string that can be used as a template invoking this chain from the command line. The actual command can be obtainted by using `self.command_template().format(**self.args)` """ com_out = self.appname arg_string = "" flag_string = "" # Loop over the key, value pairs in self.args for key, val in self.args.items(): # Check if the value is set in self._options # If so, get the value from there if val is None: opt_val = self._options[key][0] else: opt_val = val opt_type = self._options[key][2] if key == 'args': # 'args' is special, pull it out and move it to the back arg_string += ' {%s}' % key elif opt_type is bool: if opt_val: flag_string += ' --%s' % (key) elif opt_type is list: if is_null(opt_val): continue elif isinstance(opt_val, str): com_out += ' --%s %s' % (key, opt_val) elif isinstance(opt_val, list): for arg_val in opt_val: com_out += ' --%s %s' % (key, arg_val) else: com_out += ' --%s {%s}' % (key, key) com_out += flag_string com_out += arg_string return com_out
Build and return a string that can be used as a template invoking this chain from the command line. The actual command can be obtainted by using `self.command_template().format(**self.args)`
Below is the the instruction that describes the task: ### Input: Build and return a string that can be used as a template invoking this chain from the command line. The actual command can be obtainted by using `self.command_template().format(**self.args)` ### Response: def command_template(self): """Build and return a string that can be used as a template invoking this chain from the command line. The actual command can be obtainted by using `self.command_template().format(**self.args)` """ com_out = self.appname arg_string = "" flag_string = "" # Loop over the key, value pairs in self.args for key, val in self.args.items(): # Check if the value is set in self._options # If so, get the value from there if val is None: opt_val = self._options[key][0] else: opt_val = val opt_type = self._options[key][2] if key == 'args': # 'args' is special, pull it out and move it to the back arg_string += ' {%s}' % key elif opt_type is bool: if opt_val: flag_string += ' --%s' % (key) elif opt_type is list: if is_null(opt_val): continue elif isinstance(opt_val, str): com_out += ' --%s %s' % (key, opt_val) elif isinstance(opt_val, list): for arg_val in opt_val: com_out += ' --%s %s' % (key, arg_val) else: com_out += ' --%s {%s}' % (key, key) com_out += flag_string com_out += arg_string return com_out
def load(settings=None, namespace=None, prefix=None): """ Call this guy to init pyaas stuffs :param settings: Alternative name of ini file to load :param namespace: Namespace is used to derive paths, pass '' for an empty namespace :param prefix: The root path of the app :return: None """ parent = pyaas.util.getParent() script_name = os.path.basename(parent) script_name = script_name.rsplit('.', 1)[0] if prefix is None: # get the filename of the caller # get the directory name of the file prefix = os.path.dirname(parent) if prefix.endswith(os.path.sep + 'bin'): prefix = os.path.join(prefix, '..') prefix = os.path.abspath(prefix) prefix = os.path.abspath(prefix) if pyaas.prefix != prefix: pyaas.prefix = prefix logging.debug('Setting prefix to "%s"', pyaas.prefix) if namespace is None: namespace = script_name if namespace != pyaas.namespace: pyaas.namespace = namespace logging.debug('Setting namespace to "%s"', pyaas.namespace) # if settings is not passed in use the supplied or derived namespace settings = settings or namespace pyaas.args = pyaas.argparser.parse_args() pyaas.config = configparser.SafeConfigParser(dict_type=collections.OrderedDict) pyaas.config.optionxform = str ini_files = [ pyaas.paths('etc', settings + '.ini'), pyaas.paths('etc', settings + '.ini.local') ] if pyaas.args.ini: ini_files.append(pyaas.args.ini) try: ok = pyaas.config.read(ini_files) except configparser.ParsingError as e: raise pyaas.error('Unable to parse file: %s', e) if not ok: raise pyaas.error('Unable to read config file(s): %s', ini_files) # setup file log file_name = '%s_%s.log' % (script_name, time.strftime('%Y%m%d_%H%M%S')) # hack back in single log file option without breaking existing code if pyaas.config.has_section('logging'): if pyaas.config.has_option('logging', 'append'): append = pyaas.config.getboolean('logging', 'append') if append: file_name = script_name + '.log' full_path = pyaas.paths('var', file_name) logfile = logging.FileHandler(full_path) logfile.setLevel(logging.INFO) logfile.setFormatter( logging.Formatter( fmt = '%(asctime)s %(levelname)-8s %(message)s', datefmt = '%Y-%m-%d %H:%M:%S', ) ) # add the handlers to the logger root = logging.getLogger() root.addHandler(logfile) if pyaas.args.debug: root.setLevel(logging.DEBUG) logfile.setLevel(logging.DEBUG) # call this here if there is no daemon option if not hasattr(pyaas.args, 'daemon'): pyaas.module.load() return
Call this guy to init pyaas stuffs :param settings: Alternative name of ini file to load :param namespace: Namespace is used to derive paths, pass '' for an empty namespace :param prefix: The root path of the app :return: None
Below is the the instruction that describes the task: ### Input: Call this guy to init pyaas stuffs :param settings: Alternative name of ini file to load :param namespace: Namespace is used to derive paths, pass '' for an empty namespace :param prefix: The root path of the app :return: None ### Response: def load(settings=None, namespace=None, prefix=None): """ Call this guy to init pyaas stuffs :param settings: Alternative name of ini file to load :param namespace: Namespace is used to derive paths, pass '' for an empty namespace :param prefix: The root path of the app :return: None """ parent = pyaas.util.getParent() script_name = os.path.basename(parent) script_name = script_name.rsplit('.', 1)[0] if prefix is None: # get the filename of the caller # get the directory name of the file prefix = os.path.dirname(parent) if prefix.endswith(os.path.sep + 'bin'): prefix = os.path.join(prefix, '..') prefix = os.path.abspath(prefix) prefix = os.path.abspath(prefix) if pyaas.prefix != prefix: pyaas.prefix = prefix logging.debug('Setting prefix to "%s"', pyaas.prefix) if namespace is None: namespace = script_name if namespace != pyaas.namespace: pyaas.namespace = namespace logging.debug('Setting namespace to "%s"', pyaas.namespace) # if settings is not passed in use the supplied or derived namespace settings = settings or namespace pyaas.args = pyaas.argparser.parse_args() pyaas.config = configparser.SafeConfigParser(dict_type=collections.OrderedDict) pyaas.config.optionxform = str ini_files = [ pyaas.paths('etc', settings + '.ini'), pyaas.paths('etc', settings + '.ini.local') ] if pyaas.args.ini: ini_files.append(pyaas.args.ini) try: ok = pyaas.config.read(ini_files) except configparser.ParsingError as e: raise pyaas.error('Unable to parse file: %s', e) if not ok: raise pyaas.error('Unable to read config file(s): %s', ini_files) # setup file log file_name = '%s_%s.log' % (script_name, time.strftime('%Y%m%d_%H%M%S')) # hack back in single log file option without breaking existing code if pyaas.config.has_section('logging'): if pyaas.config.has_option('logging', 'append'): append = pyaas.config.getboolean('logging', 'append') if append: file_name = script_name + '.log' full_path = pyaas.paths('var', file_name) logfile = logging.FileHandler(full_path) logfile.setLevel(logging.INFO) logfile.setFormatter( logging.Formatter( fmt = '%(asctime)s %(levelname)-8s %(message)s', datefmt = '%Y-%m-%d %H:%M:%S', ) ) # add the handlers to the logger root = logging.getLogger() root.addHandler(logfile) if pyaas.args.debug: root.setLevel(logging.DEBUG) logfile.setLevel(logging.DEBUG) # call this here if there is no daemon option if not hasattr(pyaas.args, 'daemon'): pyaas.module.load() return
def dict_to_querystring(dictionary): """Converts a dict to a querystring suitable to be appended to a URL.""" s = u"" for d in dictionary.keys(): s = unicode.format(u"{0}{1}={2}&", s, d, dictionary[d]) return s[:-1]
Converts a dict to a querystring suitable to be appended to a URL.
Below is the the instruction that describes the task: ### Input: Converts a dict to a querystring suitable to be appended to a URL. ### Response: def dict_to_querystring(dictionary): """Converts a dict to a querystring suitable to be appended to a URL.""" s = u"" for d in dictionary.keys(): s = unicode.format(u"{0}{1}={2}&", s, d, dictionary[d]) return s[:-1]
def _merge_simple_selectors(a, b): """Merge two simple selectors, for the purposes of the LCS algorithm below. In practice this returns the more specific selector if one is a subset of the other, else it returns None. """ # TODO what about combinators if a.is_superset_of(b): return b elif b.is_superset_of(a): return a else: return None
Merge two simple selectors, for the purposes of the LCS algorithm below. In practice this returns the more specific selector if one is a subset of the other, else it returns None.
Below is the the instruction that describes the task: ### Input: Merge two simple selectors, for the purposes of the LCS algorithm below. In practice this returns the more specific selector if one is a subset of the other, else it returns None. ### Response: def _merge_simple_selectors(a, b): """Merge two simple selectors, for the purposes of the LCS algorithm below. In practice this returns the more specific selector if one is a subset of the other, else it returns None. """ # TODO what about combinators if a.is_superset_of(b): return b elif b.is_superset_of(a): return a else: return None
def html_clean(html_code): """获取网页源代码并进行预处理 Keyword arguments: html_code -- 网页源代码,字符串类型 Return: 清洗后的网页源代码(只包含文本和换行符\n) """ temp = re.sub('<script([\s\S]*?)</script>', '', html_code) temp = re.sub('<style([\s\S]*?)</style>', '', temp) html_cleaned = re.sub('(?is)<.*?>', '', temp) for item in html_character: html_cleaned = html_cleaned.replace(item, html_character[item]) log('debug', '网页源代码预处理完成:\n【{}】'.format(html_cleaned)) return html_cleaned
获取网页源代码并进行预处理 Keyword arguments: html_code -- 网页源代码,字符串类型 Return: 清洗后的网页源代码(只包含文本和换行符\n)
Below is the the instruction that describes the task: ### Input: 获取网页源代码并进行预处理 Keyword arguments: html_code -- 网页源代码,字符串类型 Return: 清洗后的网页源代码(只包含文本和换行符\n) ### Response: def html_clean(html_code): """获取网页源代码并进行预处理 Keyword arguments: html_code -- 网页源代码,字符串类型 Return: 清洗后的网页源代码(只包含文本和换行符\n) """ temp = re.sub('<script([\s\S]*?)</script>', '', html_code) temp = re.sub('<style([\s\S]*?)</style>', '', temp) html_cleaned = re.sub('(?is)<.*?>', '', temp) for item in html_character: html_cleaned = html_cleaned.replace(item, html_character[item]) log('debug', '网页源代码预处理完成:\n【{}】'.format(html_cleaned)) return html_cleaned
def mass_integral(self, x, axis_ratio): """Routine to integrate an elliptical light profiles - set axis ratio to 1 to compute the luminosity within a \ circle""" r = x * axis_ratio return 2 * np.pi * r * self.convergence_func(x)
Routine to integrate an elliptical light profiles - set axis ratio to 1 to compute the luminosity within a \ circle
Below is the the instruction that describes the task: ### Input: Routine to integrate an elliptical light profiles - set axis ratio to 1 to compute the luminosity within a \ circle ### Response: def mass_integral(self, x, axis_ratio): """Routine to integrate an elliptical light profiles - set axis ratio to 1 to compute the luminosity within a \ circle""" r = x * axis_ratio return 2 * np.pi * r * self.convergence_func(x)
def _get_norm_opts(self, obj): """ Gets the normalization options for a LabelledData object by traversing the object to find elements and their ids. The id is then used to select the appropriate OptionsTree, accumulating the normalization options into a dictionary. Returns a dictionary of normalization options for each element in the tree. """ norm_opts = {} # Get all elements' type.group.label specs and ids type_val_fn = lambda x: (x.id, (type(x).__name__, util.group_sanitizer(x.group, escape=False), util.label_sanitizer(x.label, escape=False))) \ if isinstance(x, Element) else None element_specs = {(idspec[0], idspec[1]) for idspec in obj.traverse(type_val_fn) if idspec is not None} # Group elements specs by ID and override normalization # options sequentially key_fn = lambda x: -1 if x[0] is None else x[0] id_groups = groupby(sorted(element_specs, key=key_fn), key_fn) for gid, element_spec_group in id_groups: gid = None if gid == -1 else gid group_specs = [el for _, el in element_spec_group] backend = self.renderer.backend optstree = Store.custom_options( backend=backend).get(gid, Store.options(backend=backend)) # Get the normalization options for the current id # and match against customizable elements for opts in optstree: path = tuple(opts.path.split('.')[1:]) applies = any(path == spec[:i] for spec in group_specs for i in range(1, 4)) if applies and 'norm' in opts.groups: nopts = opts['norm'].options if 'axiswise' in nopts or 'framewise' in nopts: norm_opts.update({path: (nopts.get('axiswise', False), nopts.get('framewise', False))}) element_specs = [spec for _, spec in element_specs] norm_opts.update({spec: (False, False) for spec in element_specs if not any(spec[:i] in norm_opts.keys() for i in range(1, 4))}) return norm_opts
Gets the normalization options for a LabelledData object by traversing the object to find elements and their ids. The id is then used to select the appropriate OptionsTree, accumulating the normalization options into a dictionary. Returns a dictionary of normalization options for each element in the tree.
Below is the the instruction that describes the task: ### Input: Gets the normalization options for a LabelledData object by traversing the object to find elements and their ids. The id is then used to select the appropriate OptionsTree, accumulating the normalization options into a dictionary. Returns a dictionary of normalization options for each element in the tree. ### Response: def _get_norm_opts(self, obj): """ Gets the normalization options for a LabelledData object by traversing the object to find elements and their ids. The id is then used to select the appropriate OptionsTree, accumulating the normalization options into a dictionary. Returns a dictionary of normalization options for each element in the tree. """ norm_opts = {} # Get all elements' type.group.label specs and ids type_val_fn = lambda x: (x.id, (type(x).__name__, util.group_sanitizer(x.group, escape=False), util.label_sanitizer(x.label, escape=False))) \ if isinstance(x, Element) else None element_specs = {(idspec[0], idspec[1]) for idspec in obj.traverse(type_val_fn) if idspec is not None} # Group elements specs by ID and override normalization # options sequentially key_fn = lambda x: -1 if x[0] is None else x[0] id_groups = groupby(sorted(element_specs, key=key_fn), key_fn) for gid, element_spec_group in id_groups: gid = None if gid == -1 else gid group_specs = [el for _, el in element_spec_group] backend = self.renderer.backend optstree = Store.custom_options( backend=backend).get(gid, Store.options(backend=backend)) # Get the normalization options for the current id # and match against customizable elements for opts in optstree: path = tuple(opts.path.split('.')[1:]) applies = any(path == spec[:i] for spec in group_specs for i in range(1, 4)) if applies and 'norm' in opts.groups: nopts = opts['norm'].options if 'axiswise' in nopts or 'framewise' in nopts: norm_opts.update({path: (nopts.get('axiswise', False), nopts.get('framewise', False))}) element_specs = [spec for _, spec in element_specs] norm_opts.update({spec: (False, False) for spec in element_specs if not any(spec[:i] in norm_opts.keys() for i in range(1, 4))}) return norm_opts
def watch_profile(self): """Analyzes queries from a given log file""" profile_parser = ProfileParser() databases = self._get_requested_databases() connection = pymongo.MongoClient(self._db_uri, document_class=OrderedDict, read_preference=pymongo.ReadPreference.PRIMARY_PREFERRED) enabled_profile = False if databases == []: try: databases = connection.database_names() except: message = "Error: Could not list databases on server. Please " \ + "check the auth components of your URI.\n" sys.stderr.write(message) databases = [] for ignore_db in IGNORE_DBS: if ignore_db in databases: databases.remove(ignore_db) if len(databases) != 1: message = "Error: Please use namespaces (-n) to specify a single " \ + "database for profile watching.\n" sys.stderr.write(message) return 1 database = databases[0] db = connection[database] initial_profile_level = db.profiling_level() if initial_profile_level is pymongo.OFF: message = "Profile level currently 0. Dex is setting profile " \ + "level 1. To run --watch at profile level 2, " \ + "enable profile level 2 before running Dex.\n" sys.stderr.write(message) db.set_profiling_level(DEFAULT_PROFILE_LEVEL) output_time = time.time() + WATCH_DISPLAY_REFRESH_SECONDS try: for profile_entry in self._tail_profile(db, WATCH_INTERVAL_SECONDS): self._process_query(profile_entry, profile_parser) if time.time() >= output_time: self._output_aggregated_report(sys.stderr) output_time = time.time() + WATCH_DISPLAY_REFRESH_SECONDS except KeyboardInterrupt: sys.stderr.write("Interrupt received\n") finally: self._output_aggregated_report(sys.stdout) if initial_profile_level is pymongo.OFF: message = "Dex is resetting profile level to initial value " \ + "of 0. You may wish to drop the system.profile " \ + "collection.\n" sys.stderr.write(message) db.set_profiling_level(initial_profile_level) return 0
Analyzes queries from a given log file
Below is the the instruction that describes the task: ### Input: Analyzes queries from a given log file ### Response: def watch_profile(self): """Analyzes queries from a given log file""" profile_parser = ProfileParser() databases = self._get_requested_databases() connection = pymongo.MongoClient(self._db_uri, document_class=OrderedDict, read_preference=pymongo.ReadPreference.PRIMARY_PREFERRED) enabled_profile = False if databases == []: try: databases = connection.database_names() except: message = "Error: Could not list databases on server. Please " \ + "check the auth components of your URI.\n" sys.stderr.write(message) databases = [] for ignore_db in IGNORE_DBS: if ignore_db in databases: databases.remove(ignore_db) if len(databases) != 1: message = "Error: Please use namespaces (-n) to specify a single " \ + "database for profile watching.\n" sys.stderr.write(message) return 1 database = databases[0] db = connection[database] initial_profile_level = db.profiling_level() if initial_profile_level is pymongo.OFF: message = "Profile level currently 0. Dex is setting profile " \ + "level 1. To run --watch at profile level 2, " \ + "enable profile level 2 before running Dex.\n" sys.stderr.write(message) db.set_profiling_level(DEFAULT_PROFILE_LEVEL) output_time = time.time() + WATCH_DISPLAY_REFRESH_SECONDS try: for profile_entry in self._tail_profile(db, WATCH_INTERVAL_SECONDS): self._process_query(profile_entry, profile_parser) if time.time() >= output_time: self._output_aggregated_report(sys.stderr) output_time = time.time() + WATCH_DISPLAY_REFRESH_SECONDS except KeyboardInterrupt: sys.stderr.write("Interrupt received\n") finally: self._output_aggregated_report(sys.stdout) if initial_profile_level is pymongo.OFF: message = "Dex is resetting profile level to initial value " \ + "of 0. You may wish to drop the system.profile " \ + "collection.\n" sys.stderr.write(message) db.set_profiling_level(initial_profile_level) return 0
def present(name, user=None, password=None, auth='password', encoding='UTF8', locale=None, runas=None, waldir=None, checksums=False): ''' Initialize the PostgreSQL data directory name The name of the directory to initialize user The database superuser name password The password to set for the postgres user auth The default authentication method for local connections encoding The default encoding for new databases locale The default locale for new databases waldir The transaction log (WAL) directory (default is to keep WAL inside the data directory) .. versionadded:: 2019.2.0 checksums If True, the cluster will be created with data page checksums. .. note:: Data page checksums are supported since PostgreSQL 9.3. .. versionadded:: 2019.2.0 runas The system user the operation should be performed on behalf of ''' _cmt = 'Postgres data directory {0} is already present'.format(name) ret = { 'name': name, 'changes': {}, 'result': True, 'comment': _cmt} if not __salt__['postgres.datadir_exists'](name=name): if __opts__['test']: ret['result'] = None _cmt = 'Postgres data directory {0} is set to be initialized'\ .format(name) ret['comment'] = _cmt return ret kwargs = dict( user=user, password=password, auth=auth, encoding=encoding, locale=locale, waldir=waldir, checksums=checksums, runas=runas) if __salt__['postgres.datadir_init'](name, **kwargs): _cmt = 'Postgres data directory {0} has been initialized'\ .format(name) ret['comment'] = _cmt ret['changes'][name] = 'Present' else: _cmt = 'Postgres data directory {0} initialization failed'\ .format(name) ret['result'] = False ret['comment'] = _cmt return ret
Initialize the PostgreSQL data directory name The name of the directory to initialize user The database superuser name password The password to set for the postgres user auth The default authentication method for local connections encoding The default encoding for new databases locale The default locale for new databases waldir The transaction log (WAL) directory (default is to keep WAL inside the data directory) .. versionadded:: 2019.2.0 checksums If True, the cluster will be created with data page checksums. .. note:: Data page checksums are supported since PostgreSQL 9.3. .. versionadded:: 2019.2.0 runas The system user the operation should be performed on behalf of
Below is the the instruction that describes the task: ### Input: Initialize the PostgreSQL data directory name The name of the directory to initialize user The database superuser name password The password to set for the postgres user auth The default authentication method for local connections encoding The default encoding for new databases locale The default locale for new databases waldir The transaction log (WAL) directory (default is to keep WAL inside the data directory) .. versionadded:: 2019.2.0 checksums If True, the cluster will be created with data page checksums. .. note:: Data page checksums are supported since PostgreSQL 9.3. .. versionadded:: 2019.2.0 runas The system user the operation should be performed on behalf of ### Response: def present(name, user=None, password=None, auth='password', encoding='UTF8', locale=None, runas=None, waldir=None, checksums=False): ''' Initialize the PostgreSQL data directory name The name of the directory to initialize user The database superuser name password The password to set for the postgres user auth The default authentication method for local connections encoding The default encoding for new databases locale The default locale for new databases waldir The transaction log (WAL) directory (default is to keep WAL inside the data directory) .. versionadded:: 2019.2.0 checksums If True, the cluster will be created with data page checksums. .. note:: Data page checksums are supported since PostgreSQL 9.3. .. versionadded:: 2019.2.0 runas The system user the operation should be performed on behalf of ''' _cmt = 'Postgres data directory {0} is already present'.format(name) ret = { 'name': name, 'changes': {}, 'result': True, 'comment': _cmt} if not __salt__['postgres.datadir_exists'](name=name): if __opts__['test']: ret['result'] = None _cmt = 'Postgres data directory {0} is set to be initialized'\ .format(name) ret['comment'] = _cmt return ret kwargs = dict( user=user, password=password, auth=auth, encoding=encoding, locale=locale, waldir=waldir, checksums=checksums, runas=runas) if __salt__['postgres.datadir_init'](name, **kwargs): _cmt = 'Postgres data directory {0} has been initialized'\ .format(name) ret['comment'] = _cmt ret['changes'][name] = 'Present' else: _cmt = 'Postgres data directory {0} initialization failed'\ .format(name) ret['result'] = False ret['comment'] = _cmt return ret
def resolve_type_spec(self, name, lineno): """Finds and links the TypeSpec with the given name.""" if name in self.type_specs: return self.type_specs[name].link(self) if '.' in name: include_name, component = name.split('.', 1) if include_name in self.included_scopes: return self.included_scopes[include_name].resolve_type_spec( component, lineno ) raise ThriftCompilerError( 'Unknown type "%s" referenced at line %d%s' % ( name, lineno, self.__in_path() ) )
Finds and links the TypeSpec with the given name.
Below is the the instruction that describes the task: ### Input: Finds and links the TypeSpec with the given name. ### Response: def resolve_type_spec(self, name, lineno): """Finds and links the TypeSpec with the given name.""" if name in self.type_specs: return self.type_specs[name].link(self) if '.' in name: include_name, component = name.split('.', 1) if include_name in self.included_scopes: return self.included_scopes[include_name].resolve_type_spec( component, lineno ) raise ThriftCompilerError( 'Unknown type "%s" referenced at line %d%s' % ( name, lineno, self.__in_path() ) )
def wait(self, pattern, timeout=10.0, safe=False, **match_kwargs): """Wait till pattern is found or time is out (default: 10s).""" t = time.time() + timeout while time.time() < t: ret = self.exists(pattern, **match_kwargs) if ret: return ret time.sleep(0.2) if not safe: raise errors.ImageNotFoundError('Not found image %s' %(pattern,))
Wait till pattern is found or time is out (default: 10s).
Below is the the instruction that describes the task: ### Input: Wait till pattern is found or time is out (default: 10s). ### Response: def wait(self, pattern, timeout=10.0, safe=False, **match_kwargs): """Wait till pattern is found or time is out (default: 10s).""" t = time.time() + timeout while time.time() < t: ret = self.exists(pattern, **match_kwargs) if ret: return ret time.sleep(0.2) if not safe: raise errors.ImageNotFoundError('Not found image %s' %(pattern,))
def arr_to_vector(arr): """Reshape a multidimensional array to a vector. """ dim = array_dim(arr) tmp_arr = [] for n in range(len(dim) - 1): for inner in arr: for i in inner: tmp_arr.append(i) arr = tmp_arr tmp_arr = [] return arr
Reshape a multidimensional array to a vector.
Below is the the instruction that describes the task: ### Input: Reshape a multidimensional array to a vector. ### Response: def arr_to_vector(arr): """Reshape a multidimensional array to a vector. """ dim = array_dim(arr) tmp_arr = [] for n in range(len(dim) - 1): for inner in arr: for i in inner: tmp_arr.append(i) arr = tmp_arr tmp_arr = [] return arr
def process_wait(process, timeout=0): """ Pauses script execution until a given process exists. :param process: :param timeout: :return: """ ret = AUTO_IT.AU3_ProcessWait(LPCWSTR(process), INT(timeout)) return ret
Pauses script execution until a given process exists. :param process: :param timeout: :return:
Below is the the instruction that describes the task: ### Input: Pauses script execution until a given process exists. :param process: :param timeout: :return: ### Response: def process_wait(process, timeout=0): """ Pauses script execution until a given process exists. :param process: :param timeout: :return: """ ret = AUTO_IT.AU3_ProcessWait(LPCWSTR(process), INT(timeout)) return ret
def create_rc(self, manifest_filename, namespace="default"): """ Creates an RC based on a manifest. :Parameters: - `manifest_filename`: The manifest file containing the ReplicationController definition, for example: `manifest/nginx-webserver-rc.yaml` - `namespace`: In which namespace the RC should be created, defaults to, well, `default` """ rc_manifest, rc_manifest_json = util.load_yaml(filename=manifest_filename) logging.debug("%s" %(rc_manifest_json)) create_rc_path = "".join(["/api/v1/namespaces/", namespace, "/replicationcontrollers"]) res = self.execute_operation(method="POST", ops_path=create_rc_path, payload=rc_manifest_json) try: rc_url = res.json()["metadata"]["selfLink"] except KeyError: raise ResourceCRUDException("".join(["Sorry, can not create the RC: ", rc_manifest["metadata"]["name"], ". Maybe it exists already?"])) logging.info("From %s I created the RC %s at %s" %(manifest_filename, rc_manifest["metadata"]["name"], rc_url)) return (res, rc_url)
Creates an RC based on a manifest. :Parameters: - `manifest_filename`: The manifest file containing the ReplicationController definition, for example: `manifest/nginx-webserver-rc.yaml` - `namespace`: In which namespace the RC should be created, defaults to, well, `default`
Below is the the instruction that describes the task: ### Input: Creates an RC based on a manifest. :Parameters: - `manifest_filename`: The manifest file containing the ReplicationController definition, for example: `manifest/nginx-webserver-rc.yaml` - `namespace`: In which namespace the RC should be created, defaults to, well, `default` ### Response: def create_rc(self, manifest_filename, namespace="default"): """ Creates an RC based on a manifest. :Parameters: - `manifest_filename`: The manifest file containing the ReplicationController definition, for example: `manifest/nginx-webserver-rc.yaml` - `namespace`: In which namespace the RC should be created, defaults to, well, `default` """ rc_manifest, rc_manifest_json = util.load_yaml(filename=manifest_filename) logging.debug("%s" %(rc_manifest_json)) create_rc_path = "".join(["/api/v1/namespaces/", namespace, "/replicationcontrollers"]) res = self.execute_operation(method="POST", ops_path=create_rc_path, payload=rc_manifest_json) try: rc_url = res.json()["metadata"]["selfLink"] except KeyError: raise ResourceCRUDException("".join(["Sorry, can not create the RC: ", rc_manifest["metadata"]["name"], ". Maybe it exists already?"])) logging.info("From %s I created the RC %s at %s" %(manifest_filename, rc_manifest["metadata"]["name"], rc_url)) return (res, rc_url)
def curlrequests(curl_string, **kwargs): """Use tPool to request for curl string. If kwargs contains the req which hasattr request method, like req=requests. :param curl_string: standard curl string. :type curl_string: str :param kwargs: valid kwargs for tPool. :type curl_string: dict Basic Usage:: from torequests.utils import curlrequests r = curlrequests('''curl 'http://p.3.cn/' -H 'Connection: keep-alive' -H 'Cache-Control: max-age=0' -H 'Upgrade-Insecure-Requests: 1' -H 'User-Agent: Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/72.0.3626.119 Safari/537.36' -H 'DNT: 1' -H 'Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8' -H 'Accept-Encoding: gzip, deflate' -H 'Accept-Language: zh-CN,zh;q=0.9,en;q=0.8' -H 'If-None-Match: "55dd9090-264"' -H 'If-Modified-Since: Wed, 26 Aug 2015 10:10:24 GMT' --compressed''', retry=1) print(r.text) """ req = kwargs.pop('req', tPool()) kwargs.update(curlparse(curl_string)) return req.request(**kwargs)
Use tPool to request for curl string. If kwargs contains the req which hasattr request method, like req=requests. :param curl_string: standard curl string. :type curl_string: str :param kwargs: valid kwargs for tPool. :type curl_string: dict Basic Usage:: from torequests.utils import curlrequests r = curlrequests('''curl 'http://p.3.cn/' -H 'Connection: keep-alive' -H 'Cache-Control: max-age=0' -H 'Upgrade-Insecure-Requests: 1' -H 'User-Agent: Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/72.0.3626.119 Safari/537.36' -H 'DNT: 1' -H 'Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8' -H 'Accept-Encoding: gzip, deflate' -H 'Accept-Language: zh-CN,zh;q=0.9,en;q=0.8' -H 'If-None-Match: "55dd9090-264"' -H 'If-Modified-Since: Wed, 26 Aug 2015 10:10:24 GMT' --compressed''', retry=1) print(r.text)
Below is the the instruction that describes the task: ### Input: Use tPool to request for curl string. If kwargs contains the req which hasattr request method, like req=requests. :param curl_string: standard curl string. :type curl_string: str :param kwargs: valid kwargs for tPool. :type curl_string: dict Basic Usage:: from torequests.utils import curlrequests r = curlrequests('''curl 'http://p.3.cn/' -H 'Connection: keep-alive' -H 'Cache-Control: max-age=0' -H 'Upgrade-Insecure-Requests: 1' -H 'User-Agent: Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/72.0.3626.119 Safari/537.36' -H 'DNT: 1' -H 'Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8' -H 'Accept-Encoding: gzip, deflate' -H 'Accept-Language: zh-CN,zh;q=0.9,en;q=0.8' -H 'If-None-Match: "55dd9090-264"' -H 'If-Modified-Since: Wed, 26 Aug 2015 10:10:24 GMT' --compressed''', retry=1) print(r.text) ### Response: def curlrequests(curl_string, **kwargs): """Use tPool to request for curl string. If kwargs contains the req which hasattr request method, like req=requests. :param curl_string: standard curl string. :type curl_string: str :param kwargs: valid kwargs for tPool. :type curl_string: dict Basic Usage:: from torequests.utils import curlrequests r = curlrequests('''curl 'http://p.3.cn/' -H 'Connection: keep-alive' -H 'Cache-Control: max-age=0' -H 'Upgrade-Insecure-Requests: 1' -H 'User-Agent: Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/72.0.3626.119 Safari/537.36' -H 'DNT: 1' -H 'Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8' -H 'Accept-Encoding: gzip, deflate' -H 'Accept-Language: zh-CN,zh;q=0.9,en;q=0.8' -H 'If-None-Match: "55dd9090-264"' -H 'If-Modified-Since: Wed, 26 Aug 2015 10:10:24 GMT' --compressed''', retry=1) print(r.text) """ req = kwargs.pop('req', tPool()) kwargs.update(curlparse(curl_string)) return req.request(**kwargs)
def list_files(tag=None, sat_id=None, data_path=None, format_str=None): """Return a Pandas Series of every file for chosen satellite data Parameters ----------- tag : (string or NoneType) Denotes type of file to load. Accepted types are '1min' and '5min'. (default=None) sat_id : (string or NoneType) Specifies the satellite ID for a constellation. Not used. (default=None) data_path : (string or NoneType) Path to data directory. If None is specified, the value previously set in Instrument.files.data_path is used. (default=None) format_str : (string or NoneType) User specified file format. If None is specified, the default formats associated with the supplied tags are used. (default=None) Returns -------- pysat.Files.from_os : (pysat._files.Files) A class containing the verified available files """ if format_str is None and data_path is not None: if (tag == '1min') | (tag == '5min'): min_fmt = ''.join(['omni_hro_', tag, '{year:4d}{month:02d}{day:02d}_v01.cdf']) files = pysat.Files.from_os(data_path=data_path, format_str=min_fmt) # files are by month, just add date to monthly filename for # each day of the month. load routine will use date to select out # appropriate data if not files.empty: files.ix[files.index[-1] + pds.DateOffset(months=1) - pds.DateOffset(days=1)] = files.iloc[-1] files = files.asfreq('D', 'pad') # add the date to the filename files = files + '_' + files.index.strftime('%Y-%m-%d') return files else: raise ValueError('Unknown tag') elif format_str is None: estr = 'A directory must be passed to the loading routine for OMNI HRO' raise ValueError (estr) else: return pysat.Files.from_os(data_path=data_path, format_str=format_str)
Return a Pandas Series of every file for chosen satellite data Parameters ----------- tag : (string or NoneType) Denotes type of file to load. Accepted types are '1min' and '5min'. (default=None) sat_id : (string or NoneType) Specifies the satellite ID for a constellation. Not used. (default=None) data_path : (string or NoneType) Path to data directory. If None is specified, the value previously set in Instrument.files.data_path is used. (default=None) format_str : (string or NoneType) User specified file format. If None is specified, the default formats associated with the supplied tags are used. (default=None) Returns -------- pysat.Files.from_os : (pysat._files.Files) A class containing the verified available files
Below is the the instruction that describes the task: ### Input: Return a Pandas Series of every file for chosen satellite data Parameters ----------- tag : (string or NoneType) Denotes type of file to load. Accepted types are '1min' and '5min'. (default=None) sat_id : (string or NoneType) Specifies the satellite ID for a constellation. Not used. (default=None) data_path : (string or NoneType) Path to data directory. If None is specified, the value previously set in Instrument.files.data_path is used. (default=None) format_str : (string or NoneType) User specified file format. If None is specified, the default formats associated with the supplied tags are used. (default=None) Returns -------- pysat.Files.from_os : (pysat._files.Files) A class containing the verified available files ### Response: def list_files(tag=None, sat_id=None, data_path=None, format_str=None): """Return a Pandas Series of every file for chosen satellite data Parameters ----------- tag : (string or NoneType) Denotes type of file to load. Accepted types are '1min' and '5min'. (default=None) sat_id : (string or NoneType) Specifies the satellite ID for a constellation. Not used. (default=None) data_path : (string or NoneType) Path to data directory. If None is specified, the value previously set in Instrument.files.data_path is used. (default=None) format_str : (string or NoneType) User specified file format. If None is specified, the default formats associated with the supplied tags are used. (default=None) Returns -------- pysat.Files.from_os : (pysat._files.Files) A class containing the verified available files """ if format_str is None and data_path is not None: if (tag == '1min') | (tag == '5min'): min_fmt = ''.join(['omni_hro_', tag, '{year:4d}{month:02d}{day:02d}_v01.cdf']) files = pysat.Files.from_os(data_path=data_path, format_str=min_fmt) # files are by month, just add date to monthly filename for # each day of the month. load routine will use date to select out # appropriate data if not files.empty: files.ix[files.index[-1] + pds.DateOffset(months=1) - pds.DateOffset(days=1)] = files.iloc[-1] files = files.asfreq('D', 'pad') # add the date to the filename files = files + '_' + files.index.strftime('%Y-%m-%d') return files else: raise ValueError('Unknown tag') elif format_str is None: estr = 'A directory must be passed to the loading routine for OMNI HRO' raise ValueError (estr) else: return pysat.Files.from_os(data_path=data_path, format_str=format_str)
def padded_sequence_accuracy(logits, labels): """Percentage of times that predictions matches labels everywhere (non-0).""" with tf.variable_scope("padded_sequence_accuracy", values=[logits, labels]): logits, labels = _pad_tensors_to_same_length(logits, labels) weights = tf.to_float(tf.not_equal(labels, 0)) outputs = tf.to_int32(tf.argmax(logits, axis=-1)) padded_labels = tf.to_int32(labels) not_correct = tf.to_float(tf.not_equal(outputs, padded_labels)) * weights axis = list(range(1, len(outputs.get_shape()))) correct_seq = 1.0 - tf.minimum(1.0, tf.reduce_sum(not_correct, axis=axis)) return correct_seq, tf.constant(1.0)
Percentage of times that predictions matches labels everywhere (non-0).
Below is the the instruction that describes the task: ### Input: Percentage of times that predictions matches labels everywhere (non-0). ### Response: def padded_sequence_accuracy(logits, labels): """Percentage of times that predictions matches labels everywhere (non-0).""" with tf.variable_scope("padded_sequence_accuracy", values=[logits, labels]): logits, labels = _pad_tensors_to_same_length(logits, labels) weights = tf.to_float(tf.not_equal(labels, 0)) outputs = tf.to_int32(tf.argmax(logits, axis=-1)) padded_labels = tf.to_int32(labels) not_correct = tf.to_float(tf.not_equal(outputs, padded_labels)) * weights axis = list(range(1, len(outputs.get_shape()))) correct_seq = 1.0 - tf.minimum(1.0, tf.reduce_sum(not_correct, axis=axis)) return correct_seq, tf.constant(1.0)
def submit_ham(self, params): """For submitting a ham comment to Akismet.""" # Check required params for submit-ham for required in ['blog', 'user_ip', 'user_agent']: if required not in params: raise MissingParams(required) response = self._request('submit-ham', params) if response.status is 200: return response.read() == "true" return False
For submitting a ham comment to Akismet.
Below is the the instruction that describes the task: ### Input: For submitting a ham comment to Akismet. ### Response: def submit_ham(self, params): """For submitting a ham comment to Akismet.""" # Check required params for submit-ham for required in ['blog', 'user_ip', 'user_agent']: if required not in params: raise MissingParams(required) response = self._request('submit-ham', params) if response.status is 200: return response.read() == "true" return False
def _get_child_validator(self, document_crumb=None, schema_crumb=None, **kwargs): """ Creates a new instance of Validator-(sub-)class. All initial parameters of the parent are passed to the initialization, unless a parameter is given as an explicit *keyword*-parameter. :param document_crumb: Extends the :attr:`~cerberus.Validator.document_path` of the child-validator. :type document_crumb: :class:`tuple` or :term:`hashable` :param schema_crumb: Extends the :attr:`~cerberus.Validator.schema_path` of the child-validator. :type schema_crumb: :class:`tuple` or hashable :param kwargs: Overriding keyword-arguments for initialization. :type kwargs: :class:`dict` :return: an instance of ``self.__class__`` """ child_config = self._config.copy() child_config.update(kwargs) if not self.is_child: child_config['is_child'] = True child_config['error_handler'] = toy_error_handler child_config['root_allow_unknown'] = self.allow_unknown child_config['root_require_all'] = self.require_all child_config['root_document'] = self.document child_config['root_schema'] = self.schema child_validator = self.__class__(**child_config) if document_crumb is None: child_validator.document_path = self.document_path else: if not isinstance(document_crumb, tuple): document_crumb = (document_crumb,) child_validator.document_path = self.document_path + document_crumb if schema_crumb is None: child_validator.schema_path = self.schema_path else: if not isinstance(schema_crumb, tuple): schema_crumb = (schema_crumb,) child_validator.schema_path = self.schema_path + schema_crumb return child_validator
Creates a new instance of Validator-(sub-)class. All initial parameters of the parent are passed to the initialization, unless a parameter is given as an explicit *keyword*-parameter. :param document_crumb: Extends the :attr:`~cerberus.Validator.document_path` of the child-validator. :type document_crumb: :class:`tuple` or :term:`hashable` :param schema_crumb: Extends the :attr:`~cerberus.Validator.schema_path` of the child-validator. :type schema_crumb: :class:`tuple` or hashable :param kwargs: Overriding keyword-arguments for initialization. :type kwargs: :class:`dict` :return: an instance of ``self.__class__``
Below is the the instruction that describes the task: ### Input: Creates a new instance of Validator-(sub-)class. All initial parameters of the parent are passed to the initialization, unless a parameter is given as an explicit *keyword*-parameter. :param document_crumb: Extends the :attr:`~cerberus.Validator.document_path` of the child-validator. :type document_crumb: :class:`tuple` or :term:`hashable` :param schema_crumb: Extends the :attr:`~cerberus.Validator.schema_path` of the child-validator. :type schema_crumb: :class:`tuple` or hashable :param kwargs: Overriding keyword-arguments for initialization. :type kwargs: :class:`dict` :return: an instance of ``self.__class__`` ### Response: def _get_child_validator(self, document_crumb=None, schema_crumb=None, **kwargs): """ Creates a new instance of Validator-(sub-)class. All initial parameters of the parent are passed to the initialization, unless a parameter is given as an explicit *keyword*-parameter. :param document_crumb: Extends the :attr:`~cerberus.Validator.document_path` of the child-validator. :type document_crumb: :class:`tuple` or :term:`hashable` :param schema_crumb: Extends the :attr:`~cerberus.Validator.schema_path` of the child-validator. :type schema_crumb: :class:`tuple` or hashable :param kwargs: Overriding keyword-arguments for initialization. :type kwargs: :class:`dict` :return: an instance of ``self.__class__`` """ child_config = self._config.copy() child_config.update(kwargs) if not self.is_child: child_config['is_child'] = True child_config['error_handler'] = toy_error_handler child_config['root_allow_unknown'] = self.allow_unknown child_config['root_require_all'] = self.require_all child_config['root_document'] = self.document child_config['root_schema'] = self.schema child_validator = self.__class__(**child_config) if document_crumb is None: child_validator.document_path = self.document_path else: if not isinstance(document_crumb, tuple): document_crumb = (document_crumb,) child_validator.document_path = self.document_path + document_crumb if schema_crumb is None: child_validator.schema_path = self.schema_path else: if not isinstance(schema_crumb, tuple): schema_crumb = (schema_crumb,) child_validator.schema_path = self.schema_path + schema_crumb return child_validator
def SetPyclassMetaclass(option, opt, value, parser, *args, **kwargs): """set up pyclass metaclass for complexTypes""" from pyremotevbox.ZSI.generate.containers import ServiceHeaderContainer,\ TypecodeContainerBase, TypesHeaderContainer TypecodeContainerBase.metaclass = kwargs['metaclass'] TypesHeaderContainer.imports.append(\ 'from %(module)s import %(metaclass)s' %kwargs ) ServiceHeaderContainer.imports.append(\ 'from %(module)s import %(metaclass)s' %kwargs )
set up pyclass metaclass for complexTypes
Below is the the instruction that describes the task: ### Input: set up pyclass metaclass for complexTypes ### Response: def SetPyclassMetaclass(option, opt, value, parser, *args, **kwargs): """set up pyclass metaclass for complexTypes""" from pyremotevbox.ZSI.generate.containers import ServiceHeaderContainer,\ TypecodeContainerBase, TypesHeaderContainer TypecodeContainerBase.metaclass = kwargs['metaclass'] TypesHeaderContainer.imports.append(\ 'from %(module)s import %(metaclass)s' %kwargs ) ServiceHeaderContainer.imports.append(\ 'from %(module)s import %(metaclass)s' %kwargs )
def null(self): """Zero crossing value.""" if not self.option.axis: return -1 else: return self.screen.height - ( -self.minimum * 4.0 / self.extents * self.size.y )
Zero crossing value.
Below is the the instruction that describes the task: ### Input: Zero crossing value. ### Response: def null(self): """Zero crossing value.""" if not self.option.axis: return -1 else: return self.screen.height - ( -self.minimum * 4.0 / self.extents * self.size.y )
def _get_bmdl_ratio(self, models): """Return BMDL ratio in list of models.""" bmdls = [model.output["BMDL"] for model in models if model.output["BMDL"] > 0] return max(bmdls) / min(bmdls) if len(bmdls) > 0 else 0
Return BMDL ratio in list of models.
Below is the the instruction that describes the task: ### Input: Return BMDL ratio in list of models. ### Response: def _get_bmdl_ratio(self, models): """Return BMDL ratio in list of models.""" bmdls = [model.output["BMDL"] for model in models if model.output["BMDL"] > 0] return max(bmdls) / min(bmdls) if len(bmdls) > 0 else 0
def mumps(self): """Call MUMPS, checking for errors in the return code. The desired job should have already been set using `ctx.set_job(...)`. As a convenience, you may wish to call `ctx.run(job=...)` which sets the job and calls MUMPS. """ self._mumps_c(self.id) if self.id.infog[0] < 0: raise RuntimeError("MUMPS error: %d" % self.id.infog[0])
Call MUMPS, checking for errors in the return code. The desired job should have already been set using `ctx.set_job(...)`. As a convenience, you may wish to call `ctx.run(job=...)` which sets the job and calls MUMPS.
Below is the the instruction that describes the task: ### Input: Call MUMPS, checking for errors in the return code. The desired job should have already been set using `ctx.set_job(...)`. As a convenience, you may wish to call `ctx.run(job=...)` which sets the job and calls MUMPS. ### Response: def mumps(self): """Call MUMPS, checking for errors in the return code. The desired job should have already been set using `ctx.set_job(...)`. As a convenience, you may wish to call `ctx.run(job=...)` which sets the job and calls MUMPS. """ self._mumps_c(self.id) if self.id.infog[0] < 0: raise RuntimeError("MUMPS error: %d" % self.id.infog[0])
def ContainsIgnoreCase(self, value): """Sets the type of the WHERE clause as "contains ignore case". Args: value: The value to be used in the WHERE condition. Returns: The query builder that this WHERE builder links to. """ self._awql = self._CreateSingleValueCondition(value, 'CONTAINS_IGNORE_CASE') return self._query_builder
Sets the type of the WHERE clause as "contains ignore case". Args: value: The value to be used in the WHERE condition. Returns: The query builder that this WHERE builder links to.
Below is the the instruction that describes the task: ### Input: Sets the type of the WHERE clause as "contains ignore case". Args: value: The value to be used in the WHERE condition. Returns: The query builder that this WHERE builder links to. ### Response: def ContainsIgnoreCase(self, value): """Sets the type of the WHERE clause as "contains ignore case". Args: value: The value to be used in the WHERE condition. Returns: The query builder that this WHERE builder links to. """ self._awql = self._CreateSingleValueCondition(value, 'CONTAINS_IGNORE_CASE') return self._query_builder
def write_static_networks(gtfs, output_dir, fmt=None): """ Parameters ---------- gtfs: gtfspy.GTFS output_dir: (str, unicode) a path where to write fmt: None, optional defaulting to "edg" and writing results as ".edg" files If "csv" csv files are produced instead """ if fmt is None: fmt = "edg" single_layer_networks = stop_to_stop_networks_by_type(gtfs) util.makedirs(output_dir) for route_type, net in single_layer_networks.items(): tag = route_types.ROUTE_TYPE_TO_LOWERCASE_TAG[route_type] file_name = os.path.join(output_dir, "network_" + tag + "." + fmt) if len(net.edges()) > 0: _write_stop_to_stop_network_edges(net, file_name, fmt=fmt)
Parameters ---------- gtfs: gtfspy.GTFS output_dir: (str, unicode) a path where to write fmt: None, optional defaulting to "edg" and writing results as ".edg" files If "csv" csv files are produced instead
Below is the the instruction that describes the task: ### Input: Parameters ---------- gtfs: gtfspy.GTFS output_dir: (str, unicode) a path where to write fmt: None, optional defaulting to "edg" and writing results as ".edg" files If "csv" csv files are produced instead ### Response: def write_static_networks(gtfs, output_dir, fmt=None): """ Parameters ---------- gtfs: gtfspy.GTFS output_dir: (str, unicode) a path where to write fmt: None, optional defaulting to "edg" and writing results as ".edg" files If "csv" csv files are produced instead """ if fmt is None: fmt = "edg" single_layer_networks = stop_to_stop_networks_by_type(gtfs) util.makedirs(output_dir) for route_type, net in single_layer_networks.items(): tag = route_types.ROUTE_TYPE_TO_LOWERCASE_TAG[route_type] file_name = os.path.join(output_dir, "network_" + tag + "." + fmt) if len(net.edges()) > 0: _write_stop_to_stop_network_edges(net, file_name, fmt=fmt)
def reinitialize_command(self, command, reinit_subcommands): """ Monkeypatch distutils.Distribution.reinitialize_command() to match behavior of Distribution.get_command_obj() This fixes a problem where 'pip install -e' does not reinitialise options using the setup(options={...}) variable for the build_ext command. This also effects other option sourcs such as setup.cfg. """ cmd_obj = _DISTUTILS_REINIT(self, command, reinit_subcommands) options = self.command_options.get(command) if options: self._set_command_options(cmd_obj, options) return cmd_obj
Monkeypatch distutils.Distribution.reinitialize_command() to match behavior of Distribution.get_command_obj() This fixes a problem where 'pip install -e' does not reinitialise options using the setup(options={...}) variable for the build_ext command. This also effects other option sourcs such as setup.cfg.
Below is the the instruction that describes the task: ### Input: Monkeypatch distutils.Distribution.reinitialize_command() to match behavior of Distribution.get_command_obj() This fixes a problem where 'pip install -e' does not reinitialise options using the setup(options={...}) variable for the build_ext command. This also effects other option sourcs such as setup.cfg. ### Response: def reinitialize_command(self, command, reinit_subcommands): """ Monkeypatch distutils.Distribution.reinitialize_command() to match behavior of Distribution.get_command_obj() This fixes a problem where 'pip install -e' does not reinitialise options using the setup(options={...}) variable for the build_ext command. This also effects other option sourcs such as setup.cfg. """ cmd_obj = _DISTUTILS_REINIT(self, command, reinit_subcommands) options = self.command_options.get(command) if options: self._set_command_options(cmd_obj, options) return cmd_obj
def _words_by_distinctiveness_score(vocab, topic_word_distrib, doc_topic_distrib, doc_lengths, n=None, least_to_most=False): """Return words in `vocab` ordered by distinctiveness score.""" p_t = get_marginal_topic_distrib(doc_topic_distrib, doc_lengths) distinct = get_word_distinctiveness(topic_word_distrib, p_t) return _words_by_score(vocab, distinct, least_to_most=least_to_most, n=n)
Return words in `vocab` ordered by distinctiveness score.
Below is the the instruction that describes the task: ### Input: Return words in `vocab` ordered by distinctiveness score. ### Response: def _words_by_distinctiveness_score(vocab, topic_word_distrib, doc_topic_distrib, doc_lengths, n=None, least_to_most=False): """Return words in `vocab` ordered by distinctiveness score.""" p_t = get_marginal_topic_distrib(doc_topic_distrib, doc_lengths) distinct = get_word_distinctiveness(topic_word_distrib, p_t) return _words_by_score(vocab, distinct, least_to_most=least_to_most, n=n)
def get_encrypted_pin(self, clear_pin, card_number): """ Get PIN block in ISO 0 format, encrypted with the terminal key """ if not self.terminal_key: print('Terminal key is not set') return '' if self.pinblock_format == '01': try: pinblock = bytes.fromhex(get_pinblock(clear_pin, card_number)) #print('PIN block: {}'.format(raw2str(pinblock))) except TypeError: return '' encrypted_pinblock = self.tpk_cipher.encrypt(pinblock) return raw2str(encrypted_pinblock) else: print('Unsupported PIN Block format') return ''
Get PIN block in ISO 0 format, encrypted with the terminal key
Below is the the instruction that describes the task: ### Input: Get PIN block in ISO 0 format, encrypted with the terminal key ### Response: def get_encrypted_pin(self, clear_pin, card_number): """ Get PIN block in ISO 0 format, encrypted with the terminal key """ if not self.terminal_key: print('Terminal key is not set') return '' if self.pinblock_format == '01': try: pinblock = bytes.fromhex(get_pinblock(clear_pin, card_number)) #print('PIN block: {}'.format(raw2str(pinblock))) except TypeError: return '' encrypted_pinblock = self.tpk_cipher.encrypt(pinblock) return raw2str(encrypted_pinblock) else: print('Unsupported PIN Block format') return ''
async def connect(self, channel_id: int): """ Connects to a voice channel. """ ws = self._lavalink.bot._connection._get_websocket(int(self.guild_id)) await ws.voice_state(self.guild_id, str(channel_id))
Connects to a voice channel.
Below is the the instruction that describes the task: ### Input: Connects to a voice channel. ### Response: async def connect(self, channel_id: int): """ Connects to a voice channel. """ ws = self._lavalink.bot._connection._get_websocket(int(self.guild_id)) await ws.voice_state(self.guild_id, str(channel_id))
def find_stop(self, query, direction=""): """ Search the list of stops, optionally in a direction (inbound or outbound), for the term passed to the function. Case insensitive, searches both the stop name and ID. Yields a generator. Defaults to both directions. """ _directions = ["inbound", "outbound", ""] direction = direction.lower() if direction == "inbound": stops = self.inbound_stops elif direction == "outbound": stops = self.outbound_stops else: stops = self.inbound_stops + self.outbound_stops found = [] for stop in stops: q = str(query).lower() if q in stop.name.lower() or q in str(stop.id).lower(): found.append(stop) return found
Search the list of stops, optionally in a direction (inbound or outbound), for the term passed to the function. Case insensitive, searches both the stop name and ID. Yields a generator. Defaults to both directions.
Below is the the instruction that describes the task: ### Input: Search the list of stops, optionally in a direction (inbound or outbound), for the term passed to the function. Case insensitive, searches both the stop name and ID. Yields a generator. Defaults to both directions. ### Response: def find_stop(self, query, direction=""): """ Search the list of stops, optionally in a direction (inbound or outbound), for the term passed to the function. Case insensitive, searches both the stop name and ID. Yields a generator. Defaults to both directions. """ _directions = ["inbound", "outbound", ""] direction = direction.lower() if direction == "inbound": stops = self.inbound_stops elif direction == "outbound": stops = self.outbound_stops else: stops = self.inbound_stops + self.outbound_stops found = [] for stop in stops: q = str(query).lower() if q in stop.name.lower() or q in str(stop.id).lower(): found.append(stop) return found
def creation_date(path_to_file, return_datetime=True): """ Retrieve a file's creation date. Try to get the date that a file was created, falling back to when it was last modified if that isn't possible. See http://stackoverflow.com/a/39501288/1709587 for explanation. :param path_to_file: File path :param return_datetime: Bool, returns value in Datetime format :return: Creation date """ if platform.system() == 'Windows': created_at = os.path.getctime(path_to_file) else: stat = os.stat(path_to_file) try: created_at = stat.st_birthtime except AttributeError: # We're probably on Linux. No easy way to get creation dates here, # so we'll settle for when its content was last modified. created_at = stat.st_mtime if return_datetime: return datetime.fromtimestamp(created_at) else: return created_at
Retrieve a file's creation date. Try to get the date that a file was created, falling back to when it was last modified if that isn't possible. See http://stackoverflow.com/a/39501288/1709587 for explanation. :param path_to_file: File path :param return_datetime: Bool, returns value in Datetime format :return: Creation date
Below is the the instruction that describes the task: ### Input: Retrieve a file's creation date. Try to get the date that a file was created, falling back to when it was last modified if that isn't possible. See http://stackoverflow.com/a/39501288/1709587 for explanation. :param path_to_file: File path :param return_datetime: Bool, returns value in Datetime format :return: Creation date ### Response: def creation_date(path_to_file, return_datetime=True): """ Retrieve a file's creation date. Try to get the date that a file was created, falling back to when it was last modified if that isn't possible. See http://stackoverflow.com/a/39501288/1709587 for explanation. :param path_to_file: File path :param return_datetime: Bool, returns value in Datetime format :return: Creation date """ if platform.system() == 'Windows': created_at = os.path.getctime(path_to_file) else: stat = os.stat(path_to_file) try: created_at = stat.st_birthtime except AttributeError: # We're probably on Linux. No easy way to get creation dates here, # so we'll settle for when its content was last modified. created_at = stat.st_mtime if return_datetime: return datetime.fromtimestamp(created_at) else: return created_at
def run(self, path_or_tests, dot_env_path=None, mapping=None): """ main interface. Args: path_or_tests: str: testcase/testsuite file/foler path dict: valid testcase/testsuite data """ if validator.is_testcase_path(path_or_tests): return self.run_path(path_or_tests, dot_env_path, mapping) elif validator.is_testcases(path_or_tests): return self.run_tests(path_or_tests) else: raise exceptions.ParamsError("Invalid testcase path or testcases: {}".format(path_or_tests))
main interface. Args: path_or_tests: str: testcase/testsuite file/foler path dict: valid testcase/testsuite data
Below is the the instruction that describes the task: ### Input: main interface. Args: path_or_tests: str: testcase/testsuite file/foler path dict: valid testcase/testsuite data ### Response: def run(self, path_or_tests, dot_env_path=None, mapping=None): """ main interface. Args: path_or_tests: str: testcase/testsuite file/foler path dict: valid testcase/testsuite data """ if validator.is_testcase_path(path_or_tests): return self.run_path(path_or_tests, dot_env_path, mapping) elif validator.is_testcases(path_or_tests): return self.run_tests(path_or_tests) else: raise exceptions.ParamsError("Invalid testcase path or testcases: {}".format(path_or_tests))
def _get_modpkg_path(dotted_name, pathlist=None): """Get the filesystem path for a module or a package. Return the file system path to a file for a module, and to a directory for a package. Return None if the name is not found, or is a builtin or extension module. """ # split off top-most name parts = dotted_name.split('.', 1) if len(parts) > 1: # we have a dotted path, import top-level package try: file, pathname, description = imp.find_module(parts[0], pathlist) if file: file.close() except ImportError: return None # check if it's indeed a package if description[2] == imp.PKG_DIRECTORY: # recursively handle the remaining name parts pathname = _get_modpkg_path(parts[1], [pathname]) else: pathname = None else: # plain name try: file, pathname, description = imp.find_module( dotted_name, pathlist) if file: file.close() if description[2] not in [imp.PY_SOURCE, imp.PKG_DIRECTORY]: pathname = None except ImportError: pathname = None return pathname
Get the filesystem path for a module or a package. Return the file system path to a file for a module, and to a directory for a package. Return None if the name is not found, or is a builtin or extension module.
Below is the the instruction that describes the task: ### Input: Get the filesystem path for a module or a package. Return the file system path to a file for a module, and to a directory for a package. Return None if the name is not found, or is a builtin or extension module. ### Response: def _get_modpkg_path(dotted_name, pathlist=None): """Get the filesystem path for a module or a package. Return the file system path to a file for a module, and to a directory for a package. Return None if the name is not found, or is a builtin or extension module. """ # split off top-most name parts = dotted_name.split('.', 1) if len(parts) > 1: # we have a dotted path, import top-level package try: file, pathname, description = imp.find_module(parts[0], pathlist) if file: file.close() except ImportError: return None # check if it's indeed a package if description[2] == imp.PKG_DIRECTORY: # recursively handle the remaining name parts pathname = _get_modpkg_path(parts[1], [pathname]) else: pathname = None else: # plain name try: file, pathname, description = imp.find_module( dotted_name, pathlist) if file: file.close() if description[2] not in [imp.PY_SOURCE, imp.PKG_DIRECTORY]: pathname = None except ImportError: pathname = None return pathname
def printMe(self, selfKey, selfValue): '''Parse the single and its value and return the parsed str. Args: selfTag (str): The tag. Normally just ``self.tag`` selfValue (list): a list of value elements(single, subclasses, str, int). Normally just ``self.value`` Returns: str: A parsed text ''' text = '<key>{keyName}</key>\n'.format(keyName=selfKey) if len(selfValue) == 0: return '' else: valueText = '' for element in selfValue: if singleOrPair(element) == 'Single': valueText += element.printMe(element.tag, element.value) elif singleOrPair(element) == 'Pair': valueText += element.printMe(element.key, element.value) # maybe a else statement for non single non pair? text += valueText return text
Parse the single and its value and return the parsed str. Args: selfTag (str): The tag. Normally just ``self.tag`` selfValue (list): a list of value elements(single, subclasses, str, int). Normally just ``self.value`` Returns: str: A parsed text
Below is the the instruction that describes the task: ### Input: Parse the single and its value and return the parsed str. Args: selfTag (str): The tag. Normally just ``self.tag`` selfValue (list): a list of value elements(single, subclasses, str, int). Normally just ``self.value`` Returns: str: A parsed text ### Response: def printMe(self, selfKey, selfValue): '''Parse the single and its value and return the parsed str. Args: selfTag (str): The tag. Normally just ``self.tag`` selfValue (list): a list of value elements(single, subclasses, str, int). Normally just ``self.value`` Returns: str: A parsed text ''' text = '<key>{keyName}</key>\n'.format(keyName=selfKey) if len(selfValue) == 0: return '' else: valueText = '' for element in selfValue: if singleOrPair(element) == 'Single': valueText += element.printMe(element.tag, element.value) elif singleOrPair(element) == 'Pair': valueText += element.printMe(element.key, element.value) # maybe a else statement for non single non pair? text += valueText return text
def _is_end(event, node, tagName): # pylint: disable=invalid-name """Return true if (event, node) is an end event for tagname.""" return event == pulldom.END_ELEMENT and node.tagName == tagName
Return true if (event, node) is an end event for tagname.
Below is the the instruction that describes the task: ### Input: Return true if (event, node) is an end event for tagname. ### Response: def _is_end(event, node, tagName): # pylint: disable=invalid-name """Return true if (event, node) is an end event for tagname.""" return event == pulldom.END_ELEMENT and node.tagName == tagName
def get_snapshot(self, snapshot_id_or_uri, volume_id_or_uri=None): """ Gets a snapshot of a volume. Args: volume_id_or_uri: Can be either the volume ID or the volume URI. It is optional if it is passed a snapshot URI, but required if it passed a snapshot ID. snapshot_id_or_uri: Can be either the snapshot ID or the snapshot URI. Returns: dict: The snapshot. """ uri = self.__build_volume_snapshot_uri(volume_id_or_uri, snapshot_id_or_uri) return self._client.get(uri)
Gets a snapshot of a volume. Args: volume_id_or_uri: Can be either the volume ID or the volume URI. It is optional if it is passed a snapshot URI, but required if it passed a snapshot ID. snapshot_id_or_uri: Can be either the snapshot ID or the snapshot URI. Returns: dict: The snapshot.
Below is the the instruction that describes the task: ### Input: Gets a snapshot of a volume. Args: volume_id_or_uri: Can be either the volume ID or the volume URI. It is optional if it is passed a snapshot URI, but required if it passed a snapshot ID. snapshot_id_or_uri: Can be either the snapshot ID or the snapshot URI. Returns: dict: The snapshot. ### Response: def get_snapshot(self, snapshot_id_or_uri, volume_id_or_uri=None): """ Gets a snapshot of a volume. Args: volume_id_or_uri: Can be either the volume ID or the volume URI. It is optional if it is passed a snapshot URI, but required if it passed a snapshot ID. snapshot_id_or_uri: Can be either the snapshot ID or the snapshot URI. Returns: dict: The snapshot. """ uri = self.__build_volume_snapshot_uri(volume_id_or_uri, snapshot_id_or_uri) return self._client.get(uri)
def _sparse_tensor_dense_matmul(sp_a, b, **kwargs): """Returns (batched) matmul of a SparseTensor with a Tensor. Args: sp_a: `SparseTensor` representing a (batch of) matrices. b: `Tensor` representing a (batch of) matrices, with the same batch shape of `sp_a`. The shape must be compatible with the shape of `sp_a` and kwargs. **kwargs: Keyword arguments to `tf.sparse_tensor_dense_matmul`. Returns: product: A dense (batch of) matrix-shaped Tensor of the same batch shape and dtype as `sp_a` and `b`. If `sp_a` or `b` is adjointed through `kwargs` then the shape is adjusted accordingly. """ batch_shape = _get_shape(sp_a)[:-2] # Reshape the SparseTensor into a rank 3 SparseTensors, with the # batch shape flattened to a single dimension. If the batch rank is 0, then # we add a batch dimension of rank 1. sp_a = tf.sparse.reshape(sp_a, tf.concat([[-1], _get_shape(sp_a)[-2:]], axis=0)) # Reshape b to stack the batch dimension along the rows. b = tf.reshape(b, tf.concat([[-1], _get_shape(b)[-1:]], axis=0)) # Convert the SparseTensor to a matrix in block diagonal form with blocks of # matrices [M, N]. This allow us to use tf.sparse_tensor_dense_matmul which # only accepts rank 2 (Sparse)Tensors. out = tf.sparse.sparse_dense_matmul(_sparse_block_diag(sp_a), b, **kwargs) # Finally retrieve the original batch shape from the resulting rank 2 Tensor. # Note that we avoid inferring the final shape from `sp_a` or `b` because we # might have transposed one or both of them. return tf.reshape( out, tf.concat([batch_shape, [-1], _get_shape(out)[-1:]], axis=0))
Returns (batched) matmul of a SparseTensor with a Tensor. Args: sp_a: `SparseTensor` representing a (batch of) matrices. b: `Tensor` representing a (batch of) matrices, with the same batch shape of `sp_a`. The shape must be compatible with the shape of `sp_a` and kwargs. **kwargs: Keyword arguments to `tf.sparse_tensor_dense_matmul`. Returns: product: A dense (batch of) matrix-shaped Tensor of the same batch shape and dtype as `sp_a` and `b`. If `sp_a` or `b` is adjointed through `kwargs` then the shape is adjusted accordingly.
Below is the the instruction that describes the task: ### Input: Returns (batched) matmul of a SparseTensor with a Tensor. Args: sp_a: `SparseTensor` representing a (batch of) matrices. b: `Tensor` representing a (batch of) matrices, with the same batch shape of `sp_a`. The shape must be compatible with the shape of `sp_a` and kwargs. **kwargs: Keyword arguments to `tf.sparse_tensor_dense_matmul`. Returns: product: A dense (batch of) matrix-shaped Tensor of the same batch shape and dtype as `sp_a` and `b`. If `sp_a` or `b` is adjointed through `kwargs` then the shape is adjusted accordingly. ### Response: def _sparse_tensor_dense_matmul(sp_a, b, **kwargs): """Returns (batched) matmul of a SparseTensor with a Tensor. Args: sp_a: `SparseTensor` representing a (batch of) matrices. b: `Tensor` representing a (batch of) matrices, with the same batch shape of `sp_a`. The shape must be compatible with the shape of `sp_a` and kwargs. **kwargs: Keyword arguments to `tf.sparse_tensor_dense_matmul`. Returns: product: A dense (batch of) matrix-shaped Tensor of the same batch shape and dtype as `sp_a` and `b`. If `sp_a` or `b` is adjointed through `kwargs` then the shape is adjusted accordingly. """ batch_shape = _get_shape(sp_a)[:-2] # Reshape the SparseTensor into a rank 3 SparseTensors, with the # batch shape flattened to a single dimension. If the batch rank is 0, then # we add a batch dimension of rank 1. sp_a = tf.sparse.reshape(sp_a, tf.concat([[-1], _get_shape(sp_a)[-2:]], axis=0)) # Reshape b to stack the batch dimension along the rows. b = tf.reshape(b, tf.concat([[-1], _get_shape(b)[-1:]], axis=0)) # Convert the SparseTensor to a matrix in block diagonal form with blocks of # matrices [M, N]. This allow us to use tf.sparse_tensor_dense_matmul which # only accepts rank 2 (Sparse)Tensors. out = tf.sparse.sparse_dense_matmul(_sparse_block_diag(sp_a), b, **kwargs) # Finally retrieve the original batch shape from the resulting rank 2 Tensor. # Note that we avoid inferring the final shape from `sp_a` or `b` because we # might have transposed one or both of them. return tf.reshape( out, tf.concat([batch_shape, [-1], _get_shape(out)[-1:]], axis=0))
def Convert(self, metadata, checkresult, token=None): """Converts a single CheckResult. Args: metadata: ExportedMetadata to be used for conversion. checkresult: CheckResult to be converted. token: Security token. Yields: Resulting ExportedCheckResult. Empty list is a valid result and means that conversion wasn't possible. """ if checkresult.HasField("anomaly"): for anomaly in checkresult.anomaly: exported_anomaly = ExportedAnomaly( type=anomaly.type, severity=anomaly.severity, confidence=anomaly.confidence) if anomaly.symptom: exported_anomaly.symptom = anomaly.symptom if anomaly.explanation: exported_anomaly.explanation = anomaly.explanation if anomaly.generated_by: exported_anomaly.generated_by = anomaly.generated_by if anomaly.anomaly_reference_id: exported_anomaly.anomaly_reference_id = "\n".join( anomaly.anomaly_reference_id) if anomaly.finding: exported_anomaly.finding = "\n".join(anomaly.finding) yield ExportedCheckResult( metadata=metadata, check_id=checkresult.check_id, anomaly=exported_anomaly) else: yield ExportedCheckResult( metadata=metadata, check_id=checkresult.check_id)
Converts a single CheckResult. Args: metadata: ExportedMetadata to be used for conversion. checkresult: CheckResult to be converted. token: Security token. Yields: Resulting ExportedCheckResult. Empty list is a valid result and means that conversion wasn't possible.
Below is the the instruction that describes the task: ### Input: Converts a single CheckResult. Args: metadata: ExportedMetadata to be used for conversion. checkresult: CheckResult to be converted. token: Security token. Yields: Resulting ExportedCheckResult. Empty list is a valid result and means that conversion wasn't possible. ### Response: def Convert(self, metadata, checkresult, token=None): """Converts a single CheckResult. Args: metadata: ExportedMetadata to be used for conversion. checkresult: CheckResult to be converted. token: Security token. Yields: Resulting ExportedCheckResult. Empty list is a valid result and means that conversion wasn't possible. """ if checkresult.HasField("anomaly"): for anomaly in checkresult.anomaly: exported_anomaly = ExportedAnomaly( type=anomaly.type, severity=anomaly.severity, confidence=anomaly.confidence) if anomaly.symptom: exported_anomaly.symptom = anomaly.symptom if anomaly.explanation: exported_anomaly.explanation = anomaly.explanation if anomaly.generated_by: exported_anomaly.generated_by = anomaly.generated_by if anomaly.anomaly_reference_id: exported_anomaly.anomaly_reference_id = "\n".join( anomaly.anomaly_reference_id) if anomaly.finding: exported_anomaly.finding = "\n".join(anomaly.finding) yield ExportedCheckResult( metadata=metadata, check_id=checkresult.check_id, anomaly=exported_anomaly) else: yield ExportedCheckResult( metadata=metadata, check_id=checkresult.check_id)
def get_query(self): """ Default filters for model """ return ( super().get_query() .filter(or_(models.DagModel.is_active, models.DagModel.is_paused)) .filter(~models.DagModel.is_subdag) )
Default filters for model
Below is the the instruction that describes the task: ### Input: Default filters for model ### Response: def get_query(self): """ Default filters for model """ return ( super().get_query() .filter(or_(models.DagModel.is_active, models.DagModel.is_paused)) .filter(~models.DagModel.is_subdag) )
def _set_request_auth_type_metric(self, request): """ Add metric 'request_auth_type' for the authentication type used. NOTE: This is a best guess at this point. Possible values include: no-user unauthenticated jwt/bearer/other-token-type session-or-unknown (catch all) """ if 'HTTP_AUTHORIZATION' in request.META and request.META['HTTP_AUTHORIZATION']: token_parts = request.META['HTTP_AUTHORIZATION'].split() # Example: "JWT eyJhbGciO..." if len(token_parts) == 2: auth_type = token_parts[0].lower() # 'jwt' or 'bearer' (for example) else: auth_type = 'other-token-type' elif not hasattr(request, 'user') or not request.user: auth_type = 'no-user' elif not request.user.is_authenticated: auth_type = 'unauthenticated' else: auth_type = 'session-or-unknown' monitoring.set_custom_metric('request_auth_type', auth_type)
Add metric 'request_auth_type' for the authentication type used. NOTE: This is a best guess at this point. Possible values include: no-user unauthenticated jwt/bearer/other-token-type session-or-unknown (catch all)
Below is the the instruction that describes the task: ### Input: Add metric 'request_auth_type' for the authentication type used. NOTE: This is a best guess at this point. Possible values include: no-user unauthenticated jwt/bearer/other-token-type session-or-unknown (catch all) ### Response: def _set_request_auth_type_metric(self, request): """ Add metric 'request_auth_type' for the authentication type used. NOTE: This is a best guess at this point. Possible values include: no-user unauthenticated jwt/bearer/other-token-type session-or-unknown (catch all) """ if 'HTTP_AUTHORIZATION' in request.META and request.META['HTTP_AUTHORIZATION']: token_parts = request.META['HTTP_AUTHORIZATION'].split() # Example: "JWT eyJhbGciO..." if len(token_parts) == 2: auth_type = token_parts[0].lower() # 'jwt' or 'bearer' (for example) else: auth_type = 'other-token-type' elif not hasattr(request, 'user') or not request.user: auth_type = 'no-user' elif not request.user.is_authenticated: auth_type = 'unauthenticated' else: auth_type = 'session-or-unknown' monitoring.set_custom_metric('request_auth_type', auth_type)
def read_value(self, offset=0): """ Reads the value of this descriptor. When successful, the value will be returned, otherwise `descriptor_read_value_failed()` of the related device is invoked. """ try: val = self._object.ReadValue( {'offset': dbus.UInt16(offset, variant_level=1)}, dbus_interface='org.bluez.GattDescriptor1') return val except dbus.exceptions.DBusException as e: error = _error_from_dbus_error(e) self.service.device.descriptor_read_value_failed(self, error=error)
Reads the value of this descriptor. When successful, the value will be returned, otherwise `descriptor_read_value_failed()` of the related device is invoked.
Below is the the instruction that describes the task: ### Input: Reads the value of this descriptor. When successful, the value will be returned, otherwise `descriptor_read_value_failed()` of the related device is invoked. ### Response: def read_value(self, offset=0): """ Reads the value of this descriptor. When successful, the value will be returned, otherwise `descriptor_read_value_failed()` of the related device is invoked. """ try: val = self._object.ReadValue( {'offset': dbus.UInt16(offset, variant_level=1)}, dbus_interface='org.bluez.GattDescriptor1') return val except dbus.exceptions.DBusException as e: error = _error_from_dbus_error(e) self.service.device.descriptor_read_value_failed(self, error=error)
def recipient(self): """ :returns: A :class:`~okcupyd.profile.Profile` instance belonging to the recipient of this message. """ return (self._message_thread.correspondent_profile if 'from_me' in self._message_element.attrib['class'] else self._message_thread.user_profile)
:returns: A :class:`~okcupyd.profile.Profile` instance belonging to the recipient of this message.
Below is the the instruction that describes the task: ### Input: :returns: A :class:`~okcupyd.profile.Profile` instance belonging to the recipient of this message. ### Response: def recipient(self): """ :returns: A :class:`~okcupyd.profile.Profile` instance belonging to the recipient of this message. """ return (self._message_thread.correspondent_profile if 'from_me' in self._message_element.attrib['class'] else self._message_thread.user_profile)
def p_notificationTypeClause(self, p): """notificationTypeClause : fuzzy_lowercase_identifier NOTIFICATION_TYPE NotificationObjectsPart STATUS Status DESCRIPTION Text ReferPart COLON_COLON_EQUAL '{' NotificationName '}'""" # some MIBs have uppercase and/or lowercase id p[0] = ('notificationTypeClause', p[1], # id # p[2], # NOTIFICATION_TYPE p[3], # NotificationObjectsPart p[5], # status (p[6], p[7]), # description p[8], # Reference p[11])
notificationTypeClause : fuzzy_lowercase_identifier NOTIFICATION_TYPE NotificationObjectsPart STATUS Status DESCRIPTION Text ReferPart COLON_COLON_EQUAL '{' NotificationName '}
Below is the the instruction that describes the task: ### Input: notificationTypeClause : fuzzy_lowercase_identifier NOTIFICATION_TYPE NotificationObjectsPart STATUS Status DESCRIPTION Text ReferPart COLON_COLON_EQUAL '{' NotificationName '} ### Response: def p_notificationTypeClause(self, p): """notificationTypeClause : fuzzy_lowercase_identifier NOTIFICATION_TYPE NotificationObjectsPart STATUS Status DESCRIPTION Text ReferPart COLON_COLON_EQUAL '{' NotificationName '}'""" # some MIBs have uppercase and/or lowercase id p[0] = ('notificationTypeClause', p[1], # id # p[2], # NOTIFICATION_TYPE p[3], # NotificationObjectsPart p[5], # status (p[6], p[7]), # description p[8], # Reference p[11])
def poweroff_server(self, server=None, server_id=None): """ Poweroff a VM. If possible to pass the VM object or simply the ID of the VM that we want to turn on. Args: server: VM Object that represent the VM to power off, server_id: Int or Str representing the ID of the VM to power off. Returns: return True if json_obj['Success'] is 'True' else False """ sid = server_id if server_id is not None else server.sid if sid is None: raise Exception('No Server Specified.') json_scheme = self.gen_def_json_scheme('SetEnqueueServerPowerOff', dict(ServerId=sid)) json_obj = self.call_method_post('SetEnqueueServerPowerOff', json_scheme=json_scheme) return True if json_obj['Success'] is 'True' else False
Poweroff a VM. If possible to pass the VM object or simply the ID of the VM that we want to turn on. Args: server: VM Object that represent the VM to power off, server_id: Int or Str representing the ID of the VM to power off. Returns: return True if json_obj['Success'] is 'True' else False
Below is the the instruction that describes the task: ### Input: Poweroff a VM. If possible to pass the VM object or simply the ID of the VM that we want to turn on. Args: server: VM Object that represent the VM to power off, server_id: Int or Str representing the ID of the VM to power off. Returns: return True if json_obj['Success'] is 'True' else False ### Response: def poweroff_server(self, server=None, server_id=None): """ Poweroff a VM. If possible to pass the VM object or simply the ID of the VM that we want to turn on. Args: server: VM Object that represent the VM to power off, server_id: Int or Str representing the ID of the VM to power off. Returns: return True if json_obj['Success'] is 'True' else False """ sid = server_id if server_id is not None else server.sid if sid is None: raise Exception('No Server Specified.') json_scheme = self.gen_def_json_scheme('SetEnqueueServerPowerOff', dict(ServerId=sid)) json_obj = self.call_method_post('SetEnqueueServerPowerOff', json_scheme=json_scheme) return True if json_obj['Success'] is 'True' else False
def create_binary_descriptor(descriptor): """Convert a string node descriptor into a 20-byte binary descriptor. This is the inverse operation of parse_binary_descriptor and composing the two operations is a noop. Args: descriptor (str): A string node descriptor Returns: bytes: A 20-byte binary node descriptor. """ func_names = {0: 'copy_latest_a', 1: 'average_a', 2: 'copy_all_a', 3: 'sum_a', 4: 'copy_count_a', 5: 'trigger_streamer', 6: 'call_rpc', 7: 'subtract_afromb'} func_codes = {y: x for x, y in func_names.items()} node, inputs, processing = parse_node_descriptor(descriptor, DeviceModel()) func_code = func_codes.get(processing) if func_code is None: raise ArgumentError("Unknown processing function", function=processing) stream_a, trigger_a = inputs[0] stream_a = stream_a.encode() if len(inputs) == 2: stream_b, trigger_b = inputs[1] stream_b = stream_b.encode() else: stream_b, trigger_b = 0xFFFF, None if trigger_a is None: trigger_a = TrueTrigger() if trigger_b is None: trigger_b = TrueTrigger() ref_a = 0 if isinstance(trigger_a, InputTrigger): ref_a = trigger_a.reference ref_b = 0 if isinstance(trigger_b, InputTrigger): ref_b = trigger_b.reference trigger_a = _create_binary_trigger(trigger_a) trigger_b = _create_binary_trigger(trigger_b) combiner = node.trigger_combiner bin_desc = struct.pack("<LLHHHBBBB2x", ref_a, ref_b, node.stream.encode(), stream_a, stream_b, func_code, trigger_a, trigger_b, combiner) return bin_desc
Convert a string node descriptor into a 20-byte binary descriptor. This is the inverse operation of parse_binary_descriptor and composing the two operations is a noop. Args: descriptor (str): A string node descriptor Returns: bytes: A 20-byte binary node descriptor.
Below is the the instruction that describes the task: ### Input: Convert a string node descriptor into a 20-byte binary descriptor. This is the inverse operation of parse_binary_descriptor and composing the two operations is a noop. Args: descriptor (str): A string node descriptor Returns: bytes: A 20-byte binary node descriptor. ### Response: def create_binary_descriptor(descriptor): """Convert a string node descriptor into a 20-byte binary descriptor. This is the inverse operation of parse_binary_descriptor and composing the two operations is a noop. Args: descriptor (str): A string node descriptor Returns: bytes: A 20-byte binary node descriptor. """ func_names = {0: 'copy_latest_a', 1: 'average_a', 2: 'copy_all_a', 3: 'sum_a', 4: 'copy_count_a', 5: 'trigger_streamer', 6: 'call_rpc', 7: 'subtract_afromb'} func_codes = {y: x for x, y in func_names.items()} node, inputs, processing = parse_node_descriptor(descriptor, DeviceModel()) func_code = func_codes.get(processing) if func_code is None: raise ArgumentError("Unknown processing function", function=processing) stream_a, trigger_a = inputs[0] stream_a = stream_a.encode() if len(inputs) == 2: stream_b, trigger_b = inputs[1] stream_b = stream_b.encode() else: stream_b, trigger_b = 0xFFFF, None if trigger_a is None: trigger_a = TrueTrigger() if trigger_b is None: trigger_b = TrueTrigger() ref_a = 0 if isinstance(trigger_a, InputTrigger): ref_a = trigger_a.reference ref_b = 0 if isinstance(trigger_b, InputTrigger): ref_b = trigger_b.reference trigger_a = _create_binary_trigger(trigger_a) trigger_b = _create_binary_trigger(trigger_b) combiner = node.trigger_combiner bin_desc = struct.pack("<LLHHHBBBB2x", ref_a, ref_b, node.stream.encode(), stream_a, stream_b, func_code, trigger_a, trigger_b, combiner) return bin_desc
def get_tournament(self, tag: crtag, timeout=0): """Get a tournament information Parameters ---------- tag: str A valid tournament tag. Minimum length: 3 Valid characters: 0289PYLQGRJCUV \*\*timeout: Optional[int] = None Custom timeout that overwrites Client.timeout """ url = self.api.TOURNAMENT + '/' + tag return self._get_model(url, PartialTournament, timeout=timeout)
Get a tournament information Parameters ---------- tag: str A valid tournament tag. Minimum length: 3 Valid characters: 0289PYLQGRJCUV \*\*timeout: Optional[int] = None Custom timeout that overwrites Client.timeout
Below is the the instruction that describes the task: ### Input: Get a tournament information Parameters ---------- tag: str A valid tournament tag. Minimum length: 3 Valid characters: 0289PYLQGRJCUV \*\*timeout: Optional[int] = None Custom timeout that overwrites Client.timeout ### Response: def get_tournament(self, tag: crtag, timeout=0): """Get a tournament information Parameters ---------- tag: str A valid tournament tag. Minimum length: 3 Valid characters: 0289PYLQGRJCUV \*\*timeout: Optional[int] = None Custom timeout that overwrites Client.timeout """ url = self.api.TOURNAMENT + '/' + tag return self._get_model(url, PartialTournament, timeout=timeout)