code
stringlengths
75
104k
docstring
stringlengths
1
46.9k
def press_key(self, key, mode=0): ''' modes: 0 -> simple press 1 -> long press 2 -> release after long press ''' if isinstance(key, str): assert key in KEYS, 'No such key: {}'.format(key) key = KEYS[key] _LOGGER.info('Press key %s', self.__get_key_name(key)) return self.rq('01', OrderedDict([('key', key), ('mode', mode)]))
modes: 0 -> simple press 1 -> long press 2 -> release after long press
def start_vm(access_token, subscription_id, resource_group, vm_name): '''Start a virtual machine. Args: access_token (str): A valid Azure authentication token. subscription_id (str): Azure subscription id. resource_group (str): Azure resource group name. vm_name (str): Name of the virtual machine. Returns: HTTP response. ''' endpoint = ''.join([get_rm_endpoint(), '/subscriptions/', subscription_id, '/resourceGroups/', resource_group, '/providers/Microsoft.Compute/virtualMachines/', vm_name, '/start', '?api-version=', COMP_API]) return do_post(endpoint, '', access_token)
Start a virtual machine. Args: access_token (str): A valid Azure authentication token. subscription_id (str): Azure subscription id. resource_group (str): Azure resource group name. vm_name (str): Name of the virtual machine. Returns: HTTP response.
def add_execution_data(self, context_id, data): """Within a context, append data to the execution result. Args: context_id (str): the context id returned by create_context data (bytes): data to append Returns: (bool): True if the operation is successful, False if the context_id doesn't reference a known context. """ if context_id not in self._contexts: LOGGER.warning("Context_id not in contexts, %s", context_id) return False context = self._contexts.get(context_id) context.add_execution_data(data) return True
Within a context, append data to the execution result. Args: context_id (str): the context id returned by create_context data (bytes): data to append Returns: (bool): True if the operation is successful, False if the context_id doesn't reference a known context.
def get_max_instances_of_storage_bus(self, chipset, bus): """Returns the maximum number of storage bus instances which can be configured for each VM. This corresponds to the number of storage controllers one can have. Value may depend on chipset type used. in chipset of type :class:`ChipsetType` The chipset type to get the value for. in bus of type :class:`StorageBus` The storage bus type to get the value for. return max_instances of type int The maximum number of instances for the given storage bus. """ if not isinstance(chipset, ChipsetType): raise TypeError("chipset can only be an instance of type ChipsetType") if not isinstance(bus, StorageBus): raise TypeError("bus can only be an instance of type StorageBus") max_instances = self._call("getMaxInstancesOfStorageBus", in_p=[chipset, bus]) return max_instances
Returns the maximum number of storage bus instances which can be configured for each VM. This corresponds to the number of storage controllers one can have. Value may depend on chipset type used. in chipset of type :class:`ChipsetType` The chipset type to get the value for. in bus of type :class:`StorageBus` The storage bus type to get the value for. return max_instances of type int The maximum number of instances for the given storage bus.
def p_expression_sra(self, p): 'expression : expression RSHIFTA expression' p[0] = Sra(p[1], p[3], lineno=p.lineno(1)) p.set_lineno(0, p.lineno(1))
expression : expression RSHIFTA expression
def get_cutout(self, token, channel, x_start, x_stop, y_start, y_stop, z_start, z_stop, t_start=0, t_stop=1, resolution=1, block_size=DEFAULT_BLOCK_SIZE, neariso=False): """ Get volumetric cutout data from the neurodata server. Arguments: token (str): Token to identify data to download channel (str): Channel resolution (int): Resolution level Q_start (int): The lower bound of dimension 'Q' Q_stop (int): The upper bound of dimension 'Q' block_size (int[3]): Block size of this dataset. If not provided, ndio uses the metadata of this tokenchannel to set. If you find that your downloads are timing out or otherwise failing, it may be wise to start off by making this smaller. neariso (bool : False): Passes the 'neariso' param to the cutout. If you don't know what this means, ignore it! Returns: numpy.ndarray: Downloaded data. """ if block_size is None: # look up block size from metadata block_size = self.get_block_size(token, resolution) origin = self.get_image_offset(token, resolution) # If z_stop - z_start is < 16, backend still pulls minimum 16 slices if (z_stop - z_start) < 16: z_slices = 16 else: z_slices = z_stop - z_start # Calculate size of the data to be downloaded. size = (x_stop - x_start) * (y_stop - y_start) * z_slices * 4 # Switch which download function to use based on which libraries are # available in this version of python. if six.PY2: dl_func = self._get_cutout_blosc_no_chunking elif six.PY3: dl_func = self._get_cutout_no_chunking else: raise ValueError("Invalid Python version.") if size < self._chunk_threshold: vol = dl_func(token, channel, resolution, x_start, x_stop, y_start, y_stop, z_start, z_stop, t_start, t_stop, neariso=neariso) vol = numpy.rollaxis(vol, 1) vol = numpy.rollaxis(vol, 2) return vol else: from ndio.utils.parallel import block_compute blocks = block_compute(x_start, x_stop, y_start, y_stop, z_start, z_stop, origin, block_size) vol = numpy.zeros(((z_stop - z_start), (y_stop - y_start), (x_stop - x_start))) for b in blocks: data = dl_func(token, channel, resolution, b[0][0], b[0][1], b[1][0], b[1][1], b[2][0], b[2][1], 0, 1, neariso=neariso) if b == blocks[0]: # first block vol = numpy.zeros(((z_stop - z_start), (y_stop - y_start), (x_stop - x_start)), dtype=data.dtype) vol[b[2][0] - z_start: b[2][1] - z_start, b[1][0] - y_start: b[1][1] - y_start, b[0][0] - x_start: b[0][1] - x_start] = data vol = numpy.rollaxis(vol, 1) vol = numpy.rollaxis(vol, 2) return vol
Get volumetric cutout data from the neurodata server. Arguments: token (str): Token to identify data to download channel (str): Channel resolution (int): Resolution level Q_start (int): The lower bound of dimension 'Q' Q_stop (int): The upper bound of dimension 'Q' block_size (int[3]): Block size of this dataset. If not provided, ndio uses the metadata of this tokenchannel to set. If you find that your downloads are timing out or otherwise failing, it may be wise to start off by making this smaller. neariso (bool : False): Passes the 'neariso' param to the cutout. If you don't know what this means, ignore it! Returns: numpy.ndarray: Downloaded data.
def _warning_handler(self, code: int): """处理300~399段状态码,抛出对应警告. Parameters: (code): - 响应的状态码 Return: (bool): - 已知的警告类型则返回True,否则返回False """ if code == 300: warnings.warn( "ExpireWarning", RuntimeWarning, stacklevel=3 ) elif code == 301: warnings.warn( "ExpireStreamWarning", RuntimeWarning, stacklevel=3 ) else: if self.debug: print("unknow code {}".format(code)) return False return True
处理300~399段状态码,抛出对应警告. Parameters: (code): - 响应的状态码 Return: (bool): - 已知的警告类型则返回True,否则返回False
def WriteProtoFile(self, printer): """Write the messages file to out as proto.""" self.Validate() extended_descriptor.WriteMessagesFile( self.__file_descriptor, self.__package, self.__client_info.version, printer)
Write the messages file to out as proto.
def get_algorithm(alg: str) -> Callable: """ :param alg: The name of the requested `JSON Web Algorithm <https://tools.ietf.org/html/rfc7519#ref-JWA>`_. `RFC7518 <https://tools.ietf.org/html/rfc7518#section-3.2>`_ is related. :type alg: str :return: The requested algorithm. :rtype: Callable :raises: ValueError """ if alg not in algorithms: raise ValueError('Invalid algorithm: {:s}'.format(alg)) return algorithms[alg]
:param alg: The name of the requested `JSON Web Algorithm <https://tools.ietf.org/html/rfc7519#ref-JWA>`_. `RFC7518 <https://tools.ietf.org/html/rfc7518#section-3.2>`_ is related. :type alg: str :return: The requested algorithm. :rtype: Callable :raises: ValueError
def get_nearest_nodes(G, X, Y, method=None): """ Return the graph nodes nearest to a list of points. Pass in points as separate vectors of X and Y coordinates. The 'kdtree' method is by far the fastest with large data sets, but only finds approximate nearest nodes if working in unprojected coordinates like lat-lng (it precisely finds the nearest node if working in projected coordinates). The 'balltree' method is second fastest with large data sets, but it is precise if working in unprojected coordinates like lat-lng. Parameters ---------- G : networkx multidigraph X : list-like The vector of longitudes or x's for which we will find the nearest node in the graph Y : list-like The vector of latitudes or y's for which we will find the nearest node in the graph method : str {None, 'kdtree', 'balltree'} Which method to use for finding nearest node to each point. If None, we manually find each node one at a time using osmnx.utils.get_nearest_node and haversine. If 'kdtree' we use scipy.spatial.cKDTree for very fast euclidean search. If 'balltree', we use sklearn.neighbors.BallTree for fast haversine search. Returns ------- nn : array list of nearest node IDs """ start_time = time.time() if method is None: # calculate nearest node one at a time for each point nn = [get_nearest_node(G, (y, x), method='haversine') for x, y in zip(X, Y)] elif method == 'kdtree': # check if we were able to import scipy.spatial.cKDTree successfully if not cKDTree: raise ImportError('The scipy package must be installed to use this optional feature.') # build a k-d tree for euclidean nearest node search nodes = pd.DataFrame({'x':nx.get_node_attributes(G, 'x'), 'y':nx.get_node_attributes(G, 'y')}) tree = cKDTree(data=nodes[['x', 'y']], compact_nodes=True, balanced_tree=True) # query the tree for nearest node to each point points = np.array([X, Y]).T dist, idx = tree.query(points, k=1) nn = nodes.iloc[idx].index elif method == 'balltree': # check if we were able to import sklearn.neighbors.BallTree successfully if not BallTree: raise ImportError('The scikit-learn package must be installed to use this optional feature.') # haversine requires data in form of [lat, lng] and inputs/outputs in units of radians nodes = pd.DataFrame({'x':nx.get_node_attributes(G, 'x'), 'y':nx.get_node_attributes(G, 'y')}) nodes_rad = np.deg2rad(nodes[['y', 'x']].astype(np.float)) points = np.array([Y.astype(np.float), X.astype(np.float)]).T points_rad = np.deg2rad(points) # build a ball tree for haversine nearest node search tree = BallTree(nodes_rad, metric='haversine') # query the tree for nearest node to each point idx = tree.query(points_rad, k=1, return_distance=False) nn = nodes.iloc[idx[:,0]].index else: raise ValueError('You must pass a valid method name, or None.') log('Found nearest nodes to {:,} points in {:,.2f} seconds'.format(len(X), time.time()-start_time)) return np.array(nn)
Return the graph nodes nearest to a list of points. Pass in points as separate vectors of X and Y coordinates. The 'kdtree' method is by far the fastest with large data sets, but only finds approximate nearest nodes if working in unprojected coordinates like lat-lng (it precisely finds the nearest node if working in projected coordinates). The 'balltree' method is second fastest with large data sets, but it is precise if working in unprojected coordinates like lat-lng. Parameters ---------- G : networkx multidigraph X : list-like The vector of longitudes or x's for which we will find the nearest node in the graph Y : list-like The vector of latitudes or y's for which we will find the nearest node in the graph method : str {None, 'kdtree', 'balltree'} Which method to use for finding nearest node to each point. If None, we manually find each node one at a time using osmnx.utils.get_nearest_node and haversine. If 'kdtree' we use scipy.spatial.cKDTree for very fast euclidean search. If 'balltree', we use sklearn.neighbors.BallTree for fast haversine search. Returns ------- nn : array list of nearest node IDs
def remove_timedim(self, var): """Remove time dimension from dataset""" if self.pps and var.dims[0] == 'time': data = var[0, :, :] data.attrs = var.attrs var = data return var
Remove time dimension from dataset
def _zp_decode(self, msg): """ZP: Zone partitions.""" zone_partitions = [ord(x)-0x31 for x in msg[4:4+Max.ZONES.value]] return {'zone_partitions': zone_partitions}
ZP: Zone partitions.
def create_win32tz_map(windows_zones_xml): """Creates a map between Windows and Olson timezone names. Args: windows_zones_xml: The CLDR XML mapping. Yields: (win32_name, olson_name, comment) """ coming_comment = None win32_name = None territory = None parser = genshi.input.XMLParser(StringIO(windows_zones_xml)) map_zones = {} zone_comments = {} for kind, data, _ in parser: if kind == genshi.core.START and str(data[0]) == "mapZone": attrs = data[1] win32_name, territory, olson_name = ( attrs.get("other"), attrs.get("territory"), attrs.get("type").split(" ")[0]) map_zones[(win32_name, territory)] = olson_name elif kind == genshi.core.END and str(data) == "mapZone" and win32_name: if coming_comment: zone_comments[(win32_name, territory)] = coming_comment coming_comment = None win32_name = None elif kind == genshi.core.COMMENT: coming_comment = data.strip() elif kind in (genshi.core.START, genshi.core.END, genshi.core.COMMENT): coming_comment = None for win32_name, territory in sorted(map_zones): yield (win32_name, territory, map_zones[(win32_name, territory)], zone_comments.get((win32_name, territory), None))
Creates a map between Windows and Olson timezone names. Args: windows_zones_xml: The CLDR XML mapping. Yields: (win32_name, olson_name, comment)
def set_enumerated_subtypes(self, subtype_fields, is_catch_all): """ Sets the list of "enumerated subtypes" for this struct. This differs from regular subtyping in that each subtype is associated with a tag that is used in the serialized format to indicate the subtype. Also, this list of subtypes was explicitly defined in an "inner-union" in the specification. The list of fields must include all defined subtypes of this struct. NOTE(kelkabany): For this to work with upcoming forward references, the hierarchy of parent types for this struct must have had this method called on them already. :type subtype_fields: List[UnionField] """ assert self._enumerated_subtypes is None, \ 'Enumerated subtypes already set.' assert isinstance(is_catch_all, bool), type(is_catch_all) self._is_catch_all = is_catch_all self._enumerated_subtypes = [] if self.parent_type: raise InvalidSpec( "'%s' enumerates subtypes so it cannot extend another struct." % self.name, self._ast_node.lineno, self._ast_node.path) # Require that if this struct enumerates subtypes, its parent (and thus # the entire hierarchy above this struct) does as well. if self.parent_type and not self.parent_type.has_enumerated_subtypes(): raise InvalidSpec( "'%s' cannot enumerate subtypes if parent '%s' does not." % (self.name, self.parent_type.name), self._ast_node.lineno, self._ast_node.path) enumerated_subtype_names = set() # Set[str] for subtype_field in subtype_fields: path = subtype_field._ast_node.path lineno = subtype_field._ast_node.lineno # Require that a subtype only has a single type tag. if subtype_field.data_type.name in enumerated_subtype_names: raise InvalidSpec( "Subtype '%s' can only be specified once." % subtype_field.data_type.name, lineno, path) # Require that a subtype has this struct as its parent. if subtype_field.data_type.parent_type != self: raise InvalidSpec( "'%s' is not a subtype of '%s'." % (subtype_field.data_type.name, self.name), lineno, path) # Check for subtype tags that conflict with this struct's # non-inherited fields. if subtype_field.name in self._fields_by_name: # Since the union definition comes first, use its line number # as the source of the field's original declaration. orig_field = self._fields_by_name[subtype_field.name] raise InvalidSpec( "Field '%s' already defined on line %d." % (subtype_field.name, lineno), orig_field._ast_node.lineno, orig_field._ast_node.path) # Walk up parent tree hierarchy to ensure no field conflicts. # Checks for conflicts with subtype tags and regular fields. cur_type = self.parent_type while cur_type: if subtype_field.name in cur_type._fields_by_name: orig_field = cur_type._fields_by_name[subtype_field.name] raise InvalidSpec( "Field '%s' already defined in parent '%s' (%s:%d)." % (subtype_field.name, cur_type.name, orig_field._ast_node.path, orig_field._ast_node.lineno), lineno, path) cur_type = cur_type.parent_type # Note the discrepancy between `fields` which contains only the # struct fields, and `_fields_by_name` which contains the struct # fields and enumerated subtype fields. self._fields_by_name[subtype_field.name] = subtype_field enumerated_subtype_names.add(subtype_field.data_type.name) self._enumerated_subtypes.append(subtype_field) assert len(self._enumerated_subtypes) > 0 # Check that all known subtypes are listed in the enumeration. for subtype in self.subtypes: if subtype.name not in enumerated_subtype_names: raise InvalidSpec( "'%s' does not enumerate all subtypes, missing '%s'" % (self.name, subtype.name), self._ast_node.lineno)
Sets the list of "enumerated subtypes" for this struct. This differs from regular subtyping in that each subtype is associated with a tag that is used in the serialized format to indicate the subtype. Also, this list of subtypes was explicitly defined in an "inner-union" in the specification. The list of fields must include all defined subtypes of this struct. NOTE(kelkabany): For this to work with upcoming forward references, the hierarchy of parent types for this struct must have had this method called on them already. :type subtype_fields: List[UnionField]
def mcc(y, z): """Matthews correlation coefficient """ tp, tn, fp, fn = contingency_table(y, z) return (tp * tn - fp * fn) / K.sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn))
Matthews correlation coefficient
def intersection(l1, l2): '''Returns intersection of two lists. Assumes the lists are sorted by start positions''' if len(l1) == 0 or len(l2) == 0: return [] out = [] l2_pos = 0 for l in l1: while l2_pos < len(l2) and l2[l2_pos].end < l.start: l2_pos += 1 if l2_pos == len(l2): break while l2_pos < len(l2) and l.intersects(l2[l2_pos]): out.append(l.intersection(l2[l2_pos])) l2_pos += 1 l2_pos = max(0, l2_pos - 1) return out
Returns intersection of two lists. Assumes the lists are sorted by start positions
def init_request(self): """ Init the native request using the okhttp3.Request.Builder """ #: Build the request builder = Request.Builder() builder.url(self.url) #: Set any headers for k, v in self.headers.items(): builder.addHeader(k, v) #: Get the body or generate from the data given body = self.body if body: #: Create the request body media_type = MediaType( __id__=MediaType.parse(self.content_type)) request_body = RequestBody( __id__=RequestBody.create(media_type, body)) #: Set the request method builder.method(self.method, request_body) elif self.method in ['get', 'delete', 'head']: #: Set the method getattr(builder, self.method)() else: raise ValueError("Cannot do a '{}' request " "without a body".format(self.method)) #: Save the okhttp request self.request = Request(__id__=builder.build())
Init the native request using the okhttp3.Request.Builder
def _read_python_source(self, filename): """ Do our best to decode a Python source file correctly. """ try: f = open(filename, "rb") except IOError as err: self.log_error("Can't open %s: %s", filename, err) return None, None try: encoding = tokenize.detect_encoding(f.readline)[0] finally: f.close() with _open_with_encoding(filename, "r", encoding=encoding) as f: return _from_system_newlines(f.read()), encoding
Do our best to decode a Python source file correctly.
def named(self, name): '''Returns .get_by('name', name)''' name = self.serialize(name) return self.get_by('name', name)
Returns .get_by('name', name)
def getDarkCurrentAverages(exposuretimes, imgs): ''' return exposure times, image averages for each exposure time ''' x, imgs_p = sortForSameExpTime(exposuretimes, imgs) s0, s1 = imgs[0].shape imgs = np.empty(shape=(len(x), s0, s1), dtype=imgs[0].dtype) for i, ip in zip(imgs, imgs_p): if len(ip) == 1: i[:] = ip[0] else: i[:] = averageSameExpTimes(ip) return x, imgs
return exposure times, image averages for each exposure time
def projScatter(lon, lat, **kwargs): """ Create a scatter plot on HEALPix projected axes. Inputs: lon (deg), lat (deg) """ hp.projscatter(lon, lat, lonlat=True, **kwargs)
Create a scatter plot on HEALPix projected axes. Inputs: lon (deg), lat (deg)
def _string_from_ip_int(self, ip_int=None): """Turns a 128-bit integer into hexadecimal notation. Args: ip_int: An integer, the IP address. Returns: A string, the hexadecimal representation of the address. Raises: ValueError: The address is bigger than 128 bits of all ones. """ if not ip_int and ip_int != 0: ip_int = int(self._ip) if ip_int > self._ALL_ONES: raise ValueError('IPv6 address is too large') hex_str = '%032x' % ip_int hextets = [] for x in range(0, 32, 4): hextets.append('%x' % int(hex_str[x:x+4], 16)) hextets = self._compress_hextets(hextets) return ':'.join(hextets)
Turns a 128-bit integer into hexadecimal notation. Args: ip_int: An integer, the IP address. Returns: A string, the hexadecimal representation of the address. Raises: ValueError: The address is bigger than 128 bits of all ones.
def publish(self, rawtx): """Publish signed <rawtx> to bitcoin network.""" tx = deserialize.signedtx(rawtx) if not self.dryrun: self.service.send_tx(tx) return serialize.txid(tx.hash())
Publish signed <rawtx> to bitcoin network.
def pgettext(msgctxt, message): """'Particular gettext' function. It works with 'msgctxt' .po modifiers and allow duplicate keys with different translations. Python 2 don't have support for this GNU gettext function, so we reimplement it. It works by joining msgctx and msgid by '4' byte.""" key = msgctxt + '\x04' + message translation = get_translation().gettext(key) return message if translation == key else translation
Particular gettext' function. It works with 'msgctxt' .po modifiers and allow duplicate keys with different translations. Python 2 don't have support for this GNU gettext function, so we reimplement it. It works by joining msgctx and msgid by '4' byte.
def add_droplets(self, droplet): """ Add the Tag to a Droplet. Attributes accepted at creation time: droplet: array of string or array of int, or array of Droplets. """ droplets = droplet if not isinstance(droplets, list): droplets = [droplet] # Extracting data from the Droplet object resources = self.__extract_resources_from_droplets(droplets) if len(resources) > 0: return self.__add_resources(resources) return False
Add the Tag to a Droplet. Attributes accepted at creation time: droplet: array of string or array of int, or array of Droplets.
def set_webconfiguration_settings(name, settings, location=''): r''' Set the value of the setting for an IIS container. Args: name (str): The PSPath of the IIS webconfiguration settings. settings (list): A list of dictionaries containing setting name, filter and value. location (str): The location of the settings (optional) Returns: bool: True if successful, otherwise False CLI Example: .. code-block:: bash salt '*' win_iis.set_webconfiguration_settings name='IIS:\' settings="[{'name': 'enabled', 'filter': 'system.webServer/security/authentication/anonymousAuthentication', 'value': False}]" ''' ps_cmd = [] if not settings: log.warning('No settings provided') return False settings = _prepare_settings(name, settings) # Treat all values as strings for the purpose of comparing them to existing values. for idx, setting in enumerate(settings): if setting['name'].split('.')[-1] != 'Collection': settings[idx]['value'] = six.text_type(setting['value']) current_settings = get_webconfiguration_settings( name=name, settings=settings, location=location) if settings == current_settings: log.debug('Settings already contain the provided values.') return True for setting in settings: # If the value is numeric, don't treat it as a string in PowerShell. if setting['name'].split('.')[-1] != 'Collection': try: complex(setting['value']) value = setting['value'] except ValueError: value = "'{0}'".format(setting['value']) else: configelement_list = [] for value_item in setting['value']: configelement_construct = [] for key, value in value_item.items(): configelement_construct.append("{0}='{1}'".format(key, value)) configelement_list.append('@{' + ';'.join(configelement_construct) + '}') value = ','.join(configelement_list) ps_cmd.extend(['Set-WebConfigurationProperty', '-PSPath', "'{0}'".format(name), '-Filter', "'{0}'".format(setting['filter']), '-Name', "'{0}'".format(setting['name']), '-Location', "'{0}'".format(location), '-Value', '{0};'.format(value)]) cmd_ret = _srvmgr(ps_cmd) if cmd_ret['retcode'] != 0: msg = 'Unable to set settings for {0}'.format(name) raise CommandExecutionError(msg) # Get the fields post-change so that we can verify tht all values # were modified successfully. Track the ones that weren't. new_settings = get_webconfiguration_settings( name=name, settings=settings, location=location) failed_settings = [] for idx, setting in enumerate(settings): is_collection = setting['name'].split('.')[-1] == 'Collection' if ((not is_collection and six.text_type(setting['value']) != six.text_type(new_settings[idx]['value'])) or (is_collection and list(map(dict, setting['value'])) != list(map(dict, new_settings[idx]['value'])))): failed_settings.append(setting) if failed_settings: log.error('Failed to change settings: %s', failed_settings) return False log.debug('Settings configured successfully: %s', settings) return True
r''' Set the value of the setting for an IIS container. Args: name (str): The PSPath of the IIS webconfiguration settings. settings (list): A list of dictionaries containing setting name, filter and value. location (str): The location of the settings (optional) Returns: bool: True if successful, otherwise False CLI Example: .. code-block:: bash salt '*' win_iis.set_webconfiguration_settings name='IIS:\' settings="[{'name': 'enabled', 'filter': 'system.webServer/security/authentication/anonymousAuthentication', 'value': False}]"
def show(self): """Print innards of model, without regards to type.""" if self._future: self._job.poll_once() return if self._model_json is None: print("No model trained yet") return if self.model_id is None: print("This H2OEstimator has been removed.") return model = self._model_json["output"] print("Model Details") print("=============") print(self.__class__.__name__, ": ", self._model_json["algo_full_name"]) print("Model Key: ", self._id) self.summary() print() # training metrics tm = model["training_metrics"] if tm: tm.show() vm = model["validation_metrics"] if vm: vm.show() xm = model["cross_validation_metrics"] if xm: xm.show() xms = model["cross_validation_metrics_summary"] if xms: xms.show() if "scoring_history" in model and model["scoring_history"]: model["scoring_history"].show() if "variable_importances" in model and model["variable_importances"]: model["variable_importances"].show()
Print innards of model, without regards to type.
def _validate_class(self, cl): """return error if class `cl` is not found in the ontology""" if cl not in self.schema_def.attributes_by_class: search_string = self._build_search_string(cl) err = self.err( "{0} - invalid class", self._field_name_from_uri(cl), search_string=search_string) return ValidationWarning(ValidationResult.ERROR, err['err'], err['line'], err['num'])
return error if class `cl` is not found in the ontology
def git_path_valid(git_path=None): """ Check whether the git executable is found. """ if git_path is None and GIT_PATH is None: return False if git_path is None: git_path = GIT_PATH try: call([git_path, '--version']) return True except OSError: return False
Check whether the git executable is found.
def _handle_consent_response(self, context): """ Endpoint for handling consent service response :type context: satosa.context.Context :rtype: satosa.response.Response :param context: response context :return: response """ consent_state = context.state[STATE_KEY] saved_resp = consent_state["internal_resp"] internal_response = InternalData.from_dict(saved_resp) hash_id = self._get_consent_id(internal_response.requester, internal_response.subject_id, internal_response.attributes) try: consent_attributes = self._verify_consent(hash_id) except ConnectionError as e: satosa_logging(logger, logging.ERROR, "Consent service is not reachable, no consent given.", context.state) # Send an internal_response without any attributes consent_attributes = None if consent_attributes is None: satosa_logging(logger, logging.INFO, "Consent was NOT given", context.state) # If consent was not given, then don't send any attributes consent_attributes = [] else: satosa_logging(logger, logging.INFO, "Consent was given", context.state) internal_response.attributes = self._filter_attributes(internal_response.attributes, consent_attributes) return self._end_consent(context, internal_response)
Endpoint for handling consent service response :type context: satosa.context.Context :rtype: satosa.response.Response :param context: response context :return: response
def elements(self): '''Iterator over elements repeating each as many times as its count. >>> c = Counter('ABCABC') >>> sorted(c.elements()) ['A', 'A', 'B', 'B', 'C', 'C'] If an element's count has been set to zero or is a negative number, elements() will ignore it. ''' for elem, count in iteritems(self): for _ in range(count): yield elem
Iterator over elements repeating each as many times as its count. >>> c = Counter('ABCABC') >>> sorted(c.elements()) ['A', 'A', 'B', 'B', 'C', 'C'] If an element's count has been set to zero or is a negative number, elements() will ignore it.
def div(self, key, value=2): """Divides the specified key value by the specified value. :param str|unicode key: :param int value: :rtype: bool """ return uwsgi.cache_mul(key, value, self.timeout, self.name)
Divides the specified key value by the specified value. :param str|unicode key: :param int value: :rtype: bool
def walklevel(path, depth = -1, **kwargs): """It works just like os.walk, but you can pass it a level parameter that indicates how deep the recursion will go. If depth is -1 (or less than 0), the full depth is walked. """ # if depth is negative, just walk if depth < 0: for root, dirs, files in os.walk(path, **kwargs): yield root, dirs, files # path.count works because is a file has a "/" it will show up in the list # as a ":" path = path.rstrip(os.path.sep) num_sep = path.count(os.path.sep) for root, dirs, files in os.walk(path, **kwargs): yield root, dirs, files num_sep_this = root.count(os.path.sep) if num_sep + depth <= num_sep_this: del dirs[:]
It works just like os.walk, but you can pass it a level parameter that indicates how deep the recursion will go. If depth is -1 (or less than 0), the full depth is walked.
def on_configurationdone_request(self, py_db, request): ''' :param ConfigurationDoneRequest request: ''' self.api.run(py_db) configuration_done_response = pydevd_base_schema.build_response(request) return NetCommand(CMD_RETURN, 0, configuration_done_response, is_json=True)
:param ConfigurationDoneRequest request:
def encode_for_locale(s): """ Encode text items for system locale. If encoding fails, fall back to ASCII. """ try: return s.encode(LOCALE_ENCODING, 'ignore') except (AttributeError, UnicodeDecodeError): return s.decode('ascii', 'ignore').encode(LOCALE_ENCODING)
Encode text items for system locale. If encoding fails, fall back to ASCII.
def new(self, *args, **kwargs): '''Create a new instance of :attr:`model` and commit it to the backend server. This a shortcut method for the more verbose:: instance = manager.session().add(MyModel(**kwargs)) ''' return self.session().add(self.model(*args, **kwargs))
Create a new instance of :attr:`model` and commit it to the backend server. This a shortcut method for the more verbose:: instance = manager.session().add(MyModel(**kwargs))
def wrap_exceptions(callable): """Call callable into a try/except clause and translate ENOENT, EACCES and EPERM in NoSuchProcess or AccessDenied exceptions. """ def wrapper(self, *args, **kwargs): try: return callable(self, *args, **kwargs) except EnvironmentError: # ENOENT (no such file or directory) gets raised on open(). # ESRCH (no such process) can get raised on read() if # process is gone in meantime. err = sys.exc_info()[1] if err.errno in (errno.ENOENT, errno.ESRCH): raise NoSuchProcess(self.pid, self._process_name) if err.errno in (errno.EPERM, errno.EACCES): raise AccessDenied(self.pid, self._process_name) raise return wrapper
Call callable into a try/except clause and translate ENOENT, EACCES and EPERM in NoSuchProcess or AccessDenied exceptions.
def publish(self, load): ''' Publish "load" to minions ''' payload = {'enc': 'aes'} crypticle = salt.crypt.Crypticle(self.opts, salt.master.SMaster.secrets['aes']['secret'].value) payload['load'] = crypticle.dumps(load) if self.opts['sign_pub_messages']: master_pem_path = os.path.join(self.opts['pki_dir'], 'master.pem') log.debug("Signing data packet") payload['sig'] = salt.crypt.sign_message(master_pem_path, payload['load']) # Use the Salt IPC server if self.opts.get('ipc_mode', '') == 'tcp': pull_uri = int(self.opts.get('tcp_master_publish_pull', 4514)) else: pull_uri = os.path.join(self.opts['sock_dir'], 'publish_pull.ipc') # TODO: switch to the actual asynchronous interface #pub_sock = salt.transport.ipc.IPCMessageClient(self.opts, io_loop=self.io_loop) pub_sock = salt.utils.asynchronous.SyncWrapper( salt.transport.ipc.IPCMessageClient, (pull_uri,) ) pub_sock.connect() int_payload = {'payload': self.serial.dumps(payload)} # add some targeting stuff for lists only (for now) if load['tgt_type'] == 'list': if isinstance(load['tgt'], six.string_types): # Fetch a list of minions that match _res = self.ckminions.check_minions(load['tgt'], tgt_type=load['tgt_type']) match_ids = _res['minions'] log.debug("Publish Side Match: %s", match_ids) # Send list of miions thru so zmq can target them int_payload['topic_lst'] = match_ids else: int_payload['topic_lst'] = load['tgt'] # Send it over IPC! pub_sock.send(int_payload)
Publish "load" to minions
def return_action(self, text, loc, ret): """Code executed after recognising a return statement""" exshared.setpos(loc, text) if DEBUG > 0: print("RETURN:",ret) if DEBUG == 2: self.symtab.display() if DEBUG > 2: return if not self.symtab.same_types(self.shared.function_index, ret.exp[0]): raise SemanticException("Incompatible type in return") #set register for function's return value to expression value reg = self.codegen.take_function_register() self.codegen.move(ret.exp[0], reg) #after return statement, register for function's return value is available again self.codegen.free_register(reg) #jump to function's exit self.codegen.unconditional_jump(self.codegen.label(self.shared.function_name+"_exit", True))
Code executed after recognising a return statement
def greenlet_timeouts(self): """ This greenlet kills jobs in other greenlets if they timeout. """ while True: now = datetime.datetime.utcnow() for greenlet in list(self.gevent_pool): job = get_current_job(id(greenlet)) if job and job.timeout and job.datestarted: expires = job.datestarted + datetime.timedelta(seconds=job.timeout) if now > expires: job.kill(block=False, reason="timeout") time.sleep(1)
This greenlet kills jobs in other greenlets if they timeout.
def clean_existing(self, value): """Clean the data and return an existing document with its fields updated based on the cleaned values. """ existing_pk = value[self.pk_field] try: obj = self.fetch_existing(existing_pk) except ReferenceNotFoundError: raise ValidationError('Object does not exist.') orig_data = self.get_orig_data_from_existing(obj) # Clean the data (passing the new data dict and the original data to # the schema). value = self.schema_class(value, orig_data).full_clean() # Set cleaned data on the object (except for the pk_field). for field_name, field_value in value.items(): if field_name != self.pk_field: setattr(obj, field_name, field_value) return obj
Clean the data and return an existing document with its fields updated based on the cleaned values.
def update_extent_from_rectangle(self): """Update extent value in GUI based from the QgsMapTool rectangle. .. note:: Delegates to update_extent() """ self.show() self.canvas.unsetMapTool(self.rectangle_map_tool) self.canvas.setMapTool(self.pan_tool) rectangle = self.rectangle_map_tool.rectangle() if rectangle: self.bounding_box_group.setTitle( self.tr('Bounding box from rectangle')) extent = rectangle_geo_array(rectangle, self.iface.mapCanvas()) self.update_extent(extent)
Update extent value in GUI based from the QgsMapTool rectangle. .. note:: Delegates to update_extent()
def ensure_dir(path): """Ensure directory exists. Args: path(str): dir path """ dirpath = os.path.dirname(path) if dirpath and not os.path.exists(dirpath): os.makedirs(dirpath)
Ensure directory exists. Args: path(str): dir path
def _should_run(het_file): """Check for enough input data to proceed with analysis. """ has_hets = False with open(het_file) as in_handle: for i, line in enumerate(in_handle): if i > 1: has_hets = True break return has_hets
Check for enough input data to proceed with analysis.
def type_alias(self): """Return the type alias this target was constructed via. For a target read from a BUILD file, this will be target alias, like 'java_library'. For a target constructed in memory, this will be the simple class name, like 'JavaLibrary'. The end result is that the type alias should be the most natural way to refer to this target's type to the author of the target instance. :rtype: string """ type_alias = self._kwargs.get(self._TYPE_ALIAS_FIELD, None) return type_alias if type_alias is not None else type(self).__name__
Return the type alias this target was constructed via. For a target read from a BUILD file, this will be target alias, like 'java_library'. For a target constructed in memory, this will be the simple class name, like 'JavaLibrary'. The end result is that the type alias should be the most natural way to refer to this target's type to the author of the target instance. :rtype: string
def _pred(aclass): """ :param aclass :return: boolean """ isaclass = inspect.isclass(aclass) return isaclass and aclass.__module__ == _pred.__module__
:param aclass :return: boolean
def sample(self, cursor): """Extract records randomly from the database. Continue until the target proportion of the items have been extracted, or until `min_items` if this is larger. If `max_items` is non-negative, do not extract more than these. This function is a generator, yielding items incrementally. :param cursor: Cursor to sample :type cursor: pymongo.cursor.Cursor :return: yields each item :rtype: dict :raise: ValueError, if max_items is valid and less than `min_items` or if target collection is empty """ count = cursor.count() # special case: empty collection if count == 0: self._empty = True raise ValueError("Empty collection") # special case: entire collection if self.p >= 1 and self.max_items <= 0: for item in cursor: yield item return # calculate target number of items to select if self.max_items <= 0: n_target = max(self.min_items, self.p * count) else: if self.p <= 0: n_target = max(self.min_items, self.max_items) else: n_target = max(self.min_items, min(self.max_items, self.p * count)) if n_target == 0: raise ValueError("No items requested") # select first `n_target` items that pop up with # probability self.p # This is actually biased to items at the beginning # of the file if n_target is smaller than (p * count), n = 0 while n < n_target: try: item = next(cursor) except StopIteration: # need to keep looping through data until # we get all our items! cursor.rewind() item = next(cursor) if self._keep(): yield item n += 1
Extract records randomly from the database. Continue until the target proportion of the items have been extracted, or until `min_items` if this is larger. If `max_items` is non-negative, do not extract more than these. This function is a generator, yielding items incrementally. :param cursor: Cursor to sample :type cursor: pymongo.cursor.Cursor :return: yields each item :rtype: dict :raise: ValueError, if max_items is valid and less than `min_items` or if target collection is empty
def down(force): """ destroys an existing cluster """ try: cloud_config = CloudConfig() cloud_controller = CloudController(cloud_config) cloud_controller.down(force) except CloudComposeException as ex: print(ex)
destroys an existing cluster
def package_releases(self, package, url_fmt=lambda u: u): """List all versions of a package Along with the version, the caller also receives the file list with all the available formats. """ return [{ 'name': package, 'version': version, 'urls': [self.get_urlhash(f, url_fmt) for f in files] } for version, files in self.storage.get(package, {}).items()]
List all versions of a package Along with the version, the caller also receives the file list with all the available formats.
def focus_up(pymux): " Move focus up. " _move_focus(pymux, lambda wp: wp.xpos, lambda wp: wp.ypos - 2)
Move focus up.
def touch(self): """ Respond to ``nsqd`` that you need more time to process the message. """ assert not self._has_responded self.trigger(event.TOUCH, message=self)
Respond to ``nsqd`` that you need more time to process the message.
def close(self, reason=None): """Stop consuming messages and shutdown all helper threads. This method is idempotent. Additional calls will have no effect. Args: reason (Any): The reason to close this. If None, this is considered an "intentional" shutdown. This is passed to the callbacks specified via :meth:`add_close_callback`. """ with self._closing: if self._closed: return # Stop consuming messages. if self.is_active: _LOGGER.debug("Stopping consumer.") self._consumer.stop() self._consumer = None # Shutdown all helper threads _LOGGER.debug("Stopping scheduler.") self._scheduler.shutdown() self._scheduler = None _LOGGER.debug("Stopping leaser.") self._leaser.stop() self._leaser = None _LOGGER.debug("Stopping dispatcher.") self._dispatcher.stop() self._dispatcher = None _LOGGER.debug("Stopping heartbeater.") self._heartbeater.stop() self._heartbeater = None self._rpc = None self._closed = True _LOGGER.debug("Finished stopping manager.") for callback in self._close_callbacks: callback(self, reason)
Stop consuming messages and shutdown all helper threads. This method is idempotent. Additional calls will have no effect. Args: reason (Any): The reason to close this. If None, this is considered an "intentional" shutdown. This is passed to the callbacks specified via :meth:`add_close_callback`.
def from_string(values, separator, remove_duplicates = False): """ Splits specified string into elements using a separator and assigns the elements to a newly created AnyValueArray. :param values: a string value to be split and assigned to AnyValueArray :param separator: a separator to split the string :param remove_duplicates: (optional) true to remove duplicated elements :return: a newly created AnyValueArray. """ result = AnyValueArray() if values == None or len(values) == 0: return result items = str(values).split(separator) for item in items: if (item != None and len(item) > 0) or remove_duplicates == False: result.append(item) return result
Splits specified string into elements using a separator and assigns the elements to a newly created AnyValueArray. :param values: a string value to be split and assigned to AnyValueArray :param separator: a separator to split the string :param remove_duplicates: (optional) true to remove duplicated elements :return: a newly created AnyValueArray.
def _scan_block(self, cfg_job): """ Scan a basic block starting at a specific address :param CFGJob cfg_job: The CFGJob instance. :return: a list of successors :rtype: list """ addr = cfg_job.addr current_func_addr = cfg_job.func_addr if self._addr_hooked_or_syscall(addr): entries = self._scan_procedure(cfg_job, current_func_addr) else: entries = self._scan_soot_block(cfg_job, current_func_addr) return entries
Scan a basic block starting at a specific address :param CFGJob cfg_job: The CFGJob instance. :return: a list of successors :rtype: list
def constraint(self): """Constraint string""" constraint_arr = [] if self._not_null: constraint_arr.append("PRIMARY KEY" if self._pk else "NOT NULL") if self._unique: constraint_arr.append("UNIQUE") return " ".join(constraint_arr)
Constraint string
def get(self, list_id, segment_id): """ returns the specified list segment. """ return self._mc_client._get(url=self._build_path(list_id, 'segments', segment_id))
returns the specified list segment.
def _safe_sendBreak_v2_7(self): # pylint: disable=invalid-name """! pyserial 2.7 API implementation of sendBreak/setBreak @details Below API is deprecated for pyserial 3.x versions! http://pyserial.readthedocs.org/en/latest/pyserial_api.html#serial.Serial.sendBreak http://pyserial.readthedocs.org/en/latest/pyserial_api.html#serial.Serial.setBreak """ result = True try: self.sendBreak() except: # pylint: disable=bare-except # In Linux a termios.error is raised in sendBreak and in setBreak. # The following setBreak() is needed to release the reset signal on the target mcu. try: self.setBreak(False) except: # pylint: disable=bare-except result = False return result
! pyserial 2.7 API implementation of sendBreak/setBreak @details Below API is deprecated for pyserial 3.x versions! http://pyserial.readthedocs.org/en/latest/pyserial_api.html#serial.Serial.sendBreak http://pyserial.readthedocs.org/en/latest/pyserial_api.html#serial.Serial.setBreak
def init_default(m:nn.Module, func:LayerFunc=nn.init.kaiming_normal_)->None: "Initialize `m` weights with `func` and set `bias` to 0." if func: if hasattr(m, 'weight'): func(m.weight) if hasattr(m, 'bias') and hasattr(m.bias, 'data'): m.bias.data.fill_(0.) return m
Initialize `m` weights with `func` and set `bias` to 0.
def ip4_address(self): """Returns the IPv4 address of the network interface. If multiple interfaces are provided, the address of the first found is returned. """ if self._ip4_address is None and self.network is not None: self._ip4_address = self._get_ip_address( libvirt.VIR_IP_ADDR_TYPE_IPV4) return self._ip4_address
Returns the IPv4 address of the network interface. If multiple interfaces are provided, the address of the first found is returned.
def _exec_loop(self, a, bd_all, mask): """Solves the kriging system by looping over all specified points. Less memory-intensive, but involves a Python-level loop.""" npt = bd_all.shape[0] n = self.X_ADJUSTED.shape[0] kvalues = np.zeros(npt) sigmasq = np.zeros(npt) a_inv = scipy.linalg.inv(a) for j in np.nonzero(~mask)[0]: # Note that this is the same thing as range(npt) if mask is not defined, bd = bd_all[j] # otherwise it takes the non-masked elements. if np.any(np.absolute(bd) <= self.eps): zero_value = True zero_index = np.where(np.absolute(bd) <= self.eps) else: zero_value = False zero_index = None b = np.zeros((n+1, 1)) b[:n, 0] = - self.variogram_function(self.variogram_model_parameters, bd) if zero_value: b[zero_index[0], 0] = 0.0 b[n, 0] = 1.0 x = np.dot(a_inv, b) kvalues[j] = np.sum(x[:n, 0] * self.VALUES) sigmasq[j] = np.sum(x[:, 0] * -b[:, 0]) return kvalues, sigmasq
Solves the kriging system by looping over all specified points. Less memory-intensive, but involves a Python-level loop.
def _flip_kron_order(mat4x4: np.ndarray) -> np.ndarray: """Given M = sum(kron(a_i, b_i)), returns M' = sum(kron(b_i, a_i)).""" result = np.array([[0] * 4] * 4, dtype=np.complex128) order = [0, 2, 1, 3] for i in range(4): for j in range(4): result[order[i], order[j]] = mat4x4[i, j] return result
Given M = sum(kron(a_i, b_i)), returns M' = sum(kron(b_i, a_i)).
def _push_new_tag_to_git(self): """ tags a new release and pushes to origin/master """ print("Pushing new version to git") ## stage the releasefile and initfileb subprocess.call(["git", "add", self.release_file]) subprocess.call(["git", "add", self.init_file]) subprocess.call([ "git", "commit", "-m", "Updating {}/__init__.py to version {}"\ .format(self.package, self.tag)]) ## push changes to origin <tracked branch> subprocess.call(["git", "push", "origin", self.branch]) ## create a new tag for the version number on deploy if self.deploy: subprocess.call([ "git", "tag", "-a", self.tag, "-m", "Updating version to {}".format(self.tag), ]) subprocess.call(["git", "push", "origin"])
tags a new release and pushes to origin/master
def get(self, byte_sig: str, online_timeout: int = 2) -> List[str]: """Get a function text signature for a byte signature 1) try local cache 2) try online lookup (if enabled; if not flagged as unavailable) :param byte_sig: function signature hash as hexstr :param online_timeout: online lookup timeout :return: list of matching function text signatures """ byte_sig = self._normalize_byte_sig(byte_sig) # check if we have any Solidity signatures to look up text_sigs = self.solidity_sigs.get(byte_sig) if text_sigs is not None: return text_sigs # try lookup in the local DB with SQLiteDB(self.path) as cur: cur.execute("SELECT text_sig FROM signatures WHERE byte_sig=?", (byte_sig,)) text_sigs = cur.fetchall() if text_sigs: return [t[0] for t in text_sigs] # abort if we're not allowed to check 4byte or we already missed # the signature, or we're on a timeout if ( not self.enable_online_lookup or byte_sig in self.online_lookup_miss or time.time() < self.online_lookup_timeout ): return [] try: text_sigs = self.lookup_online(byte_sig=byte_sig, timeout=online_timeout) if not text_sigs: self.online_lookup_miss.add(byte_sig) return [] else: for resolved in text_sigs: self.add(byte_sig, resolved) return text_sigs except FourByteDirectoryOnlineLookupError as fbdole: # wait at least 2 mins to try again self.online_lookup_timeout = int(time.time()) + 2 * 60 log.warning("Online lookup failed, not retrying for 2min: %s", fbdole) return []
Get a function text signature for a byte signature 1) try local cache 2) try online lookup (if enabled; if not flagged as unavailable) :param byte_sig: function signature hash as hexstr :param online_timeout: online lookup timeout :return: list of matching function text signatures
def inject_code(self, payload, lpParameter = 0): """ Injects relocatable code into the process memory and executes it. @warning: Don't forget to free the memory when you're done with it! Otherwise you'll be leaking memory in the target process. @see: L{inject_dll} @type payload: str @param payload: Relocatable code to run in a new thread. @type lpParameter: int @param lpParameter: (Optional) Parameter to be pushed in the stack. @rtype: tuple( L{Thread}, int ) @return: The injected Thread object and the memory address where the code was written. @raise WindowsError: An exception is raised on error. """ # Uncomment for debugging... ## payload = '\xCC' + payload # Allocate the memory for the shellcode. lpStartAddress = self.malloc(len(payload)) # Catch exceptions so we can free the memory on error. try: # Write the shellcode to our memory location. self.write(lpStartAddress, payload) # Start a new thread for the shellcode to run. aThread = self.start_thread(lpStartAddress, lpParameter, bSuspended = False) # Remember the shellcode address. # It will be freed ONLY by the Thread.kill() method # and the EventHandler class, otherwise you'll have to # free it in your code, or have your shellcode clean up # after itself (recommended). aThread.pInjectedMemory = lpStartAddress # Free the memory on error. except Exception: self.free(lpStartAddress) raise # Return the Thread object and the shellcode address. return aThread, lpStartAddress
Injects relocatable code into the process memory and executes it. @warning: Don't forget to free the memory when you're done with it! Otherwise you'll be leaking memory in the target process. @see: L{inject_dll} @type payload: str @param payload: Relocatable code to run in a new thread. @type lpParameter: int @param lpParameter: (Optional) Parameter to be pushed in the stack. @rtype: tuple( L{Thread}, int ) @return: The injected Thread object and the memory address where the code was written. @raise WindowsError: An exception is raised on error.
def calc_bhhh_hessian_approximation_mixed_logit(params, design_3d, alt_IDs, rows_to_obs, rows_to_alts, rows_to_mixers, choice_vector, utility_transform, ridge=None, weights=None): """ Parameters ---------- params : 1D ndarray. All elements should by ints, floats, or longs. Should have 1 element for each utility coefficient being estimated (i.e. num_features + num_coefs_being_mixed). design_3d : 3D ndarray. All elements should be ints, floats, or longs. Should have one row per observation per available alternative. The second axis should have as many elements as there are draws from the mixing distributions of the coefficients. The last axis should have one element per index coefficient being estimated. alt_IDs : 1D ndarray. All elements should be ints. There should be one row per obervation per available alternative for the given observation. Elements denote the alternative corresponding to the given row of the design matrix. rows_to_obs : 2D scipy sparse array. All elements should be zeros and ones. Should have one row per observation per available alternative and one column per observation. This matrix maps the rows of the design matrix to the unique observations (on the columns). rows_to_alts : 2D scipy sparse array. All elements should be zeros and ones. Should have one row per observation per available alternative and one column per possible alternative. This matrix maps the rows of the design matrix to the possible alternatives for this dataset. rows_to_mixers : 2D scipy sparse array. All elements should be zeros and ones. Will map the rows of the design matrix to the particular units that the mixing is being performed over. Note that in the case of panel data, this matrix will be different from `rows_to_obs`. choice_vector : 1D ndarray. All elements should be either ones or zeros. There should be one row per observation per available alternative for the given observation. Elements denote the alternative which is chosen by the given observation with a 1 and a zero otherwise. utility_transform : callable. Should accept a 1D array of systematic utility values, a 1D array of alternative IDs, and miscellaneous args and kwargs. Should return a 2D array whose elements contain the appropriately transformed systematic utility values, based on the current model being evaluated and the given draw of the random coefficients. There should be one column for each draw of the random coefficients. There should have one row per individual per choice situation per available alternative. ridge : int, float, long, or None, optional. Determines whether or not ridge regression is performed. If a float is passed, then that float determines the ridge penalty for the optimization. Default = None. weights : 1D ndarray or None, optional. Allows for the calculation of weighted log-likelihoods. The weights can represent various things. In stratified samples, the weights may be the proportion of the observations in a given strata for a sample in relation to the proportion of observations in that strata in the population. In latent class models, the weights may be the probability of being a particular class. Default == None. Returns ------- bhhh_matrix : 2D ndarray of shape `(design.shape[1], design.shape[1])`. The returned array is the BHHH approximation of the Fisher Information Matrix. I.e it is the negative of the sum of the outer product of each individual's gradient with itself. """ # Calculate the weights for the sample if weights is None: weights = np.ones(design_3d.shape[0]) weights_per_obs =\ np.max(rows_to_mixers.toarray() * weights[:, None], axis=0) # Calculate the regular probability array. Note the implicit assumption # that params == index coefficients. prob_array = general_calc_probabilities(params, design_3d, alt_IDs, rows_to_obs, rows_to_alts, utility_transform, return_long_probs=True) # Calculate the simulated probability of correctly predicting each persons # sequence of choices. Note that this function implicitly assumes that the # mixing unit is the individual prob_results = calc_choice_sequence_probs(prob_array, choice_vector, rows_to_mixers, return_type="all") # Calculate the sequence probabilities given random draws # and calculate the overal simulated probabilities sequence_prob_array = prob_results[1] simulated_probs = prob_results[0] # Convert the various probabilties to long format long_sequence_prob_array = rows_to_mixers.dot(sequence_prob_array) long_simulated_probs = rows_to_mixers.dot(simulated_probs) # Scale sequence probabilites given random draws by simulated probabilities scaled_sequence_probs = (long_sequence_prob_array / long_simulated_probs[:, None]) # Calculate the scaled error. Will have shape == (num_rows, num_draws) scaled_error = ((choice_vector[:, None] - prob_array) * scaled_sequence_probs) # Calculate the gradient. Note that the lines below assume that we are # taking the gradient of an MNL model. Should refactor to make use of the # built in gradient function for logit-type models. Should also refactor # the gradient function for logit-type models to be able to handle 2D # systematic utility arrays. `gradient` will have shape # (design_3d.shape[0], design_3d.shape[2]) gradient = (scaled_error[:, :, None] * design_3d).mean(axis=1) gradient_per_obs = rows_to_mixers.T.dot(gradient) bhhh_matrix =\ gradient_per_obs.T.dot(weights_per_obs[:, None] * gradient_per_obs) if ridge is not None: bhhh_matrix -= 2 * ridge # Note the "-1" is because we are approximating the Fisher information # matrix which has a negative one in the front of it? return -1 * bhhh_matrix
Parameters ---------- params : 1D ndarray. All elements should by ints, floats, or longs. Should have 1 element for each utility coefficient being estimated (i.e. num_features + num_coefs_being_mixed). design_3d : 3D ndarray. All elements should be ints, floats, or longs. Should have one row per observation per available alternative. The second axis should have as many elements as there are draws from the mixing distributions of the coefficients. The last axis should have one element per index coefficient being estimated. alt_IDs : 1D ndarray. All elements should be ints. There should be one row per obervation per available alternative for the given observation. Elements denote the alternative corresponding to the given row of the design matrix. rows_to_obs : 2D scipy sparse array. All elements should be zeros and ones. Should have one row per observation per available alternative and one column per observation. This matrix maps the rows of the design matrix to the unique observations (on the columns). rows_to_alts : 2D scipy sparse array. All elements should be zeros and ones. Should have one row per observation per available alternative and one column per possible alternative. This matrix maps the rows of the design matrix to the possible alternatives for this dataset. rows_to_mixers : 2D scipy sparse array. All elements should be zeros and ones. Will map the rows of the design matrix to the particular units that the mixing is being performed over. Note that in the case of panel data, this matrix will be different from `rows_to_obs`. choice_vector : 1D ndarray. All elements should be either ones or zeros. There should be one row per observation per available alternative for the given observation. Elements denote the alternative which is chosen by the given observation with a 1 and a zero otherwise. utility_transform : callable. Should accept a 1D array of systematic utility values, a 1D array of alternative IDs, and miscellaneous args and kwargs. Should return a 2D array whose elements contain the appropriately transformed systematic utility values, based on the current model being evaluated and the given draw of the random coefficients. There should be one column for each draw of the random coefficients. There should have one row per individual per choice situation per available alternative. ridge : int, float, long, or None, optional. Determines whether or not ridge regression is performed. If a float is passed, then that float determines the ridge penalty for the optimization. Default = None. weights : 1D ndarray or None, optional. Allows for the calculation of weighted log-likelihoods. The weights can represent various things. In stratified samples, the weights may be the proportion of the observations in a given strata for a sample in relation to the proportion of observations in that strata in the population. In latent class models, the weights may be the probability of being a particular class. Default == None. Returns ------- bhhh_matrix : 2D ndarray of shape `(design.shape[1], design.shape[1])`. The returned array is the BHHH approximation of the Fisher Information Matrix. I.e it is the negative of the sum of the outer product of each individual's gradient with itself.
def check_spelling(spelling_lang, txt): """ Check the spelling in the text, and compute a score. The score is the number of words correctly (or almost correctly) spelled, minus the number of mispelled words. Words "almost" correct remains neutral (-> are not included in the score) Returns: A tuple : (fixed text, score) """ if os.name == "nt": assert(not "check_spelling() not available on Windows") return with _ENCHANT_LOCK: # Maximum distance from the first suggestion from python-enchant words_dict = enchant.request_dict(spelling_lang) try: tknzr = enchant.tokenize.get_tokenizer(spelling_lang) except enchant.tokenize.TokenizerNotFoundError: # Fall back to default tokenization if no match for 'lang' tknzr = enchant.tokenize.get_tokenizer() score = 0 offset = 0 for (word, word_pos) in tknzr(txt): if len(word) < _MIN_WORD_LEN: continue if words_dict.check(word): # immediately correct words are a really good hint for # orientation score += 100 continue suggestions = words_dict.suggest(word) if (len(suggestions) <= 0): # this word is useless. It may even indicates a bad orientation score -= 10 continue main_suggestion = suggestions[0] lv_dist = Levenshtein.distance(word, main_suggestion) if (lv_dist > _MAX_LEVENSHTEIN_DISTANCE): # hm, this word looks like it's in a bad shape continue logger.debug("Spell checking: Replacing: %s -> %s" % (word, main_suggestion)) # let's replace the word by its suggestion pre_txt = txt[:word_pos + offset] post_txt = txt[word_pos + len(word) + offset:] txt = pre_txt + main_suggestion + post_txt offset += (len(main_suggestion) - len(word)) # fixed words may be a good hint for orientation score += 5 return (txt, score)
Check the spelling in the text, and compute a score. The score is the number of words correctly (or almost correctly) spelled, minus the number of mispelled words. Words "almost" correct remains neutral (-> are not included in the score) Returns: A tuple : (fixed text, score)
def get_date_datetime_param(self, request, param): """Check the request for the provided query parameter and returns a rounded value. :param request: WSGI request object to retrieve query parameter data. :param param: the name of the query parameter. """ if param in request.GET: param_value = request.GET.get(param, None) # Match and interpret param if formatted as a date. date_match = dateparse.date_re.match(param_value) if date_match: return timezone.datetime.combine( dateparse.parse_date(date_match.group(0)), timezone.datetime.min.time() ) datetime_match = dateparse.datetime_re.match(param_value) if datetime_match: return timezone.datetime.combine( dateparse.parse_datetime(datetime_match.group(0)).date(), timezone.datetime.min.time() ) return None
Check the request for the provided query parameter and returns a rounded value. :param request: WSGI request object to retrieve query parameter data. :param param: the name of the query parameter.
def get_traceback_data(self): """Return a dictionary containing traceback information.""" default_template_engine = None if default_template_engine is None: template_loaders = [] frames = self.get_traceback_frames() for i, frame in enumerate(frames): if 'vars' in frame: frame_vars = [] for k, v in frame['vars']: v = pformat(v) # The escape filter assume unicode, make sure that works if isinstance(v, six.binary_type): v = v.decode('utf-8', 'replace') # don't choke on non-utf-8 input # Trim large blobs of data if v and len(v) > 4096: v = '%s... <trimmed %d bytes string>' % (v[0:4096], len(v)) frame_vars.append((k, v)) frame['vars'] = frame_vars frames[i] = frame unicode_hint = '' if self.exc_type and issubclass(self.exc_type, UnicodeError): start = getattr(self.exc_value, 'start', None) end = getattr(self.exc_value, 'end', None) if start is not None and end is not None: unicode_str = self.exc_value.args[1] c = { 'is_email': False, 'frames': frames, 'sys_executable': sys.executable, 'sys_version_info': '%d.%d.%d' % sys.version_info[0:3], 'sys_path': sys.path, } # Check whether exception info is available if self.exc_type: c['exception_type'] = self.exc_type.__name__ if self.exc_value: c['exception_value'] = self.exc_value if frames: c['lastframe'] = frames[-1] return c
Return a dictionary containing traceback information.
def add_source_get_correlated(gta, name, src_dict, correl_thresh=0.25, non_null_src=False): """Add a source and get the set of correlated sources Parameters ---------- gta : `fermipy.gtaanalysis.GTAnalysis` The analysis object name : str Name of the source we are adding src_dict : dict Dictionary of the source parameters correl_thresh : float Threshold for considering a source to be correlated non_null_src : bool If True, don't zero the source Returns ------- cdict : dict Dictionary with names and correlation factors of correlated sources test_src_name : bool Name of the test source """ if gta.roi.has_source(name): gta.zero_source(name) gta.update_source(name) test_src_name = "%s_test" % name else: test_src_name = name gta.add_source(test_src_name, src_dict) gta.free_norm(test_src_name) gta.free_shape(test_src_name, free=False) fit_result = gta.fit(covar=True) mask = fit_result['is_norm'] src_names = np.array(fit_result['src_names'])[mask] idx = (src_names == test_src_name).argmax() correl_vals = fit_result['correlation'][idx][mask] cdict = {} for src_name, correl_val in zip(src_names, correl_vals): if src_name == name: continue if np.fabs(correl_val) > 0.25: cdict[src_name] = correl_val if not non_null_src: gta.zero_source(test_src_name) gta.fit(covar=True) return cdict, test_src_name
Add a source and get the set of correlated sources Parameters ---------- gta : `fermipy.gtaanalysis.GTAnalysis` The analysis object name : str Name of the source we are adding src_dict : dict Dictionary of the source parameters correl_thresh : float Threshold for considering a source to be correlated non_null_src : bool If True, don't zero the source Returns ------- cdict : dict Dictionary with names and correlation factors of correlated sources test_src_name : bool Name of the test source
def get_info(self, wiki=None, show=True, proxy=None, timeout=0): """ GET site info (general, statistics, siteviews, mostviewed) via https://www.mediawiki.org/wiki/API:Siteinfo, and https://www.mediawiki.org/wiki/Extension:PageViewInfo Optional arguments: - [wiki]: <str> alternate wiki site (default=en.wikipedia.org) - [show]: <bool> echo page data if true - [proxy]: <str> use this HTTP proxy - [timeout]: <int> timeout in seconds (0=wait forever) Data captured: - info: <dict> API:Siteinfo - mostviewed: <list> mostviewed articles {ns=0, title, count} - site: <str> sitename, e.g. 'enwiki' - siteviews: <int> sitewide pageview totals over last WEEK - visitors: <int> sitewide unique visitor total over last WEEK - various counts: activeusers, admins, articles, edits, images jobs, pages, queued-massmessages, siteviews, users, visitors """ if wiki: self.params.update({'wiki': wiki}) self._get('siteinfo', show=False, proxy=proxy, timeout=timeout) self._get('sitevisitors', show, proxy, timeout) return self
GET site info (general, statistics, siteviews, mostviewed) via https://www.mediawiki.org/wiki/API:Siteinfo, and https://www.mediawiki.org/wiki/Extension:PageViewInfo Optional arguments: - [wiki]: <str> alternate wiki site (default=en.wikipedia.org) - [show]: <bool> echo page data if true - [proxy]: <str> use this HTTP proxy - [timeout]: <int> timeout in seconds (0=wait forever) Data captured: - info: <dict> API:Siteinfo - mostviewed: <list> mostviewed articles {ns=0, title, count} - site: <str> sitename, e.g. 'enwiki' - siteviews: <int> sitewide pageview totals over last WEEK - visitors: <int> sitewide unique visitor total over last WEEK - various counts: activeusers, admins, articles, edits, images jobs, pages, queued-massmessages, siteviews, users, visitors
def elliptical_arc_to(x1, y1, rx, ry, phi, large_arc_flag, sweep_flag, x2, y2): """ An elliptical arc approximated with Bezier curves or a line segment. Algorithm taken from the SVG 1.1 Implementation Notes: http://www.w3.org/TR/SVG/implnote.html#ArcImplementationNotes """ # Basic normalization. rx = abs(rx) ry = abs(ry) phi = phi % 360 # Check for certain special cases. if x1==x2 and y1==y2: # Omit the arc. # x1 and y1 can obviously remain the same for the next segment. return [] if rx == 0 or ry == 0: # Line segment. return [(x2,y2)] rphi = radians(phi) cphi = cos(rphi) sphi = sin(rphi) # Step 1: Rotate to the local coordinates. dx = 0.5*(x1 - x2) dy = 0.5*(y1 - y2) x1p = cphi * dx + sphi * dy y1p = -sphi * dx + cphi * dy # Ensure that rx and ry are large enough to have a unique solution. lam = (x1p/rx)**2 + (y1p/ry)**2 if lam > 1.0: scale = sqrt(lam) rx *= scale ry *= scale # Step 2: Solve for the center in the local coordinates. num = max((rx*ry)**2 - (rx*y1p)**2 - (ry*x1p)**2, 0.0) den = ((rx*y1p)**2 + (ry*x1p)**2) a = sqrt(num / den) cxp = a * rx*y1p/ry cyp = -a * ry*x1p/rx if large_arc_flag == sweep_flag: cxp = -cxp cyp = -cyp # Step 3: Transform back. mx = 0.5*(x1+x2) my = 0.5*(y1+y2) # Step 4: Compute the start angle and the angular extent of the arc. # Note that theta1 is local to the phi-rotated coordinate space. dx = (x1p-cxp) / rx dy = (y1p-cyp) / ry dx2 = (-x1p-cxp) / rx dy2 = (-y1p-cyp) / ry theta1 = angle(1,0,dx,dy) dtheta = angle(dx,dy,dx2,dy2) if not sweep_flag and dtheta > 0: dtheta -= 360 elif sweep_flag and dtheta < 0: dtheta += 360 # Step 5: Break it apart into Bezier arcs. p = [] control_points = bezier_arc(cxp-rx,cyp-ry,cxp+rx,cyp+ry, theta1, dtheta) for x1p,y1p, x2p,y2p, x3p,y3p, x4p,y4p in control_points: # Transform them back to asbolute space. p.append(( transform_from_local(x2p,y2p,cphi,sphi,mx,my) + transform_from_local(x3p,y3p,cphi,sphi,mx,my) + transform_from_local(x4p,y4p,cphi,sphi,mx,my) )) return p
An elliptical arc approximated with Bezier curves or a line segment. Algorithm taken from the SVG 1.1 Implementation Notes: http://www.w3.org/TR/SVG/implnote.html#ArcImplementationNotes
def main(): """ NAME k15_s.py DESCRIPTION converts .k15 format data to .s format. assumes Jelinek Kappabridge measurement scheme SYNTAX k15_s.py [-h][-i][command line options][<filename] OPTIONS -h prints help message and quits -i allows interactive entry of options -f FILE, specifies input file, default: standard input -F FILE, specifies output file, default: standard output -crd [g, t] specifies [g]eographic rotation, or geographic AND tectonic rotation INPUT name [az,pl,strike,dip], followed by 3 rows of 5 measurements for each specimen OUTPUT least squares matrix elements and sigma: x11,x22,x33,x12,x23,x13,sigma """ firstline,itilt,igeo,linecnt,key=1,0,0,0,"" out="" data,k15=[],[] dir='./' ofile="" if '-WD' in sys.argv: ind=sys.argv.index('-WD') dir=sys.argv[ind+1]+'/' if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-i' in sys.argv: file=input("Input file name [.k15 format]: ") f=open(file,'r') data=f.readlines() f.close() file=input("Output file name [.s format]: ") out=open(file,'w') print (" [g]eographic, [t]ilt corrected, ") tg=input(" [return for specimen coordinates]: ") if tg=='g': igeo=1 elif tg=='t': igeo,itilt=1,1 elif '-f' in sys.argv: ind=sys.argv.index('-f') file=dir+sys.argv[ind+1] f=open(file,'r') data=f.readlines() f.close() else: data= sys.stdin.readlines() if len(data)==0: print(main.__doc__) sys.exit() if '-F' in sys.argv: ind=sys.argv.index('-F') ofile=dir+sys.argv[ind+1] out=open(ofile,'w') if '-crd' in sys.argv: ind=sys.argv.index('-crd') tg=sys.argv[ind+1] if tg=='g':igeo=1 if tg=='t': igeo,itilt=1,1 for line in data: rec=line.split() if firstline==1: firstline=0 nam=rec[0] if igeo==1: az,pl=float(rec[1]),float(rec[2]) if itilt==1: bed_az,bed_dip=90.+float(rec[3]),float(rec[4]) else: linecnt+=1 for i in range(5): k15.append(float(rec[i])) if linecnt==3: sbar,sigma,bulk=pmag.dok15_s(k15) if igeo==1: sbar=pmag.dosgeo(sbar,az,pl) if itilt==1: sbar=pmag.dostilt(sbar,bed_az,bed_dip) outstring="" for s in sbar:outstring+='%10.8f '%(s) outstring+='%10.8f'%(sigma) if out=="": print(outstring) else: out.write(outstring+'\n') linecnt,firstline,k15=0,1,[] if ofile!="":print ('Output saved in ',ofile)
NAME k15_s.py DESCRIPTION converts .k15 format data to .s format. assumes Jelinek Kappabridge measurement scheme SYNTAX k15_s.py [-h][-i][command line options][<filename] OPTIONS -h prints help message and quits -i allows interactive entry of options -f FILE, specifies input file, default: standard input -F FILE, specifies output file, default: standard output -crd [g, t] specifies [g]eographic rotation, or geographic AND tectonic rotation INPUT name [az,pl,strike,dip], followed by 3 rows of 5 measurements for each specimen OUTPUT least squares matrix elements and sigma: x11,x22,x33,x12,x23,x13,sigma
def contains_some_of(self, elements): """ Ensures :attr:`subject` contains at least one of *elements*, which must be an iterable. """ if all(e not in self._subject for e in elements): raise self._error_factory(_format("Expected {} to have some of {}", self._subject, elements)) return ChainInspector(self._subject)
Ensures :attr:`subject` contains at least one of *elements*, which must be an iterable.
def random_state(state=None): """ Helper function for processing random_state arguments. Parameters ---------- state : int, np.random.RandomState, None. If receives an int, passes to np.random.RandomState() as seed. If receives an np.random.RandomState object, just returns object. If receives `None`, returns np.random. If receives anything else, raises an informative ValueError. Default None. Returns ------- np.random.RandomState """ if is_integer(state): return np.random.RandomState(state) elif isinstance(state, np.random.RandomState): return state elif state is None: return np.random else: raise ValueError("random_state must be an integer, a numpy " "RandomState, or None")
Helper function for processing random_state arguments. Parameters ---------- state : int, np.random.RandomState, None. If receives an int, passes to np.random.RandomState() as seed. If receives an np.random.RandomState object, just returns object. If receives `None`, returns np.random. If receives anything else, raises an informative ValueError. Default None. Returns ------- np.random.RandomState
def write_sampler_metadata(self, sampler): """Writes the sampler's metadata.""" self.attrs['sampler'] = sampler.name self[self.sampler_group].attrs['nwalkers'] = sampler.nwalkers # write the model's metadata sampler.model.write_metadata(self)
Writes the sampler's metadata.
def get_dist(dist): """Return a distribution object from scipy.stats. """ from scipy import stats dc = getattr(stats, dist, None) if dc is None: e = "Statistical distribution `{}` is not in scipy.stats.".format(dist) raise ValueError(e) return dc
Return a distribution object from scipy.stats.
def _get_prefixes(self, metric_type): """Get prefixes where applicable Add metric prefix counters, timers respectively if :attr:`prepend_metric_type` flag is True. :param str metric_type: The metric type :rtype: list """ prefixes = [] if self._prepend_metric_type: prefixes.append(self.METRIC_TYPES[metric_type]) return prefixes
Get prefixes where applicable Add metric prefix counters, timers respectively if :attr:`prepend_metric_type` flag is True. :param str metric_type: The metric type :rtype: list
def cleanTempDirs(job): """Remove temporarly created directories.""" if job is CWLJob and job._succeeded: # Only CWLJobs have this attribute. for tempDir in job.openTempDirs: if os.path.exists(tempDir): shutil.rmtree(tempDir) job.openTempDirs = []
Remove temporarly created directories.
def drop_if_exists(self, table): """ Drop a table from the schema. :param table: The table :type table: str """ blueprint = self._create_blueprint(table) blueprint.drop_if_exists() self._build(blueprint)
Drop a table from the schema. :param table: The table :type table: str
def get_events(fd, timeout=None): """get_events(fd[, timeout]) Return a list of InotifyEvent instances representing events read from inotify. If timeout is None, this will block forever until at least one event can be read. Otherwise, timeout should be an integer or float specifying a timeout in seconds. If get_events times out waiting for events, an empty list will be returned. If timeout is zero, get_events will not block. This version of get_events() will only block the current greenlet. """ (rlist, _, _) = select([fd], [], [], timeout) if not rlist: return [] events = [] while True: buf = os.read(fd, _BUF_LEN) i = 0 while i < len(buf): (wd, mask, cookie, len_) = struct.unpack_from(_EVENT_FMT, buf, i) name = None if len_ > 0: start = i + _EVENT_SIZE end = start + len_ # remove \0 terminator and padding name = buf[start:end].rstrip(b'\0').decode(ENCODING) events.append(InotifyEvent(wd, mask, cookie, name)) i += _EVENT_SIZE + len_ (rlist, _, _) = select([fd], [], [], 0) if not rlist: break return events
get_events(fd[, timeout]) Return a list of InotifyEvent instances representing events read from inotify. If timeout is None, this will block forever until at least one event can be read. Otherwise, timeout should be an integer or float specifying a timeout in seconds. If get_events times out waiting for events, an empty list will be returned. If timeout is zero, get_events will not block. This version of get_events() will only block the current greenlet.
def encode_dict(dynamizer, value): """ Encode a dict for the DynamoDB format """ encoded_dict = {} for k, v in six.iteritems(value): encoded_type, encoded_value = dynamizer.raw_encode(v) encoded_dict[k] = { encoded_type: encoded_value, } return 'M', encoded_dict
Encode a dict for the DynamoDB format
def _count_spaces_startswith(line): ''' Count the number of spaces before the first character ''' if line.split('#')[0].strip() == "": return None spaces = 0 for i in line: if i.isspace(): spaces += 1 else: return spaces
Count the number of spaces before the first character
def _get_mro(cls): """Get an mro for a type or classic class""" if not isinstance(cls, type): class cls(cls, object): pass return cls.__mro__[1:] return cls.__mro__
Get an mro for a type or classic class
def plot(self, joints, ax, target=None, show=False): """Plots the Chain using Matplotlib Parameters ---------- joints: list The list of the positions of each joint ax: matplotlib.axes.Axes A matplotlib axes target: numpy.array An optional target show: bool Display the axe. Defaults to False """ from . import plot_utils if ax is None: # If ax is not given, create one ax = plot_utils.init_3d_figure() plot_utils.plot_chain(self, joints, ax) plot_utils.plot_basis(ax, self._length) # Plot the goal position if target is not None: plot_utils.plot_target(target, ax) if show: plot_utils.show_figure()
Plots the Chain using Matplotlib Parameters ---------- joints: list The list of the positions of each joint ax: matplotlib.axes.Axes A matplotlib axes target: numpy.array An optional target show: bool Display the axe. Defaults to False
def img_from_vgg(x): '''Decondition an image from the VGG16 model.''' x = x.transpose((1, 2, 0)) x[:, :, 0] += 103.939 x[:, :, 1] += 116.779 x[:, :, 2] += 123.68 x = x[:,:,::-1] # to RGB return x
Decondition an image from the VGG16 model.
def _parse_byte_data(self, byte_data): """Extract the values from byte string.""" chunks = unpack('<iiiii', byte_data[:self.size]) det_id, run, time_slice, time_stamp, ticks = chunks self.det_id = det_id self.run = run self.time_slice = time_slice self.time_stamp = time_stamp self.ticks = ticks
Extract the values from byte string.
def is_contained_in(pe_pe, root): ''' Determine if a PE_PE is contained within a EP_PKG or a C_C. ''' if not pe_pe: return False if type(pe_pe).__name__ != 'PE_PE': pe_pe = one(pe_pe).PE_PE[8001]() ep_pkg = one(pe_pe).EP_PKG[8000]() c_c = one(pe_pe).C_C[8003]() if root in [ep_pkg, c_c]: return True elif is_contained_in(ep_pkg, root): return True elif is_contained_in(c_c, root): return True else: return False
Determine if a PE_PE is contained within a EP_PKG or a C_C.
def _get_signed_predecessors(im, node, polarity): """Get upstream nodes in the influence map. Return the upstream nodes along with the overall polarity of the path to that node by account for the polarity of the path to the given node and the polarity of the edge between the given node and its immediate predecessors. Parameters ---------- im : networkx.MultiDiGraph Graph containing the influence map. node : str The node (rule name) in the influence map to get predecessors (upstream nodes) for. polarity : int Polarity of the overall path to the given node. Returns ------- generator of tuples, (node, polarity) Each tuple returned contains two elements, a node (string) and the polarity of the overall path (int) to that node. """ signed_pred_list = [] for pred in im.predecessors(node): pred_edge = (pred, node) yield (pred, _get_edge_sign(im, pred_edge) * polarity)
Get upstream nodes in the influence map. Return the upstream nodes along with the overall polarity of the path to that node by account for the polarity of the path to the given node and the polarity of the edge between the given node and its immediate predecessors. Parameters ---------- im : networkx.MultiDiGraph Graph containing the influence map. node : str The node (rule name) in the influence map to get predecessors (upstream nodes) for. polarity : int Polarity of the overall path to the given node. Returns ------- generator of tuples, (node, polarity) Each tuple returned contains two elements, a node (string) and the polarity of the overall path (int) to that node.
def zoneToRegion(zone): """Get a region (e.g. us-west-2) from a zone (e.g. us-west-1c).""" from toil.lib.context import Context return Context.availability_zone_re.match(zone).group(1)
Get a region (e.g. us-west-2) from a zone (e.g. us-west-1c).
def add_user_to_group(user_name, group_name, region=None, key=None, keyid=None, profile=None): ''' Add user to group. .. versionadded:: 2015.8.0 CLI Example: .. code-block:: bash salt myminion boto_iam.add_user_to_group myuser mygroup ''' user = get_user(user_name, region, key, keyid, profile) if not user: log.error('Username : %s does not exist.', user_name) return False if user_exists_in_group(user_name, group_name, region=region, key=key, keyid=keyid, profile=profile): return True conn = _get_conn(region=region, key=key, keyid=keyid, profile=profile) try: info = conn.add_user_to_group(group_name, user_name) if not info: return False return info except boto.exception.BotoServerError as e: log.debug(e) log.error('Failed to add IAM user %s to group %s.', user_name, group_name) return False
Add user to group. .. versionadded:: 2015.8.0 CLI Example: .. code-block:: bash salt myminion boto_iam.add_user_to_group myuser mygroup
def maxsize(self, size): """Resize the cache, evicting the oldest items if necessary.""" if size < 0: raise ValueError('maxsize must be non-negative') with self._lock: self._enforce_size_limit(size) self._maxsize = size
Resize the cache, evicting the oldest items if necessary.
def time_report(self, include_overhead=False, header=None, include_server=True, digits=4): """ Returns a str table of the times for this api call :param include_overhead: bool if True include information from overhead, such as the time for this class code :param header: bool if True includes the column header :param include_server: bool if True includes times reported by the server in the header :param digits: int of the number of significant digits :return: str table of the times for the api call """ try: self._timestamps.setdefault('report', time.time()) header = header or ['Message', 'Start', 'End', 'Sum', 'Count'] ret = [] if include_overhead: ret.append(self.time_report_item( 'create', 'Overhead from api call "Create"')) ret.append(self.time_report_item( 'setup', 'Overhead from api call "Setup"')) if 'repeat' in self._timestamps: ret.append(self.time_report_item( 'repeat', 'First Request of the api call')) ret.append(self.time_report_item('send', 'Send the api call')) if self._server_timing and include_server: send_start = ret[-1]['Start'] delta = max(0, ret[-1]['Sum'] - ( self._server_timing['End'] - self._server_timing['Start'])) if include_overhead: ret.append( {'Message': "Internet overhead", "Start": send_start, "End": ret[0]['Start'] + delta, 'Sum': delta, 'Count': 1}) if 'Overhead' in self._server_timing: ret.append({'Message': "Time profile overhead", "Start": send_start + delta, 'Sum': self._server_timing['Overhead'], 'End': send_start + delta + self._server_timing['End'] - self._server_timing['Start'], 'Count': sum( [len(msg.get('Times', [])) for msg in self._server_timing[ 'Messages']]) + 1}) for msg in self._server_timing['Messages']: ret.append(msg.copy()) ret[-1]['Start'] = ret[-1].setdefault( 'Start', 0) + delta + send_start ret[-1]['End'] = ret[-1].setdefault( 'End', ret[-1]['Sum']) + delta + send_start else: ret += self._server_timing['Messages'] if 'stream' in self._timestamps: ret.append( self.time_report_item('stream', 'Streaming the api call')) if include_overhead: ret.append(self.time_report_item( 'receive', 'Overhead from api call "Post Processing"')) return 'Total Time: %s \t\tStart Time: %s\n%s' % ( round(self.timedelta.total_seconds(), digits), reformat_date(self._timestamps.get('send', '')), str(ReprListDict(ret, col_names=header, digits=digits).list_of_list())) except Exception as ex: return "Exception creating time report with %s" % ex.message
Returns a str table of the times for this api call :param include_overhead: bool if True include information from overhead, such as the time for this class code :param header: bool if True includes the column header :param include_server: bool if True includes times reported by the server in the header :param digits: int of the number of significant digits :return: str table of the times for the api call
def get_byte(self, i): """Get byte.""" value = [] for x in range(2): c = next(i) if c.lower() in _HEX: value.append(c) else: # pragma: no cover raise SyntaxError('Invalid byte character at %d!' % (i.index - 1)) return ''.join(value)
Get byte.
def pi_zoom_origin(self, viewer, event, msg=True): """Like pi_zoom(), but pans the image as well to keep the coordinate under the cursor in that same position relative to the window. """ origin = (event.data_x, event.data_y) return self._pinch_zoom_rotate(viewer, event.state, event.rot_deg, event.scale, msg=msg, origin=origin)
Like pi_zoom(), but pans the image as well to keep the coordinate under the cursor in that same position relative to the window.
def get_netloc(self): """Determine scheme, host and port for this connection taking proxy data into account. @return: tuple (scheme, host, port) @rtype: tuple(string, string, int) """ if self.proxy: scheme = self.proxytype host = self.proxyhost port = self.proxyport else: scheme = self.scheme host = self.host port = self.port return (scheme, host, port)
Determine scheme, host and port for this connection taking proxy data into account. @return: tuple (scheme, host, port) @rtype: tuple(string, string, int)
def deserialize(self, value, **kwargs): """Deserialization of value. :return: Deserialized value. :raises: :class:`halogen.exception.ValidationError` exception if value is not valid. """ for validator in self.validators: validator.validate(value, **kwargs) return value
Deserialization of value. :return: Deserialized value. :raises: :class:`halogen.exception.ValidationError` exception if value is not valid.
def _reciprocal_condition_number(lu_mat, one_norm): r"""Compute reciprocal condition number of a matrix. Args: lu_mat (numpy.ndarray): A 2D array of a matrix :math:`A` that has been LU-factored, with the non-diagonal part of :math:`L` stored in the strictly lower triangle and :math:`U` stored in the upper triangle. one_norm (float): The 1-norm of the original matrix :math:`A`. Returns: float: The reciprocal condition number of :math:`A`. Raises: OSError: If SciPy is not installed. RuntimeError: If the reciprocal 1-norm condition number could not be computed. """ if _scipy_lapack is None: raise OSError("This function requires SciPy for calling into LAPACK.") # pylint: disable=no-member rcond, info = _scipy_lapack.dgecon(lu_mat, one_norm) # pylint: enable=no-member if info != 0: raise RuntimeError( "The reciprocal 1-norm condition number could not be computed." ) return rcond
r"""Compute reciprocal condition number of a matrix. Args: lu_mat (numpy.ndarray): A 2D array of a matrix :math:`A` that has been LU-factored, with the non-diagonal part of :math:`L` stored in the strictly lower triangle and :math:`U` stored in the upper triangle. one_norm (float): The 1-norm of the original matrix :math:`A`. Returns: float: The reciprocal condition number of :math:`A`. Raises: OSError: If SciPy is not installed. RuntimeError: If the reciprocal 1-norm condition number could not be computed.
def set_user_attribute(self, user_name, key, value): """Sets a user attribute :param user_name: name of user to modify :param key: key of the attribute to set :param value: value to set :returns: True if the operation succeeded, False otherwise :raises: HTTPResponseError in case an HTTP error status was returned """ res = self._make_ocs_request( 'PUT', self.OCS_SERVICE_CLOUD, 'users/' + parse.quote(user_name), data={'key': self._encode_string(key), 'value': self._encode_string(value)} ) if res.status_code == 200: tree = ET.fromstring(res.content) self._check_ocs_status(tree, [100]) return True raise HTTPResponseError(res)
Sets a user attribute :param user_name: name of user to modify :param key: key of the attribute to set :param value: value to set :returns: True if the operation succeeded, False otherwise :raises: HTTPResponseError in case an HTTP error status was returned
def get_content(self, obj): """ Obtain the QuerySet of content items. :param obj: Page object. :return: List of rendered content items. """ serializer = ContentSerializer( instance=obj.contentitem_set.all(), many=True, context=self.context, ) return serializer.data
Obtain the QuerySet of content items. :param obj: Page object. :return: List of rendered content items.
def p_elseif_list(p): '''elseif_list : empty | elseif_list ELSEIF LPAREN expr RPAREN statement''' if len(p) == 2: p[0] = [] else: p[0] = p[1] + [ast.ElseIf(p[4], p[6], lineno=p.lineno(2))]
elseif_list : empty | elseif_list ELSEIF LPAREN expr RPAREN statement