code
stringlengths
75
104k
docstring
stringlengths
1
46.9k
def vms(nictag): ''' List all vms connect to nictag nictag : string name of nictag CLI Example: .. code-block:: bash salt '*' nictagadm.vms admin ''' ret = {} cmd = 'nictagadm vms {0}'.format(nictag) res = __salt__['cmd.run_all'](cmd) retcode = res['retcode'] if retcode != 0: ret['Error'] = res['stderr'] if 'stderr' in res else 'Failed to get list of vms.' else: ret = res['stdout'].splitlines() return ret
List all vms connect to nictag nictag : string name of nictag CLI Example: .. code-block:: bash salt '*' nictagadm.vms admin
def getShocks(self): ''' Gets permanent and transitory shocks (combining idiosyncratic and aggregate shocks), but only consumers who update their macroeconomic beliefs this period incorporate all pre- viously unnoticed aggregate permanent shocks. Agents correctly observe the level of all real variables (market resources, consumption, assets, etc), but misperceive the aggregate productivity level. Parameters ---------- None Returns ------- None ''' # The strange syntax here is so that both StickyEconsumerType and StickyEmarkovConsumerType # run the getShocks method of their first superclass: AggShockConsumerType and # AggShockMarkovConsumerType respectively. This will be simplified in Python 3. super(self.__class__,self).getShocks() # Get permanent and transitory combined shocks newborns = self.t_age == 0 self.TranShkNow[newborns] = self.TranShkAggNow*self.wRteNow # Turn off idiosyncratic shocks for newborns self.PermShkNow[newborns] = self.PermShkAggNow self.getUpdaters() # Randomly draw which agents will update their beliefs # Calculate innovation to the productivity level perception error pLvlErrNew = self.getpLvlError() self.pLvlErrNow *= pLvlErrNew # Perception error accumulation # Calculate (mis)perceptions of the permanent shock PermShkPcvd = self.PermShkNow/pLvlErrNew PermShkPcvd[self.update] *= self.pLvlErrNow[self.update] # Updaters see the true permanent shock and all missed news self.pLvlErrNow[self.update] = 1.0 self.PermShkNow = PermShkPcvd
Gets permanent and transitory shocks (combining idiosyncratic and aggregate shocks), but only consumers who update their macroeconomic beliefs this period incorporate all pre- viously unnoticed aggregate permanent shocks. Agents correctly observe the level of all real variables (market resources, consumption, assets, etc), but misperceive the aggregate productivity level. Parameters ---------- None Returns ------- None
def verify_checksum(file_id, pessimistic=False, chunk_size=None, throws=True, checksum_kwargs=None): """Verify checksum of a file instance. :param file_id: The file ID. """ f = FileInstance.query.get(uuid.UUID(file_id)) # Anything might happen during the task, so being pessimistic and marking # the file as unchecked is a reasonable precaution if pessimistic: f.clear_last_check() db.session.commit() f.verify_checksum( progress_callback=progress_updater, chunk_size=chunk_size, throws=throws, checksum_kwargs=checksum_kwargs) db.session.commit()
Verify checksum of a file instance. :param file_id: The file ID.
def save_file(self, filename = 'StockChart'): """ save htmlcontent as .html file """ filename = filename + '.html' with open(filename, 'w') as f: #self.buildhtml() f.write(self.htmlcontent) f.closed
save htmlcontent as .html file
def trades(self, cursor=None, order='asc', limit=10, sse=False): """Retrieve the trades JSON from this instance's Horizon server. Retrieve the trades JSON response for the account associated with this :class:`Address`. :param cursor: A paging token, specifying where to start returning records from. When streaming this can be set to "now" to stream object created since your request time. :type cursor: int, str :param str order: The order in which to return rows, "asc" or "desc". :param int limit: Maximum number of records to return. :param bool sse: Use the SSE client for connecting to Horizon. """ return self.horizon.account_trades( self.address, cursor=cursor, order=order, limit=limit, sse=sse)
Retrieve the trades JSON from this instance's Horizon server. Retrieve the trades JSON response for the account associated with this :class:`Address`. :param cursor: A paging token, specifying where to start returning records from. When streaming this can be set to "now" to stream object created since your request time. :type cursor: int, str :param str order: The order in which to return rows, "asc" or "desc". :param int limit: Maximum number of records to return. :param bool sse: Use the SSE client for connecting to Horizon.
def min_or(a, b, c, d, w): """ Lower bound of result of ORing 2-intervals. :param a: Lower bound of first interval :param b: Upper bound of first interval :param c: Lower bound of second interval :param d: Upper bound of second interval :param w: bit width :return: Lower bound of ORing 2-intervals """ m = (1 << (w - 1)) while m != 0: if ((~a) & c & m) != 0: temp = (a | m) & -m if temp <= b: a = temp break elif (a & (~c) & m) != 0: temp = (c | m) & -m if temp <= d: c = temp break m >>= 1 return a | c
Lower bound of result of ORing 2-intervals. :param a: Lower bound of first interval :param b: Upper bound of first interval :param c: Lower bound of second interval :param d: Upper bound of second interval :param w: bit width :return: Lower bound of ORing 2-intervals
def expand(self, basedir, config, sourcedir, targetdir, cwd): """ Validate that given paths are not the same. Args: basedir (string): Project base directory used to prepend relative paths. If empty or equal to '.', it will be filled with current directory path. config (string): Settings file path. sourcedir (string): Source directory path. targetdir (string): Compiled files target directory path. cwd (string): Current directory path to prepend base dir if empty. Returns: tuple: Expanded arguments in the same order """ # Expand home directory if any expanded_basedir = os.path.expanduser(basedir) expanded_config = os.path.expanduser(config) expanded_sourcedir = os.path.expanduser(sourcedir) expanded_targetdir = os.path.expanduser(targetdir) # If not absolute, base dir is prepended with current directory if not os.path.isabs(expanded_basedir): expanded_basedir = os.path.join(cwd, expanded_basedir) # Prepend paths with base dir if they are not allready absolute if not os.path.isabs(expanded_config): expanded_config = os.path.join(expanded_basedir, expanded_config) if not os.path.isabs(expanded_sourcedir): expanded_sourcedir = os.path.join(expanded_basedir, expanded_sourcedir) if not os.path.isabs(expanded_targetdir): expanded_targetdir = os.path.join(expanded_basedir, expanded_targetdir) # Normalize paths expanded_basedir = os.path.normpath(expanded_basedir) expanded_config = os.path.normpath(expanded_config) expanded_sourcedir = os.path.normpath(expanded_sourcedir) expanded_targetdir = os.path.normpath(expanded_targetdir) return (expanded_basedir, expanded_config, expanded_sourcedir, expanded_targetdir)
Validate that given paths are not the same. Args: basedir (string): Project base directory used to prepend relative paths. If empty or equal to '.', it will be filled with current directory path. config (string): Settings file path. sourcedir (string): Source directory path. targetdir (string): Compiled files target directory path. cwd (string): Current directory path to prepend base dir if empty. Returns: tuple: Expanded arguments in the same order
def set_alias(self, alias_hosted_zone_id, alias_dns_name): """Make this an alias resource record set""" self.alias_hosted_zone_id = alias_hosted_zone_id self.alias_dns_name = alias_dns_name
Make this an alias resource record set
def get_trackrs(self): """ Extract each Trackr device from the trackrApiInterface state. return a list of all Trackr objects from account. """ trackrs = [] for trackr in self.state: trackrs.append(trackrDevice(trackr, self)) return trackrs
Extract each Trackr device from the trackrApiInterface state. return a list of all Trackr objects from account.
def run(self, mod): """Find all assert statements in *mod* and rewrite them.""" if not mod.body: # Nothing to do. return # Insert some special imports at the top of the module but after any # docstrings and __future__ imports. aliases = [ast.alias(py.builtin.builtins.__name__, "@py_builtins"), ast.alias("dessert.rewrite", "@dessert_ar")] expect_docstring = True pos = 0 lineno = 0 for item in mod.body: if (expect_docstring and isinstance(item, ast.Expr) and isinstance(item.value, ast.Str)): doc = item.value.s if "PYTEST_DONT_REWRITE" in doc: # The module has disabled assertion rewriting. return lineno += len(doc) - 1 expect_docstring = False elif (not isinstance(item, ast.ImportFrom) or item.level > 0 or item.module != "__future__"): lineno = item.lineno break pos += 1 imports = [ast.Import([alias], lineno=lineno, col_offset=0) for alias in aliases] mod.body[pos:pos] = imports # Collect asserts. nodes = [mod] while nodes: node = nodes.pop() for name, field in ast.iter_fields(node): if isinstance(field, list): new = [] for i, child in enumerate(field): if isinstance(child, ast.Assert): # Transform assert. new.extend(self.visit(child)) else: new.append(child) if isinstance(child, ast.AST): nodes.append(child) setattr(node, name, new) elif (isinstance(field, ast.AST) and # Don't recurse into expressions as they can't contain # asserts. not isinstance(field, ast.expr)): nodes.append(field)
Find all assert statements in *mod* and rewrite them.
def translate_doc(self, d, field_mapping=None, map_identifiers=None, **kwargs): """ Translate a solr document (i.e. a single result row) """ if field_mapping is not None: self.map_doc(d, field_mapping) subject = self.translate_obj(d, M.SUBJECT) obj = self.translate_obj(d, M.OBJECT) # TODO: use a more robust method; we need equivalence as separate field in solr if map_identifiers is not None: if M.SUBJECT_CLOSURE in d: subject['id'] = self.map_id(subject, map_identifiers, d[M.SUBJECT_CLOSURE]) else: logging.info("NO SUBJECT CLOSURE IN: "+str(d)) if M.SUBJECT_TAXON in d: subject['taxon'] = self.translate_obj(d,M.SUBJECT_TAXON) if M.OBJECT_TAXON in d: obj['taxon'] = self.translate_obj(d, M.OBJECT_TAXON) qualifiers = [] if M.RELATION in d and isinstance(d[M.RELATION],list): # GO overloads qualifiers and relation relation = None for rel in d[M.RELATION]: if rel.lower() == 'not': qualifiers.append(rel) else: relation = rel if relation is not None: d[M.RELATION] = relation else: d[M.RELATION] = None negated = 'not' in qualifiers assoc = {'id':d.get(M.ID), 'subject': subject, 'object': obj, 'negated': negated, 'relation': self.translate_obj(d,M.RELATION), 'publications': self.translate_objs(d,M.SOURCE), # note 'source' is used in the golr schema } if self.invert_subject_object and assoc['relation'] is not None: assoc['relation']['inverse'] = True if len(qualifiers) > 0: assoc['qualifiers'] = qualifiers if M.OBJECT_CLOSURE in d: assoc['object_closure'] = d.get(M.OBJECT_CLOSURE) if M.IS_DEFINED_BY in d: if isinstance(d[M.IS_DEFINED_BY],list): assoc['provided_by'] = d[M.IS_DEFINED_BY] else: # hack for GO Golr instance assoc['provided_by'] = [d[M.IS_DEFINED_BY]] if M.EVIDENCE_OBJECT in d: assoc['evidence'] = d[M.EVIDENCE_OBJECT] assoc['types'] = [t for t in d[M.EVIDENCE_OBJECT] if t.startswith('ECO:')] if self._use_amigo_schema(self.object_category): for f in M.AMIGO_SPECIFIC_FIELDS: if f in d: assoc[f] = d[f] # solr does not allow nested objects, so evidence graph is json-encoded if M.EVIDENCE_GRAPH in d: assoc[M.EVIDENCE_GRAPH] = json.loads(d[M.EVIDENCE_GRAPH]) return assoc
Translate a solr document (i.e. a single result row)
def mod_watch(name, url='http://localhost:8080/manager', timeout=180): ''' The tomcat watcher, called to invoke the watch command. When called, it will reload the webapp in question .. note:: This state exists to support special handling of the ``watch`` :ref:`requisite <requisites>`. It should not be called directly. Parameters for this function should be set by the state being triggered. ''' msg = __salt__['tomcat.reload'](name, url, timeout) result = msg.startswith('OK') ret = {'name': name, 'result': result, 'changes': {name: result}, 'comment': msg } return ret
The tomcat watcher, called to invoke the watch command. When called, it will reload the webapp in question .. note:: This state exists to support special handling of the ``watch`` :ref:`requisite <requisites>`. It should not be called directly. Parameters for this function should be set by the state being triggered.
def pathIndex(self, path): '''Return index of item with *path*.''' if path == self.root.path: return QModelIndex() if not path.startswith(self.root.path): return QModelIndex() parts = [] while True: if path == self.root.path: break head, tail = os.path.split(path) if head == path: if path: parts.append(path) break parts.append(tail) path = head parts.reverse() if parts: item = self.root count = 0 for count, part in enumerate(parts): matched = False for child in item.children: if child.name == part: item = child matched = True break if not matched: break if count + 1 == len(parts): return self.createIndex(item.row, 0, item) return QModelIndex()
Return index of item with *path*.
def list_asgs(access_token, subscription_id, resource_group): '''Get details about the application security groups for a resource group. Args: access_token (str): A valid Azure authentication token. subscription_id (str): Azure subscription id. resource_group (str): Azure resource group name. Returns: HTTP response. ASG JSON body. ''' endpoint = ''.join([get_rm_endpoint(), '/subscriptions/', subscription_id, '/resourceGroups/', resource_group, '/providers/Microsoft.Network/virtualNetworks/', '?api-version=', NETWORK_API]) return do_get(endpoint, access_token)
Get details about the application security groups for a resource group. Args: access_token (str): A valid Azure authentication token. subscription_id (str): Azure subscription id. resource_group (str): Azure resource group name. Returns: HTTP response. ASG JSON body.
def _bind_parameters(operation, parameters): """ Helper method that binds parameters to a SQL query. """ # inspired by MySQL Python Connector (conversion.py) string_parameters = {} for (name, value) in iteritems(parameters): if value is None: string_parameters[name] = 'NULL' elif isinstance(value, basestring): string_parameters[name] = "'" + _escape(value) + "'" else: string_parameters[name] = str(value) return operation % string_parameters
Helper method that binds parameters to a SQL query.
def ets(self): """Equitable Threat Score, Gilbert Skill Score, v, (a - R)/(a + b + c - R), R=(a+b)(a+c)/N""" r = (self.table[0, 0] + self.table[0, 1]) * (self.table[0, 0] + self.table[1, 0]) / self.N return (self.table[0, 0] - r) / (self.table[0, 0] + self.table[0, 1] + self.table[1, 0] - r)
Equitable Threat Score, Gilbert Skill Score, v, (a - R)/(a + b + c - R), R=(a+b)(a+c)/N
def json_2_text(inp, out, verbose = False): """Convert a Wikipedia article to Text object. Concatenates the sections in wikipedia file and rearranges other information so it can be interpreted as a Text object. Links and other elements with start and end positions are annotated as layers. Parameters ---------- inp: directory of parsed et.wikipedia articles in json format out: output directory of .txt files verbose: if True, prints every article title and total count of converted files if False prints every 50th count Returns ------- estnltk.text.Text The Text object. """ for root, dirs, filenames in os.walk(inp): for f in filenames: log = codecs.open(os.path.join(root, f), 'r') j_obj = json.load(log) j_obj = json_format(j_obj) #not needed, cause the json_format takes care of the right structuring #text = Text(j_obj) textWriter(j_obj, out, verbose)
Convert a Wikipedia article to Text object. Concatenates the sections in wikipedia file and rearranges other information so it can be interpreted as a Text object. Links and other elements with start and end positions are annotated as layers. Parameters ---------- inp: directory of parsed et.wikipedia articles in json format out: output directory of .txt files verbose: if True, prints every article title and total count of converted files if False prints every 50th count Returns ------- estnltk.text.Text The Text object.
def raise_error(error_type: str) -> None: """Raise the appropriate error based on error message.""" try: error = next((v for k, v in ERROR_CODES.items() if k in error_type)) except StopIteration: error = AirVisualError raise error(error_type)
Raise the appropriate error based on error message.
def remove_scene(self, scene_id): """remove a scene by Scene ID""" if self.state.activeSceneId == scene_id: err_msg = "Requested to delete scene {sceneNum}, which is currently active. Cannot delete active scene.".format(sceneNum=scene_id) logging.info(err_msg) return(False, 0, err_msg) try: del self.state.scenes[scene_id] logging.debug("Deleted scene {sceneNum}".format(sceneNum=scene_id)) except KeyError: err_msg = "Requested to delete scene {sceneNum}, which does not exist".format(sceneNum=scene_id) logging.info(err_msg) return(False, 0, err_msg) # if we are here, we deleted a scene, so publish it sequence_number = self.zmq_publisher.publish_scene_remove(scene_id) logging.debug("Removed scene {sceneNum}".format(sceneNum=scene_id)) return (True, sequence_number, "OK")
remove a scene by Scene ID
def __set_title(self, value): """ Sets title of this axis. """ # OpenOffice on Debian "squeeze" ignore value of target.XAxis.String # unless target.HasXAxisTitle is set to True first. (Despite the # fact that target.HasXAxisTitle is reported to be False until # target.XAxis.String is set to non empty value.) self._target.setPropertyValue(self._has_axis_title_property, True) target = self._get_title_target() target.setPropertyValue('String', text_type(value))
Sets title of this axis.
def check_process_counts(self): """Check for the minimum consumer process levels and start up new processes needed. """ LOGGER.debug('Checking minimum consumer process levels') for name in self.consumers: processes_needed = self.process_spawn_qty(name) if processes_needed: LOGGER.info('Need to spawn %i processes for %s', processes_needed, name) self.start_processes(name, processes_needed)
Check for the minimum consumer process levels and start up new processes needed.
def check_for_errors(self): """Check Connection for errors. :raises AMQPConnectionError: Raises if the connection encountered an error. :return: """ if not self.exceptions: if not self.is_closed: return why = AMQPConnectionError('connection was closed') self.exceptions.append(why) self.set_state(self.CLOSED) self.close() raise self.exceptions[0]
Check Connection for errors. :raises AMQPConnectionError: Raises if the connection encountered an error. :return:
def key_exists(hive, key, use_32bit_registry=False): ''' Check that the key is found in the registry. This refers to keys and not value/data pairs. To check value/data pairs, use ``value_exists`` Args: hive (str): The hive to connect to key (str): The key to check use_32bit_registry (bool): Look in the 32bit portion of the registry Returns: bool: True if exists, otherwise False Usage: .. code-block:: python import salt.utils.win_reg as reg reg.key_exists(hive='HKLM', key='SOFTWARE\\Microsoft') ''' local_hive = _to_unicode(hive) local_key = _to_unicode(key) registry = Registry() try: hkey = registry.hkeys[local_hive] except KeyError: raise CommandExecutionError('Invalid Hive: {0}'.format(local_hive)) access_mask = registry.registry_32[use_32bit_registry] handle = None try: handle = win32api.RegOpenKeyEx(hkey, local_key, 0, access_mask) return True except pywintypes.error as exc: if exc.winerror == 2: return False raise finally: if handle: win32api.RegCloseKey(handle)
Check that the key is found in the registry. This refers to keys and not value/data pairs. To check value/data pairs, use ``value_exists`` Args: hive (str): The hive to connect to key (str): The key to check use_32bit_registry (bool): Look in the 32bit portion of the registry Returns: bool: True if exists, otherwise False Usage: .. code-block:: python import salt.utils.win_reg as reg reg.key_exists(hive='HKLM', key='SOFTWARE\\Microsoft')
def reset(self, indices=None): """Reset the environment and convert the resulting observation. Args: indices: The batch indices of environments to reset; defaults to all. Returns: Batch of observations. """ if indices is None: indices = np.arange(len(self._envs)) if self._blocking: observs = [self._envs[index].reset() for index in indices] else: observs = [self._envs[index].reset(blocking=False) for index in indices] observs = [observ() for observ in observs] observ = np.stack(observs) return observ
Reset the environment and convert the resulting observation. Args: indices: The batch indices of environments to reset; defaults to all. Returns: Batch of observations.
def args(parsed_args, name=None): """Interpret parsed args to streams""" strings = parsed_args.arg_strings(name) files = [s for s in strings if os.path.isfile(s)] if files: streams = [open(f) for f in files] else: streams = [] if getattr(parsed_args, 'paste', not files): streams.append(clipboard_stream()) if getattr(parsed_args, 'stdin', False): streams.append(sys.stdin) elif not streams: streams = [sys.stdin] return streams
Interpret parsed args to streams
def molmz(df, noise=10000): """ The mz of the molecular ion. """ d = ((df.values > noise) * df.columns).max(axis=1) return Trace(d, df.index, name='molmz')
The mz of the molecular ion.
def get_current_user(self): """Get data from the current user endpoint""" url = self.current_user_url result = self.get(url) return result
Get data from the current user endpoint
def write(gctoo, out_fname, data_null="NaN", metadata_null="-666", filler_null="-666", data_float_format="%.4f"): """Write a gctoo object to a gct file. Args: gctoo (gctoo object) out_fname (string): filename for output gct file data_null (string): how to represent missing values in the data (default = "NaN") metadata_null (string): how to represent missing values in the metadata (default = "-666") filler_null (string): what value to fill the top-left filler block with (default = "-666") data_float_format (string): how many decimal points to keep in representing data (default = 4 digits; None will keep all digits) Returns: None """ # Create handle for output file if not out_fname.endswith(".gct"): out_fname += ".gct" f = open(out_fname, "w") # Write first two lines dims = [str(gctoo.data_df.shape[0]), str(gctoo.data_df.shape[1]), str(gctoo.row_metadata_df.shape[1]), str(gctoo.col_metadata_df.shape[1])] write_version_and_dims(VERSION, dims, f) # Write top half of the gct write_top_half(f, gctoo.row_metadata_df, gctoo.col_metadata_df, metadata_null, filler_null) # Write bottom half of the gct write_bottom_half(f, gctoo.row_metadata_df, gctoo.data_df, data_null, data_float_format, metadata_null) f.close() logger.info("GCT has been written to {}".format(out_fname))
Write a gctoo object to a gct file. Args: gctoo (gctoo object) out_fname (string): filename for output gct file data_null (string): how to represent missing values in the data (default = "NaN") metadata_null (string): how to represent missing values in the metadata (default = "-666") filler_null (string): what value to fill the top-left filler block with (default = "-666") data_float_format (string): how many decimal points to keep in representing data (default = 4 digits; None will keep all digits) Returns: None
def compile_insert(self, query, values): """ Compile insert statement into SQL :param query: A QueryBuilder instance :type query: QueryBuilder :param values: The insert values :type values: dict or list :return: The compiled insert :rtype: str """ table = self.wrap_table(query.from__) if not isinstance(values, list): values = [values] # If there is only one row to insert, we just use the normal grammar if len(values) == 1: return super(SQLiteQueryGrammar, self).compile_insert(query, values) names = self.columnize(values[0].keys()) columns = [] # SQLite requires us to build the multi-row insert as a listing of select with # unions joining them together. So we'll build out this list of columns and # then join them all together with select unions to complete the queries. for column in values[0].keys(): columns.append("%s AS %s" % (self.get_marker(), self.wrap(column))) columns = [", ".join(columns)] * len(values) return "INSERT INTO %s (%s) SELECT %s" % ( table, names, " UNION ALL SELECT ".join(columns), )
Compile insert statement into SQL :param query: A QueryBuilder instance :type query: QueryBuilder :param values: The insert values :type values: dict or list :return: The compiled insert :rtype: str
def to_fmt(self): """ Return an Fmt representation for pretty-printing """ params = "" txt = fmt.sep(" ", ['fun']) name = self.show_name() if name != "": txt.lsdata.append(name) tparams = [] if self.tparams is not None: tparams = list(self.tparams) if self.variadic: tparams.append('...') params = '(' + ", ".join(tparams) + ')' txt.lsdata.append(': ' + params) txt.lsdata.append('-> ' + self.tret) return txt
Return an Fmt representation for pretty-printing
def get_phenotype(self, individual_id): """ Return the phenotype of an individual If individual does not exist return 0 Arguments: individual_id (str): Represents the individual id Returns: int : Integer that represents the phenotype """ phenotype = 0 # This is if unknown phenotype if individual_id in self.individuals: phenotype = self.individuals[individual_id].phenotype return phenotype
Return the phenotype of an individual If individual does not exist return 0 Arguments: individual_id (str): Represents the individual id Returns: int : Integer that represents the phenotype
def read(database, table, key): """Does a single read operation.""" with database.snapshot() as snapshot: result = snapshot.execute_sql('SELECT u.* FROM %s u WHERE u.id="%s"' % (table, key)) for row in result: key = row[0] for i in range(NUM_FIELD): field = row[i + 1]
Does a single read operation.
def parse_yaml(self, y): '''Parse a YAML specification of a service port connector into this object. ''' self.connector_id = y['connectorId'] self.name = y['name'] if 'transMethod' in y: self.trans_method = y['transMethod'] else: self.trans_method = '' if RTS_EXT_NS_YAML + 'comment' in y: self.comment = y[RTS_EXT_NS_YAML + 'comment'] else: self.comment = '' if RTS_EXT_NS_YAML + 'visible' in y: visible = y[RTS_EXT_NS_YAML + 'visible'] if visible == True or visible == 'true' or visible == '1': self.visible = True else: self.visible = False if 'sourceServicePort' not in y: raise InvalidServicePortConnectorNodeError self.source_service_port = \ TargetPort().parse_yaml(y['sourceServicePort']) if 'targetServicePort' not in y: raise InvalidServicePortConnectorNodeError self.target_service_port = \ TargetPort().parse_yaml(y['targetServicePort']) if RTS_EXT_NS_YAML + 'properties' in y: for p in y[RTS_EXT_NS_YAML + 'properties']: if 'value' in p: value = p['value'] else: value = None self._properties[p['name']] = value return self
Parse a YAML specification of a service port connector into this object.
def trigger(self, id, **kwargs): """ Triggers a build of a specific Build Configuration This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.trigger(id, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param int id: Build Configuration id (required) :param str callback_url: Optional Callback URL :param bool temporary_build: Is it a temporary build or a standard build? :param bool force_rebuild: DEPRECATED: Use RebuildMode. :param bool build_dependencies: Should we build also dependencies of this BuildConfiguration? :param bool keep_pod_on_failure: Should we keep the build container running, if the build fails? :param bool timestamp_alignment: Should we add a timestamp during the alignment? Valid only for temporary builds. :param str rebuild_mode: Rebuild Modes: FORCE: always rebuild the configuration; EXPLICIT_DEPENDENCY_CHECK: check if any of user defined dependencies has been update; IMPLICIT_DEPENDENCY_CHECK: check if any captured dependency has been updated; :return: BuildRecordSingleton If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.trigger_with_http_info(id, **kwargs) else: (data) = self.trigger_with_http_info(id, **kwargs) return data
Triggers a build of a specific Build Configuration This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.trigger(id, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param int id: Build Configuration id (required) :param str callback_url: Optional Callback URL :param bool temporary_build: Is it a temporary build or a standard build? :param bool force_rebuild: DEPRECATED: Use RebuildMode. :param bool build_dependencies: Should we build also dependencies of this BuildConfiguration? :param bool keep_pod_on_failure: Should we keep the build container running, if the build fails? :param bool timestamp_alignment: Should we add a timestamp during the alignment? Valid only for temporary builds. :param str rebuild_mode: Rebuild Modes: FORCE: always rebuild the configuration; EXPLICIT_DEPENDENCY_CHECK: check if any of user defined dependencies has been update; IMPLICIT_DEPENDENCY_CHECK: check if any captured dependency has been updated; :return: BuildRecordSingleton If the method is called asynchronously, returns the request thread.
def lock_file(path, maxdelay=.1, lock_cls=LockFile, timeout=10.0): """Cooperative file lock. Uses `lockfile.LockFile` polling under the hood. `maxdelay` defines the interval between individual polls. """ lock = lock_cls(path) max_t = time.time() + timeout while True: if time.time() >= max_t: raise LockTimeout("Timeout waiting to acquire lock for %s" % (path,)) # same exception messages as in lockfile try: lock.acquire(timeout=0) except AlreadyLocked: sleep(maxdelay) else: try: yield lock break finally: lock.release()
Cooperative file lock. Uses `lockfile.LockFile` polling under the hood. `maxdelay` defines the interval between individual polls.
def write_markdown_to_file(self, f): """Prints this library to file `f`. Args: f: File to write to. Returns: Dictionary of documented members. """ print("---", file=f) print("---", file=f) print("<!-- This file is machine generated: DO NOT EDIT! -->", file=f) print("", file=f) # TODO(touts): Do not insert these. Let the doc writer put them in # the module docstring explicitly. print("#", self._title, file=f) if self._prefix: print(self._prefix, file=f) print("[TOC]", file=f) print("", file=f) if self._module is not None: self._write_module_markdown_to_file(f, self._module)
Prints this library to file `f`. Args: f: File to write to. Returns: Dictionary of documented members.
def show_replace(self): """Show replace widgets""" self.show(hide_replace=False) for widget in self.replace_widgets: widget.show()
Show replace widgets
def extension (network, session, version, scn_extension, start_snapshot, end_snapshot, **kwargs): """ Function that adds an additional network to the existing network container. The new network can include every PyPSA-component (e.g. buses, lines, links). To connect it to the existing network, transformers are needed. All components and its timeseries of the additional scenario need to be inserted in the fitting 'model_draft.ego_grid_pf_hv_extension_' table. The scn_name in the tables have to be labled with 'extension_' + scn_name (e.g. 'extension_nep2035'). Until now, the tables include three additional scenarios: 'nep2035_confirmed': all new lines and needed transformers planed in the 'Netzentwicklungsplan 2035' (NEP2035) that have been confirmed by the Bundesnetzagentur (BNetzA) 'nep2035_b2': all new lines and needed transformers planned in the NEP 2035 in the scenario 2035 B2 'BE_NO_NEP 2035': DC-lines and transformers to connect the upcomming electrical-neighbours Belgium and Norway Generation, loads and its timeseries in Belgium and Norway for scenario 'NEP 2035' Parameters ----- network : The existing network container (e.g. scenario 'NEP 2035') session : session-data overlay_scn_name : Name of the additional scenario (WITHOUT 'extension_') start_snapshot, end_snapshot: Simulation time Returns ------ network : Network container including existing and additional network """ if version is None: ormcls_prefix = 'EgoGridPfHvExtension' else: ormcls_prefix = 'EgoPfHvExtension' # Adding overlay-network to existing network scenario = NetworkScenario(session, version = version, prefix=ormcls_prefix, method=kwargs.get('method', 'lopf'), start_snapshot=start_snapshot, end_snapshot=end_snapshot, scn_name='extension_' + scn_extension) network = scenario.build_network(network) # Allow lossless links to conduct bidirectional network.links.loc[network.links.efficiency == 1.0, 'p_min_pu'] = -1 # Set coordinates for new buses extension_buses = network.buses[network.buses.scn_name == 'extension_' + scn_extension] for idx, row in extension_buses.iterrows(): wkt_geom = to_shape(row['geom']) network.buses.loc[idx, 'x'] = wkt_geom.x network.buses.loc[idx, 'y'] = wkt_geom.y return network
Function that adds an additional network to the existing network container. The new network can include every PyPSA-component (e.g. buses, lines, links). To connect it to the existing network, transformers are needed. All components and its timeseries of the additional scenario need to be inserted in the fitting 'model_draft.ego_grid_pf_hv_extension_' table. The scn_name in the tables have to be labled with 'extension_' + scn_name (e.g. 'extension_nep2035'). Until now, the tables include three additional scenarios: 'nep2035_confirmed': all new lines and needed transformers planed in the 'Netzentwicklungsplan 2035' (NEP2035) that have been confirmed by the Bundesnetzagentur (BNetzA) 'nep2035_b2': all new lines and needed transformers planned in the NEP 2035 in the scenario 2035 B2 'BE_NO_NEP 2035': DC-lines and transformers to connect the upcomming electrical-neighbours Belgium and Norway Generation, loads and its timeseries in Belgium and Norway for scenario 'NEP 2035' Parameters ----- network : The existing network container (e.g. scenario 'NEP 2035') session : session-data overlay_scn_name : Name of the additional scenario (WITHOUT 'extension_') start_snapshot, end_snapshot: Simulation time Returns ------ network : Network container including existing and additional network
def get_document_models(): """Return dict of index.doc_type: model.""" mappings = {} for i in get_index_names(): for m in get_index_models(i): key = "%s.%s" % (i, m._meta.model_name) mappings[key] = m return mappings
Return dict of index.doc_type: model.
def parse_seconds(value): ''' Parse string into Seconds instances. Handled formats: HH:MM:SS HH:MM SS ''' svalue = str(value) colons = svalue.count(':') if colons == 2: hours, minutes, seconds = [int(v) for v in svalue.split(':')] elif colons == 1: hours, minutes = [int(v) for v in svalue.split(':')] seconds = 0 elif colons == 0: hours = 0 minutes = 0 seconds = int(svalue) else: raise ValueError('Must be in seconds or HH:MM:SS format') return Seconds.from_hms(hours, minutes, seconds)
Parse string into Seconds instances. Handled formats: HH:MM:SS HH:MM SS
def get_resource_uri(self, obj): """ Return the uri of the given object. """ url = 'api:%s:%s-detail' % ( self.api_version, getattr( self, 'resource_view_name', self.Meta.model._meta.model_name ) ) return reverse(url, request=self.context.get('request', None), kwargs={ self.lookup_field: getattr(obj, self.lookup_field) })
Return the uri of the given object.
def get_orderbook(self): """Get orderbook for the instrument :Retruns: orderbook : dict orderbook dict for the instrument """ if self in self.parent.books.keys(): return self.parent.books[self] return { "bid": [0], "bidsize": [0], "ask": [0], "asksize": [0] }
Get orderbook for the instrument :Retruns: orderbook : dict orderbook dict for the instrument
def _match_data_to_parameter(cls, data): """ find the appropriate parameter for a parameter field """ in_value = data["in"] for cls in [QueryParameter, HeaderParameter, FormDataParameter, PathParameter, BodyParameter]: if in_value == cls.IN: return cls return None
find the appropriate parameter for a parameter field
def absent(email, profile="splunk", **kwargs): ''' Ensure a splunk user is absent .. code-block:: yaml ensure example test user 1: splunk.absent: - email: '[email protected]' - name: 'exampleuser' The following parameters are required: email This is the email of the user in splunk name This is the splunk username used to identify the user. ''' user_identity = kwargs.get('name') ret = { 'name': user_identity, 'changes': {}, 'result': None, 'comment': 'User {0} is absent.'.format(user_identity) } target = __salt__['splunk.get_user'](email, profile=profile) if not target: ret['comment'] = 'User {0} does not exist'.format(user_identity) ret['result'] = True return ret if __opts__['test']: ret['comment'] = "User {0} is all set to be deleted".format(user_identity) ret['result'] = None return ret result = __salt__['splunk.delete_user'](email, profile=profile) if result: ret['comment'] = 'Deleted user {0}'.format(user_identity) ret['changes'].setdefault('old', 'User {0} exists'.format(user_identity)) ret['changes'].setdefault('new', 'User {0} deleted'.format(user_identity)) ret['result'] = True else: ret['comment'] = 'Failed to delete {0}'.format(user_identity) ret['result'] = False return ret
Ensure a splunk user is absent .. code-block:: yaml ensure example test user 1: splunk.absent: - email: '[email protected]' - name: 'exampleuser' The following parameters are required: email This is the email of the user in splunk name This is the splunk username used to identify the user.
def save_new_environment(name, datadir, srcdir, ckan_version, deploy_target=None, always_prod=False): """ Save an environment's configuration to the source dir and data dir """ with open(datadir + '/.version', 'w') as f: f.write('2') cp = ConfigParser.SafeConfigParser() cp.read(srcdir + '/.datacats-environment') if not cp.has_section('datacats'): cp.add_section('datacats') cp.set('datacats', 'name', name) cp.set('datacats', 'ckan_version', ckan_version) if deploy_target: if not cp.has_section('deploy'): cp.add_section('deploy') cp.set('deploy', 'target', deploy_target) if always_prod: cp.set('datacats', 'always_prod', 'true') with open(srcdir + '/.datacats-environment', 'w') as config: cp.write(config) save_srcdir_location(datadir, srcdir)
Save an environment's configuration to the source dir and data dir
def count_curves(self, keys=None, alias=None): """ Counts the number of curves in the well that will be selected with the given key list and the given alias dict. Used by Project's curve table. """ if keys is None: keys = [k for k, v in self.data.items() if isinstance(v, Curve)] else: keys = utils.flatten_list(keys) return len(list(filter(None, [self.get_mnemonic(k, alias=alias) for k in keys])))
Counts the number of curves in the well that will be selected with the given key list and the given alias dict. Used by Project's curve table.
def save_as(self, new_filename): """ Save our file with the name provided. Args: new_filename: New name for the workbook file. String. Returns: Nothing. """ xfile._save_file(self._filename, self._datasourceTree, new_filename)
Save our file with the name provided. Args: new_filename: New name for the workbook file. String. Returns: Nothing.
def wipe_cfg_vals_from_git_cfg(*cfg_opts): """Remove a set of options from Git config.""" for cfg_key_suffix in cfg_opts: cfg_key = f'cherry-picker.{cfg_key_suffix.replace("_", "-")}' cmd = "git", "config", "--local", "--unset-all", cfg_key subprocess.check_call(cmd, stderr=subprocess.STDOUT)
Remove a set of options from Git config.
def hkeys(self, name, key_start, key_end, limit=10): """ Return a list of the top ``limit`` keys between ``key_start`` and ``key_end`` in hash ``name`` Similiar with **Redis.HKEYS** .. note:: The range is (``key_start``, ``key_end``]. The ``key_start`` isn't in the range, but ``key_end`` is. :param string name: the hash name :param string key_start: The lower bound(not included) of keys to be returned, empty string ``''`` means -inf :param string key_end: The upper bound(included) of keys to be returned, empty string ``''`` means +inf :param int limit: number of elements will be returned. :return: a list of keys :rtype: list >>> ssdb.hkeys('hash_1', 'a', 'g', 10) ['b', 'c', 'd', 'e', 'f', 'g'] >>> ssdb.hkeys('hash_2', 'key ', 'key4', 3) ['key1', 'key2', 'key3'] >>> ssdb.hkeys('hash_1', 'f', '', 10) ['g'] >>> ssdb.hkeys('hash_2', 'keys', '', 10) [] """ limit = get_positive_integer('limit', limit) return self.execute_command('hkeys', name, key_start, key_end, limit)
Return a list of the top ``limit`` keys between ``key_start`` and ``key_end`` in hash ``name`` Similiar with **Redis.HKEYS** .. note:: The range is (``key_start``, ``key_end``]. The ``key_start`` isn't in the range, but ``key_end`` is. :param string name: the hash name :param string key_start: The lower bound(not included) of keys to be returned, empty string ``''`` means -inf :param string key_end: The upper bound(included) of keys to be returned, empty string ``''`` means +inf :param int limit: number of elements will be returned. :return: a list of keys :rtype: list >>> ssdb.hkeys('hash_1', 'a', 'g', 10) ['b', 'c', 'd', 'e', 'f', 'g'] >>> ssdb.hkeys('hash_2', 'key ', 'key4', 3) ['key1', 'key2', 'key3'] >>> ssdb.hkeys('hash_1', 'f', '', 10) ['g'] >>> ssdb.hkeys('hash_2', 'keys', '', 10) []
def get_string_from_data(self, offset, data): """Get an ASCII string from data.""" s = self.get_bytes_from_data(offset, data) end = s.find(b'\0') if end >= 0: s = s[:end] return s
Get an ASCII string from data.
def _add_encoded(self, encoded): """Returns E(a + b), given self=E(a) and b. Args: encoded (EncodedNumber): an :class:`EncodedNumber` to be added to `self`. Returns: EncryptedNumber: E(a + b), calculated by encrypting b and taking the product of E(a) and E(b) modulo :attr:`~PaillierPublicKey.n` ** 2. Raises: ValueError: if scalar is out of range or precision. """ if self.public_key != encoded.public_key: raise ValueError("Attempted to add numbers encoded against " "different public keys!") # In order to add two numbers, their exponents must match. a, b = self, encoded if a.exponent > b.exponent: a = self.decrease_exponent_to(b.exponent) elif a.exponent < b.exponent: b = b.decrease_exponent_to(a.exponent) # Don't bother to salt/obfuscate in a basic operation, do it # just before leaving the computer. encrypted_scalar = a.public_key.raw_encrypt(b.encoding, 1) sum_ciphertext = a._raw_add(a.ciphertext(False), encrypted_scalar) return EncryptedNumber(a.public_key, sum_ciphertext, a.exponent)
Returns E(a + b), given self=E(a) and b. Args: encoded (EncodedNumber): an :class:`EncodedNumber` to be added to `self`. Returns: EncryptedNumber: E(a + b), calculated by encrypting b and taking the product of E(a) and E(b) modulo :attr:`~PaillierPublicKey.n` ** 2. Raises: ValueError: if scalar is out of range or precision.
def msg_curse(self, args=None, max_width=None): """Return the dict to display in the curse interface.""" # Init the return message ret = [] # Only process if stats exist and display plugin enable... if args.disable_process: msg = "PROCESSES DISABLED (press 'z' to display)" ret.append(self.curse_add_line(msg)) return ret if not self.stats: return ret # Display the filter (if it exists) if glances_processes.process_filter is not None: msg = 'Processes filter:' ret.append(self.curse_add_line(msg, "TITLE")) msg = ' {} '.format(glances_processes.process_filter) if glances_processes.process_filter_key is not None: msg += 'on column {} '.format(glances_processes.process_filter_key) ret.append(self.curse_add_line(msg, "FILTER")) msg = '(\'ENTER\' to edit, \'E\' to reset)' ret.append(self.curse_add_line(msg)) ret.append(self.curse_new_line()) # Build the string message # Header msg = 'TASKS' ret.append(self.curse_add_line(msg, "TITLE")) # Compute processes other = self.stats['total'] msg = '{:>4}'.format(self.stats['total']) ret.append(self.curse_add_line(msg)) if 'thread' in self.stats: msg = ' ({} thr),'.format(self.stats['thread']) ret.append(self.curse_add_line(msg)) if 'running' in self.stats: other -= self.stats['running'] msg = ' {} run,'.format(self.stats['running']) ret.append(self.curse_add_line(msg)) if 'sleeping' in self.stats: other -= self.stats['sleeping'] msg = ' {} slp,'.format(self.stats['sleeping']) ret.append(self.curse_add_line(msg)) msg = ' {} oth '.format(other) ret.append(self.curse_add_line(msg)) # Display sort information try: sort_human = self.sort_for_human[glances_processes.sort_key] except KeyError: sort_human = '?' if glances_processes.auto_sort: msg = 'sorted automatically' ret.append(self.curse_add_line(msg)) msg = ' by {}'.format(sort_human) else: msg = 'sorted by {}'.format(sort_human) ret.append(self.curse_add_line(msg)) # Return the message with decoration return ret
Return the dict to display in the curse interface.
def _release_info(): """Check latest fastfood release info from PyPI.""" pypi_url = 'http://pypi.python.org/pypi/fastfood/json' headers = { 'Accept': 'application/json', } request = urllib.Request(pypi_url, headers=headers) response = urllib.urlopen(request).read().decode('utf_8') data = json.loads(response) return data
Check latest fastfood release info from PyPI.
def sync_matchers(saltenv=None, refresh=False, extmod_whitelist=None, extmod_blacklist=None): ''' .. versionadded:: 2019.2.0 Sync engine modules from ``salt://_matchers`` to the minion saltenv The fileserver environment from which to sync. To sync from more than one environment, pass a comma-separated list. If not passed, then all environments configured in the :ref:`top files <states-top>` will be checked for engines to sync. If no top files are found, then the ``base`` environment will be synced. refresh : True If ``True``, refresh the available execution modules on the minion. This refresh will be performed even if no new matcher modules are synced. Set to ``False`` to prevent this refresh. extmod_whitelist : None comma-separated list of modules to sync extmod_blacklist : None comma-separated list of modules to blacklist based on type CLI Examples: .. code-block:: bash salt '*' saltutil.sync_matchers salt '*' saltutil.sync_matchers saltenv=base,dev ''' ret = _sync('matchers', saltenv, extmod_whitelist, extmod_blacklist) if refresh: refresh_modules() return ret
.. versionadded:: 2019.2.0 Sync engine modules from ``salt://_matchers`` to the minion saltenv The fileserver environment from which to sync. To sync from more than one environment, pass a comma-separated list. If not passed, then all environments configured in the :ref:`top files <states-top>` will be checked for engines to sync. If no top files are found, then the ``base`` environment will be synced. refresh : True If ``True``, refresh the available execution modules on the minion. This refresh will be performed even if no new matcher modules are synced. Set to ``False`` to prevent this refresh. extmod_whitelist : None comma-separated list of modules to sync extmod_blacklist : None comma-separated list of modules to blacklist based on type CLI Examples: .. code-block:: bash salt '*' saltutil.sync_matchers salt '*' saltutil.sync_matchers saltenv=base,dev
def pvariance(data, mu=None): """Return the population variance of ``data``. data should be an iterable of Real-valued numbers, with at least one value. The optional argument mu, if given, should be the mean of the data. If it is missing or None, the mean is automatically calculated. Use this function to calculate the variance from the entire population. To estimate the variance from a sample, the ``variance`` function is usually a better choice. If you have already calculated the mean of the data, you can pass it as the optional second argument to avoid recalculating it: This function does not check that ``mu`` is actually the mean of ``data``. Giving arbitrary values for ``mu`` may lead to invalid or impossible results. Decimals and Fractions are supported: """ if iter(data) is data: data = list(data) n = len(data) if n < 1: raise StatisticsError('pvariance requires at least one data point') ss = _ss(data, mu) return ss / n
Return the population variance of ``data``. data should be an iterable of Real-valued numbers, with at least one value. The optional argument mu, if given, should be the mean of the data. If it is missing or None, the mean is automatically calculated. Use this function to calculate the variance from the entire population. To estimate the variance from a sample, the ``variance`` function is usually a better choice. If you have already calculated the mean of the data, you can pass it as the optional second argument to avoid recalculating it: This function does not check that ``mu`` is actually the mean of ``data``. Giving arbitrary values for ``mu`` may lead to invalid or impossible results. Decimals and Fractions are supported:
def _create_update_tracking_related_event(instance): """ Create a TrackingEvent and TrackedFieldModification for an UPDATE event for each related model. """ events = {} # Create a dict mapping related model field to modified fields for field, related_fields in instance._tracked_related_fields.items(): if not isinstance(instance._meta.get_field(field), ManyToManyField): if isinstance(instance._meta.get_field(field), ForeignKey): # Compare pk value = getattr(instance, '{0}_id'.format(field)) else: value = getattr(instance, field) if instance._original_fields[field] != value: for related_field in related_fields: events.setdefault(related_field, []).append(field) # Create the events from the events dict for related_field, fields in events.items(): try: related_instances = getattr(instance, related_field[1]) except ObjectDoesNotExist: continue # FIXME: isinstance(related_instances, RelatedManager ?) if hasattr(related_instances, 'all'): related_instances = related_instances.all() else: related_instances = [related_instances] for related_instance in related_instances: event = _create_event(related_instance, UPDATE) for field in fields: fieldname = '{0}__{1}'.format(related_field[0], field) _create_tracked_field( event, instance, field, fieldname=fieldname )
Create a TrackingEvent and TrackedFieldModification for an UPDATE event for each related model.
def transformer_base_v1(): """Set of hyperparameters.""" hparams = common_hparams.basic_params1() hparams.norm_type = "layer" hparams.hidden_size = 512 hparams.batch_size = 4096 hparams.max_length = 256 hparams.clip_grad_norm = 0. # i.e. no gradient clipping hparams.optimizer_adam_epsilon = 1e-9 hparams.learning_rate_schedule = "legacy" hparams.learning_rate_decay_scheme = "noam" hparams.learning_rate = 0.1 hparams.learning_rate_warmup_steps = 4000 hparams.initializer_gain = 1.0 hparams.num_hidden_layers = 6 hparams.initializer = "uniform_unit_scaling" hparams.weight_decay = 0.0 hparams.optimizer_adam_beta1 = 0.9 hparams.optimizer_adam_beta2 = 0.98 hparams.num_sampled_classes = 0 hparams.label_smoothing = 0.1 hparams.shared_embedding_and_softmax_weights = True hparams.symbol_modality_num_shards = 16 # Add new ones like this. hparams.add_hparam("filter_size", 2048) # Layer-related flags. If zero, these fall back on hparams.num_hidden_layers. hparams.add_hparam("num_encoder_layers", 0) hparams.add_hparam("num_decoder_layers", 0) # Attention-related flags. hparams.add_hparam("num_heads", 8) hparams.add_hparam("attention_key_channels", 0) hparams.add_hparam("attention_value_channels", 0) hparams.add_hparam("ffn_layer", "dense_relu_dense") hparams.add_hparam("parameter_attention_key_channels", 0) hparams.add_hparam("parameter_attention_value_channels", 0) # All hyperparameters ending in "dropout" are automatically set to 0.0 # when not in training mode. hparams.add_hparam("attention_dropout", 0.0) hparams.add_hparam("attention_dropout_broadcast_dims", "") hparams.add_hparam("relu_dropout", 0.0) hparams.add_hparam("relu_dropout_broadcast_dims", "") hparams.add_hparam("pos", "timing") # timing, none hparams.add_hparam("nbr_decoder_problems", 1) hparams.add_hparam("proximity_bias", False) hparams.add_hparam("causal_decoder_self_attention", True) hparams.add_hparam("use_pad_remover", True) hparams.add_hparam("self_attention_type", "dot_product") hparams.add_hparam("conv_first_kernel", 3) hparams.add_hparam("attention_variables_3d", False) hparams.add_hparam("use_target_space_embedding", True) # These parameters are only used when ffn_layer=="local_moe_tpu" hparams.add_hparam("moe_overhead_train", 1.0) hparams.add_hparam("moe_overhead_eval", 2.0) hparams.moe_num_experts = 16 hparams.moe_loss_coef = 1e-3 # If specified, use this value instead of problem name in metrics.py. # This is useful for programs that can automatically compare experiments side # by side based on the same metric names. hparams.add_hparam("overload_eval_metric_name", "") # For making a transformer encoder unidirectional by using masked # attention. hparams.add_hparam("unidirectional_encoder", False) # For hard attention. hparams.add_hparam("hard_attention_k", 0) return hparams
Set of hyperparameters.
def str_is_well_formed(xml_str): """ Args: xml_str : str DataONE API XML doc. Returns: bool: **True** if XML doc is well formed. """ try: str_to_etree(xml_str) except xml.etree.ElementTree.ParseError: return False else: return True
Args: xml_str : str DataONE API XML doc. Returns: bool: **True** if XML doc is well formed.
def resolve_addresses(self, node): """ Resolve addresses of children of Addrmap and Regfile components """ # Get alignment based on 'alignment' property # This remains constant for all children prop_alignment = self.alignment_stack[-1] if prop_alignment is None: # was not specified. Does not contribute to alignment prop_alignment = 1 prev_node = None for child_node in node.children(skip_not_present=False): if not isinstance(child_node, AddressableNode): continue if child_node.inst.addr_offset is not None: # Address is already known. Do not need to infer prev_node = child_node continue if node.env.chk_implicit_addr: node.env.msg.message( node.env.chk_implicit_addr, "Address offset of component '%s' is not explicitly set" % child_node.inst.inst_name, child_node.inst.inst_src_ref ) # Get alignment specified by '%=' allocator, if any alloc_alignment = child_node.inst.addr_align if alloc_alignment is None: # was not specified. Does not contribute to alignment alloc_alignment = 1 # Calculate alignment based on current addressing mode if self.addressing_mode_stack[-1] == rdltypes.AddressingType.compact: if isinstance(child_node, RegNode): # Regs are aligned based on their accesswidth mode_alignment = child_node.get_property('accesswidth') // 8 else: # Spec does not specify for other components # Assuming absolutely compact packing mode_alignment = 1 elif self.addressing_mode_stack[-1] == rdltypes.AddressingType.regalign: # Components are aligned to a multiple of their size # Spec vaguely suggests that alignment is also a power of 2 mode_alignment = child_node.size mode_alignment = roundup_pow2(mode_alignment) elif self.addressing_mode_stack[-1] == rdltypes.AddressingType.fullalign: # Same as regalign except for arrays # Arrays are aligned to their total size # Both are rounded to power of 2 mode_alignment = child_node.total_size mode_alignment = roundup_pow2(mode_alignment) else: raise RuntimeError # Calculate resulting address offset alignment = max(prop_alignment, alloc_alignment, mode_alignment) if prev_node is None: next_offset = 0 else: next_offset = prev_node.inst.addr_offset + prev_node.total_size # round next_offset up to alignment child_node.inst.addr_offset = roundup_to(next_offset, alignment) prev_node = child_node # Sort children by address offset # Non-addressable child components are sorted to be first (signals) def get_child_sort_key(inst): if not isinstance(inst, comp.AddressableComponent): return -1 else: return inst.addr_offset node.inst.children.sort(key=get_child_sort_key)
Resolve addresses of children of Addrmap and Regfile components
def GetTSKFileByPathSpec(self, path_spec): """Retrieves the SleuthKit file object for a path specification. Args: path_spec (PathSpec): path specification. Returns: pytsk3.File: TSK file. Raises: PathSpecError: if the path specification is missing inode and location. """ # Opening a file by inode number is faster than opening a file # by location. inode = getattr(path_spec, 'inode', None) location = getattr(path_spec, 'location', None) if inode is not None: tsk_file = self._tsk_file_system.open_meta(inode=inode) elif location is not None: tsk_file = self._tsk_file_system.open(location) else: raise errors.PathSpecError( 'Path specification missing inode and location.') return tsk_file
Retrieves the SleuthKit file object for a path specification. Args: path_spec (PathSpec): path specification. Returns: pytsk3.File: TSK file. Raises: PathSpecError: if the path specification is missing inode and location.
def get_rdataset(self, rdclass, rdtype, covers=dns.rdatatype.NONE, create=False): """Get an rdataset matching the specified properties in the current node. None is returned if an rdataset of the specified type and class does not exist and I{create} is not True. @param rdclass: The class of the rdataset @type rdclass: int @param rdtype: The type of the rdataset @type rdtype: int @param covers: The covered type. @type covers: int @param create: If True, create the rdataset if it is not found. @type create: bool @rtype: dns.rdataset.Rdataset object or None """ try: rds = self.find_rdataset(rdclass, rdtype, covers, create) except KeyError: rds = None return rds
Get an rdataset matching the specified properties in the current node. None is returned if an rdataset of the specified type and class does not exist and I{create} is not True. @param rdclass: The class of the rdataset @type rdclass: int @param rdtype: The type of the rdataset @type rdtype: int @param covers: The covered type. @type covers: int @param create: If True, create the rdataset if it is not found. @type create: bool @rtype: dns.rdataset.Rdataset object or None
def info(torrent_path): """Print out information from .torrent file.""" my_torrent = Torrent.from_file(torrent_path) size = my_torrent.total_size click.secho('Name: %s' % my_torrent.name, fg='blue') click.secho('Files:') for file_tuple in my_torrent.files: click.secho(file_tuple.name) click.secho('Hash: %s' % my_torrent.info_hash, fg='blue') click.secho('Size: %s (%s)' % (humanize_filesize(size), size), fg='blue') click.secho('Magnet: %s' % my_torrent.get_magnet(), fg='yellow')
Print out information from .torrent file.
def fromutc(self, dt): '''See datetime.tzinfo.fromutc''' if dt.tzinfo is not None and dt.tzinfo is not self: raise ValueError('fromutc: dt.tzinfo is not self') return (dt + self._utcoffset).replace(tzinfo=self)
See datetime.tzinfo.fromutc
def get_rate_limits(): """Retrieve status (and optionally) version from the API.""" client = get_rates_api() with catch_raise_api_exception(): data, _, headers = client.rates_limits_list_with_http_info() ratelimits.maybe_rate_limit(client, headers) return { k: RateLimitsInfo.from_dict(v) for k, v in six.iteritems(data.to_dict().get("resources", {})) }
Retrieve status (and optionally) version from the API.
def monitoring_problems(self): """Get Alignak scheduler monitoring status Returns an object with the scheduler livesynthesis and the known problems :return: scheduler live synthesis :rtype: dict """ if self.app.type != 'scheduler': return {'_status': u'ERR', '_message': u"This service is only available for a scheduler daemon"} res = self.identity() res.update(self.app.get_monitoring_problems()) return res
Get Alignak scheduler monitoring status Returns an object with the scheduler livesynthesis and the known problems :return: scheduler live synthesis :rtype: dict
def cublasZhpmv(handle, uplo, n, alpha, AP, x, incx, beta, y, incy): """ Matrix-vector product for Hermitian-packed matrix. """ status = _libcublas.cublasZhpmv_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(cuda.cuDoubleComplex(alpha.real, alpha.imag)), int(AP), int(x), incx, ctypes.byref(cuda.cuDoubleComplex(beta.real, beta.imag)), int(y), incy) cublasCheckStatus(status)
Matrix-vector product for Hermitian-packed matrix.
def run_compute(self, compute=None, model=None, detach=False, times=None, **kwargs): """ Run a forward model of the system on the enabled dataset using a specified set of compute options. To attach and set custom values for compute options, including choosing which backend to use, see: * :meth:`add_compute` To define the dataset types and times at which the model should be computed see: * :meth:`add_dataset` To disable or enable existing datasets see: * :meth:`enable_dataset` * :meth:`disable_dataset` :parameter str compute: (optional) name of the compute options to use. If not provided or None, run_compute will use an existing set of attached compute options if only 1 exists. If more than 1 exist, then compute becomes a required argument. If no compute options exist, then this will use default options and create and attach a new set of compute options with a default label. :parameter str model: (optional) name of the resulting model. If not provided this will default to 'latest'. NOTE: existing models with the same name will be overwritten - including 'latest' :parameter bool datach: [EXPERIMENTAL] whether to detach from the computation run, or wait for computations to complete. If detach is True, see :meth:`get_model` and :meth:`phoebe.parameters.parameters.JobParameter` for details on how to check the job status and retrieve the results. Alternatively, you can provide the server location (host and port) as a string to detach and the bundle will temporarily enter client mode, submit the job to the server, and leave client mode. The resulting :meth:`phoebe.parameters.parameters.JobParameter` will then contain the necessary information to pull the results from the server at anytime in the future. :parameter list times: [EXPERIMENTAL] override the times at which to compute the model. NOTE: this only (temporarily) replaces the time array for datasets with times provided (ie empty time arrays are still ignored). So if you attach a rv to a single component, the model will still only compute for that single component. ALSO NOTE: this option is ignored if detach=True (at least for now). :parameter **kwargs: any values in the compute options to temporarily override for this single compute run (parameter values will revert after run_compute is finished) :return: :class:`phoebe.parameters.parameters.ParameterSet` of the newly-created model containing the synthetic data. """ if isinstance(detach, str): # then we want to temporarily go in to client mode self.as_client(server=detach) self.run_compute(compute=compute, model=model, time=time, **kwargs) self.as_client(False) return self.get_model(model) # protomesh and pbmesh were supported kwargs in 2.0.x but are no longer # so let's raise an error if they're passed here if 'protomesh' in kwargs.keys(): raise ValueError("protomesh is no longer a valid option") if 'pbmesh' in kwargs.keys(): raise ValueError("pbmesh is no longer a valid option") if model is None: model = 'latest' if model in self.models: logger.warning("overwriting model: {}".format(model)) self.remove_model(model) self._check_label(model) if isinstance(times, float) or isinstance(times, int): times = [times] # handle case where compute is not provided if compute is None: computes = self.get_compute(**kwargs).computes if len(computes)==0: # NOTE: this doesn't take **kwargs since we want those to be # temporarily overriden as is the case when the compute options # are already attached self.add_compute() computes = self.get_compute().computes # now len(computes) should be 1 and will trigger the next # if statement if len(computes)==1: compute = computes[0] elif len(computes)>1: raise ValueError("must provide label of compute options since more than one are attached") # handle the ability to send multiple compute options/backends - here # we'll just always send a list of compute options if isinstance(compute, str): computes = [compute] else: computes = compute # if interactive mode was ever off, let's make sure all constraints # have been run before running system checks or computing the model changed_params = self.run_delayed_constraints() # any kwargs that were used just to filter for get_compute should be # removed so that they aren't passed on to all future get_value(... # **kwargs) calls for k in parameters._meta_fields_filter: if k in kwargs.keys(): dump = kwargs.pop(k) # we'll wait to here to run kwargs and system checks so that # add_compute is already called if necessary self._kwargs_checks(kwargs, ['skip_checks', 'jobid']) if not kwargs.get('skip_checks', False): passed, msg = self.run_checks(computes=computes, **kwargs) if passed is None: # then just raise a warning logger.warning(msg) if passed is False: # then raise an error raise ValueError("system failed to pass checks: {}".format(msg)) # let's first make sure that there is no duplication of enabled datasets datasets = [] # compute_ so we don't write over compute which we need if detach=True for compute_ in computes: # TODO: filter by value instead of if statement once implemented for enabled_param in self.filter(qualifier='enabled', compute=compute_, context='compute').to_list(): if enabled_param.get_value(): item = (enabled_param.dataset, enabled_param.component) if item in datasets: raise ValueError("dataset {}@{} is enabled in multiple compute options".format(item[0], item[1])) datasets.append(item) # now if we're supposed to detach we'll just prepare the job for submission # either in another subprocess or through some queuing system if detach and mpi.within_mpirun: logger.warning("cannot detach when within mpirun, ignoring") detach = False if (detach or mpi.enabled) and not mpi.within_mpirun: if detach: logger.warning("detach support is EXPERIMENTAL") if times is not None: # TODO: support overriding times with detached - issue here is # that it isn't necessarilly trivially to send this array # through the script. May need to convert to list first to # avoid needing to import numpy? logger.warning("overriding time is not supported within detach - ignoring") # we'll track everything through the model name as well as # a random string, to avoid any conflicts jobid = kwargs.get('jobid', parameters._uniqueid()) # we'll build a python script that can replicate this bundle as it # is now, run compute, and then save the resulting model script_fname = "_{}.py".format(jobid) f = open(script_fname, 'w') f.write("import os; os.environ['PHOEBE_ENABLE_PLOTTING'] = 'FALSE'; os.environ['PHOEBE_ENABLE_SYMPY'] = 'FALSE'; os.environ['PHOEBE_ENABLE_ONLINE_PASSBANDS'] = 'FALSE';\n") f.write("import phoebe; import json\n") # TODO: can we skip the history context? And maybe even other models # or datasets (except times and only for run_compute but not run_fitting) f.write("bdict = json.loads(\"\"\"{}\"\"\")\n".format(json.dumps(self.to_json()))) f.write("b = phoebe.Bundle(bdict)\n") # TODO: make sure this works with multiple computes compute_kwargs = kwargs.items()+[('compute', compute), ('model', model)] compute_kwargs_string = ','.join(["{}={}".format(k,"\'{}\'".format(v) if isinstance(v, str) else v) for k,v in compute_kwargs]) f.write("model_ps = b.run_compute({})\n".format(compute_kwargs_string)) f.write("model_ps.save('_{}.out', incl_uniqueid=True)\n".format(jobid)) f.close() script_fname = os.path.abspath(script_fname) cmd = mpi.detach_cmd.format(script_fname) # TODO: would be nice to catch errors caused by the detached script... # but that would probably need to be the responsibility of the # jobparam to return a failed status and message subprocess.call(cmd, shell=True) # create model parameter and attach (and then return that instead of None) job_param = JobParameter(self, location=os.path.dirname(script_fname), status_method='exists', retrieve_method='local', uniqueid=jobid) metawargs = {'context': 'model', 'model': model} self._attach_params([job_param], **metawargs) if isinstance(detach, str): self.save(detach) if not detach: return job_param.attach() else: logger.info("detaching from run_compute. Call get_model('{}').attach() to re-attach".format(model)) # return self.get_model(model) return job_param for compute in computes: computeparams = self.get_compute(compute=compute) if not computeparams.kind: raise KeyError("could not recognize backend from compute: {}".format(compute)) logger.info("running {} backend to create '{}' model".format(computeparams.kind, model)) compute_class = getattr(backends, '{}Backend'.format(computeparams.kind.title())) # compute_func = getattr(backends, computeparams.kind) metawargs = {'compute': compute, 'model': model, 'context': 'model'} # dataset, component, etc will be set by the compute_func params = compute_class().run(self, compute, times=times, **kwargs) # average over any exposure times before attaching parameters if computeparams.kind == 'phoebe': # TODO: we could eventually do this for all backends - we would # just need to copy the computeoption parameters into each backend's # compute PS, and include similar logic for oversampling that is # currently in backends._extract_info_from_bundle_by_time into # backends._extract_info_from_bundle_by_dataset. We'd also # need to make sure that exptime is not being passed to any # alternate backend - and ALWAYS handle it here for dataset in params.datasets: # not all dataset-types currently support exposure times. # Once they do, this ugly if statement can be removed if len(self.filter(dataset=dataset, qualifier='exptime')): exptime = self.get_value(qualifier='exptime', dataset=dataset, context='dataset', unit=u.d) if exptime > 0: if self.get_value(qualifier='fti_method', dataset=dataset, compute=compute, context='compute', **kwargs)=='oversample': times_ds = self.get_value(qualifier='times', dataset=dataset, context='dataset') # exptime = self.get_value(qualifier='exptime', dataset=dataset, context='dataset', unit=u.d) fti_oversample = self.get_value(qualifier='fti_oversample', dataset=dataset, compute=compute, context='compute', check_visible=False, **kwargs) # NOTE: this is hardcoded for LCs which is the # only dataset that currently supports oversampling, # but this will need to be generalized if/when # we expand that support to other dataset kinds fluxes = np.zeros(times_ds.shape) # the oversampled times and fluxes will be # sorted according to times this may cause # exposures to "overlap" each other, so we'll # later need to determine which times (and # therefore fluxes) belong to which datapoint times_oversampled_sorted = params.get_value('times', dataset=dataset) fluxes_oversampled = params.get_value('fluxes', dataset=dataset) for i,t in enumerate(times_ds): # rebuild the unsorted oversampled times - see backends._extract_from_bundle_by_time # TODO: try to optimize this by having these indices returned by the backend itself times_oversampled_this = np.linspace(t-exptime/2., t+exptime/2., fti_oversample) sample_inds = np.searchsorted(times_oversampled_sorted, times_oversampled_this) fluxes[i] = np.mean(fluxes_oversampled[sample_inds]) params.set_value(qualifier='times', dataset=dataset, value=times_ds) params.set_value(qualifier='fluxes', dataset=dataset, value=fluxes) self._attach_params(params, **metawargs) redo_kwargs = deepcopy(kwargs) redo_kwargs['compute'] = computes if len(computes)>1 else computes[0] redo_kwargs['model'] = model self._add_history(redo_func='run_compute', redo_kwargs=redo_kwargs, undo_func='remove_model', undo_kwargs={'model': model}) return self.get_model(model)
Run a forward model of the system on the enabled dataset using a specified set of compute options. To attach and set custom values for compute options, including choosing which backend to use, see: * :meth:`add_compute` To define the dataset types and times at which the model should be computed see: * :meth:`add_dataset` To disable or enable existing datasets see: * :meth:`enable_dataset` * :meth:`disable_dataset` :parameter str compute: (optional) name of the compute options to use. If not provided or None, run_compute will use an existing set of attached compute options if only 1 exists. If more than 1 exist, then compute becomes a required argument. If no compute options exist, then this will use default options and create and attach a new set of compute options with a default label. :parameter str model: (optional) name of the resulting model. If not provided this will default to 'latest'. NOTE: existing models with the same name will be overwritten - including 'latest' :parameter bool datach: [EXPERIMENTAL] whether to detach from the computation run, or wait for computations to complete. If detach is True, see :meth:`get_model` and :meth:`phoebe.parameters.parameters.JobParameter` for details on how to check the job status and retrieve the results. Alternatively, you can provide the server location (host and port) as a string to detach and the bundle will temporarily enter client mode, submit the job to the server, and leave client mode. The resulting :meth:`phoebe.parameters.parameters.JobParameter` will then contain the necessary information to pull the results from the server at anytime in the future. :parameter list times: [EXPERIMENTAL] override the times at which to compute the model. NOTE: this only (temporarily) replaces the time array for datasets with times provided (ie empty time arrays are still ignored). So if you attach a rv to a single component, the model will still only compute for that single component. ALSO NOTE: this option is ignored if detach=True (at least for now). :parameter **kwargs: any values in the compute options to temporarily override for this single compute run (parameter values will revert after run_compute is finished) :return: :class:`phoebe.parameters.parameters.ParameterSet` of the newly-created model containing the synthetic data.
def get(key, default=-1): """Backport support for original codes.""" if isinstance(key, int): return OptionNumber(key) if key not in OptionNumber._member_map_: extend_enum(OptionNumber, key, default) return OptionNumber[key]
Backport support for original codes.
def can_see_members(self, user): """Determine if given user can see other group members. :param user: User to be checked. :returns: True or False. """ if self.privacy_policy == PrivacyPolicy.PUBLIC: return True elif self.privacy_policy == PrivacyPolicy.MEMBERS: return self.is_member(user) or self.is_admin(user) elif self.privacy_policy == PrivacyPolicy.ADMINS: return self.is_admin(user)
Determine if given user can see other group members. :param user: User to be checked. :returns: True or False.
def assemble_oligos(dna_list, reference=None): '''Given a list of DNA sequences, assemble into a single construct. :param dna_list: List of DNA sequences - they must be single-stranded. :type dna_list: coral.DNA list :param reference: Expected sequence - once assembly completed, this will be used to reorient the DNA (assembly could potentially occur from either side of a linear DNA construct if oligos are in a random order). If this fails, an AssemblyError is raised. :type reference: coral.DNA :raises: AssemblyError if it can't assemble for any reason. :returns: A single assembled DNA sequence :rtype: coral.DNA ''' # FIXME: this protocol currently only supports 5' ends on the assembly # Find all matches for every oligo. If more than 2 per side, error. # Self-oligo is included in case the 3' end is self-complementary. # 1) Find all unique 3' binders (and non-binders). match_3 = [bind_unique(seq, dna_list, right=True) for i, seq in enumerate(dna_list)] # 2) Find all unique 5' binders (and non-binders). match_5 = [bind_unique(seq, dna_list, right=False) for i, seq in enumerate(dna_list)] # Assemble into 2-tuple zipped = zip(match_5, match_3) # 3) If none found, error out with 'oligo n has no binders' for i, oligo_match in enumerate(zipped): if not any(oligo_match): error = 'Oligo {} has no binding partners.'.format(i + 1) raise AssemblyError(error) # 4) There should be exactly 2 oligos that bind at 3' end but # not 5'. ends = [] for i, (five, three) in enumerate(zipped): if five is None and three is not None: ends.append(i) # 5) If more than 2, error with 'too many ends'. if len(ends) > 2: raise AssemblyError('Too many (>2) end oligos found.') # 6) If more than 2, error with 'not enough ends'. if len(ends) < 2: raise AssemblyError('Not enough (<2) end oligos found.') # NOTE:If 1-4 are satisfied, unique linear assembly has been found (proof?) # 8) Start with first end and build iteratively last_index = ends[0] assembly = dna_list[last_index] flip = True # This would be slightly less complicated if the sequences were tied to # their match info in a tuple # Append next region n - 1 times for i in range(len(dna_list) - 1): if flip: # Next oligo needs to be flipped before concatenation # Grab 3' match from last oligo's info current_index, matchlen = zipped[last_index][1] # Get new oligo sequence, make double-stranded for concatenation next_oligo = dna_list[current_index].to_ds() # Reverse complement for concatenation next_oligo = next_oligo.reverse_complement() # Don't reverse complement the next one flip = False else: # Grab 5' match from last oligo's info current_index, matchlen = zipped[last_index][0] # Get new oligo sequence, make double-stranded for concatenation next_oligo = dna_list[current_index].to_ds() # Reverse complement the next one flip = True # Trim overlap from new sequence next_oligo = next_oligo[(matchlen - 1):] # Concatenate and update last oligo's information assembly += next_oligo last_index = current_index if reference: if assembly == reference or assembly == reference.reverse_complement(): return assembly else: raise AssemblyError('Assembly did not match reference') else: return assembly
Given a list of DNA sequences, assemble into a single construct. :param dna_list: List of DNA sequences - they must be single-stranded. :type dna_list: coral.DNA list :param reference: Expected sequence - once assembly completed, this will be used to reorient the DNA (assembly could potentially occur from either side of a linear DNA construct if oligos are in a random order). If this fails, an AssemblyError is raised. :type reference: coral.DNA :raises: AssemblyError if it can't assemble for any reason. :returns: A single assembled DNA sequence :rtype: coral.DNA
def bar(self, width, **_): """Returns the completed progress bar. Every time this is called the animation moves. Positional arguments: width -- the width of the entire bar (including borders). """ width -= self._width_offset self._position += self._direction # Change direction. if self._position <= 0 and self._direction < 0: self._position = 0 self._direction = 1 elif self._position > width: self._position = width - 1 self._direction = -1 final_bar = ( self.CHAR_LEFT_BORDER + self.CHAR_EMPTY * self._position + self.CHAR_ANIMATED + self.CHAR_EMPTY * (width - self._position) + self.CHAR_RIGHT_BORDER ) return final_bar
Returns the completed progress bar. Every time this is called the animation moves. Positional arguments: width -- the width of the entire bar (including borders).
def taskfile_user_data(file_, role): """Return the data for user :param file_: the file that holds the data :type file_: :class:`jukeboxcore.djadapter.models.File` :param role: item data role :type role: QtCore.Qt.ItemDataRole :returns: data for the user :rtype: depending on role :raises: None """ if role == QtCore.Qt.DisplayRole or role == QtCore.Qt.EditRole: return file_.user.username
Return the data for user :param file_: the file that holds the data :type file_: :class:`jukeboxcore.djadapter.models.File` :param role: item data role :type role: QtCore.Qt.ItemDataRole :returns: data for the user :rtype: depending on role :raises: None
def _get_requirement_attr(self, attr, path): """ Gets the attribute for a given requirement file in path :param attr: string, attribute :param path: string, path :return: The attribute for the requirement, or the global default """ for req_file in self.requirements: if path.strip("/") == req_file.path.strip("/"): return getattr(req_file, attr) return getattr(self, attr)
Gets the attribute for a given requirement file in path :param attr: string, attribute :param path: string, path :return: The attribute for the requirement, or the global default
def update(self, environments): """ Method to update environments vip :param environments vip: List containing environments vip desired to updated :return: None """ data = {'environments_vip': environments} environments_ids = [str(env.get('id')) for env in environments] uri = 'api/v3/environment-vip/%s/' % ';'.join(environments_ids) return super(ApiEnvironmentVip, self).put(uri, data)
Method to update environments vip :param environments vip: List containing environments vip desired to updated :return: None
def dropKey(self, key): '''Drop an attribute/element/key-value pair from all the dictionaries. If the dictionary key does not exist in a particular dictionary, then that dictionary is left unchanged. Side effect: if the key is a number and it matches a list (interpreted as a dictionary), it will cause the "keys" to shift just as a list would be expected to. Example of use: >>> test = [ ... {"name": "Jim", "age": 18, "income": 93000, "wigs": 68 }, ... {"name": "Larry", "age": 18, "wigs": [3, 2, 9]}, ... {"name": "Joe", "age": 20, "income": 15000, "wigs": [1, 2, 3]}, ... {"name": "Jim", "age": 29, "zim": {"zam": "99"} }, ... {"name": "Bill", "age": 19, "income": 29000 }, ... ] >>> print PLOD(test).dropKey("income").returnString() [ {age: 18, name: 'Jim' , wigs: 68, zim: None }, {age: 18, name: 'Larry', wigs: [3, 2, 9], zim: None }, {age: 20, name: 'Joe' , wigs: [1, 2, 3], zim: None }, {age: 29, name: 'Jim' , wigs: None , zim: {'zam': '99'}}, {age: 19, name: 'Bill' , wigs: None , zim: None } ] .. versionadded:: 0.1.2 :param key: The dictionary key (or cascading list of keys point to final key) that should be removed. :returns: self ''' result = [] for row in self.table: result.append(internal.remove_member(row, key)) self.table = result return self
Drop an attribute/element/key-value pair from all the dictionaries. If the dictionary key does not exist in a particular dictionary, then that dictionary is left unchanged. Side effect: if the key is a number and it matches a list (interpreted as a dictionary), it will cause the "keys" to shift just as a list would be expected to. Example of use: >>> test = [ ... {"name": "Jim", "age": 18, "income": 93000, "wigs": 68 }, ... {"name": "Larry", "age": 18, "wigs": [3, 2, 9]}, ... {"name": "Joe", "age": 20, "income": 15000, "wigs": [1, 2, 3]}, ... {"name": "Jim", "age": 29, "zim": {"zam": "99"} }, ... {"name": "Bill", "age": 19, "income": 29000 }, ... ] >>> print PLOD(test).dropKey("income").returnString() [ {age: 18, name: 'Jim' , wigs: 68, zim: None }, {age: 18, name: 'Larry', wigs: [3, 2, 9], zim: None }, {age: 20, name: 'Joe' , wigs: [1, 2, 3], zim: None }, {age: 29, name: 'Jim' , wigs: None , zim: {'zam': '99'}}, {age: 19, name: 'Bill' , wigs: None , zim: None } ] .. versionadded:: 0.1.2 :param key: The dictionary key (or cascading list of keys point to final key) that should be removed. :returns: self
def fit(self, X, y=None, init=None): """ Computes the position of the points in the embedding space Parameters ---------- X : array, shape=[n_samples, n_features], or [n_samples, n_samples] \ if dissimilarity='precomputed' Input data. init : {None or ndarray, shape (n_samples,)}, optional If None, randomly chooses the initial configuration if ndarray, initialize the SMACOF algorithm with this array. """ self.fit_transform(X, init=init) return self
Computes the position of the points in the embedding space Parameters ---------- X : array, shape=[n_samples, n_features], or [n_samples, n_samples] \ if dissimilarity='precomputed' Input data. init : {None or ndarray, shape (n_samples,)}, optional If None, randomly chooses the initial configuration if ndarray, initialize the SMACOF algorithm with this array.
def owned_expansions(self): """List of expansions owned by the player.""" owned = {} for el in self.expansion_locations: def is_near_to_expansion(t): return t.position.distance_to(el) < self.EXPANSION_GAP_THRESHOLD th = next((x for x in self.townhalls if is_near_to_expansion(x)), None) if th: owned[el] = th return owned
List of expansions owned by the player.
def annihilate(predicate: tuple, stack: tuple) -> tuple: '''Squash and reduce the input stack. Removes the elements of input that match predicate and only keeps the last match at the end of the stack. ''' extra = tuple(filter(lambda x: x not in predicate, stack)) head = reduce(lambda x, y: y if y in predicate else x, stack, None) return extra + (head,) if head else extra
Squash and reduce the input stack. Removes the elements of input that match predicate and only keeps the last match at the end of the stack.
def followingPrefix(prefix): """Returns a String that sorts just after all Strings beginning with a prefix""" prefixBytes = array('B', prefix) changeIndex = len(prefixBytes) - 1 while (changeIndex >= 0 and prefixBytes[changeIndex] == 0xff ): changeIndex = changeIndex - 1; if(changeIndex < 0): return None newBytes = array('B', prefix[0:changeIndex + 1]) newBytes[changeIndex] = newBytes[changeIndex] + 1 return newBytes.tostring()
Returns a String that sorts just after all Strings beginning with a prefix
def set_circuit_breakers(mv_grid, mode='load', debug=False): """ Calculates the optimal position of a circuit breaker on all routes of mv_grid, adds and connects them to graph. Args ---- mv_grid: MVGridDing0 Description#TODO debug: bool, defaults to False If True, information is printed during process Notes ----- According to planning principles of MV grids, a MV ring is run as two strings (half-rings) separated by a circuit breaker which is open at normal operation [#]_, [#]_. Assuming a ring (route which is connected to the root node at either sides), the optimal position of a circuit breaker is defined as the position (virtual cable) between two nodes where the conveyed current is minimal on the route. Instead of the peak current, the peak load is used here (assuming a constant voltage). If a ring is dominated by loads (peak load > peak capacity of generators), only loads are used for determining the location of circuit breaker. If generators are prevailing (peak load < peak capacity of generators), only generator capacities are considered for relocation. The core of this function (calculation of the optimal circuit breaker position) is the same as in ding0.grid.mv_grid.models.Route.calc_circuit_breaker_position but here it is 1. applied to a different data type (NetworkX Graph) and it 2. adds circuit breakers to all rings. The re-location of circuit breakers is necessary because the original position (calculated during routing with method mentioned above) shifts during the connection of satellites and therefore it is no longer valid. References ---------- .. [#] X. Tao, "Automatisierte Grundsatzplanung von Mittelspannungsnetzen", Dissertation, 2006 .. [#] FGH e.V.: "Technischer Bericht 302: Ein Werkzeug zur Optimierung der Störungsbeseitigung für Planung und Betrieb von Mittelspannungsnetzen", Tech. rep., 2008 """ # get power factor for loads and generators cos_phi_load = cfg_ding0.get('assumptions', 'cos_phi_load') cos_phi_feedin = cfg_ding0.get('assumptions', 'cos_phi_gen') # iterate over all rings and circuit breakers for ring, circ_breaker in zip(mv_grid.rings_nodes(include_root_node=False), mv_grid.circuit_breakers()): nodes_peak_load = [] nodes_peak_generation = [] # iterate over all nodes of ring for node in ring: # node is LV station -> get peak load and peak generation if isinstance(node, LVStationDing0): nodes_peak_load.append(node.peak_load / cos_phi_load) nodes_peak_generation.append(node.peak_generation / cos_phi_feedin) # node is cable distributor -> get all connected nodes of subtree using graph_nodes_from_subtree() elif isinstance(node, CableDistributorDing0): nodes_subtree = mv_grid.graph_nodes_from_subtree(node) nodes_subtree_peak_load = 0 nodes_subtree_peak_generation = 0 for node_subtree in nodes_subtree: # node is LV station -> get peak load and peak generation if isinstance(node_subtree, LVStationDing0): nodes_subtree_peak_load += node_subtree.peak_load / \ cos_phi_load nodes_subtree_peak_generation += node_subtree.peak_generation / \ cos_phi_feedin # node is LV station -> get peak load and peak generation if isinstance(node_subtree, GeneratorDing0): nodes_subtree_peak_generation += node_subtree.capacity / \ cos_phi_feedin nodes_peak_load.append(nodes_subtree_peak_load) nodes_peak_generation.append(nodes_subtree_peak_generation) else: raise ValueError('Ring node has got invalid type.') if mode == 'load': node_peak_data = nodes_peak_load elif mode == 'loadgen': # is ring dominated by load or generation? # (check if there's more load than generation in ring or vice versa) if sum(nodes_peak_load) > sum(nodes_peak_generation): node_peak_data = nodes_peak_load else: node_peak_data = nodes_peak_generation else: raise ValueError('parameter \'mode\' is invalid!') # calc optimal circuit breaker position # set init value diff_min = 10e6 # check where difference of demand/generation in two half-rings is minimal for ctr in range(len(node_peak_data)): # split route and calc demand difference route_data_part1 = sum(node_peak_data[0:ctr]) route_data_part2 = sum(node_peak_data[ctr:len(node_peak_data)]) diff = abs(route_data_part1 - route_data_part2) # equality has to be respected, otherwise comparison stops when demand/generation=0 if diff <= diff_min: diff_min = diff position = ctr else: break # relocate circuit breaker node1 = ring[position-1] node2 = ring[position] circ_breaker.branch = mv_grid._graph.adj[node1][node2]['branch'] circ_breaker.branch_nodes = (node1, node2) circ_breaker.branch.circuit_breaker = circ_breaker circ_breaker.geo_data = calc_geo_centre_point(node1, node2) if debug: logger.debug('Ring: {}'.format(ring)) logger.debug('Circuit breaker {0} was relocated to edge {1}-{2} ' '(position on route={3})'.format( circ_breaker, node1, node2, position) ) logger.debug('Peak load sum: {}'.format(sum(nodes_peak_load))) logger.debug('Peak loads: {}'.format(nodes_peak_load))
Calculates the optimal position of a circuit breaker on all routes of mv_grid, adds and connects them to graph. Args ---- mv_grid: MVGridDing0 Description#TODO debug: bool, defaults to False If True, information is printed during process Notes ----- According to planning principles of MV grids, a MV ring is run as two strings (half-rings) separated by a circuit breaker which is open at normal operation [#]_, [#]_. Assuming a ring (route which is connected to the root node at either sides), the optimal position of a circuit breaker is defined as the position (virtual cable) between two nodes where the conveyed current is minimal on the route. Instead of the peak current, the peak load is used here (assuming a constant voltage). If a ring is dominated by loads (peak load > peak capacity of generators), only loads are used for determining the location of circuit breaker. If generators are prevailing (peak load < peak capacity of generators), only generator capacities are considered for relocation. The core of this function (calculation of the optimal circuit breaker position) is the same as in ding0.grid.mv_grid.models.Route.calc_circuit_breaker_position but here it is 1. applied to a different data type (NetworkX Graph) and it 2. adds circuit breakers to all rings. The re-location of circuit breakers is necessary because the original position (calculated during routing with method mentioned above) shifts during the connection of satellites and therefore it is no longer valid. References ---------- .. [#] X. Tao, "Automatisierte Grundsatzplanung von Mittelspannungsnetzen", Dissertation, 2006 .. [#] FGH e.V.: "Technischer Bericht 302: Ein Werkzeug zur Optimierung der Störungsbeseitigung für Planung und Betrieb von Mittelspannungsnetzen", Tech. rep., 2008
def extract_run_id(key): """Extract date part from run id Arguments: key - full key name, such as shredded-archive/run=2012-12-11-01-31-33/ (trailing slash is required) >>> extract_run_id('shredded-archive/run=2012-12-11-01-11-33/') 'shredded-archive/run=2012-12-11-01-11-33/' >>> extract_run_id('shredded-archive/run=2012-12-11-01-11-33') >>> extract_run_id('shredded-archive/run=2012-13-11-01-11-33/') """ filename = key.split('/')[-2] # -1 element is empty string run_id = filename.lstrip('run=') try: datetime.strptime(run_id, '%Y-%m-%d-%H-%M-%S') return key except ValueError: return None
Extract date part from run id Arguments: key - full key name, such as shredded-archive/run=2012-12-11-01-31-33/ (trailing slash is required) >>> extract_run_id('shredded-archive/run=2012-12-11-01-11-33/') 'shredded-archive/run=2012-12-11-01-11-33/' >>> extract_run_id('shredded-archive/run=2012-12-11-01-11-33') >>> extract_run_id('shredded-archive/run=2012-13-11-01-11-33/')
def set_activate_user_form(self, card_id, **kwargs): """ 设置开卡字段接口 详情请参考 https://mp.weixin.qq.com/wiki?t=resource/res_main&id=mp1451025283 "6 激活会员卡" -> "6.2 一键激活" -> "步骤二:设置开卡字段接口" 参数示例: { "card_id": "pbLatjnrwUUdZI641gKdTMJzHGfc", "service_statement": { "name": "会员守则", "url": "https://www.qq.com" }, "bind_old_card": { "name": "老会员绑定", "url": "https://www.qq.com" }, "required_form": { "can_modify":false, "rich_field_list": [ { "type": "FORM_FIELD_RADIO", "name": "兴趣", "values": [ "钢琴", "舞蹈", "足球" ] }, { "type": "FORM_FIELD_SELECT", "name": "喜好", "values": [ "郭敬明", "韩寒", "南派三叔" ] }, { "type": "FORM_FIELD_CHECK_BOX", "name": "职业", "values": [ "赛车手", "旅行家" ] } ], "common_field_id_list": [ "USER_FORM_INFO_FLAG_MOBILE" ] }, "optional_form": { "can_modify":false, "common_field_id_list": [ "USER_FORM_INFO_FLAG_LOCATION", "USER_FORM_INFO_FLAG_BIRTHDAY" ], "custom_field_list": [ "喜欢的电影" ] } } common_field_id_list 值见常量 `wechatpy.constants.UserFormInfoFlag` :param card_id: 卡券ID :param kwargs: 其他非必填参数,见微信文档 """ kwargs['card_id'] = card_id return self._post( 'card/membercard/activateuserform/set', data=kwargs )
设置开卡字段接口 详情请参考 https://mp.weixin.qq.com/wiki?t=resource/res_main&id=mp1451025283 "6 激活会员卡" -> "6.2 一键激活" -> "步骤二:设置开卡字段接口" 参数示例: { "card_id": "pbLatjnrwUUdZI641gKdTMJzHGfc", "service_statement": { "name": "会员守则", "url": "https://www.qq.com" }, "bind_old_card": { "name": "老会员绑定", "url": "https://www.qq.com" }, "required_form": { "can_modify":false, "rich_field_list": [ { "type": "FORM_FIELD_RADIO", "name": "兴趣", "values": [ "钢琴", "舞蹈", "足球" ] }, { "type": "FORM_FIELD_SELECT", "name": "喜好", "values": [ "郭敬明", "韩寒", "南派三叔" ] }, { "type": "FORM_FIELD_CHECK_BOX", "name": "职业", "values": [ "赛车手", "旅行家" ] } ], "common_field_id_list": [ "USER_FORM_INFO_FLAG_MOBILE" ] }, "optional_form": { "can_modify":false, "common_field_id_list": [ "USER_FORM_INFO_FLAG_LOCATION", "USER_FORM_INFO_FLAG_BIRTHDAY" ], "custom_field_list": [ "喜欢的电影" ] } } common_field_id_list 值见常量 `wechatpy.constants.UserFormInfoFlag` :param card_id: 卡券ID :param kwargs: 其他非必填参数,见微信文档
def fcat(*fs): """Concatenate a sequence of farrays. The variadic *fs* input is a homogeneous sequence of functions or arrays. """ items = list() for f in fs: if isinstance(f, boolfunc.Function): items.append(f) elif isinstance(f, farray): items.extend(f.flat) else: raise TypeError("expected Function or farray") return farray(items)
Concatenate a sequence of farrays. The variadic *fs* input is a homogeneous sequence of functions or arrays.
def artifact_filename(self): """Returns the canonical maven-style filename for an artifact pointed at by this coordinate. :API: public :rtype: string """ def maybe_compenent(component): return '-{}'.format(component) if component else '' return '{org}-{name}{rev}{classifier}.{ext}'.format(org=self.org, name=self.name, rev=maybe_compenent(self.rev), classifier=maybe_compenent(self.classifier), ext=self.ext)
Returns the canonical maven-style filename for an artifact pointed at by this coordinate. :API: public :rtype: string
def set_presence(self, state, status={}, priority=0): """ Change the presence broadcast by the client. :param state: New presence state to broadcast :type state: :class:`aioxmpp.PresenceState` :param status: New status information to broadcast :type status: :class:`dict` or :class:`str` :param priority: New priority for the resource :type priority: :class:`int` :return: Stanza token of the presence stanza or :data:`None` if the presence is unchanged or the stream is not connected. :rtype: :class:`~.stream.StanzaToken` If the client is currently connected, the new presence is broadcast immediately. `status` must be either a string or something which can be passed to the :class:`dict` constructor. If it is a string, it is wrapped into a dict using ``{None: status}``. The mapping must map :class:`~.LanguageTag` objects (or :data:`None`) to strings. The information will be used to generate internationalised presence status information. If you do not need internationalisation, simply use the string version of the argument. """ if not isinstance(priority, numbers.Integral): raise TypeError( "invalid priority: got {}, expected integer".format( type(priority) ) ) if not isinstance(state, aioxmpp.PresenceState): raise TypeError( "invalid state: got {}, expected aioxmpp.PresenceState".format( type(state), ) ) if isinstance(status, str): new_status = {None: status} else: new_status = dict(status) new_priority = int(priority) emit_state_event = self._state != state emit_overall_event = ( emit_state_event or self._priority != new_priority or self._status != new_status ) self._state = state self._status = new_status self._priority = new_priority if emit_state_event: self.on_presence_state_changed() if emit_overall_event: self.on_presence_changed() return self.resend_presence()
Change the presence broadcast by the client. :param state: New presence state to broadcast :type state: :class:`aioxmpp.PresenceState` :param status: New status information to broadcast :type status: :class:`dict` or :class:`str` :param priority: New priority for the resource :type priority: :class:`int` :return: Stanza token of the presence stanza or :data:`None` if the presence is unchanged or the stream is not connected. :rtype: :class:`~.stream.StanzaToken` If the client is currently connected, the new presence is broadcast immediately. `status` must be either a string or something which can be passed to the :class:`dict` constructor. If it is a string, it is wrapped into a dict using ``{None: status}``. The mapping must map :class:`~.LanguageTag` objects (or :data:`None`) to strings. The information will be used to generate internationalised presence status information. If you do not need internationalisation, simply use the string version of the argument.
def is_ancestor_of_bank(self, id_, bank_id): """Tests if an ``Id`` is an ancestor of a bank. arg: id (osid.id.Id): an ``Id`` arg: bank_id (osid.id.Id): the ``Id`` of a bank return: (boolean) - ``true`` if this ``id`` is an ancestor of ``bank_id,`` ``false`` otherwise raise: NotFound - ``bank_id`` is not found raise: NullArgument - ``bank_id`` is ``null`` raise: OperationFailed - unable to complete request raise: PermissionDenied - authorization failure *compliance: mandatory -- This method must be implemented.* *implementation notes*: If ``id`` not found return ``false``. """ # Implemented from template for # osid.resource.BinHierarchySession.is_ancestor_of_bin if self._catalog_session is not None: return self._catalog_session.is_ancestor_of_catalog(id_=id_, catalog_id=bank_id) return self._hierarchy_session.is_ancestor(id_=id_, ancestor_id=bank_id)
Tests if an ``Id`` is an ancestor of a bank. arg: id (osid.id.Id): an ``Id`` arg: bank_id (osid.id.Id): the ``Id`` of a bank return: (boolean) - ``true`` if this ``id`` is an ancestor of ``bank_id,`` ``false`` otherwise raise: NotFound - ``bank_id`` is not found raise: NullArgument - ``bank_id`` is ``null`` raise: OperationFailed - unable to complete request raise: PermissionDenied - authorization failure *compliance: mandatory -- This method must be implemented.* *implementation notes*: If ``id`` not found return ``false``.
def get_clusters_representation(chromosome, count_clusters=None): """ Convert chromosome to cluster representation: chromosome : [0, 1, 1, 0, 2, 3, 3] clusters: [[0, 3], [1, 2], [4], [5, 6]] """ if count_clusters is None: count_clusters = ga_math.calc_count_centers(chromosome) # Initialize empty clusters clusters = [[] for _ in range(count_clusters)] # Fill clusters with index of data for _idx_data in range(len(chromosome)): clusters[chromosome[_idx_data]].append(_idx_data) return clusters
Convert chromosome to cluster representation: chromosome : [0, 1, 1, 0, 2, 3, 3] clusters: [[0, 3], [1, 2], [4], [5, 6]]
def get_sections_2d_nts(self, sortby=None): """Get high GO IDs that are actually used to group current set of GO IDs.""" sections_2d_nts = [] for section_name, hdrgos_actual in self.get_sections_2d(): hdrgo_nts = self.gosubdag.get_nts(hdrgos_actual, sortby=sortby) sections_2d_nts.append((section_name, hdrgo_nts)) return sections_2d_nts
Get high GO IDs that are actually used to group current set of GO IDs.
def check_key(data_object, key, cardinal=False): """ Update the value of an index key by matching values or getting positionals. """ itype = (int, np.int32, np.int64) if not isinstance(key, itype + (slice, tuple, list, np.ndarray)): raise KeyError("Unknown key type {} for key {}".format(type(key), key)) keys = data_object.index.values if cardinal and data_object._cardinal is not None: keys = data_object[data_object._cardinal[0]].unique() elif isinstance(key, itype) and key in keys: key = list(sorted(data_object.index.values[key])) elif isinstance(key, itype) and key < 0: key = list(sorted(data_object.index.values[key])) elif isinstance(key, itype): key = [key] elif isinstance(key, slice): key = list(sorted(data_object.index.values[key])) elif isinstance(key, (tuple, list, pd.Index)) and not np.all(k in keys for k in key): key = list(sorted(data_object.index.values[key])) return key
Update the value of an index key by matching values or getting positionals.
def text(self, path, wholetext=False, lineSep=None): """ Loads a text file stream and returns a :class:`DataFrame` whose schema starts with a string column named "value", and followed by partitioned columns if there are any. The text files must be encoded as UTF-8. By default, each line in the text file is a new row in the resulting DataFrame. .. note:: Evolving. :param paths: string, or list of strings, for input path(s). :param wholetext: if true, read each file from input path(s) as a single row. :param lineSep: defines the line separator that should be used for parsing. If None is set, it covers all ``\\r``, ``\\r\\n`` and ``\\n``. >>> text_sdf = spark.readStream.text(tempfile.mkdtemp()) >>> text_sdf.isStreaming True >>> "value" in str(text_sdf.schema) True """ self._set_opts(wholetext=wholetext, lineSep=lineSep) if isinstance(path, basestring): return self._df(self._jreader.text(path)) else: raise TypeError("path can be only a single string")
Loads a text file stream and returns a :class:`DataFrame` whose schema starts with a string column named "value", and followed by partitioned columns if there are any. The text files must be encoded as UTF-8. By default, each line in the text file is a new row in the resulting DataFrame. .. note:: Evolving. :param paths: string, or list of strings, for input path(s). :param wholetext: if true, read each file from input path(s) as a single row. :param lineSep: defines the line separator that should be used for parsing. If None is set, it covers all ``\\r``, ``\\r\\n`` and ``\\n``. >>> text_sdf = spark.readStream.text(tempfile.mkdtemp()) >>> text_sdf.isStreaming True >>> "value" in str(text_sdf.schema) True
def field_function(self, type_code, func_name): """Return the field function.""" assert func_name in ('to_json', 'from_json') name = "field_%s_%s" % (type_code.lower(), func_name) return getattr(self, name)
Return the field function.
def script(name, source, saltenv='base', args=None, template=None, exec_driver=None, stdin=None, python_shell=True, output_loglevel='debug', ignore_retcode=False, use_vt=False, keep_env=None): ''' Run :py:func:`cmd.script <salt.modules.cmdmod.script>` within a container .. note:: While the command is run within the container, it is initiated from the host. Therefore, the PID in the return dict is from the host, not from the container. name Container name or ID source Path to the script. Can be a local path on the Minion or a remote file from the Salt fileserver. args A string containing additional command-line options to pass to the script. template : None Templating engine to use on the script before running. exec_driver : None If not passed, the execution driver will be detected as described :ref:`above <docker-execution-driver>`. stdin : None Standard input to be used for the script output_loglevel : debug Level at which to log the output from the script. Set to ``quiet`` to suppress logging. use_vt : False Use SaltStack's utils.vt to stream output to console. keep_env : None If not passed, only a sane default PATH environment variable will be set. If ``True``, all environment variables from the container's host will be kept. Otherwise, a comma-separated list (or Python list) of environment variable names can be passed, and those environment variables will be kept. CLI Example: .. code-block:: bash salt myminion docker.script mycontainer salt://docker_script.py salt myminion docker.script mycontainer salt://scripts/runme.sh 'arg1 arg2 "arg 3"' salt myminion docker.script mycontainer salt://scripts/runme.sh stdin='one\\ntwo\\nthree\\nfour\\nfive\\n' output_loglevel=quiet ''' return _script(name, source, saltenv=saltenv, args=args, template=template, exec_driver=exec_driver, stdin=stdin, python_shell=python_shell, output_loglevel=output_loglevel, ignore_retcode=ignore_retcode, use_vt=use_vt, keep_env=keep_env)
Run :py:func:`cmd.script <salt.modules.cmdmod.script>` within a container .. note:: While the command is run within the container, it is initiated from the host. Therefore, the PID in the return dict is from the host, not from the container. name Container name or ID source Path to the script. Can be a local path on the Minion or a remote file from the Salt fileserver. args A string containing additional command-line options to pass to the script. template : None Templating engine to use on the script before running. exec_driver : None If not passed, the execution driver will be detected as described :ref:`above <docker-execution-driver>`. stdin : None Standard input to be used for the script output_loglevel : debug Level at which to log the output from the script. Set to ``quiet`` to suppress logging. use_vt : False Use SaltStack's utils.vt to stream output to console. keep_env : None If not passed, only a sane default PATH environment variable will be set. If ``True``, all environment variables from the container's host will be kept. Otherwise, a comma-separated list (or Python list) of environment variable names can be passed, and those environment variables will be kept. CLI Example: .. code-block:: bash salt myminion docker.script mycontainer salt://docker_script.py salt myminion docker.script mycontainer salt://scripts/runme.sh 'arg1 arg2 "arg 3"' salt myminion docker.script mycontainer salt://scripts/runme.sh stdin='one\\ntwo\\nthree\\nfour\\nfive\\n' output_loglevel=quiet
def _extract_models(cls, apis): '''An helper function to extract all used models from the apis.''' # TODO: This would probably be much better if the info would be # extracted from the classes, rather than from the swagger # representation... models = set() for api in apis: for op in api.get('operations', []): models.add(op['type']) for param in op.get('parameters', []): models.add(param.get('type', 'void')) for msg in op['responseMessages']: models.add(msg.get('responseModel', 'void')) # Convert from swagger name representation to classes models = map(lambda m: Model.name_to_cls[m], models) ret = {} for model in models: if model.native_type: continue obj = model.schema.copy() obj['id'] = model.name ret[model.name] = obj return ret
An helper function to extract all used models from the apis.
async def disconnect(self, requested=True): """ Disconnects this player from it's voice channel. """ if self.state == PlayerState.DISCONNECTING: return await self.update_state(PlayerState.DISCONNECTING) if not requested: log.debug( f"Forcing player disconnect for guild {self.channel.guild.id}" f" due to player manager request." ) guild_id = self.channel.guild.id voice_ws = self.node.get_voice_ws(guild_id) if not voice_ws.closed: await voice_ws.voice_state(guild_id, None) await self.node.destroy_guild(guild_id) await self.close() self.manager.remove_player(self)
Disconnects this player from it's voice channel.
def download(self,age=None,metallicity=None,outdir=None,force=False): """ Check valid parameter range and download isochrones from: http://stev.oapd.inaf.it/cgi-bin/cmd """ try: from urllib.error import URLError except ImportError: from urllib2 import URLError if age is None: age = float(self.age) if metallicity is None: metallicity = float(self.metallicity) if outdir is None: outdir = './' basename = self.params2filename(age,metallicity) outfile = os.path.join(outdir,basename) if os.path.exists(outfile) and not force: try: self.verify(outfile,self.survey,age,metallicity) logger.info("Found %s; skipping..."%(outfile)) return except Exception as e: msg = "Overwriting corrupted %s..."%(outfile) logger.warn(msg) os.remove(outfile) mkdir(outdir) self.print_info(age,metallicity) self.query_server(outfile,age,metallicity) if not os.path.exists(outfile): raise RuntimeError('Download failed') try: self.verify(outfile,self.survey,age,metallicity) except Exception as e: msg = "Output file is corrupted." logger.error(msg) msg = "Removing %s."%outfile logger.info(msg) os.remove(outfile) raise(e) return outfile
Check valid parameter range and download isochrones from: http://stev.oapd.inaf.it/cgi-bin/cmd
def to_copy(self, column_names=None, selection=None, strings=True, virtual=False, selections=True): """Return a copy of the DataFrame, if selection is None, it does not copy the data, it just has a reference :param column_names: list of column names, to copy, when None DataFrame.get_column_names(strings=strings, virtual=virtual) is used :param selection: {selection} :param strings: argument passed to DataFrame.get_column_names when column_names is None :param virtual: argument passed to DataFrame.get_column_names when column_names is None :param selections: copy selections to a new DataFrame :return: dict """ if column_names: column_names = _ensure_strings_from_expressions(column_names) df = vaex.from_items(*self.to_items(column_names=column_names, selection=selection, strings=strings, virtual=False)) if virtual: for name, value in self.virtual_columns.items(): df.add_virtual_column(name, value) if selections: # the filter selection does not need copying for key, value in self.selection_histories.items(): if key != FILTER_SELECTION_NAME: df.selection_histories[key] = list(value) for key, value in self.selection_history_indices.items(): if key != FILTER_SELECTION_NAME: df.selection_history_indices[key] = value df.functions.update(self.functions) df.copy_metadata(self) return df
Return a copy of the DataFrame, if selection is None, it does not copy the data, it just has a reference :param column_names: list of column names, to copy, when None DataFrame.get_column_names(strings=strings, virtual=virtual) is used :param selection: {selection} :param strings: argument passed to DataFrame.get_column_names when column_names is None :param virtual: argument passed to DataFrame.get_column_names when column_names is None :param selections: copy selections to a new DataFrame :return: dict
def _get_button_label(self): """Gets Button label from user and returns string""" dlg = wx.TextEntryDialog(self, _('Button label:')) if dlg.ShowModal() == wx.ID_OK: label = dlg.GetValue() else: label = "" dlg.Destroy() return label
Gets Button label from user and returns string
def set_outputs(self, *outputs): """ Set the outputs of the view """ self._outputs = OrderedDict() for output in outputs: out_name = None type_or_serialize = None if isinstance((list, tuple), output): if len(output) == 1: out_name = output[0] elif len(output) == 2: out_name = output[0] type_or_serialize = output[1] else: raise ValueError("invalid output format") else: out_name = output self.add_output(out_name, type_or_serialize)
Set the outputs of the view
def _PrintEventLabelsCounter( self, event_labels_counter, session_identifier=None): """Prints the event labels counter. Args: event_labels_counter (collections.Counter): number of event tags per label. session_identifier (Optional[str]): session identifier. """ if not event_labels_counter: return title = 'Event tags generated per label' if session_identifier: title = '{0:s}: {1:s}'.format(title, session_identifier) table_view = views.ViewsFactory.GetTableView( self._views_format_type, column_names=['Label', 'Number of event tags'], title=title) for key, value in sorted(event_labels_counter.items()): if key == 'total': continue table_view.AddRow([key, value]) try: total = event_labels_counter['total'] except KeyError: total = 'N/A' table_view.AddRow(['Total', total]) table_view.Write(self._output_writer)
Prints the event labels counter. Args: event_labels_counter (collections.Counter): number of event tags per label. session_identifier (Optional[str]): session identifier.
def create_contract(self, price=0, address=None, caller=None, balance=0, init=None, gas=None): """ Create a contract account. Sends a transaction to initialize the contract :param address: the address of the new account, if known. If omitted, a new address will be generated as closely to the Yellow Paper as possible. :param balance: the initial balance of the account in Wei :param init: the initialization code of the contract The way that the Solidity compiler expects the constructor arguments to be passed is by appending the arguments to the byte code produced by the Solidity compiler. The arguments are formatted as defined in the Ethereum ABI2. The arguments are then copied from the init byte array to the EVM memory through the CODECOPY opcode with appropriate values on the stack. This is done when the byte code in the init byte array is actually run on the network. """ expected_address = self.create_account(self.new_address(sender=caller)) if address is None: address = expected_address elif caller is not None and address != expected_address: raise EthereumError(f"Error: contract created from address {hex(caller)} with nonce {self.get_nonce(caller)} was expected to be at address {hex(expected_address)}, but create_contract was called with address={hex(address)}") self.start_transaction('CREATE', address, price, init, caller, balance, gas=gas) self._process_pending_transaction() return address
Create a contract account. Sends a transaction to initialize the contract :param address: the address of the new account, if known. If omitted, a new address will be generated as closely to the Yellow Paper as possible. :param balance: the initial balance of the account in Wei :param init: the initialization code of the contract The way that the Solidity compiler expects the constructor arguments to be passed is by appending the arguments to the byte code produced by the Solidity compiler. The arguments are formatted as defined in the Ethereum ABI2. The arguments are then copied from the init byte array to the EVM memory through the CODECOPY opcode with appropriate values on the stack. This is done when the byte code in the init byte array is actually run on the network.