code
stringlengths
75
104k
docstring
stringlengths
1
46.9k
def filter_by_analysis_period(self, analysis_period): """Filter the Data Collection based on an analysis period. Args: analysis period: A Ladybug analysis period Return: A new Data Collection with filtered data """ _filtered_data = self.filter_by_months(analysis_period.months_int) _filtered_data.header._analysis_period = analysis_period return _filtered_data
Filter the Data Collection based on an analysis period. Args: analysis period: A Ladybug analysis period Return: A new Data Collection with filtered data
def runDeferred(self, deferred): """ Run the callables in C{deferred} using their associated scope stack. """ for handler, scope, offset in deferred: self.scopeStack = scope self.offset = offset handler()
Run the callables in C{deferred} using their associated scope stack.
def initialize_weights(self): """Randomly initializes the visible-to-hidden connections.""" n = self._outputSize m = self._inputSize self._Q = self._random.sample((n,m)) # Normalize the weights of each units for i in range(n): self._Q[i] /= np.sqrt( np.dot(self._Q[i], self._Q[i]) )
Randomly initializes the visible-to-hidden connections.
def discard(self, value): """Remove element *value* from the set if it is present.""" # Raise TypeError if value is not hashable hash(value) self.redis.srem(self.key, self._pickle(value))
Remove element *value* from the set if it is present.
def _check_d1_characters(name): # type: (bytes) -> None ''' A function to check that a name only uses d1 characters as defined by ISO9660. Parameters: name - The name to check. Returns: Nothing. ''' bytename = bytearray(name) for char in bytename: if char not in _allowed_d1_characters: raise pycdlibexception.PyCdlibInvalidInput('ISO9660 filenames must consist of characters A-Z, 0-9, and _')
A function to check that a name only uses d1 characters as defined by ISO9660. Parameters: name - The name to check. Returns: Nothing.
def controller(self): """ Check if multiple controllers are connected. :returns: Return the controller_id of the active controller. :rtype: string """ if hasattr(self, 'controller_id'): if len(self.controller_info['controllers']) > 1: raise TypeError( 'Only one controller per account is supported.' ) return self.controller_id raise AttributeError('No controllers assigned to this account.')
Check if multiple controllers are connected. :returns: Return the controller_id of the active controller. :rtype: string
def _get_bucket(self, bucket_name): '''get a bucket based on a bucket name. If it doesn't exist, create it. Parameters ========== bucket_name: the name of the bucket to get (or create). It should not contain google, and should be all lowercase with - or underscores. ''' # Case 1: The bucket already exists try: bucket = self._bucket_service.get_bucket(bucket_name) # Case 2: The bucket needs to be created except google.cloud.exceptions.NotFound: bucket = self._bucket_service.create_bucket(bucket_name) # Case 3: The bucket name is already taken except: bot.error('Cannot get or create %s' % bucket_name) sys.exit(1) return bucket
get a bucket based on a bucket name. If it doesn't exist, create it. Parameters ========== bucket_name: the name of the bucket to get (or create). It should not contain google, and should be all lowercase with - or underscores.
def listen(self, event): """Request that the Controller listen for and dispatch an event. Note: Even if the module that requested the listening is later unloaded, the Controller will continue to dispatch the event, there just might not be anything that cares about it. That's okay. """ if event in self.registered: # Already listening to this event return def handler(client, *args): return self.process_event(event, client, args) self.client.add_handler(event, handler) self.registered.add(event) _log.debug("Controller is now listening for '%s' events", event)
Request that the Controller listen for and dispatch an event. Note: Even if the module that requested the listening is later unloaded, the Controller will continue to dispatch the event, there just might not be anything that cares about it. That's okay.
def _get_grouper(obj, key=None, axis=0, level=None, sort=True, observed=False, mutated=False, validate=True): """ create and return a BaseGrouper, which is an internal mapping of how to create the grouper indexers. This may be composed of multiple Grouping objects, indicating multiple groupers Groupers are ultimately index mappings. They can originate as: index mappings, keys to columns, functions, or Groupers Groupers enable local references to axis,level,sort, while the passed in axis, level, and sort are 'global'. This routine tries to figure out what the passing in references are and then creates a Grouping for each one, combined into a BaseGrouper. If observed & we have a categorical grouper, only show the observed values If validate, then check for key/level overlaps """ group_axis = obj._get_axis(axis) # validate that the passed single level is compatible with the passed # axis of the object if level is not None: # TODO: These if-block and else-block are almost same. # MultiIndex instance check is removable, but it seems that there are # some processes only for non-MultiIndex in else-block, # eg. `obj.index.name != level`. We have to consider carefully whether # these are applicable for MultiIndex. Even if these are applicable, # we need to check if it makes no side effect to subsequent processes # on the outside of this condition. # (GH 17621) if isinstance(group_axis, MultiIndex): if is_list_like(level) and len(level) == 1: level = level[0] if key is None and is_scalar(level): # Get the level values from group_axis key = group_axis.get_level_values(level) level = None else: # allow level to be a length-one list-like object # (e.g., level=[0]) # GH 13901 if is_list_like(level): nlevels = len(level) if nlevels == 1: level = level[0] elif nlevels == 0: raise ValueError('No group keys passed!') else: raise ValueError('multiple levels only valid with ' 'MultiIndex') if isinstance(level, str): if obj.index.name != level: raise ValueError('level name {} is not the name of the ' 'index'.format(level)) elif level > 0 or level < -1: raise ValueError( 'level > 0 or level < -1 only valid with MultiIndex') # NOTE: `group_axis` and `group_axis.get_level_values(level)` # are same in this section. level = None key = group_axis # a passed-in Grouper, directly convert if isinstance(key, Grouper): binner, grouper, obj = key._get_grouper(obj, validate=False) if key.key is None: return grouper, [], obj else: return grouper, {key.key}, obj # already have a BaseGrouper, just return it elif isinstance(key, BaseGrouper): return key, [], obj # In the future, a tuple key will always mean an actual key, # not an iterable of keys. In the meantime, we attempt to provide # a warning. We can assume that the user wanted a list of keys when # the key is not in the index. We just have to be careful with # unhashble elements of `key`. Any unhashable elements implies that # they wanted a list of keys. # https://github.com/pandas-dev/pandas/issues/18314 is_tuple = isinstance(key, tuple) all_hashable = is_tuple and is_hashable(key) if is_tuple: if ((all_hashable and key not in obj and set(key).issubset(obj)) or not all_hashable): # column names ('a', 'b') -> ['a', 'b'] # arrays like (a, b) -> [a, b] msg = ("Interpreting tuple 'by' as a list of keys, rather than " "a single key. Use 'by=[...]' instead of 'by=(...)'. In " "the future, a tuple will always mean a single key.") warnings.warn(msg, FutureWarning, stacklevel=5) key = list(key) if not isinstance(key, list): keys = [key] match_axis_length = False else: keys = key match_axis_length = len(keys) == len(group_axis) # what are we after, exactly? any_callable = any(callable(g) or isinstance(g, dict) for g in keys) any_groupers = any(isinstance(g, Grouper) for g in keys) any_arraylike = any(isinstance(g, (list, tuple, Series, Index, np.ndarray)) for g in keys) # is this an index replacement? if (not any_callable and not any_arraylike and not any_groupers and match_axis_length and level is None): if isinstance(obj, DataFrame): all_in_columns_index = all(g in obj.columns or g in obj.index.names for g in keys) elif isinstance(obj, Series): all_in_columns_index = all(g in obj.index.names for g in keys) if not all_in_columns_index: keys = [com.asarray_tuplesafe(keys)] if isinstance(level, (tuple, list)): if key is None: keys = [None] * len(level) levels = level else: levels = [level] * len(keys) groupings = [] exclusions = [] # if the actual grouper should be obj[key] def is_in_axis(key): if not _is_label_like(key): try: obj._data.items.get_loc(key) except Exception: return False return True # if the grouper is obj[name] def is_in_obj(gpr): try: return id(gpr) == id(obj[gpr.name]) except Exception: return False for i, (gpr, level) in enumerate(zip(keys, levels)): if is_in_obj(gpr): # df.groupby(df['name']) in_axis, name = True, gpr.name exclusions.append(name) elif is_in_axis(gpr): # df.groupby('name') if gpr in obj: if validate: obj._check_label_or_level_ambiguity(gpr) in_axis, name, gpr = True, gpr, obj[gpr] exclusions.append(name) elif obj._is_level_reference(gpr): in_axis, name, level, gpr = False, None, gpr, None else: raise KeyError(gpr) elif isinstance(gpr, Grouper) and gpr.key is not None: # Add key to exclusions exclusions.append(gpr.key) in_axis, name = False, None else: in_axis, name = False, None if is_categorical_dtype(gpr) and len(gpr) != obj.shape[axis]: raise ValueError( ("Length of grouper ({len_gpr}) and axis ({len_axis})" " must be same length" .format(len_gpr=len(gpr), len_axis=obj.shape[axis]))) # create the Grouping # allow us to passing the actual Grouping as the gpr ping = (Grouping(group_axis, gpr, obj=obj, name=name, level=level, sort=sort, observed=observed, in_axis=in_axis) if not isinstance(gpr, Grouping) else gpr) groupings.append(ping) if len(groupings) == 0: raise ValueError('No group keys passed!') # create the internals grouper grouper = BaseGrouper(group_axis, groupings, sort=sort, mutated=mutated) return grouper, exclusions, obj
create and return a BaseGrouper, which is an internal mapping of how to create the grouper indexers. This may be composed of multiple Grouping objects, indicating multiple groupers Groupers are ultimately index mappings. They can originate as: index mappings, keys to columns, functions, or Groupers Groupers enable local references to axis,level,sort, while the passed in axis, level, and sort are 'global'. This routine tries to figure out what the passing in references are and then creates a Grouping for each one, combined into a BaseGrouper. If observed & we have a categorical grouper, only show the observed values If validate, then check for key/level overlaps
def _prodterm_prime(lexer): """Return a product term' expression, eliminates left recursion.""" tok = next(lexer) # '&' FACTOR PRODTERM' if isinstance(tok, OP_and): factor = _factor(lexer) prodterm_prime = _prodterm_prime(lexer) if prodterm_prime is None: return factor else: return ('and', factor, prodterm_prime) # null else: lexer.unpop_token(tok) return None
Return a product term' expression, eliminates left recursion.
def get_wcs(self, data_x, data_y): """Return (re_deg, dec_deg) for the (data_x, data_y) position based on any WCS associated with the loaded image. """ img = self.fitsimage.get_image() ra, dec = img.pixtoradec(data_x, data_y) return ra, dec
Return (re_deg, dec_deg) for the (data_x, data_y) position based on any WCS associated with the loaded image.
def set_table_cb(self, viewer, table): """Display the given table object.""" self.clear() tree_dict = OrderedDict() # Extract data as astropy table a_tab = table.get_data() # Fill masked values, if applicable try: a_tab = a_tab.filled() except Exception: # Just use original table pass # This is to get around table widget not sorting numbers properly i_fmt = '{{0:0{0}d}}'.format(len(str(len(a_tab)))) # Table header with units columns = [('Row', '_DISPLAY_ROW')] for c in a_tab.columns.values(): col_str = '{0:^s}\n{1:^s}'.format(c.name, str(c.unit)) columns.append((col_str, c.name)) self.widget.setup_table(columns, 1, '_DISPLAY_ROW') # Table contents for i, row in enumerate(a_tab, 1): bnch = Bunch.Bunch(zip(row.colnames, row.as_void())) i_str = i_fmt.format(i) bnch['_DISPLAY_ROW'] = i_str tree_dict[i_str] = bnch self.widget.set_tree(tree_dict) # Resize column widths n_rows = len(tree_dict) if n_rows < self.settings.get('max_rows_for_col_resize', 5000): self.widget.set_optimal_column_widths() self.logger.debug('Resized columns for {0} row(s)'.format(n_rows)) tablename = table.get('name', 'NoName') self.logger.debug('Displayed {0}'.format(tablename))
Display the given table object.
def disable_svc_notifications(self, service): """Disable notifications for a service Format of the line that triggers function call:: DISABLE_SVC_NOTIFICATIONS;<host_name>;<service_description> :param service: service to edit :type service: alignak.objects.service.Service :return: None """ if service.notifications_enabled: service.modified_attributes |= \ DICT_MODATTR["MODATTR_NOTIFICATIONS_ENABLED"].value service.notifications_enabled = False self.send_an_element(service.get_update_status_brok())
Disable notifications for a service Format of the line that triggers function call:: DISABLE_SVC_NOTIFICATIONS;<host_name>;<service_description> :param service: service to edit :type service: alignak.objects.service.Service :return: None
def list_resources(self, device_id): """List all resources registered to a connected device. .. code-block:: python >>> for r in api.list_resources(device_id): print(r.name, r.observable, r.uri) None,True,/3/0/1 Update,False,/5/0/3 ... :param str device_id: The ID of the device (Required) :returns: A list of :py:class:`Resource` objects for the device :rtype: list """ api = self._get_api(mds.EndpointsApi) return [Resource(r) for r in api.get_endpoint_resources(device_id)]
List all resources registered to a connected device. .. code-block:: python >>> for r in api.list_resources(device_id): print(r.name, r.observable, r.uri) None,True,/3/0/1 Update,False,/5/0/3 ... :param str device_id: The ID of the device (Required) :returns: A list of :py:class:`Resource` objects for the device :rtype: list
def run_model(self, model_run, run_url): """Run model by sending message to RabbitMQ queue containing the run end experiment identifier. Messages are persistent to ensure that a worker will process process the run request at some point. Throws a EngineException if communication with the server fails. Parameters ---------- model_run : ModelRunHandle Handle to model run run_url : string URL for model run information """ # Open connection to RabbitMQ server. Will raise an exception if the # server is not running. In this case we raise an EngineException to # allow caller to delete model run. try: credentials = pika.PlainCredentials(self.user, self.password) con = pika.BlockingConnection(pika.ConnectionParameters( host=self.host, port=self.port, virtual_host=self.virtual_host, credentials=credentials )) channel = con.channel() channel.queue_declare(queue=self.queue, durable=True) except pika.exceptions.AMQPError as ex: err_msg = str(ex) if err_msg == '': err_msg = 'unable to connect to RabbitMQ: ' + self.user + '@' err_msg += self.host + ':' + str(self.port) err_msg += self.virtual_host + ' ' + self.queue raise EngineException(err_msg, 500) # Create model run request request = RequestFactory().get_request(model_run, run_url) # Send request channel.basic_publish( exchange='', routing_key=self.queue, body=json.dumps(request.to_dict()), properties=pika.BasicProperties( delivery_mode = 2, # make message persistent ) ) con.close()
Run model by sending message to RabbitMQ queue containing the run end experiment identifier. Messages are persistent to ensure that a worker will process process the run request at some point. Throws a EngineException if communication with the server fails. Parameters ---------- model_run : ModelRunHandle Handle to model run run_url : string URL for model run information
def warning(self, *msg): """ Prints a warning """ label = colors.yellow("WARNING") self._msg(label, *msg)
Prints a warning
def endpoints(self): """ Gets the Endpoints API client. Returns: Endpoints: """ if not self.__endpoints: self.__endpoints = Endpoints(self.__connection) return self.__endpoints
Gets the Endpoints API client. Returns: Endpoints:
def lithospheric_stress(step, trench, ridge, time): """calculate stress in the lithosphere""" timestep = step.isnap base_lith = step.geom.rcmb + 1 - 0.105 stressfld = step.fields['sII'][0, :, :, 0] stressfld = np.ma.masked_where(step.geom.r_mesh[0] < base_lith, stressfld) # stress integration in the lithosphere dzm = (step.geom.r_coord[1:] - step.geom.r_coord[:-1]) stress_lith = np.sum((stressfld[:, 1:] * dzm.T), axis=1) ph_coord = step.geom.p_coord # probably doesn't need alias # plot stress in the lithosphere fig, axis, _, _ = field.plot_scalar(step, 'sII', stressfld, cmap='plasma_r', vmin=0, vmax=300) # Annotation with time and step axis.text(1., 0.9, str(round(time, 0)) + ' My', transform=axis.transAxes) axis.text(1., 0.1, str(timestep), transform=axis.transAxes) misc.saveplot(fig, 'lith', timestep) # velocity vphi = step.fields['v2'][0, :, :, 0] vph2 = 0.5 * (vphi + np.roll(vphi, 1, 0)) # interpolate to the same phi # position of continents concfld = step.fields['c'][0, :, :, 0] if step.sdat.par['boundaries']['air_layer']: # we are a bit below the surface; delete "-some number" # to be just below dsa = step.sdat.par['boundaries']['air_thickness'] # depth to detect the continents indcont = np.argmin(abs((1 - dsa) - step.geom.r_coord)) - 10 else: # depth to detect continents indcont = -1 if step.sdat.par['boundaries']['air_layer'] and\ not step.sdat.par['continents']['proterozoic_belts']: continents = np.ma.masked_where( np.logical_or(concfld[:-1, indcont] < 3, concfld[:-1, indcont] > 4), concfld[:-1, indcont]) elif step.sdat.par['boundaries']['air_layer'] and\ step.sdat.par['continents']['proterozoic_belts']: continents = np.ma.masked_where( np.logical_or(concfld[:-1, indcont] < 3, concfld[:-1, indcont] > 5), concfld[:-1, indcont]) elif step.sdat.par['tracersin']['tracers_weakcrust']: continents = np.ma.masked_where( concfld[:-1, indcont] < 3, concfld[:-1, indcont]) else: continents = np.ma.masked_where( concfld[:-1, indcont] < 2, concfld[:-1, indcont]) # masked array, only continents are true continentsall = continents / continents # plot integrated stress in the lithosphere fig0, (ax1, ax2) = plt.subplots(2, 1, sharex=True, figsize=(12, 8)) ax1.plot(ph_coord[:-1], vph2[:-1, -1], label='Vel') ax1.axhline(y=0, xmin=0, xmax=2 * np.pi, color='black', ls='solid', alpha=0.2) ax1.set_ylabel("Velocity") ax1.text(0.95, 1.07, str(round(time, 0)) + ' My', transform=ax1.transAxes) ax1.text(0.01, 1.07, str(round(step.geom.ti_ad, 8)), transform=ax1.transAxes) intstr_scale = step.sdat.scales.stress * step.sdat.scales.length / 1.e12 ax2.plot(ph_coord, stress_lith * intstr_scale, color='k', label='Stress') ax2.set_ylabel(r"Integrated stress [$TN\,m^{-1}$]") plot_plate_limits(ax1, ridge, trench, conf.plates.vmin, conf.plates.vmax) plot_plate_limits(ax2, ridge, trench, conf.plates.stressmin, conf.plates.lstressmax) ax1.set_xlim(0, 2 * np.pi) ax1.set_title(timestep) ax1.fill_between( ph_coord[:-1], continentsall * conf.plates.vmin, conf.plates.vmax, facecolor='#8b6914', alpha=0.2) ax1.set_ylim(conf.plates.vmin, conf.plates.vmax) ax2.fill_between( ph_coord[:-1], continentsall * conf.plates.stressmin, conf.plates.lstressmax, facecolor='#8b6914', alpha=0.2) ax2.set_ylim(conf.plates.stressmin, conf.plates.lstressmax) misc.saveplot(fig0, 'svelslith', timestep)
calculate stress in the lithosphere
def collect(self): """Publish all mdstat metrics.""" def traverse(d, metric_name=''): """ Traverse the given nested dict using depth-first search. If a value is reached it will be published with a metric name consisting of the hierarchically concatenated keys of its branch. """ for key, value in d.iteritems(): if isinstance(value, dict): if metric_name == '': metric_name_next = key else: metric_name_next = metric_name + '.' + key traverse(value, metric_name_next) else: metric_name_finished = metric_name + '.' + key self.publish_gauge( name=metric_name_finished, value=value, precision=1 ) md_state = self._parse_mdstat() traverse(md_state, '')
Publish all mdstat metrics.
def aggregationToMonthsSeconds(interval): """ Return the number of months and seconds from an aggregation dict that represents a date and time. Interval is a dict that contain one or more of the following keys: 'years', 'months', 'weeks', 'days', 'hours', 'minutes', seconds', 'milliseconds', 'microseconds'. For example: :: aggregationMicroseconds({'years': 1, 'hours': 4, 'microseconds':42}) == {'months':12, 'seconds':14400.000042} :param interval: (dict) The aggregation interval representing a date and time :returns: (dict) number of months and seconds in the interval: ``{months': XX, 'seconds': XX}``. The seconds is a floating point that can represent resolutions down to a microsecond. """ seconds = interval.get('microseconds', 0) * 0.000001 seconds += interval.get('milliseconds', 0) * 0.001 seconds += interval.get('seconds', 0) seconds += interval.get('minutes', 0) * 60 seconds += interval.get('hours', 0) * 60 * 60 seconds += interval.get('days', 0) * 24 * 60 * 60 seconds += interval.get('weeks', 0) * 7 * 24 * 60 * 60 months = interval.get('months', 0) months += 12 * interval.get('years', 0) return {'months': months, 'seconds': seconds}
Return the number of months and seconds from an aggregation dict that represents a date and time. Interval is a dict that contain one or more of the following keys: 'years', 'months', 'weeks', 'days', 'hours', 'minutes', seconds', 'milliseconds', 'microseconds'. For example: :: aggregationMicroseconds({'years': 1, 'hours': 4, 'microseconds':42}) == {'months':12, 'seconds':14400.000042} :param interval: (dict) The aggregation interval representing a date and time :returns: (dict) number of months and seconds in the interval: ``{months': XX, 'seconds': XX}``. The seconds is a floating point that can represent resolutions down to a microsecond.
def address_checksum_and_decode(addr: str) -> Address: """ Accepts a string address and turns it into binary. Makes sure that the string address provided starts is 0x prefixed and checksummed according to EIP55 specification """ if not is_0x_prefixed(addr): raise InvalidAddress('Address must be 0x prefixed') if not is_checksum_address(addr): raise InvalidAddress('Address must be EIP55 checksummed') addr_bytes = decode_hex(addr) assert len(addr_bytes) in (20, 0) return Address(addr_bytes)
Accepts a string address and turns it into binary. Makes sure that the string address provided starts is 0x prefixed and checksummed according to EIP55 specification
def contour(z, x=None, y=None, v=5, xlbl=None, ylbl=None, title=None, cfntsz=10, lfntsz=None, intrp='bicubic', alpha=0.5, cmap=None, vmin=None, vmax=None, fgsz=None, fgnm=None, fig=None, ax=None): """ Contour plot of a 2D surface. If a figure object is specified then the plot is drawn in that figure, and ``fig.show()`` is not called. The figure is closed on key entry 'q'. Parameters ---------- z : array_like 2d array of data to plot x : array_like, optional (default None) Values for x-axis of the plot y : array_like, optional (default None) Values for y-axis of the plot v : int or sequence of ints, optional (default 5) An int specifies the number of contours to plot, and a sequence specifies the specific contour levels to plot. xlbl : string, optional (default None) Label for x-axis ylbl : string, optional (default None) Label for y-axis title : string, optional (default None) Figure title cfntsz : int or None, optional (default 10) Contour label font size. No contour labels are displayed if set to 0 or None. lfntsz : int, optional (default None) Axis label font size. The default font size is used if set to None. intrp : string, optional (default 'bicubic') Specify type of interpolation used to display image underlying contours (see ``interpolation`` parameter of :meth:`matplotlib.axes.Axes.imshow`) alpha : float, optional (default 0.5) Underlying image display alpha value cmap : :class:`matplotlib.colors.Colormap`, optional (default None) Colour map for surface. If none specifed, defaults to cm.coolwarm vmin, vmax : float, optional (default None) Set upper and lower bounds for the colour map (see the corresponding parameters of :meth:`matplotlib.axes.Axes.imshow`) fgsz : tuple (width,height), optional (default None) Specify figure dimensions in inches fgnm : integer, optional (default None) Figure number of figure fig : :class:`matplotlib.figure.Figure` object, optional (default None) Draw in specified figure instead of creating one ax : :class:`matplotlib.axes.Axes` object, optional (default None) Plot in specified axes instead of current axes of figure Returns ------- fig : :class:`matplotlib.figure.Figure` object Figure object for this figure ax : :class:`matplotlib.axes.Axes` object Axes object for this plot """ figp = fig if fig is None: fig = plt.figure(num=fgnm, figsize=fgsz) fig.clf() ax = fig.gca() elif ax is None: ax = fig.gca() if cmap is None: cmap = cm.coolwarm if x is None: x = np.arange(z.shape[1]) else: x = np.array(x) if y is None: y = np.arange(z.shape[0]) else: y = np.array(y) xg, yg = np.meshgrid(x, y) cntr = ax.contour(xg, yg, z, v, colors='black') if cfntsz is not None and cfntsz > 0: plt.clabel(cntr, inline=True, fontsize=cfntsz) im = ax.imshow(z, origin='lower', interpolation=intrp, aspect='auto', extent=[x.min(), x.max(), y.min(), y.max()], cmap=cmap, vmin=vmin, vmax=vmax, alpha=alpha) ax.fmt_xdata = lambda x: "{: .2f}".format(x) ax.fmt_ydata = lambda x: "{: .2f}".format(x) if title is not None: ax.set_title(title) if xlbl is not None: ax.set_xlabel(xlbl, fontsize=lfntsz) if ylbl is not None: ax.set_ylabel(ylbl, fontsize=lfntsz) divider = make_axes_locatable(ax) cax = divider.append_axes("right", size="5%", pad=0.2) plt.colorbar(im, ax=ax, cax=cax) attach_keypress(fig) attach_zoom(ax) if have_mpldc: mpldc.datacursor() if figp is None: fig.show() return fig, ax
Contour plot of a 2D surface. If a figure object is specified then the plot is drawn in that figure, and ``fig.show()`` is not called. The figure is closed on key entry 'q'. Parameters ---------- z : array_like 2d array of data to plot x : array_like, optional (default None) Values for x-axis of the plot y : array_like, optional (default None) Values for y-axis of the plot v : int or sequence of ints, optional (default 5) An int specifies the number of contours to plot, and a sequence specifies the specific contour levels to plot. xlbl : string, optional (default None) Label for x-axis ylbl : string, optional (default None) Label for y-axis title : string, optional (default None) Figure title cfntsz : int or None, optional (default 10) Contour label font size. No contour labels are displayed if set to 0 or None. lfntsz : int, optional (default None) Axis label font size. The default font size is used if set to None. intrp : string, optional (default 'bicubic') Specify type of interpolation used to display image underlying contours (see ``interpolation`` parameter of :meth:`matplotlib.axes.Axes.imshow`) alpha : float, optional (default 0.5) Underlying image display alpha value cmap : :class:`matplotlib.colors.Colormap`, optional (default None) Colour map for surface. If none specifed, defaults to cm.coolwarm vmin, vmax : float, optional (default None) Set upper and lower bounds for the colour map (see the corresponding parameters of :meth:`matplotlib.axes.Axes.imshow`) fgsz : tuple (width,height), optional (default None) Specify figure dimensions in inches fgnm : integer, optional (default None) Figure number of figure fig : :class:`matplotlib.figure.Figure` object, optional (default None) Draw in specified figure instead of creating one ax : :class:`matplotlib.axes.Axes` object, optional (default None) Plot in specified axes instead of current axes of figure Returns ------- fig : :class:`matplotlib.figure.Figure` object Figure object for this figure ax : :class:`matplotlib.axes.Axes` object Axes object for this plot
def check_honeypot(func=None, field_name=None): """ Check request.POST for valid honeypot field. Takes an optional field_name that defaults to HONEYPOT_FIELD_NAME if not specified. """ # hack to reverse arguments if called with str param if isinstance(func, six.string_types): func, field_name = field_name, func def decorated(func): def inner(request, *args, **kwargs): response = verify_honeypot_value(request, field_name) if response: return response else: return func(request, *args, **kwargs) return wraps(func, assigned=available_attrs(func))(inner) if func is None: def decorator(func): return decorated(func) return decorator return decorated(func)
Check request.POST for valid honeypot field. Takes an optional field_name that defaults to HONEYPOT_FIELD_NAME if not specified.
def _gen_delta_per_sec(self, path, value_delta, time_delta, multiplier, prettyname, device): """ Calulates the difference between to point, and scales is to per second. """ if time_delta < 0: return value = (value_delta / time_delta) * multiplier # Only publish if there is any data. # This helps keep unused metrics out of Graphite if value > 0.0: self._replace_and_publish(path, prettyname, value, device)
Calulates the difference between to point, and scales is to per second.
def azimuth(lons1, lats1, lons2, lats2): """ Calculate the azimuth between two points or two collections of points. Parameters are the same as for :func:`geodetic_distance`. Implements an "alternative formula" from http://williams.best.vwh.net/avform.htm#Crs :returns: Azimuth as an angle between direction to north from first point and direction to the second point measured clockwise in decimal degrees. """ lons1, lats1, lons2, lats2 = _prepare_coords(lons1, lats1, lons2, lats2) cos_lat2 = numpy.cos(lats2) true_course = numpy.degrees(numpy.arctan2( numpy.sin(lons1 - lons2) * cos_lat2, numpy.cos(lats1) * numpy.sin(lats2) - numpy.sin(lats1) * cos_lat2 * numpy.cos(lons1 - lons2) )) return (360 - true_course) % 360
Calculate the azimuth between two points or two collections of points. Parameters are the same as for :func:`geodetic_distance`. Implements an "alternative formula" from http://williams.best.vwh.net/avform.htm#Crs :returns: Azimuth as an angle between direction to north from first point and direction to the second point measured clockwise in decimal degrees.
def __locate_scubainit(self): '''Determine path to scubainit binary ''' pkg_path = os.path.dirname(__file__) self.scubainit_path = os.path.join(pkg_path, 'scubainit') if not os.path.isfile(self.scubainit_path): raise ScubaError('scubainit not found at "{}"'.format(self.scubainit_path))
Determine path to scubainit binary
def GetStartTime(self, problems=problems_module.default_problem_reporter): """Return the first time of the trip. TODO: For trips defined by frequency return the first time of the first trip.""" cursor = self._schedule._connection.cursor() cursor.execute( 'SELECT arrival_secs,departure_secs FROM stop_times WHERE ' 'trip_id=? ORDER BY stop_sequence LIMIT 1', (self.trip_id,)) (arrival_secs, departure_secs) = cursor.fetchone() if arrival_secs != None: return arrival_secs elif departure_secs != None: return departure_secs else: problems.InvalidValue('departure_time', '', 'The first stop_time in trip %s is missing ' 'times.' % self.trip_id)
Return the first time of the trip. TODO: For trips defined by frequency return the first time of the first trip.
def sample(self, N=1): """Sample N trajectories from the posterior. Note ---- Performs the forward step in case it has not been performed. """ if not self.filt: self.forward() paths = np.empty((len(self.filt), N), np.int) paths[-1, :] = rs.multinomial(self.filt[-1], M=N) log_trans = np.log(self.hmm.trans_mat) for t, f in reversed(list(enumerate(self.filt[:-1]))): for n in range(N): probs = rs.exp_and_normalise(log_trans[:, paths[t + 1, n]] + np.log(f)) paths[t, n] = rs.multinomial_once(probs) return paths
Sample N trajectories from the posterior. Note ---- Performs the forward step in case it has not been performed.
def StrIndexOf(input_string, substring, startIndex, bitlength): """ Return True if the concrete value of the input_string ends with suffix otherwise false. :param input_string: the string we want to check :param substring: the substring we want to find the index :param startIndex: the index to start searching at :param bitlength: bitlength of the bitvector representing the index of the substring :return BVV: index of the substring in bit-vector representation or -1 in bitvector representation """ try: s = input_string.value t = substring.value i = startIndex.value return BVV(i + s[i:].index(t), bitlength) except ValueError: return BVV(-1, bitlength)
Return True if the concrete value of the input_string ends with suffix otherwise false. :param input_string: the string we want to check :param substring: the substring we want to find the index :param startIndex: the index to start searching at :param bitlength: bitlength of the bitvector representing the index of the substring :return BVV: index of the substring in bit-vector representation or -1 in bitvector representation
def add_fluctuations(hdf5_file, N_columns, N_processes): """This procedure organizes the addition of small fluctuations on top of a matrix of similarities at 'hdf5_file' across 'N_processes' different processes. Each of those processes is an instance of the class 'Fluctuations_Worker' defined elsewhere in this module. """ random_state = np.random.RandomState(0) slice_queue = multiprocessing.JoinableQueue() pid_list = [] for i in range(N_processes): worker = Fluctuations_worker(hdf5_file, '/aff_prop_group/similarities', random_state, N_columns, slice_queue) worker.daemon = True worker.start() pid_list.append(worker.pid) for rows_slice in chunk_generator(N_columns, 4 * N_processes): slice_queue.put(rows_slice) slice_queue.join() slice_queue.close() terminate_processes(pid_list) gc.collect()
This procedure organizes the addition of small fluctuations on top of a matrix of similarities at 'hdf5_file' across 'N_processes' different processes. Each of those processes is an instance of the class 'Fluctuations_Worker' defined elsewhere in this module.
def accuracy_helper(egg, match='exact', distance='euclidean', features=None): """ Computes proportion of words recalled Parameters ---------- egg : quail.Egg Data to analyze match : str (exact, best or smooth) Matching approach to compute recall matrix. If exact, the presented and recalled items must be identical (default). If best, the recalled item that is most similar to the presented items will be selected. If smooth, a weighted average of all presented items will be used, where the weights are derived from the similarity between the recalled item and each presented item. distance : str The distance function used to compare presented and recalled items. Applies only to 'best' and 'smooth' matching approaches. Can be any distance function supported by numpy.spatial.distance.cdist. Returns ---------- prop_recalled : numpy array proportion of words recalled """ def acc(lst): return len([i for i in np.unique(lst) if i>=0])/(egg.list_length) opts = dict(match=match, distance=distance, features=features) if match is 'exact': opts.update({'features' : 'item'}) recmat = recall_matrix(egg, **opts) if match in ['exact', 'best']: result = [acc(lst) for lst in recmat] elif match is 'smooth': result = np.mean(recmat, axis=1) else: raise ValueError('Match must be set to exact, best or smooth.') return np.nanmean(result, axis=0)
Computes proportion of words recalled Parameters ---------- egg : quail.Egg Data to analyze match : str (exact, best or smooth) Matching approach to compute recall matrix. If exact, the presented and recalled items must be identical (default). If best, the recalled item that is most similar to the presented items will be selected. If smooth, a weighted average of all presented items will be used, where the weights are derived from the similarity between the recalled item and each presented item. distance : str The distance function used to compare presented and recalled items. Applies only to 'best' and 'smooth' matching approaches. Can be any distance function supported by numpy.spatial.distance.cdist. Returns ---------- prop_recalled : numpy array proportion of words recalled
def align_bam(in_bam, ref_file, names, align_dir, data): """Perform direct alignment of an input BAM file with BWA using pipes. This avoids disk IO by piping between processes: - samtools sort of input BAM to queryname - bedtools conversion to interleaved FASTQ - bwa-mem alignment - samtools conversion to BAM - samtools sort to coordinate """ config = data["config"] out_file = os.path.join(align_dir, "{0}-sort.bam".format(names["lane"])) samtools = config_utils.get_program("samtools", config) bedtools = config_utils.get_program("bedtools", config) resources = config_utils.get_resources("samtools", config) num_cores = config["algorithm"].get("num_cores", 1) # adjust memory for samtools since used for input and output max_mem = config_utils.adjust_memory(resources.get("memory", "1G"), 3, "decrease").upper() if not utils.file_exists(out_file): with tx_tmpdir(data) as work_dir: with postalign.tobam_cl(data, out_file, bam.is_paired(in_bam)) as (tobam_cl, tx_out_file): bwa_cmd = _get_bwa_mem_cmd(data, out_file, ref_file, "-") tx_out_prefix = os.path.splitext(tx_out_file)[0] prefix1 = "%s-in1" % tx_out_prefix cmd = ("unset JAVA_HOME && " "{samtools} sort -n -o -l 1 -@ {num_cores} -m {max_mem} {in_bam} {prefix1} " "| {bedtools} bamtofastq -i /dev/stdin -fq /dev/stdout -fq2 /dev/stdout " "| {bwa_cmd} | ") cmd = cmd.format(**locals()) + tobam_cl do.run(cmd, "bwa mem alignment from BAM: %s" % names["sample"], None, [do.file_nonempty(tx_out_file), do.file_reasonable_size(tx_out_file, in_bam)]) return out_file
Perform direct alignment of an input BAM file with BWA using pipes. This avoids disk IO by piping between processes: - samtools sort of input BAM to queryname - bedtools conversion to interleaved FASTQ - bwa-mem alignment - samtools conversion to BAM - samtools sort to coordinate
def _CallWindowsNetCommand(parameters): ''' Call Windows NET command, used to acquire/configure network services settings. :param parameters: list of command line parameters :return: command output ''' import subprocess popen = subprocess.Popen(["net"] + parameters, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) stdoutdata, stderrdata = popen.communicate() if stderrdata: raise OSError("Failed on call net.exe: %s" % stderrdata) return stdoutdata
Call Windows NET command, used to acquire/configure network services settings. :param parameters: list of command line parameters :return: command output
def register(self, token, regexp): """Register a token. Args: token (Token): the token class to register regexp (str): the regexp for that token """ self._tokens.append((token, re.compile(regexp)))
Register a token. Args: token (Token): the token class to register regexp (str): the regexp for that token
def turn_right(self, angle_degrees, rate=RATE): """ Turn to the right, staying on the spot :param angle_degrees: How far to turn (degrees) :param rate: The trurning speed (degrees/second) :return: """ flight_time = angle_degrees / rate self.start_turn_right(rate) time.sleep(flight_time) self.stop()
Turn to the right, staying on the spot :param angle_degrees: How far to turn (degrees) :param rate: The trurning speed (degrees/second) :return:
def walk_dependencies(root, visitor): """ Call visitor on root and all dependencies reachable from it in breadth first order. Args: root (component): component function or class visitor (function): signature is `func(component, parent)`. The call on root is `visitor(root, None)`. """ def visit(parent, visitor): for d in get_dependencies(parent): visitor(d, parent) visit(d, visitor) visitor(root, None) visit(root, visitor)
Call visitor on root and all dependencies reachable from it in breadth first order. Args: root (component): component function or class visitor (function): signature is `func(component, parent)`. The call on root is `visitor(root, None)`.
def activities(self, *args, **kwargs): """Retrieve activities belonging to this scope. See :class:`pykechain.Client.activities` for available parameters. """ if self._client.match_app_version(label='wim', version='<2.0.0', default=True): return self._client.activities(*args, scope=self.id, **kwargs) else: return self._client.activities(*args, scope_id=self.id, **kwargs)
Retrieve activities belonging to this scope. See :class:`pykechain.Client.activities` for available parameters.
def delete(self, ids): """ Method to delete vlan's by their ids :param ids: Identifiers of vlan's :return: None """ url = build_uri_with_ids('api/v3/vlan/%s/', ids) return super(ApiVlan, self).delete(url)
Method to delete vlan's by their ids :param ids: Identifiers of vlan's :return: None
def execute(self): """"Run Checkstyle on all found non-synthetic source files.""" python_tgts = self.context.targets( lambda tgt: isinstance(tgt, (PythonTarget)) ) if not python_tgts: return 0 interpreter_cache = PythonInterpreterCache.global_instance() with self.invalidated(self.get_targets(self._is_checked)) as invalidation_check: failure_count = 0 tgts_by_compatibility, _ = interpreter_cache.partition_targets_by_compatibility( [vt.target for vt in invalidation_check.invalid_vts] ) for filters, targets in tgts_by_compatibility.items(): sources = self.calculate_sources([tgt for tgt in targets]) if sources: allowed_interpreters = set(interpreter_cache.setup(filters=filters)) if not allowed_interpreters: raise TaskError('No valid interpreters found for targets: {}\n(filters: {})' .format(targets, filters)) interpreter = min(allowed_interpreters) failure_count += self.checkstyle(interpreter, sources) if failure_count > 0 and self.get_options().fail: raise TaskError('{} Python Style issues found. You may try `./pants fmt <targets>`' .format(failure_count)) return failure_count
Run Checkstyle on all found non-synthetic source files.
def add_details(file_name, title, artist, album, lyrics=""): ''' Adds the details to song ''' tags = EasyMP3(file_name) tags["title"] = title tags["artist"] = artist tags["album"] = album tags.save() tags = ID3(file_name) uslt_output = USLT(encoding=3, lang=u'eng', desc=u'desc', text=lyrics) tags["USLT::'eng'"] = uslt_output tags.save(file_name) log.log("> Adding properties") log.log_indented("[*] Title: %s" % title) log.log_indented("[*] Artist: %s" % artist) log.log_indented("[*] Album: %s " % album)
Adds the details to song
def lower_camel(string, prefix='', suffix=''): """ Generate a camel-case identifier. Useful for unit test methods. Takes a string, prefix, and optional suffix. `prefix` can be set to `''`, though be careful - without a prefix, the function will throw `InvalidIdentifier` when your string starts with a number. Example: >>> lower_camel("User can login", prefix='test') 'testUserCanLogin' """ return require_valid(append_underscore_if_keyword(''.join( word.lower() if index == 0 else upper_case_first_char(word) for index, word in enumerate(en.words(' '.join([prefix, string, suffix])))) ))
Generate a camel-case identifier. Useful for unit test methods. Takes a string, prefix, and optional suffix. `prefix` can be set to `''`, though be careful - without a prefix, the function will throw `InvalidIdentifier` when your string starts with a number. Example: >>> lower_camel("User can login", prefix='test') 'testUserCanLogin'
def __send_command( self, name, args=None, withcontent=False, extralines=None, nblines=-1): """Send a command to the server. If args is not empty, we concatenate the given command with the content of this list. If extralines is not empty, they are sent one by one to the server. (CLRF are automatically appended to them) We wait for a response just after the command has been sent. :param name: the command to sent :param args: a list of arguments for this command :param withcontent: tells the function to return the server's response or not :param extralines: a list of extra lines to sent after the command :param nblines: the number of response lines to read (all by default) :returns: a tuple of the form (code, data[, response]) """ tosend = name.encode("utf-8") if args: tosend += b" " + b" ".join(self.__prepare_args(args)) self.__dprint(b"Command: " + tosend) self.sock.sendall(tosend + CRLF) if extralines: for l in extralines: self.sock.sendall(l + CRLF) code, data, content = self.__read_response(nblines) if isinstance(code, six.binary_type): code = code.decode("utf-8") if isinstance(data, six.binary_type): data = data.decode("utf-8") if withcontent: return (code, data, content) return (code, data)
Send a command to the server. If args is not empty, we concatenate the given command with the content of this list. If extralines is not empty, they are sent one by one to the server. (CLRF are automatically appended to them) We wait for a response just after the command has been sent. :param name: the command to sent :param args: a list of arguments for this command :param withcontent: tells the function to return the server's response or not :param extralines: a list of extra lines to sent after the command :param nblines: the number of response lines to read (all by default) :returns: a tuple of the form (code, data[, response])
def avail_sizes(call=None): ''' Return a dict of all available VM sizes on the cloud provider with relevant data. ''' if call == 'action': raise SaltCloudSystemExit( 'The avail_sizes function must be called with ' '-f or --function, or with the --list-sizes option' ) conn = get_conn() sizes = conn.fixed_server_flavors() return sizes
Return a dict of all available VM sizes on the cloud provider with relevant data.
def log_likelihood_pairwise(data, params): """Compute the log-likelihood of model parameters.""" loglik = 0 for winner, loser in data: loglik -= np.logaddexp(0, -(params[winner] - params[loser])) return loglik
Compute the log-likelihood of model parameters.
def read(self, size=None): """ Read a specified number of bytes from the file descriptor This method emulates the normal file descriptor's ``read()`` method and restricts the total number of bytes readable. If file descriptor is not present (e.g., ``close()`` method had been called), ``ValueError`` is raised. If ``size`` is omitted, or ``None``, or any other falsy value, read will be done up to the remaining length (constructor's ``length`` argument minus the bytes that have been read previously). This method internally invokes the file descriptor's ``read()`` method, and the method must accept a single integer positional argument. """ if not self.fd: raise ValueError('I/O on closed file') if not size: size = self.remaining size = min([self.remaining, size]) if not size: return '' data = self.fd.read(size) self.remaining -= size return data
Read a specified number of bytes from the file descriptor This method emulates the normal file descriptor's ``read()`` method and restricts the total number of bytes readable. If file descriptor is not present (e.g., ``close()`` method had been called), ``ValueError`` is raised. If ``size`` is omitted, or ``None``, or any other falsy value, read will be done up to the remaining length (constructor's ``length`` argument minus the bytes that have been read previously). This method internally invokes the file descriptor's ``read()`` method, and the method must accept a single integer positional argument.
def file_root_name(name): """ Returns the root name of a file from a full file path. It will not raise an error if the result is empty, but an warning will be issued. """ base = os.path.basename(name) root = os.path.splitext(base)[0] if not root: warning = 'file_root_name returned an empty root name from \"{0}\"' log.warning(warning.format(name)) return root
Returns the root name of a file from a full file path. It will not raise an error if the result is empty, but an warning will be issued.
def synthesize_software_module_info(modules, module_types): """ This function takes as input a dictionary of `modules` (mapping module IDs to :class:`~openag.models.SoftwareModule` objects) and a dictionary of `module_types` (mapping module type IDs to :class:`~openag.models.FirmwareModuleType` objects). For each module, it synthesizes the information in that module and the corresponding module type and returns all the results in a dictionary keyed on the ID of the module. """ res = {} for mod_id, mod_info in modules.items(): mod_info = dict(mod_info) mod_type = module_types[mod_info["type"]] # Directly copy any fields only defined on the type mod_info["package"] = mod_type["package"] mod_info["executable"] = mod_type["executable"] if not "categories" in mod_info: mod_info["categories"] = mod_type.get( "categories", all_categories ) mod_info["inputs"] = mod_type["inputs"] mod_info["outputs"] = mod_type["outputs"] # Update the arguments mod_info["arguments"] = process_args( mod_id, mod_info.get("arguments", []), mod_type["arguments"] ) # Update the parameters mod_info["parameters"] = process_params( mod_id, mod_info.get("parameters", {}), mod_type["parameters"] ) res[mod_id] = mod_info return res
This function takes as input a dictionary of `modules` (mapping module IDs to :class:`~openag.models.SoftwareModule` objects) and a dictionary of `module_types` (mapping module type IDs to :class:`~openag.models.FirmwareModuleType` objects). For each module, it synthesizes the information in that module and the corresponding module type and returns all the results in a dictionary keyed on the ID of the module.
def setupArgparse(): """Sets up argparse module to create command line options and parse them. Uses the argparse module to add arguments to the command line for faradayio-cli. Once the arguments are added and parsed the arguments are returned Returns: argparse.Namespace: Populated namespace of arguments """ parser = argparse.ArgumentParser() # Required arguments parser.add_argument("callsign", help="Callsign of radio") parser.add_argument("id", type=int, help="ID number radio") # Optional arguments parser.add_argument("-l", "--loopback", action="store_true", help="Use software loopback serial port") parser.add_argument("-p", "--port", default="/dev/ttyUSB0", help="Physical serial port of radio") # Parse and return arguments return parser.parse_args()
Sets up argparse module to create command line options and parse them. Uses the argparse module to add arguments to the command line for faradayio-cli. Once the arguments are added and parsed the arguments are returned Returns: argparse.Namespace: Populated namespace of arguments
def update_wish_list_by_id(cls, wish_list_id, wish_list, **kwargs): """Update WishList Update attributes of WishList This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.update_wish_list_by_id(wish_list_id, wish_list, async=True) >>> result = thread.get() :param async bool :param str wish_list_id: ID of wishList to update. (required) :param WishList wish_list: Attributes of wishList to update. (required) :return: WishList If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return cls._update_wish_list_by_id_with_http_info(wish_list_id, wish_list, **kwargs) else: (data) = cls._update_wish_list_by_id_with_http_info(wish_list_id, wish_list, **kwargs) return data
Update WishList Update attributes of WishList This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.update_wish_list_by_id(wish_list_id, wish_list, async=True) >>> result = thread.get() :param async bool :param str wish_list_id: ID of wishList to update. (required) :param WishList wish_list: Attributes of wishList to update. (required) :return: WishList If the method is called asynchronously, returns the request thread.
def is_job_config(config): """ Check whether given dict of config is job config """ try: # Every job has name if config['config']['job']['name'] is not None: return True except KeyError: return False except TypeError: return False except IndexError: return False return False
Check whether given dict of config is job config
def update(self, iterable={}, **kwargs): """ Updates recursively a self with a given iterable. TODO: rewrite this ugly stuff """ def _merge(a, *args): for key, value in itertools.chain(*args): if key in a and isinstance(value, (dict, Conf)): value = _merge(a[key], value.items()) a[key] = value return a # adopt iterable sequence to unified interface: (key, value) if isinstance(iterable, (dict, Conf)): iterable = iterable.items() # iterate and update values _merge(self._data, iterable, kwargs.items())
Updates recursively a self with a given iterable. TODO: rewrite this ugly stuff
def _load_enums(root): """Returns {name: Enum}""" out = collections.OrderedDict() for elem in root.findall('enums/enum'): name = elem.attrib['name'] value = elem.attrib['value'] comment = elem.get('comment') out[name] = Enum(name, value, comment) return out
Returns {name: Enum}
def alter_edge(self, from_index, to_index, new_weight=None, new_edge_properties=None): """ Alters either the weight or the edge_properties of an edge in the MoleculeGraph. :param from_index: int :param to_index: int :param new_weight: alter_edge does not require that weight be altered. As such, by default, this is None. If weight is to be changed, it should be a float. :param new_edge_properties: alter_edge does not require that edge_properties be altered. As such, by default, this is None. If any edge properties are to be changed, it should be a dictionary of edge properties to be changed. :return: """ existing_edge = self.graph.get_edge_data(from_index, to_index) # ensure that edge exists before attempting to change it if not existing_edge: raise ValueError("Edge between {} and {} cannot be altered;\ no edge exists between those sites.".format( from_index, to_index )) # Third index should always be 0 because there should only be one edge between any two nodes if new_weight is not None: self.graph[from_index][to_index][0]['weight'] = new_weight if new_edge_properties is not None: for prop in list(new_edge_properties.keys()): self.graph[from_index][to_index][0][prop] = new_edge_properties[prop]
Alters either the weight or the edge_properties of an edge in the MoleculeGraph. :param from_index: int :param to_index: int :param new_weight: alter_edge does not require that weight be altered. As such, by default, this is None. If weight is to be changed, it should be a float. :param new_edge_properties: alter_edge does not require that edge_properties be altered. As such, by default, this is None. If any edge properties are to be changed, it should be a dictionary of edge properties to be changed. :return:
def cmd(send, msg, args): """Gets a random Reddit post. Syntax: {command} [subreddit] """ if msg and not check_exists(msg): send("Non-existant subreddit.") return subreddit = msg if msg else None send(random_post(subreddit, args['config']['api']['bitlykey']))
Gets a random Reddit post. Syntax: {command} [subreddit]
def query(self, coords, return_sigma=False): """ Returns r-band extinction, A_r, at the given coordinates. Can also return uncertainties. Args: coords (:obj:`astropy.coordinates.SkyCoord`): The coordinates to query. return_sigma (Optional[:obj:`bool`]): If ``True``, returns the uncertainty in extinction as well. Defaults to ``False``. Returns: Extinction in the r-band at the specified coordinates, in mags. The shape of the output depends on whether :obj:`coords` contains distances. If :obj:`coords` does not specify distance(s), then the shape of the output begins with :obj:`coords.shape`. If :obj:`coords` does specify distance(s), then the shape of the output begins with ``coords.shape + ([number of distance bins],)``. """ n_coords_ret = coords.shape[0] # Determine if distance has been requested has_dist = hasattr(coords.distance, 'kpc') d = coords.distance.kpc if has_dist else None # Convert coordinates to pixel indices pix_idx = self._coords2idx(coords) # Determine which coordinates are out of bounds mask_idx = (pix_idx == self._n_pix) if np.any(mask_idx): pix_idx[mask_idx] = 0 # Which distances to extract if has_dist: d = coords.distance.kpc dist_idx_ceil = np.searchsorted(self._dists, d) ret = np.empty((n_coords_ret,), dtype='f8') if return_sigma: sigma_ret = np.empty((n_coords_ret,), dtype='f8') # d < d(nearest distance slice) idx_near = (dist_idx_ceil == 0) & ~mask_idx print('d < d(nearest): {:d}'.format(np.sum(idx_near))) if np.any(idx_near): a = d[idx_near] / self._dists[0] ret[idx_near] = a[:] * self._A[pix_idx[idx_near], 0] if return_sigma: sigma_ret[idx_near] = a[:] * self._sigma_A[pix_idx[idx_near], 0] # d > d(farthest distance slice) idx_far = (dist_idx_ceil == self._n_dists) & ~mask_idx print('d > d(farthest): {:d}'.format(np.sum(idx_far))) if np.any(idx_far): ret[idx_far] = self._A[pix_idx[idx_far], -1] if return_sigma: sigma_ret[idx_far] = self._sigma_A[pix_idx[idx_far], -1] # d(nearest distance slice) < d < d(farthest distance slice) idx_btw = ~idx_near & ~idx_far & ~mask_idx print('d(nearest) < d < d(farthest): {:d}'.format(np.sum(idx_btw))) if np.any(idx_btw): d_ceil = self._dists[dist_idx_ceil[idx_btw]] d_floor = self._dists[dist_idx_ceil[idx_btw]-1] a = (d_ceil - d[idx_btw]) / (d_ceil - d_floor) ret[idx_btw] = ( (1.-a[:]) * self._A[pix_idx[idx_btw], dist_idx_ceil[idx_btw]] + a[:] * self._A[pix_idx[idx_btw], dist_idx_ceil[idx_btw]-1]) if return_sigma: w0 = (1.-a)**2 w1 = a**2 norm = 1. / (w0 + w1) w0 *= norm w1 *= norm sigma_ret[idx_btw] = np.sqrt( w0 * self._sigma_A[pix_idx[idx_btw], dist_idx_ceil[idx_btw]]**2 + w1 * self._sigma_A[pix_idx[idx_btw], dist_idx_ceil[idx_btw]-1]**2 ) else: # TODO: Harmonize order of distances & samples with Bayestar. ret = self._A[pix_idx, :] if return_sigma: sigma_ret = self._sigma_A[pix_idx, :] if np.any(mask_idx): ret[mask_idx] = np.nan if return_sigma: sigma_ret[mask_idx] = np.nan if return_sigma: return ret, sigma_ret return ret
Returns r-band extinction, A_r, at the given coordinates. Can also return uncertainties. Args: coords (:obj:`astropy.coordinates.SkyCoord`): The coordinates to query. return_sigma (Optional[:obj:`bool`]): If ``True``, returns the uncertainty in extinction as well. Defaults to ``False``. Returns: Extinction in the r-band at the specified coordinates, in mags. The shape of the output depends on whether :obj:`coords` contains distances. If :obj:`coords` does not specify distance(s), then the shape of the output begins with :obj:`coords.shape`. If :obj:`coords` does specify distance(s), then the shape of the output begins with ``coords.shape + ([number of distance bins],)``.
def makepipecomponent(idf, pname): """make a pipe component generate inlet outlet names""" apipe = idf.newidfobject("Pipe:Adiabatic".upper(), Name=pname) apipe.Inlet_Node_Name = "%s_inlet" % (pname,) apipe.Outlet_Node_Name = "%s_outlet" % (pname,) return apipe
make a pipe component generate inlet outlet names
def _match_files_flat_hierarchy(self, text_files, audio_files): """ Match audio and text files in flat hierarchies. Two files match if their names, once removed the file extension, are the same. Examples: :: foo/text/a.txt foo/audio/a.mp3 => match: ["a", "foo/text/a.txt", "foo/audio/a.mp3"] foo/text/a.txt foo/audio/b.mp3 => no match foo/res/c.txt foo/res/c.mp3 => match: ["c", "foo/res/c.txt", "foo/res/c.mp3"] foo/res/d.txt foo/res/e.mp3 => no match :param list text_files: the entries corresponding to text files :param list audio_files: the entries corresponding to audio files :rtype: list of lists (see above) """ self.log(u"Matching files in flat hierarchy") self.log([u"Text files: '%s'", text_files]) self.log([u"Audio files: '%s'", audio_files]) d_text = {} d_audio = {} for text_file in text_files: text_file_no_ext = gf.file_name_without_extension(text_file) d_text[text_file_no_ext] = text_file self.log([u"Added text file '%s' to key '%s'", text_file, text_file_no_ext]) for audio_file in audio_files: audio_file_no_ext = gf.file_name_without_extension(audio_file) d_audio[audio_file_no_ext] = audio_file self.log([u"Added audio file '%s' to key '%s'", audio_file, audio_file_no_ext]) tasks = [] for key in d_text.keys(): self.log([u"Examining text key '%s'", key]) if key in d_audio: self.log([u"Key '%s' is also in audio", key]) tasks.append([key, d_text[key], d_audio[key]]) self.log([u"Added pair ('%s', '%s')", d_text[key], d_audio[key]]) return tasks
Match audio and text files in flat hierarchies. Two files match if their names, once removed the file extension, are the same. Examples: :: foo/text/a.txt foo/audio/a.mp3 => match: ["a", "foo/text/a.txt", "foo/audio/a.mp3"] foo/text/a.txt foo/audio/b.mp3 => no match foo/res/c.txt foo/res/c.mp3 => match: ["c", "foo/res/c.txt", "foo/res/c.mp3"] foo/res/d.txt foo/res/e.mp3 => no match :param list text_files: the entries corresponding to text files :param list audio_files: the entries corresponding to audio files :rtype: list of lists (see above)
def parse_requested_expands(query_key, request): """ Extracts the value of the expand query string parameter from a request. Supports comma separated lists. :param query_key: The name query string parameter. :param request: Request instance. :return: List of strings representing the values of the expand query string value. """ requested_expands = [] for key, val in request.params.items(): if key == query_key: requested_expands += val.split(',') return requested_expands
Extracts the value of the expand query string parameter from a request. Supports comma separated lists. :param query_key: The name query string parameter. :param request: Request instance. :return: List of strings representing the values of the expand query string value.
def _scalar_power(self, f, p, out): """Compute ``p``-th power of ``f`` for ``p`` scalar.""" # Avoid infinite recursions by making a copy of the function f_copy = f.copy() def pow_posint(x, n): """Power function for positive integer ``n``, out-of-place.""" if isinstance(x, np.ndarray): y = x.copy() return ipow_posint(y, n) else: return x ** n def ipow_posint(x, n): """Power function for positive integer ``n``, in-place.""" if n == 1: return x elif n % 2 == 0: x *= x return ipow_posint(x, n // 2) else: tmp = x.copy() x *= x ipow_posint(x, n // 2) x *= tmp return x def power_oop(x, **kwargs): """Power out-of-place evaluation function.""" if p == 0: return self.one() elif p == int(p) and p >= 1: return np.asarray(pow_posint(f_copy(x, **kwargs), int(p)), dtype=self.scalar_out_dtype) else: result = np.power(f_copy(x, **kwargs), p) return result.astype(self.scalar_out_dtype) out._call_out_of_place = power_oop decorator = preload_first_arg(out, 'in-place') out._call_in_place = decorator(_default_in_place) out._call_has_out = out._call_out_optional = False return out
Compute ``p``-th power of ``f`` for ``p`` scalar.
def find_pulls(self, testpulls=None): """Finds a list of new pull requests that need to be processed. :arg testpulls: a list of tserver.FakePull instances so we can test the code functionality without making live requests to github. """ #We check all the repositories installed for new (open) pull requests. #If any exist, we check the pull request number against our archive to #see if we have to do anything for it. result = {} for lname, repo in self.repositories.items(): if lname not in self.archive: raise ValueError("Trying to find pull requests for a repository " "that hasn't been installed. Use server.install().") if self.runnable is not None and lname not in self.runnable: #We just ignore this repository completely and don't even bother #performing a live check on github. continue pulls = testpulls if testpulls is not None else repo.repo.get_pulls("open") result[lname] = [] for pull in pulls: newpull = True if pull.snumber in self.archive[lname]: #Check the status of that pull request processing. If it was #successful, we just ignore this open pull request; it is #obviously waiting to be merged in. if self.archive[lname][pull.snumber]["completed"] == True: newpull = False if newpull: #Add the pull request to the list that needs to be processed. #We don't add the request to the archive yet because the #processing step hasn't happened yet. result[lname].append(PullRequest(self, repo, pull, testpulls is not None)) return result
Finds a list of new pull requests that need to be processed. :arg testpulls: a list of tserver.FakePull instances so we can test the code functionality without making live requests to github.
def toggle_buttons(self): """Turn buttons on and off.""" all_time_on = self.all_time.get_value() all_chan_on = self.all_chan.get_value() self.times['beg'].setEnabled(not all_time_on) self.times['end'].setEnabled(not all_time_on) self.idx_chan.setEnabled(not all_chan_on)
Turn buttons on and off.
def get_selinux_status(): """ get SELinux status of host :return: string, one of Enforced, Permissive, Disabled """ getenforce_command_exists() # alternatively, we could read directly from /sys/fs/selinux/{enforce,status}, but status is # empty (why?) and enforce doesn't tell whether SELinux is disabled or not o = run_cmd(["getenforce"], return_output=True).strip() # libselinux-utils logger.debug("SELinux is %r", o) return o
get SELinux status of host :return: string, one of Enforced, Permissive, Disabled
def update(self, *args, **kwargs): """ Equivalent to the python dict update method. Update the dictionary with the key/value pairs from other, overwriting existing keys. Args: other (dict): The source of key value pairs to add to headers Keyword Args: All keyword arguments are stored in header directly Returns: None """ for next_dict in chain(args, (kwargs, )): for k, v in next_dict.items(): self[k] = v
Equivalent to the python dict update method. Update the dictionary with the key/value pairs from other, overwriting existing keys. Args: other (dict): The source of key value pairs to add to headers Keyword Args: All keyword arguments are stored in header directly Returns: None
def to_designspace_instances(self): """Write instance data from self.font to self.designspace.""" for instance in self.font.instances: if self.minimize_glyphs_diffs or ( is_instance_active(instance) and _is_instance_included_in_family(self, instance) ): _to_designspace_instance(self, instance)
Write instance data from self.font to self.designspace.
def insured_losses(losses, deductible, insured_limit): """ :param losses: an array of ground-up loss ratios :param float deductible: the deductible limit in fraction form :param float insured_limit: the insured limit in fraction form Compute insured losses for the given asset and losses, from the point of view of the insurance company. For instance: >>> insured_losses(numpy.array([3, 20, 101]), 5, 100) array([ 0, 15, 95]) - if the loss is 3 (< 5) the company does not pay anything - if the loss is 20 the company pays 20 - 5 = 15 - if the loss is 101 the company pays 100 - 5 = 95 """ return numpy.piecewise( losses, [losses < deductible, losses > insured_limit], [0, insured_limit - deductible, lambda x: x - deductible])
:param losses: an array of ground-up loss ratios :param float deductible: the deductible limit in fraction form :param float insured_limit: the insured limit in fraction form Compute insured losses for the given asset and losses, from the point of view of the insurance company. For instance: >>> insured_losses(numpy.array([3, 20, 101]), 5, 100) array([ 0, 15, 95]) - if the loss is 3 (< 5) the company does not pay anything - if the loss is 20 the company pays 20 - 5 = 15 - if the loss is 101 the company pays 100 - 5 = 95
def on_data(self, raw_data): """Called when raw data is received from connection. Override this method if you wish to manually handle the stream data. Return False to stop stream and close connection. """ data = json.loads(raw_data) message_type = data['meta'].get('type') prepare_method = 'prepare_%s' % (message_type) args = getattr(self, prepare_method, self.prepare_fallback)(data.get('data')) method_name = 'on_%s' % (message_type,) func = getattr(self, method_name, self.on_fallback) func(*args, meta=StreamingMeta.from_response_data(data.get('meta'), self.api))
Called when raw data is received from connection. Override this method if you wish to manually handle the stream data. Return False to stop stream and close connection.
def atomic_output_file(dest_path, make_parents=False, backup_suffix=None, suffix=".partial.%s"): """ A context manager for convenience in writing a file or directory in an atomic way. Set up a temporary name, then rename it after the operation is done, optionally making a backup of the previous file or directory, if present. """ if dest_path == os.devnull: # Handle the (probably rare) case of writing to /dev/null. yield dest_path else: tmp_path = ("%s" + suffix) % (dest_path, new_uid()) if make_parents: make_parent_dirs(tmp_path) yield tmp_path # Note this is not in a finally block, so that result won't be renamed to final location # in case of abnormal exit. if not os.path.exists(tmp_path): raise IOError("failure in writing file '%s': target file '%s' missing" % (dest_path, tmp_path)) if backup_suffix: move_to_backup(dest_path, backup_suffix=backup_suffix) # If the target already exists, and is a directory, it has to be removed. if os.path.isdir(dest_path): shutil.rmtree(dest_path) shutil.move(tmp_path, dest_path)
A context manager for convenience in writing a file or directory in an atomic way. Set up a temporary name, then rename it after the operation is done, optionally making a backup of the previous file or directory, if present.
def stupid_hack(most=10, wait=None): """Return a random time between 1 - 10 Seconds.""" # Stupid Hack For Public Cloud so it is not overwhelmed with API requests. if wait is not None: time.sleep(wait) else: time.sleep(random.randrange(1, most))
Return a random time between 1 - 10 Seconds.
def read_pl_dataset(infile): """ Description: Read from disk a Plackett-Luce dataset. Parameters: infile: open file object from which to read the dataset """ m, n = [int(i) for i in infile.readline().split(',')] gamma = np.array([float(f) for f in infile.readline().split(',')]) if len(gamma) != m: infile.close() raise ValueError("malformed file: len(gamma) != m") votes = [] i = 0 for line in infile: vote = [int(v) for v in line.split(',')] if len(vote) != m: infile.close() raise ValueError("malformed file: len(vote) != m") votes.append(vote) i += 1 infile.close() if i != n: raise ValueError("malformed file: number of votes != n") return (gamma, np.array(votes))
Description: Read from disk a Plackett-Luce dataset. Parameters: infile: open file object from which to read the dataset
def get_livestate(self): """Get the SatelliteLink live state. The live state is a tuple information containing a state identifier and a message, where: state is: - 0 for an up and running satellite - 1 if the satellite is not reachale - 2 if the satellite is dead - 3 else (not active) :return: tuple """ livestate = 0 if self.active: if not self.reachable: livestate = 1 elif not self.alive: livestate = 2 else: livestate = 3 livestate_output = "%s/%s is %s" % (self.type, self.name, [ "up and running.", "warning because not reachable.", "critical because not responding.", "not active by configuration." ][livestate]) return (livestate, livestate_output)
Get the SatelliteLink live state. The live state is a tuple information containing a state identifier and a message, where: state is: - 0 for an up and running satellite - 1 if the satellite is not reachale - 2 if the satellite is dead - 3 else (not active) :return: tuple
def validate(self, validator=None, skip_relations=False): """Validate a GTFS :param validator: a ValidationReport :param (bool) skip_relations: skip validation of relations between entities (e.g. stop_times to stops) :return: """ validator = validation.make_validator(validator) self.log('Loading...') self.preload() # required required = [ 'agency', 'stops', 'routes', 'trips', 'stop_times', 'calendar' ] for f in required: self.log("Validating required file: %s"%f) data = self.read(f) for i in data: i.validate(validator=validator) if skip_relations is False: i.validate_feed(validator=validator) # optional optional = [ 'calendar_dates', 'fare_attributes', 'fare_rules', 'shapes', 'frequencies', 'transfers', 'feed_info' ] for f in optional: self.log("Validating optional file: %s"%f) try: data = self.read(f) except KeyError, e: data = [] for i in data: i.validate(validator=validator) if skip_relations is False: i.validate_feed(validator=validator) return validator
Validate a GTFS :param validator: a ValidationReport :param (bool) skip_relations: skip validation of relations between entities (e.g. stop_times to stops) :return:
def delete_feed(self, pid): """Delete a feed, identified by its local id. Raises [IOTException](./Exceptions.m.html#IoticAgent.IOT.Exceptions.IOTException) containing the error if the infrastructure detects a problem Raises [LinkException](../Core/AmqpLink.m.html#IoticAgent.Core.AmqpLink.LinkException) if there is a communications problem between you and the infrastructure `pid` (required) (string) local identifier of your feed you want to delete """ logger.info("delete_feed(pid=\"%s\") [lid=%s]", pid, self.__lid) return self.__delete_point(R_FEED, pid)
Delete a feed, identified by its local id. Raises [IOTException](./Exceptions.m.html#IoticAgent.IOT.Exceptions.IOTException) containing the error if the infrastructure detects a problem Raises [LinkException](../Core/AmqpLink.m.html#IoticAgent.Core.AmqpLink.LinkException) if there is a communications problem between you and the infrastructure `pid` (required) (string) local identifier of your feed you want to delete
def save(self) -> None: """Saves model to the save_path, provided in config. The directory is already created by super().__init__, which is called in __init__ of this class""" path = str(self.save_path.absolute()) log.info('[saving model to {}]'.format(path)) self._net.save(path)
Saves model to the save_path, provided in config. The directory is already created by super().__init__, which is called in __init__ of this class
def from_url(cls, url, **kwargs): """Create a client from a url.""" url = urllib3.util.parse_url(url) if url.host: kwargs.setdefault('host', url.host) if url.port: kwargs.setdefault('port', url.port) if url.scheme == 'https': kwargs.setdefault('connection_class', urllib3.HTTPSConnectionPool) return cls(**kwargs)
Create a client from a url.
def LockRetryWrapper(self, subject, retrywrap_timeout=1, retrywrap_max_timeout=10, blocking=True, lease_time=None): """Retry a DBSubjectLock until it succeeds. Args: subject: The subject which the lock applies to. retrywrap_timeout: How long to wait before retrying the lock. retrywrap_max_timeout: The maximum time to wait for a retry until we raise. blocking: If False, raise on first lock failure. lease_time: lock lease time in seconds. Returns: The DBSubjectLock object Raises: DBSubjectLockError: If the maximum retry count has been reached. """ timeout = 0 while timeout < retrywrap_max_timeout: try: return self.DBSubjectLock(subject, lease_time=lease_time) except DBSubjectLockError: if not blocking: raise stats_collector_instance.Get().IncrementCounter("datastore_retries") time.sleep(retrywrap_timeout) timeout += retrywrap_timeout raise DBSubjectLockError("Retry number exceeded.")
Retry a DBSubjectLock until it succeeds. Args: subject: The subject which the lock applies to. retrywrap_timeout: How long to wait before retrying the lock. retrywrap_max_timeout: The maximum time to wait for a retry until we raise. blocking: If False, raise on first lock failure. lease_time: lock lease time in seconds. Returns: The DBSubjectLock object Raises: DBSubjectLockError: If the maximum retry count has been reached.
def parse_uci(self, uci: str) -> Move: """ Parses the given move in UCI notation. Supports both Chess960 and standard UCI notation. The returned move is guaranteed to be either legal or a null move. :raises: :exc:`ValueError` if the move is invalid or illegal in the current position (but not a null move). """ move = Move.from_uci(uci) if not move: return move move = self._to_chess960(move) move = self._from_chess960(self.chess960, move.from_square, move.to_square, move.promotion, move.drop) if not self.is_legal(move): raise ValueError("illegal uci: {!r} in {}".format(uci, self.fen())) return move
Parses the given move in UCI notation. Supports both Chess960 and standard UCI notation. The returned move is guaranteed to be either legal or a null move. :raises: :exc:`ValueError` if the move is invalid or illegal in the current position (but not a null move).
def add_prefix_from_pool(arg, opts): """ Add prefix using from-pool to NIPAP """ args = {} # sanity checking if 'from-pool' in opts: res = Pool.list({ 'name': opts['from-pool'] }) if len(res) == 0: print("No pool named '%s' found." % opts['from-pool'], file=sys.stderr) sys.exit(1) args['from-pool'] = res[0] if 'family' not in opts: print("ERROR: You have to specify the address family.", file=sys.stderr) sys.exit(1) if opts['family'] == 'ipv4': afis = [4] elif opts['family'] == 'ipv6': afis = [6] elif opts['family'] == 'dual-stack': afis = [4, 6] if 'prefix_length' in opts: print("ERROR: 'prefix_length' can not be specified for 'dual-stack' assignment", file=sys.stderr) sys.exit(1) else: print("ERROR: 'family' must be one of: %s" % " ".join(valid_families), file=sys.stderr) sys.exit(1) if 'prefix_length' in opts: args['prefix_length'] = int(opts['prefix_length']) for afi in afis: p = _prefix_from_opts(opts) if opts.get('vrf_rt') is None: # if no VRF is specified use the pools implied VRF p.vrf = args['from-pool'].vrf else: # use the specified VRF p.vrf = get_vrf(opts.get('vrf_rt'), abort=True) # set type to default type of pool unless already set if p.type is None: if args['from-pool'].default_type is None: print("ERROR: Type not specified and no default-type specified for pool: %s" % opts['from-pool'], file=sys.stderr) p.type = args['from-pool'].default_type for avp in opts.get('extra-attribute', []): try: key, value = avp.split('=', 1) except ValueError: print("ERROR: Incorrect extra-attribute: %s. Accepted form: 'key=value'\n" % avp, file=sys.stderr) return p.avps[key] = value args['family'] = afi try: p.save(args) except NipapError as exc: print("Could not add prefix to NIPAP: %s" % str(exc), file=sys.stderr) sys.exit(1) if p.type == 'host': print("Host %s added to %s: %s" % (p.display_prefix, vrf_format(p.vrf), p.node or p.description)) else: print("Network %s added to %s: %s" % (p.display_prefix, vrf_format(p.vrf), p.description)) if opts.get('add-hosts') is not None: if p.type != 'assignment': print("ERROR: Not possible to add hosts to non-assignment", file=sys.stderr) sys.exit(1) for host in opts.get('add-hosts').split(','): h_opts = { 'from-prefix': p.prefix, 'vrf_rt': p.vrf.rt, 'type': 'host', 'node': host } add_prefix({}, h_opts, {})
Add prefix using from-pool to NIPAP
def _parse_vars_tbl(self, var_tbl): """Parse a table of variable bindings (dictionary with key = variable name)""" # Find the length of each variable to infer T T = self._check_forward_mode_input_dict(var_tbl) # The shape of X based on T and m shape = (T, 1) # Initialize X to zeros in the correct shape X = np.zeros(shape) X[:,0] = var_tbl[self.var_name] return X
Parse a table of variable bindings (dictionary with key = variable name)
def _find_proj_root(): # type: () -> Optional[str] """ Find the project path by going up the file tree. This will look in the current directory and upwards for the pelconf file (.yaml or .py) """ proj_files = frozenset(('pelconf.py', 'pelconf.yaml')) curr = os.getcwd() while curr.startswith('/') and len(curr) > 1: if proj_files & frozenset(os.listdir(curr)): return curr else: curr = os.path.dirname(curr) return None
Find the project path by going up the file tree. This will look in the current directory and upwards for the pelconf file (.yaml or .py)
def enclosing_frame(frame=None, level=2): """Get an enclosing frame that skips decorator code""" frame = frame or sys._getframe(level) while frame.f_globals.get('__name__') == __name__: frame = frame.f_back return frame
Get an enclosing frame that skips decorator code
def save_file(self, obj): # pylint: disable=too-many-branches """Save a file""" try: import StringIO as pystringIO #we can't use cStringIO as it lacks the name attribute except ImportError: import io as pystringIO # pylint: disable=reimported if not hasattr(obj, 'name') or not hasattr(obj, 'mode'): raise pickle.PicklingError("Cannot pickle files that do not map to an actual file") if obj is sys.stdout: return self.save_reduce(getattr, (sys, 'stdout'), obj=obj) if obj is sys.stderr: return self.save_reduce(getattr, (sys, 'stderr'), obj=obj) if obj is sys.stdin: raise pickle.PicklingError("Cannot pickle standard input") if hasattr(obj, 'isatty') and obj.isatty(): raise pickle.PicklingError("Cannot pickle files that map to tty objects") if 'r' not in obj.mode: raise pickle.PicklingError("Cannot pickle files that are not opened for reading") name = obj.name try: fsize = os.stat(name).st_size except OSError: raise pickle.PicklingError("Cannot pickle file %s as it cannot be stat" % name) if obj.closed: #create an empty closed string io retval = pystringIO.StringIO("") retval.close() elif not fsize: #empty file retval = pystringIO.StringIO("") try: tmpfile = file(name) tst = tmpfile.read(1) except IOError: raise pickle.PicklingError("Cannot pickle file %s as it cannot be read" % name) tmpfile.close() if tst != '': raise pickle.PicklingError( "Cannot pickle file %s as it does not appear to map to a physical, real file" % name) else: try: tmpfile = file(name) contents = tmpfile.read() tmpfile.close() except IOError: raise pickle.PicklingError("Cannot pickle file %s as it cannot be read" % name) retval = pystringIO.StringIO(contents) curloc = obj.tell() retval.seek(curloc) retval.name = name self.save(retval) self.memoize(obj)
Save a file
def checkpoint(self, message, header=None, delay=0, **kwargs): """Send a message to the current recipe destination. This can be used to keep a state for longer processing tasks. :param delay: Delay transport of message by this many seconds """ if not self.transport: raise ValueError( "This RecipeWrapper object does not contain " "a reference to a transport object." ) if not self.recipe_step: raise ValueError( "This RecipeWrapper object does not contain " "a recipe with a selected step." ) kwargs["delay"] = delay self._send_to_destination( self.recipe_pointer, header, message, kwargs, add_path_step=False )
Send a message to the current recipe destination. This can be used to keep a state for longer processing tasks. :param delay: Delay transport of message by this many seconds
def do_struct(self, subcmd, opts, message): """${cmd_name}: get the structure of the specified message ${cmd_usage} ${cmd_option_list} """ client = MdClient(self.maildir, filesystem=self.filesystem) as_json = getattr(opts, "json", False) client.getstruct(message, as_json=as_json, stream=self.stdout)
${cmd_name}: get the structure of the specified message ${cmd_usage} ${cmd_option_list}
def feature_enabled(self, feature_name): """ Indicates whether the specified feature is enabled for the CPC of this partition. The HMC must generally support features, and the specified feature must be available for the CPC. For a list of available features, see section "Features" in the :term:`HMC API`, or use the :meth:`feature_info` method. Authorization requirements: * Object-access permission to this partition. Parameters: feature_name (:term:`string`): The name of the feature. Returns: bool: `True` if the feature is enabled, or `False` if the feature is disabled (but available). Raises: :exc:`ValueError`: Features are not supported on the HMC. :exc:`ValueError`: The specified feature is not available for the CPC. :exc:`~zhmcclient.HTTPError` :exc:`~zhmcclient.ParseError` :exc:`~zhmcclient.AuthError` :exc:`~zhmcclient.ConnectionError` """ feature_list = self.prop('available-features-list', None) if feature_list is None: raise ValueError("Firmware features are not supported on CPC %s" % self.manager.cpc.name) for feature in feature_list: if feature['name'] == feature_name: break else: raise ValueError("Firmware feature %s is not available on CPC %s" % (feature_name, self.manager.cpc.name)) return feature['state']
Indicates whether the specified feature is enabled for the CPC of this partition. The HMC must generally support features, and the specified feature must be available for the CPC. For a list of available features, see section "Features" in the :term:`HMC API`, or use the :meth:`feature_info` method. Authorization requirements: * Object-access permission to this partition. Parameters: feature_name (:term:`string`): The name of the feature. Returns: bool: `True` if the feature is enabled, or `False` if the feature is disabled (but available). Raises: :exc:`ValueError`: Features are not supported on the HMC. :exc:`ValueError`: The specified feature is not available for the CPC. :exc:`~zhmcclient.HTTPError` :exc:`~zhmcclient.ParseError` :exc:`~zhmcclient.AuthError` :exc:`~zhmcclient.ConnectionError`
def file_loc(): """Return file and line number""" import sys import inspect try: raise Exception except: file_ = '.../' + '/'.join((inspect.currentframe().f_code.co_filename.split('/'))[-3:]) line_ = sys.exc_info()[2].tb_frame.f_back.f_lineno return "{}:{}".format(file_, line_)
Return file and line number
def setup_panel_params(self, coord): """ Calculate the x & y range & breaks information for each panel Parameters ---------- coord : coord Coordinate """ if not self.panel_scales_x: raise PlotnineError('Missing an x scale') if not self.panel_scales_y: raise PlotnineError('Missing a y scale') self.panel_params = [] cols = ['SCALE_X', 'SCALE_Y'] for i, j in self.layout[cols].itertuples(index=False): i, j = i-1, j-1 params = coord.setup_panel_params( self.panel_scales_x[i], self.panel_scales_y[j]) self.panel_params.append(params)
Calculate the x & y range & breaks information for each panel Parameters ---------- coord : coord Coordinate
def as_error(self) : "fills in and returns an Error object that reports the specified error name and message." result = dbus.Error.init() result.set(self.args[0], self.args[1]) return \ result
fills in and returns an Error object that reports the specified error name and message.
def get_for_model(self, obj): """Returns the tags for a specific model/content type.""" qs = Tag.objects.language(get_language()) qs = qs.filter( tagged_items__content_type=ctype_models.ContentType.objects.get_for_model(obj)) # NOQA return qs.distinct()
Returns the tags for a specific model/content type.
def delete_pool(name): """Delete pool.""" try: pool = pool_api.delete_pool(name=name) except AirflowException as err: _log.error(err) response = jsonify(error="{}".format(err)) response.status_code = err.status_code return response else: return jsonify(pool.to_json())
Delete pool.
def serialize(script_string): ''' str -> bytearray ''' string_tokens = script_string.split() serialized_script = bytearray() for token in string_tokens: if token == 'OP_CODESEPARATOR' or token == 'OP_PUSHDATA4': raise NotImplementedError('{} is a bad idea.'.format(token)) if token in riemann.network.CODE_TO_INT_OVERWRITE: serialized_script.extend( [riemann.network.CODE_TO_INT_OVERWRITE[token]]) elif token in CODE_TO_INT: serialized_script.extend([CODE_TO_INT[token]]) else: token_bytes = bytes.fromhex(token) if len(token_bytes) <= 75: op = 'OP_PUSH_{}'.format(len(token_bytes)) serialized_script.extend([CODE_TO_INT[op]]) serialized_script.extend(token_bytes) elif len(token_bytes) > 75 and len(token_bytes) <= 255: op = 'OP_PUSHDATA1' serialized_script.extend([CODE_TO_INT[op]]) serialized_script.extend(utils.i2le(len(token_bytes))) serialized_script.extend(token_bytes) elif len(token_bytes) > 255 and len(token_bytes) <= 1000: op = 'OP_PUSHDATA2' serialized_script.extend([CODE_TO_INT[op]]) serialized_script.extend( utils.i2le_padded(len(token_bytes), 2)) serialized_script.extend(token_bytes) else: raise NotImplementedError( 'Hex string too long to serialize.') return serialized_script
str -> bytearray
def get_substrates(self, material_id, number=50, orient=None): """ Get a substrate list for a material id. The list is in order of increasing elastic energy if a elastic tensor is available for the material_id. Otherwise the list is in order of increasing matching area. Args: material_id (str): Materials Project material_id, e.g. 'mp-123'. orient (list) : substrate orientation to look for number (int) : number of substrates to return; n=0 returns all available matches Returns: list of dicts with substrate matches """ req = "/materials/{}/substrates?n={}".format(material_id, number) if orient: req += "&orient={}".format(" ".join(map(str, orient))) return self._make_request(req)
Get a substrate list for a material id. The list is in order of increasing elastic energy if a elastic tensor is available for the material_id. Otherwise the list is in order of increasing matching area. Args: material_id (str): Materials Project material_id, e.g. 'mp-123'. orient (list) : substrate orientation to look for number (int) : number of substrates to return; n=0 returns all available matches Returns: list of dicts with substrate matches
def main(): """Define the CLI inteface/commands.""" arguments = docopt(__doc__) cfg_filename = pkg_resources.resource_filename( 'knowledge_base', 'config/virtuoso.ini' ) kb = KnowledgeBase(cfg_filename) # the user has issued a `find` command if arguments["find"]: search_string = arguments["<search_string>"] try: urn = CTS_URN(search_string) match = kb.get_resource_by_urn(str(urn)) show_result(match, verbose=True) return except BadCtsUrnSyntax as e: pass except IndexError as e: raise e print("\nNo records with this CTS URN!\n") return try: matches = kb.search(search_string) print("\nSearching for \"%s\" yielded %s results" % ( search_string, len(matches) )) print_results(matches) return except SparqlReaderException as e: print("\nWildcard word needs at least 4 leading characters") # the user has issued an `add` command elif arguments["add"]: input_urn = arguments["--to"] # first let's check if it's a valid URN try: urn = CTS_URN(input_urn) except Exception as e: print("The provided URN ({}) is invalid!".format(input_urn)) return try: resource = kb.get_resource_by_urn(urn) assert resource is not None except ResourceNotFound: print("The KB does not contain a resource identified by {}".format( urn )) return print(arguments) #if arguments[""] pass
Define the CLI inteface/commands.
def one(self, command, params=None): """ Возвращает первую строку ответа, полученного через query > db.query('SELECT * FORM users WHERE id=:id', {"id":MY_USER_ID}) :param command: SQL запрос :param params: Параметры для prepared statements :rtype: dict """ dr = self.query(command, params) if dr['rows']: return dr['rows'][0] else: return None
Возвращает первую строку ответа, полученного через query > db.query('SELECT * FORM users WHERE id=:id', {"id":MY_USER_ID}) :param command: SQL запрос :param params: Параметры для prepared statements :rtype: dict
def create_actor_delaunay(pts, color, **kwargs): """ Creates a VTK actor for rendering triangulated plots using Delaunay triangulation. Keyword Arguments: * ``d3d``: flag to choose between Delaunay2D (``False``) and Delaunay3D (``True``). *Default: False* :param pts: points :type pts: vtkFloatArray :param color: actor color :type color: list :return: a VTK actor :rtype: vtkActor """ # Keyword arguments array_name = kwargs.get('name', "") array_index = kwargs.get('index', 0) use_delaunay3d = kwargs.get("d3d", False) # Create points points = vtk.vtkPoints() points.SetData(pts) # Create a PolyData object and add points polydata = vtk.vtkPolyData() polydata.SetPoints(points) # Apply Delaunay triangulation on the poly data object triangulation = vtk.vtkDelaunay3D() if use_delaunay3d else vtk.vtkDelaunay2D() triangulation.SetInputData(polydata) # Map triangulated surface to the graphics primitives mapper = vtk.vtkDataSetMapper() mapper.SetInputConnection(triangulation.GetOutputPort()) mapper.SetArrayName(array_name) mapper.SetArrayId(array_index) # Create an actor and set its properties actor = vtk.vtkActor() actor.SetMapper(mapper) actor.GetProperty().SetColor(*color) # Return the actor return actor
Creates a VTK actor for rendering triangulated plots using Delaunay triangulation. Keyword Arguments: * ``d3d``: flag to choose between Delaunay2D (``False``) and Delaunay3D (``True``). *Default: False* :param pts: points :type pts: vtkFloatArray :param color: actor color :type color: list :return: a VTK actor :rtype: vtkActor
def subdevicenames(self) -> Tuple[str, ...]: """A |tuple| containing the (sub)device names. Property |NetCDFVariableFlat.subdevicenames| clarifies which row of |NetCDFVariableAgg.array| contains which time series. For 0-dimensional series like |lland_inputs.Nied|, the plain device names are returned >>> from hydpy.core.examples import prepare_io_example_1 >>> nodes, elements = prepare_io_example_1() >>> from hydpy.core.netcdftools import NetCDFVariableFlat >>> ncvar = NetCDFVariableFlat('input_nied', isolate=False, timeaxis=1) >>> for element in elements: ... nied1 = element.model.sequences.inputs.nied ... ncvar.log(nied1, nied1.series) >>> ncvar.subdevicenames ('element1', 'element2', 'element3') For higher dimensional sequences like |lland_fluxes.NKor|, an additional suffix defines the index of the respective subdevice. For example contains the third row of |NetCDFVariableAgg.array| the time series of the first hydrological response unit of the second element: >>> ncvar = NetCDFVariableFlat('flux_nkor', isolate=False, timeaxis=1) >>> for element in elements: ... nkor1 = element.model.sequences.fluxes.nkor ... ncvar.log(nkor1, nkor1.series) >>> ncvar.subdevicenames[1:3] ('element2_0', 'element2_1') """ stats: List[str] = collections.deque() for devicename, seq in self.sequences.items(): if seq.NDIM: temp = devicename + '_' for prod in self._product(seq.shape): stats.append(temp + '_'.join(str(idx) for idx in prod)) else: stats.append(devicename) return tuple(stats)
A |tuple| containing the (sub)device names. Property |NetCDFVariableFlat.subdevicenames| clarifies which row of |NetCDFVariableAgg.array| contains which time series. For 0-dimensional series like |lland_inputs.Nied|, the plain device names are returned >>> from hydpy.core.examples import prepare_io_example_1 >>> nodes, elements = prepare_io_example_1() >>> from hydpy.core.netcdftools import NetCDFVariableFlat >>> ncvar = NetCDFVariableFlat('input_nied', isolate=False, timeaxis=1) >>> for element in elements: ... nied1 = element.model.sequences.inputs.nied ... ncvar.log(nied1, nied1.series) >>> ncvar.subdevicenames ('element1', 'element2', 'element3') For higher dimensional sequences like |lland_fluxes.NKor|, an additional suffix defines the index of the respective subdevice. For example contains the third row of |NetCDFVariableAgg.array| the time series of the first hydrological response unit of the second element: >>> ncvar = NetCDFVariableFlat('flux_nkor', isolate=False, timeaxis=1) >>> for element in elements: ... nkor1 = element.model.sequences.fluxes.nkor ... ncvar.log(nkor1, nkor1.series) >>> ncvar.subdevicenames[1:3] ('element2_0', 'element2_1')
def get_array_for_fit(observables: dict, track_pt_bin: int, jet_pt_bin: int) -> histogram.Histogram1D: """ Get a Histogram1D associated with the selected jet and track pt bins. This is often used to retrieve data for fitting. Args: observables (dict): The observables from which the hist should be retrieved. track_pt_bin (int): Track pt bin of the desired hist. jet_ptbin (int): Jet pt bin of the desired hist. Returns: Histogram1D: Converted TH1 or uproot histogram. Raises: ValueError: If the requested observable couldn't be found. """ for name, observable in observables.items(): if observable.track_pt_bin == track_pt_bin and observable.jet_pt_bin == jet_pt_bin: return histogram.Histogram1D.from_existing_hist(observable.hist) raise ValueError("Cannot find fit with jet pt bin {jet_pt_bin} and track pt bin {track_pt_bin}")
Get a Histogram1D associated with the selected jet and track pt bins. This is often used to retrieve data for fitting. Args: observables (dict): The observables from which the hist should be retrieved. track_pt_bin (int): Track pt bin of the desired hist. jet_ptbin (int): Jet pt bin of the desired hist. Returns: Histogram1D: Converted TH1 or uproot histogram. Raises: ValueError: If the requested observable couldn't be found.
def get(self, *args, **kwargs): """Retrieve a collection of objects""" self.before_get(args, kwargs) qs = QSManager(request.args, self.schema) objects_count, objects = self.get_collection(qs, kwargs) schema_kwargs = getattr(self, 'get_schema_kwargs', dict()) schema_kwargs.update({'many': True}) self.before_marshmallow(args, kwargs) schema = compute_schema(self.schema, schema_kwargs, qs, qs.include) result = schema.dump(objects).data view_kwargs = request.view_args if getattr(self, 'view_kwargs', None) is True else dict() add_pagination_links(result, objects_count, qs, url_for(self.view, _external=True, **view_kwargs)) result.update({'meta': {'count': objects_count}}) final_result = self.after_get(result) return final_result
Retrieve a collection of objects
def upload_image(vol, img, offset, parallel=1, manual_shared_memory_id=None, manual_shared_memory_bbox=None, manual_shared_memory_order='F'): """Upload img to vol with offset. This is the primary entry point for uploads.""" global NON_ALIGNED_WRITE if not np.issubdtype(img.dtype, np.dtype(vol.dtype).type): raise ValueError('The uploaded image data type must match the volume data type. volume: {}, image: {}'.format(vol.dtype, img.dtype)) (is_aligned, bounds, expanded) = check_grid_aligned(vol, img, offset) if is_aligned: upload_aligned(vol, img, offset, parallel=parallel, manual_shared_memory_id=manual_shared_memory_id, manual_shared_memory_bbox=manual_shared_memory_bbox, manual_shared_memory_order=manual_shared_memory_order) return elif vol.non_aligned_writes == False: msg = NON_ALIGNED_WRITE.format(mip=vol.mip, chunk_size=vol.chunk_size, offset=vol.voxel_offset, got=bounds, check=expanded) raise AlignmentError(msg) # Upload the aligned core retracted = bounds.shrink_to_chunk_size(vol.underlying, vol.voxel_offset) core_bbox = retracted.clone() - bounds.minpt if not core_bbox.subvoxel(): core_img = img[ core_bbox.to_slices() ] upload_aligned(vol, core_img, retracted.minpt, parallel=parallel, manual_shared_memory_id=manual_shared_memory_id, manual_shared_memory_bbox=manual_shared_memory_bbox, manual_shared_memory_order=manual_shared_memory_order) # Download the shell, paint, and upload all_chunks = set(chunknames(expanded, vol.bounds, vol.key, vol.underlying)) core_chunks = set(chunknames(retracted, vol.bounds, vol.key, vol.underlying)) shell_chunks = all_chunks.difference(core_chunks) def shade_and_upload(img3d, bbox): # decode is returning non-writable chunk # we're throwing them away so safe to write img3d.setflags(write=1) shade(img3d, bbox, img, bounds) single_process_upload(vol, img3d, (( Vec(0,0,0), Vec(*img3d.shape[:3]), bbox.minpt, bbox.maxpt),), n_threads=0) download_multiple(vol, shell_chunks, fn=shade_and_upload)
Upload img to vol with offset. This is the primary entry point for uploads.
def tuning_config(tuner, inputs, job_name=None): """Export Airflow tuning config from an estimator Args: tuner (sagemaker.tuner.HyperparameterTuner): The tuner to export tuning config from. inputs: Information about the training data. Please refer to the ``fit()`` method of the associated estimator in the tuner, as this can take any of the following forms: * (str) - The S3 location where training data is saved. * (dict[str, str] or dict[str, sagemaker.session.s3_input]) - If using multiple channels for training data, you can specify a dict mapping channel names to strings or :func:`~sagemaker.session.s3_input` objects. * (sagemaker.session.s3_input) - Channel configuration for S3 data sources that can provide additional information about the training dataset. See :func:`sagemaker.session.s3_input` for full details. * (sagemaker.amazon.amazon_estimator.RecordSet) - A collection of Amazon :class:~`Record` objects serialized and stored in S3. For use with an estimator for an Amazon algorithm. * (list[sagemaker.amazon.amazon_estimator.RecordSet]) - A list of :class:~`sagemaker.amazon.amazon_estimator.RecordSet` objects, where each instance is a different channel of training data. job_name (str): Specify a tuning job name if needed. Returns: dict: Tuning config that can be directly used by SageMakerTuningOperator in Airflow. """ train_config = training_base_config(tuner.estimator, inputs) hyperparameters = train_config.pop('HyperParameters', None) s3_operations = train_config.pop('S3Operations', None) if hyperparameters and len(hyperparameters) > 0: tuner.static_hyperparameters = \ {utils.to_str(k): utils.to_str(v) for (k, v) in hyperparameters.items()} if job_name is not None: tuner._current_job_name = job_name else: base_name = tuner.base_tuning_job_name or utils.base_name_from_image(tuner.estimator.train_image()) tuner._current_job_name = utils.name_from_base(base_name, tuner.TUNING_JOB_NAME_MAX_LENGTH, True) for hyperparameter_name in tuner._hyperparameter_ranges.keys(): tuner.static_hyperparameters.pop(hyperparameter_name, None) train_config['StaticHyperParameters'] = tuner.static_hyperparameters tune_config = { 'HyperParameterTuningJobName': tuner._current_job_name, 'HyperParameterTuningJobConfig': { 'Strategy': tuner.strategy, 'HyperParameterTuningJobObjective': { 'Type': tuner.objective_type, 'MetricName': tuner.objective_metric_name, }, 'ResourceLimits': { 'MaxNumberOfTrainingJobs': tuner.max_jobs, 'MaxParallelTrainingJobs': tuner.max_parallel_jobs, }, 'ParameterRanges': tuner.hyperparameter_ranges(), }, 'TrainingJobDefinition': train_config } if tuner.metric_definitions is not None: tune_config['TrainingJobDefinition']['AlgorithmSpecification']['MetricDefinitions'] = \ tuner.metric_definitions if tuner.tags is not None: tune_config['Tags'] = tuner.tags if s3_operations is not None: tune_config['S3Operations'] = s3_operations return tune_config
Export Airflow tuning config from an estimator Args: tuner (sagemaker.tuner.HyperparameterTuner): The tuner to export tuning config from. inputs: Information about the training data. Please refer to the ``fit()`` method of the associated estimator in the tuner, as this can take any of the following forms: * (str) - The S3 location where training data is saved. * (dict[str, str] or dict[str, sagemaker.session.s3_input]) - If using multiple channels for training data, you can specify a dict mapping channel names to strings or :func:`~sagemaker.session.s3_input` objects. * (sagemaker.session.s3_input) - Channel configuration for S3 data sources that can provide additional information about the training dataset. See :func:`sagemaker.session.s3_input` for full details. * (sagemaker.amazon.amazon_estimator.RecordSet) - A collection of Amazon :class:~`Record` objects serialized and stored in S3. For use with an estimator for an Amazon algorithm. * (list[sagemaker.amazon.amazon_estimator.RecordSet]) - A list of :class:~`sagemaker.amazon.amazon_estimator.RecordSet` objects, where each instance is a different channel of training data. job_name (str): Specify a tuning job name if needed. Returns: dict: Tuning config that can be directly used by SageMakerTuningOperator in Airflow.
def _add_trits(left, right): # type: (int, int) -> int """ Adds two individual trits together. The result is always a single trit. """ res = left + right return res if -2 < res < 2 else (res < 0) - (res > 0)
Adds two individual trits together. The result is always a single trit.