code
stringlengths
75
104k
docstring
stringlengths
1
46.9k
def flatten(iterable): """convenience tool to flatten any nested iterable example: flatten([[[],[4]],[[[5,[6,7, []]]]]]) >>> [4, 5, 6, 7] flatten('hello') >>> 'hello' Parameters ---------- iterable Returns ------- flattened object """ if isiterable(iterable): flat = [] for item in list(iterable): item = flatten(item) if not isiterable(item): item = [item] flat += item return flat else: return iterable
convenience tool to flatten any nested iterable example: flatten([[[],[4]],[[[5,[6,7, []]]]]]) >>> [4, 5, 6, 7] flatten('hello') >>> 'hello' Parameters ---------- iterable Returns ------- flattened object
def break_edge(self, from_index, to_index, to_jimage=None, allow_reverse=False): """ Remove an edge from the StructureGraph. If no image is given, this method will fail. :param from_index: int :param to_index: int :param to_jimage: tuple :param allow_reverse: If allow_reverse is True, then break_edge will attempt to break both (from_index, to_index) and, failing that, will attempt to break (to_index, from_index). :return: """ # ensure that edge exists before attempting to remove it existing_edges = self.graph.get_edge_data(from_index, to_index) existing_reverse = None if to_jimage is None: raise ValueError("Image must be supplied, to avoid ambiguity.") if existing_edges: for i, properties in existing_edges.items(): if properties["to_jimage"] == to_jimage: edge_index = i self.graph.remove_edge(from_index, to_index, edge_index) else: if allow_reverse: existing_reverse = self.graph.get_edge_data(to_index, from_index) if existing_reverse: for i, properties in existing_reverse.items(): if properties["to_jimage"] == to_jimage: edge_index = i self.graph.remove_edge(to_index, from_index, edge_index) else: raise ValueError("Edge cannot be broken between {} and {};\ no edge exists between those sites.".format( from_index, to_index ))
Remove an edge from the StructureGraph. If no image is given, this method will fail. :param from_index: int :param to_index: int :param to_jimage: tuple :param allow_reverse: If allow_reverse is True, then break_edge will attempt to break both (from_index, to_index) and, failing that, will attempt to break (to_index, from_index). :return:
def container_remove_objects(object_id, input_params={}, always_retry=False, **kwargs): """ Invokes the /container-xxxx/removeObjects API method. For more info, see: https://wiki.dnanexus.com/API-Specification-v1.0.0/Folders-and-Deletion#API-method%3A-%2Fclass-xxxx%2FremoveObjects """ return DXHTTPRequest('/%s/removeObjects' % object_id, input_params, always_retry=always_retry, **kwargs)
Invokes the /container-xxxx/removeObjects API method. For more info, see: https://wiki.dnanexus.com/API-Specification-v1.0.0/Folders-and-Deletion#API-method%3A-%2Fclass-xxxx%2FremoveObjects
def _strip_zoom(input_string, strip_string): """Return zoom level as integer or throw error.""" try: return int(input_string.strip(strip_string)) except Exception as e: raise MapcheteConfigError("zoom level could not be determined: %s" % e)
Return zoom level as integer or throw error.
def solar_position(moment, latitude, longitude, Z=0.0, T=298.15, P=101325.0, atmos_refract=0.5667): r'''Calculate the position of the sun in the sky. It is defined in terms of two angles - the zenith and the azimith. The azimuth tells where a sundial would see the sun as coming from; the zenith tells how high in the sky it is. The solar elevation angle is returned for convinience; it is the complimentary angle of the zenith. The sun's refraction changes how high it appears as though the sun is; so values are returned with an optional conversion to the aparent angle. This impacts only the zenith/elevation. Uses the Reda and Andreas (2004) model described in [1]_, originally incorporated into the excellent `pvlib library <https://github.com/pvlib/pvlib-python>`_ Parameters ---------- moment : datetime Time and date for the calculation, in local UTC time (not daylight savings time), [-] latitude : float Latitude, between -90 and 90 [degrees] longitude : float Longitude, between -180 and 180, [degrees] Z : float, optional Elevation above sea level for the solar position calculation, [m] T : float, optional Temperature of atmosphere at ground level, [K] P : float, optional Pressure of atmosphere at ground level, [Pa] atmos_refract : float, optional Atmospheric refractivity, [degrees] Returns ------- apparent_zenith : float Zenith of the sun as observed from the ground based after accounting for atmospheric refraction, [degrees] zenith : float Actual zenith of the sun (ignores atmospheric refraction), [degrees] apparent_altitude : float Altitude of the sun as observed from the ground based after accounting for atmospheric refraction, [degrees] altitude : float Actual altitude of the sun (ignores atmospheric refraction), [degrees] azimuth : float The azimuth of the sun, [degrees] equation_of_time : float Equation of time - the number of seconds to be added to the day's mean solar time to obtain the apparent solar noon time, [seconds] Examples -------- >>> solar_position(datetime(2003, 10, 17, 13, 30, 30), 45, 45) [140.8367913391112, 140.8367913391112, -50.83679133911118, -50.83679133911118, 329.9096671679604, 878.4902950980904] Sunrise occurs when the zenith is 90 degrees (Calgary, AB): >>> solar_position(datetime(2018, 4, 15, 6, 43, 5), 51.0486, -114.07)[0] 90.00054676987014 Sunrise also occurs when the zenith is 90 degrees (13.5 hours later): >>> solar_position(datetime(2018, 4, 15, 20, 30, 28), 51.0486, -114.07) [89.9995695661236, 90.54103812161853, 0.00043043387640950836, -0.5410381216185247, 286.8313781904518, 6.631429525878048] Notes ----- If you were standing at the same longitude of the sun such that it was no further east or west than you were, the amount of angle it was south or north of you is the *zenith*. If it were directly overhead it would be 0°; a little north or south and it would be a little positive; near sunset or sunrise, near 90°; and at night, between 90° and 180°. The *solar altitude angle* is defined as 90° -`zenith`. Note the *elevation* angle is just another name for the *altitude* angle. The *azimuth* the angle in degrees that the sun is East of the North angle. It is positive North eastwards 0° to 360°. Other conventions may be used. Note that due to differences in atmospheric refractivity, estimation of sunset and sunrise are accuract to no more than one minute. Refraction conditions truly vary across the atmosphere; so characterizing it by an average value is limiting as well. References ---------- .. [1] Reda, Ibrahim, and Afshin Andreas. "Solar Position Algorithm for Solar Radiation Applications." Solar Energy 76, no. 5 (January 1, 2004): 577-89. https://doi.org/10.1016/j.solener.2003.12.003. .. [2] "Navigation - What Azimuth Description Systems Are in Use? - Astronomy Stack Exchange." https://astronomy.stackexchange.com/questions/237/what-azimuth-description-systems-are-in-use?rq=1. ''' from fluids.optional import spa delta_t = spa.calculate_deltat(moment.year, moment.month) unixtime = time.mktime(moment.timetuple()) # Input pressure in milibar; input temperature in deg C result = spa.solar_position_numpy(unixtime, lat=latitude, lon=longitude, elev=Z, pressure=P*1E-2, temp=T-273.15, delta_t=delta_t, atmos_refract=atmos_refract, sst=False, esd=False) # confirmed equation of time https://www.minasi.com/figeot.asp # Convert minutes to seconds; sometimes negative, sometimes positive result[-1] = result[-1]*60.0 return result
r'''Calculate the position of the sun in the sky. It is defined in terms of two angles - the zenith and the azimith. The azimuth tells where a sundial would see the sun as coming from; the zenith tells how high in the sky it is. The solar elevation angle is returned for convinience; it is the complimentary angle of the zenith. The sun's refraction changes how high it appears as though the sun is; so values are returned with an optional conversion to the aparent angle. This impacts only the zenith/elevation. Uses the Reda and Andreas (2004) model described in [1]_, originally incorporated into the excellent `pvlib library <https://github.com/pvlib/pvlib-python>`_ Parameters ---------- moment : datetime Time and date for the calculation, in local UTC time (not daylight savings time), [-] latitude : float Latitude, between -90 and 90 [degrees] longitude : float Longitude, between -180 and 180, [degrees] Z : float, optional Elevation above sea level for the solar position calculation, [m] T : float, optional Temperature of atmosphere at ground level, [K] P : float, optional Pressure of atmosphere at ground level, [Pa] atmos_refract : float, optional Atmospheric refractivity, [degrees] Returns ------- apparent_zenith : float Zenith of the sun as observed from the ground based after accounting for atmospheric refraction, [degrees] zenith : float Actual zenith of the sun (ignores atmospheric refraction), [degrees] apparent_altitude : float Altitude of the sun as observed from the ground based after accounting for atmospheric refraction, [degrees] altitude : float Actual altitude of the sun (ignores atmospheric refraction), [degrees] azimuth : float The azimuth of the sun, [degrees] equation_of_time : float Equation of time - the number of seconds to be added to the day's mean solar time to obtain the apparent solar noon time, [seconds] Examples -------- >>> solar_position(datetime(2003, 10, 17, 13, 30, 30), 45, 45) [140.8367913391112, 140.8367913391112, -50.83679133911118, -50.83679133911118, 329.9096671679604, 878.4902950980904] Sunrise occurs when the zenith is 90 degrees (Calgary, AB): >>> solar_position(datetime(2018, 4, 15, 6, 43, 5), 51.0486, -114.07)[0] 90.00054676987014 Sunrise also occurs when the zenith is 90 degrees (13.5 hours later): >>> solar_position(datetime(2018, 4, 15, 20, 30, 28), 51.0486, -114.07) [89.9995695661236, 90.54103812161853, 0.00043043387640950836, -0.5410381216185247, 286.8313781904518, 6.631429525878048] Notes ----- If you were standing at the same longitude of the sun such that it was no further east or west than you were, the amount of angle it was south or north of you is the *zenith*. If it were directly overhead it would be 0°; a little north or south and it would be a little positive; near sunset or sunrise, near 90°; and at night, between 90° and 180°. The *solar altitude angle* is defined as 90° -`zenith`. Note the *elevation* angle is just another name for the *altitude* angle. The *azimuth* the angle in degrees that the sun is East of the North angle. It is positive North eastwards 0° to 360°. Other conventions may be used. Note that due to differences in atmospheric refractivity, estimation of sunset and sunrise are accuract to no more than one minute. Refraction conditions truly vary across the atmosphere; so characterizing it by an average value is limiting as well. References ---------- .. [1] Reda, Ibrahim, and Afshin Andreas. "Solar Position Algorithm for Solar Radiation Applications." Solar Energy 76, no. 5 (January 1, 2004): 577-89. https://doi.org/10.1016/j.solener.2003.12.003. .. [2] "Navigation - What Azimuth Description Systems Are in Use? - Astronomy Stack Exchange." https://astronomy.stackexchange.com/questions/237/what-azimuth-description-systems-are-in-use?rq=1.
def xpose6(m): """ Transpose a 6x6 matrix http://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/cspice/xpose6_c.html :param m: Matrix to be transposed :type m: list[6][6] :return: Transposed matrix :rtype: list[6][6] """ m = stypes.toDoubleMatrix(m) mout = stypes.emptyDoubleMatrix(x=6, y=6) libspice.xpose6_c(m, mout) return stypes.cMatrixToNumpy(mout)
Transpose a 6x6 matrix http://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/cspice/xpose6_c.html :param m: Matrix to be transposed :type m: list[6][6] :return: Transposed matrix :rtype: list[6][6]
def cumulative_window(group_by=None, order_by=None): """Create a cumulative window for use with aggregate window functions. All window frames / ranges are inclusive. Parameters ---------- group_by : expressions, default None Either specify here or with TableExpr.group_by order_by : expressions, default None For analytic functions requiring an ordering, specify here, or let Ibis determine the default ordering (for functions like rank) Returns ------- Window """ return Window( preceding=None, following=0, group_by=group_by, order_by=order_by )
Create a cumulative window for use with aggregate window functions. All window frames / ranges are inclusive. Parameters ---------- group_by : expressions, default None Either specify here or with TableExpr.group_by order_by : expressions, default None For analytic functions requiring an ordering, specify here, or let Ibis determine the default ordering (for functions like rank) Returns ------- Window
def download_file(url, filename=None, show_progress=draw_pbar): ''' Download a file and show progress url: the URL of the file to download filename: the filename to download it to (if not given, uses the url's filename part) show_progress: callback function to update a progress bar the show_progress function shall take two parameters: `seen` and `size`, and return nothing. This function returns the filename it has written the result to. ''' if filename is None: filename = url.split('/')[-1] r = requests.get(url, stream=True) size = int(r.headers['Content-Length'].strip()) seen = 0 show_progress(0, size) seen = 1024 with open(filename, 'wb') as f: for chunk in r.iter_content(chunk_size=1024): seen += 1024 show_progress(seen, size) if chunk: f.write(chunk) f.flush() return filename
Download a file and show progress url: the URL of the file to download filename: the filename to download it to (if not given, uses the url's filename part) show_progress: callback function to update a progress bar the show_progress function shall take two parameters: `seen` and `size`, and return nothing. This function returns the filename it has written the result to.
def fix_config(self, options): """ Fixes the options, if necessary. I.e., it adds all required elements to the dictionary. :param options: the options to fix :type options: dict :return: the (potentially) fixed options :rtype: dict """ options = super(InitStorageValue, self).fix_config(options) opt = "storage_name" if opt not in options: options[opt] = "unknown" if opt not in self.help: self.help[opt] = "The name of the storage value to delete (string)." opt = "value" if opt not in options: options[opt] = "1" if opt not in self.help: self.help[opt] = "The initial value (string)." return options
Fixes the options, if necessary. I.e., it adds all required elements to the dictionary. :param options: the options to fix :type options: dict :return: the (potentially) fixed options :rtype: dict
def closeEvent(self, event): """ things to be done when gui closes, like save the settings """ self.script_thread.quit() self.read_probes.quit() if self.config_filename: fname = self.config_filename self.save_config(fname) event.accept() print('\n\n======================================================') print('================= Closing B26 Python LAB =============') print('======================================================\n\n')
things to be done when gui closes, like save the settings
def set_send_enable(self, setting): """ Set the send enable setting on the watch """ self._pebble.send_packet(DataLogging(data=DataLoggingSetSendEnable(enabled=setting)))
Set the send enable setting on the watch
def make_headers(context: TraceContext) -> Headers: """Creates dict with zipkin headers from supplied trace context. """ headers = { TRACE_ID_HEADER: context.trace_id, SPAN_ID_HEADER: context.span_id, FLAGS_HEADER: '0', SAMPLED_ID_HEADER: '1' if context.sampled else '0', } if context.parent_id is not None: headers[PARENT_ID_HEADER] = context.parent_id return headers
Creates dict with zipkin headers from supplied trace context.
async def get_scene(self, scene_id, from_cache=True) -> Scene: """Get a scene resource instance. :raises a ResourceNotFoundException when no scene found. :raises a PvApiError when something is wrong with the hub. """ if not from_cache: await self.get_scenes() for _scene in self.scenes: if _scene.id == scene_id: return _scene raise ResourceNotFoundException("Scene not found scene_id: {}".format(scene_id))
Get a scene resource instance. :raises a ResourceNotFoundException when no scene found. :raises a PvApiError when something is wrong with the hub.
def set_server(self, server_pos, key, value): """Set the key to the value for the server_pos (position in the list).""" if zeroconf_tag and self.zeroconf_enable_tag: self.listener.set_server(server_pos, key, value)
Set the key to the value for the server_pos (position in the list).
def cmprss(delim, n, instr, lenout=_default_len_out): """ Compress a character string by removing occurrences of more than N consecutive occurrences of a specified character. http://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/cspice/cmprss_c.html :param delim: Delimiter to be compressed. :type delim: str :param n: Maximum consecutive occurrences of delim. :type n: int :param instr: Input string. :type instr: str :param lenout: Optional available space in output string. :type lenout: Optional int :return: Compressed string. :rtype: str """ delim = ctypes.c_char(delim.encode(encoding='UTF-8')) n = ctypes.c_int(n) instr = stypes.stringToCharP(instr) output = stypes.stringToCharP(lenout) libspice.cmprss_c(delim, n, instr, lenout, output) return stypes.toPythonString(output)
Compress a character string by removing occurrences of more than N consecutive occurrences of a specified character. http://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/cspice/cmprss_c.html :param delim: Delimiter to be compressed. :type delim: str :param n: Maximum consecutive occurrences of delim. :type n: int :param instr: Input string. :type instr: str :param lenout: Optional available space in output string. :type lenout: Optional int :return: Compressed string. :rtype: str
def reset (): """ Clear the module state. This is mainly for testing purposes. Note that this must be called _after_ resetting the module 'feature'. """ global __prefixes_suffixes, __suffixes_to_types, __types, __rule_names_to_types, __target_suffixes_cache __register_features () # Stores suffixes for generated targets. __prefixes_suffixes = [property.PropertyMap(), property.PropertyMap()] # Maps suffixes to types __suffixes_to_types = {} # A map with all the registered types, indexed by the type name # Each entry is a dictionary with following values: # 'base': the name of base type or None if type has no base # 'derived': a list of names of type which derive from this one # 'scanner': the scanner class registered for this type, if any __types = {} # Caches suffixes for targets with certain properties. __target_suffixes_cache = {}
Clear the module state. This is mainly for testing purposes. Note that this must be called _after_ resetting the module 'feature'.
def get_subdomain_history_neighbors(self, cursor, subdomain_rec): """ Given a subdomain record, get its neighbors. I.e. get all of the subdomain records with the previous sequence number, and get all of the subdomain records with the next sequence number Returns {'prev': [...blockchain order...], 'cur': [...blockchain order...], 'fut': [...blockchain order...]} """ # what's the subdomain's immediate prior history? hist = self.subdomain_db.get_subdomain_history(subdomain_rec.get_fqn(), include_unaccepted=True, start_sequence=subdomain_rec.n-1, end_sequence=subdomain_rec.n, cur=cursor) hist.sort(lambda h1, h2: -1 if h1.n < h2.n or (h1.n == h2.n and h1.parent_zonefile_index < h2.parent_zonefile_index) \ else 0 if h1.n == h2.n and h1.parent_zonefile_index == h2.parent_zonefile_index \ else 1) # what's the subdomain's current and immediate future? fut = self.subdomain_db.get_subdomain_history(subdomain_rec.get_fqn(), include_unaccepted=True, start_sequence=subdomain_rec.n, end_sequence=subdomain_rec.n+2, cur=cursor) fut.sort(lambda h1, h2: -1 if h1.n < h2.n or (h1.n == h2.n and h1.parent_zonefile_index < h2.parent_zonefile_index) \ else 0 if h1.n == h2.n and h1.parent_zonefile_index == h2.parent_zonefile_index \ else 1) # extract the current (conflicting) records from the future cur = [] tmp_fut = [] for f in fut: if f.n == subdomain_rec.n: cur.append(f) else: tmp_fut.append(f) fut = tmp_fut ret = {'prev': hist, 'cur': cur, 'fut': fut} return ret
Given a subdomain record, get its neighbors. I.e. get all of the subdomain records with the previous sequence number, and get all of the subdomain records with the next sequence number Returns {'prev': [...blockchain order...], 'cur': [...blockchain order...], 'fut': [...blockchain order...]}
def getTransitionProbabilities(state, action): """ Parameters ---------- state : tuple The state action : int The action Returns ------- s1, p, r : tuple of two lists and an int s1 are the next states, p are the probabilities, and r is the reward """ #assert isValid(state) assert 0 <= action < ACTIONS if not isLegal(state, action): # If the action is illegal, then transition back to the same state but # incur a high negative reward s1 = [convertTupleToIndex(state)] return(s1, [1], -10) # Update the state with the action state = list(state) state[action] = PLAYER if isWon(state, PLAYER): # If the player's action is a winning move then transition to the # winning state and receive a reward of 1. s1 = [convertTupleToIndex(state)] return(s1, [1], 1) elif isDraw(state): s1 = [convertTupleToIndex(state)] return(s1, [1], 0) # Now we search through the opponents moves, and calculate transition # probabilities based on maximising the opponents chance of winning.. s1 = [] p = [] legal_a = getLegalActions(state) for a in legal_a: state[a] = OPPONENT # If the opponent is going to win, we assume that the winning move will # be chosen: if isWon(state, OPPONENT): s1 = [convertTupleToIndex(state)] return(s1, [1], -1) elif isDraw(state): s1 = [convertTupleToIndex(state)] return(s1, [1], 0) # Otherwise we assume the opponent will select a move with uniform # probability across potential moves: s1.append(convertTupleToIndex(state)) p.append(1.0 / len(legal_a)) state[a] = 0 # During non-terminal play states the reward is 0. return(s1, p, 0)
Parameters ---------- state : tuple The state action : int The action Returns ------- s1, p, r : tuple of two lists and an int s1 are the next states, p are the probabilities, and r is the reward
def nuc_v(msg): """Calculate NUCv, Navigation Uncertainty Category - Velocity (ADS-B version 1) Args: msg (string): 28 bytes hexadecimal message string, Returns: int or string: 95% Horizontal Velocity Error int or string: 95% Vertical Velocity Error """ tc = typecode(msg) if tc != 19: raise RuntimeError("%s: Not an airborne velocity message, expecting TC = 19" % msg) msgbin = common.hex2bin(msg) NUCv = common.bin2int(msgbin[42:45]) try: HVE = uncertainty.NUCv[NUCv]['HVE'] VVE = uncertainty.NUCv[NUCv]['VVE'] except KeyError: HVE, VVE = uncertainty.NA, uncertainty.NA return HVE, VVE
Calculate NUCv, Navigation Uncertainty Category - Velocity (ADS-B version 1) Args: msg (string): 28 bytes hexadecimal message string, Returns: int or string: 95% Horizontal Velocity Error int or string: 95% Vertical Velocity Error
def clean_caches(path): """ Removes all python cache files recursively on a path. :param path: the path :return: None """ for dirname, subdirlist, filelist in os.walk(path): for f in filelist: if f.endswith('pyc'): try: os.remove(os.path.join(dirname, f)) except FileNotFoundError: pass if dirname.endswith('__pycache__'): shutil.rmtree(dirname)
Removes all python cache files recursively on a path. :param path: the path :return: None
def sync(to_install, to_uninstall, verbose=False, dry_run=False, install_flags=None): """ Install and uninstalls the given sets of modules. """ if not to_uninstall and not to_install: click.echo("Everything up-to-date") pip_flags = [] if not verbose: pip_flags += ['-q'] if to_uninstall: if dry_run: click.echo("Would uninstall:") for pkg in to_uninstall: click.echo(" {}".format(pkg)) else: check_call([sys.executable, '-m', 'pip', 'uninstall', '-y'] + pip_flags + sorted(to_uninstall)) if to_install: if install_flags is None: install_flags = [] if dry_run: click.echo("Would install:") for ireq in to_install: click.echo(" {}".format(format_requirement(ireq))) else: # prepare requirement lines req_lines = [] for ireq in sorted(to_install, key=key_from_ireq): ireq_hashes = get_hashes_from_ireq(ireq) req_lines.append(format_requirement(ireq, hashes=ireq_hashes)) # save requirement lines to a temporary file tmp_req_file = tempfile.NamedTemporaryFile(mode='wt', delete=False) tmp_req_file.write('\n'.join(req_lines)) tmp_req_file.close() try: check_call( [sys.executable, '-m', 'pip', 'install', '-r', tmp_req_file.name] + pip_flags + install_flags ) finally: os.unlink(tmp_req_file.name) return 0
Install and uninstalls the given sets of modules.
def user_data_dir(appname, appauthor=None, version=None, roaming=False): r"""Return full path to the user-specific data dir for this application. "appname" is the name of application. "appauthor" (only required and used on Windows) is the name of the appauthor or distributing body for this application. Typically it is the owning company name. "version" is an optional version path element to append to the path. You might want to use this if you want multiple versions of your app to be able to run independently. If used, this would typically be "<major>.<minor>". "roaming" (boolean, default False) can be set True to use the Windows roaming appdata directory. That means that for users on a Windows network setup for roaming profiles, this user data will be sync'd on login. See <http://technet.microsoft.com/en-us/library/cc766489(WS.10).aspx> for a discussion of issues. Typical user data directories are: Mac OS X: ~/Library/Application Support/<AppName> Unix: ~/.config/<appname> # or in $XDG_CONFIG_HOME if defined Win XP (not roaming): C:\Documents and Settings\<username>\Application Data\<AppAuthor>\<AppName> Win XP (roaming): C:\Documents and Settings\<username>\Local Settings\Application Data\<AppAuthor>\<AppName> Win 7 (not roaming): C:\Users\<username>\AppData\Local\<AppAuthor>\<AppName> Win 7 (roaming): C:\Users\<username>\AppData\Roaming\<AppAuthor>\<AppName> For Unix, we follow the XDG spec and support $XDG_CONFIG_HOME. We don't use $XDG_DATA_HOME as that data dir is mostly used at the time of installation, instead of the application adding data during runtime. Also, in practice, Linux apps tend to store their data in "~/.config/<appname>" instead of "~/.local/share/<appname>". """ if sys.platform.startswith("win"): if appauthor is None: raise AppDirsError("must specify 'appauthor' on Windows") const = roaming and "CSIDL_APPDATA" or "CSIDL_LOCAL_APPDATA" path = os.path.join(_get_win_folder(const), appauthor, appname) elif sys.platform == 'darwin': path = os.path.join( os.path.expanduser('~/Library/Application Support/'), appname) else: path = os.path.join( os.getenv('XDG_CONFIG_HOME', os.path.expanduser("~/.config")), appname.lower()) if version: path = os.path.join(path, version) return path
r"""Return full path to the user-specific data dir for this application. "appname" is the name of application. "appauthor" (only required and used on Windows) is the name of the appauthor or distributing body for this application. Typically it is the owning company name. "version" is an optional version path element to append to the path. You might want to use this if you want multiple versions of your app to be able to run independently. If used, this would typically be "<major>.<minor>". "roaming" (boolean, default False) can be set True to use the Windows roaming appdata directory. That means that for users on a Windows network setup for roaming profiles, this user data will be sync'd on login. See <http://technet.microsoft.com/en-us/library/cc766489(WS.10).aspx> for a discussion of issues. Typical user data directories are: Mac OS X: ~/Library/Application Support/<AppName> Unix: ~/.config/<appname> # or in $XDG_CONFIG_HOME if defined Win XP (not roaming): C:\Documents and Settings\<username>\Application Data\<AppAuthor>\<AppName> Win XP (roaming): C:\Documents and Settings\<username>\Local Settings\Application Data\<AppAuthor>\<AppName> Win 7 (not roaming): C:\Users\<username>\AppData\Local\<AppAuthor>\<AppName> Win 7 (roaming): C:\Users\<username>\AppData\Roaming\<AppAuthor>\<AppName> For Unix, we follow the XDG spec and support $XDG_CONFIG_HOME. We don't use $XDG_DATA_HOME as that data dir is mostly used at the time of installation, instead of the application adding data during runtime. Also, in practice, Linux apps tend to store their data in "~/.config/<appname>" instead of "~/.local/share/<appname>".
def upgrade(): """Upgrade database.""" op.create_table( 'oauthclient_remoteaccount', sa.Column('id', sa.Integer(), nullable=False), sa.Column('user_id', sa.Integer(), nullable=False), sa.Column('client_id', sa.String(length=255), nullable=False), sa.Column( 'extra_data', sqlalchemy_utils.JSONType(), nullable=False), sa.ForeignKeyConstraint(['user_id'], [u'accounts_user.id'], ), sa.PrimaryKeyConstraint('id'), sa.UniqueConstraint('user_id', 'client_id') ) op.create_table( 'oauthclient_useridentity', sa.Column('id', sa.String(length=255), nullable=False), sa.Column('method', sa.String(length=255), nullable=False), sa.Column('id_user', sa.Integer(), nullable=False), sa.ForeignKeyConstraint(['id_user'], [u'accounts_user.id'], ), sa.PrimaryKeyConstraint('id', 'method') ) op.create_index( 'useridentity_id_user_method', 'oauthclient_useridentity', ['id_user', 'method'], unique=True ) op.create_table( 'oauthclient_remotetoken', sa.Column('id_remote_account', sa.Integer(), nullable=False), sa.Column('token_type', sa.String(length=40), nullable=False), sa.Column( 'access_token', sqlalchemy_utils.EncryptedType(), nullable=False), sa.Column('secret', sa.Text(), nullable=False), sa.ForeignKeyConstraint( ['id_remote_account'], [u'oauthclient_remoteaccount.id'], name='fk_oauthclient_remote_token_remote_account' ), sa.PrimaryKeyConstraint('id_remote_account', 'token_type') )
Upgrade database.
def build(self, pre=None, shortest=False): """Build this rule definition :param list pre: The prerequisites list :param bool shortest: Whether or not the shortest reference-chain (most minimal) version of the field should be generated. """ if pre is None: pre = [] res = deque() for value in self.values: try: res.append(utils.val(value, pre, shortest=shortest)) except errors.FlushGrams as e: prev = "".join(res) res.clear() # this is assuming a scope was pushed! if len(self.fuzzer._scope_stack) == 1: pre.append(prev) else: stmts = self.fuzzer._curr_scope.setdefault("prev_append", deque()) stmts.extend(pre) stmts.append(prev) pre.clear() continue except errors.OptGram as e: continue except errors.GramFuzzError as e: print("{} : {}".format(self.name, str(e))) raise return self.sep.join(res)
Build this rule definition :param list pre: The prerequisites list :param bool shortest: Whether or not the shortest reference-chain (most minimal) version of the field should be generated.
def connect(self, name, func, sender=None, dispatch_uid=None): """ Connects a function to a hook.\ Creates the hook (name) if it does not exists :param str name: The hook name :param callable func: A function reference used as a callback :param class sender: Optional sender __class__ to which the\ func should respond. Default will match all :param str dispatch_uid: Optional unique id,\ see :py:class:`django.dispatch.Signal` for more info """ try: signal = self._registry[name] except KeyError: signal = self.register(name) signal.connect(func, sender=sender, dispatch_uid=dispatch_uid)
Connects a function to a hook.\ Creates the hook (name) if it does not exists :param str name: The hook name :param callable func: A function reference used as a callback :param class sender: Optional sender __class__ to which the\ func should respond. Default will match all :param str dispatch_uid: Optional unique id,\ see :py:class:`django.dispatch.Signal` for more info
def pretty_size(value): """Convert a number of bytes into a human-readable string. Output is 2...5 characters. Values >= 1000 always produce output in form: x.xxxU, xx.xxU, xxxU, xxxxU. """ exp = int(math.log(value, 1024)) if value > 0 else 0 unit = 'bkMGTPEZY'[exp] if exp == 0: return '%d%s' % (value, unit) # value < 1024, result is always without fractions unit_value = value / (1024.0 ** exp) # value in the relevant units places = int(math.log(unit_value, 10)) # number of digits before decimal point return '%.*f%s' % (2 - places, unit_value, unit)
Convert a number of bytes into a human-readable string. Output is 2...5 characters. Values >= 1000 always produce output in form: x.xxxU, xx.xxU, xxxU, xxxxU.
def _cmptimestamps(self, filest1, filest2): """ Compare time stamps of two files and return True if file1 (source) is more recent than file2 (target) """ mtime_cmp = int((filest1.st_mtime - filest2.st_mtime) * 1000) > 0 if self._use_ctime: return mtime_cmp or \ int((filest1.st_ctime - filest2.st_mtime) * 1000) > 0 else: return mtime_cmp
Compare time stamps of two files and return True if file1 (source) is more recent than file2 (target)
def delete(self, id): """DELETE /mapfiles/id: Delete an existing mapfile owned by the current user. Deletion of the map entry in db and remove mapfile from filesystem. """ map = self._delete_map_from_user_by_id(c.user, id) if map is None: abort(404) if os.path.exists(os.path.join(config['mapfiles_dir'], map.filepath)): os.unlink(os.path.join(config['mapfiles_dir'], map.filepath)) response.status = 204 # remove content-type from response headers so that webtest won't get confused # http://groups.google.com/group/pylons-discuss/browse_thread/thread/1267650386ae521b del response.headers['content-type'] return
DELETE /mapfiles/id: Delete an existing mapfile owned by the current user. Deletion of the map entry in db and remove mapfile from filesystem.
def _Open(self, path_spec, mode='rb'): """Opens the file system defined by path specification. Args: path_spec (PathSpec): a path specification. mode (Optional[str]): file access mode. The default is 'rb' which represents read-only binary. Raises: AccessError: if the access to open the file was denied. IOError: if the file system could not be opened. PathSpecError: if the path specification is incorrect. ValueError: if the path specification is invalid. """ if not path_spec.HasParent(): raise errors.PathSpecError( 'Unsupported path specification without parent.') range_offset = getattr(path_spec, 'range_offset', None) if range_offset is None: raise errors.PathSpecError( 'Unsupported path specification without encoding method.') range_size = getattr(path_spec, 'range_size', None) if range_size is None: raise errors.PathSpecError( 'Unsupported path specification without encoding method.') self._range_offset = range_offset self._range_size = range_size
Opens the file system defined by path specification. Args: path_spec (PathSpec): a path specification. mode (Optional[str]): file access mode. The default is 'rb' which represents read-only binary. Raises: AccessError: if the access to open the file was denied. IOError: if the file system could not be opened. PathSpecError: if the path specification is incorrect. ValueError: if the path specification is invalid.
def file_delete(context, id, file_id): """file_delete(context, id, path) Delete a component file >>> dcictl component-file-delete [OPTIONS] :param string id: ID of the component to delete file [required] :param string file_id: ID for the file to delete [required] """ component.file_delete(context, id=id, file_id=file_id)
file_delete(context, id, path) Delete a component file >>> dcictl component-file-delete [OPTIONS] :param string id: ID of the component to delete file [required] :param string file_id: ID for the file to delete [required]
def build_path(graph, node1, node2, path=None): """ Build the path from node1 to node2. The path is composed of all the nodes between node1 and node2, node1 excluded. Although if there is a loop starting from node1, it will be included in the path. """ if path is None: path = [] if node1 is node2: return path path.append(node2) for pred in graph.all_preds(node2): if pred in path: continue build_path(graph, node1, pred, path) return path
Build the path from node1 to node2. The path is composed of all the nodes between node1 and node2, node1 excluded. Although if there is a loop starting from node1, it will be included in the path.
def attention_lm_base(): """Set of hyperparameters.""" hparams = common_hparams.basic_params1() hparams.hidden_size = 1024 hparams.batch_size = 8192 hparams.max_length = 256 hparams.dropout = 0.0 hparams.clip_grad_norm = 0. # i.e. no gradient clipping hparams.optimizer_adam_epsilon = 1e-9 hparams.learning_rate_decay_scheme = "noam" hparams.learning_rate = 0.1 hparams.learning_rate_warmup_steps = 2000 hparams.initializer_gain = 1.0 hparams.num_hidden_layers = 6 hparams.initializer = "uniform_unit_scaling" hparams.weight_decay = 0.0 hparams.optimizer_adam_beta1 = 0.9 hparams.optimizer_adam_beta2 = 0.98 hparams.label_smoothing = 0.0 hparams.shared_embedding_and_softmax_weights = False hparams.add_hparam("filter_size", 4096) # Add new ones like this. # attention-related flags hparams.add_hparam("num_heads", 8) hparams.add_hparam("attention_key_channels", 0) hparams.add_hparam("attention_value_channels", 0) # All hyperparameters ending in "dropout" are automatically set to 0.0 # when not in training mode. hparams.add_hparam("attention_dropout", 0.0) hparams.add_hparam("relu_dropout", 0.0) hparams.add_hparam("pos", "timing") # timing, none hparams.add_hparam("encoder_full_attention", False) return hparams
Set of hyperparameters.
def copy( self, name, start_codons=None, stop_codons=None, codon_table=None, codon_table_changes=None): """ Make copy of this GeneticCode object with optional replacement values for all fields. """ new_start_codons = ( self.start_codons.copy() if start_codons is None else start_codons) new_stop_codons = ( self.stop_codons.copy() if stop_codons is None else stop_codons) new_codon_table = ( self.codon_table.copy() if codon_table is None else codon_table) if codon_table_changes is not None: new_codon_table.update(codon_table_changes) return GeneticCode( name=name, start_codons=new_start_codons, stop_codons=new_stop_codons, codon_table=new_codon_table)
Make copy of this GeneticCode object with optional replacement values for all fields.
def usage(): """ Illustrate what the various input flags are and the options should be. :return: none """ global g_script_name # name of the script being run. print("") print("Usage: " + g_script_name + " [...options...]") print("") print(" --help print out this help menu and show all the valid flags and inputs.") print("") print(" --inputfileadd filename where the new java messages to ignore are stored in.") print("") print(" --inputfilerm filename where the java messages are removed from the ignored list.") print("") print(" --loadjavamessage filename pickle file that stores the dict structure containing java messages to include.") print("") print(" --savejavamessage filename pickle file that saves the final dict structure after update.") print("") print(" --printjavamessage filename print java ignored java messages stored in pickle file filenam onto console and save into a text file.") print("") sys.exit(1)
Illustrate what the various input flags are and the options should be. :return: none
def _extract_symbols(self, symbols, default=None): """! @brief Fill 'symbols' field with required flash algo symbols""" to_ret = {} for symbol in symbols: symbolInfo = self.elf.symbol_decoder.get_symbol_for_name(symbol) if symbolInfo is None: if default is not None: to_ret[symbol] = default continue raise FlashAlgoException("Missing symbol %s" % symbol) to_ret[symbol] = symbolInfo.address return to_ret
! @brief Fill 'symbols' field with required flash algo symbols
def add_values_to_bundle_safe(connection, bundle, values): """ Adds values to specified bundle. Checks, whether each value already contains in bundle. If yes, it is not added. Args: connection: An opened Connection instance. bundle: Bundle instance to add values in. values: Values, that should be added in bundle. Raises: YouTrackException: if something is wrong with queries. """ for value in values: try: connection.addValueToBundle(bundle, value) except YouTrackException as e: if e.response.status == 409: print("Value with name [ %s ] already exists in bundle [ %s ]" % (utf8encode(value.name), utf8encode(bundle.name))) else: raise e
Adds values to specified bundle. Checks, whether each value already contains in bundle. If yes, it is not added. Args: connection: An opened Connection instance. bundle: Bundle instance to add values in. values: Values, that should be added in bundle. Raises: YouTrackException: if something is wrong with queries.
def get(self, key): """Get a document by id.""" doc = self._collection.find_one({'_id': key}) if doc: doc.pop('_id') return doc
Get a document by id.
def infos(self): ''' dict: The summation of all data available about the extracted article Note: Read only ''' data = { "meta": { "description": self.meta_description, "lang": self.meta_lang, "keywords": self.meta_keywords, "favicon": self.meta_favicon, "canonical": self.canonical_link, "encoding": self.meta_encoding }, "image": None, "domain": self.domain, "title": self.title, "cleaned_text": self.cleaned_text, "opengraph": self.opengraph, "tags": self.tags, "tweets": self.tweets, "movies": [], "links": self.links, "authors": self.authors, "publish_date": self.publish_date } # image if self.top_image is not None: data['image'] = { 'url': self.top_image.src, 'width': self.top_image.width, 'height': self.top_image.height, 'type': 'image' } # movies for movie in self.movies: data['movies'].append({ 'embed_type': movie.embed_type, 'provider': movie.provider, 'width': movie.width, 'height': movie.height, 'embed_code': movie.embed_code, 'src': movie.src, }) return data
dict: The summation of all data available about the extracted article Note: Read only
def direction_vector(self, angle): ''' Returns a unit vector, pointing in the arc's movement direction at a given (absolute) angle (in degrees). No check is made whether angle lies within the arc's span (the results for angles outside of the arc's span ) Returns a 2x1 numpy array. >>> a = Arc((0, 0), 1, 0, 90, True) >>> assert all(abs(a.direction_vector(0) - np.array([0.0, 1.0])) < tol) >>> assert all(abs(a.direction_vector(45) - np.array([ -0.70710678, 0.70710678])) < 1e-6) >>> assert all(abs(a.direction_vector(90) - np.array([-1.0, 0.0])) < tol) >>> assert all(abs(a.direction_vector(135) - np.array([-0.70710678, -0.70710678])) < 1e-6) >>> assert all(abs(a.direction_vector(-180) - np.array([0.0, -1.0])) < tol) >>> assert all(abs(a.direction_vector(-90) - np.array([1.0, 0.0])) < tol) >>> a = a.reversed() >>> assert all(abs(a.direction_vector(0) - np.array([0.0, -1.0])) < tol) >>> assert all(abs(a.direction_vector(45) - np.array([ 0.70710678, -0.70710678])) < 1e-6) >>> assert all(abs(a.direction_vector(90) - np.array([1.0, 0.0])) < tol) >>> assert all(abs(a.direction_vector(135) - np.array([0.70710678, 0.70710678])) < 1e-6) >>> assert all(abs(a.direction_vector(-180) - np.array([0.0, 1.0])) < tol) >>> assert all(abs(a.direction_vector(-90) - np.array([-1.0, 0.0])) < tol) ''' a = angle + self.sign * 90 a = a * np.pi / 180.0 return np.array([np.cos(a), np.sin(a)])
Returns a unit vector, pointing in the arc's movement direction at a given (absolute) angle (in degrees). No check is made whether angle lies within the arc's span (the results for angles outside of the arc's span ) Returns a 2x1 numpy array. >>> a = Arc((0, 0), 1, 0, 90, True) >>> assert all(abs(a.direction_vector(0) - np.array([0.0, 1.0])) < tol) >>> assert all(abs(a.direction_vector(45) - np.array([ -0.70710678, 0.70710678])) < 1e-6) >>> assert all(abs(a.direction_vector(90) - np.array([-1.0, 0.0])) < tol) >>> assert all(abs(a.direction_vector(135) - np.array([-0.70710678, -0.70710678])) < 1e-6) >>> assert all(abs(a.direction_vector(-180) - np.array([0.0, -1.0])) < tol) >>> assert all(abs(a.direction_vector(-90) - np.array([1.0, 0.0])) < tol) >>> a = a.reversed() >>> assert all(abs(a.direction_vector(0) - np.array([0.0, -1.0])) < tol) >>> assert all(abs(a.direction_vector(45) - np.array([ 0.70710678, -0.70710678])) < 1e-6) >>> assert all(abs(a.direction_vector(90) - np.array([1.0, 0.0])) < tol) >>> assert all(abs(a.direction_vector(135) - np.array([0.70710678, 0.70710678])) < 1e-6) >>> assert all(abs(a.direction_vector(-180) - np.array([0.0, 1.0])) < tol) >>> assert all(abs(a.direction_vector(-90) - np.array([-1.0, 0.0])) < tol)
def pop(self, pair, default=None): """ Removes the **pair** from the Kerning and returns the value as an ``int``. If no pair is found, **default** is returned. **pair** is a ``tuple`` of two :ref:`type-string`\s. This must return either **default** or a :ref:`type-int-float`. >>> font.kerning.pop(("A", "V")) -20 >>> font.kerning.pop(("A", "W")) -10.5 """ return super(BaseKerning, self).pop(pair, default)
Removes the **pair** from the Kerning and returns the value as an ``int``. If no pair is found, **default** is returned. **pair** is a ``tuple`` of two :ref:`type-string`\s. This must return either **default** or a :ref:`type-int-float`. >>> font.kerning.pop(("A", "V")) -20 >>> font.kerning.pop(("A", "W")) -10.5
def char_between(lower, upper, func_name): '''return current char and step if char is between lower and upper, where @test: a python function with one argument, which tests on one char and return True or False @test must be registered with register_function''' function = register_function(func_name, lambda char: lower<=char<=upper) return char_on_predicate(function)
return current char and step if char is between lower and upper, where @test: a python function with one argument, which tests on one char and return True or False @test must be registered with register_function
def returnValueList(self, key_list, last=False): '''Return a list of key values for the first entry in the current list. If 'last=True', then the last entry is referenced." Returns None is the list is empty. If a key is missing, then that entry in the list is None. Example of use: >>> test = [ ... {"name": "Jim", "age": 18, "income": 93000, "order": 2}, ... {"name": "Larry", "age": 18, "order": 3}, ... {"name": "Joe", "age": 20, "income": 15000, "order": 1}, ... {"name": "Bill", "age": 19, "income": 29000, "order": 4}, ... ] >>> print PLOD(test).returnValueList(["name", "income"]) ['Jim', 93000] >>> print PLOD(test).sort("name").returnValueList(["name", "income"], last=True) ['Larry', None] :param last: If True, the last entry is used rather than the first. :return: A value, or None if the list is empty. ''' result = [] row = self.returnOneEntry(last=last) if not row: return None dict_row = internal.convert_to_dict(row) for field in key_list: result.append(dict_row.get(field, None)) return result
Return a list of key values for the first entry in the current list. If 'last=True', then the last entry is referenced." Returns None is the list is empty. If a key is missing, then that entry in the list is None. Example of use: >>> test = [ ... {"name": "Jim", "age": 18, "income": 93000, "order": 2}, ... {"name": "Larry", "age": 18, "order": 3}, ... {"name": "Joe", "age": 20, "income": 15000, "order": 1}, ... {"name": "Bill", "age": 19, "income": 29000, "order": 4}, ... ] >>> print PLOD(test).returnValueList(["name", "income"]) ['Jim', 93000] >>> print PLOD(test).sort("name").returnValueList(["name", "income"], last=True) ['Larry', None] :param last: If True, the last entry is used rather than the first. :return: A value, or None if the list is empty.
def apply_new_scoped_variable_type(self, path, new_variable_type_str): """Applies the new data type of the scoped variable defined by path :param str path: The path identifying the edited variable :param str new_variable_type_str: New data type as str """ data_port_id = self.list_store[path][self.ID_STORAGE_ID] try: if self.model.state.scoped_variables[data_port_id].data_type.__name__ != new_variable_type_str: self.model.state.scoped_variables[data_port_id].change_data_type(new_variable_type_str) except ValueError as e: logger.error("Error while changing data type: {0}".format(e))
Applies the new data type of the scoped variable defined by path :param str path: The path identifying the edited variable :param str new_variable_type_str: New data type as str
def normalize_sort(sort=None): """ CONVERT SORT PARAMETERS TO A NORMAL FORM SO EASIER TO USE """ if not sort: return Null output = FlatList() for s in listwrap(sort): if is_text(s) or mo_math.is_integer(s): output.append({"value": s, "sort": 1}) elif not s.field and not s.value and s.sort==None: #ASSUME {name: sort} FORM for n, v in s.items(): output.append({"value": n, "sort": sort_direction[v]}) else: output.append({"value": coalesce(s.field, s.value), "sort": coalesce(sort_direction[s.sort], 1)}) return wrap(output)
CONVERT SORT PARAMETERS TO A NORMAL FORM SO EASIER TO USE
def zpk2tf(z, p, k): r"""Return polynomial transfer function representation from zeros and poles :param ndarray z: Zeros of the transfer function. :param ndarray p: Poles of the transfer function. :param float k: System gain. :return: b : ndarray Numerator polynomial. a : ndarray Numerator and denominator polynomials. :func:`zpk2tf` forms transfer function polynomials from the zeros, poles, and gains of a system in factored form. zpk2tf(z,p,k) finds a rational transfer function .. math:: \frac{B(s)}{A(s)} = \frac{b_1 s^{n-1}+\dots b_{n-1}s+b_n}{a_1 s^{m-1}+\dots a_{m-1}s+a_m} given a system in factored transfer function form .. math:: H(s) = \frac{Z(s)}{P(s)} = k \frac{(s-z_1)(s-z_2)\dots(s-z_m)}{(s-p_1)(s-p_2)\dots(s-p_n)} with p being the pole locations, and z the zero locations, with as many. The gains for each numerator transfer function are in vector k. The zeros and poles must be real or come in complex conjugate pairs. The polynomial denominator coefficients are returned in row vector a and the polynomial numerator coefficients are returned in matrix b, which has as many rows as there are columns of z. Inf values can be used as place holders in z if some columns have fewer zeros than others. .. note:: wrapper of scipy function zpk2tf """ import scipy.signal b, a = scipy.signal.zpk2tf(z, p, k) return b, a
r"""Return polynomial transfer function representation from zeros and poles :param ndarray z: Zeros of the transfer function. :param ndarray p: Poles of the transfer function. :param float k: System gain. :return: b : ndarray Numerator polynomial. a : ndarray Numerator and denominator polynomials. :func:`zpk2tf` forms transfer function polynomials from the zeros, poles, and gains of a system in factored form. zpk2tf(z,p,k) finds a rational transfer function .. math:: \frac{B(s)}{A(s)} = \frac{b_1 s^{n-1}+\dots b_{n-1}s+b_n}{a_1 s^{m-1}+\dots a_{m-1}s+a_m} given a system in factored transfer function form .. math:: H(s) = \frac{Z(s)}{P(s)} = k \frac{(s-z_1)(s-z_2)\dots(s-z_m)}{(s-p_1)(s-p_2)\dots(s-p_n)} with p being the pole locations, and z the zero locations, with as many. The gains for each numerator transfer function are in vector k. The zeros and poles must be real or come in complex conjugate pairs. The polynomial denominator coefficients are returned in row vector a and the polynomial numerator coefficients are returned in matrix b, which has as many rows as there are columns of z. Inf values can be used as place holders in z if some columns have fewer zeros than others. .. note:: wrapper of scipy function zpk2tf
def start_trace(reset=True, filter_func=None, time_filter_func=None): """Begins a trace. Setting reset to True will reset all previously recorded trace data. filter_func needs to point to a callable function that accepts the parameters (call_stack, module_name, class_name, func_name, full_name). Every call will be passed into this function and it is up to the function to decide if it should be included or not. Returning False means the call will be filtered out and not included in the call graph. """ global trace_filter global time_filter if reset: reset_trace() if filter_func: trace_filter = filter_func else: trace_filter = GlobbingFilter(exclude=['pycallgraph.*']) if time_filter_func: time_filter = time_filter_func else: time_filter = GlobbingFilter() sys.settrace(tracer)
Begins a trace. Setting reset to True will reset all previously recorded trace data. filter_func needs to point to a callable function that accepts the parameters (call_stack, module_name, class_name, func_name, full_name). Every call will be passed into this function and it is up to the function to decide if it should be included or not. Returning False means the call will be filtered out and not included in the call graph.
def count_if(predicate, seq): """Count the number of elements of seq for which the predicate is true. >>> count_if(callable, [42, None, max, min]) 2 """ f = lambda count, x: count + (not not predicate(x)) return reduce(f, seq, 0)
Count the number of elements of seq for which the predicate is true. >>> count_if(callable, [42, None, max, min]) 2
def _gather_all_deps(self, args, kwargs): """Count the number of unresolved futures on which a task depends. Args: - args (List[args]) : The list of args list to the fn - kwargs (Dict{kwargs}) : The dict of all kwargs passed to the fn Returns: - count, [list of dependencies] """ # Check the positional args depends = [] count = 0 for dep in args: if isinstance(dep, Future): if self.tasks[dep.tid]['status'] not in FINAL_STATES: count += 1 depends.extend([dep]) # Check for explicit kwargs ex, fu_1=<fut> for key in kwargs: dep = kwargs[key] if isinstance(dep, Future): if self.tasks[dep.tid]['status'] not in FINAL_STATES: count += 1 depends.extend([dep]) # Check for futures in inputs=[<fut>...] for dep in kwargs.get('inputs', []): if isinstance(dep, Future): if self.tasks[dep.tid]['status'] not in FINAL_STATES: count += 1 depends.extend([dep]) return count, depends
Count the number of unresolved futures on which a task depends. Args: - args (List[args]) : The list of args list to the fn - kwargs (Dict{kwargs}) : The dict of all kwargs passed to the fn Returns: - count, [list of dependencies]
def register(self, what, obj): """ Registering a plugin Params ------ what: Nature of the plugin (backend, instrumentation, repo) obj: Instance of the plugin """ # print("Registering pattern", name, pattern) name = obj.name version = obj.version enable = obj.enable if enable == 'n': return key = Key(name, version) self.plugins[what][key] = obj
Registering a plugin Params ------ what: Nature of the plugin (backend, instrumentation, repo) obj: Instance of the plugin
def validate_xml_text(text): """validates XML text""" bad_chars = __INVALID_XML_CHARS & set(text) if bad_chars: for offset,c in enumerate(text): if c in bad_chars: raise RuntimeError('invalid XML character: ' + repr(c) + ' at offset ' + str(offset))
validates XML text
def get_feature_by_path(self, locus, term, rank, accession, **kwargs): """ Retrieve an enumerated sequence feature This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.get_feature_by_path(locus, term, rank, accession, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str locus: locus name or URI (required) :param str term: Sequence Ontology (SO) term name, accession, or URI (required) :param int rank: feature rank, must be at least 1 (required) :param int accession: accession, must be at least 1 (required) :return: Feature If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.get_feature_by_path_with_http_info(locus, term, rank, accession, **kwargs) else: (data) = self.get_feature_by_path_with_http_info(locus, term, rank, accession, **kwargs) return data
Retrieve an enumerated sequence feature This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.get_feature_by_path(locus, term, rank, accession, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str locus: locus name or URI (required) :param str term: Sequence Ontology (SO) term name, accession, or URI (required) :param int rank: feature rank, must be at least 1 (required) :param int accession: accession, must be at least 1 (required) :return: Feature If the method is called asynchronously, returns the request thread.
def _reaction_po_to_dict(tokens) -> Reaction: """Convert a reaction parse object to a DSL. :type tokens: ParseResult """ return Reaction( reactants=_reaction_part_po_to_dict(tokens[REACTANTS]), products=_reaction_part_po_to_dict(tokens[PRODUCTS]), )
Convert a reaction parse object to a DSL. :type tokens: ParseResult
def _radec(self,*args,**kwargs): """Calculate ra and dec""" lbd= self._lbd(*args,**kwargs) return coords.lb_to_radec(lbd[:,0],lbd[:,1],degree=True,epoch=None)
Calculate ra and dec
def configureIAMCredentials(self, AWSAccessKeyID, AWSSecretAccessKey, AWSSessionToken=""): """ **Description** Used to configure/update the custom IAM credentials for Websocket SigV4 connection to AWS IoT. Should be called before connect. **Syntax** .. code:: python myAWSIoTMQTTClient.configureIAMCredentials(obtainedAccessKeyID, obtainedSecretAccessKey, obtainedSessionToken) .. note:: Hard-coding credentials into custom script is NOT recommended. Please use AWS Cognito identity service or other credential provider. **Parameters** *AWSAccessKeyID* - AWS Access Key Id from user-specific IAM credentials. *AWSSecretAccessKey* - AWS Secret Access Key from user-specific IAM credentials. *AWSSessionToken* - AWS Session Token for temporary authentication from STS. **Returns** None """ iam_credentials_provider = IAMCredentialsProvider() iam_credentials_provider.set_access_key_id(AWSAccessKeyID) iam_credentials_provider.set_secret_access_key(AWSSecretAccessKey) iam_credentials_provider.set_session_token(AWSSessionToken) self._mqtt_core.configure_iam_credentials(iam_credentials_provider)
**Description** Used to configure/update the custom IAM credentials for Websocket SigV4 connection to AWS IoT. Should be called before connect. **Syntax** .. code:: python myAWSIoTMQTTClient.configureIAMCredentials(obtainedAccessKeyID, obtainedSecretAccessKey, obtainedSessionToken) .. note:: Hard-coding credentials into custom script is NOT recommended. Please use AWS Cognito identity service or other credential provider. **Parameters** *AWSAccessKeyID* - AWS Access Key Id from user-specific IAM credentials. *AWSSecretAccessKey* - AWS Secret Access Key from user-specific IAM credentials. *AWSSessionToken* - AWS Session Token for temporary authentication from STS. **Returns** None
def _invalid_implementation(self, t, missing, mistyped, mismatched): """ Make a TypeError explaining why ``t`` doesn't implement our interface. """ assert missing or mistyped or mismatched, "Implementation wasn't invalid." message = "\nclass {C} failed to implement interface {I}:".format( C=getname(t), I=getname(self), ) if missing: message += dedent( """ The following methods of {I} were not implemented: {missing_methods}""" ).format( I=getname(self), missing_methods=self._format_missing_methods(missing) ) if mistyped: message += dedent( """ The following methods of {I} were implemented with incorrect types: {mismatched_types}""" ).format( I=getname(self), mismatched_types=self._format_mismatched_types(mistyped), ) if mismatched: message += dedent( """ The following methods of {I} were implemented with invalid signatures: {mismatched_methods}""" ).format( I=getname(self), mismatched_methods=self._format_mismatched_methods(mismatched), ) return InvalidImplementation(message)
Make a TypeError explaining why ``t`` doesn't implement our interface.
def redistribute_threads(blockdimx, blockdimy, blockdimz, dimx, dimy, dimz): """ Redistribute threads from the Z dimension towards the X dimension. Also clamp number of threads to the problem dimension size, if necessary """ # Shift threads from the z dimension # into the y dimension while blockdimz > dimz: tmp = blockdimz // 2 if tmp < dimz: break blockdimy *= 2 blockdimz = tmp # Shift threads from the y dimension # into the x dimension while blockdimy > dimy: tmp = blockdimy // 2 if tmp < dimy: break blockdimx *= 2 blockdimy = tmp # Clamp the block dimensions # if necessary if dimx < blockdimx: blockdimx = dimx if dimy < blockdimy: blockdimy = dimy if dimz < blockdimz: blockdimz = dimz return blockdimx, blockdimy, blockdimz
Redistribute threads from the Z dimension towards the X dimension. Also clamp number of threads to the problem dimension size, if necessary
def set_dimmer_start_time(self, hour, minute): """Set start time for task (hh:mm) in iso8601. NB: dimmer starts 30 mins before time in app """ # This is to calculate the difference between local time # and the time in the gateway d1 = self._gateway.get_gateway_info().current_time d2 = dt.utcnow() diff = d1 - d2 newtime = dt(100, 1, 1, hour, minute, 00) - diff command = { ATTR_SMART_TASK_TRIGGER_TIME_INTERVAL: [{ ATTR_SMART_TASK_TRIGGER_TIME_START_HOUR: newtime.hour, ATTR_SMART_TASK_TRIGGER_TIME_START_MIN: newtime.minute }] } return self._task.set_values(command)
Set start time for task (hh:mm) in iso8601. NB: dimmer starts 30 mins before time in app
def create(*context, **kwargs): """ Build a ContextStack instance from a sequence of context-like items. This factory-style method is more general than the ContextStack class's constructor in that, unlike the constructor, the argument list can itself contain ContextStack instances. Here is an example illustrating various aspects of this method: >>> obj1 = {'animal': 'cat', 'vegetable': 'carrot', 'mineral': 'copper'} >>> obj2 = ContextStack({'vegetable': 'spinach', 'mineral': 'silver'}) >>> >>> context = ContextStack.create(obj1, None, obj2, mineral='gold') >>> >>> context.get('animal') 'cat' >>> context.get('vegetable') 'spinach' >>> context.get('mineral') 'gold' Arguments: *context: zero or more dictionaries, ContextStack instances, or objects with which to populate the initial context stack. None arguments will be skipped. Items in the *context list are added to the stack in order so that later items in the argument list take precedence over earlier items. This behavior is the same as the constructor's. **kwargs: additional key-value data to add to the context stack. As these arguments appear after all items in the *context list, in the case of key conflicts these values take precedence over all items in the *context list. This behavior is the same as the constructor's. """ items = context context = ContextStack() for item in items: if item is None: continue if isinstance(item, ContextStack): context._stack.extend(item._stack) else: context.push(item) if kwargs: context.push(kwargs) return context
Build a ContextStack instance from a sequence of context-like items. This factory-style method is more general than the ContextStack class's constructor in that, unlike the constructor, the argument list can itself contain ContextStack instances. Here is an example illustrating various aspects of this method: >>> obj1 = {'animal': 'cat', 'vegetable': 'carrot', 'mineral': 'copper'} >>> obj2 = ContextStack({'vegetable': 'spinach', 'mineral': 'silver'}) >>> >>> context = ContextStack.create(obj1, None, obj2, mineral='gold') >>> >>> context.get('animal') 'cat' >>> context.get('vegetable') 'spinach' >>> context.get('mineral') 'gold' Arguments: *context: zero or more dictionaries, ContextStack instances, or objects with which to populate the initial context stack. None arguments will be skipped. Items in the *context list are added to the stack in order so that later items in the argument list take precedence over earlier items. This behavior is the same as the constructor's. **kwargs: additional key-value data to add to the context stack. As these arguments appear after all items in the *context list, in the case of key conflicts these values take precedence over all items in the *context list. This behavior is the same as the constructor's.
def _make_r_patches(data, K_g, critical_r, indices, approx): '''Helper function for :py:func:`.make_r_gaussmix` and :py:func:`.make_r_tmix`. Group the ``data`` according to the R value and split each group into ``K_g`` patches. Return the patch means and covariances. For details see the docstrings of the above mentioned functions. ''' def append_components(means, covs, data, partition): subdata_start = 0 subdata_stop = partition[0] for len_subdata in partition: subdata = data[subdata_start:subdata_stop] means.append( _np.mean(subdata, axis=0) ) covs.append ( _np.cov (subdata, rowvar=0) ) subdata_start += len_subdata subdata_stop += len_subdata n = len(data[0]) for item in data: assert len(item) == n, 'Every chain must bring the same number of points.' data = [_np.asarray(d) for d in data] if indices is None: # choose all parameters indices = _np.arange(data[0].shape[1]) assert len(indices) > 0, 'Invalid specification of parameter indices. Need a non-empty iterable, got ' + str(indices) # select columns of parameters through indices chain_groups = r_group([_np.mean(chain_values.T[indices], axis=1) for chain_values in data], [_np.var (chain_values.T[indices], axis=1, ddof=1) for chain_values in data], n, critical_r, approx) long_patches_means = [] long_patches_covs = [] for group in chain_groups: # we want K_g components from k_g = len(group) chains k_g = len(group) if K_g >= k_g: # find minimal lexicographic integer partition n = _part(K_g, k_g) for i, chain_index in enumerate(group): # need to partition in n[i] parts data_full_chain = data[chain_index] # find minimal lexicographic integer partition of chain_length into n[i] this_patch_lengths = _part(len(data_full_chain), n[i]) append_components(long_patches_means, long_patches_covs, data_full_chain, this_patch_lengths) else: # form one long chain and set k_g = 1 k_g = 1 # make one large chain data_full_chain = _np.vstack([data[i] for i in group]) # need to partition into K_g parts -- > minimal lexicographic integer partition this_patch_lengths = _part(len(data_full_chain), K_g) append_components(long_patches_means, long_patches_covs, data_full_chain, this_patch_lengths) return long_patches_means, long_patches_covs
Helper function for :py:func:`.make_r_gaussmix` and :py:func:`.make_r_tmix`. Group the ``data`` according to the R value and split each group into ``K_g`` patches. Return the patch means and covariances. For details see the docstrings of the above mentioned functions.
def load(self, dump_fn='', prep_only=0, force_upload=0, from_local=0, name=None, site=None, dest_dir=None): """ Restores a database snapshot onto the target database server. If prep_only=1, commands for preparing the load will be generated, but not the command to finally load the snapshot. """ r = self.database_renderer(name=name, site=site) # Render the snapshot filename. r.env.dump_fn = self.get_default_db_fn(fn_template=dump_fn, dest_dir=dest_dir) from_local = int(from_local) prep_only = int(prep_only) missing_local_dump_error = r.format('Database dump file {dump_fn} does not exist.') # Copy snapshot file to target. if self.is_local: r.env.remote_dump_fn = dump_fn else: r.env.remote_dump_fn = '/tmp/' + os.path.split(r.env.dump_fn)[-1] if not prep_only and not self.is_local: if not self.dryrun: assert os.path.isfile(r.env.dump_fn), missing_local_dump_error r.pc('Uploading MongoDB database snapshot...') # r.put( # local_path=r.env.dump_fn, # remote_path=r.env.remote_dump_fn) r.local('rsync -rvz --progress --no-p --no-g ' '--rsh "ssh -o StrictHostKeyChecking=no -i {key_filename}" ' '{dump_fn} {user}@{host_string}:{remote_dump_fn}') if self.is_local and not prep_only and not self.dryrun: assert os.path.isfile(r.env.dump_fn), missing_local_dump_error r.run_or_local(r.env.load_command)
Restores a database snapshot onto the target database server. If prep_only=1, commands for preparing the load will be generated, but not the command to finally load the snapshot.
def enter_eventloop(self): """enter eventloop""" self.log.info("entering eventloop") # restore default_int_handler signal(SIGINT, default_int_handler) while self.eventloop is not None: try: self.eventloop(self) except KeyboardInterrupt: # Ctrl-C shouldn't crash the kernel self.log.error("KeyboardInterrupt caught in kernel") continue else: # eventloop exited cleanly, this means we should stop (right?) self.eventloop = None break self.log.info("exiting eventloop") # if eventloop exits, IOLoop should stop ioloop.IOLoop.instance().stop()
enter eventloop
def cleanup_unreachable(rdf): """Remove triples which cannot be reached from the concepts by graph traversal.""" all_subjects = set(rdf.subjects()) logging.debug("total subject resources: %d", len(all_subjects)) reachable = find_reachable(rdf, SKOS.Concept) nonreachable = all_subjects - reachable logging.debug("deleting %s non-reachable resources", len(nonreachable)) for subj in nonreachable: delete_uri(rdf, subj)
Remove triples which cannot be reached from the concepts by graph traversal.
def resample_signal(self, data_frame): """ Convenience method for frequency conversion and resampling of data frame. Object must have a DatetimeIndex. After re-sampling, this methods interpolate the time magnitude sum acceleration values and the x,y,z values of the data frame acceleration :param data_frame: the data frame to resample :param str sampling_frequency: the sampling frequency. Default is 100Hz, as recommended by the author of the pilot study [1] """ new_freq = np.round(1 / self.sampling_frequency, decimals=6) df_resampled = data_frame.resample(str(new_freq) + 'S').mean() # f = interpolate.interp1d(data_frame.td, data_frame.mag_sum_acc) # new_timestamp = np.arange(data_frame.td[0], data_frame.td[-1], 1.0 / self.sampling_frequency) # df_resampled.mag_sum_acc = f(new_timestamp) logging.debug("resample signal") df_resampled = df_resampled.interpolate(method='linear') get_sampling_rate_from_timestamp(df_resampled) # df_resampled['td'] = df_resampled.index - df_resampled.index[0] return df_resampled
Convenience method for frequency conversion and resampling of data frame. Object must have a DatetimeIndex. After re-sampling, this methods interpolate the time magnitude sum acceleration values and the x,y,z values of the data frame acceleration :param data_frame: the data frame to resample :param str sampling_frequency: the sampling frequency. Default is 100Hz, as recommended by the author of the pilot study [1]
def _stripslashes(s): '''Removes trailing and leading backslashes from string''' r = re.sub(r"\\(n|r)", "\n", s) r = re.sub(r"\\", "", r) return r
Removes trailing and leading backslashes from string
def _set_status(self, status, message=''): """ Updates the status and message on all supported IM apps. `status` Status type (See ``VALID_STATUSES``). `message` Status message. """ message = message.strip() # fetch away message from provided id if message.startswith(':'): msg_id = message[1:] message = self.messages.get(msg_id, '') message = message.encode('utf-8', 'replace') # attempt to set status for each supported application for func in self.set_status_funcs: func(status, message)
Updates the status and message on all supported IM apps. `status` Status type (See ``VALID_STATUSES``). `message` Status message.
def from_bytes(cls, b): """Create an APNG from raw bytes. :arg bytes b: The raw bytes of the APNG file. :rtype: APNG """ hdr = None head_chunks = [] end = ("IEND", make_chunk("IEND", b"")) frame_chunks = [] frames = [] num_plays = 0 frame_has_head_chunks = False control = None for type_, data in parse_chunks(b): if type_ == "IHDR": hdr = data frame_chunks.append((type_, data)) elif type_ == "acTL": _num_frames, num_plays = struct.unpack("!II", data[8:-4]) continue elif type_ == "fcTL": if any(type_ == "IDAT" for type_, data in frame_chunks): # IDAT inside chunk, go to next frame frame_chunks.append(end) frames.append((PNG.from_chunks(frame_chunks), control)) frame_has_head_chunks = False control = FrameControl.from_bytes(data[12:-4]) # https://github.com/PyCQA/pylint/issues/2072 # pylint: disable=typecheck hdr = make_chunk("IHDR", struct.pack("!II", control.width, control.height) + hdr[16:-4]) frame_chunks = [("IHDR", hdr)] else: control = FrameControl.from_bytes(data[12:-4]) elif type_ == "IDAT": if not frame_has_head_chunks: frame_chunks.extend(head_chunks) frame_has_head_chunks = True frame_chunks.append((type_, data)) elif type_ == "fdAT": # convert to IDAT if not frame_has_head_chunks: frame_chunks.extend(head_chunks) frame_has_head_chunks = True frame_chunks.append(("IDAT", make_chunk("IDAT", data[12:-4]))) elif type_ == "IEND": # end frame_chunks.append(end) frames.append((PNG.from_chunks(frame_chunks), control)) break elif type_ in CHUNK_BEFORE_IDAT: head_chunks.append((type_, data)) else: frame_chunks.append((type_, data)) o = cls() o.frames = frames o.num_plays = num_plays return o
Create an APNG from raw bytes. :arg bytes b: The raw bytes of the APNG file. :rtype: APNG
def is_same(type1, type2): """returns True, if type1 and type2 are same types""" nake_type1 = remove_declarated(type1) nake_type2 = remove_declarated(type2) return nake_type1 == nake_type2
returns True, if type1 and type2 are same types
def _get_log_model_class(self): """Cache for fetching the actual log model object once django is loaded. Otherwise, import conflict occur: WorkflowEnabled imports <log_model> which tries to import all models to retrieve the proper model class. """ if self.log_model_class is not None: return self.log_model_class app_label, model_label = self.log_model.rsplit('.', 1) self.log_model_class = apps.get_model(app_label, model_label) return self.log_model_class
Cache for fetching the actual log model object once django is loaded. Otherwise, import conflict occur: WorkflowEnabled imports <log_model> which tries to import all models to retrieve the proper model class.
def shelter_listbybreed(self, **kwargs): """ shelter.listByBreed wrapper. Given a breed and an animal type, list the shelter IDs with pets of said breed. :rtype: generator :returns: A generator of shelter IDs that have breed matches. """ root = self._do_api_call("shelter.listByBreed", kwargs) shelter_ids = root.findall("shelterIds/id") for shelter_id in shelter_ids: yield shelter_id.text
shelter.listByBreed wrapper. Given a breed and an animal type, list the shelter IDs with pets of said breed. :rtype: generator :returns: A generator of shelter IDs that have breed matches.
def move(zone, zonepath): ''' Move zone to new zonepath. zone : string name or uuid of the zone zonepath : string new zonepath CLI Example: .. code-block:: bash salt '*' zoneadm.move meave /sweetwater/meave ''' ret = {'status': True} ## verify zone res = __salt__['cmd.run_all']('zoneadm {zone} move {path}'.format( zone='-u {0}'.format(zone) if _is_uuid(zone) else '-z {0}'.format(zone), path=zonepath, )) ret['status'] = res['retcode'] == 0 ret['message'] = res['stdout'] if ret['status'] else res['stderr'] ret['message'] = ret['message'].replace('zoneadm: ', '') if ret['message'] == '': del ret['message'] return ret
Move zone to new zonepath. zone : string name or uuid of the zone zonepath : string new zonepath CLI Example: .. code-block:: bash salt '*' zoneadm.move meave /sweetwater/meave
def get_profile(session): """Get profile data.""" response = session.get(PROFILE_URL, allow_redirects=False) if response.status_code == 302: raise USPSError('expired session') parsed = BeautifulSoup(response.text, HTML_PARSER) profile = parsed.find('div', {'class': 'atg_store_myProfileInfo'}) data = {} for row in profile.find_all('tr'): cells = row.find_all('td') if len(cells) == 2: key = ' '.join(cells[0].find_all(text=True)).strip().lower().replace(' ', '_') value = ' '.join(cells[1].find_all(text=True)).strip() data[key] = value return data
Get profile data.
def add_interactions_from(self, ebunch, t=None, e=None): """Add all the interaction in ebunch at time t. Parameters ---------- ebunch : container of interaction Each interaction given in the container will be added to the graph. The interaction must be given as as 2-tuples (u,v) or 3-tuples (u,v,d) where d is a dictionary containing interaction data. t : appearance snapshot id, mandatory e : vanishing snapshot id, optional See Also -------- add_edge : add a single interaction Examples -------- >>> G = dn.DynGraph() >>> G.add_edges_from([(0,1),(1,2)], t=0) """ # set up attribute dict if t is None: raise nx.NetworkXError( "The t argument must be a specified.") # process ebunch for ed in ebunch: self.add_interaction(ed[0], ed[1], t, e)
Add all the interaction in ebunch at time t. Parameters ---------- ebunch : container of interaction Each interaction given in the container will be added to the graph. The interaction must be given as as 2-tuples (u,v) or 3-tuples (u,v,d) where d is a dictionary containing interaction data. t : appearance snapshot id, mandatory e : vanishing snapshot id, optional See Also -------- add_edge : add a single interaction Examples -------- >>> G = dn.DynGraph() >>> G.add_edges_from([(0,1),(1,2)], t=0)
def imagecapture(self, window_name=None, x=0, y=0, width=None, height=None): """ Captures screenshot of the whole desktop or given window @param window_name: Window name to look for, either full name, LDTP's name convention, or a Unix glob. @type window_name: string @param x: x co-ordinate value @type x: int @param y: y co-ordinate value @type y: int @param width: width co-ordinate value @type width: int @param height: height co-ordinate value @type height: int @return: screenshot with base64 encoded for the client @rtype: string """ if x or y or (width and width != -1) or (height and height != -1): raise LdtpServerException("Not implemented") if window_name: handle, name, app = self._get_window_handle(window_name) try: self._grabfocus(handle) except: pass rect = self._getobjectsize(handle) screenshot = CGWindowListCreateImage(NSMakeRect(rect[0], rect[1], rect[2], rect[3]), 1, 0, 0) else: screenshot = CGWindowListCreateImage(CGRectInfinite, 1, 0, 0) image = CIImage.imageWithCGImage_(screenshot) bitmapRep = NSBitmapImageRep.alloc().initWithCIImage_(image) blob = bitmapRep.representationUsingType_properties_(NSPNGFileType, None) tmpFile = tempfile.mktemp('.png', 'ldtpd_') blob.writeToFile_atomically_(tmpFile, False) rv = b64encode(open(tmpFile).read()) os.remove(tmpFile) return rv
Captures screenshot of the whole desktop or given window @param window_name: Window name to look for, either full name, LDTP's name convention, or a Unix glob. @type window_name: string @param x: x co-ordinate value @type x: int @param y: y co-ordinate value @type y: int @param width: width co-ordinate value @type width: int @param height: height co-ordinate value @type height: int @return: screenshot with base64 encoded for the client @rtype: string
def set_stack_address_mapping(self, absolute_address, region_id, related_function_address=None): """ Create a new mapping between an absolute address (which is the base address of a specific stack frame) and a region ID. :param absolute_address: The absolute memory address. :param region_id: The region ID. :param related_function_address: Related function address. """ if self._stack_region_map is None: raise SimMemoryError('Stack region map is not initialized.') self._stack_region_map.map(absolute_address, region_id, related_function_address=related_function_address)
Create a new mapping between an absolute address (which is the base address of a specific stack frame) and a region ID. :param absolute_address: The absolute memory address. :param region_id: The region ID. :param related_function_address: Related function address.
def s15f16l(s): """Convert sequence of ICC s15Fixed16 to list of float.""" # Note: As long as float has at least 32 bits of mantissa, all # values are preserved. n = len(s) // 4 t = struct.unpack('>%dl' % n, s) return map((2**-16).__mul__, t)
Convert sequence of ICC s15Fixed16 to list of float.
def _get(self, key, what): """Generic getter magic method. The node with the nearest but not less hash value is returned. :param key: the key to look for. :param what: the information to look for in, allowed values: - instance (default): associated node instance - nodename: node name - pos: index of the given key in the ring - tuple: ketama compatible (pos, name) tuple - weight: node weight """ if not self.runtime._ring: return None pos = self._get_pos(key) if what == 'pos': return pos nodename = self.runtime._ring[self.runtime._keys[pos]] if what in ['hostname', 'instance', 'port', 'weight']: return self.runtime._nodes[nodename][what] elif what == 'dict': return self.runtime._nodes[nodename] elif what == 'nodename': return nodename elif what == 'tuple': return (self.runtime._keys[pos], nodename)
Generic getter magic method. The node with the nearest but not less hash value is returned. :param key: the key to look for. :param what: the information to look for in, allowed values: - instance (default): associated node instance - nodename: node name - pos: index of the given key in the ring - tuple: ketama compatible (pos, name) tuple - weight: node weight
def checkBinary(name, bindir=None): """ Checks for the given binary in the places, defined by the environment variables SUMO_HOME and <NAME>_BINARY. """ if name == "sumo-gui": envName = "GUISIM_BINARY" else: envName = name.upper() + "_BINARY" env = os.environ join = os.path.join if envName in env and exeExists(env.get(envName)): return env.get(envName) if bindir is not None: binary = join(bindir, name) if exeExists(binary): return binary if "SUMO_HOME" in env: binary = join(env.get("SUMO_HOME"), "bin", name) if exeExists(binary): return binary binary = os.path.abspath( join(os.path.dirname(__file__), '..', '..', 'bin', name)) if exeExists(binary): return binary return name
Checks for the given binary in the places, defined by the environment variables SUMO_HOME and <NAME>_BINARY.
def OnPadIntCtrl(self, event): """Pad IntCtrl event handler""" self.attrs["pad"] = event.GetValue() post_command_event(self, self.DrawChartMsg)
Pad IntCtrl event handler
def _get_remote(self, cached=True): ''' Helper function to determine remote :param cached: Use cached values or query remotes ''' return self.m( 'getting current remote', cmdd=dict( cmd='git remote show %s' % ('-n' if cached else ''), cwd=self.local ), verbose=False )
Helper function to determine remote :param cached: Use cached values or query remotes
def from_conll(this_class, stream): """Construct a Corpus. stream is an iterable over strings where each string is a line in CoNLL-X format.""" stream = iter(stream) corpus = this_class() while 1: # read until we get an empty sentence sentence = Sentence.from_conll(stream) if sentence: corpus.append(sentence) else: break return corpus
Construct a Corpus. stream is an iterable over strings where each string is a line in CoNLL-X format.
def remove(path): '''Remove a cached environment. Removed paths will no longer be able to be activated by name''' r = cpenv.resolve(path) if isinstance(r.resolved[0], cpenv.VirtualEnvironment): EnvironmentCache.discard(r.resolved[0]) EnvironmentCache.save()
Remove a cached environment. Removed paths will no longer be able to be activated by name
def sample_slice(args): """ Return a new live point proposed by a series of random slices away from an existing live point. Standard "Gibs-like" implementation where a single multivariate "slice" is a combination of `ndim` univariate slices through each axis. Parameters ---------- u : `~numpy.ndarray` with shape (npdim,) Position of the initial sample. **This is a copy of an existing live point.** loglstar : float Ln(likelihood) bound. axes : `~numpy.ndarray` with shape (ndim, ndim) Axes used to propose new points. For slices new positions are proposed along the arthogonal basis defined by :data:`axes`. scale : float Value used to scale the provided axes. prior_transform : function Function transforming a sample from the a unit cube to the parameter space of interest according to the prior. loglikelihood : function Function returning ln(likelihood) given parameters as a 1-d `~numpy` array of length `ndim`. kwargs : dict A dictionary of additional method-specific parameters. Returns ------- u : `~numpy.ndarray` with shape (npdim,) Position of the final proposed point within the unit cube. v : `~numpy.ndarray` with shape (ndim,) Position of the final proposed point in the target parameter space. logl : float Ln(likelihood) of the final proposed point. nc : int Number of function calls used to generate the sample. blob : dict Collection of ancillary quantities used to tune :data:`scale`. """ # Unzipping. (u, loglstar, axes, scale, prior_transform, loglikelihood, kwargs) = args rstate = np.random # Periodicity. nonperiodic = kwargs.get('nonperiodic', None) # Setup. n = len(u) slices = kwargs.get('slices', 5) # number of slices nc = 0 nexpand = 0 ncontract = 0 fscale = [] # Modifying axes and computing lengths. axes = scale * axes.T # scale based on past tuning axlens = [linalg.norm(axis) for axis in axes] # Slice sampling loop. for it in range(slices): # Shuffle axis update order. idxs = np.arange(n) rstate.shuffle(idxs) # Slice sample along a random direction. for idx in idxs: # Select axis. axis = axes[idx] axlen = axlens[idx] # Define starting "window". r = rstate.rand() # initial scale/offset u_l = u - r * axis # left bound if unitcheck(u_l, nonperiodic): v_l = prior_transform(np.array(u_l)) logl_l = loglikelihood(np.array(v_l)) else: logl_l = -np.inf nc += 1 nexpand += 1 u_r = u + (1 - r) * axis # right bound if unitcheck(u_r, nonperiodic): v_r = prior_transform(np.array(u_r)) logl_r = loglikelihood(np.array(v_r)) else: logl_r = -np.inf nc += 1 nexpand += 1 # "Stepping out" the left and right bounds. while logl_l >= loglstar: u_l -= axis if unitcheck(u_l, nonperiodic): v_l = prior_transform(np.array(u_l)) logl_l = loglikelihood(np.array(v_l)) else: logl_l = -np.inf nc += 1 nexpand += 1 while logl_r >= loglstar: u_r += axis if unitcheck(u_r, nonperiodic): v_r = prior_transform(np.array(u_r)) logl_r = loglikelihood(np.array(v_r)) else: logl_r = -np.inf nc += 1 nexpand += 1 # Sample within limits. If the sample is not valid, shrink # the limits until we hit the `loglstar` bound. while True: u_hat = u_r - u_l u_prop = u_l + rstate.rand() * u_hat # scale from left if unitcheck(u_prop, nonperiodic): v_prop = prior_transform(np.array(u_prop)) logl_prop = loglikelihood(np.array(v_prop)) else: logl_prop = -np.inf nc += 1 ncontract += 1 # If we succeed, move to the new position. if logl_prop >= loglstar: window = linalg.norm(u_hat) # length of window fscale.append(window / axlen) u = u_prop break # If we fail, check if the new point is to the left/right of # our original point along our proposal axis and update # the bounds accordingly. else: s = np.dot(u_prop - u, u_hat) # check sign (+/-) if s < 0: # left u_l = u_prop elif s > 0: # right u_r = u_prop else: raise RuntimeError("Slice sampler has failed to find " "a valid point. Some useful " "output quantities:\n" "u: {0}\n" "u_left: {1}\n" "u_right: {2}\n" "u_hat: {3}\n" "u_prop: {4}\n" "loglstar: {5}\n" "logl_prop: {6}\n" "axes: {7}\n" "axlens: {8}\n" "s: {9}." .format(u, u_l, u_r, u_hat, u_prop, loglstar, logl_prop, axes, axlens, s)) blob = {'fscale': np.mean(fscale), 'nexpand': nexpand, 'ncontract': ncontract} return u_prop, v_prop, logl_prop, nc, blob
Return a new live point proposed by a series of random slices away from an existing live point. Standard "Gibs-like" implementation where a single multivariate "slice" is a combination of `ndim` univariate slices through each axis. Parameters ---------- u : `~numpy.ndarray` with shape (npdim,) Position of the initial sample. **This is a copy of an existing live point.** loglstar : float Ln(likelihood) bound. axes : `~numpy.ndarray` with shape (ndim, ndim) Axes used to propose new points. For slices new positions are proposed along the arthogonal basis defined by :data:`axes`. scale : float Value used to scale the provided axes. prior_transform : function Function transforming a sample from the a unit cube to the parameter space of interest according to the prior. loglikelihood : function Function returning ln(likelihood) given parameters as a 1-d `~numpy` array of length `ndim`. kwargs : dict A dictionary of additional method-specific parameters. Returns ------- u : `~numpy.ndarray` with shape (npdim,) Position of the final proposed point within the unit cube. v : `~numpy.ndarray` with shape (ndim,) Position of the final proposed point in the target parameter space. logl : float Ln(likelihood) of the final proposed point. nc : int Number of function calls used to generate the sample. blob : dict Collection of ancillary quantities used to tune :data:`scale`.
def _execute(self, cursor, statements): """" Executes a list of statements, returning an iterator of results sets. Each statement should be a tuple of (statement, params). """ payload = [{'statement': s, 'parameters': p, 'resultDataContents':['rest']} for (s, p) in statements] http_response = self._http_req("POST", self._tx, {'statements': payload}) if self._tx == TX_ENDPOINT: self._tx = http_response.getheader('Location') response = self._deserialize(http_response) self._handle_errors(response, cursor, cursor) return response['results'][-1]
Executes a list of statements, returning an iterator of results sets. Each statement should be a tuple of (statement, params).
def list(self, search_opts=None): """Get a list of Plugins.""" query = base.get_query_string(search_opts) return self._list('/plugins%s' % query, 'plugins')
Get a list of Plugins.
def get_ball_by_ball(self, match_key, over_key=None): """ match_key: key of the match over_key : key of the over Return: json data: """ if over_key: ball_by_ball_url = "{base_path}match/{match_key}/balls/{over_key}/".format(base_path=self.api_path, match_key=match_key, over_key=over_key) else: ball_by_ball_url = "{base_path}match/{match_key}/balls/".format(base_path=self.api_path, match_key=match_key) response = self.get_response(ball_by_ball_url) return response
match_key: key of the match over_key : key of the over Return: json data:
def check_applied(result): """ Raises LWTException if it looks like a failed LWT request. A LWTException won't be raised in the special case in which there are several failed LWT in a :class:`~cqlengine.query.BatchQuery`. """ try: applied = result.was_applied except Exception: applied = True # result was not LWT form if not applied: raise LWTException(result.one())
Raises LWTException if it looks like a failed LWT request. A LWTException won't be raised in the special case in which there are several failed LWT in a :class:`~cqlengine.query.BatchQuery`.
def updateSocialTone(user, socialTone, maintainHistory): """ updateSocialTone updates the user with the social tones interpreted based on the specified thresholds @param user a json object representing user information (tone) to be used in conversing with the Conversation Service @param socialTone a json object containing the social tones in the payload returned by the Tone Analyzer """ currentSocial = [] currentSocialObject = [] # Process each social tone and determine if it is high or low for tone in socialTone['tones']: if tone['score'] >= SOCIAL_HIGH_SCORE_THRESHOLD: currentSocial.append(tone['tone_name'].lower() + '_high') currentSocialObject.append({ 'tone_name': tone['tone_name'].lower(), 'score': tone['score'], 'interpretation': 'likely high' }) elif tone['score'] <= SOCIAL_LOW_SCORE_THRESHOLD: currentSocial.append(tone['tone_name'].lower() + '_low') currentSocialObject.append({ 'tone_name': tone['tone_name'].lower(), 'score': tone['score'], 'interpretation': 'likely low' }) else: currentSocialObject.append({ 'tone_name': tone['tone_name'].lower(), 'score': tone['score'], 'interpretation': 'likely medium' }) # update user social tone user['tone']['social']['current'] = currentSocial if maintainHistory: if not user['tone']['social']['current']: user['tone']['social']['current'] = [] user['tone']['social']['current'].append(currentSocialObject)
updateSocialTone updates the user with the social tones interpreted based on the specified thresholds @param user a json object representing user information (tone) to be used in conversing with the Conversation Service @param socialTone a json object containing the social tones in the payload returned by the Tone Analyzer
def _set_system_description(self, v, load=False): """ Setter method for system_description, mapped from YANG variable /protocol/lldp/system_description (string) If this variable is read-only (config: false) in the source YANG file, then _set_system_description is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_system_description() directly. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=RestrictedClassType(base_type=unicode, restriction_dict={'length': [u'1..50']}), is_leaf=True, yang_name="system-description", rest_name="system-description", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-full-command': None, u'cli-multi-value': None, u'info': u'The System Description.'}}, namespace='urn:brocade.com:mgmt:brocade-lldp', defining_module='brocade-lldp', yang_type='string', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """system_description must be of a type compatible with string""", 'defined-type': "string", 'generated-type': """YANGDynClass(base=RestrictedClassType(base_type=unicode, restriction_dict={'length': [u'1..50']}), is_leaf=True, yang_name="system-description", rest_name="system-description", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-full-command': None, u'cli-multi-value': None, u'info': u'The System Description.'}}, namespace='urn:brocade.com:mgmt:brocade-lldp', defining_module='brocade-lldp', yang_type='string', is_config=True)""", }) self.__system_description = t if hasattr(self, '_set'): self._set()
Setter method for system_description, mapped from YANG variable /protocol/lldp/system_description (string) If this variable is read-only (config: false) in the source YANG file, then _set_system_description is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_system_description() directly.
def mode(data): """Compute an intelligent value for the mode The most common value in experimental is not very useful if there are a lot of digits after the comma. This method approaches this issue by rounding to bin size that is determined by the Freedman–Diaconis rule. Parameters ---------- data: 1d ndarray The data for which the mode should be computed. Returns ------- mode: float The mode computed with the Freedman-Diaconis rule. """ # size n = data.shape[0] # interquartile range iqr = np.percentile(data, 75)-np.percentile(data, 25) # Freedman–Diaconis bin_size = 2 * iqr / n**(1/3) if bin_size == 0: return np.nan # Add bin_size/2, because we want the center of the bin and # not the left corner of the bin. databin = np.round(data/bin_size)*bin_size + bin_size/2 u, indices = np.unique(databin, return_inverse=True) mode = u[np.argmax(np.bincount(indices))] return mode
Compute an intelligent value for the mode The most common value in experimental is not very useful if there are a lot of digits after the comma. This method approaches this issue by rounding to bin size that is determined by the Freedman–Diaconis rule. Parameters ---------- data: 1d ndarray The data for which the mode should be computed. Returns ------- mode: float The mode computed with the Freedman-Diaconis rule.
def add_enclave_tag(self, report_id, name, enclave_id, id_type=None): """ Adds a tag to a specific report, for a specific enclave. :param report_id: The ID of the report :param name: The name of the tag to be added :param enclave_id: ID of the enclave where the tag will be added :param id_type: indicates whether the ID internal or an external ID provided by the user :return: The ID of the tag that was created. """ params = { 'idType': id_type, 'name': name, 'enclaveId': enclave_id } resp = self._client.post("reports/%s/tags" % report_id, params=params) return str(resp.content)
Adds a tag to a specific report, for a specific enclave. :param report_id: The ID of the report :param name: The name of the tag to be added :param enclave_id: ID of the enclave where the tag will be added :param id_type: indicates whether the ID internal or an external ID provided by the user :return: The ID of the tag that was created.
def primary_avatar(user, size=AVATAR_DEFAULT_SIZE): """ This tag tries to get the default avatar for a user without doing any db requests. It achieve this by linking to a special view that will do all the work for us. If that special view is then cached by a CDN for instance, we will avoid many db calls. """ alt = unicode(user) url = reverse('avatar_render_primary', kwargs={'user' : user, 'size' : size}) return """<img src="%s" alt="%s" />""" % (url, alt, )
This tag tries to get the default avatar for a user without doing any db requests. It achieve this by linking to a special view that will do all the work for us. If that special view is then cached by a CDN for instance, we will avoid many db calls.
def delete(self, personId): """Remove a person from the system. Only an admin can remove a person. Args: personId(basestring): The ID of the person to be deleted. Raises: TypeError: If the parameter types are incorrect. ApiError: If the Webex Teams cloud returns an error. """ check_type(personId, basestring, may_be_none=False) # API request self._session.delete(API_ENDPOINT + '/' + personId)
Remove a person from the system. Only an admin can remove a person. Args: personId(basestring): The ID of the person to be deleted. Raises: TypeError: If the parameter types are incorrect. ApiError: If the Webex Teams cloud returns an error.
def parse_args(self): """Parse CLI args.""" self.tcex.log.info('Parsing Args.') Args(self.tcex.parser) self.args = self.tcex.args
Parse CLI args.
def send_data_to_server(self, data, time_out=5): """ Sends given data to the Server. :param data: Data to send. :type data: unicode :param time_out: Connection timeout in seconds. :type time_out: float :return: Method success. :rtype: bool """ if not data.endswith(self.__connection_end): data = "{0}{1}".format(data, foundations.strings.to_string(self.__connection_end).decode("string_escape")) connection = socket.socket(socket.AF_INET, socket.SOCK_STREAM) connection.settimeout(time_out) connection.connect((foundations.strings.to_string(self.__address), int(self.__port))) connection.send(data) self.__engine.notifications_manager.notify( "{0} | Socket connection command dispatched!".format(self.__class__.__name__)) connection.close() return True
Sends given data to the Server. :param data: Data to send. :type data: unicode :param time_out: Connection timeout in seconds. :type time_out: float :return: Method success. :rtype: bool
def terminate(self): '''Kills the work unit. This is called by the standard worker system, but only in response to an operating system signal. If the job does setup such as creating a child process, its terminate function should kill that child process. More specifically, this function requires the work spec to contain the keys ``module``, ``run_function``, and ``terminate_function``, and calls ``terminate_function`` in :attr:`module` containing :const:`self` as its only parameter. ''' terminate_function_name = self.spec.get('terminate_function') if not terminate_function_name: logger.error('tried to terminate WorkUnit(%r) but no ' 'function name', self.key) return None terminate_function = getattr(self.module, self.spec['terminate_function']) if not terminate_function: logger.error('tried to terminate WorkUnit(%r) but no ' 'function %s in module %r', self.key, terminate_function_name, self.module.__name__) return None logger.info('calling terminate function for work unit {0}' .format(self.key)) ret_val = terminate_function(self) self.update(lease_time=-10) return ret_val
Kills the work unit. This is called by the standard worker system, but only in response to an operating system signal. If the job does setup such as creating a child process, its terminate function should kill that child process. More specifically, this function requires the work spec to contain the keys ``module``, ``run_function``, and ``terminate_function``, and calls ``terminate_function`` in :attr:`module` containing :const:`self` as its only parameter.
def transformer_moe_base(): """Set of hyperparameters.""" hparams = common_hparams.basic_params1() hparams.norm_type = "layer" hparams.hidden_size = 512 hparams.batch_size = 4096 hparams.max_length = 2001 hparams.max_input_seq_length = 2000 hparams.max_target_seq_length = 2000 hparams.dropout = 0.0 hparams.clip_grad_norm = 0. # i.e. no gradient clipping hparams.optimizer_adam_epsilon = 1e-9 hparams.learning_rate_decay_scheme = "noam" hparams.learning_rate = 0.1 hparams.learning_rate_warmup_steps = 2000 hparams.initializer_gain = 1.0 hparams.num_hidden_layers = 5 hparams.initializer = "uniform_unit_scaling" hparams.weight_decay = 0.0 hparams.optimizer_adam_beta1 = 0.9 hparams.optimizer_adam_beta2 = 0.98 hparams.num_sampled_classes = 0 hparams.label_smoothing = 0.0 hparams.shared_embedding_and_softmax_weights = True # According to noam, ("n", "da") seems better for harder-to-learn models hparams.layer_preprocess_sequence = "n" hparams.layer_postprocess_sequence = "da" # Hparams used by transformer_prepare_decoder() function hparams.add_hparam("pos", "timing") # timing, none hparams.add_hparam("proximity_bias", False) hparams.add_hparam("causal_decoder_self_attention", True) hparams = common_attention.add_standard_attention_hparams(hparams) # Decoder layers type. If set, num_decoder_layers parameter will be ignored # and the number of decoder layer will be deduced from the string # See top file comment for example of usage hparams.add_hparam("layer_types", "") # Default attention type (ex: a, loc, red,...) and feed-forward type (ex: fc, # sep, moe,...) hparams.add_hparam("default_att", "a") hparams.add_hparam("default_ff", "fc") return hparams
Set of hyperparameters.
def field_value(key, label, color, padding): """ Print a specific field's stats. """ if not clr.has_colors and padding > 0: padding = 7 if color == "bright gray" or color == "dark gray": bright_prefix = "" else: bright_prefix = "bright " field = clr.stringc(key, "{0}{1}".format(bright_prefix, color)) field_label = clr.stringc(label, color) return "{0:>{1}} {2}".format(field, padding, field_label)
Print a specific field's stats.
def write_configuration(self, out, secret_attrs=False): """Generic configuration, may be overridden by type-specific version""" key_order = ['name', 'path', 'git_dir', 'doc_dir', 'assumed_doc_version', 'git_ssh', 'pkey', 'has_aliases', 'number of collections'] cd = self.get_configuration_dict(secret_attrs=secret_attrs) for k in key_order: if k in cd: out.write(' {} = {}'.format(k, cd[k])) out.write(' collections in alias groups:\n') for o in cd['collections']: out.write(' {} ==> {}\n'.format(o['keys'], o['relpath']))
Generic configuration, may be overridden by type-specific version
def execute_cleanup_tasks(ctx, cleanup_tasks, dry_run=False): """Execute several cleanup tasks as part of the cleanup. REQUIRES: ``clean(ctx, dry_run=False)`` signature in cleanup tasks. :param ctx: Context object for the tasks. :param cleanup_tasks: Collection of cleanup tasks (as Collection). :param dry_run: Indicates dry-run mode (bool) """ # pylint: disable=redefined-outer-name executor = Executor(cleanup_tasks, ctx.config) for cleanup_task in cleanup_tasks.tasks: print("CLEANUP TASK: %s" % cleanup_task) executor.execute((cleanup_task, dict(dry_run=dry_run)))
Execute several cleanup tasks as part of the cleanup. REQUIRES: ``clean(ctx, dry_run=False)`` signature in cleanup tasks. :param ctx: Context object for the tasks. :param cleanup_tasks: Collection of cleanup tasks (as Collection). :param dry_run: Indicates dry-run mode (bool)
def make_transformer(self, decompose='svd', decompose_by=50, tsne_kwargs={}): """ Creates an internal transformer pipeline to project the data set into 2D space using TSNE, applying an pre-decomposition technique ahead of embedding if necessary. This method will reset the transformer on the class, and can be used to explore different decompositions. Parameters ---------- decompose : string or None, default: ``'svd'`` A preliminary decomposition is often used prior to TSNE to make the projection faster. Specify ``"svd"`` for sparse data or ``"pca"`` for dense data. If decompose is None, the original data set will be used. decompose_by : int, default: 50 Specify the number of components for preliminary decomposition, by default this is 50; the more components, the slower TSNE will be. Returns ------- transformer : Pipeline Pipelined transformer for TSNE projections """ # TODO: detect decompose by inferring from sparse matrix or dense or # If number of features > 50 etc. decompositions = { 'svd': TruncatedSVD, 'pca': PCA, } if decompose and decompose.lower() not in decompositions: raise YellowbrickValueError( "'{}' is not a valid decomposition, use {}, or None".format( decompose, ", ".join(decompositions.keys()) ) ) # Create the pipeline steps steps = [] # Add the pre-decomposition if decompose: klass = decompositions[decompose] steps.append((decompose, klass( n_components=decompose_by, random_state=self.random_state))) # Add the TSNE manifold steps.append(('tsne', TSNE( n_components=2, random_state=self.random_state, **tsne_kwargs))) # return the pipeline return Pipeline(steps)
Creates an internal transformer pipeline to project the data set into 2D space using TSNE, applying an pre-decomposition technique ahead of embedding if necessary. This method will reset the transformer on the class, and can be used to explore different decompositions. Parameters ---------- decompose : string or None, default: ``'svd'`` A preliminary decomposition is often used prior to TSNE to make the projection faster. Specify ``"svd"`` for sparse data or ``"pca"`` for dense data. If decompose is None, the original data set will be used. decompose_by : int, default: 50 Specify the number of components for preliminary decomposition, by default this is 50; the more components, the slower TSNE will be. Returns ------- transformer : Pipeline Pipelined transformer for TSNE projections